Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Broadcom Starfighter 2 DSA switch CFP support
   3 *
   4 * Copyright (C) 2016, Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11
  12#include <linux/list.h>
  13#include <linux/ethtool.h>
  14#include <linux/if_ether.h>
  15#include <linux/in.h>
  16#include <linux/netdevice.h>
  17#include <net/dsa.h>
  18#include <linux/bitmap.h>
 
  19
  20#include "bcm_sf2.h"
  21#include "bcm_sf2_regs.h"
  22
 
 
 
 
 
 
  23struct cfp_udf_slice_layout {
  24	u8 slices[UDFS_PER_SLICE];
  25	u32 mask_value;
  26	u32 base_offset;
  27};
  28
  29struct cfp_udf_layout {
  30	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  31};
  32
  33static const u8 zero_slice[UDFS_PER_SLICE] = { };
  34
  35/* UDF slices layout for a TCPv4/UDPv4 specification */
  36static const struct cfp_udf_layout udf_tcpip4_layout = {
  37	.udfs = {
  38		[1] = {
  39			.slices = {
  40				/* End of L2, byte offset 12, src IP[0:15] */
  41				CFG_UDF_EOL2 | 6,
  42				/* End of L2, byte offset 14, src IP[16:31] */
  43				CFG_UDF_EOL2 | 7,
  44				/* End of L2, byte offset 16, dst IP[0:15] */
  45				CFG_UDF_EOL2 | 8,
  46				/* End of L2, byte offset 18, dst IP[16:31] */
  47				CFG_UDF_EOL2 | 9,
  48				/* End of L3, byte offset 0, src port */
  49				CFG_UDF_EOL3 | 0,
  50				/* End of L3, byte offset 2, dst port */
  51				CFG_UDF_EOL3 | 1,
  52				0, 0, 0
  53			},
  54			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  55			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  56		},
  57	},
  58};
  59
  60/* UDF slices layout for a TCPv6/UDPv6 specification */
  61static const struct cfp_udf_layout udf_tcpip6_layout = {
  62	.udfs = {
  63		[0] = {
  64			.slices = {
  65				/* End of L2, byte offset 8, src IP[0:15] */
  66				CFG_UDF_EOL2 | 4,
  67				/* End of L2, byte offset 10, src IP[16:31] */
  68				CFG_UDF_EOL2 | 5,
  69				/* End of L2, byte offset 12, src IP[32:47] */
  70				CFG_UDF_EOL2 | 6,
  71				/* End of L2, byte offset 14, src IP[48:63] */
  72				CFG_UDF_EOL2 | 7,
  73				/* End of L2, byte offset 16, src IP[64:79] */
  74				CFG_UDF_EOL2 | 8,
  75				/* End of L2, byte offset 18, src IP[80:95] */
  76				CFG_UDF_EOL2 | 9,
  77				/* End of L2, byte offset 20, src IP[96:111] */
  78				CFG_UDF_EOL2 | 10,
  79				/* End of L2, byte offset 22, src IP[112:127] */
  80				CFG_UDF_EOL2 | 11,
  81				/* End of L3, byte offset 0, src port */
  82				CFG_UDF_EOL3 | 0,
  83			},
  84			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  85			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  86		},
  87		[3] = {
  88			.slices = {
  89				/* End of L2, byte offset 24, dst IP[0:15] */
  90				CFG_UDF_EOL2 | 12,
  91				/* End of L2, byte offset 26, dst IP[16:31] */
  92				CFG_UDF_EOL2 | 13,
  93				/* End of L2, byte offset 28, dst IP[32:47] */
  94				CFG_UDF_EOL2 | 14,
  95				/* End of L2, byte offset 30, dst IP[48:63] */
  96				CFG_UDF_EOL2 | 15,
  97				/* End of L2, byte offset 32, dst IP[64:79] */
  98				CFG_UDF_EOL2 | 16,
  99				/* End of L2, byte offset 34, dst IP[80:95] */
 100				CFG_UDF_EOL2 | 17,
 101				/* End of L2, byte offset 36, dst IP[96:111] */
 102				CFG_UDF_EOL2 | 18,
 103				/* End of L2, byte offset 38, dst IP[112:127] */
 104				CFG_UDF_EOL2 | 19,
 105				/* End of L3, byte offset 2, dst port */
 106				CFG_UDF_EOL3 | 1,
 107			},
 108			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 109			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 110		},
 111	},
 112};
 113
 114static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 115{
 116	unsigned int i, count = 0;
 117
 118	for (i = 0; i < UDFS_PER_SLICE; i++) {
 119		if (layout[i] != 0)
 120			count++;
 121	}
 122
 123	return count;
 124}
 125
 126static inline u32 udf_upper_bits(unsigned int num_udf)
 127{
 128	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 129}
 130
 131static inline u32 udf_lower_bits(unsigned int num_udf)
 132{
 133	return (u8)GENMASK(num_udf - 1, 0);
 134}
 135
 136static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 137					     unsigned int start)
 138{
 139	const struct cfp_udf_slice_layout *slice_layout;
 140	unsigned int slice_idx;
 141
 142	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 143		slice_layout = &l->udfs[slice_idx];
 144		if (memcmp(slice_layout->slices, zero_slice,
 145			   sizeof(zero_slice)))
 146			break;
 147	}
 148
 149	return slice_idx;
 150}
 151
 152static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 153				const struct cfp_udf_layout *layout,
 154				unsigned int slice_num)
 155{
 156	u32 offset = layout->udfs[slice_num].base_offset;
 157	unsigned int i;
 158
 159	for (i = 0; i < UDFS_PER_SLICE; i++)
 160		core_writel(priv, layout->udfs[slice_num].slices[i],
 161			    offset + i * 4);
 162}
 163
 164static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 165{
 166	unsigned int timeout = 1000;
 167	u32 reg;
 168
 169	reg = core_readl(priv, CORE_CFP_ACC);
 170	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 171	reg |= OP_STR_DONE | op;
 172	core_writel(priv, reg, CORE_CFP_ACC);
 173
 174	do {
 175		reg = core_readl(priv, CORE_CFP_ACC);
 176		if (!(reg & OP_STR_DONE))
 177			break;
 178
 179		cpu_relax();
 180	} while (timeout--);
 181
 182	if (!timeout)
 183		return -ETIMEDOUT;
 184
 185	return 0;
 186}
 187
 188static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 189					     unsigned int addr)
 190{
 191	u32 reg;
 192
 193	WARN_ON(addr >= priv->num_cfp_rules);
 194
 195	reg = core_readl(priv, CORE_CFP_ACC);
 196	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 197	reg |= addr << XCESS_ADDR_SHIFT;
 198	core_writel(priv, reg, CORE_CFP_ACC);
 199}
 200
 201static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 202{
 203	/* Entry #0 is reserved */
 204	return priv->num_cfp_rules - 1;
 205}
 206
 207static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 208				   unsigned int rule_index,
 
 209				   unsigned int port_num,
 210				   unsigned int queue_num,
 211				   bool fwd_map_change)
 212{
 213	int ret;
 214	u32 reg;
 215
 216	/* Replace ARL derived destination with DST_MAP derived, define
 217	 * which port and queue this should be forwarded to.
 218	 */
 219	if (fwd_map_change)
 220		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 221		      BIT(port_num + DST_MAP_IB_SHIFT) |
 222		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 223	else
 224		reg = 0;
 225
 
 
 
 
 226	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 227
 228	/* Set classification ID that needs to be put in Broadcom tag */
 229	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 230
 231	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 232
 233	/* Configure policer RAM now */
 234	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 235	if (ret) {
 236		pr_err("Policer entry at %d failed\n", rule_index);
 237		return ret;
 238	}
 239
 240	/* Disable the policer */
 241	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 242
 243	/* Now the rate meter */
 244	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 245	if (ret) {
 246		pr_err("Meter entry at %d failed\n", rule_index);
 247		return ret;
 248	}
 249
 250	return 0;
 251}
 252
 253static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 254				   struct ethtool_tcpip4_spec *v4_spec,
 
 255				   unsigned int slice_num,
 256				   bool mask)
 257{
 258	u32 reg, offset;
 259
 260	/* C-Tag		[31:24]
 261	 * UDF_n_A8		[23:8]
 262	 * UDF_n_A7		[7:0]
 263	 */
 264	reg = 0;
 265	if (mask)
 266		offset = CORE_CFP_MASK_PORT(4);
 267	else
 268		offset = CORE_CFP_DATA_PORT(4);
 269	core_writel(priv, reg, offset);
 270
 271	/* UDF_n_A7		[31:24]
 272	 * UDF_n_A6		[23:8]
 273	 * UDF_n_A5		[7:0]
 274	 */
 275	reg = be16_to_cpu(v4_spec->pdst) >> 8;
 276	if (mask)
 277		offset = CORE_CFP_MASK_PORT(3);
 278	else
 279		offset = CORE_CFP_DATA_PORT(3);
 280	core_writel(priv, reg, offset);
 281
 282	/* UDF_n_A5		[31:24]
 283	 * UDF_n_A4		[23:8]
 284	 * UDF_n_A3		[7:0]
 285	 */
 286	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
 287	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
 288	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
 289	if (mask)
 290		offset = CORE_CFP_MASK_PORT(2);
 291	else
 292		offset = CORE_CFP_DATA_PORT(2);
 293	core_writel(priv, reg, offset);
 294
 295	/* UDF_n_A3		[31:24]
 296	 * UDF_n_A2		[23:8]
 297	 * UDF_n_A1		[7:0]
 298	 */
 299	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
 300	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
 301	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
 302	if (mask)
 303		offset = CORE_CFP_MASK_PORT(1);
 304	else
 305		offset = CORE_CFP_DATA_PORT(1);
 306	core_writel(priv, reg, offset);
 307
 308	/* UDF_n_A1		[31:24]
 309	 * UDF_n_A0		[23:8]
 310	 * Reserved		[7:4]
 311	 * Slice ID		[3:2]
 312	 * Slice valid		[1:0]
 313	 */
 314	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
 315	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
 316	      SLICE_NUM(slice_num) | SLICE_VALID;
 317	if (mask)
 318		offset = CORE_CFP_MASK_PORT(0);
 319	else
 320		offset = CORE_CFP_DATA_PORT(0);
 321	core_writel(priv, reg, offset);
 322}
 323
 324static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 325				     unsigned int port_num,
 326				     unsigned int queue_num,
 327				     struct ethtool_rx_flow_spec *fs)
 328{
 329	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
 330	const struct cfp_udf_layout *layout;
 331	unsigned int slice_num, rule_index;
 
 
 
 
 332	u8 ip_proto, ip_frag;
 333	u8 num_udf;
 334	u32 reg;
 335	int ret;
 336
 337	switch (fs->flow_type & ~FLOW_EXT) {
 338	case TCP_V4_FLOW:
 339		ip_proto = IPPROTO_TCP;
 340		v4_spec = &fs->h_u.tcp_ip4_spec;
 341		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 342		break;
 343	case UDP_V4_FLOW:
 344		ip_proto = IPPROTO_UDP;
 345		v4_spec = &fs->h_u.udp_ip4_spec;
 346		v4_m_spec = &fs->m_u.udp_ip4_spec;
 347		break;
 348	default:
 349		return -EINVAL;
 350	}
 351
 352	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 353
 354	/* Locate the first rule available */
 355	if (fs->location == RX_CLS_LOC_ANY)
 356		rule_index = find_first_zero_bit(priv->cfp.used,
 357						 priv->num_cfp_rules);
 358	else
 359		rule_index = fs->location;
 360
 361	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 362		return -ENOSPC;
 363
 
 
 
 
 
 
 
 
 
 364	layout = &udf_tcpip4_layout;
 365	/* We only use one UDF slice for now */
 366	slice_num = bcm_sf2_get_slice_number(layout, 0);
 367	if (slice_num == UDF_NUM_SLICES)
 368		return -EINVAL;
 
 
 369
 370	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 371
 372	/* Apply the UDF layout for this filter */
 373	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 374
 375	/* Apply to all packets received through this port */
 376	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 377
 378	/* Source port map match */
 379	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 380
 381	/* S-Tag status		[31:30]
 382	 * C-Tag status		[29:28]
 383	 * L2 framing		[27:26]
 384	 * L3 framing		[25:24]
 385	 * IP ToS		[23:16]
 386	 * IP proto		[15:08]
 387	 * IP Fragm		[7]
 388	 * Non 1st frag		[6]
 389	 * IP Authen		[5]
 390	 * TTL range		[4:3]
 391	 * PPPoE session	[2]
 392	 * Reserved		[1]
 393	 * UDF_Valid[8]		[0]
 394	 */
 395	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
 396		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 397		    udf_upper_bits(num_udf),
 398		    CORE_CFP_DATA_PORT(6));
 399
 400	/* Mask with the specific layout for IPv4 packets */
 401	core_writel(priv, layout->udfs[slice_num].mask_value |
 402		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 403
 404	/* UDF_Valid[7:0]	[31:24]
 405	 * S-Tag		[23:8]
 406	 * C-Tag		[7:0]
 407	 */
 408	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 409
 410	/* Mask all but valid UDFs */
 411	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 412
 413	/* Program the match and the mask */
 414	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
 415	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
 416
 417	/* Insert into TCAM now */
 418	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 419
 420	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 421	if (ret) {
 422		pr_err("TCAM entry at addr %d failed\n", rule_index);
 423		return ret;
 424	}
 425
 426	/* Insert into Action and policer RAMs now */
 427	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
 428				      queue_num, true);
 429	if (ret)
 430		return ret;
 431
 432	/* Turn on CFP for this rule now */
 433	reg = core_readl(priv, CORE_CFP_CTL_REG);
 434	reg |= BIT(port);
 435	core_writel(priv, reg, CORE_CFP_CTL_REG);
 436
 437	/* Flag the rule as being used and return it */
 438	set_bit(rule_index, priv->cfp.used);
 439	set_bit(rule_index, priv->cfp.unique);
 440	fs->location = rule_index;
 441
 442	return 0;
 
 
 
 
 443}
 444
 445static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 446				   const __be32 *ip6_addr, const __be16 port,
 447				   unsigned int slice_num,
 448				   bool mask)
 449{
 450	u32 reg, tmp, val, offset;
 451
 452	/* C-Tag		[31:24]
 453	 * UDF_n_B8		[23:8]	(port)
 454	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 455	 */
 456	reg = be32_to_cpu(ip6_addr[3]);
 457	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 458	if (mask)
 459		offset = CORE_CFP_MASK_PORT(4);
 460	else
 461		offset = CORE_CFP_DATA_PORT(4);
 462	core_writel(priv, val, offset);
 463
 464	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 465	 * UDF_n_B6		[23:8] (addr[31:16])
 466	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 467	 */
 468	tmp = be32_to_cpu(ip6_addr[2]);
 469	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 470	      ((tmp >> 8) & 0xff);
 471	if (mask)
 472		offset = CORE_CFP_MASK_PORT(3);
 473	else
 474		offset = CORE_CFP_DATA_PORT(3);
 475	core_writel(priv, val, offset);
 476
 477	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 478	 * UDF_n_B4		[23:8] (addr[63:48])
 479	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 480	 */
 481	reg = be32_to_cpu(ip6_addr[1]);
 482	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 483	      ((reg >> 8) & 0xff);
 484	if (mask)
 485		offset = CORE_CFP_MASK_PORT(2);
 486	else
 487		offset = CORE_CFP_DATA_PORT(2);
 488	core_writel(priv, val, offset);
 489
 490	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 491	 * UDF_n_B2		[23:8] (addr[95:80])
 492	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 493	 */
 494	tmp = be32_to_cpu(ip6_addr[0]);
 495	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 496	      ((tmp >> 8) & 0xff);
 497	if (mask)
 498		offset = CORE_CFP_MASK_PORT(1);
 499	else
 500		offset = CORE_CFP_DATA_PORT(1);
 501	core_writel(priv, val, offset);
 502
 503	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 504	 * UDF_n_B0		[23:8] (addr[127:112])
 505	 * Reserved		[7:4]
 506	 * Slice ID		[3:2]
 507	 * Slice valid		[1:0]
 508	 */
 509	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 510	       SLICE_NUM(slice_num) | SLICE_VALID;
 511	if (mask)
 512		offset = CORE_CFP_MASK_PORT(0);
 513	else
 514		offset = CORE_CFP_DATA_PORT(0);
 515	core_writel(priv, reg, offset);
 516}
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 519				     unsigned int port_num,
 520				     unsigned int queue_num,
 521				     struct ethtool_rx_flow_spec *fs)
 522{
 523	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
 524	unsigned int slice_num, rule_index[2];
 525	const struct cfp_udf_layout *layout;
 
 
 
 526	u8 ip_proto, ip_frag;
 527	int ret = 0;
 528	u8 num_udf;
 529	u32 reg;
 530
 531	switch (fs->flow_type & ~FLOW_EXT) {
 532	case TCP_V6_FLOW:
 533		ip_proto = IPPROTO_TCP;
 534		v6_spec = &fs->h_u.tcp_ip6_spec;
 535		v6_m_spec = &fs->m_u.tcp_ip6_spec;
 536		break;
 537	case UDP_V6_FLOW:
 538		ip_proto = IPPROTO_UDP;
 539		v6_spec = &fs->h_u.udp_ip6_spec;
 540		v6_m_spec = &fs->m_u.udp_ip6_spec;
 541		break;
 542	default:
 543		return -EINVAL;
 544	}
 545
 546	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 547
 548	layout = &udf_tcpip6_layout;
 549	slice_num = bcm_sf2_get_slice_number(layout, 0);
 550	if (slice_num == UDF_NUM_SLICES)
 551		return -EINVAL;
 552
 553	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 554
 555	/* Negotiate two indexes, one for the second half which we are chained
 556	 * from, which is what we will return to user-space, and a second one
 557	 * which is used to store its first half. That first half does not
 558	 * allow any choice of placement, so it just needs to find the next
 559	 * available bit. We return the second half as fs->location because
 560	 * that helps with the rule lookup later on since the second half is
 561	 * chained from its first half, we can easily identify IPv6 CFP rules
 562	 * by looking whether they carry a CHAIN_ID.
 563	 *
 564	 * We also want the second half to have a lower rule_index than its
 565	 * first half because the HW search is by incrementing addresses.
 566	 */
 567	if (fs->location == RX_CLS_LOC_ANY)
 568		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 569						    priv->num_cfp_rules);
 570	else
 571		rule_index[1] = fs->location;
 572	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 573		return -ENOSPC;
 574
 575	/* Flag it as used (cleared on error path) such that we can immediately
 576	 * obtain a second one to chain from.
 577	 */
 578	set_bit(rule_index[1], priv->cfp.used);
 579
 580	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 581					    priv->num_cfp_rules);
 582	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 583		ret = -ENOSPC;
 584		goto out_err;
 585	}
 586
 
 
 
 
 
 
 
 
 
 587	/* Apply the UDF layout for this filter */
 588	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 589
 590	/* Apply to all packets received through this port */
 591	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 592
 593	/* Source port map match */
 594	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 595
 596	/* S-Tag status		[31:30]
 597	 * C-Tag status		[29:28]
 598	 * L2 framing		[27:26]
 599	 * L3 framing		[25:24]
 600	 * IP ToS		[23:16]
 601	 * IP proto		[15:08]
 602	 * IP Fragm		[7]
 603	 * Non 1st frag		[6]
 604	 * IP Authen		[5]
 605	 * TTL range		[4:3]
 606	 * PPPoE session	[2]
 607	 * Reserved		[1]
 608	 * UDF_Valid[8]		[0]
 609	 */
 610	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 611		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 612	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 613
 614	/* Mask with the specific layout for IPv6 packets including
 615	 * UDF_Valid[8]
 616	 */
 617	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 618	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 619
 620	/* UDF_Valid[7:0]	[31:24]
 621	 * S-Tag		[23:8]
 622	 * C-Tag		[7:0]
 623	 */
 624	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 625
 626	/* Mask all but valid UDFs */
 627	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 628
 629	/* Slice the IPv6 source address and port */
 630	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
 631				slice_num, false);
 632	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
 633				SLICE_NUM_MASK, true);
 634
 635	/* Insert into TCAM now because we need to insert a second rule */
 636	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 637
 638	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 639	if (ret) {
 640		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 641		goto out_err;
 642	}
 643
 644	/* Insert into Action and policer RAMs now */
 645	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
 646				      queue_num, false);
 647	if (ret)
 648		goto out_err;
 649
 650	/* Now deal with the second slice to chain this rule */
 651	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 652	if (slice_num == UDF_NUM_SLICES) {
 653		ret = -EINVAL;
 654		goto out_err;
 655	}
 656
 657	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 658
 659	/* Apply the UDF layout for this filter */
 660	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 661
 662	/* Chained rule, source port match is coming from the rule we are
 663	 * chained from.
 664	 */
 665	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 666	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 667
 668	/*
 669	 * CHAIN ID		[31:24] chain to previous slice
 670	 * Reserved		[23:20]
 671	 * UDF_Valid[11:8]	[19:16]
 672	 * UDF_Valid[7:0]	[15:8]
 673	 * UDF_n_D11		[7:0]
 674	 */
 675	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 676		udf_lower_bits(num_udf) << 8;
 677	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 678
 679	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 680	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 681		udf_lower_bits(num_udf) << 8;
 682	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 683
 684	/* Don't care */
 685	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 686
 687	/* Mask all */
 688	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 689
 690	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
 691			       false);
 692	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
 693			       SLICE_NUM_MASK, true);
 694
 695	/* Insert into TCAM now */
 696	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 697
 698	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 699	if (ret) {
 700		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 701		goto out_err;
 702	}
 703
 704	/* Insert into Action and policer RAMs now, set chain ID to
 705	 * the one we are chained to
 706	 */
 707	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
 708				      queue_num, true);
 709	if (ret)
 710		goto out_err;
 711
 712	/* Turn on CFP for this rule now */
 713	reg = core_readl(priv, CORE_CFP_CTL_REG);
 714	reg |= BIT(port);
 715	core_writel(priv, reg, CORE_CFP_CTL_REG);
 716
 717	/* Flag the second half rule as being used now, return it as the
 718	 * location, and flag it as unique while dumping rules
 719	 */
 720	set_bit(rule_index[0], priv->cfp.used);
 721	set_bit(rule_index[1], priv->cfp.unique);
 722	fs->location = rule_index[1];
 723
 724	return ret;
 725
 
 
 726out_err:
 727	clear_bit(rule_index[1], priv->cfp.used);
 728	return ret;
 729}
 730
 731static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 732				struct ethtool_rx_flow_spec *fs)
 733{
 734	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 
 
 735	unsigned int queue_num, port_num;
 736	int ret = -EINVAL;
 737
 738	/* Check for unsupported extensions */
 739	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 740	     fs->m_ext.data[1]))
 741		return -EINVAL;
 742
 743	if (fs->location != RX_CLS_LOC_ANY &&
 744	    test_bit(fs->location, priv->cfp.used))
 745		return -EBUSY;
 746
 747	if (fs->location != RX_CLS_LOC_ANY &&
 748	    fs->location > bcm_sf2_cfp_rule_size(priv))
 749		return -EINVAL;
 
 
 750
 751	/* We do not support discarding packets, check that the
 752	 * destination port is enabled and that we are within the
 753	 * number of ports supported by the switch
 754	 */
 755	port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
 756
 757	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
 758	    !dsa_is_user_port(ds, port_num) ||
 
 759	    port_num >= priv->hw_params.num_ports)
 760		return -EINVAL;
 761	/*
 762	 * We have a small oddity where Port 6 just does not have a
 763	 * valid bit here (so we substract by one).
 764	 */
 765	queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
 766	if (port_num >= 7)
 767		port_num -= 1;
 768
 769	switch (fs->flow_type & ~FLOW_EXT) {
 770	case TCP_V4_FLOW:
 771	case UDP_V4_FLOW:
 772		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 773						queue_num, fs);
 774		break;
 775	case TCP_V6_FLOW:
 776	case UDP_V6_FLOW:
 777		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 778						queue_num, fs);
 779		break;
 780	default:
 
 781		break;
 782	}
 783
 784	return ret;
 785}
 786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 788				    u32 loc, u32 *next_loc)
 789{
 790	int ret;
 791	u32 reg;
 792
 793	/* Indicate which rule we want to read */
 794	bcm_sf2_cfp_rule_addr_set(priv, loc);
 795
 796	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 797	if (ret)
 798		return ret;
 799
 800	/* Check if this is possibly an IPv6 rule that would
 801	 * indicate we need to delete its companion rule
 802	 * as well
 803	 */
 804	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 805	if (next_loc)
 806		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 807
 808	/* Clear its valid bits */
 809	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 810	reg &= ~SLICE_VALID;
 811	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 812
 813	/* Write back this entry into the TCAM now */
 814	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 815	if (ret)
 816		return ret;
 817
 818	clear_bit(loc, priv->cfp.used);
 819	clear_bit(loc, priv->cfp.unique);
 820
 821	return 0;
 822}
 823
 824static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 825				u32 loc)
 826{
 827	u32 next_loc = 0;
 828	int ret;
 829
 830	/* Refuse deleting unused rules, and those that are not unique since
 831	 * that could leave IPv6 rules with one of the chained rule in the
 832	 * table.
 833	 */
 834	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 835		return -EINVAL;
 836
 837	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 838	if (ret)
 839		return ret;
 840
 841	/* If this was an IPv6 rule, delete is companion rule too */
 842	if (next_loc)
 843		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 844
 845	return ret;
 846}
 847
 848static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 849{
 850	unsigned int i;
 851
 852	for (i = 0; i < sizeof(flow->m_u); i++)
 853		flow->m_u.hdata[i] ^= 0xff;
 854
 855	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
 856	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
 857	flow->m_ext.data[0] ^= cpu_to_be32(~0);
 858	flow->m_ext.data[1] ^= cpu_to_be32(~0);
 859}
 860
 861static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
 862				    struct ethtool_tcpip4_spec *v4_spec,
 863				    bool mask)
 864{
 865	u32 reg, offset, ipv4;
 866	u16 src_dst_port;
 867
 868	if (mask)
 869		offset = CORE_CFP_MASK_PORT(3);
 870	else
 871		offset = CORE_CFP_DATA_PORT(3);
 872
 873	reg = core_readl(priv, offset);
 874	/* src port [15:8] */
 875	src_dst_port = reg << 8;
 876
 877	if (mask)
 878		offset = CORE_CFP_MASK_PORT(2);
 879	else
 880		offset = CORE_CFP_DATA_PORT(2);
 881
 882	reg = core_readl(priv, offset);
 883	/* src port [7:0] */
 884	src_dst_port |= (reg >> 24);
 885
 886	v4_spec->pdst = cpu_to_be16(src_dst_port);
 887	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
 888
 889	/* IPv4 dst [15:8] */
 890	ipv4 = (reg & 0xff) << 8;
 891
 892	if (mask)
 893		offset = CORE_CFP_MASK_PORT(1);
 894	else
 895		offset = CORE_CFP_DATA_PORT(1);
 896
 897	reg = core_readl(priv, offset);
 898	/* IPv4 dst [31:16] */
 899	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 900	/* IPv4 dst [7:0] */
 901	ipv4 |= (reg >> 24) & 0xff;
 902	v4_spec->ip4dst = cpu_to_be32(ipv4);
 903
 904	/* IPv4 src [15:8] */
 905	ipv4 = (reg & 0xff) << 8;
 906
 907	if (mask)
 908		offset = CORE_CFP_MASK_PORT(0);
 909	else
 910		offset = CORE_CFP_DATA_PORT(0);
 911	reg = core_readl(priv, offset);
 912
 913	/* Once the TCAM is programmed, the mask reflects the slice number
 914	 * being matched, don't bother checking it when reading back the
 915	 * mask spec
 916	 */
 917	if (!mask && !(reg & SLICE_VALID))
 918		return -EINVAL;
 919
 920	/* IPv4 src [7:0] */
 921	ipv4 |= (reg >> 24) & 0xff;
 922	/* IPv4 src [31:16] */
 923	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 924	v4_spec->ip4src = cpu_to_be32(ipv4);
 925
 926	return 0;
 927}
 928
 929static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
 930				     struct ethtool_rx_flow_spec *fs)
 931{
 932	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
 933	u32 reg;
 934	int ret;
 935
 936	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 937
 938	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 939	case IPPROTO_TCP:
 940		fs->flow_type = TCP_V4_FLOW;
 941		v4_spec = &fs->h_u.tcp_ip4_spec;
 942		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 943		break;
 944	case IPPROTO_UDP:
 945		fs->flow_type = UDP_V4_FLOW;
 946		v4_spec = &fs->h_u.udp_ip4_spec;
 947		v4_m_spec = &fs->m_u.udp_ip4_spec;
 948		break;
 949	default:
 950		return -EINVAL;
 951	}
 952
 953	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
 954	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
 955
 956	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
 957	if (ret)
 958		return ret;
 959
 960	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
 961}
 962
 963static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
 964				     __be32 *ip6_addr, __be16 *port,
 965				     bool mask)
 966{
 967	u32 reg, tmp, offset;
 968
 969	/* C-Tag		[31:24]
 970	 * UDF_n_B8		[23:8] (port)
 971	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
 972	 */
 973	if (mask)
 974		offset = CORE_CFP_MASK_PORT(4);
 975	else
 976		offset = CORE_CFP_DATA_PORT(4);
 977	reg = core_readl(priv, offset);
 978	*port = cpu_to_be32(reg) >> 8;
 979	tmp = (u32)(reg & 0xff) << 8;
 980
 981	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
 982	 * UDF_n_B6		[23:8] (addr[31:16])
 983	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 984	 */
 985	if (mask)
 986		offset = CORE_CFP_MASK_PORT(3);
 987	else
 988		offset = CORE_CFP_DATA_PORT(3);
 989	reg = core_readl(priv, offset);
 990	tmp |= (reg >> 24) & 0xff;
 991	tmp |= (u32)((reg >> 8) << 16);
 992	ip6_addr[3] = cpu_to_be32(tmp);
 993	tmp = (u32)(reg & 0xff) << 8;
 994
 995	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 996	 * UDF_n_B4		[23:8] (addr[63:48])
 997	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 998	 */
 999	if (mask)
1000		offset = CORE_CFP_MASK_PORT(2);
1001	else
1002		offset = CORE_CFP_DATA_PORT(2);
1003	reg = core_readl(priv, offset);
1004	tmp |= (reg >> 24) & 0xff;
1005	tmp |= (u32)((reg >> 8) << 16);
1006	ip6_addr[2] = cpu_to_be32(tmp);
1007	tmp = (u32)(reg & 0xff) << 8;
1008
1009	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
1010	 * UDF_n_B2		[23:8] (addr[95:80])
1011	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
1012	 */
1013	if (mask)
1014		offset = CORE_CFP_MASK_PORT(1);
1015	else
1016		offset = CORE_CFP_DATA_PORT(1);
1017	reg = core_readl(priv, offset);
1018	tmp |= (reg >> 24) & 0xff;
1019	tmp |= (u32)((reg >> 8) << 16);
1020	ip6_addr[1] = cpu_to_be32(tmp);
1021	tmp = (u32)(reg & 0xff) << 8;
1022
1023	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
1024	 * UDF_n_B0		[23:8] (addr[127:112])
1025	 * Reserved		[7:4]
1026	 * Slice ID		[3:2]
1027	 * Slice valid		[1:0]
1028	 */
1029	if (mask)
1030		offset = CORE_CFP_MASK_PORT(0);
1031	else
1032		offset = CORE_CFP_DATA_PORT(0);
1033	reg = core_readl(priv, offset);
1034	tmp |= (reg >> 24) & 0xff;
1035	tmp |= (u32)((reg >> 8) << 16);
1036	ip6_addr[0] = cpu_to_be32(tmp);
1037
1038	if (!mask && !(reg & SLICE_VALID))
1039		return -EINVAL;
1040
1041	return 0;
1042}
1043
1044static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1045				     struct ethtool_rx_flow_spec *fs,
1046				     u32 next_loc)
1047{
1048	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1049	u32 reg;
1050	int ret;
1051
1052	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1053	 * assuming tcp_ip6_spec here being an union.
1054	 */
1055	v6_spec = &fs->h_u.tcp_ip6_spec;
1056	v6_m_spec = &fs->m_u.tcp_ip6_spec;
1057
1058	/* Read the second half first */
1059	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1060				       false);
1061	if (ret)
1062		return ret;
1063
1064	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1065				       &v6_m_spec->pdst, true);
1066	if (ret)
1067		return ret;
1068
1069	/* Read last to avoid next entry clobbering the results during search
1070	 * operations. We would not have the port enabled for this rule, so
1071	 * don't bother checking it.
1072	 */
1073	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1074
1075	/* The slice number is valid, so read the rule we are chained from now
1076	 * which is our first half.
1077	 */
1078	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1079	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1080	if (ret)
1081		return ret;
1082
1083	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1084
1085	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1086	case IPPROTO_TCP:
1087		fs->flow_type = TCP_V6_FLOW;
1088		break;
1089	case IPPROTO_UDP:
1090		fs->flow_type = UDP_V6_FLOW;
1091		break;
1092	default:
1093		return -EINVAL;
1094	}
1095
1096	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1097				       false);
1098	if (ret)
1099		return ret;
1100
1101	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1102					&v6_m_spec->psrc, true);
 
 
1103}
1104
1105static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1106				struct ethtool_rxnfc *nfc)
1107{
1108	u32 reg, ipv4_or_chain_id;
1109	unsigned int queue_num;
1110	int ret;
1111
1112	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1113
1114	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1115	if (ret)
1116		return ret;
1117
1118	reg = core_readl(priv, CORE_ACT_POL_DATA0);
1119
1120	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1121	if (ret)
1122		return ret;
1123
1124	/* Extract the destination port */
1125	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1126				  DST_MAP_IB_MASK) - 1;
1127
1128	/* There is no Port 6, so we compensate for that here */
1129	if (nfc->fs.ring_cookie >= 6)
1130		nfc->fs.ring_cookie++;
1131	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1132
1133	/* Extract the destination queue */
1134	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1135	nfc->fs.ring_cookie += queue_num;
1136
1137	/* Extract the L3_FRAMING or CHAIN_ID */
1138	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1139
1140	/* With IPv6 rules this would contain a non-zero chain ID since
1141	 * we reserve entry 0 and it cannot be used. So if we read 0 here
1142	 * this means an IPv4 rule.
1143	 */
1144	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1145	if (ipv4_or_chain_id == 0)
1146		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1147	else
1148		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1149						ipv4_or_chain_id);
1150	if (ret)
1151		return ret;
1152
1153	/* Read last to avoid next entry clobbering the results during search
1154	 * operations
1155	 */
1156	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1157	if (!(reg & 1 << port))
1158		return -EINVAL;
1159
 
 
1160	bcm_sf2_invert_masks(&nfc->fs);
1161
1162	/* Put the TCAM size here */
1163	nfc->data = bcm_sf2_cfp_rule_size(priv);
1164
1165	return 0;
1166}
1167
1168/* We implement the search doing a TCAM search operation */
1169static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1170				    int port, struct ethtool_rxnfc *nfc,
1171				    u32 *rule_locs)
1172{
1173	unsigned int index = 1, rules_cnt = 0;
1174
1175	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1176		rule_locs[rules_cnt] = index;
1177		rules_cnt++;
1178	}
1179
1180	/* Put the TCAM size here */
1181	nfc->data = bcm_sf2_cfp_rule_size(priv);
1182	nfc->rule_cnt = rules_cnt;
1183
1184	return 0;
1185}
1186
1187int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1188		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1189{
 
1190	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1191	int ret = 0;
1192
1193	mutex_lock(&priv->cfp.lock);
1194
1195	switch (nfc->cmd) {
1196	case ETHTOOL_GRXCLSRLCNT:
1197		/* Subtract the default, unusable rule */
1198		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1199					      priv->num_cfp_rules) - 1;
1200		/* We support specifying rule locations */
1201		nfc->data |= RX_CLS_LOC_SPECIAL;
1202		break;
1203	case ETHTOOL_GRXCLSRULE:
1204		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1205		break;
1206	case ETHTOOL_GRXCLSRLALL:
1207		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1208		break;
1209	default:
1210		ret = -EOPNOTSUPP;
1211		break;
1212	}
1213
1214	mutex_unlock(&priv->cfp.lock);
1215
 
 
 
 
 
 
 
 
 
 
1216	return ret;
1217}
1218
1219int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1220		      struct ethtool_rxnfc *nfc)
1221{
 
1222	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1223	int ret = 0;
1224
1225	mutex_lock(&priv->cfp.lock);
1226
1227	switch (nfc->cmd) {
1228	case ETHTOOL_SRXCLSRLINS:
1229		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1230		break;
1231
1232	case ETHTOOL_SRXCLSRLDEL:
1233		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1234		break;
1235	default:
1236		ret = -EOPNOTSUPP;
1237		break;
1238	}
1239
1240	mutex_unlock(&priv->cfp.lock);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242	return ret;
1243}
1244
1245int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1246{
1247	unsigned int timeout = 1000;
1248	u32 reg;
1249
1250	reg = core_readl(priv, CORE_CFP_ACC);
1251	reg |= TCAM_RESET;
1252	core_writel(priv, reg, CORE_CFP_ACC);
1253
1254	do {
1255		reg = core_readl(priv, CORE_CFP_ACC);
1256		if (!(reg & TCAM_RESET))
1257			break;
1258
1259		cpu_relax();
1260	} while (timeout--);
1261
1262	if (!timeout)
1263		return -ETIMEDOUT;
1264
1265	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Broadcom Starfighter 2 DSA switch CFP support
   4 *
   5 * Copyright (C) 2016, Broadcom
 
 
 
 
 
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/ethtool.h>
  10#include <linux/if_ether.h>
  11#include <linux/in.h>
  12#include <linux/netdevice.h>
  13#include <net/dsa.h>
  14#include <linux/bitmap.h>
  15#include <net/flow_offload.h>
  16
  17#include "bcm_sf2.h"
  18#include "bcm_sf2_regs.h"
  19
  20struct cfp_rule {
  21	int port;
  22	struct ethtool_rx_flow_spec fs;
  23	struct list_head next;
  24};
  25
  26struct cfp_udf_slice_layout {
  27	u8 slices[UDFS_PER_SLICE];
  28	u32 mask_value;
  29	u32 base_offset;
  30};
  31
  32struct cfp_udf_layout {
  33	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  34};
  35
  36static const u8 zero_slice[UDFS_PER_SLICE] = { };
  37
  38/* UDF slices layout for a TCPv4/UDPv4 specification */
  39static const struct cfp_udf_layout udf_tcpip4_layout = {
  40	.udfs = {
  41		[1] = {
  42			.slices = {
  43				/* End of L2, byte offset 12, src IP[0:15] */
  44				CFG_UDF_EOL2 | 6,
  45				/* End of L2, byte offset 14, src IP[16:31] */
  46				CFG_UDF_EOL2 | 7,
  47				/* End of L2, byte offset 16, dst IP[0:15] */
  48				CFG_UDF_EOL2 | 8,
  49				/* End of L2, byte offset 18, dst IP[16:31] */
  50				CFG_UDF_EOL2 | 9,
  51				/* End of L3, byte offset 0, src port */
  52				CFG_UDF_EOL3 | 0,
  53				/* End of L3, byte offset 2, dst port */
  54				CFG_UDF_EOL3 | 1,
  55				0, 0, 0
  56			},
  57			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  58			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  59		},
  60	},
  61};
  62
  63/* UDF slices layout for a TCPv6/UDPv6 specification */
  64static const struct cfp_udf_layout udf_tcpip6_layout = {
  65	.udfs = {
  66		[0] = {
  67			.slices = {
  68				/* End of L2, byte offset 8, src IP[0:15] */
  69				CFG_UDF_EOL2 | 4,
  70				/* End of L2, byte offset 10, src IP[16:31] */
  71				CFG_UDF_EOL2 | 5,
  72				/* End of L2, byte offset 12, src IP[32:47] */
  73				CFG_UDF_EOL2 | 6,
  74				/* End of L2, byte offset 14, src IP[48:63] */
  75				CFG_UDF_EOL2 | 7,
  76				/* End of L2, byte offset 16, src IP[64:79] */
  77				CFG_UDF_EOL2 | 8,
  78				/* End of L2, byte offset 18, src IP[80:95] */
  79				CFG_UDF_EOL2 | 9,
  80				/* End of L2, byte offset 20, src IP[96:111] */
  81				CFG_UDF_EOL2 | 10,
  82				/* End of L2, byte offset 22, src IP[112:127] */
  83				CFG_UDF_EOL2 | 11,
  84				/* End of L3, byte offset 0, src port */
  85				CFG_UDF_EOL3 | 0,
  86			},
  87			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  88			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
  89		},
  90		[3] = {
  91			.slices = {
  92				/* End of L2, byte offset 24, dst IP[0:15] */
  93				CFG_UDF_EOL2 | 12,
  94				/* End of L2, byte offset 26, dst IP[16:31] */
  95				CFG_UDF_EOL2 | 13,
  96				/* End of L2, byte offset 28, dst IP[32:47] */
  97				CFG_UDF_EOL2 | 14,
  98				/* End of L2, byte offset 30, dst IP[48:63] */
  99				CFG_UDF_EOL2 | 15,
 100				/* End of L2, byte offset 32, dst IP[64:79] */
 101				CFG_UDF_EOL2 | 16,
 102				/* End of L2, byte offset 34, dst IP[80:95] */
 103				CFG_UDF_EOL2 | 17,
 104				/* End of L2, byte offset 36, dst IP[96:111] */
 105				CFG_UDF_EOL2 | 18,
 106				/* End of L2, byte offset 38, dst IP[112:127] */
 107				CFG_UDF_EOL2 | 19,
 108				/* End of L3, byte offset 2, dst port */
 109				CFG_UDF_EOL3 | 1,
 110			},
 111			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 112			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 113		},
 114	},
 115};
 116
 117static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 118{
 119	unsigned int i, count = 0;
 120
 121	for (i = 0; i < UDFS_PER_SLICE; i++) {
 122		if (layout[i] != 0)
 123			count++;
 124	}
 125
 126	return count;
 127}
 128
 129static inline u32 udf_upper_bits(unsigned int num_udf)
 130{
 131	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 132}
 133
 134static inline u32 udf_lower_bits(unsigned int num_udf)
 135{
 136	return (u8)GENMASK(num_udf - 1, 0);
 137}
 138
 139static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 140					     unsigned int start)
 141{
 142	const struct cfp_udf_slice_layout *slice_layout;
 143	unsigned int slice_idx;
 144
 145	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 146		slice_layout = &l->udfs[slice_idx];
 147		if (memcmp(slice_layout->slices, zero_slice,
 148			   sizeof(zero_slice)))
 149			break;
 150	}
 151
 152	return slice_idx;
 153}
 154
 155static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 156				const struct cfp_udf_layout *layout,
 157				unsigned int slice_num)
 158{
 159	u32 offset = layout->udfs[slice_num].base_offset;
 160	unsigned int i;
 161
 162	for (i = 0; i < UDFS_PER_SLICE; i++)
 163		core_writel(priv, layout->udfs[slice_num].slices[i],
 164			    offset + i * 4);
 165}
 166
 167static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 168{
 169	unsigned int timeout = 1000;
 170	u32 reg;
 171
 172	reg = core_readl(priv, CORE_CFP_ACC);
 173	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 174	reg |= OP_STR_DONE | op;
 175	core_writel(priv, reg, CORE_CFP_ACC);
 176
 177	do {
 178		reg = core_readl(priv, CORE_CFP_ACC);
 179		if (!(reg & OP_STR_DONE))
 180			break;
 181
 182		cpu_relax();
 183	} while (timeout--);
 184
 185	if (!timeout)
 186		return -ETIMEDOUT;
 187
 188	return 0;
 189}
 190
 191static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 192					     unsigned int addr)
 193{
 194	u32 reg;
 195
 196	WARN_ON(addr >= priv->num_cfp_rules);
 197
 198	reg = core_readl(priv, CORE_CFP_ACC);
 199	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 200	reg |= addr << XCESS_ADDR_SHIFT;
 201	core_writel(priv, reg, CORE_CFP_ACC);
 202}
 203
 204static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 205{
 206	/* Entry #0 is reserved */
 207	return priv->num_cfp_rules - 1;
 208}
 209
 210static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 211				   unsigned int rule_index,
 212				   int src_port,
 213				   unsigned int port_num,
 214				   unsigned int queue_num,
 215				   bool fwd_map_change)
 216{
 217	int ret;
 218	u32 reg;
 219
 220	/* Replace ARL derived destination with DST_MAP derived, define
 221	 * which port and queue this should be forwarded to.
 222	 */
 223	if (fwd_map_change)
 224		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 225		      BIT(port_num + DST_MAP_IB_SHIFT) |
 226		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 227	else
 228		reg = 0;
 229
 230	/* Enable looping back to the original port */
 231	if (src_port == port_num)
 232		reg |= LOOP_BK_EN;
 233
 234	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 235
 236	/* Set classification ID that needs to be put in Broadcom tag */
 237	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 238
 239	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 240
 241	/* Configure policer RAM now */
 242	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 243	if (ret) {
 244		pr_err("Policer entry at %d failed\n", rule_index);
 245		return ret;
 246	}
 247
 248	/* Disable the policer */
 249	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 250
 251	/* Now the rate meter */
 252	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 253	if (ret) {
 254		pr_err("Meter entry at %d failed\n", rule_index);
 255		return ret;
 256	}
 257
 258	return 0;
 259}
 260
 261static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 262				   struct flow_dissector_key_ipv4_addrs *addrs,
 263				   struct flow_dissector_key_ports *ports,
 264				   unsigned int slice_num,
 265				   bool mask)
 266{
 267	u32 reg, offset;
 268
 269	/* C-Tag		[31:24]
 270	 * UDF_n_A8		[23:8]
 271	 * UDF_n_A7		[7:0]
 272	 */
 273	reg = 0;
 274	if (mask)
 275		offset = CORE_CFP_MASK_PORT(4);
 276	else
 277		offset = CORE_CFP_DATA_PORT(4);
 278	core_writel(priv, reg, offset);
 279
 280	/* UDF_n_A7		[31:24]
 281	 * UDF_n_A6		[23:8]
 282	 * UDF_n_A5		[7:0]
 283	 */
 284	reg = be16_to_cpu(ports->dst) >> 8;
 285	if (mask)
 286		offset = CORE_CFP_MASK_PORT(3);
 287	else
 288		offset = CORE_CFP_DATA_PORT(3);
 289	core_writel(priv, reg, offset);
 290
 291	/* UDF_n_A5		[31:24]
 292	 * UDF_n_A4		[23:8]
 293	 * UDF_n_A3		[7:0]
 294	 */
 295	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 296	      (u32)be16_to_cpu(ports->src) << 8 |
 297	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 298	if (mask)
 299		offset = CORE_CFP_MASK_PORT(2);
 300	else
 301		offset = CORE_CFP_DATA_PORT(2);
 302	core_writel(priv, reg, offset);
 303
 304	/* UDF_n_A3		[31:24]
 305	 * UDF_n_A2		[23:8]
 306	 * UDF_n_A1		[7:0]
 307	 */
 308	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 309	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 310	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 311	if (mask)
 312		offset = CORE_CFP_MASK_PORT(1);
 313	else
 314		offset = CORE_CFP_DATA_PORT(1);
 315	core_writel(priv, reg, offset);
 316
 317	/* UDF_n_A1		[31:24]
 318	 * UDF_n_A0		[23:8]
 319	 * Reserved		[7:4]
 320	 * Slice ID		[3:2]
 321	 * Slice valid		[1:0]
 322	 */
 323	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 324	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 325	      SLICE_NUM(slice_num) | SLICE_VALID;
 326	if (mask)
 327		offset = CORE_CFP_MASK_PORT(0);
 328	else
 329		offset = CORE_CFP_DATA_PORT(0);
 330	core_writel(priv, reg, offset);
 331}
 332
 333static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 334				     unsigned int port_num,
 335				     unsigned int queue_num,
 336				     struct ethtool_rx_flow_spec *fs)
 337{
 338	struct ethtool_rx_flow_spec_input input = {};
 339	const struct cfp_udf_layout *layout;
 340	unsigned int slice_num, rule_index;
 341	struct ethtool_rx_flow_rule *flow;
 342	struct flow_match_ipv4_addrs ipv4;
 343	struct flow_match_ports ports;
 344	struct flow_match_ip ip;
 345	u8 ip_proto, ip_frag;
 346	u8 num_udf;
 347	u32 reg;
 348	int ret;
 349
 350	switch (fs->flow_type & ~FLOW_EXT) {
 351	case TCP_V4_FLOW:
 352		ip_proto = IPPROTO_TCP;
 
 
 353		break;
 354	case UDP_V4_FLOW:
 355		ip_proto = IPPROTO_UDP;
 
 
 356		break;
 357	default:
 358		return -EINVAL;
 359	}
 360
 361	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 362
 363	/* Locate the first rule available */
 364	if (fs->location == RX_CLS_LOC_ANY)
 365		rule_index = find_first_zero_bit(priv->cfp.used,
 366						 priv->num_cfp_rules);
 367	else
 368		rule_index = fs->location;
 369
 370	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 371		return -ENOSPC;
 372
 373	input.fs = fs;
 374	flow = ethtool_rx_flow_rule_create(&input);
 375	if (IS_ERR(flow))
 376		return PTR_ERR(flow);
 377
 378	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 379	flow_rule_match_ports(flow->rule, &ports);
 380	flow_rule_match_ip(flow->rule, &ip);
 381
 382	layout = &udf_tcpip4_layout;
 383	/* We only use one UDF slice for now */
 384	slice_num = bcm_sf2_get_slice_number(layout, 0);
 385	if (slice_num == UDF_NUM_SLICES) {
 386		ret = -EINVAL;
 387		goto out_err_flow_rule;
 388	}
 389
 390	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 391
 392	/* Apply the UDF layout for this filter */
 393	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 394
 395	/* Apply to all packets received through this port */
 396	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 397
 398	/* Source port map match */
 399	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 400
 401	/* S-Tag status		[31:30]
 402	 * C-Tag status		[29:28]
 403	 * L2 framing		[27:26]
 404	 * L3 framing		[25:24]
 405	 * IP ToS		[23:16]
 406	 * IP proto		[15:08]
 407	 * IP Fragm		[7]
 408	 * Non 1st frag		[6]
 409	 * IP Authen		[5]
 410	 * TTL range		[4:3]
 411	 * PPPoE session	[2]
 412	 * Reserved		[1]
 413	 * UDF_Valid[8]		[0]
 414	 */
 415	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 416		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 417		    udf_upper_bits(num_udf),
 418		    CORE_CFP_DATA_PORT(6));
 419
 420	/* Mask with the specific layout for IPv4 packets */
 421	core_writel(priv, layout->udfs[slice_num].mask_value |
 422		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 423
 424	/* UDF_Valid[7:0]	[31:24]
 425	 * S-Tag		[23:8]
 426	 * C-Tag		[7:0]
 427	 */
 428	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 429
 430	/* Mask all but valid UDFs */
 431	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 432
 433	/* Program the match and the mask */
 434	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
 435	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
 436
 437	/* Insert into TCAM now */
 438	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 439
 440	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 441	if (ret) {
 442		pr_err("TCAM entry at addr %d failed\n", rule_index);
 443		goto out_err_flow_rule;
 444	}
 445
 446	/* Insert into Action and policer RAMs now */
 447	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 448				      queue_num, true);
 449	if (ret)
 450		goto out_err_flow_rule;
 451
 452	/* Turn on CFP for this rule now */
 453	reg = core_readl(priv, CORE_CFP_CTL_REG);
 454	reg |= BIT(port);
 455	core_writel(priv, reg, CORE_CFP_CTL_REG);
 456
 457	/* Flag the rule as being used and return it */
 458	set_bit(rule_index, priv->cfp.used);
 459	set_bit(rule_index, priv->cfp.unique);
 460	fs->location = rule_index;
 461
 462	return 0;
 463
 464out_err_flow_rule:
 465	ethtool_rx_flow_rule_destroy(flow);
 466	return ret;
 467}
 468
 469static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 470				   const __be32 *ip6_addr, const __be16 port,
 471				   unsigned int slice_num,
 472				   bool mask)
 473{
 474	u32 reg, tmp, val, offset;
 475
 476	/* C-Tag		[31:24]
 477	 * UDF_n_B8		[23:8]	(port)
 478	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 479	 */
 480	reg = be32_to_cpu(ip6_addr[3]);
 481	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 482	if (mask)
 483		offset = CORE_CFP_MASK_PORT(4);
 484	else
 485		offset = CORE_CFP_DATA_PORT(4);
 486	core_writel(priv, val, offset);
 487
 488	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 489	 * UDF_n_B6		[23:8] (addr[31:16])
 490	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 491	 */
 492	tmp = be32_to_cpu(ip6_addr[2]);
 493	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 494	      ((tmp >> 8) & 0xff);
 495	if (mask)
 496		offset = CORE_CFP_MASK_PORT(3);
 497	else
 498		offset = CORE_CFP_DATA_PORT(3);
 499	core_writel(priv, val, offset);
 500
 501	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 502	 * UDF_n_B4		[23:8] (addr[63:48])
 503	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 504	 */
 505	reg = be32_to_cpu(ip6_addr[1]);
 506	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 507	      ((reg >> 8) & 0xff);
 508	if (mask)
 509		offset = CORE_CFP_MASK_PORT(2);
 510	else
 511		offset = CORE_CFP_DATA_PORT(2);
 512	core_writel(priv, val, offset);
 513
 514	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 515	 * UDF_n_B2		[23:8] (addr[95:80])
 516	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 517	 */
 518	tmp = be32_to_cpu(ip6_addr[0]);
 519	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 520	      ((tmp >> 8) & 0xff);
 521	if (mask)
 522		offset = CORE_CFP_MASK_PORT(1);
 523	else
 524		offset = CORE_CFP_DATA_PORT(1);
 525	core_writel(priv, val, offset);
 526
 527	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 528	 * UDF_n_B0		[23:8] (addr[127:112])
 529	 * Reserved		[7:4]
 530	 * Slice ID		[3:2]
 531	 * Slice valid		[1:0]
 532	 */
 533	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 534	       SLICE_NUM(slice_num) | SLICE_VALID;
 535	if (mask)
 536		offset = CORE_CFP_MASK_PORT(0);
 537	else
 538		offset = CORE_CFP_DATA_PORT(0);
 539	core_writel(priv, reg, offset);
 540}
 541
 542static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 543					      int port, u32 location)
 544{
 545	struct cfp_rule *rule = NULL;
 546
 547	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 548		if (rule->port == port && rule->fs.location == location)
 549			break;
 550	}
 551
 552	return rule;
 553}
 554
 555static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 556				struct ethtool_rx_flow_spec *fs)
 557{
 558	struct cfp_rule *rule = NULL;
 559	size_t fs_size = 0;
 560	int ret = 1;
 561
 562	if (list_empty(&priv->cfp.rules_list))
 563		return ret;
 564
 565	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 566		ret = 1;
 567		if (rule->port != port)
 568			continue;
 569
 570		if (rule->fs.flow_type != fs->flow_type ||
 571		    rule->fs.ring_cookie != fs->ring_cookie ||
 572		    rule->fs.m_ext.data[0] != fs->m_ext.data[0])
 573			continue;
 574
 575		switch (fs->flow_type & ~FLOW_EXT) {
 576		case TCP_V6_FLOW:
 577		case UDP_V6_FLOW:
 578			fs_size = sizeof(struct ethtool_tcpip6_spec);
 579			break;
 580		case TCP_V4_FLOW:
 581		case UDP_V4_FLOW:
 582			fs_size = sizeof(struct ethtool_tcpip4_spec);
 583			break;
 584		default:
 585			continue;
 586		}
 587
 588		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 589		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 590		if (ret == 0)
 591			break;
 592	}
 593
 594	return ret;
 595}
 596
 597static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 598				     unsigned int port_num,
 599				     unsigned int queue_num,
 600				     struct ethtool_rx_flow_spec *fs)
 601{
 602	struct ethtool_rx_flow_spec_input input = {};
 603	unsigned int slice_num, rule_index[2];
 604	const struct cfp_udf_layout *layout;
 605	struct ethtool_rx_flow_rule *flow;
 606	struct flow_match_ipv6_addrs ipv6;
 607	struct flow_match_ports ports;
 608	u8 ip_proto, ip_frag;
 609	int ret = 0;
 610	u8 num_udf;
 611	u32 reg;
 612
 613	switch (fs->flow_type & ~FLOW_EXT) {
 614	case TCP_V6_FLOW:
 615		ip_proto = IPPROTO_TCP;
 
 
 616		break;
 617	case UDP_V6_FLOW:
 618		ip_proto = IPPROTO_UDP;
 
 
 619		break;
 620	default:
 621		return -EINVAL;
 622	}
 623
 624	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 625
 626	layout = &udf_tcpip6_layout;
 627	slice_num = bcm_sf2_get_slice_number(layout, 0);
 628	if (slice_num == UDF_NUM_SLICES)
 629		return -EINVAL;
 630
 631	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 632
 633	/* Negotiate two indexes, one for the second half which we are chained
 634	 * from, which is what we will return to user-space, and a second one
 635	 * which is used to store its first half. That first half does not
 636	 * allow any choice of placement, so it just needs to find the next
 637	 * available bit. We return the second half as fs->location because
 638	 * that helps with the rule lookup later on since the second half is
 639	 * chained from its first half, we can easily identify IPv6 CFP rules
 640	 * by looking whether they carry a CHAIN_ID.
 641	 *
 642	 * We also want the second half to have a lower rule_index than its
 643	 * first half because the HW search is by incrementing addresses.
 644	 */
 645	if (fs->location == RX_CLS_LOC_ANY)
 646		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 647						    priv->num_cfp_rules);
 648	else
 649		rule_index[1] = fs->location;
 650	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 651		return -ENOSPC;
 652
 653	/* Flag it as used (cleared on error path) such that we can immediately
 654	 * obtain a second one to chain from.
 655	 */
 656	set_bit(rule_index[1], priv->cfp.used);
 657
 658	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 659					    priv->num_cfp_rules);
 660	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 661		ret = -ENOSPC;
 662		goto out_err;
 663	}
 664
 665	input.fs = fs;
 666	flow = ethtool_rx_flow_rule_create(&input);
 667	if (IS_ERR(flow)) {
 668		ret = PTR_ERR(flow);
 669		goto out_err;
 670	}
 671	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 672	flow_rule_match_ports(flow->rule, &ports);
 673
 674	/* Apply the UDF layout for this filter */
 675	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 676
 677	/* Apply to all packets received through this port */
 678	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 679
 680	/* Source port map match */
 681	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 682
 683	/* S-Tag status		[31:30]
 684	 * C-Tag status		[29:28]
 685	 * L2 framing		[27:26]
 686	 * L3 framing		[25:24]
 687	 * IP ToS		[23:16]
 688	 * IP proto		[15:08]
 689	 * IP Fragm		[7]
 690	 * Non 1st frag		[6]
 691	 * IP Authen		[5]
 692	 * TTL range		[4:3]
 693	 * PPPoE session	[2]
 694	 * Reserved		[1]
 695	 * UDF_Valid[8]		[0]
 696	 */
 697	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 698		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 699	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 700
 701	/* Mask with the specific layout for IPv6 packets including
 702	 * UDF_Valid[8]
 703	 */
 704	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 705	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 706
 707	/* UDF_Valid[7:0]	[31:24]
 708	 * S-Tag		[23:8]
 709	 * C-Tag		[7:0]
 710	 */
 711	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 712
 713	/* Mask all but valid UDFs */
 714	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 715
 716	/* Slice the IPv6 source address and port */
 717	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 718			       ports.key->src, slice_num, false);
 719	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 720			       ports.mask->src, SLICE_NUM_MASK, true);
 721
 722	/* Insert into TCAM now because we need to insert a second rule */
 723	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 724
 725	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 726	if (ret) {
 727		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 728		goto out_err_flow_rule;
 729	}
 730
 731	/* Insert into Action and policer RAMs now */
 732	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 733				      queue_num, false);
 734	if (ret)
 735		goto out_err_flow_rule;
 736
 737	/* Now deal with the second slice to chain this rule */
 738	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 739	if (slice_num == UDF_NUM_SLICES) {
 740		ret = -EINVAL;
 741		goto out_err_flow_rule;
 742	}
 743
 744	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 745
 746	/* Apply the UDF layout for this filter */
 747	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 748
 749	/* Chained rule, source port match is coming from the rule we are
 750	 * chained from.
 751	 */
 752	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 753	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 754
 755	/*
 756	 * CHAIN ID		[31:24] chain to previous slice
 757	 * Reserved		[23:20]
 758	 * UDF_Valid[11:8]	[19:16]
 759	 * UDF_Valid[7:0]	[15:8]
 760	 * UDF_n_D11		[7:0]
 761	 */
 762	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 763		udf_lower_bits(num_udf) << 8;
 764	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 765
 766	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 767	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 768		udf_lower_bits(num_udf) << 8;
 769	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 770
 771	/* Don't care */
 772	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 773
 774	/* Mask all */
 775	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 776
 777	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 778			       ports.key->dst, slice_num, false);
 779	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 780			       ports.key->dst, SLICE_NUM_MASK, true);
 781
 782	/* Insert into TCAM now */
 783	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 784
 785	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 786	if (ret) {
 787		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 788		goto out_err_flow_rule;
 789	}
 790
 791	/* Insert into Action and policer RAMs now, set chain ID to
 792	 * the one we are chained to
 793	 */
 794	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 795				      queue_num, true);
 796	if (ret)
 797		goto out_err_flow_rule;
 798
 799	/* Turn on CFP for this rule now */
 800	reg = core_readl(priv, CORE_CFP_CTL_REG);
 801	reg |= BIT(port);
 802	core_writel(priv, reg, CORE_CFP_CTL_REG);
 803
 804	/* Flag the second half rule as being used now, return it as the
 805	 * location, and flag it as unique while dumping rules
 806	 */
 807	set_bit(rule_index[0], priv->cfp.used);
 808	set_bit(rule_index[1], priv->cfp.unique);
 809	fs->location = rule_index[1];
 810
 811	return ret;
 812
 813out_err_flow_rule:
 814	ethtool_rx_flow_rule_destroy(flow);
 815out_err:
 816	clear_bit(rule_index[1], priv->cfp.used);
 817	return ret;
 818}
 819
 820static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 821				   struct ethtool_rx_flow_spec *fs)
 822{
 823	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 824	s8 cpu_port = ds->ports[port].cpu_dp->index;
 825	__u64 ring_cookie = fs->ring_cookie;
 826	unsigned int queue_num, port_num;
 827	int ret;
 
 
 
 
 
 
 
 
 
 828
 829	/* This rule is a Wake-on-LAN filter and we must specifically
 830	 * target the CPU port in order for it to be working.
 831	 */
 832	if (ring_cookie == RX_CLS_FLOW_WAKE)
 833		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 834
 835	/* We do not support discarding packets, check that the
 836	 * destination port is enabled and that we are within the
 837	 * number of ports supported by the switch
 838	 */
 839	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 840
 841	if (ring_cookie == RX_CLS_FLOW_DISC ||
 842	    !(dsa_is_user_port(ds, port_num) ||
 843	      dsa_is_cpu_port(ds, port_num)) ||
 844	    port_num >= priv->hw_params.num_ports)
 845		return -EINVAL;
 846	/*
 847	 * We have a small oddity where Port 6 just does not have a
 848	 * valid bit here (so we substract by one).
 849	 */
 850	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 851	if (port_num >= 7)
 852		port_num -= 1;
 853
 854	switch (fs->flow_type & ~FLOW_EXT) {
 855	case TCP_V4_FLOW:
 856	case UDP_V4_FLOW:
 857		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 858						queue_num, fs);
 859		break;
 860	case TCP_V6_FLOW:
 861	case UDP_V6_FLOW:
 862		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 863						queue_num, fs);
 864		break;
 865	default:
 866		ret = -EINVAL;
 867		break;
 868	}
 869
 870	return ret;
 871}
 872
 873static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 874				struct ethtool_rx_flow_spec *fs)
 875{
 876	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 877	struct cfp_rule *rule = NULL;
 878	int ret = -EINVAL;
 879
 880	/* Check for unsupported extensions */
 881	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 882	     fs->m_ext.data[1]))
 883		return -EINVAL;
 884
 885	if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
 886		return -EINVAL;
 887
 888	if (fs->location != RX_CLS_LOC_ANY &&
 889	    test_bit(fs->location, priv->cfp.used))
 890		return -EBUSY;
 891
 892	if (fs->location != RX_CLS_LOC_ANY &&
 893	    fs->location > bcm_sf2_cfp_rule_size(priv))
 894		return -EINVAL;
 895
 896	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 897	if (ret == 0)
 898		return -EEXIST;
 899
 900	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 901	if (!rule)
 902		return -ENOMEM;
 903
 904	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 905	if (ret) {
 906		kfree(rule);
 907		return ret;
 908	}
 909
 910	rule->port = port;
 911	memcpy(&rule->fs, fs, sizeof(*fs));
 912	list_add_tail(&rule->next, &priv->cfp.rules_list);
 913
 914	return ret;
 915}
 916
 917static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 918				    u32 loc, u32 *next_loc)
 919{
 920	int ret;
 921	u32 reg;
 922
 923	/* Indicate which rule we want to read */
 924	bcm_sf2_cfp_rule_addr_set(priv, loc);
 925
 926	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 927	if (ret)
 928		return ret;
 929
 930	/* Check if this is possibly an IPv6 rule that would
 931	 * indicate we need to delete its companion rule
 932	 * as well
 933	 */
 934	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 935	if (next_loc)
 936		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 937
 938	/* Clear its valid bits */
 939	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 940	reg &= ~SLICE_VALID;
 941	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 942
 943	/* Write back this entry into the TCAM now */
 944	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 945	if (ret)
 946		return ret;
 947
 948	clear_bit(loc, priv->cfp.used);
 949	clear_bit(loc, priv->cfp.unique);
 950
 951	return 0;
 952}
 953
 954static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
 955				   u32 loc)
 956{
 957	u32 next_loc = 0;
 958	int ret;
 959
 
 
 
 
 
 
 
 960	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 961	if (ret)
 962		return ret;
 963
 964	/* If this was an IPv6 rule, delete is companion rule too */
 965	if (next_loc)
 966		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 967
 968	return ret;
 969}
 970
 971static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
 972{
 973	struct cfp_rule *rule;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	int ret;
 975
 976	if (loc >= CFP_NUM_RULES)
 
 
 
 
 
 
 
 
 
 
 
 
 
 977		return -EINVAL;
 
 
 
 
 
 
 
 
 978
 979	/* Refuse deleting unused rules, and those that are not unique since
 980	 * that could leave IPv6 rules with one of the chained rule in the
 981	 * table.
 
 
 
 
 
 
 
 
 
 982	 */
 983	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 984		return -EINVAL;
 
 
 
 
 
 985
 986	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
 987	if (!rule)
 988		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 989
 990	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	list_del(&rule->next);
 993	kfree(rule);
 
 
 
 
 
 
 
 
 
 
 
 994
 995	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996}
 997
 998static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 
 
 999{
1000	unsigned int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	for (i = 0; i < sizeof(flow->m_u); i++)
1003		flow->m_u.hdata[i] ^= 0xff;
 
 
1004
1005	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008	flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009}
1010
1011static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012				struct ethtool_rxnfc *nfc)
1013{
1014	struct cfp_rule *rule;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017	if (!rule)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018		return -EINVAL;
1019
1020	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021
1022	bcm_sf2_invert_masks(&nfc->fs);
1023
1024	/* Put the TCAM size here */
1025	nfc->data = bcm_sf2_cfp_rule_size(priv);
1026
1027	return 0;
1028}
1029
1030/* We implement the search doing a TCAM search operation */
1031static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032				    int port, struct ethtool_rxnfc *nfc,
1033				    u32 *rule_locs)
1034{
1035	unsigned int index = 1, rules_cnt = 0;
1036
1037	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038		rule_locs[rules_cnt] = index;
1039		rules_cnt++;
1040	}
1041
1042	/* Put the TCAM size here */
1043	nfc->data = bcm_sf2_cfp_rule_size(priv);
1044	nfc->rule_cnt = rules_cnt;
1045
1046	return 0;
1047}
1048
1049int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051{
1052	struct net_device *p = ds->ports[port].cpu_dp->master;
1053	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054	int ret = 0;
1055
1056	mutex_lock(&priv->cfp.lock);
1057
1058	switch (nfc->cmd) {
1059	case ETHTOOL_GRXCLSRLCNT:
1060		/* Subtract the default, unusable rule */
1061		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062					      priv->num_cfp_rules) - 1;
1063		/* We support specifying rule locations */
1064		nfc->data |= RX_CLS_LOC_SPECIAL;
1065		break;
1066	case ETHTOOL_GRXCLSRULE:
1067		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068		break;
1069	case ETHTOOL_GRXCLSRLALL:
1070		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071		break;
1072	default:
1073		ret = -EOPNOTSUPP;
1074		break;
1075	}
1076
1077	mutex_unlock(&priv->cfp.lock);
1078
1079	if (ret)
1080		return ret;
1081
1082	/* Pass up the commands to the attached master network device */
1083	if (p->ethtool_ops->get_rxnfc) {
1084		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085		if (ret == -EOPNOTSUPP)
1086			ret = 0;
1087	}
1088
1089	return ret;
1090}
1091
1092int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093		      struct ethtool_rxnfc *nfc)
1094{
1095	struct net_device *p = ds->ports[port].cpu_dp->master;
1096	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097	int ret = 0;
1098
1099	mutex_lock(&priv->cfp.lock);
1100
1101	switch (nfc->cmd) {
1102	case ETHTOOL_SRXCLSRLINS:
1103		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104		break;
1105
1106	case ETHTOOL_SRXCLSRLDEL:
1107		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108		break;
1109	default:
1110		ret = -EOPNOTSUPP;
1111		break;
1112	}
1113
1114	mutex_unlock(&priv->cfp.lock);
1115
1116	if (ret)
1117		return ret;
1118
1119	/* Pass up the commands to the attached master network device.
1120	 * This can fail, so rollback the operation if we need to.
1121	 */
1122	if (p->ethtool_ops->set_rxnfc) {
1123		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124		if (ret && ret != -EOPNOTSUPP) {
1125			mutex_lock(&priv->cfp.lock);
1126			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127			mutex_unlock(&priv->cfp.lock);
1128		} else {
1129			ret = 0;
1130		}
1131	}
1132
1133	return ret;
1134}
1135
1136int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137{
1138	unsigned int timeout = 1000;
1139	u32 reg;
1140
1141	reg = core_readl(priv, CORE_CFP_ACC);
1142	reg |= TCAM_RESET;
1143	core_writel(priv, reg, CORE_CFP_ACC);
1144
1145	do {
1146		reg = core_readl(priv, CORE_CFP_ACC);
1147		if (!(reg & TCAM_RESET))
1148			break;
1149
1150		cpu_relax();
1151	} while (timeout--);
1152
1153	if (!timeout)
1154		return -ETIMEDOUT;
1155
1156	return 0;
1157}
1158
1159void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160{
1161	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162	struct cfp_rule *rule, *n;
1163
1164	if (list_empty(&priv->cfp.rules_list))
1165		return;
1166
1167	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169}
1170
1171int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172{
1173	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174	struct cfp_rule *rule;
1175	int ret = 0;
1176	u32 reg;
1177
1178	if (list_empty(&priv->cfp.rules_list))
1179		return ret;
1180
1181	reg = core_readl(priv, CORE_CFP_CTL_REG);
1182	reg &= ~CFP_EN_MAP_MASK;
1183	core_writel(priv, reg, CORE_CFP_CTL_REG);
1184
1185	ret = bcm_sf2_cfp_rst(priv);
1186	if (ret)
1187		return ret;
1188
1189	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191					      rule->fs.location);
1192		if (ret) {
1193			dev_err(ds->dev, "failed to remove rule\n");
1194			return ret;
1195		}
1196
1197		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198		if (ret) {
1199			dev_err(ds->dev, "failed to restore rule\n");
1200			return ret;
1201		}
1202	}
1203
1204	return ret;
1205}
1206
1207static const struct bcm_sf2_cfp_stat {
1208	unsigned int offset;
1209	unsigned int ram_loc;
1210	const char *name;
1211} bcm_sf2_cfp_stats[] = {
1212	{
1213		.offset = CORE_STAT_GREEN_CNTR,
1214		.ram_loc = GREEN_STAT_RAM,
1215		.name = "Green"
1216	},
1217	{
1218		.offset = CORE_STAT_YELLOW_CNTR,
1219		.ram_loc = YELLOW_STAT_RAM,
1220		.name = "Yellow"
1221	},
1222	{
1223		.offset = CORE_STAT_RED_CNTR,
1224		.ram_loc = RED_STAT_RAM,
1225		.name = "Red"
1226	},
1227};
1228
1229void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230			     u32 stringset, uint8_t *data)
1231{
1232	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234	char buf[ETH_GSTRING_LEN];
1235	unsigned int i, j, iter;
1236
1237	if (stringset != ETH_SS_STATS)
1238		return;
1239
1240	for (i = 1; i < priv->num_cfp_rules; i++) {
1241		for (j = 0; j < s; j++) {
1242			snprintf(buf, sizeof(buf),
1243				 "CFP%03d_%sCntr",
1244				 i, bcm_sf2_cfp_stats[j].name);
1245			iter = (i - 1) * s + j;
1246			strlcpy(data + iter * ETH_GSTRING_LEN,
1247				buf, ETH_GSTRING_LEN);
1248		}
1249	}
1250}
1251
1252void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253				   uint64_t *data)
1254{
1255	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257	const struct bcm_sf2_cfp_stat *stat;
1258	unsigned int i, j, iter;
1259	struct cfp_rule *rule;
1260	int ret;
1261
1262	mutex_lock(&priv->cfp.lock);
1263	for (i = 1; i < priv->num_cfp_rules; i++) {
1264		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265		if (!rule)
1266			continue;
1267
1268		for (j = 0; j < s; j++) {
1269			stat = &bcm_sf2_cfp_stats[j];
1270
1271			bcm_sf2_cfp_rule_addr_set(priv, i);
1272			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273			if (ret)
1274				continue;
1275
1276			iter = (i - 1) * s + j;
1277			data[iter] = core_readl(priv, stat->offset);
1278		}
1279
1280	}
1281	mutex_unlock(&priv->cfp.lock);
1282}
1283
1284int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285{
1286	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287
1288	if (sset != ETH_SS_STATS)
1289		return 0;
1290
1291	/* 3 counters per CFP rules */
1292	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293}