Loading...
1#include <linux/delay.h>
2#include <linux/gpio/consumer.h>
3#include <linux/i2c.h>
4#include <linux/interrupt.h>
5#include <linux/jiffies.h>
6#include <linux/module.h>
7#include <linux/mutex.h>
8#include <linux/of.h>
9#include <linux/phy.h>
10#include <linux/platform_device.h>
11#include <linux/rtnetlink.h>
12#include <linux/slab.h>
13#include <linux/workqueue.h>
14
15#include "mdio-i2c.h"
16#include "sfp.h"
17#include "swphy.h"
18
19enum {
20 GPIO_MODDEF0,
21 GPIO_LOS,
22 GPIO_TX_FAULT,
23 GPIO_TX_DISABLE,
24 GPIO_RATE_SELECT,
25 GPIO_MAX,
26
27 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
28 SFP_F_LOS = BIT(GPIO_LOS),
29 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
30 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
31 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
32
33 SFP_E_INSERT = 0,
34 SFP_E_REMOVE,
35 SFP_E_DEV_DOWN,
36 SFP_E_DEV_UP,
37 SFP_E_TX_FAULT,
38 SFP_E_TX_CLEAR,
39 SFP_E_LOS_HIGH,
40 SFP_E_LOS_LOW,
41 SFP_E_TIMEOUT,
42
43 SFP_MOD_EMPTY = 0,
44 SFP_MOD_PROBE,
45 SFP_MOD_HPOWER,
46 SFP_MOD_PRESENT,
47 SFP_MOD_ERROR,
48
49 SFP_DEV_DOWN = 0,
50 SFP_DEV_UP,
51
52 SFP_S_DOWN = 0,
53 SFP_S_INIT,
54 SFP_S_WAIT_LOS,
55 SFP_S_LINK_UP,
56 SFP_S_TX_FAULT,
57 SFP_S_REINIT,
58 SFP_S_TX_DISABLE,
59};
60
61static const char *gpio_of_names[] = {
62 "mod-def0",
63 "los",
64 "tx-fault",
65 "tx-disable",
66 "rate-select0",
67};
68
69static const enum gpiod_flags gpio_flags[] = {
70 GPIOD_IN,
71 GPIOD_IN,
72 GPIOD_IN,
73 GPIOD_ASIS,
74 GPIOD_ASIS,
75};
76
77#define T_INIT_JIFFIES msecs_to_jiffies(300)
78#define T_RESET_US 10
79#define T_FAULT_RECOVER msecs_to_jiffies(1000)
80
81/* SFP module presence detection is poor: the three MOD DEF signals are
82 * the same length on the PCB, which means it's possible for MOD DEF 0 to
83 * connect before the I2C bus on MOD DEF 1/2.
84 *
85 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
86 * be deasserted) but makes no mention of the earliest time before we can
87 * access the I2C EEPROM. However, Avago modules require 300ms.
88 */
89#define T_PROBE_INIT msecs_to_jiffies(300)
90#define T_HPOWER_LEVEL msecs_to_jiffies(300)
91#define T_PROBE_RETRY msecs_to_jiffies(100)
92
93/* SFP modules appear to always have their PHY configured for bus address
94 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
95 */
96#define SFP_PHY_ADDR 22
97
98/* Give this long for the PHY to reset. */
99#define T_PHY_RESET_MS 50
100
101static DEFINE_MUTEX(sfp_mutex);
102
103struct sff_data {
104 unsigned int gpios;
105 bool (*module_supported)(const struct sfp_eeprom_id *id);
106};
107
108struct sfp {
109 struct device *dev;
110 struct i2c_adapter *i2c;
111 struct mii_bus *i2c_mii;
112 struct sfp_bus *sfp_bus;
113 struct phy_device *mod_phy;
114 const struct sff_data *type;
115 u32 max_power_mW;
116
117 unsigned int (*get_state)(struct sfp *);
118 void (*set_state)(struct sfp *, unsigned int);
119 int (*read)(struct sfp *, bool, u8, void *, size_t);
120 int (*write)(struct sfp *, bool, u8, void *, size_t);
121
122 struct gpio_desc *gpio[GPIO_MAX];
123
124 unsigned int state;
125 struct delayed_work poll;
126 struct delayed_work timeout;
127 struct mutex sm_mutex;
128 unsigned char sm_mod_state;
129 unsigned char sm_dev_state;
130 unsigned short sm_state;
131 unsigned int sm_retries;
132
133 struct sfp_eeprom_id id;
134};
135
136static bool sff_module_supported(const struct sfp_eeprom_id *id)
137{
138 return id->base.phys_id == SFP_PHYS_ID_SFF &&
139 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
140}
141
142static const struct sff_data sff_data = {
143 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
144 .module_supported = sff_module_supported,
145};
146
147static bool sfp_module_supported(const struct sfp_eeprom_id *id)
148{
149 return id->base.phys_id == SFP_PHYS_ID_SFP &&
150 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
151}
152
153static const struct sff_data sfp_data = {
154 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
155 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
156 .module_supported = sfp_module_supported,
157};
158
159static const struct of_device_id sfp_of_match[] = {
160 { .compatible = "sff,sff", .data = &sff_data, },
161 { .compatible = "sff,sfp", .data = &sfp_data, },
162 { },
163};
164MODULE_DEVICE_TABLE(of, sfp_of_match);
165
166static unsigned long poll_jiffies;
167
168static unsigned int sfp_gpio_get_state(struct sfp *sfp)
169{
170 unsigned int i, state, v;
171
172 for (i = state = 0; i < GPIO_MAX; i++) {
173 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
174 continue;
175
176 v = gpiod_get_value_cansleep(sfp->gpio[i]);
177 if (v)
178 state |= BIT(i);
179 }
180
181 return state;
182}
183
184static unsigned int sff_gpio_get_state(struct sfp *sfp)
185{
186 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
187}
188
189static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
190{
191 if (state & SFP_F_PRESENT) {
192 /* If the module is present, drive the signals */
193 if (sfp->gpio[GPIO_TX_DISABLE])
194 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
195 state & SFP_F_TX_DISABLE);
196 if (state & SFP_F_RATE_SELECT)
197 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
198 state & SFP_F_RATE_SELECT);
199 } else {
200 /* Otherwise, let them float to the pull-ups */
201 if (sfp->gpio[GPIO_TX_DISABLE])
202 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
203 if (state & SFP_F_RATE_SELECT)
204 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
205 }
206}
207
208static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
209 size_t len)
210{
211 struct i2c_msg msgs[2];
212 u8 bus_addr = a2 ? 0x51 : 0x50;
213 int ret;
214
215 msgs[0].addr = bus_addr;
216 msgs[0].flags = 0;
217 msgs[0].len = 1;
218 msgs[0].buf = &dev_addr;
219 msgs[1].addr = bus_addr;
220 msgs[1].flags = I2C_M_RD;
221 msgs[1].len = len;
222 msgs[1].buf = buf;
223
224 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
225 if (ret < 0)
226 return ret;
227
228 return ret == ARRAY_SIZE(msgs) ? len : 0;
229}
230
231static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
232 size_t len)
233{
234 struct i2c_msg msgs[1];
235 u8 bus_addr = a2 ? 0x51 : 0x50;
236 int ret;
237
238 msgs[0].addr = bus_addr;
239 msgs[0].flags = 0;
240 msgs[0].len = 1 + len;
241 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
242 if (!msgs[0].buf)
243 return -ENOMEM;
244
245 msgs[0].buf[0] = dev_addr;
246 memcpy(&msgs[0].buf[1], buf, len);
247
248 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
249
250 kfree(msgs[0].buf);
251
252 if (ret < 0)
253 return ret;
254
255 return ret == ARRAY_SIZE(msgs) ? len : 0;
256}
257
258static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
259{
260 struct mii_bus *i2c_mii;
261 int ret;
262
263 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
264 return -EINVAL;
265
266 sfp->i2c = i2c;
267 sfp->read = sfp_i2c_read;
268 sfp->write = sfp_i2c_write;
269
270 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
271 if (IS_ERR(i2c_mii))
272 return PTR_ERR(i2c_mii);
273
274 i2c_mii->name = "SFP I2C Bus";
275 i2c_mii->phy_mask = ~0;
276
277 ret = mdiobus_register(i2c_mii);
278 if (ret < 0) {
279 mdiobus_free(i2c_mii);
280 return ret;
281 }
282
283 sfp->i2c_mii = i2c_mii;
284
285 return 0;
286}
287
288/* Interface */
289static unsigned int sfp_get_state(struct sfp *sfp)
290{
291 return sfp->get_state(sfp);
292}
293
294static void sfp_set_state(struct sfp *sfp, unsigned int state)
295{
296 sfp->set_state(sfp, state);
297}
298
299static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
300{
301 return sfp->read(sfp, a2, addr, buf, len);
302}
303
304static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
305{
306 return sfp->write(sfp, a2, addr, buf, len);
307}
308
309static unsigned int sfp_check(void *buf, size_t len)
310{
311 u8 *p, check;
312
313 for (p = buf, check = 0; len; p++, len--)
314 check += *p;
315
316 return check;
317}
318
319/* Helpers */
320static void sfp_module_tx_disable(struct sfp *sfp)
321{
322 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
323 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
324 sfp->state |= SFP_F_TX_DISABLE;
325 sfp_set_state(sfp, sfp->state);
326}
327
328static void sfp_module_tx_enable(struct sfp *sfp)
329{
330 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
331 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
332 sfp->state &= ~SFP_F_TX_DISABLE;
333 sfp_set_state(sfp, sfp->state);
334}
335
336static void sfp_module_tx_fault_reset(struct sfp *sfp)
337{
338 unsigned int state = sfp->state;
339
340 if (state & SFP_F_TX_DISABLE)
341 return;
342
343 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
344
345 udelay(T_RESET_US);
346
347 sfp_set_state(sfp, state);
348}
349
350/* SFP state machine */
351static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
352{
353 if (timeout)
354 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
355 timeout);
356 else
357 cancel_delayed_work(&sfp->timeout);
358}
359
360static void sfp_sm_next(struct sfp *sfp, unsigned int state,
361 unsigned int timeout)
362{
363 sfp->sm_state = state;
364 sfp_sm_set_timer(sfp, timeout);
365}
366
367static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
368 unsigned int timeout)
369{
370 sfp->sm_mod_state = state;
371 sfp_sm_set_timer(sfp, timeout);
372}
373
374static void sfp_sm_phy_detach(struct sfp *sfp)
375{
376 phy_stop(sfp->mod_phy);
377 sfp_remove_phy(sfp->sfp_bus);
378 phy_device_remove(sfp->mod_phy);
379 phy_device_free(sfp->mod_phy);
380 sfp->mod_phy = NULL;
381}
382
383static void sfp_sm_probe_phy(struct sfp *sfp)
384{
385 struct phy_device *phy;
386 int err;
387
388 msleep(T_PHY_RESET_MS);
389
390 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
391 if (phy == ERR_PTR(-ENODEV)) {
392 dev_info(sfp->dev, "no PHY detected\n");
393 return;
394 }
395 if (IS_ERR(phy)) {
396 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
397 return;
398 }
399
400 err = sfp_add_phy(sfp->sfp_bus, phy);
401 if (err) {
402 phy_device_remove(phy);
403 phy_device_free(phy);
404 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
405 return;
406 }
407
408 sfp->mod_phy = phy;
409 phy_start(phy);
410}
411
412static void sfp_sm_link_up(struct sfp *sfp)
413{
414 sfp_link_up(sfp->sfp_bus);
415 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
416}
417
418static void sfp_sm_link_down(struct sfp *sfp)
419{
420 sfp_link_down(sfp->sfp_bus);
421}
422
423static void sfp_sm_link_check_los(struct sfp *sfp)
424{
425 unsigned int los = sfp->state & SFP_F_LOS;
426
427 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
428 * are set, we assume that no LOS signal is available.
429 */
430 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
431 los ^= SFP_F_LOS;
432 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
433 los = 0;
434
435 if (los)
436 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
437 else
438 sfp_sm_link_up(sfp);
439}
440
441static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
442{
443 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
444 event == SFP_E_LOS_LOW) ||
445 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
446 event == SFP_E_LOS_HIGH);
447}
448
449static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
450{
451 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
452 event == SFP_E_LOS_HIGH) ||
453 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
454 event == SFP_E_LOS_LOW);
455}
456
457static void sfp_sm_fault(struct sfp *sfp, bool warn)
458{
459 if (sfp->sm_retries && !--sfp->sm_retries) {
460 dev_err(sfp->dev,
461 "module persistently indicates fault, disabling\n");
462 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
463 } else {
464 if (warn)
465 dev_err(sfp->dev, "module transmit fault indicated\n");
466
467 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
468 }
469}
470
471static void sfp_sm_mod_init(struct sfp *sfp)
472{
473 sfp_module_tx_enable(sfp);
474
475 /* Wait t_init before indicating that the link is up, provided the
476 * current state indicates no TX_FAULT. If TX_FAULT clears before
477 * this time, that's fine too.
478 */
479 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
480 sfp->sm_retries = 5;
481
482 /* Setting the serdes link mode is guesswork: there's no
483 * field in the EEPROM which indicates what mode should
484 * be used.
485 *
486 * If it's a gigabit-only fiber module, it probably does
487 * not have a PHY, so switch to 802.3z negotiation mode.
488 * Otherwise, switch to SGMII mode (which is required to
489 * support non-gigabit speeds) and probe for a PHY.
490 */
491 if (sfp->id.base.e1000_base_t ||
492 sfp->id.base.e100_base_lx ||
493 sfp->id.base.e100_base_fx)
494 sfp_sm_probe_phy(sfp);
495}
496
497static int sfp_sm_mod_hpower(struct sfp *sfp)
498{
499 u32 power;
500 u8 val;
501 int err;
502
503 power = 1000;
504 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
505 power = 1500;
506 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
507 power = 2000;
508
509 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
510 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
511 SFP_DIAGMON_DDM) {
512 /* The module appears not to implement bus address 0xa2,
513 * or requires an address change sequence, so assume that
514 * the module powers up in the indicated power mode.
515 */
516 if (power > sfp->max_power_mW) {
517 dev_err(sfp->dev,
518 "Host does not support %u.%uW modules\n",
519 power / 1000, (power / 100) % 10);
520 return -EINVAL;
521 }
522 return 0;
523 }
524
525 if (power > sfp->max_power_mW) {
526 dev_warn(sfp->dev,
527 "Host does not support %u.%uW modules, module left in power mode 1\n",
528 power / 1000, (power / 100) % 10);
529 return 0;
530 }
531
532 if (power <= 1000)
533 return 0;
534
535 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
536 if (err != sizeof(val)) {
537 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
538 err = -EAGAIN;
539 goto err;
540 }
541
542 val |= BIT(0);
543
544 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
545 if (err != sizeof(val)) {
546 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
547 err = -EAGAIN;
548 goto err;
549 }
550
551 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
552 power / 1000, (power / 100) % 10);
553 return T_HPOWER_LEVEL;
554
555err:
556 return err;
557}
558
559static int sfp_sm_mod_probe(struct sfp *sfp)
560{
561 /* SFP module inserted - read I2C data */
562 struct sfp_eeprom_id id;
563 bool cotsworks;
564 u8 check;
565 int ret;
566
567 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
568 if (ret < 0) {
569 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
570 return -EAGAIN;
571 }
572
573 if (ret != sizeof(id)) {
574 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
575 return -EAGAIN;
576 }
577
578 /* Cotsworks do not seem to update the checksums when they
579 * do the final programming with the final module part number,
580 * serial number and date code.
581 */
582 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
583
584 /* Validate the checksum over the base structure */
585 check = sfp_check(&id.base, sizeof(id.base) - 1);
586 if (check != id.base.cc_base) {
587 if (cotsworks) {
588 dev_warn(sfp->dev,
589 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
590 check, id.base.cc_base);
591 } else {
592 dev_err(sfp->dev,
593 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
594 check, id.base.cc_base);
595 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
596 16, 1, &id, sizeof(id), true);
597 return -EINVAL;
598 }
599 }
600
601 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
602 if (check != id.ext.cc_ext) {
603 if (cotsworks) {
604 dev_warn(sfp->dev,
605 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
606 check, id.ext.cc_ext);
607 } else {
608 dev_err(sfp->dev,
609 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
610 check, id.ext.cc_ext);
611 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
612 16, 1, &id, sizeof(id), true);
613 memset(&id.ext, 0, sizeof(id.ext));
614 }
615 }
616
617 sfp->id = id;
618
619 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
620 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
621 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
622 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
623 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
624 (int)sizeof(id.ext.datecode), id.ext.datecode);
625
626 /* Check whether we support this module */
627 if (!sfp->type->module_supported(&sfp->id)) {
628 dev_err(sfp->dev,
629 "module is not supported - phys id 0x%02x 0x%02x\n",
630 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
631 return -EINVAL;
632 }
633
634 /* If the module requires address swap mode, warn about it */
635 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
636 dev_warn(sfp->dev,
637 "module address swap to access page 0xA2 is not supported.\n");
638
639 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
640 if (ret < 0)
641 return ret;
642
643 return sfp_sm_mod_hpower(sfp);
644}
645
646static void sfp_sm_mod_remove(struct sfp *sfp)
647{
648 sfp_module_remove(sfp->sfp_bus);
649
650 if (sfp->mod_phy)
651 sfp_sm_phy_detach(sfp);
652
653 sfp_module_tx_disable(sfp);
654
655 memset(&sfp->id, 0, sizeof(sfp->id));
656
657 dev_info(sfp->dev, "module removed\n");
658}
659
660static void sfp_sm_event(struct sfp *sfp, unsigned int event)
661{
662 mutex_lock(&sfp->sm_mutex);
663
664 dev_dbg(sfp->dev, "SM: enter %u:%u:%u event %u\n",
665 sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state, event);
666
667 /* This state machine tracks the insert/remove state of
668 * the module, and handles probing the on-board EEPROM.
669 */
670 switch (sfp->sm_mod_state) {
671 default:
672 if (event == SFP_E_INSERT) {
673 sfp_module_tx_disable(sfp);
674 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
675 }
676 break;
677
678 case SFP_MOD_PROBE:
679 if (event == SFP_E_REMOVE) {
680 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
681 } else if (event == SFP_E_TIMEOUT) {
682 int val = sfp_sm_mod_probe(sfp);
683
684 if (val == 0)
685 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
686 else if (val > 0)
687 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
688 else if (val != -EAGAIN)
689 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
690 else
691 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
692 }
693 break;
694
695 case SFP_MOD_HPOWER:
696 if (event == SFP_E_TIMEOUT) {
697 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
698 break;
699 }
700 /* fallthrough */
701 case SFP_MOD_PRESENT:
702 case SFP_MOD_ERROR:
703 if (event == SFP_E_REMOVE) {
704 sfp_sm_mod_remove(sfp);
705 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
706 }
707 break;
708 }
709
710 /* This state machine tracks the netdev up/down state */
711 switch (sfp->sm_dev_state) {
712 default:
713 if (event == SFP_E_DEV_UP)
714 sfp->sm_dev_state = SFP_DEV_UP;
715 break;
716
717 case SFP_DEV_UP:
718 if (event == SFP_E_DEV_DOWN) {
719 /* If the module has a PHY, avoid raising TX disable
720 * as this resets the PHY. Otherwise, raise it to
721 * turn the laser off.
722 */
723 if (!sfp->mod_phy)
724 sfp_module_tx_disable(sfp);
725 sfp->sm_dev_state = SFP_DEV_DOWN;
726 }
727 break;
728 }
729
730 /* Some events are global */
731 if (sfp->sm_state != SFP_S_DOWN &&
732 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
733 sfp->sm_dev_state != SFP_DEV_UP)) {
734 if (sfp->sm_state == SFP_S_LINK_UP &&
735 sfp->sm_dev_state == SFP_DEV_UP)
736 sfp_sm_link_down(sfp);
737 if (sfp->mod_phy)
738 sfp_sm_phy_detach(sfp);
739 sfp_sm_next(sfp, SFP_S_DOWN, 0);
740 mutex_unlock(&sfp->sm_mutex);
741 return;
742 }
743
744 /* The main state machine */
745 switch (sfp->sm_state) {
746 case SFP_S_DOWN:
747 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
748 sfp->sm_dev_state == SFP_DEV_UP)
749 sfp_sm_mod_init(sfp);
750 break;
751
752 case SFP_S_INIT:
753 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
754 sfp_sm_fault(sfp, true);
755 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
756 sfp_sm_link_check_los(sfp);
757 break;
758
759 case SFP_S_WAIT_LOS:
760 if (event == SFP_E_TX_FAULT)
761 sfp_sm_fault(sfp, true);
762 else if (sfp_los_event_inactive(sfp, event))
763 sfp_sm_link_up(sfp);
764 break;
765
766 case SFP_S_LINK_UP:
767 if (event == SFP_E_TX_FAULT) {
768 sfp_sm_link_down(sfp);
769 sfp_sm_fault(sfp, true);
770 } else if (sfp_los_event_active(sfp, event)) {
771 sfp_sm_link_down(sfp);
772 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
773 }
774 break;
775
776 case SFP_S_TX_FAULT:
777 if (event == SFP_E_TIMEOUT) {
778 sfp_module_tx_fault_reset(sfp);
779 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
780 }
781 break;
782
783 case SFP_S_REINIT:
784 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
785 sfp_sm_fault(sfp, false);
786 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
787 dev_info(sfp->dev, "module transmit fault recovered\n");
788 sfp_sm_link_check_los(sfp);
789 }
790 break;
791
792 case SFP_S_TX_DISABLE:
793 break;
794 }
795
796 dev_dbg(sfp->dev, "SM: exit %u:%u:%u\n",
797 sfp->sm_mod_state, sfp->sm_dev_state, sfp->sm_state);
798
799 mutex_unlock(&sfp->sm_mutex);
800}
801
802static void sfp_start(struct sfp *sfp)
803{
804 sfp_sm_event(sfp, SFP_E_DEV_UP);
805}
806
807static void sfp_stop(struct sfp *sfp)
808{
809 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
810}
811
812static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
813{
814 /* locking... and check module is present */
815
816 if (sfp->id.ext.sff8472_compliance &&
817 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
818 modinfo->type = ETH_MODULE_SFF_8472;
819 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
820 } else {
821 modinfo->type = ETH_MODULE_SFF_8079;
822 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
823 }
824 return 0;
825}
826
827static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
828 u8 *data)
829{
830 unsigned int first, last, len;
831 int ret;
832
833 if (ee->len == 0)
834 return -EINVAL;
835
836 first = ee->offset;
837 last = ee->offset + ee->len;
838 if (first < ETH_MODULE_SFF_8079_LEN) {
839 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
840 len -= first;
841
842 ret = sfp_read(sfp, false, first, data, len);
843 if (ret < 0)
844 return ret;
845
846 first += len;
847 data += len;
848 }
849 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
850 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
851 len -= first;
852 first -= ETH_MODULE_SFF_8079_LEN;
853
854 ret = sfp_read(sfp, true, first, data, len);
855 if (ret < 0)
856 return ret;
857 }
858 return 0;
859}
860
861static const struct sfp_socket_ops sfp_module_ops = {
862 .start = sfp_start,
863 .stop = sfp_stop,
864 .module_info = sfp_module_info,
865 .module_eeprom = sfp_module_eeprom,
866};
867
868static void sfp_timeout(struct work_struct *work)
869{
870 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
871
872 rtnl_lock();
873 sfp_sm_event(sfp, SFP_E_TIMEOUT);
874 rtnl_unlock();
875}
876
877static void sfp_check_state(struct sfp *sfp)
878{
879 unsigned int state, i, changed;
880
881 state = sfp_get_state(sfp);
882 changed = state ^ sfp->state;
883 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
884
885 for (i = 0; i < GPIO_MAX; i++)
886 if (changed & BIT(i))
887 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
888 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
889
890 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
891 sfp->state = state;
892
893 rtnl_lock();
894 if (changed & SFP_F_PRESENT)
895 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
896 SFP_E_INSERT : SFP_E_REMOVE);
897
898 if (changed & SFP_F_TX_FAULT)
899 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
900 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
901
902 if (changed & SFP_F_LOS)
903 sfp_sm_event(sfp, state & SFP_F_LOS ?
904 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
905 rtnl_unlock();
906}
907
908static irqreturn_t sfp_irq(int irq, void *data)
909{
910 struct sfp *sfp = data;
911
912 sfp_check_state(sfp);
913
914 return IRQ_HANDLED;
915}
916
917static void sfp_poll(struct work_struct *work)
918{
919 struct sfp *sfp = container_of(work, struct sfp, poll.work);
920
921 sfp_check_state(sfp);
922 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
923}
924
925static struct sfp *sfp_alloc(struct device *dev)
926{
927 struct sfp *sfp;
928
929 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
930 if (!sfp)
931 return ERR_PTR(-ENOMEM);
932
933 sfp->dev = dev;
934
935 mutex_init(&sfp->sm_mutex);
936 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
937 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
938
939 return sfp;
940}
941
942static void sfp_cleanup(void *data)
943{
944 struct sfp *sfp = data;
945
946 cancel_delayed_work_sync(&sfp->poll);
947 cancel_delayed_work_sync(&sfp->timeout);
948 if (sfp->i2c_mii) {
949 mdiobus_unregister(sfp->i2c_mii);
950 mdiobus_free(sfp->i2c_mii);
951 }
952 if (sfp->i2c)
953 i2c_put_adapter(sfp->i2c);
954 kfree(sfp);
955}
956
957static int sfp_probe(struct platform_device *pdev)
958{
959 const struct sff_data *sff;
960 struct sfp *sfp;
961 bool poll = false;
962 int irq, err, i;
963
964 sfp = sfp_alloc(&pdev->dev);
965 if (IS_ERR(sfp))
966 return PTR_ERR(sfp);
967
968 platform_set_drvdata(pdev, sfp);
969
970 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
971 if (err < 0)
972 return err;
973
974 sff = sfp->type = &sfp_data;
975
976 if (pdev->dev.of_node) {
977 struct device_node *node = pdev->dev.of_node;
978 const struct of_device_id *id;
979 struct device_node *np;
980
981 id = of_match_node(sfp_of_match, node);
982 if (WARN_ON(!id))
983 return -EINVAL;
984
985 sff = sfp->type = id->data;
986
987 np = of_parse_phandle(node, "i2c-bus", 0);
988 if (np) {
989 struct i2c_adapter *i2c;
990
991 i2c = of_find_i2c_adapter_by_node(np);
992 of_node_put(np);
993 if (!i2c)
994 return -EPROBE_DEFER;
995
996 err = sfp_i2c_configure(sfp, i2c);
997 if (err < 0) {
998 i2c_put_adapter(i2c);
999 return err;
1000 }
1001 }
1002 }
1003
1004 for (i = 0; i < GPIO_MAX; i++)
1005 if (sff->gpios & BIT(i)) {
1006 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1007 gpio_of_names[i], gpio_flags[i]);
1008 if (IS_ERR(sfp->gpio[i]))
1009 return PTR_ERR(sfp->gpio[i]);
1010 }
1011
1012 sfp->get_state = sfp_gpio_get_state;
1013 sfp->set_state = sfp_gpio_set_state;
1014
1015 /* Modules that have no detect signal are always present */
1016 if (!(sfp->gpio[GPIO_MODDEF0]))
1017 sfp->get_state = sff_gpio_get_state;
1018
1019 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1020 &sfp->max_power_mW);
1021 if (!sfp->max_power_mW)
1022 sfp->max_power_mW = 1000;
1023
1024 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1025 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1026
1027 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1028 if (!sfp->sfp_bus)
1029 return -ENOMEM;
1030
1031 /* Get the initial state, and always signal TX disable,
1032 * since the network interface will not be up.
1033 */
1034 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1035
1036 if (sfp->gpio[GPIO_RATE_SELECT] &&
1037 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1038 sfp->state |= SFP_F_RATE_SELECT;
1039 sfp_set_state(sfp, sfp->state);
1040 sfp_module_tx_disable(sfp);
1041 rtnl_lock();
1042 if (sfp->state & SFP_F_PRESENT)
1043 sfp_sm_event(sfp, SFP_E_INSERT);
1044 rtnl_unlock();
1045
1046 for (i = 0; i < GPIO_MAX; i++) {
1047 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1048 continue;
1049
1050 irq = gpiod_to_irq(sfp->gpio[i]);
1051 if (!irq) {
1052 poll = true;
1053 continue;
1054 }
1055
1056 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1057 IRQF_ONESHOT |
1058 IRQF_TRIGGER_RISING |
1059 IRQF_TRIGGER_FALLING,
1060 dev_name(sfp->dev), sfp);
1061 if (err)
1062 poll = true;
1063 }
1064
1065 if (poll)
1066 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1067
1068 return 0;
1069}
1070
1071static int sfp_remove(struct platform_device *pdev)
1072{
1073 struct sfp *sfp = platform_get_drvdata(pdev);
1074
1075 sfp_unregister_socket(sfp->sfp_bus);
1076
1077 return 0;
1078}
1079
1080static struct platform_driver sfp_driver = {
1081 .probe = sfp_probe,
1082 .remove = sfp_remove,
1083 .driver = {
1084 .name = "sfp",
1085 .of_match_table = sfp_of_match,
1086 },
1087};
1088
1089static int sfp_init(void)
1090{
1091 poll_jiffies = msecs_to_jiffies(100);
1092
1093 return platform_driver_register(&sfp_driver);
1094}
1095module_init(sfp_init);
1096
1097static void sfp_exit(void)
1098{
1099 platform_driver_unregister(&sfp_driver);
1100}
1101module_exit(sfp_exit);
1102
1103MODULE_ALIAS("platform:sfp");
1104MODULE_AUTHOR("Russell King");
1105MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/acpi.h>
3#include <linux/ctype.h>
4#include <linux/delay.h>
5#include <linux/gpio/consumer.h>
6#include <linux/hwmon.h>
7#include <linux/i2c.h>
8#include <linux/interrupt.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/mutex.h>
12#include <linux/of.h>
13#include <linux/phy.h>
14#include <linux/platform_device.h>
15#include <linux/rtnetlink.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18
19#include "mdio-i2c.h"
20#include "sfp.h"
21#include "swphy.h"
22
23enum {
24 GPIO_MODDEF0,
25 GPIO_LOS,
26 GPIO_TX_FAULT,
27 GPIO_TX_DISABLE,
28 GPIO_RATE_SELECT,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37 SFP_E_INSERT = 0,
38 SFP_E_REMOVE,
39 SFP_E_DEV_DOWN,
40 SFP_E_DEV_UP,
41 SFP_E_TX_FAULT,
42 SFP_E_TX_CLEAR,
43 SFP_E_LOS_HIGH,
44 SFP_E_LOS_LOW,
45 SFP_E_TIMEOUT,
46
47 SFP_MOD_EMPTY = 0,
48 SFP_MOD_PROBE,
49 SFP_MOD_HPOWER,
50 SFP_MOD_PRESENT,
51 SFP_MOD_ERROR,
52
53 SFP_DEV_DOWN = 0,
54 SFP_DEV_UP,
55
56 SFP_S_DOWN = 0,
57 SFP_S_INIT,
58 SFP_S_WAIT_LOS,
59 SFP_S_LINK_UP,
60 SFP_S_TX_FAULT,
61 SFP_S_REINIT,
62 SFP_S_TX_DISABLE,
63};
64
65static const char * const mod_state_strings[] = {
66 [SFP_MOD_EMPTY] = "empty",
67 [SFP_MOD_PROBE] = "probe",
68 [SFP_MOD_HPOWER] = "hpower",
69 [SFP_MOD_PRESENT] = "present",
70 [SFP_MOD_ERROR] = "error",
71};
72
73static const char *mod_state_to_str(unsigned short mod_state)
74{
75 if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 return "Unknown module state";
77 return mod_state_strings[mod_state];
78}
79
80static const char * const dev_state_strings[] = {
81 [SFP_DEV_DOWN] = "down",
82 [SFP_DEV_UP] = "up",
83};
84
85static const char *dev_state_to_str(unsigned short dev_state)
86{
87 if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 return "Unknown device state";
89 return dev_state_strings[dev_state];
90}
91
92static const char * const event_strings[] = {
93 [SFP_E_INSERT] = "insert",
94 [SFP_E_REMOVE] = "remove",
95 [SFP_E_DEV_DOWN] = "dev_down",
96 [SFP_E_DEV_UP] = "dev_up",
97 [SFP_E_TX_FAULT] = "tx_fault",
98 [SFP_E_TX_CLEAR] = "tx_clear",
99 [SFP_E_LOS_HIGH] = "los_high",
100 [SFP_E_LOS_LOW] = "los_low",
101 [SFP_E_TIMEOUT] = "timeout",
102};
103
104static const char *event_to_str(unsigned short event)
105{
106 if (event >= ARRAY_SIZE(event_strings))
107 return "Unknown event";
108 return event_strings[event];
109}
110
111static const char * const sm_state_strings[] = {
112 [SFP_S_DOWN] = "down",
113 [SFP_S_INIT] = "init",
114 [SFP_S_WAIT_LOS] = "wait_los",
115 [SFP_S_LINK_UP] = "link_up",
116 [SFP_S_TX_FAULT] = "tx_fault",
117 [SFP_S_REINIT] = "reinit",
118 [SFP_S_TX_DISABLE] = "rx_disable",
119};
120
121static const char *sm_state_to_str(unsigned short sm_state)
122{
123 if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 return "Unknown state";
125 return sm_state_strings[sm_state];
126}
127
128static const char *gpio_of_names[] = {
129 "mod-def0",
130 "los",
131 "tx-fault",
132 "tx-disable",
133 "rate-select0",
134};
135
136static const enum gpiod_flags gpio_flags[] = {
137 GPIOD_IN,
138 GPIOD_IN,
139 GPIOD_IN,
140 GPIOD_ASIS,
141 GPIOD_ASIS,
142};
143
144#define T_INIT_JIFFIES msecs_to_jiffies(300)
145#define T_RESET_US 10
146#define T_FAULT_RECOVER msecs_to_jiffies(1000)
147
148/* SFP module presence detection is poor: the three MOD DEF signals are
149 * the same length on the PCB, which means it's possible for MOD DEF 0 to
150 * connect before the I2C bus on MOD DEF 1/2.
151 *
152 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
153 * be deasserted) but makes no mention of the earliest time before we can
154 * access the I2C EEPROM. However, Avago modules require 300ms.
155 */
156#define T_PROBE_INIT msecs_to_jiffies(300)
157#define T_HPOWER_LEVEL msecs_to_jiffies(300)
158#define T_PROBE_RETRY msecs_to_jiffies(100)
159
160/* SFP modules appear to always have their PHY configured for bus address
161 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
162 */
163#define SFP_PHY_ADDR 22
164
165/* Give this long for the PHY to reset. */
166#define T_PHY_RESET_MS 50
167
168struct sff_data {
169 unsigned int gpios;
170 bool (*module_supported)(const struct sfp_eeprom_id *id);
171};
172
173struct sfp {
174 struct device *dev;
175 struct i2c_adapter *i2c;
176 struct mii_bus *i2c_mii;
177 struct sfp_bus *sfp_bus;
178 struct phy_device *mod_phy;
179 const struct sff_data *type;
180 u32 max_power_mW;
181
182 unsigned int (*get_state)(struct sfp *);
183 void (*set_state)(struct sfp *, unsigned int);
184 int (*read)(struct sfp *, bool, u8, void *, size_t);
185 int (*write)(struct sfp *, bool, u8, void *, size_t);
186
187 struct gpio_desc *gpio[GPIO_MAX];
188 int gpio_irq[GPIO_MAX];
189
190 bool attached;
191 struct mutex st_mutex; /* Protects state */
192 unsigned int state;
193 struct delayed_work poll;
194 struct delayed_work timeout;
195 struct mutex sm_mutex; /* Protects state machine */
196 unsigned char sm_mod_state;
197 unsigned char sm_dev_state;
198 unsigned short sm_state;
199 unsigned int sm_retries;
200
201 struct sfp_eeprom_id id;
202#if IS_ENABLED(CONFIG_HWMON)
203 struct sfp_diag diag;
204 struct device *hwmon_dev;
205 char *hwmon_name;
206#endif
207
208};
209
210static bool sff_module_supported(const struct sfp_eeprom_id *id)
211{
212 return id->base.phys_id == SFP_PHYS_ID_SFF &&
213 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
214}
215
216static const struct sff_data sff_data = {
217 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
218 .module_supported = sff_module_supported,
219};
220
221static bool sfp_module_supported(const struct sfp_eeprom_id *id)
222{
223 return id->base.phys_id == SFP_PHYS_ID_SFP &&
224 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
225}
226
227static const struct sff_data sfp_data = {
228 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
229 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
230 .module_supported = sfp_module_supported,
231};
232
233static const struct of_device_id sfp_of_match[] = {
234 { .compatible = "sff,sff", .data = &sff_data, },
235 { .compatible = "sff,sfp", .data = &sfp_data, },
236 { },
237};
238MODULE_DEVICE_TABLE(of, sfp_of_match);
239
240static unsigned long poll_jiffies;
241
242static unsigned int sfp_gpio_get_state(struct sfp *sfp)
243{
244 unsigned int i, state, v;
245
246 for (i = state = 0; i < GPIO_MAX; i++) {
247 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
248 continue;
249
250 v = gpiod_get_value_cansleep(sfp->gpio[i]);
251 if (v)
252 state |= BIT(i);
253 }
254
255 return state;
256}
257
258static unsigned int sff_gpio_get_state(struct sfp *sfp)
259{
260 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
261}
262
263static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
264{
265 if (state & SFP_F_PRESENT) {
266 /* If the module is present, drive the signals */
267 if (sfp->gpio[GPIO_TX_DISABLE])
268 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
269 state & SFP_F_TX_DISABLE);
270 if (state & SFP_F_RATE_SELECT)
271 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
272 state & SFP_F_RATE_SELECT);
273 } else {
274 /* Otherwise, let them float to the pull-ups */
275 if (sfp->gpio[GPIO_TX_DISABLE])
276 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
277 if (state & SFP_F_RATE_SELECT)
278 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
279 }
280}
281
282static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
283 size_t len)
284{
285 struct i2c_msg msgs[2];
286 u8 bus_addr = a2 ? 0x51 : 0x50;
287 size_t this_len;
288 int ret;
289
290 msgs[0].addr = bus_addr;
291 msgs[0].flags = 0;
292 msgs[0].len = 1;
293 msgs[0].buf = &dev_addr;
294 msgs[1].addr = bus_addr;
295 msgs[1].flags = I2C_M_RD;
296 msgs[1].len = len;
297 msgs[1].buf = buf;
298
299 while (len) {
300 this_len = len;
301 if (this_len > 16)
302 this_len = 16;
303
304 msgs[1].len = this_len;
305
306 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
307 if (ret < 0)
308 return ret;
309
310 if (ret != ARRAY_SIZE(msgs))
311 break;
312
313 msgs[1].buf += this_len;
314 dev_addr += this_len;
315 len -= this_len;
316 }
317
318 return msgs[1].buf - (u8 *)buf;
319}
320
321static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
322 size_t len)
323{
324 struct i2c_msg msgs[1];
325 u8 bus_addr = a2 ? 0x51 : 0x50;
326 int ret;
327
328 msgs[0].addr = bus_addr;
329 msgs[0].flags = 0;
330 msgs[0].len = 1 + len;
331 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
332 if (!msgs[0].buf)
333 return -ENOMEM;
334
335 msgs[0].buf[0] = dev_addr;
336 memcpy(&msgs[0].buf[1], buf, len);
337
338 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
339
340 kfree(msgs[0].buf);
341
342 if (ret < 0)
343 return ret;
344
345 return ret == ARRAY_SIZE(msgs) ? len : 0;
346}
347
348static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
349{
350 struct mii_bus *i2c_mii;
351 int ret;
352
353 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
354 return -EINVAL;
355
356 sfp->i2c = i2c;
357 sfp->read = sfp_i2c_read;
358 sfp->write = sfp_i2c_write;
359
360 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
361 if (IS_ERR(i2c_mii))
362 return PTR_ERR(i2c_mii);
363
364 i2c_mii->name = "SFP I2C Bus";
365 i2c_mii->phy_mask = ~0;
366
367 ret = mdiobus_register(i2c_mii);
368 if (ret < 0) {
369 mdiobus_free(i2c_mii);
370 return ret;
371 }
372
373 sfp->i2c_mii = i2c_mii;
374
375 return 0;
376}
377
378/* Interface */
379static unsigned int sfp_get_state(struct sfp *sfp)
380{
381 return sfp->get_state(sfp);
382}
383
384static void sfp_set_state(struct sfp *sfp, unsigned int state)
385{
386 sfp->set_state(sfp, state);
387}
388
389static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
390{
391 return sfp->read(sfp, a2, addr, buf, len);
392}
393
394static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
395{
396 return sfp->write(sfp, a2, addr, buf, len);
397}
398
399static unsigned int sfp_check(void *buf, size_t len)
400{
401 u8 *p, check;
402
403 for (p = buf, check = 0; len; p++, len--)
404 check += *p;
405
406 return check;
407}
408
409/* hwmon */
410#if IS_ENABLED(CONFIG_HWMON)
411static umode_t sfp_hwmon_is_visible(const void *data,
412 enum hwmon_sensor_types type,
413 u32 attr, int channel)
414{
415 const struct sfp *sfp = data;
416
417 switch (type) {
418 case hwmon_temp:
419 switch (attr) {
420 case hwmon_temp_min_alarm:
421 case hwmon_temp_max_alarm:
422 case hwmon_temp_lcrit_alarm:
423 case hwmon_temp_crit_alarm:
424 case hwmon_temp_min:
425 case hwmon_temp_max:
426 case hwmon_temp_lcrit:
427 case hwmon_temp_crit:
428 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
429 return 0;
430 /* fall through */
431 case hwmon_temp_input:
432 case hwmon_temp_label:
433 return 0444;
434 default:
435 return 0;
436 }
437 case hwmon_in:
438 switch (attr) {
439 case hwmon_in_min_alarm:
440 case hwmon_in_max_alarm:
441 case hwmon_in_lcrit_alarm:
442 case hwmon_in_crit_alarm:
443 case hwmon_in_min:
444 case hwmon_in_max:
445 case hwmon_in_lcrit:
446 case hwmon_in_crit:
447 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
448 return 0;
449 /* fall through */
450 case hwmon_in_input:
451 case hwmon_in_label:
452 return 0444;
453 default:
454 return 0;
455 }
456 case hwmon_curr:
457 switch (attr) {
458 case hwmon_curr_min_alarm:
459 case hwmon_curr_max_alarm:
460 case hwmon_curr_lcrit_alarm:
461 case hwmon_curr_crit_alarm:
462 case hwmon_curr_min:
463 case hwmon_curr_max:
464 case hwmon_curr_lcrit:
465 case hwmon_curr_crit:
466 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
467 return 0;
468 /* fall through */
469 case hwmon_curr_input:
470 case hwmon_curr_label:
471 return 0444;
472 default:
473 return 0;
474 }
475 case hwmon_power:
476 /* External calibration of receive power requires
477 * floating point arithmetic. Doing that in the kernel
478 * is not easy, so just skip it. If the module does
479 * not require external calibration, we can however
480 * show receiver power, since FP is then not needed.
481 */
482 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
483 channel == 1)
484 return 0;
485 switch (attr) {
486 case hwmon_power_min_alarm:
487 case hwmon_power_max_alarm:
488 case hwmon_power_lcrit_alarm:
489 case hwmon_power_crit_alarm:
490 case hwmon_power_min:
491 case hwmon_power_max:
492 case hwmon_power_lcrit:
493 case hwmon_power_crit:
494 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
495 return 0;
496 /* fall through */
497 case hwmon_power_input:
498 case hwmon_power_label:
499 return 0444;
500 default:
501 return 0;
502 }
503 default:
504 return 0;
505 }
506}
507
508static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
509{
510 __be16 val;
511 int err;
512
513 err = sfp_read(sfp, true, reg, &val, sizeof(val));
514 if (err < 0)
515 return err;
516
517 *value = be16_to_cpu(val);
518
519 return 0;
520}
521
522static void sfp_hwmon_to_rx_power(long *value)
523{
524 *value = DIV_ROUND_CLOSEST(*value, 10);
525}
526
527static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
528 long *value)
529{
530 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
531 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
532}
533
534static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
535{
536 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
537 be16_to_cpu(sfp->diag.cal_t_offset), value);
538
539 if (*value >= 0x8000)
540 *value -= 0x10000;
541
542 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
543}
544
545static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
546{
547 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
548 be16_to_cpu(sfp->diag.cal_v_offset), value);
549
550 *value = DIV_ROUND_CLOSEST(*value, 10);
551}
552
553static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
554{
555 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
556 be16_to_cpu(sfp->diag.cal_txi_offset), value);
557
558 *value = DIV_ROUND_CLOSEST(*value, 500);
559}
560
561static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
562{
563 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
564 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
565
566 *value = DIV_ROUND_CLOSEST(*value, 10);
567}
568
569static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
570{
571 int err;
572
573 err = sfp_hwmon_read_sensor(sfp, reg, value);
574 if (err < 0)
575 return err;
576
577 sfp_hwmon_calibrate_temp(sfp, value);
578
579 return 0;
580}
581
582static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
583{
584 int err;
585
586 err = sfp_hwmon_read_sensor(sfp, reg, value);
587 if (err < 0)
588 return err;
589
590 sfp_hwmon_calibrate_vcc(sfp, value);
591
592 return 0;
593}
594
595static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
596{
597 int err;
598
599 err = sfp_hwmon_read_sensor(sfp, reg, value);
600 if (err < 0)
601 return err;
602
603 sfp_hwmon_calibrate_bias(sfp, value);
604
605 return 0;
606}
607
608static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
609{
610 int err;
611
612 err = sfp_hwmon_read_sensor(sfp, reg, value);
613 if (err < 0)
614 return err;
615
616 sfp_hwmon_calibrate_tx_power(sfp, value);
617
618 return 0;
619}
620
621static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
622{
623 int err;
624
625 err = sfp_hwmon_read_sensor(sfp, reg, value);
626 if (err < 0)
627 return err;
628
629 sfp_hwmon_to_rx_power(value);
630
631 return 0;
632}
633
634static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
635{
636 u8 status;
637 int err;
638
639 switch (attr) {
640 case hwmon_temp_input:
641 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
642
643 case hwmon_temp_lcrit:
644 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
645 sfp_hwmon_calibrate_temp(sfp, value);
646 return 0;
647
648 case hwmon_temp_min:
649 *value = be16_to_cpu(sfp->diag.temp_low_warn);
650 sfp_hwmon_calibrate_temp(sfp, value);
651 return 0;
652 case hwmon_temp_max:
653 *value = be16_to_cpu(sfp->diag.temp_high_warn);
654 sfp_hwmon_calibrate_temp(sfp, value);
655 return 0;
656
657 case hwmon_temp_crit:
658 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
659 sfp_hwmon_calibrate_temp(sfp, value);
660 return 0;
661
662 case hwmon_temp_lcrit_alarm:
663 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
664 if (err < 0)
665 return err;
666
667 *value = !!(status & SFP_ALARM0_TEMP_LOW);
668 return 0;
669
670 case hwmon_temp_min_alarm:
671 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
672 if (err < 0)
673 return err;
674
675 *value = !!(status & SFP_WARN0_TEMP_LOW);
676 return 0;
677
678 case hwmon_temp_max_alarm:
679 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
680 if (err < 0)
681 return err;
682
683 *value = !!(status & SFP_WARN0_TEMP_HIGH);
684 return 0;
685
686 case hwmon_temp_crit_alarm:
687 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
688 if (err < 0)
689 return err;
690
691 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
692 return 0;
693 default:
694 return -EOPNOTSUPP;
695 }
696
697 return -EOPNOTSUPP;
698}
699
700static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
701{
702 u8 status;
703 int err;
704
705 switch (attr) {
706 case hwmon_in_input:
707 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
708
709 case hwmon_in_lcrit:
710 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
711 sfp_hwmon_calibrate_vcc(sfp, value);
712 return 0;
713
714 case hwmon_in_min:
715 *value = be16_to_cpu(sfp->diag.volt_low_warn);
716 sfp_hwmon_calibrate_vcc(sfp, value);
717 return 0;
718
719 case hwmon_in_max:
720 *value = be16_to_cpu(sfp->diag.volt_high_warn);
721 sfp_hwmon_calibrate_vcc(sfp, value);
722 return 0;
723
724 case hwmon_in_crit:
725 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
726 sfp_hwmon_calibrate_vcc(sfp, value);
727 return 0;
728
729 case hwmon_in_lcrit_alarm:
730 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
731 if (err < 0)
732 return err;
733
734 *value = !!(status & SFP_ALARM0_VCC_LOW);
735 return 0;
736
737 case hwmon_in_min_alarm:
738 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
739 if (err < 0)
740 return err;
741
742 *value = !!(status & SFP_WARN0_VCC_LOW);
743 return 0;
744
745 case hwmon_in_max_alarm:
746 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
747 if (err < 0)
748 return err;
749
750 *value = !!(status & SFP_WARN0_VCC_HIGH);
751 return 0;
752
753 case hwmon_in_crit_alarm:
754 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
755 if (err < 0)
756 return err;
757
758 *value = !!(status & SFP_ALARM0_VCC_HIGH);
759 return 0;
760 default:
761 return -EOPNOTSUPP;
762 }
763
764 return -EOPNOTSUPP;
765}
766
767static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
768{
769 u8 status;
770 int err;
771
772 switch (attr) {
773 case hwmon_curr_input:
774 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
775
776 case hwmon_curr_lcrit:
777 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
778 sfp_hwmon_calibrate_bias(sfp, value);
779 return 0;
780
781 case hwmon_curr_min:
782 *value = be16_to_cpu(sfp->diag.bias_low_warn);
783 sfp_hwmon_calibrate_bias(sfp, value);
784 return 0;
785
786 case hwmon_curr_max:
787 *value = be16_to_cpu(sfp->diag.bias_high_warn);
788 sfp_hwmon_calibrate_bias(sfp, value);
789 return 0;
790
791 case hwmon_curr_crit:
792 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
793 sfp_hwmon_calibrate_bias(sfp, value);
794 return 0;
795
796 case hwmon_curr_lcrit_alarm:
797 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
798 if (err < 0)
799 return err;
800
801 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
802 return 0;
803
804 case hwmon_curr_min_alarm:
805 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
806 if (err < 0)
807 return err;
808
809 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
810 return 0;
811
812 case hwmon_curr_max_alarm:
813 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
814 if (err < 0)
815 return err;
816
817 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
818 return 0;
819
820 case hwmon_curr_crit_alarm:
821 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
822 if (err < 0)
823 return err;
824
825 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
826 return 0;
827 default:
828 return -EOPNOTSUPP;
829 }
830
831 return -EOPNOTSUPP;
832}
833
834static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
835{
836 u8 status;
837 int err;
838
839 switch (attr) {
840 case hwmon_power_input:
841 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
842
843 case hwmon_power_lcrit:
844 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
845 sfp_hwmon_calibrate_tx_power(sfp, value);
846 return 0;
847
848 case hwmon_power_min:
849 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
850 sfp_hwmon_calibrate_tx_power(sfp, value);
851 return 0;
852
853 case hwmon_power_max:
854 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
855 sfp_hwmon_calibrate_tx_power(sfp, value);
856 return 0;
857
858 case hwmon_power_crit:
859 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
860 sfp_hwmon_calibrate_tx_power(sfp, value);
861 return 0;
862
863 case hwmon_power_lcrit_alarm:
864 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
865 if (err < 0)
866 return err;
867
868 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
869 return 0;
870
871 case hwmon_power_min_alarm:
872 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
873 if (err < 0)
874 return err;
875
876 *value = !!(status & SFP_WARN0_TXPWR_LOW);
877 return 0;
878
879 case hwmon_power_max_alarm:
880 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
881 if (err < 0)
882 return err;
883
884 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
885 return 0;
886
887 case hwmon_power_crit_alarm:
888 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
889 if (err < 0)
890 return err;
891
892 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
893 return 0;
894 default:
895 return -EOPNOTSUPP;
896 }
897
898 return -EOPNOTSUPP;
899}
900
901static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
902{
903 u8 status;
904 int err;
905
906 switch (attr) {
907 case hwmon_power_input:
908 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
909
910 case hwmon_power_lcrit:
911 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
912 sfp_hwmon_to_rx_power(value);
913 return 0;
914
915 case hwmon_power_min:
916 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
917 sfp_hwmon_to_rx_power(value);
918 return 0;
919
920 case hwmon_power_max:
921 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
922 sfp_hwmon_to_rx_power(value);
923 return 0;
924
925 case hwmon_power_crit:
926 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
927 sfp_hwmon_to_rx_power(value);
928 return 0;
929
930 case hwmon_power_lcrit_alarm:
931 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
932 if (err < 0)
933 return err;
934
935 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
936 return 0;
937
938 case hwmon_power_min_alarm:
939 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
940 if (err < 0)
941 return err;
942
943 *value = !!(status & SFP_WARN1_RXPWR_LOW);
944 return 0;
945
946 case hwmon_power_max_alarm:
947 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
948 if (err < 0)
949 return err;
950
951 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
952 return 0;
953
954 case hwmon_power_crit_alarm:
955 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
956 if (err < 0)
957 return err;
958
959 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
960 return 0;
961 default:
962 return -EOPNOTSUPP;
963 }
964
965 return -EOPNOTSUPP;
966}
967
968static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
969 u32 attr, int channel, long *value)
970{
971 struct sfp *sfp = dev_get_drvdata(dev);
972
973 switch (type) {
974 case hwmon_temp:
975 return sfp_hwmon_temp(sfp, attr, value);
976 case hwmon_in:
977 return sfp_hwmon_vcc(sfp, attr, value);
978 case hwmon_curr:
979 return sfp_hwmon_bias(sfp, attr, value);
980 case hwmon_power:
981 switch (channel) {
982 case 0:
983 return sfp_hwmon_tx_power(sfp, attr, value);
984 case 1:
985 return sfp_hwmon_rx_power(sfp, attr, value);
986 default:
987 return -EOPNOTSUPP;
988 }
989 default:
990 return -EOPNOTSUPP;
991 }
992}
993
994static const char *const sfp_hwmon_power_labels[] = {
995 "TX_power",
996 "RX_power",
997};
998
999static int sfp_hwmon_read_string(struct device *dev,
1000 enum hwmon_sensor_types type,
1001 u32 attr, int channel, const char **str)
1002{
1003 switch (type) {
1004 case hwmon_curr:
1005 switch (attr) {
1006 case hwmon_curr_label:
1007 *str = "bias";
1008 return 0;
1009 default:
1010 return -EOPNOTSUPP;
1011 }
1012 break;
1013 case hwmon_temp:
1014 switch (attr) {
1015 case hwmon_temp_label:
1016 *str = "temperature";
1017 return 0;
1018 default:
1019 return -EOPNOTSUPP;
1020 }
1021 break;
1022 case hwmon_in:
1023 switch (attr) {
1024 case hwmon_in_label:
1025 *str = "VCC";
1026 return 0;
1027 default:
1028 return -EOPNOTSUPP;
1029 }
1030 break;
1031 case hwmon_power:
1032 switch (attr) {
1033 case hwmon_power_label:
1034 *str = sfp_hwmon_power_labels[channel];
1035 return 0;
1036 default:
1037 return -EOPNOTSUPP;
1038 }
1039 break;
1040 default:
1041 return -EOPNOTSUPP;
1042 }
1043
1044 return -EOPNOTSUPP;
1045}
1046
1047static const struct hwmon_ops sfp_hwmon_ops = {
1048 .is_visible = sfp_hwmon_is_visible,
1049 .read = sfp_hwmon_read,
1050 .read_string = sfp_hwmon_read_string,
1051};
1052
1053static u32 sfp_hwmon_chip_config[] = {
1054 HWMON_C_REGISTER_TZ,
1055 0,
1056};
1057
1058static const struct hwmon_channel_info sfp_hwmon_chip = {
1059 .type = hwmon_chip,
1060 .config = sfp_hwmon_chip_config,
1061};
1062
1063static u32 sfp_hwmon_temp_config[] = {
1064 HWMON_T_INPUT |
1065 HWMON_T_MAX | HWMON_T_MIN |
1066 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1067 HWMON_T_CRIT | HWMON_T_LCRIT |
1068 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1069 HWMON_T_LABEL,
1070 0,
1071};
1072
1073static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1074 .type = hwmon_temp,
1075 .config = sfp_hwmon_temp_config,
1076};
1077
1078static u32 sfp_hwmon_vcc_config[] = {
1079 HWMON_I_INPUT |
1080 HWMON_I_MAX | HWMON_I_MIN |
1081 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1082 HWMON_I_CRIT | HWMON_I_LCRIT |
1083 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1084 HWMON_I_LABEL,
1085 0,
1086};
1087
1088static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1089 .type = hwmon_in,
1090 .config = sfp_hwmon_vcc_config,
1091};
1092
1093static u32 sfp_hwmon_bias_config[] = {
1094 HWMON_C_INPUT |
1095 HWMON_C_MAX | HWMON_C_MIN |
1096 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1097 HWMON_C_CRIT | HWMON_C_LCRIT |
1098 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1099 HWMON_C_LABEL,
1100 0,
1101};
1102
1103static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1104 .type = hwmon_curr,
1105 .config = sfp_hwmon_bias_config,
1106};
1107
1108static u32 sfp_hwmon_power_config[] = {
1109 /* Transmit power */
1110 HWMON_P_INPUT |
1111 HWMON_P_MAX | HWMON_P_MIN |
1112 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1113 HWMON_P_CRIT | HWMON_P_LCRIT |
1114 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1115 HWMON_P_LABEL,
1116 /* Receive power */
1117 HWMON_P_INPUT |
1118 HWMON_P_MAX | HWMON_P_MIN |
1119 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1120 HWMON_P_CRIT | HWMON_P_LCRIT |
1121 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1122 HWMON_P_LABEL,
1123 0,
1124};
1125
1126static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1127 .type = hwmon_power,
1128 .config = sfp_hwmon_power_config,
1129};
1130
1131static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1132 &sfp_hwmon_chip,
1133 &sfp_hwmon_vcc_channel_info,
1134 &sfp_hwmon_temp_channel_info,
1135 &sfp_hwmon_bias_channel_info,
1136 &sfp_hwmon_power_channel_info,
1137 NULL,
1138};
1139
1140static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1141 .ops = &sfp_hwmon_ops,
1142 .info = sfp_hwmon_info,
1143};
1144
1145static int sfp_hwmon_insert(struct sfp *sfp)
1146{
1147 int err, i;
1148
1149 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1150 return 0;
1151
1152 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1153 return 0;
1154
1155 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1156 /* This driver in general does not support address
1157 * change.
1158 */
1159 return 0;
1160
1161 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1162 if (err < 0)
1163 return err;
1164
1165 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1166 if (!sfp->hwmon_name)
1167 return -ENODEV;
1168
1169 for (i = 0; sfp->hwmon_name[i]; i++)
1170 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1171 sfp->hwmon_name[i] = '_';
1172
1173 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1174 sfp->hwmon_name, sfp,
1175 &sfp_hwmon_chip_info,
1176 NULL);
1177
1178 return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1179}
1180
1181static void sfp_hwmon_remove(struct sfp *sfp)
1182{
1183 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1184 hwmon_device_unregister(sfp->hwmon_dev);
1185 sfp->hwmon_dev = NULL;
1186 kfree(sfp->hwmon_name);
1187 }
1188}
1189#else
1190static int sfp_hwmon_insert(struct sfp *sfp)
1191{
1192 return 0;
1193}
1194
1195static void sfp_hwmon_remove(struct sfp *sfp)
1196{
1197}
1198#endif
1199
1200/* Helpers */
1201static void sfp_module_tx_disable(struct sfp *sfp)
1202{
1203 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1204 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1205 sfp->state |= SFP_F_TX_DISABLE;
1206 sfp_set_state(sfp, sfp->state);
1207}
1208
1209static void sfp_module_tx_enable(struct sfp *sfp)
1210{
1211 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1212 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1213 sfp->state &= ~SFP_F_TX_DISABLE;
1214 sfp_set_state(sfp, sfp->state);
1215}
1216
1217static void sfp_module_tx_fault_reset(struct sfp *sfp)
1218{
1219 unsigned int state = sfp->state;
1220
1221 if (state & SFP_F_TX_DISABLE)
1222 return;
1223
1224 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1225
1226 udelay(T_RESET_US);
1227
1228 sfp_set_state(sfp, state);
1229}
1230
1231/* SFP state machine */
1232static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1233{
1234 if (timeout)
1235 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1236 timeout);
1237 else
1238 cancel_delayed_work(&sfp->timeout);
1239}
1240
1241static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1242 unsigned int timeout)
1243{
1244 sfp->sm_state = state;
1245 sfp_sm_set_timer(sfp, timeout);
1246}
1247
1248static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1249 unsigned int timeout)
1250{
1251 sfp->sm_mod_state = state;
1252 sfp_sm_set_timer(sfp, timeout);
1253}
1254
1255static void sfp_sm_phy_detach(struct sfp *sfp)
1256{
1257 phy_stop(sfp->mod_phy);
1258 sfp_remove_phy(sfp->sfp_bus);
1259 phy_device_remove(sfp->mod_phy);
1260 phy_device_free(sfp->mod_phy);
1261 sfp->mod_phy = NULL;
1262}
1263
1264static void sfp_sm_probe_phy(struct sfp *sfp)
1265{
1266 struct phy_device *phy;
1267 int err;
1268
1269 msleep(T_PHY_RESET_MS);
1270
1271 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1272 if (phy == ERR_PTR(-ENODEV)) {
1273 dev_info(sfp->dev, "no PHY detected\n");
1274 return;
1275 }
1276 if (IS_ERR(phy)) {
1277 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1278 return;
1279 }
1280
1281 err = sfp_add_phy(sfp->sfp_bus, phy);
1282 if (err) {
1283 phy_device_remove(phy);
1284 phy_device_free(phy);
1285 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1286 return;
1287 }
1288
1289 sfp->mod_phy = phy;
1290 phy_start(phy);
1291}
1292
1293static void sfp_sm_link_up(struct sfp *sfp)
1294{
1295 sfp_link_up(sfp->sfp_bus);
1296 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1297}
1298
1299static void sfp_sm_link_down(struct sfp *sfp)
1300{
1301 sfp_link_down(sfp->sfp_bus);
1302}
1303
1304static void sfp_sm_link_check_los(struct sfp *sfp)
1305{
1306 unsigned int los = sfp->state & SFP_F_LOS;
1307
1308 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1309 * are set, we assume that no LOS signal is available.
1310 */
1311 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1312 los ^= SFP_F_LOS;
1313 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1314 los = 0;
1315
1316 if (los)
1317 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1318 else
1319 sfp_sm_link_up(sfp);
1320}
1321
1322static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1323{
1324 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1325 event == SFP_E_LOS_LOW) ||
1326 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1327 event == SFP_E_LOS_HIGH);
1328}
1329
1330static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1331{
1332 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1333 event == SFP_E_LOS_HIGH) ||
1334 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1335 event == SFP_E_LOS_LOW);
1336}
1337
1338static void sfp_sm_fault(struct sfp *sfp, bool warn)
1339{
1340 if (sfp->sm_retries && !--sfp->sm_retries) {
1341 dev_err(sfp->dev,
1342 "module persistently indicates fault, disabling\n");
1343 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1344 } else {
1345 if (warn)
1346 dev_err(sfp->dev, "module transmit fault indicated\n");
1347
1348 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1349 }
1350}
1351
1352static void sfp_sm_mod_init(struct sfp *sfp)
1353{
1354 sfp_module_tx_enable(sfp);
1355
1356 /* Wait t_init before indicating that the link is up, provided the
1357 * current state indicates no TX_FAULT. If TX_FAULT clears before
1358 * this time, that's fine too.
1359 */
1360 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1361 sfp->sm_retries = 5;
1362
1363 /* Setting the serdes link mode is guesswork: there's no
1364 * field in the EEPROM which indicates what mode should
1365 * be used.
1366 *
1367 * If it's a gigabit-only fiber module, it probably does
1368 * not have a PHY, so switch to 802.3z negotiation mode.
1369 * Otherwise, switch to SGMII mode (which is required to
1370 * support non-gigabit speeds) and probe for a PHY.
1371 */
1372 if (sfp->id.base.e1000_base_t ||
1373 sfp->id.base.e100_base_lx ||
1374 sfp->id.base.e100_base_fx)
1375 sfp_sm_probe_phy(sfp);
1376}
1377
1378static int sfp_sm_mod_hpower(struct sfp *sfp)
1379{
1380 u32 power;
1381 u8 val;
1382 int err;
1383
1384 power = 1000;
1385 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1386 power = 1500;
1387 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1388 power = 2000;
1389
1390 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1391 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1392 SFP_DIAGMON_DDM) {
1393 /* The module appears not to implement bus address 0xa2,
1394 * or requires an address change sequence, so assume that
1395 * the module powers up in the indicated power mode.
1396 */
1397 if (power > sfp->max_power_mW) {
1398 dev_err(sfp->dev,
1399 "Host does not support %u.%uW modules\n",
1400 power / 1000, (power / 100) % 10);
1401 return -EINVAL;
1402 }
1403 return 0;
1404 }
1405
1406 if (power > sfp->max_power_mW) {
1407 dev_warn(sfp->dev,
1408 "Host does not support %u.%uW modules, module left in power mode 1\n",
1409 power / 1000, (power / 100) % 10);
1410 return 0;
1411 }
1412
1413 if (power <= 1000)
1414 return 0;
1415
1416 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1417 if (err != sizeof(val)) {
1418 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1419 err = -EAGAIN;
1420 goto err;
1421 }
1422
1423 val |= BIT(0);
1424
1425 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1426 if (err != sizeof(val)) {
1427 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1428 err = -EAGAIN;
1429 goto err;
1430 }
1431
1432 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1433 power / 1000, (power / 100) % 10);
1434 return T_HPOWER_LEVEL;
1435
1436err:
1437 return err;
1438}
1439
1440static int sfp_sm_mod_probe(struct sfp *sfp)
1441{
1442 /* SFP module inserted - read I2C data */
1443 struct sfp_eeprom_id id;
1444 bool cotsworks;
1445 u8 check;
1446 int ret;
1447
1448 ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1449 if (ret < 0) {
1450 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1451 return -EAGAIN;
1452 }
1453
1454 if (ret != sizeof(id)) {
1455 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1456 return -EAGAIN;
1457 }
1458
1459 /* Cotsworks do not seem to update the checksums when they
1460 * do the final programming with the final module part number,
1461 * serial number and date code.
1462 */
1463 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
1464
1465 /* Validate the checksum over the base structure */
1466 check = sfp_check(&id.base, sizeof(id.base) - 1);
1467 if (check != id.base.cc_base) {
1468 if (cotsworks) {
1469 dev_warn(sfp->dev,
1470 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1471 check, id.base.cc_base);
1472 } else {
1473 dev_err(sfp->dev,
1474 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1475 check, id.base.cc_base);
1476 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1477 16, 1, &id, sizeof(id), true);
1478 return -EINVAL;
1479 }
1480 }
1481
1482 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1483 if (check != id.ext.cc_ext) {
1484 if (cotsworks) {
1485 dev_warn(sfp->dev,
1486 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1487 check, id.ext.cc_ext);
1488 } else {
1489 dev_err(sfp->dev,
1490 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1491 check, id.ext.cc_ext);
1492 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1493 16, 1, &id, sizeof(id), true);
1494 memset(&id.ext, 0, sizeof(id.ext));
1495 }
1496 }
1497
1498 sfp->id = id;
1499
1500 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1501 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1502 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1503 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1504 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1505 (int)sizeof(id.ext.datecode), id.ext.datecode);
1506
1507 /* Check whether we support this module */
1508 if (!sfp->type->module_supported(&sfp->id)) {
1509 dev_err(sfp->dev,
1510 "module is not supported - phys id 0x%02x 0x%02x\n",
1511 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1512 return -EINVAL;
1513 }
1514
1515 /* If the module requires address swap mode, warn about it */
1516 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1517 dev_warn(sfp->dev,
1518 "module address swap to access page 0xA2 is not supported.\n");
1519
1520 ret = sfp_hwmon_insert(sfp);
1521 if (ret < 0)
1522 return ret;
1523
1524 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1525 if (ret < 0)
1526 return ret;
1527
1528 return sfp_sm_mod_hpower(sfp);
1529}
1530
1531static void sfp_sm_mod_remove(struct sfp *sfp)
1532{
1533 sfp_module_remove(sfp->sfp_bus);
1534
1535 sfp_hwmon_remove(sfp);
1536
1537 if (sfp->mod_phy)
1538 sfp_sm_phy_detach(sfp);
1539
1540 sfp_module_tx_disable(sfp);
1541
1542 memset(&sfp->id, 0, sizeof(sfp->id));
1543
1544 dev_info(sfp->dev, "module removed\n");
1545}
1546
1547static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1548{
1549 mutex_lock(&sfp->sm_mutex);
1550
1551 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1552 mod_state_to_str(sfp->sm_mod_state),
1553 dev_state_to_str(sfp->sm_dev_state),
1554 sm_state_to_str(sfp->sm_state),
1555 event_to_str(event));
1556
1557 /* This state machine tracks the insert/remove state of
1558 * the module, and handles probing the on-board EEPROM.
1559 */
1560 switch (sfp->sm_mod_state) {
1561 default:
1562 if (event == SFP_E_INSERT && sfp->attached) {
1563 sfp_module_tx_disable(sfp);
1564 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1565 }
1566 break;
1567
1568 case SFP_MOD_PROBE:
1569 if (event == SFP_E_REMOVE) {
1570 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1571 } else if (event == SFP_E_TIMEOUT) {
1572 int val = sfp_sm_mod_probe(sfp);
1573
1574 if (val == 0)
1575 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1576 else if (val > 0)
1577 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1578 else if (val != -EAGAIN)
1579 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1580 else
1581 sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1582 }
1583 break;
1584
1585 case SFP_MOD_HPOWER:
1586 if (event == SFP_E_TIMEOUT) {
1587 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1588 break;
1589 }
1590 /* fallthrough */
1591 case SFP_MOD_PRESENT:
1592 case SFP_MOD_ERROR:
1593 if (event == SFP_E_REMOVE) {
1594 sfp_sm_mod_remove(sfp);
1595 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1596 }
1597 break;
1598 }
1599
1600 /* This state machine tracks the netdev up/down state */
1601 switch (sfp->sm_dev_state) {
1602 default:
1603 if (event == SFP_E_DEV_UP)
1604 sfp->sm_dev_state = SFP_DEV_UP;
1605 break;
1606
1607 case SFP_DEV_UP:
1608 if (event == SFP_E_DEV_DOWN) {
1609 /* If the module has a PHY, avoid raising TX disable
1610 * as this resets the PHY. Otherwise, raise it to
1611 * turn the laser off.
1612 */
1613 if (!sfp->mod_phy)
1614 sfp_module_tx_disable(sfp);
1615 sfp->sm_dev_state = SFP_DEV_DOWN;
1616 }
1617 break;
1618 }
1619
1620 /* Some events are global */
1621 if (sfp->sm_state != SFP_S_DOWN &&
1622 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1623 sfp->sm_dev_state != SFP_DEV_UP)) {
1624 if (sfp->sm_state == SFP_S_LINK_UP &&
1625 sfp->sm_dev_state == SFP_DEV_UP)
1626 sfp_sm_link_down(sfp);
1627 if (sfp->mod_phy)
1628 sfp_sm_phy_detach(sfp);
1629 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1630 mutex_unlock(&sfp->sm_mutex);
1631 return;
1632 }
1633
1634 /* The main state machine */
1635 switch (sfp->sm_state) {
1636 case SFP_S_DOWN:
1637 if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1638 sfp->sm_dev_state == SFP_DEV_UP)
1639 sfp_sm_mod_init(sfp);
1640 break;
1641
1642 case SFP_S_INIT:
1643 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1644 sfp_sm_fault(sfp, true);
1645 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1646 sfp_sm_link_check_los(sfp);
1647 break;
1648
1649 case SFP_S_WAIT_LOS:
1650 if (event == SFP_E_TX_FAULT)
1651 sfp_sm_fault(sfp, true);
1652 else if (sfp_los_event_inactive(sfp, event))
1653 sfp_sm_link_up(sfp);
1654 break;
1655
1656 case SFP_S_LINK_UP:
1657 if (event == SFP_E_TX_FAULT) {
1658 sfp_sm_link_down(sfp);
1659 sfp_sm_fault(sfp, true);
1660 } else if (sfp_los_event_active(sfp, event)) {
1661 sfp_sm_link_down(sfp);
1662 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1663 }
1664 break;
1665
1666 case SFP_S_TX_FAULT:
1667 if (event == SFP_E_TIMEOUT) {
1668 sfp_module_tx_fault_reset(sfp);
1669 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1670 }
1671 break;
1672
1673 case SFP_S_REINIT:
1674 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1675 sfp_sm_fault(sfp, false);
1676 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1677 dev_info(sfp->dev, "module transmit fault recovered\n");
1678 sfp_sm_link_check_los(sfp);
1679 }
1680 break;
1681
1682 case SFP_S_TX_DISABLE:
1683 break;
1684 }
1685
1686 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1687 mod_state_to_str(sfp->sm_mod_state),
1688 dev_state_to_str(sfp->sm_dev_state),
1689 sm_state_to_str(sfp->sm_state));
1690
1691 mutex_unlock(&sfp->sm_mutex);
1692}
1693
1694static void sfp_attach(struct sfp *sfp)
1695{
1696 sfp->attached = true;
1697 if (sfp->state & SFP_F_PRESENT)
1698 sfp_sm_event(sfp, SFP_E_INSERT);
1699}
1700
1701static void sfp_detach(struct sfp *sfp)
1702{
1703 sfp->attached = false;
1704 sfp_sm_event(sfp, SFP_E_REMOVE);
1705}
1706
1707static void sfp_start(struct sfp *sfp)
1708{
1709 sfp_sm_event(sfp, SFP_E_DEV_UP);
1710}
1711
1712static void sfp_stop(struct sfp *sfp)
1713{
1714 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1715}
1716
1717static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1718{
1719 /* locking... and check module is present */
1720
1721 if (sfp->id.ext.sff8472_compliance &&
1722 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1723 modinfo->type = ETH_MODULE_SFF_8472;
1724 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1725 } else {
1726 modinfo->type = ETH_MODULE_SFF_8079;
1727 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1728 }
1729 return 0;
1730}
1731
1732static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1733 u8 *data)
1734{
1735 unsigned int first, last, len;
1736 int ret;
1737
1738 if (ee->len == 0)
1739 return -EINVAL;
1740
1741 first = ee->offset;
1742 last = ee->offset + ee->len;
1743 if (first < ETH_MODULE_SFF_8079_LEN) {
1744 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1745 len -= first;
1746
1747 ret = sfp_read(sfp, false, first, data, len);
1748 if (ret < 0)
1749 return ret;
1750
1751 first += len;
1752 data += len;
1753 }
1754 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1755 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1756 len -= first;
1757 first -= ETH_MODULE_SFF_8079_LEN;
1758
1759 ret = sfp_read(sfp, true, first, data, len);
1760 if (ret < 0)
1761 return ret;
1762 }
1763 return 0;
1764}
1765
1766static const struct sfp_socket_ops sfp_module_ops = {
1767 .attach = sfp_attach,
1768 .detach = sfp_detach,
1769 .start = sfp_start,
1770 .stop = sfp_stop,
1771 .module_info = sfp_module_info,
1772 .module_eeprom = sfp_module_eeprom,
1773};
1774
1775static void sfp_timeout(struct work_struct *work)
1776{
1777 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1778
1779 rtnl_lock();
1780 sfp_sm_event(sfp, SFP_E_TIMEOUT);
1781 rtnl_unlock();
1782}
1783
1784static void sfp_check_state(struct sfp *sfp)
1785{
1786 unsigned int state, i, changed;
1787
1788 mutex_lock(&sfp->st_mutex);
1789 state = sfp_get_state(sfp);
1790 changed = state ^ sfp->state;
1791 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1792
1793 for (i = 0; i < GPIO_MAX; i++)
1794 if (changed & BIT(i))
1795 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1796 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
1797
1798 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1799 sfp->state = state;
1800
1801 rtnl_lock();
1802 if (changed & SFP_F_PRESENT)
1803 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1804 SFP_E_INSERT : SFP_E_REMOVE);
1805
1806 if (changed & SFP_F_TX_FAULT)
1807 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1808 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1809
1810 if (changed & SFP_F_LOS)
1811 sfp_sm_event(sfp, state & SFP_F_LOS ?
1812 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1813 rtnl_unlock();
1814 mutex_unlock(&sfp->st_mutex);
1815}
1816
1817static irqreturn_t sfp_irq(int irq, void *data)
1818{
1819 struct sfp *sfp = data;
1820
1821 sfp_check_state(sfp);
1822
1823 return IRQ_HANDLED;
1824}
1825
1826static void sfp_poll(struct work_struct *work)
1827{
1828 struct sfp *sfp = container_of(work, struct sfp, poll.work);
1829
1830 sfp_check_state(sfp);
1831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1832}
1833
1834static struct sfp *sfp_alloc(struct device *dev)
1835{
1836 struct sfp *sfp;
1837
1838 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1839 if (!sfp)
1840 return ERR_PTR(-ENOMEM);
1841
1842 sfp->dev = dev;
1843
1844 mutex_init(&sfp->sm_mutex);
1845 mutex_init(&sfp->st_mutex);
1846 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1847 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1848
1849 return sfp;
1850}
1851
1852static void sfp_cleanup(void *data)
1853{
1854 struct sfp *sfp = data;
1855
1856 cancel_delayed_work_sync(&sfp->poll);
1857 cancel_delayed_work_sync(&sfp->timeout);
1858 if (sfp->i2c_mii) {
1859 mdiobus_unregister(sfp->i2c_mii);
1860 mdiobus_free(sfp->i2c_mii);
1861 }
1862 if (sfp->i2c)
1863 i2c_put_adapter(sfp->i2c);
1864 kfree(sfp);
1865}
1866
1867static int sfp_probe(struct platform_device *pdev)
1868{
1869 const struct sff_data *sff;
1870 struct i2c_adapter *i2c;
1871 struct sfp *sfp;
1872 bool poll = false;
1873 int err, i;
1874
1875 sfp = sfp_alloc(&pdev->dev);
1876 if (IS_ERR(sfp))
1877 return PTR_ERR(sfp);
1878
1879 platform_set_drvdata(pdev, sfp);
1880
1881 err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1882 if (err < 0)
1883 return err;
1884
1885 sff = sfp->type = &sfp_data;
1886
1887 if (pdev->dev.of_node) {
1888 struct device_node *node = pdev->dev.of_node;
1889 const struct of_device_id *id;
1890 struct device_node *np;
1891
1892 id = of_match_node(sfp_of_match, node);
1893 if (WARN_ON(!id))
1894 return -EINVAL;
1895
1896 sff = sfp->type = id->data;
1897
1898 np = of_parse_phandle(node, "i2c-bus", 0);
1899 if (!np) {
1900 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1901 return -ENODEV;
1902 }
1903
1904 i2c = of_find_i2c_adapter_by_node(np);
1905 of_node_put(np);
1906 } else if (has_acpi_companion(&pdev->dev)) {
1907 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1908 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1909 struct fwnode_reference_args args;
1910 struct acpi_handle *acpi_handle;
1911 int ret;
1912
1913 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1914 if (ret || !is_acpi_device_node(args.fwnode)) {
1915 dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1916 return -ENODEV;
1917 }
1918
1919 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1920 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1921 } else {
1922 return -EINVAL;
1923 }
1924
1925 if (!i2c)
1926 return -EPROBE_DEFER;
1927
1928 err = sfp_i2c_configure(sfp, i2c);
1929 if (err < 0) {
1930 i2c_put_adapter(i2c);
1931 return err;
1932 }
1933
1934 for (i = 0; i < GPIO_MAX; i++)
1935 if (sff->gpios & BIT(i)) {
1936 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1937 gpio_of_names[i], gpio_flags[i]);
1938 if (IS_ERR(sfp->gpio[i]))
1939 return PTR_ERR(sfp->gpio[i]);
1940 }
1941
1942 sfp->get_state = sfp_gpio_get_state;
1943 sfp->set_state = sfp_gpio_set_state;
1944
1945 /* Modules that have no detect signal are always present */
1946 if (!(sfp->gpio[GPIO_MODDEF0]))
1947 sfp->get_state = sff_gpio_get_state;
1948
1949 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1950 &sfp->max_power_mW);
1951 if (!sfp->max_power_mW)
1952 sfp->max_power_mW = 1000;
1953
1954 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1955 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1956
1957 /* Get the initial state, and always signal TX disable,
1958 * since the network interface will not be up.
1959 */
1960 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1961
1962 if (sfp->gpio[GPIO_RATE_SELECT] &&
1963 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1964 sfp->state |= SFP_F_RATE_SELECT;
1965 sfp_set_state(sfp, sfp->state);
1966 sfp_module_tx_disable(sfp);
1967
1968 for (i = 0; i < GPIO_MAX; i++) {
1969 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1970 continue;
1971
1972 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
1973 if (!sfp->gpio_irq[i]) {
1974 poll = true;
1975 continue;
1976 }
1977
1978 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
1979 NULL, sfp_irq,
1980 IRQF_ONESHOT |
1981 IRQF_TRIGGER_RISING |
1982 IRQF_TRIGGER_FALLING,
1983 dev_name(sfp->dev), sfp);
1984 if (err) {
1985 sfp->gpio_irq[i] = 0;
1986 poll = true;
1987 }
1988 }
1989
1990 if (poll)
1991 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1992
1993 /* We could have an issue in cases no Tx disable pin is available or
1994 * wired as modules using a laser as their light source will continue to
1995 * be active when the fiber is removed. This could be a safety issue and
1996 * we should at least warn the user about that.
1997 */
1998 if (!sfp->gpio[GPIO_TX_DISABLE])
1999 dev_warn(sfp->dev,
2000 "No tx_disable pin: SFP modules will always be emitting.\n");
2001
2002 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2003 if (!sfp->sfp_bus)
2004 return -ENOMEM;
2005
2006 return 0;
2007}
2008
2009static int sfp_remove(struct platform_device *pdev)
2010{
2011 struct sfp *sfp = platform_get_drvdata(pdev);
2012
2013 sfp_unregister_socket(sfp->sfp_bus);
2014
2015 return 0;
2016}
2017
2018static void sfp_shutdown(struct platform_device *pdev)
2019{
2020 struct sfp *sfp = platform_get_drvdata(pdev);
2021 int i;
2022
2023 for (i = 0; i < GPIO_MAX; i++) {
2024 if (!sfp->gpio_irq[i])
2025 continue;
2026
2027 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2028 }
2029
2030 cancel_delayed_work_sync(&sfp->poll);
2031 cancel_delayed_work_sync(&sfp->timeout);
2032}
2033
2034static struct platform_driver sfp_driver = {
2035 .probe = sfp_probe,
2036 .remove = sfp_remove,
2037 .shutdown = sfp_shutdown,
2038 .driver = {
2039 .name = "sfp",
2040 .of_match_table = sfp_of_match,
2041 },
2042};
2043
2044static int sfp_init(void)
2045{
2046 poll_jiffies = msecs_to_jiffies(100);
2047
2048 return platform_driver_register(&sfp_driver);
2049}
2050module_init(sfp_init);
2051
2052static void sfp_exit(void)
2053{
2054 platform_driver_unregister(&sfp_driver);
2055}
2056module_exit(sfp_exit);
2057
2058MODULE_ALIAS("platform:sfp");
2059MODULE_AUTHOR("Russell King");
2060MODULE_LICENSE("GPL v2");