Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) STMicroelectronics 2016
  4 *
  5 * Author: Gerald Baeza <gerald.baeza@st.com>
  6 *
  7 * Inspired by timer-stm32.c from Maxime Coquelin
  8 *             pwm-atmel.c from Bo Shen
  9 */
 10
 
 11#include <linux/mfd/stm32-timers.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/platform_device.h>
 15#include <linux/pwm.h>
 16
 17#define CCMR_CHANNEL_SHIFT 8
 18#define CCMR_CHANNEL_MASK  0xFF
 19#define MAX_BREAKINPUT 2
 20
 21struct stm32_pwm {
 22	struct pwm_chip chip;
 23	struct mutex lock; /* protect pwm config/enable */
 24	struct clk *clk;
 25	struct regmap *regmap;
 26	u32 max_arr;
 27	bool have_complementary_output;
 
 28};
 29
 30struct stm32_breakinput {
 31	u32 index;
 32	u32 level;
 33	u32 filter;
 34};
 35
 36static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
 37{
 38	return container_of(chip, struct stm32_pwm, chip);
 39}
 40
 41static u32 active_channels(struct stm32_pwm *dev)
 42{
 43	u32 ccer;
 44
 45	regmap_read(dev->regmap, TIM_CCER, &ccer);
 46
 47	return ccer & TIM_CCER_CCXE;
 48}
 49
 50static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
 51{
 52	switch (ch) {
 53	case 0:
 54		return regmap_write(dev->regmap, TIM_CCR1, value);
 55	case 1:
 56		return regmap_write(dev->regmap, TIM_CCR2, value);
 57	case 2:
 58		return regmap_write(dev->regmap, TIM_CCR3, value);
 59	case 3:
 60		return regmap_write(dev->regmap, TIM_CCR4, value);
 61	}
 62	return -EINVAL;
 63}
 64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
 66			    int duty_ns, int period_ns)
 67{
 68	unsigned long long prd, div, dty;
 69	unsigned int prescaler = 0;
 70	u32 ccmr, mask, shift;
 71
 72	/* Period and prescaler values depends on clock rate */
 73	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
 74
 75	do_div(div, NSEC_PER_SEC);
 76	prd = div;
 77
 78	while (div > priv->max_arr) {
 79		prescaler++;
 80		div = prd;
 81		do_div(div, prescaler + 1);
 82	}
 83
 84	prd = div;
 85
 86	if (prescaler > MAX_TIM_PSC)
 87		return -EINVAL;
 88
 89	/*
 90	 * All channels share the same prescaler and counter so when two
 91	 * channels are active at the same time we can't change them
 92	 */
 93	if (active_channels(priv) & ~(1 << ch * 4)) {
 94		u32 psc, arr;
 95
 96		regmap_read(priv->regmap, TIM_PSC, &psc);
 97		regmap_read(priv->regmap, TIM_ARR, &arr);
 98
 99		if ((psc != prescaler) || (arr != prd - 1))
100			return -EBUSY;
101	}
102
103	regmap_write(priv->regmap, TIM_PSC, prescaler);
104	regmap_write(priv->regmap, TIM_ARR, prd - 1);
105	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
106
107	/* Calculate the duty cycles */
108	dty = prd * duty_ns;
109	do_div(dty, period_ns);
110
111	write_ccrx(priv, ch, dty);
112
113	/* Configure output mode */
114	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
115	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
116	mask = CCMR_CHANNEL_MASK << shift;
117
118	if (ch < 2)
119		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
120	else
121		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
122
123	regmap_update_bits(priv->regmap, TIM_BDTR,
124			   TIM_BDTR_MOE | TIM_BDTR_AOE,
125			   TIM_BDTR_MOE | TIM_BDTR_AOE);
126
127	return 0;
128}
129
130static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
131				  enum pwm_polarity polarity)
132{
133	u32 mask;
134
135	mask = TIM_CCER_CC1P << (ch * 4);
136	if (priv->have_complementary_output)
137		mask |= TIM_CCER_CC1NP << (ch * 4);
138
139	regmap_update_bits(priv->regmap, TIM_CCER, mask,
140			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
141
142	return 0;
143}
144
145static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
146{
147	u32 mask;
148	int ret;
149
150	ret = clk_enable(priv->clk);
151	if (ret)
152		return ret;
153
154	/* Enable channel */
155	mask = TIM_CCER_CC1E << (ch * 4);
156	if (priv->have_complementary_output)
157		mask |= TIM_CCER_CC1NE << (ch * 4);
158
159	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
160
161	/* Make sure that registers are updated */
162	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
163
164	/* Enable controller */
165	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
166
167	return 0;
168}
169
170static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
171{
172	u32 mask;
173
174	/* Disable channel */
175	mask = TIM_CCER_CC1E << (ch * 4);
176	if (priv->have_complementary_output)
177		mask |= TIM_CCER_CC1NE << (ch * 4);
178
179	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
180
181	/* When all channels are disabled, we can disable the controller */
182	if (!active_channels(priv))
183		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
184
185	clk_disable(priv->clk);
186}
187
188static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
189			   struct pwm_state *state)
190{
191	bool enabled;
192	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
193	int ret;
194
195	enabled = pwm->state.enabled;
196
197	if (enabled && !state->enabled) {
198		stm32_pwm_disable(priv, pwm->hwpwm);
199		return 0;
200	}
201
202	if (state->polarity != pwm->state.polarity)
203		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
204
205	ret = stm32_pwm_config(priv, pwm->hwpwm,
206			       state->duty_cycle, state->period);
207	if (ret)
208		return ret;
209
210	if (!enabled && state->enabled)
211		ret = stm32_pwm_enable(priv, pwm->hwpwm);
212
213	return ret;
214}
215
216static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
217				  struct pwm_state *state)
218{
219	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
220	int ret;
221
222	/* protect common prescaler for all active channels */
223	mutex_lock(&priv->lock);
224	ret = stm32_pwm_apply(chip, pwm, state);
225	mutex_unlock(&priv->lock);
226
227	return ret;
228}
229
230static const struct pwm_ops stm32pwm_ops = {
231	.owner = THIS_MODULE,
232	.apply = stm32_pwm_apply_locked,
 
233};
234
235static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
236				    int index, int level, int filter)
237{
238	u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
239	int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
240	u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
241				: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
242	u32 bdtr = bke;
243
244	/*
245	 * The both bits could be set since only one will be wrote
246	 * due to mask value.
247	 */
248	if (level)
249		bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
250
251	bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
252
253	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
254
255	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
256
257	return (bdtr & bke) ? 0 : -EINVAL;
258}
259
260static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
261				       struct device_node *np)
262{
263	struct stm32_breakinput breakinput[MAX_BREAKINPUT];
264	int nb, ret, i, array_size;
265
266	nb = of_property_count_elems_of_size(np, "st,breakinput",
267					     sizeof(struct stm32_breakinput));
268
269	/*
270	 * Because "st,breakinput" parameter is optional do not make probe
271	 * failed if it doesn't exist.
272	 */
273	if (nb <= 0)
274		return 0;
275
276	if (nb > MAX_BREAKINPUT)
277		return -EINVAL;
278
279	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
280	ret = of_property_read_u32_array(np, "st,breakinput",
281					 (u32 *)breakinput, array_size);
282	if (ret)
283		return ret;
284
285	for (i = 0; i < nb && !ret; i++) {
286		ret = stm32_pwm_set_breakinput(priv,
287					       breakinput[i].index,
288					       breakinput[i].level,
289					       breakinput[i].filter);
290	}
291
292	return ret;
293}
294
295static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
296{
297	u32 ccer;
298
299	/*
300	 * If complementary bit doesn't exist writing 1 will have no
301	 * effect so we can detect it.
302	 */
303	regmap_update_bits(priv->regmap,
304			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
305	regmap_read(priv->regmap, TIM_CCER, &ccer);
306	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
307
308	priv->have_complementary_output = (ccer != 0);
309}
310
311static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
312{
313	u32 ccer;
314	int npwm = 0;
315
316	/*
317	 * If channels enable bits don't exist writing 1 will have no
318	 * effect so we can detect and count them.
319	 */
320	regmap_update_bits(priv->regmap,
321			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
322	regmap_read(priv->regmap, TIM_CCER, &ccer);
323	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
324
325	if (ccer & TIM_CCER_CC1E)
326		npwm++;
327
328	if (ccer & TIM_CCER_CC2E)
329		npwm++;
330
331	if (ccer & TIM_CCER_CC3E)
332		npwm++;
333
334	if (ccer & TIM_CCER_CC4E)
335		npwm++;
336
337	return npwm;
338}
339
340static int stm32_pwm_probe(struct platform_device *pdev)
341{
342	struct device *dev = &pdev->dev;
343	struct device_node *np = dev->of_node;
344	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
345	struct stm32_pwm *priv;
346	int ret;
347
348	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
349	if (!priv)
350		return -ENOMEM;
351
352	mutex_init(&priv->lock);
353	priv->regmap = ddata->regmap;
354	priv->clk = ddata->clk;
355	priv->max_arr = ddata->max_arr;
 
 
356
357	if (!priv->regmap || !priv->clk)
358		return -EINVAL;
359
360	ret = stm32_pwm_apply_breakinputs(priv, np);
361	if (ret)
362		return ret;
363
364	stm32_pwm_detect_complementary(priv);
365
366	priv->chip.base = -1;
367	priv->chip.dev = dev;
368	priv->chip.ops = &stm32pwm_ops;
369	priv->chip.npwm = stm32_pwm_detect_channels(priv);
370
371	ret = pwmchip_add(&priv->chip);
372	if (ret < 0)
373		return ret;
374
375	platform_set_drvdata(pdev, priv);
376
377	return 0;
378}
379
380static int stm32_pwm_remove(struct platform_device *pdev)
381{
382	struct stm32_pwm *priv = platform_get_drvdata(pdev);
383	unsigned int i;
384
385	for (i = 0; i < priv->chip.npwm; i++)
386		pwm_disable(&priv->chip.pwms[i]);
387
388	pwmchip_remove(&priv->chip);
389
390	return 0;
391}
392
393static const struct of_device_id stm32_pwm_of_match[] = {
394	{ .compatible = "st,stm32-pwm",	},
395	{ /* end node */ },
396};
397MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
398
399static struct platform_driver stm32_pwm_driver = {
400	.probe	= stm32_pwm_probe,
401	.remove	= stm32_pwm_remove,
402	.driver	= {
403		.name = "stm32-pwm",
404		.of_match_table = stm32_pwm_of_match,
405	},
406};
407module_platform_driver(stm32_pwm_driver);
408
409MODULE_ALIAS("platform:stm32-pwm");
410MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
411MODULE_LICENSE("GPL v2");
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) STMicroelectronics 2016
  4 *
  5 * Author: Gerald Baeza <gerald.baeza@st.com>
  6 *
  7 * Inspired by timer-stm32.c from Maxime Coquelin
  8 *             pwm-atmel.c from Bo Shen
  9 */
 10
 11#include <linux/bitfield.h>
 12#include <linux/mfd/stm32-timers.h>
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/platform_device.h>
 16#include <linux/pwm.h>
 17
 18#define CCMR_CHANNEL_SHIFT 8
 19#define CCMR_CHANNEL_MASK  0xFF
 20#define MAX_BREAKINPUT 2
 21
 22struct stm32_pwm {
 23	struct pwm_chip chip;
 24	struct mutex lock; /* protect pwm config/enable */
 25	struct clk *clk;
 26	struct regmap *regmap;
 27	u32 max_arr;
 28	bool have_complementary_output;
 29	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
 30};
 31
 32struct stm32_breakinput {
 33	u32 index;
 34	u32 level;
 35	u32 filter;
 36};
 37
 38static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
 39{
 40	return container_of(chip, struct stm32_pwm, chip);
 41}
 42
 43static u32 active_channels(struct stm32_pwm *dev)
 44{
 45	u32 ccer;
 46
 47	regmap_read(dev->regmap, TIM_CCER, &ccer);
 48
 49	return ccer & TIM_CCER_CCXE;
 50}
 51
 52static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
 53{
 54	switch (ch) {
 55	case 0:
 56		return regmap_write(dev->regmap, TIM_CCR1, value);
 57	case 1:
 58		return regmap_write(dev->regmap, TIM_CCR2, value);
 59	case 2:
 60		return regmap_write(dev->regmap, TIM_CCR3, value);
 61	case 3:
 62		return regmap_write(dev->regmap, TIM_CCR4, value);
 63	}
 64	return -EINVAL;
 65}
 66
 67#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
 68#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
 69#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
 70#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
 71
 72/*
 73 * Capture using PWM input mode:
 74 *                              ___          ___
 75 * TI[1, 2, 3 or 4]: ........._|   |________|
 76 *                             ^0  ^1       ^2
 77 *                              .   .        .
 78 *                              .   .        XXXXX
 79 *                              .   .   XXXXX     |
 80 *                              .  XXXXX     .    |
 81 *                            XXXXX .        .    |
 82 * COUNTER:        ______XXXXX  .   .        .    |_XXX
 83 *                 start^       .   .        .        ^stop
 84 *                      .       .   .        .
 85 *                      v       v   .        v
 86 *                                  v
 87 * CCR1/CCR3:       tx..........t0...........t2
 88 * CCR2/CCR4:       tx..............t1.........
 89 *
 90 * DMA burst transfer:          |            |
 91 *                              v            v
 92 * DMA buffer:                  { t0, tx }   { t2, t1 }
 93 * DMA done:                                 ^
 94 *
 95 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 96 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
 97 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
 98 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 99 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
100 *
101 * DMA done, compute:
102 * - Period     = t2 - t0
103 * - Duty cycle = t1 - t0
104 */
105static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
106				 unsigned long tmo_ms, u32 *raw_prd,
107				 u32 *raw_dty)
108{
109	struct device *parent = priv->chip.dev->parent;
110	enum stm32_timers_dmas dma_id;
111	u32 ccen, ccr;
112	int ret;
113
114	/* Ensure registers have been updated, enable counter and capture */
115	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
116	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
117
118	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
119	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
120	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
121	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
122	regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
123
124	/*
125	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
126	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
127	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
128	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
129	 */
130	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
131					  2, tmo_ms);
132	if (ret)
133		goto stop;
134
135	/* Period: t2 - t0 (take care of counter overflow) */
136	if (priv->capture[0] <= priv->capture[2])
137		*raw_prd = priv->capture[2] - priv->capture[0];
138	else
139		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
140
141	/* Duty cycle capture requires at least two capture units */
142	if (pwm->chip->npwm < 2)
143		*raw_dty = 0;
144	else if (priv->capture[0] <= priv->capture[3])
145		*raw_dty = priv->capture[3] - priv->capture[0];
146	else
147		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
148
149	if (*raw_dty > *raw_prd) {
150		/*
151		 * Race beetween PWM input and DMA: it may happen
152		 * falling edge triggers new capture on TI2/4 before DMA
153		 * had a chance to read CCR2/4. It means capture[1]
154		 * contains period + duty_cycle. So, subtract period.
155		 */
156		*raw_dty -= *raw_prd;
157	}
158
159stop:
160	regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
161	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
162
163	return ret;
164}
165
166static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
167			     struct pwm_capture *result, unsigned long tmo_ms)
168{
169	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
170	unsigned long long prd, div, dty;
171	unsigned long rate;
172	unsigned int psc = 0, icpsc, scale;
173	u32 raw_prd = 0, raw_dty = 0;
174	int ret = 0;
175
176	mutex_lock(&priv->lock);
177
178	if (active_channels(priv)) {
179		ret = -EBUSY;
180		goto unlock;
181	}
182
183	ret = clk_enable(priv->clk);
184	if (ret) {
185		dev_err(priv->chip.dev, "failed to enable counter clock\n");
186		goto unlock;
187	}
188
189	rate = clk_get_rate(priv->clk);
190	if (!rate) {
191		ret = -EINVAL;
192		goto clk_dis;
193	}
194
195	/* prescaler: fit timeout window provided by upper layer */
196	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
197	do_div(div, MSEC_PER_SEC);
198	prd = div;
199	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
200		psc++;
201		div = prd;
202		do_div(div, psc + 1);
203	}
204	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
205	regmap_write(priv->regmap, TIM_PSC, psc);
206
207	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
208	regmap_update_bits(priv->regmap,
209			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
210			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
211			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
212			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
213
214	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
215	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
216			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
217			   TIM_CCER_CC2P : TIM_CCER_CC4P);
218
219	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
220	if (ret)
221		goto stop;
222
223	/*
224	 * Got a capture. Try to improve accuracy at high rates:
225	 * - decrease counter clock prescaler, scale up to max rate.
226	 * - use input prescaler, capture once every /2 /4 or /8 edges.
227	 */
228	if (raw_prd) {
229		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
230
231		scale = max_arr / min(max_arr, raw_prd);
232	} else {
233		scale = priv->max_arr; /* bellow resolution, use max scale */
234	}
235
236	if (psc && scale > 1) {
237		/* 2nd measure with new scale */
238		psc /= scale;
239		regmap_write(priv->regmap, TIM_PSC, psc);
240		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
241					    &raw_dty);
242		if (ret)
243			goto stop;
244	}
245
246	/* Compute intermediate period not to exceed timeout at low rates */
247	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
248	do_div(prd, rate);
249
250	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
251		/* input prescaler: also keep arbitrary margin */
252		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
253			break;
254		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
255			break;
256	}
257
258	if (!icpsc)
259		goto done;
260
261	/* Last chance to improve period accuracy, using input prescaler */
262	regmap_update_bits(priv->regmap,
263			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
264			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
265			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
266			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
267
268	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
269	if (ret)
270		goto stop;
271
272	if (raw_dty >= (raw_prd >> icpsc)) {
273		/*
274		 * We may fall here using input prescaler, when input
275		 * capture starts on high side (before falling edge).
276		 * Example with icpsc to capture on each 4 events:
277		 *
278		 *       start   1st capture                     2nd capture
279		 *         v     v                               v
280		 *         ___   _____   _____   _____   _____   ____
281		 * TI1..4     |__|    |__|    |__|    |__|    |__|
282		 *            v  v    .  .    .  .    .       v  v
283		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
284		 * icpsc2/4:  0       1       2       3       0
285		 *            v  v                            v  v
286		 * CCR1/3  ......t0..............................t2
287		 * CCR2/4  ..t1..............................t1'...
288		 *               .                            .  .
289		 * Capture0:     .<----------------------------->.
290		 * Capture1:     .<-------------------------->.  .
291		 *               .                            .  .
292		 * Period:       .<------>                    .  .
293		 * Low side:                                  .<>.
294		 *
295		 * Result:
296		 * - Period = Capture0 / icpsc
297		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
298		 */
299		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
300	}
301
302done:
303	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
304	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
305	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
306	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
307stop:
308	regmap_write(priv->regmap, TIM_CCER, 0);
309	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
310	regmap_write(priv->regmap, TIM_PSC, 0);
311clk_dis:
312	clk_disable(priv->clk);
313unlock:
314	mutex_unlock(&priv->lock);
315
316	return ret;
317}
318
319static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
320			    int duty_ns, int period_ns)
321{
322	unsigned long long prd, div, dty;
323	unsigned int prescaler = 0;
324	u32 ccmr, mask, shift;
325
326	/* Period and prescaler values depends on clock rate */
327	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
328
329	do_div(div, NSEC_PER_SEC);
330	prd = div;
331
332	while (div > priv->max_arr) {
333		prescaler++;
334		div = prd;
335		do_div(div, prescaler + 1);
336	}
337
338	prd = div;
339
340	if (prescaler > MAX_TIM_PSC)
341		return -EINVAL;
342
343	/*
344	 * All channels share the same prescaler and counter so when two
345	 * channels are active at the same time we can't change them
346	 */
347	if (active_channels(priv) & ~(1 << ch * 4)) {
348		u32 psc, arr;
349
350		regmap_read(priv->regmap, TIM_PSC, &psc);
351		regmap_read(priv->regmap, TIM_ARR, &arr);
352
353		if ((psc != prescaler) || (arr != prd - 1))
354			return -EBUSY;
355	}
356
357	regmap_write(priv->regmap, TIM_PSC, prescaler);
358	regmap_write(priv->regmap, TIM_ARR, prd - 1);
359	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
360
361	/* Calculate the duty cycles */
362	dty = prd * duty_ns;
363	do_div(dty, period_ns);
364
365	write_ccrx(priv, ch, dty);
366
367	/* Configure output mode */
368	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
369	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
370	mask = CCMR_CHANNEL_MASK << shift;
371
372	if (ch < 2)
373		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
374	else
375		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
376
377	regmap_update_bits(priv->regmap, TIM_BDTR,
378			   TIM_BDTR_MOE | TIM_BDTR_AOE,
379			   TIM_BDTR_MOE | TIM_BDTR_AOE);
380
381	return 0;
382}
383
384static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
385				  enum pwm_polarity polarity)
386{
387	u32 mask;
388
389	mask = TIM_CCER_CC1P << (ch * 4);
390	if (priv->have_complementary_output)
391		mask |= TIM_CCER_CC1NP << (ch * 4);
392
393	regmap_update_bits(priv->regmap, TIM_CCER, mask,
394			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
395
396	return 0;
397}
398
399static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
400{
401	u32 mask;
402	int ret;
403
404	ret = clk_enable(priv->clk);
405	if (ret)
406		return ret;
407
408	/* Enable channel */
409	mask = TIM_CCER_CC1E << (ch * 4);
410	if (priv->have_complementary_output)
411		mask |= TIM_CCER_CC1NE << (ch * 4);
412
413	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
414
415	/* Make sure that registers are updated */
416	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
417
418	/* Enable controller */
419	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
420
421	return 0;
422}
423
424static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
425{
426	u32 mask;
427
428	/* Disable channel */
429	mask = TIM_CCER_CC1E << (ch * 4);
430	if (priv->have_complementary_output)
431		mask |= TIM_CCER_CC1NE << (ch * 4);
432
433	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
434
435	/* When all channels are disabled, we can disable the controller */
436	if (!active_channels(priv))
437		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
438
439	clk_disable(priv->clk);
440}
441
442static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
443			   const struct pwm_state *state)
444{
445	bool enabled;
446	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
447	int ret;
448
449	enabled = pwm->state.enabled;
450
451	if (enabled && !state->enabled) {
452		stm32_pwm_disable(priv, pwm->hwpwm);
453		return 0;
454	}
455
456	if (state->polarity != pwm->state.polarity)
457		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
458
459	ret = stm32_pwm_config(priv, pwm->hwpwm,
460			       state->duty_cycle, state->period);
461	if (ret)
462		return ret;
463
464	if (!enabled && state->enabled)
465		ret = stm32_pwm_enable(priv, pwm->hwpwm);
466
467	return ret;
468}
469
470static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
471				  const struct pwm_state *state)
472{
473	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
474	int ret;
475
476	/* protect common prescaler for all active channels */
477	mutex_lock(&priv->lock);
478	ret = stm32_pwm_apply(chip, pwm, state);
479	mutex_unlock(&priv->lock);
480
481	return ret;
482}
483
484static const struct pwm_ops stm32pwm_ops = {
485	.owner = THIS_MODULE,
486	.apply = stm32_pwm_apply_locked,
487	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
488};
489
490static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
491				    int index, int level, int filter)
492{
493	u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
494	int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
495	u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
496				: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
497	u32 bdtr = bke;
498
499	/*
500	 * The both bits could be set since only one will be wrote
501	 * due to mask value.
502	 */
503	if (level)
504		bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
505
506	bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
507
508	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
509
510	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
511
512	return (bdtr & bke) ? 0 : -EINVAL;
513}
514
515static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
516				       struct device_node *np)
517{
518	struct stm32_breakinput breakinput[MAX_BREAKINPUT];
519	int nb, ret, i, array_size;
520
521	nb = of_property_count_elems_of_size(np, "st,breakinput",
522					     sizeof(struct stm32_breakinput));
523
524	/*
525	 * Because "st,breakinput" parameter is optional do not make probe
526	 * failed if it doesn't exist.
527	 */
528	if (nb <= 0)
529		return 0;
530
531	if (nb > MAX_BREAKINPUT)
532		return -EINVAL;
533
534	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
535	ret = of_property_read_u32_array(np, "st,breakinput",
536					 (u32 *)breakinput, array_size);
537	if (ret)
538		return ret;
539
540	for (i = 0; i < nb && !ret; i++) {
541		ret = stm32_pwm_set_breakinput(priv,
542					       breakinput[i].index,
543					       breakinput[i].level,
544					       breakinput[i].filter);
545	}
546
547	return ret;
548}
549
550static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
551{
552	u32 ccer;
553
554	/*
555	 * If complementary bit doesn't exist writing 1 will have no
556	 * effect so we can detect it.
557	 */
558	regmap_update_bits(priv->regmap,
559			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
560	regmap_read(priv->regmap, TIM_CCER, &ccer);
561	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
562
563	priv->have_complementary_output = (ccer != 0);
564}
565
566static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
567{
568	u32 ccer;
569	int npwm = 0;
570
571	/*
572	 * If channels enable bits don't exist writing 1 will have no
573	 * effect so we can detect and count them.
574	 */
575	regmap_update_bits(priv->regmap,
576			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
577	regmap_read(priv->regmap, TIM_CCER, &ccer);
578	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
579
580	if (ccer & TIM_CCER_CC1E)
581		npwm++;
582
583	if (ccer & TIM_CCER_CC2E)
584		npwm++;
585
586	if (ccer & TIM_CCER_CC3E)
587		npwm++;
588
589	if (ccer & TIM_CCER_CC4E)
590		npwm++;
591
592	return npwm;
593}
594
595static int stm32_pwm_probe(struct platform_device *pdev)
596{
597	struct device *dev = &pdev->dev;
598	struct device_node *np = dev->of_node;
599	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
600	struct stm32_pwm *priv;
601	int ret;
602
603	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
604	if (!priv)
605		return -ENOMEM;
606
607	mutex_init(&priv->lock);
608	priv->regmap = ddata->regmap;
609	priv->clk = ddata->clk;
610	priv->max_arr = ddata->max_arr;
611	priv->chip.of_xlate = of_pwm_xlate_with_flags;
612	priv->chip.of_pwm_n_cells = 3;
613
614	if (!priv->regmap || !priv->clk)
615		return -EINVAL;
616
617	ret = stm32_pwm_apply_breakinputs(priv, np);
618	if (ret)
619		return ret;
620
621	stm32_pwm_detect_complementary(priv);
622
623	priv->chip.base = -1;
624	priv->chip.dev = dev;
625	priv->chip.ops = &stm32pwm_ops;
626	priv->chip.npwm = stm32_pwm_detect_channels(priv);
627
628	ret = pwmchip_add(&priv->chip);
629	if (ret < 0)
630		return ret;
631
632	platform_set_drvdata(pdev, priv);
633
634	return 0;
635}
636
637static int stm32_pwm_remove(struct platform_device *pdev)
638{
639	struct stm32_pwm *priv = platform_get_drvdata(pdev);
640	unsigned int i;
641
642	for (i = 0; i < priv->chip.npwm; i++)
643		pwm_disable(&priv->chip.pwms[i]);
644
645	pwmchip_remove(&priv->chip);
646
647	return 0;
648}
649
650static const struct of_device_id stm32_pwm_of_match[] = {
651	{ .compatible = "st,stm32-pwm",	},
652	{ /* end node */ },
653};
654MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
655
656static struct platform_driver stm32_pwm_driver = {
657	.probe	= stm32_pwm_probe,
658	.remove	= stm32_pwm_remove,
659	.driver	= {
660		.name = "stm32-pwm",
661		.of_match_table = stm32_pwm_of_match,
662	},
663};
664module_platform_driver(stm32_pwm_driver);
665
666MODULE_ALIAS("platform:stm32-pwm");
667MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
668MODULE_LICENSE("GPL v2");