Loading...
1/*
2 * Broadcom Starfighter 2 DSA switch CFP support
3 *
4 * Copyright (C) 2016, Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12#include <linux/list.h>
13#include <linux/ethtool.h>
14#include <linux/if_ether.h>
15#include <linux/in.h>
16#include <linux/netdevice.h>
17#include <net/dsa.h>
18#include <linux/bitmap.h>
19
20#include "bcm_sf2.h"
21#include "bcm_sf2_regs.h"
22
23struct cfp_udf_slice_layout {
24 u8 slices[UDFS_PER_SLICE];
25 u32 mask_value;
26 u32 base_offset;
27};
28
29struct cfp_udf_layout {
30 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31};
32
33static const u8 zero_slice[UDFS_PER_SLICE] = { };
34
35/* UDF slices layout for a TCPv4/UDPv4 specification */
36static const struct cfp_udf_layout udf_tcpip4_layout = {
37 .udfs = {
38 [1] = {
39 .slices = {
40 /* End of L2, byte offset 12, src IP[0:15] */
41 CFG_UDF_EOL2 | 6,
42 /* End of L2, byte offset 14, src IP[16:31] */
43 CFG_UDF_EOL2 | 7,
44 /* End of L2, byte offset 16, dst IP[0:15] */
45 CFG_UDF_EOL2 | 8,
46 /* End of L2, byte offset 18, dst IP[16:31] */
47 CFG_UDF_EOL2 | 9,
48 /* End of L3, byte offset 0, src port */
49 CFG_UDF_EOL3 | 0,
50 /* End of L3, byte offset 2, dst port */
51 CFG_UDF_EOL3 | 1,
52 0, 0, 0
53 },
54 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 },
57 },
58};
59
60/* UDF slices layout for a TCPv6/UDPv6 specification */
61static const struct cfp_udf_layout udf_tcpip6_layout = {
62 .udfs = {
63 [0] = {
64 .slices = {
65 /* End of L2, byte offset 8, src IP[0:15] */
66 CFG_UDF_EOL2 | 4,
67 /* End of L2, byte offset 10, src IP[16:31] */
68 CFG_UDF_EOL2 | 5,
69 /* End of L2, byte offset 12, src IP[32:47] */
70 CFG_UDF_EOL2 | 6,
71 /* End of L2, byte offset 14, src IP[48:63] */
72 CFG_UDF_EOL2 | 7,
73 /* End of L2, byte offset 16, src IP[64:79] */
74 CFG_UDF_EOL2 | 8,
75 /* End of L2, byte offset 18, src IP[80:95] */
76 CFG_UDF_EOL2 | 9,
77 /* End of L2, byte offset 20, src IP[96:111] */
78 CFG_UDF_EOL2 | 10,
79 /* End of L2, byte offset 22, src IP[112:127] */
80 CFG_UDF_EOL2 | 11,
81 /* End of L3, byte offset 0, src port */
82 CFG_UDF_EOL3 | 0,
83 },
84 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 },
87 [3] = {
88 .slices = {
89 /* End of L2, byte offset 24, dst IP[0:15] */
90 CFG_UDF_EOL2 | 12,
91 /* End of L2, byte offset 26, dst IP[16:31] */
92 CFG_UDF_EOL2 | 13,
93 /* End of L2, byte offset 28, dst IP[32:47] */
94 CFG_UDF_EOL2 | 14,
95 /* End of L2, byte offset 30, dst IP[48:63] */
96 CFG_UDF_EOL2 | 15,
97 /* End of L2, byte offset 32, dst IP[64:79] */
98 CFG_UDF_EOL2 | 16,
99 /* End of L2, byte offset 34, dst IP[80:95] */
100 CFG_UDF_EOL2 | 17,
101 /* End of L2, byte offset 36, dst IP[96:111] */
102 CFG_UDF_EOL2 | 18,
103 /* End of L2, byte offset 38, dst IP[112:127] */
104 CFG_UDF_EOL2 | 19,
105 /* End of L3, byte offset 2, dst port */
106 CFG_UDF_EOL3 | 1,
107 },
108 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 },
111 },
112};
113
114static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115{
116 unsigned int i, count = 0;
117
118 for (i = 0; i < UDFS_PER_SLICE; i++) {
119 if (layout[i] != 0)
120 count++;
121 }
122
123 return count;
124}
125
126static inline u32 udf_upper_bits(unsigned int num_udf)
127{
128 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129}
130
131static inline u32 udf_lower_bits(unsigned int num_udf)
132{
133 return (u8)GENMASK(num_udf - 1, 0);
134}
135
136static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 unsigned int start)
138{
139 const struct cfp_udf_slice_layout *slice_layout;
140 unsigned int slice_idx;
141
142 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 slice_layout = &l->udfs[slice_idx];
144 if (memcmp(slice_layout->slices, zero_slice,
145 sizeof(zero_slice)))
146 break;
147 }
148
149 return slice_idx;
150}
151
152static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 const struct cfp_udf_layout *layout,
154 unsigned int slice_num)
155{
156 u32 offset = layout->udfs[slice_num].base_offset;
157 unsigned int i;
158
159 for (i = 0; i < UDFS_PER_SLICE; i++)
160 core_writel(priv, layout->udfs[slice_num].slices[i],
161 offset + i * 4);
162}
163
164static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165{
166 unsigned int timeout = 1000;
167 u32 reg;
168
169 reg = core_readl(priv, CORE_CFP_ACC);
170 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 reg |= OP_STR_DONE | op;
172 core_writel(priv, reg, CORE_CFP_ACC);
173
174 do {
175 reg = core_readl(priv, CORE_CFP_ACC);
176 if (!(reg & OP_STR_DONE))
177 break;
178
179 cpu_relax();
180 } while (timeout--);
181
182 if (!timeout)
183 return -ETIMEDOUT;
184
185 return 0;
186}
187
188static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 unsigned int addr)
190{
191 u32 reg;
192
193 WARN_ON(addr >= priv->num_cfp_rules);
194
195 reg = core_readl(priv, CORE_CFP_ACC);
196 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 reg |= addr << XCESS_ADDR_SHIFT;
198 core_writel(priv, reg, CORE_CFP_ACC);
199}
200
201static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202{
203 /* Entry #0 is reserved */
204 return priv->num_cfp_rules - 1;
205}
206
207static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 unsigned int rule_index,
209 unsigned int port_num,
210 unsigned int queue_num,
211 bool fwd_map_change)
212{
213 int ret;
214 u32 reg;
215
216 /* Replace ARL derived destination with DST_MAP derived, define
217 * which port and queue this should be forwarded to.
218 */
219 if (fwd_map_change)
220 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 BIT(port_num + DST_MAP_IB_SHIFT) |
222 CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 else
224 reg = 0;
225
226 core_writel(priv, reg, CORE_ACT_POL_DATA0);
227
228 /* Set classification ID that needs to be put in Broadcom tag */
229 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230
231 core_writel(priv, 0, CORE_ACT_POL_DATA2);
232
233 /* Configure policer RAM now */
234 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 if (ret) {
236 pr_err("Policer entry at %d failed\n", rule_index);
237 return ret;
238 }
239
240 /* Disable the policer */
241 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242
243 /* Now the rate meter */
244 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 if (ret) {
246 pr_err("Meter entry at %d failed\n", rule_index);
247 return ret;
248 }
249
250 return 0;
251}
252
253static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 struct ethtool_tcpip4_spec *v4_spec,
255 unsigned int slice_num,
256 bool mask)
257{
258 u32 reg, offset;
259
260 /* C-Tag [31:24]
261 * UDF_n_A8 [23:8]
262 * UDF_n_A7 [7:0]
263 */
264 reg = 0;
265 if (mask)
266 offset = CORE_CFP_MASK_PORT(4);
267 else
268 offset = CORE_CFP_DATA_PORT(4);
269 core_writel(priv, reg, offset);
270
271 /* UDF_n_A7 [31:24]
272 * UDF_n_A6 [23:8]
273 * UDF_n_A5 [7:0]
274 */
275 reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 if (mask)
277 offset = CORE_CFP_MASK_PORT(3);
278 else
279 offset = CORE_CFP_DATA_PORT(3);
280 core_writel(priv, reg, offset);
281
282 /* UDF_n_A5 [31:24]
283 * UDF_n_A4 [23:8]
284 * UDF_n_A3 [7:0]
285 */
286 reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 if (mask)
290 offset = CORE_CFP_MASK_PORT(2);
291 else
292 offset = CORE_CFP_DATA_PORT(2);
293 core_writel(priv, reg, offset);
294
295 /* UDF_n_A3 [31:24]
296 * UDF_n_A2 [23:8]
297 * UDF_n_A1 [7:0]
298 */
299 reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 if (mask)
303 offset = CORE_CFP_MASK_PORT(1);
304 else
305 offset = CORE_CFP_DATA_PORT(1);
306 core_writel(priv, reg, offset);
307
308 /* UDF_n_A1 [31:24]
309 * UDF_n_A0 [23:8]
310 * Reserved [7:4]
311 * Slice ID [3:2]
312 * Slice valid [1:0]
313 */
314 reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 SLICE_NUM(slice_num) | SLICE_VALID;
317 if (mask)
318 offset = CORE_CFP_MASK_PORT(0);
319 else
320 offset = CORE_CFP_DATA_PORT(0);
321 core_writel(priv, reg, offset);
322}
323
324static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 unsigned int port_num,
326 unsigned int queue_num,
327 struct ethtool_rx_flow_spec *fs)
328{
329 struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 const struct cfp_udf_layout *layout;
331 unsigned int slice_num, rule_index;
332 u8 ip_proto, ip_frag;
333 u8 num_udf;
334 u32 reg;
335 int ret;
336
337 switch (fs->flow_type & ~FLOW_EXT) {
338 case TCP_V4_FLOW:
339 ip_proto = IPPROTO_TCP;
340 v4_spec = &fs->h_u.tcp_ip4_spec;
341 v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 break;
343 case UDP_V4_FLOW:
344 ip_proto = IPPROTO_UDP;
345 v4_spec = &fs->h_u.udp_ip4_spec;
346 v4_m_spec = &fs->m_u.udp_ip4_spec;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353
354 /* Locate the first rule available */
355 if (fs->location == RX_CLS_LOC_ANY)
356 rule_index = find_first_zero_bit(priv->cfp.used,
357 priv->num_cfp_rules);
358 else
359 rule_index = fs->location;
360
361 if (rule_index > bcm_sf2_cfp_rule_size(priv))
362 return -ENOSPC;
363
364 layout = &udf_tcpip4_layout;
365 /* We only use one UDF slice for now */
366 slice_num = bcm_sf2_get_slice_number(layout, 0);
367 if (slice_num == UDF_NUM_SLICES)
368 return -EINVAL;
369
370 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371
372 /* Apply the UDF layout for this filter */
373 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374
375 /* Apply to all packets received through this port */
376 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
377
378 /* Source port map match */
379 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
380
381 /* S-Tag status [31:30]
382 * C-Tag status [29:28]
383 * L2 framing [27:26]
384 * L3 framing [25:24]
385 * IP ToS [23:16]
386 * IP proto [15:08]
387 * IP Fragm [7]
388 * Non 1st frag [6]
389 * IP Authen [5]
390 * TTL range [4:3]
391 * PPPoE session [2]
392 * Reserved [1]
393 * UDF_Valid[8] [0]
394 */
395 core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
397 udf_upper_bits(num_udf),
398 CORE_CFP_DATA_PORT(6));
399
400 /* Mask with the specific layout for IPv4 packets */
401 core_writel(priv, layout->udfs[slice_num].mask_value |
402 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
403
404 /* UDF_Valid[7:0] [31:24]
405 * S-Tag [23:8]
406 * C-Tag [7:0]
407 */
408 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409
410 /* Mask all but valid UDFs */
411 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412
413 /* Program the match and the mask */
414 bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
415 bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416
417 /* Insert into TCAM now */
418 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
419
420 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
421 if (ret) {
422 pr_err("TCAM entry at addr %d failed\n", rule_index);
423 return ret;
424 }
425
426 /* Insert into Action and policer RAMs now */
427 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
428 queue_num, true);
429 if (ret)
430 return ret;
431
432 /* Turn on CFP for this rule now */
433 reg = core_readl(priv, CORE_CFP_CTL_REG);
434 reg |= BIT(port);
435 core_writel(priv, reg, CORE_CFP_CTL_REG);
436
437 /* Flag the rule as being used and return it */
438 set_bit(rule_index, priv->cfp.used);
439 set_bit(rule_index, priv->cfp.unique);
440 fs->location = rule_index;
441
442 return 0;
443}
444
445static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
446 const __be32 *ip6_addr, const __be16 port,
447 unsigned int slice_num,
448 bool mask)
449{
450 u32 reg, tmp, val, offset;
451
452 /* C-Tag [31:24]
453 * UDF_n_B8 [23:8] (port)
454 * UDF_n_B7 (upper) [7:0] (addr[15:8])
455 */
456 reg = be32_to_cpu(ip6_addr[3]);
457 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458 if (mask)
459 offset = CORE_CFP_MASK_PORT(4);
460 else
461 offset = CORE_CFP_DATA_PORT(4);
462 core_writel(priv, val, offset);
463
464 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
465 * UDF_n_B6 [23:8] (addr[31:16])
466 * UDF_n_B5 (upper) [7:0] (addr[47:40])
467 */
468 tmp = be32_to_cpu(ip6_addr[2]);
469 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
470 ((tmp >> 8) & 0xff);
471 if (mask)
472 offset = CORE_CFP_MASK_PORT(3);
473 else
474 offset = CORE_CFP_DATA_PORT(3);
475 core_writel(priv, val, offset);
476
477 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
478 * UDF_n_B4 [23:8] (addr[63:48])
479 * UDF_n_B3 (upper) [7:0] (addr[79:72])
480 */
481 reg = be32_to_cpu(ip6_addr[1]);
482 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
483 ((reg >> 8) & 0xff);
484 if (mask)
485 offset = CORE_CFP_MASK_PORT(2);
486 else
487 offset = CORE_CFP_DATA_PORT(2);
488 core_writel(priv, val, offset);
489
490 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
491 * UDF_n_B2 [23:8] (addr[95:80])
492 * UDF_n_B1 (upper) [7:0] (addr[111:104])
493 */
494 tmp = be32_to_cpu(ip6_addr[0]);
495 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
496 ((tmp >> 8) & 0xff);
497 if (mask)
498 offset = CORE_CFP_MASK_PORT(1);
499 else
500 offset = CORE_CFP_DATA_PORT(1);
501 core_writel(priv, val, offset);
502
503 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
504 * UDF_n_B0 [23:8] (addr[127:112])
505 * Reserved [7:4]
506 * Slice ID [3:2]
507 * Slice valid [1:0]
508 */
509 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
510 SLICE_NUM(slice_num) | SLICE_VALID;
511 if (mask)
512 offset = CORE_CFP_MASK_PORT(0);
513 else
514 offset = CORE_CFP_DATA_PORT(0);
515 core_writel(priv, reg, offset);
516}
517
518static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
519 unsigned int port_num,
520 unsigned int queue_num,
521 struct ethtool_rx_flow_spec *fs)
522{
523 struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524 unsigned int slice_num, rule_index[2];
525 const struct cfp_udf_layout *layout;
526 u8 ip_proto, ip_frag;
527 int ret = 0;
528 u8 num_udf;
529 u32 reg;
530
531 switch (fs->flow_type & ~FLOW_EXT) {
532 case TCP_V6_FLOW:
533 ip_proto = IPPROTO_TCP;
534 v6_spec = &fs->h_u.tcp_ip6_spec;
535 v6_m_spec = &fs->m_u.tcp_ip6_spec;
536 break;
537 case UDP_V6_FLOW:
538 ip_proto = IPPROTO_UDP;
539 v6_spec = &fs->h_u.udp_ip6_spec;
540 v6_m_spec = &fs->m_u.udp_ip6_spec;
541 break;
542 default:
543 return -EINVAL;
544 }
545
546 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
547
548 layout = &udf_tcpip6_layout;
549 slice_num = bcm_sf2_get_slice_number(layout, 0);
550 if (slice_num == UDF_NUM_SLICES)
551 return -EINVAL;
552
553 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
554
555 /* Negotiate two indexes, one for the second half which we are chained
556 * from, which is what we will return to user-space, and a second one
557 * which is used to store its first half. That first half does not
558 * allow any choice of placement, so it just needs to find the next
559 * available bit. We return the second half as fs->location because
560 * that helps with the rule lookup later on since the second half is
561 * chained from its first half, we can easily identify IPv6 CFP rules
562 * by looking whether they carry a CHAIN_ID.
563 *
564 * We also want the second half to have a lower rule_index than its
565 * first half because the HW search is by incrementing addresses.
566 */
567 if (fs->location == RX_CLS_LOC_ANY)
568 rule_index[1] = find_first_zero_bit(priv->cfp.used,
569 priv->num_cfp_rules);
570 else
571 rule_index[1] = fs->location;
572 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
573 return -ENOSPC;
574
575 /* Flag it as used (cleared on error path) such that we can immediately
576 * obtain a second one to chain from.
577 */
578 set_bit(rule_index[1], priv->cfp.used);
579
580 rule_index[0] = find_first_zero_bit(priv->cfp.used,
581 priv->num_cfp_rules);
582 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583 ret = -ENOSPC;
584 goto out_err;
585 }
586
587 /* Apply the UDF layout for this filter */
588 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
589
590 /* Apply to all packets received through this port */
591 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
592
593 /* Source port map match */
594 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
595
596 /* S-Tag status [31:30]
597 * C-Tag status [29:28]
598 * L2 framing [27:26]
599 * L3 framing [25:24]
600 * IP ToS [23:16]
601 * IP proto [15:08]
602 * IP Fragm [7]
603 * Non 1st frag [6]
604 * IP Authen [5]
605 * TTL range [4:3]
606 * PPPoE session [2]
607 * Reserved [1]
608 * UDF_Valid[8] [0]
609 */
610 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
611 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
612 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
613
614 /* Mask with the specific layout for IPv6 packets including
615 * UDF_Valid[8]
616 */
617 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
618 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
619
620 /* UDF_Valid[7:0] [31:24]
621 * S-Tag [23:8]
622 * C-Tag [7:0]
623 */
624 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
625
626 /* Mask all but valid UDFs */
627 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
628
629 /* Slice the IPv6 source address and port */
630 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
631 slice_num, false);
632 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633 SLICE_NUM_MASK, true);
634
635 /* Insert into TCAM now because we need to insert a second rule */
636 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
637
638 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
639 if (ret) {
640 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
641 goto out_err;
642 }
643
644 /* Insert into Action and policer RAMs now */
645 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
646 queue_num, false);
647 if (ret)
648 goto out_err;
649
650 /* Now deal with the second slice to chain this rule */
651 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
652 if (slice_num == UDF_NUM_SLICES) {
653 ret = -EINVAL;
654 goto out_err;
655 }
656
657 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
658
659 /* Apply the UDF layout for this filter */
660 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
661
662 /* Chained rule, source port match is coming from the rule we are
663 * chained from.
664 */
665 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
666 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
667
668 /*
669 * CHAIN ID [31:24] chain to previous slice
670 * Reserved [23:20]
671 * UDF_Valid[11:8] [19:16]
672 * UDF_Valid[7:0] [15:8]
673 * UDF_n_D11 [7:0]
674 */
675 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
676 udf_lower_bits(num_udf) << 8;
677 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
678
679 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
680 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
681 udf_lower_bits(num_udf) << 8;
682 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
683
684 /* Don't care */
685 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
686
687 /* Mask all */
688 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
689
690 bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
691 false);
692 bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
693 SLICE_NUM_MASK, true);
694
695 /* Insert into TCAM now */
696 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
697
698 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
699 if (ret) {
700 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
701 goto out_err;
702 }
703
704 /* Insert into Action and policer RAMs now, set chain ID to
705 * the one we are chained to
706 */
707 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708 queue_num, true);
709 if (ret)
710 goto out_err;
711
712 /* Turn on CFP for this rule now */
713 reg = core_readl(priv, CORE_CFP_CTL_REG);
714 reg |= BIT(port);
715 core_writel(priv, reg, CORE_CFP_CTL_REG);
716
717 /* Flag the second half rule as being used now, return it as the
718 * location, and flag it as unique while dumping rules
719 */
720 set_bit(rule_index[0], priv->cfp.used);
721 set_bit(rule_index[1], priv->cfp.unique);
722 fs->location = rule_index[1];
723
724 return ret;
725
726out_err:
727 clear_bit(rule_index[1], priv->cfp.used);
728 return ret;
729}
730
731static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
732 struct ethtool_rx_flow_spec *fs)
733{
734 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
735 unsigned int queue_num, port_num;
736 int ret = -EINVAL;
737
738 /* Check for unsupported extensions */
739 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
740 fs->m_ext.data[1]))
741 return -EINVAL;
742
743 if (fs->location != RX_CLS_LOC_ANY &&
744 test_bit(fs->location, priv->cfp.used))
745 return -EBUSY;
746
747 if (fs->location != RX_CLS_LOC_ANY &&
748 fs->location > bcm_sf2_cfp_rule_size(priv))
749 return -EINVAL;
750
751 /* We do not support discarding packets, check that the
752 * destination port is enabled and that we are within the
753 * number of ports supported by the switch
754 */
755 port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
756
757 if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
758 !dsa_is_user_port(ds, port_num) ||
759 port_num >= priv->hw_params.num_ports)
760 return -EINVAL;
761 /*
762 * We have a small oddity where Port 6 just does not have a
763 * valid bit here (so we substract by one).
764 */
765 queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
766 if (port_num >= 7)
767 port_num -= 1;
768
769 switch (fs->flow_type & ~FLOW_EXT) {
770 case TCP_V4_FLOW:
771 case UDP_V4_FLOW:
772 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
773 queue_num, fs);
774 break;
775 case TCP_V6_FLOW:
776 case UDP_V6_FLOW:
777 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
778 queue_num, fs);
779 break;
780 default:
781 break;
782 }
783
784 return ret;
785}
786
787static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
788 u32 loc, u32 *next_loc)
789{
790 int ret;
791 u32 reg;
792
793 /* Indicate which rule we want to read */
794 bcm_sf2_cfp_rule_addr_set(priv, loc);
795
796 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
797 if (ret)
798 return ret;
799
800 /* Check if this is possibly an IPv6 rule that would
801 * indicate we need to delete its companion rule
802 * as well
803 */
804 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
805 if (next_loc)
806 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
807
808 /* Clear its valid bits */
809 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
810 reg &= ~SLICE_VALID;
811 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
812
813 /* Write back this entry into the TCAM now */
814 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
815 if (ret)
816 return ret;
817
818 clear_bit(loc, priv->cfp.used);
819 clear_bit(loc, priv->cfp.unique);
820
821 return 0;
822}
823
824static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
825 u32 loc)
826{
827 u32 next_loc = 0;
828 int ret;
829
830 /* Refuse deleting unused rules, and those that are not unique since
831 * that could leave IPv6 rules with one of the chained rule in the
832 * table.
833 */
834 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
835 return -EINVAL;
836
837 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
838 if (ret)
839 return ret;
840
841 /* If this was an IPv6 rule, delete is companion rule too */
842 if (next_loc)
843 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
844
845 return ret;
846}
847
848static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
849{
850 unsigned int i;
851
852 for (i = 0; i < sizeof(flow->m_u); i++)
853 flow->m_u.hdata[i] ^= 0xff;
854
855 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
856 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
857 flow->m_ext.data[0] ^= cpu_to_be32(~0);
858 flow->m_ext.data[1] ^= cpu_to_be32(~0);
859}
860
861static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
862 struct ethtool_tcpip4_spec *v4_spec,
863 bool mask)
864{
865 u32 reg, offset, ipv4;
866 u16 src_dst_port;
867
868 if (mask)
869 offset = CORE_CFP_MASK_PORT(3);
870 else
871 offset = CORE_CFP_DATA_PORT(3);
872
873 reg = core_readl(priv, offset);
874 /* src port [15:8] */
875 src_dst_port = reg << 8;
876
877 if (mask)
878 offset = CORE_CFP_MASK_PORT(2);
879 else
880 offset = CORE_CFP_DATA_PORT(2);
881
882 reg = core_readl(priv, offset);
883 /* src port [7:0] */
884 src_dst_port |= (reg >> 24);
885
886 v4_spec->pdst = cpu_to_be16(src_dst_port);
887 v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
888
889 /* IPv4 dst [15:8] */
890 ipv4 = (reg & 0xff) << 8;
891
892 if (mask)
893 offset = CORE_CFP_MASK_PORT(1);
894 else
895 offset = CORE_CFP_DATA_PORT(1);
896
897 reg = core_readl(priv, offset);
898 /* IPv4 dst [31:16] */
899 ipv4 |= ((reg >> 8) & 0xffff) << 16;
900 /* IPv4 dst [7:0] */
901 ipv4 |= (reg >> 24) & 0xff;
902 v4_spec->ip4dst = cpu_to_be32(ipv4);
903
904 /* IPv4 src [15:8] */
905 ipv4 = (reg & 0xff) << 8;
906
907 if (mask)
908 offset = CORE_CFP_MASK_PORT(0);
909 else
910 offset = CORE_CFP_DATA_PORT(0);
911 reg = core_readl(priv, offset);
912
913 /* Once the TCAM is programmed, the mask reflects the slice number
914 * being matched, don't bother checking it when reading back the
915 * mask spec
916 */
917 if (!mask && !(reg & SLICE_VALID))
918 return -EINVAL;
919
920 /* IPv4 src [7:0] */
921 ipv4 |= (reg >> 24) & 0xff;
922 /* IPv4 src [31:16] */
923 ipv4 |= ((reg >> 8) & 0xffff) << 16;
924 v4_spec->ip4src = cpu_to_be32(ipv4);
925
926 return 0;
927}
928
929static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
930 struct ethtool_rx_flow_spec *fs)
931{
932 struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
933 u32 reg;
934 int ret;
935
936 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
937
938 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
939 case IPPROTO_TCP:
940 fs->flow_type = TCP_V4_FLOW;
941 v4_spec = &fs->h_u.tcp_ip4_spec;
942 v4_m_spec = &fs->m_u.tcp_ip4_spec;
943 break;
944 case IPPROTO_UDP:
945 fs->flow_type = UDP_V4_FLOW;
946 v4_spec = &fs->h_u.udp_ip4_spec;
947 v4_m_spec = &fs->m_u.udp_ip4_spec;
948 break;
949 default:
950 return -EINVAL;
951 }
952
953 fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
954 v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
955
956 ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
957 if (ret)
958 return ret;
959
960 return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
961}
962
963static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
964 __be32 *ip6_addr, __be16 *port,
965 bool mask)
966{
967 u32 reg, tmp, offset;
968
969 /* C-Tag [31:24]
970 * UDF_n_B8 [23:8] (port)
971 * UDF_n_B7 (upper) [7:0] (addr[15:8])
972 */
973 if (mask)
974 offset = CORE_CFP_MASK_PORT(4);
975 else
976 offset = CORE_CFP_DATA_PORT(4);
977 reg = core_readl(priv, offset);
978 *port = cpu_to_be32(reg) >> 8;
979 tmp = (u32)(reg & 0xff) << 8;
980
981 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
982 * UDF_n_B6 [23:8] (addr[31:16])
983 * UDF_n_B5 (upper) [7:0] (addr[47:40])
984 */
985 if (mask)
986 offset = CORE_CFP_MASK_PORT(3);
987 else
988 offset = CORE_CFP_DATA_PORT(3);
989 reg = core_readl(priv, offset);
990 tmp |= (reg >> 24) & 0xff;
991 tmp |= (u32)((reg >> 8) << 16);
992 ip6_addr[3] = cpu_to_be32(tmp);
993 tmp = (u32)(reg & 0xff) << 8;
994
995 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
996 * UDF_n_B4 [23:8] (addr[63:48])
997 * UDF_n_B3 (upper) [7:0] (addr[79:72])
998 */
999 if (mask)
1000 offset = CORE_CFP_MASK_PORT(2);
1001 else
1002 offset = CORE_CFP_DATA_PORT(2);
1003 reg = core_readl(priv, offset);
1004 tmp |= (reg >> 24) & 0xff;
1005 tmp |= (u32)((reg >> 8) << 16);
1006 ip6_addr[2] = cpu_to_be32(tmp);
1007 tmp = (u32)(reg & 0xff) << 8;
1008
1009 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
1010 * UDF_n_B2 [23:8] (addr[95:80])
1011 * UDF_n_B1 (upper) [7:0] (addr[111:104])
1012 */
1013 if (mask)
1014 offset = CORE_CFP_MASK_PORT(1);
1015 else
1016 offset = CORE_CFP_DATA_PORT(1);
1017 reg = core_readl(priv, offset);
1018 tmp |= (reg >> 24) & 0xff;
1019 tmp |= (u32)((reg >> 8) << 16);
1020 ip6_addr[1] = cpu_to_be32(tmp);
1021 tmp = (u32)(reg & 0xff) << 8;
1022
1023 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
1024 * UDF_n_B0 [23:8] (addr[127:112])
1025 * Reserved [7:4]
1026 * Slice ID [3:2]
1027 * Slice valid [1:0]
1028 */
1029 if (mask)
1030 offset = CORE_CFP_MASK_PORT(0);
1031 else
1032 offset = CORE_CFP_DATA_PORT(0);
1033 reg = core_readl(priv, offset);
1034 tmp |= (reg >> 24) & 0xff;
1035 tmp |= (u32)((reg >> 8) << 16);
1036 ip6_addr[0] = cpu_to_be32(tmp);
1037
1038 if (!mask && !(reg & SLICE_VALID))
1039 return -EINVAL;
1040
1041 return 0;
1042}
1043
1044static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1045 struct ethtool_rx_flow_spec *fs,
1046 u32 next_loc)
1047{
1048 struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1049 u32 reg;
1050 int ret;
1051
1052 /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1053 * assuming tcp_ip6_spec here being an union.
1054 */
1055 v6_spec = &fs->h_u.tcp_ip6_spec;
1056 v6_m_spec = &fs->m_u.tcp_ip6_spec;
1057
1058 /* Read the second half first */
1059 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1060 false);
1061 if (ret)
1062 return ret;
1063
1064 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1065 &v6_m_spec->pdst, true);
1066 if (ret)
1067 return ret;
1068
1069 /* Read last to avoid next entry clobbering the results during search
1070 * operations. We would not have the port enabled for this rule, so
1071 * don't bother checking it.
1072 */
1073 (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1074
1075 /* The slice number is valid, so read the rule we are chained from now
1076 * which is our first half.
1077 */
1078 bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1079 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1080 if (ret)
1081 return ret;
1082
1083 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1084
1085 switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1086 case IPPROTO_TCP:
1087 fs->flow_type = TCP_V6_FLOW;
1088 break;
1089 case IPPROTO_UDP:
1090 fs->flow_type = UDP_V6_FLOW;
1091 break;
1092 default:
1093 return -EINVAL;
1094 }
1095
1096 ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1097 false);
1098 if (ret)
1099 return ret;
1100
1101 return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1102 &v6_m_spec->psrc, true);
1103}
1104
1105static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1106 struct ethtool_rxnfc *nfc)
1107{
1108 u32 reg, ipv4_or_chain_id;
1109 unsigned int queue_num;
1110 int ret;
1111
1112 bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1113
1114 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1115 if (ret)
1116 return ret;
1117
1118 reg = core_readl(priv, CORE_ACT_POL_DATA0);
1119
1120 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1121 if (ret)
1122 return ret;
1123
1124 /* Extract the destination port */
1125 nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1126 DST_MAP_IB_MASK) - 1;
1127
1128 /* There is no Port 6, so we compensate for that here */
1129 if (nfc->fs.ring_cookie >= 6)
1130 nfc->fs.ring_cookie++;
1131 nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1132
1133 /* Extract the destination queue */
1134 queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1135 nfc->fs.ring_cookie += queue_num;
1136
1137 /* Extract the L3_FRAMING or CHAIN_ID */
1138 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1139
1140 /* With IPv6 rules this would contain a non-zero chain ID since
1141 * we reserve entry 0 and it cannot be used. So if we read 0 here
1142 * this means an IPv4 rule.
1143 */
1144 ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1145 if (ipv4_or_chain_id == 0)
1146 ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1147 else
1148 ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1149 ipv4_or_chain_id);
1150 if (ret)
1151 return ret;
1152
1153 /* Read last to avoid next entry clobbering the results during search
1154 * operations
1155 */
1156 reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1157 if (!(reg & 1 << port))
1158 return -EINVAL;
1159
1160 bcm_sf2_invert_masks(&nfc->fs);
1161
1162 /* Put the TCAM size here */
1163 nfc->data = bcm_sf2_cfp_rule_size(priv);
1164
1165 return 0;
1166}
1167
1168/* We implement the search doing a TCAM search operation */
1169static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1170 int port, struct ethtool_rxnfc *nfc,
1171 u32 *rule_locs)
1172{
1173 unsigned int index = 1, rules_cnt = 0;
1174
1175 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1176 rule_locs[rules_cnt] = index;
1177 rules_cnt++;
1178 }
1179
1180 /* Put the TCAM size here */
1181 nfc->data = bcm_sf2_cfp_rule_size(priv);
1182 nfc->rule_cnt = rules_cnt;
1183
1184 return 0;
1185}
1186
1187int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1188 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1189{
1190 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1191 int ret = 0;
1192
1193 mutex_lock(&priv->cfp.lock);
1194
1195 switch (nfc->cmd) {
1196 case ETHTOOL_GRXCLSRLCNT:
1197 /* Subtract the default, unusable rule */
1198 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1199 priv->num_cfp_rules) - 1;
1200 /* We support specifying rule locations */
1201 nfc->data |= RX_CLS_LOC_SPECIAL;
1202 break;
1203 case ETHTOOL_GRXCLSRULE:
1204 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1205 break;
1206 case ETHTOOL_GRXCLSRLALL:
1207 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1208 break;
1209 default:
1210 ret = -EOPNOTSUPP;
1211 break;
1212 }
1213
1214 mutex_unlock(&priv->cfp.lock);
1215
1216 return ret;
1217}
1218
1219int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1220 struct ethtool_rxnfc *nfc)
1221{
1222 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1223 int ret = 0;
1224
1225 mutex_lock(&priv->cfp.lock);
1226
1227 switch (nfc->cmd) {
1228 case ETHTOOL_SRXCLSRLINS:
1229 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1230 break;
1231
1232 case ETHTOOL_SRXCLSRLDEL:
1233 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1234 break;
1235 default:
1236 ret = -EOPNOTSUPP;
1237 break;
1238 }
1239
1240 mutex_unlock(&priv->cfp.lock);
1241
1242 return ret;
1243}
1244
1245int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1246{
1247 unsigned int timeout = 1000;
1248 u32 reg;
1249
1250 reg = core_readl(priv, CORE_CFP_ACC);
1251 reg |= TCAM_RESET;
1252 core_writel(priv, reg, CORE_CFP_ACC);
1253
1254 do {
1255 reg = core_readl(priv, CORE_CFP_ACC);
1256 if (!(reg & TCAM_RESET))
1257 break;
1258
1259 cpu_relax();
1260 } while (timeout--);
1261
1262 if (!timeout)
1263 return -ETIMEDOUT;
1264
1265 return 0;
1266}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Broadcom Starfighter 2 DSA switch CFP support
4 *
5 * Copyright (C) 2016, Broadcom
6 */
7
8#include <linux/list.h>
9#include <linux/ethtool.h>
10#include <linux/if_ether.h>
11#include <linux/in.h>
12#include <linux/netdevice.h>
13#include <net/dsa.h>
14#include <linux/bitmap.h>
15#include <net/flow_offload.h>
16
17#include "bcm_sf2.h"
18#include "bcm_sf2_regs.h"
19
20struct cfp_rule {
21 int port;
22 struct ethtool_rx_flow_spec fs;
23 struct list_head next;
24};
25
26struct cfp_udf_slice_layout {
27 u8 slices[UDFS_PER_SLICE];
28 u32 mask_value;
29 u32 base_offset;
30};
31
32struct cfp_udf_layout {
33 struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
34};
35
36static const u8 zero_slice[UDFS_PER_SLICE] = { };
37
38/* UDF slices layout for a TCPv4/UDPv4 specification */
39static const struct cfp_udf_layout udf_tcpip4_layout = {
40 .udfs = {
41 [1] = {
42 .slices = {
43 /* End of L2, byte offset 12, src IP[0:15] */
44 CFG_UDF_EOL2 | 6,
45 /* End of L2, byte offset 14, src IP[16:31] */
46 CFG_UDF_EOL2 | 7,
47 /* End of L2, byte offset 16, dst IP[0:15] */
48 CFG_UDF_EOL2 | 8,
49 /* End of L2, byte offset 18, dst IP[16:31] */
50 CFG_UDF_EOL2 | 9,
51 /* End of L3, byte offset 0, src port */
52 CFG_UDF_EOL3 | 0,
53 /* End of L3, byte offset 2, dst port */
54 CFG_UDF_EOL3 | 1,
55 0, 0, 0
56 },
57 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
58 .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
59 },
60 },
61};
62
63/* UDF slices layout for a TCPv6/UDPv6 specification */
64static const struct cfp_udf_layout udf_tcpip6_layout = {
65 .udfs = {
66 [0] = {
67 .slices = {
68 /* End of L2, byte offset 8, src IP[0:15] */
69 CFG_UDF_EOL2 | 4,
70 /* End of L2, byte offset 10, src IP[16:31] */
71 CFG_UDF_EOL2 | 5,
72 /* End of L2, byte offset 12, src IP[32:47] */
73 CFG_UDF_EOL2 | 6,
74 /* End of L2, byte offset 14, src IP[48:63] */
75 CFG_UDF_EOL2 | 7,
76 /* End of L2, byte offset 16, src IP[64:79] */
77 CFG_UDF_EOL2 | 8,
78 /* End of L2, byte offset 18, src IP[80:95] */
79 CFG_UDF_EOL2 | 9,
80 /* End of L2, byte offset 20, src IP[96:111] */
81 CFG_UDF_EOL2 | 10,
82 /* End of L2, byte offset 22, src IP[112:127] */
83 CFG_UDF_EOL2 | 11,
84 /* End of L3, byte offset 0, src port */
85 CFG_UDF_EOL3 | 0,
86 },
87 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
88 .base_offset = CORE_UDF_0_B_0_8_PORT_0,
89 },
90 [3] = {
91 .slices = {
92 /* End of L2, byte offset 24, dst IP[0:15] */
93 CFG_UDF_EOL2 | 12,
94 /* End of L2, byte offset 26, dst IP[16:31] */
95 CFG_UDF_EOL2 | 13,
96 /* End of L2, byte offset 28, dst IP[32:47] */
97 CFG_UDF_EOL2 | 14,
98 /* End of L2, byte offset 30, dst IP[48:63] */
99 CFG_UDF_EOL2 | 15,
100 /* End of L2, byte offset 32, dst IP[64:79] */
101 CFG_UDF_EOL2 | 16,
102 /* End of L2, byte offset 34, dst IP[80:95] */
103 CFG_UDF_EOL2 | 17,
104 /* End of L2, byte offset 36, dst IP[96:111] */
105 CFG_UDF_EOL2 | 18,
106 /* End of L2, byte offset 38, dst IP[112:127] */
107 CFG_UDF_EOL2 | 19,
108 /* End of L3, byte offset 2, dst port */
109 CFG_UDF_EOL3 | 1,
110 },
111 .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
112 .base_offset = CORE_UDF_0_D_0_11_PORT_0,
113 },
114 },
115};
116
117static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
118{
119 unsigned int i, count = 0;
120
121 for (i = 0; i < UDFS_PER_SLICE; i++) {
122 if (layout[i] != 0)
123 count++;
124 }
125
126 return count;
127}
128
129static inline u32 udf_upper_bits(unsigned int num_udf)
130{
131 return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
132}
133
134static inline u32 udf_lower_bits(unsigned int num_udf)
135{
136 return (u8)GENMASK(num_udf - 1, 0);
137}
138
139static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
140 unsigned int start)
141{
142 const struct cfp_udf_slice_layout *slice_layout;
143 unsigned int slice_idx;
144
145 for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
146 slice_layout = &l->udfs[slice_idx];
147 if (memcmp(slice_layout->slices, zero_slice,
148 sizeof(zero_slice)))
149 break;
150 }
151
152 return slice_idx;
153}
154
155static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
156 const struct cfp_udf_layout *layout,
157 unsigned int slice_num)
158{
159 u32 offset = layout->udfs[slice_num].base_offset;
160 unsigned int i;
161
162 for (i = 0; i < UDFS_PER_SLICE; i++)
163 core_writel(priv, layout->udfs[slice_num].slices[i],
164 offset + i * 4);
165}
166
167static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
168{
169 unsigned int timeout = 1000;
170 u32 reg;
171
172 reg = core_readl(priv, CORE_CFP_ACC);
173 reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
174 reg |= OP_STR_DONE | op;
175 core_writel(priv, reg, CORE_CFP_ACC);
176
177 do {
178 reg = core_readl(priv, CORE_CFP_ACC);
179 if (!(reg & OP_STR_DONE))
180 break;
181
182 cpu_relax();
183 } while (timeout--);
184
185 if (!timeout)
186 return -ETIMEDOUT;
187
188 return 0;
189}
190
191static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
192 unsigned int addr)
193{
194 u32 reg;
195
196 WARN_ON(addr >= priv->num_cfp_rules);
197
198 reg = core_readl(priv, CORE_CFP_ACC);
199 reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
200 reg |= addr << XCESS_ADDR_SHIFT;
201 core_writel(priv, reg, CORE_CFP_ACC);
202}
203
204static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
205{
206 /* Entry #0 is reserved */
207 return priv->num_cfp_rules - 1;
208}
209
210static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
211 unsigned int rule_index,
212 int src_port,
213 unsigned int port_num,
214 unsigned int queue_num,
215 bool fwd_map_change)
216{
217 int ret;
218 u32 reg;
219
220 /* Replace ARL derived destination with DST_MAP derived, define
221 * which port and queue this should be forwarded to.
222 */
223 if (fwd_map_change)
224 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
225 BIT(port_num + DST_MAP_IB_SHIFT) |
226 CHANGE_TC | queue_num << NEW_TC_SHIFT;
227 else
228 reg = 0;
229
230 /* Enable looping back to the original port */
231 if (src_port == port_num)
232 reg |= LOOP_BK_EN;
233
234 core_writel(priv, reg, CORE_ACT_POL_DATA0);
235
236 /* Set classification ID that needs to be put in Broadcom tag */
237 core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
238
239 core_writel(priv, 0, CORE_ACT_POL_DATA2);
240
241 /* Configure policer RAM now */
242 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
243 if (ret) {
244 pr_err("Policer entry at %d failed\n", rule_index);
245 return ret;
246 }
247
248 /* Disable the policer */
249 core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
250
251 /* Now the rate meter */
252 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
253 if (ret) {
254 pr_err("Meter entry at %d failed\n", rule_index);
255 return ret;
256 }
257
258 return 0;
259}
260
261static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
262 struct flow_dissector_key_ipv4_addrs *addrs,
263 struct flow_dissector_key_ports *ports,
264 unsigned int slice_num,
265 bool mask)
266{
267 u32 reg, offset;
268
269 /* C-Tag [31:24]
270 * UDF_n_A8 [23:8]
271 * UDF_n_A7 [7:0]
272 */
273 reg = 0;
274 if (mask)
275 offset = CORE_CFP_MASK_PORT(4);
276 else
277 offset = CORE_CFP_DATA_PORT(4);
278 core_writel(priv, reg, offset);
279
280 /* UDF_n_A7 [31:24]
281 * UDF_n_A6 [23:8]
282 * UDF_n_A5 [7:0]
283 */
284 reg = be16_to_cpu(ports->dst) >> 8;
285 if (mask)
286 offset = CORE_CFP_MASK_PORT(3);
287 else
288 offset = CORE_CFP_DATA_PORT(3);
289 core_writel(priv, reg, offset);
290
291 /* UDF_n_A5 [31:24]
292 * UDF_n_A4 [23:8]
293 * UDF_n_A3 [7:0]
294 */
295 reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
296 (u32)be16_to_cpu(ports->src) << 8 |
297 (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
298 if (mask)
299 offset = CORE_CFP_MASK_PORT(2);
300 else
301 offset = CORE_CFP_DATA_PORT(2);
302 core_writel(priv, reg, offset);
303
304 /* UDF_n_A3 [31:24]
305 * UDF_n_A2 [23:8]
306 * UDF_n_A1 [7:0]
307 */
308 reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
309 (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
310 (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
311 if (mask)
312 offset = CORE_CFP_MASK_PORT(1);
313 else
314 offset = CORE_CFP_DATA_PORT(1);
315 core_writel(priv, reg, offset);
316
317 /* UDF_n_A1 [31:24]
318 * UDF_n_A0 [23:8]
319 * Reserved [7:4]
320 * Slice ID [3:2]
321 * Slice valid [1:0]
322 */
323 reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
324 (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
325 SLICE_NUM(slice_num) | SLICE_VALID;
326 if (mask)
327 offset = CORE_CFP_MASK_PORT(0);
328 else
329 offset = CORE_CFP_DATA_PORT(0);
330 core_writel(priv, reg, offset);
331}
332
333static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
334 unsigned int port_num,
335 unsigned int queue_num,
336 struct ethtool_rx_flow_spec *fs)
337{
338 struct ethtool_rx_flow_spec_input input = {};
339 const struct cfp_udf_layout *layout;
340 unsigned int slice_num, rule_index;
341 struct ethtool_rx_flow_rule *flow;
342 struct flow_match_ipv4_addrs ipv4;
343 struct flow_match_ports ports;
344 struct flow_match_ip ip;
345 u8 ip_proto, ip_frag;
346 u8 num_udf;
347 u32 reg;
348 int ret;
349
350 switch (fs->flow_type & ~FLOW_EXT) {
351 case TCP_V4_FLOW:
352 ip_proto = IPPROTO_TCP;
353 break;
354 case UDP_V4_FLOW:
355 ip_proto = IPPROTO_UDP;
356 break;
357 default:
358 return -EINVAL;
359 }
360
361 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
362
363 /* Locate the first rule available */
364 if (fs->location == RX_CLS_LOC_ANY)
365 rule_index = find_first_zero_bit(priv->cfp.used,
366 priv->num_cfp_rules);
367 else
368 rule_index = fs->location;
369
370 if (rule_index > bcm_sf2_cfp_rule_size(priv))
371 return -ENOSPC;
372
373 input.fs = fs;
374 flow = ethtool_rx_flow_rule_create(&input);
375 if (IS_ERR(flow))
376 return PTR_ERR(flow);
377
378 flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
379 flow_rule_match_ports(flow->rule, &ports);
380 flow_rule_match_ip(flow->rule, &ip);
381
382 layout = &udf_tcpip4_layout;
383 /* We only use one UDF slice for now */
384 slice_num = bcm_sf2_get_slice_number(layout, 0);
385 if (slice_num == UDF_NUM_SLICES) {
386 ret = -EINVAL;
387 goto out_err_flow_rule;
388 }
389
390 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
391
392 /* Apply the UDF layout for this filter */
393 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
394
395 /* Apply to all packets received through this port */
396 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
397
398 /* Source port map match */
399 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
400
401 /* S-Tag status [31:30]
402 * C-Tag status [29:28]
403 * L2 framing [27:26]
404 * L3 framing [25:24]
405 * IP ToS [23:16]
406 * IP proto [15:08]
407 * IP Fragm [7]
408 * Non 1st frag [6]
409 * IP Authen [5]
410 * TTL range [4:3]
411 * PPPoE session [2]
412 * Reserved [1]
413 * UDF_Valid[8] [0]
414 */
415 core_writel(priv, ip.key->tos << IPTOS_SHIFT |
416 ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
417 udf_upper_bits(num_udf),
418 CORE_CFP_DATA_PORT(6));
419
420 /* Mask with the specific layout for IPv4 packets */
421 core_writel(priv, layout->udfs[slice_num].mask_value |
422 udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
423
424 /* UDF_Valid[7:0] [31:24]
425 * S-Tag [23:8]
426 * C-Tag [7:0]
427 */
428 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
429
430 /* Mask all but valid UDFs */
431 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
432
433 /* Program the match and the mask */
434 bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
435 bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
436
437 /* Insert into TCAM now */
438 bcm_sf2_cfp_rule_addr_set(priv, rule_index);
439
440 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
441 if (ret) {
442 pr_err("TCAM entry at addr %d failed\n", rule_index);
443 goto out_err_flow_rule;
444 }
445
446 /* Insert into Action and policer RAMs now */
447 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
448 queue_num, true);
449 if (ret)
450 goto out_err_flow_rule;
451
452 /* Turn on CFP for this rule now */
453 reg = core_readl(priv, CORE_CFP_CTL_REG);
454 reg |= BIT(port);
455 core_writel(priv, reg, CORE_CFP_CTL_REG);
456
457 /* Flag the rule as being used and return it */
458 set_bit(rule_index, priv->cfp.used);
459 set_bit(rule_index, priv->cfp.unique);
460 fs->location = rule_index;
461
462 return 0;
463
464out_err_flow_rule:
465 ethtool_rx_flow_rule_destroy(flow);
466 return ret;
467}
468
469static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
470 const __be32 *ip6_addr, const __be16 port,
471 unsigned int slice_num,
472 bool mask)
473{
474 u32 reg, tmp, val, offset;
475
476 /* C-Tag [31:24]
477 * UDF_n_B8 [23:8] (port)
478 * UDF_n_B7 (upper) [7:0] (addr[15:8])
479 */
480 reg = be32_to_cpu(ip6_addr[3]);
481 val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
482 if (mask)
483 offset = CORE_CFP_MASK_PORT(4);
484 else
485 offset = CORE_CFP_DATA_PORT(4);
486 core_writel(priv, val, offset);
487
488 /* UDF_n_B7 (lower) [31:24] (addr[7:0])
489 * UDF_n_B6 [23:8] (addr[31:16])
490 * UDF_n_B5 (upper) [7:0] (addr[47:40])
491 */
492 tmp = be32_to_cpu(ip6_addr[2]);
493 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
494 ((tmp >> 8) & 0xff);
495 if (mask)
496 offset = CORE_CFP_MASK_PORT(3);
497 else
498 offset = CORE_CFP_DATA_PORT(3);
499 core_writel(priv, val, offset);
500
501 /* UDF_n_B5 (lower) [31:24] (addr[39:32])
502 * UDF_n_B4 [23:8] (addr[63:48])
503 * UDF_n_B3 (upper) [7:0] (addr[79:72])
504 */
505 reg = be32_to_cpu(ip6_addr[1]);
506 val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507 ((reg >> 8) & 0xff);
508 if (mask)
509 offset = CORE_CFP_MASK_PORT(2);
510 else
511 offset = CORE_CFP_DATA_PORT(2);
512 core_writel(priv, val, offset);
513
514 /* UDF_n_B3 (lower) [31:24] (addr[71:64])
515 * UDF_n_B2 [23:8] (addr[95:80])
516 * UDF_n_B1 (upper) [7:0] (addr[111:104])
517 */
518 tmp = be32_to_cpu(ip6_addr[0]);
519 val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
520 ((tmp >> 8) & 0xff);
521 if (mask)
522 offset = CORE_CFP_MASK_PORT(1);
523 else
524 offset = CORE_CFP_DATA_PORT(1);
525 core_writel(priv, val, offset);
526
527 /* UDF_n_B1 (lower) [31:24] (addr[103:96])
528 * UDF_n_B0 [23:8] (addr[127:112])
529 * Reserved [7:4]
530 * Slice ID [3:2]
531 * Slice valid [1:0]
532 */
533 reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
534 SLICE_NUM(slice_num) | SLICE_VALID;
535 if (mask)
536 offset = CORE_CFP_MASK_PORT(0);
537 else
538 offset = CORE_CFP_DATA_PORT(0);
539 core_writel(priv, reg, offset);
540}
541
542static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
543 int port, u32 location)
544{
545 struct cfp_rule *rule = NULL;
546
547 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
548 if (rule->port == port && rule->fs.location == location)
549 break;
550 }
551
552 return rule;
553}
554
555static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
556 struct ethtool_rx_flow_spec *fs)
557{
558 struct cfp_rule *rule = NULL;
559 size_t fs_size = 0;
560 int ret = 1;
561
562 if (list_empty(&priv->cfp.rules_list))
563 return ret;
564
565 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
566 ret = 1;
567 if (rule->port != port)
568 continue;
569
570 if (rule->fs.flow_type != fs->flow_type ||
571 rule->fs.ring_cookie != fs->ring_cookie ||
572 rule->fs.m_ext.data[0] != fs->m_ext.data[0])
573 continue;
574
575 switch (fs->flow_type & ~FLOW_EXT) {
576 case TCP_V6_FLOW:
577 case UDP_V6_FLOW:
578 fs_size = sizeof(struct ethtool_tcpip6_spec);
579 break;
580 case TCP_V4_FLOW:
581 case UDP_V4_FLOW:
582 fs_size = sizeof(struct ethtool_tcpip4_spec);
583 break;
584 default:
585 continue;
586 }
587
588 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
589 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
590 if (ret == 0)
591 break;
592 }
593
594 return ret;
595}
596
597static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
598 unsigned int port_num,
599 unsigned int queue_num,
600 struct ethtool_rx_flow_spec *fs)
601{
602 struct ethtool_rx_flow_spec_input input = {};
603 unsigned int slice_num, rule_index[2];
604 const struct cfp_udf_layout *layout;
605 struct ethtool_rx_flow_rule *flow;
606 struct flow_match_ipv6_addrs ipv6;
607 struct flow_match_ports ports;
608 u8 ip_proto, ip_frag;
609 int ret = 0;
610 u8 num_udf;
611 u32 reg;
612
613 switch (fs->flow_type & ~FLOW_EXT) {
614 case TCP_V6_FLOW:
615 ip_proto = IPPROTO_TCP;
616 break;
617 case UDP_V6_FLOW:
618 ip_proto = IPPROTO_UDP;
619 break;
620 default:
621 return -EINVAL;
622 }
623
624 ip_frag = be32_to_cpu(fs->m_ext.data[0]);
625
626 layout = &udf_tcpip6_layout;
627 slice_num = bcm_sf2_get_slice_number(layout, 0);
628 if (slice_num == UDF_NUM_SLICES)
629 return -EINVAL;
630
631 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
632
633 /* Negotiate two indexes, one for the second half which we are chained
634 * from, which is what we will return to user-space, and a second one
635 * which is used to store its first half. That first half does not
636 * allow any choice of placement, so it just needs to find the next
637 * available bit. We return the second half as fs->location because
638 * that helps with the rule lookup later on since the second half is
639 * chained from its first half, we can easily identify IPv6 CFP rules
640 * by looking whether they carry a CHAIN_ID.
641 *
642 * We also want the second half to have a lower rule_index than its
643 * first half because the HW search is by incrementing addresses.
644 */
645 if (fs->location == RX_CLS_LOC_ANY)
646 rule_index[1] = find_first_zero_bit(priv->cfp.used,
647 priv->num_cfp_rules);
648 else
649 rule_index[1] = fs->location;
650 if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
651 return -ENOSPC;
652
653 /* Flag it as used (cleared on error path) such that we can immediately
654 * obtain a second one to chain from.
655 */
656 set_bit(rule_index[1], priv->cfp.used);
657
658 rule_index[0] = find_first_zero_bit(priv->cfp.used,
659 priv->num_cfp_rules);
660 if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
661 ret = -ENOSPC;
662 goto out_err;
663 }
664
665 input.fs = fs;
666 flow = ethtool_rx_flow_rule_create(&input);
667 if (IS_ERR(flow)) {
668 ret = PTR_ERR(flow);
669 goto out_err;
670 }
671 flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
672 flow_rule_match_ports(flow->rule, &ports);
673
674 /* Apply the UDF layout for this filter */
675 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
676
677 /* Apply to all packets received through this port */
678 core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
679
680 /* Source port map match */
681 core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
682
683 /* S-Tag status [31:30]
684 * C-Tag status [29:28]
685 * L2 framing [27:26]
686 * L3 framing [25:24]
687 * IP ToS [23:16]
688 * IP proto [15:08]
689 * IP Fragm [7]
690 * Non 1st frag [6]
691 * IP Authen [5]
692 * TTL range [4:3]
693 * PPPoE session [2]
694 * Reserved [1]
695 * UDF_Valid[8] [0]
696 */
697 reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
698 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
699 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
700
701 /* Mask with the specific layout for IPv6 packets including
702 * UDF_Valid[8]
703 */
704 reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
705 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
706
707 /* UDF_Valid[7:0] [31:24]
708 * S-Tag [23:8]
709 * C-Tag [7:0]
710 */
711 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
712
713 /* Mask all but valid UDFs */
714 core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
715
716 /* Slice the IPv6 source address and port */
717 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
718 ports.key->src, slice_num, false);
719 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
720 ports.mask->src, SLICE_NUM_MASK, true);
721
722 /* Insert into TCAM now because we need to insert a second rule */
723 bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
724
725 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
726 if (ret) {
727 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
728 goto out_err_flow_rule;
729 }
730
731 /* Insert into Action and policer RAMs now */
732 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
733 queue_num, false);
734 if (ret)
735 goto out_err_flow_rule;
736
737 /* Now deal with the second slice to chain this rule */
738 slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
739 if (slice_num == UDF_NUM_SLICES) {
740 ret = -EINVAL;
741 goto out_err_flow_rule;
742 }
743
744 num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
745
746 /* Apply the UDF layout for this filter */
747 bcm_sf2_cfp_udf_set(priv, layout, slice_num);
748
749 /* Chained rule, source port match is coming from the rule we are
750 * chained from.
751 */
752 core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
753 core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
754
755 /*
756 * CHAIN ID [31:24] chain to previous slice
757 * Reserved [23:20]
758 * UDF_Valid[11:8] [19:16]
759 * UDF_Valid[7:0] [15:8]
760 * UDF_n_D11 [7:0]
761 */
762 reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
763 udf_lower_bits(num_udf) << 8;
764 core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
765
766 /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
767 reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
768 udf_lower_bits(num_udf) << 8;
769 core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
770
771 /* Don't care */
772 core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
773
774 /* Mask all */
775 core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
776
777 bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
778 ports.key->dst, slice_num, false);
779 bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
780 ports.key->dst, SLICE_NUM_MASK, true);
781
782 /* Insert into TCAM now */
783 bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
784
785 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
786 if (ret) {
787 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
788 goto out_err_flow_rule;
789 }
790
791 /* Insert into Action and policer RAMs now, set chain ID to
792 * the one we are chained to
793 */
794 ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
795 queue_num, true);
796 if (ret)
797 goto out_err_flow_rule;
798
799 /* Turn on CFP for this rule now */
800 reg = core_readl(priv, CORE_CFP_CTL_REG);
801 reg |= BIT(port);
802 core_writel(priv, reg, CORE_CFP_CTL_REG);
803
804 /* Flag the second half rule as being used now, return it as the
805 * location, and flag it as unique while dumping rules
806 */
807 set_bit(rule_index[0], priv->cfp.used);
808 set_bit(rule_index[1], priv->cfp.unique);
809 fs->location = rule_index[1];
810
811 return ret;
812
813out_err_flow_rule:
814 ethtool_rx_flow_rule_destroy(flow);
815out_err:
816 clear_bit(rule_index[1], priv->cfp.used);
817 return ret;
818}
819
820static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
821 struct ethtool_rx_flow_spec *fs)
822{
823 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
824 s8 cpu_port = ds->ports[port].cpu_dp->index;
825 __u64 ring_cookie = fs->ring_cookie;
826 unsigned int queue_num, port_num;
827 int ret;
828
829 /* This rule is a Wake-on-LAN filter and we must specifically
830 * target the CPU port in order for it to be working.
831 */
832 if (ring_cookie == RX_CLS_FLOW_WAKE)
833 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
834
835 /* We do not support discarding packets, check that the
836 * destination port is enabled and that we are within the
837 * number of ports supported by the switch
838 */
839 port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
840
841 if (ring_cookie == RX_CLS_FLOW_DISC ||
842 !(dsa_is_user_port(ds, port_num) ||
843 dsa_is_cpu_port(ds, port_num)) ||
844 port_num >= priv->hw_params.num_ports)
845 return -EINVAL;
846 /*
847 * We have a small oddity where Port 6 just does not have a
848 * valid bit here (so we substract by one).
849 */
850 queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
851 if (port_num >= 7)
852 port_num -= 1;
853
854 switch (fs->flow_type & ~FLOW_EXT) {
855 case TCP_V4_FLOW:
856 case UDP_V4_FLOW:
857 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
858 queue_num, fs);
859 break;
860 case TCP_V6_FLOW:
861 case UDP_V6_FLOW:
862 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
863 queue_num, fs);
864 break;
865 default:
866 ret = -EINVAL;
867 break;
868 }
869
870 return ret;
871}
872
873static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
874 struct ethtool_rx_flow_spec *fs)
875{
876 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
877 struct cfp_rule *rule = NULL;
878 int ret = -EINVAL;
879
880 /* Check for unsupported extensions */
881 if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
882 fs->m_ext.data[1]))
883 return -EINVAL;
884
885 if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
886 return -EINVAL;
887
888 if (fs->location != RX_CLS_LOC_ANY &&
889 test_bit(fs->location, priv->cfp.used))
890 return -EBUSY;
891
892 if (fs->location != RX_CLS_LOC_ANY &&
893 fs->location > bcm_sf2_cfp_rule_size(priv))
894 return -EINVAL;
895
896 ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
897 if (ret == 0)
898 return -EEXIST;
899
900 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
901 if (!rule)
902 return -ENOMEM;
903
904 ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
905 if (ret) {
906 kfree(rule);
907 return ret;
908 }
909
910 rule->port = port;
911 memcpy(&rule->fs, fs, sizeof(*fs));
912 list_add_tail(&rule->next, &priv->cfp.rules_list);
913
914 return ret;
915}
916
917static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
918 u32 loc, u32 *next_loc)
919{
920 int ret;
921 u32 reg;
922
923 /* Indicate which rule we want to read */
924 bcm_sf2_cfp_rule_addr_set(priv, loc);
925
926 ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
927 if (ret)
928 return ret;
929
930 /* Check if this is possibly an IPv6 rule that would
931 * indicate we need to delete its companion rule
932 * as well
933 */
934 reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
935 if (next_loc)
936 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
937
938 /* Clear its valid bits */
939 reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
940 reg &= ~SLICE_VALID;
941 core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
942
943 /* Write back this entry into the TCAM now */
944 ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
945 if (ret)
946 return ret;
947
948 clear_bit(loc, priv->cfp.used);
949 clear_bit(loc, priv->cfp.unique);
950
951 return 0;
952}
953
954static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
955 u32 loc)
956{
957 u32 next_loc = 0;
958 int ret;
959
960 ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
961 if (ret)
962 return ret;
963
964 /* If this was an IPv6 rule, delete is companion rule too */
965 if (next_loc)
966 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
967
968 return ret;
969}
970
971static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
972{
973 struct cfp_rule *rule;
974 int ret;
975
976 if (loc >= CFP_NUM_RULES)
977 return -EINVAL;
978
979 /* Refuse deleting unused rules, and those that are not unique since
980 * that could leave IPv6 rules with one of the chained rule in the
981 * table.
982 */
983 if (!test_bit(loc, priv->cfp.unique) || loc == 0)
984 return -EINVAL;
985
986 rule = bcm_sf2_cfp_rule_find(priv, port, loc);
987 if (!rule)
988 return -EINVAL;
989
990 ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
991
992 list_del(&rule->next);
993 kfree(rule);
994
995 return ret;
996}
997
998static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
999{
1000 unsigned int i;
1001
1002 for (i = 0; i < sizeof(flow->m_u); i++)
1003 flow->m_u.hdata[i] ^= 0xff;
1004
1005 flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006 flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007 flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008 flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009}
1010
1011static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012 struct ethtool_rxnfc *nfc)
1013{
1014 struct cfp_rule *rule;
1015
1016 rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017 if (!rule)
1018 return -EINVAL;
1019
1020 memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021
1022 bcm_sf2_invert_masks(&nfc->fs);
1023
1024 /* Put the TCAM size here */
1025 nfc->data = bcm_sf2_cfp_rule_size(priv);
1026
1027 return 0;
1028}
1029
1030/* We implement the search doing a TCAM search operation */
1031static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032 int port, struct ethtool_rxnfc *nfc,
1033 u32 *rule_locs)
1034{
1035 unsigned int index = 1, rules_cnt = 0;
1036
1037 for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038 rule_locs[rules_cnt] = index;
1039 rules_cnt++;
1040 }
1041
1042 /* Put the TCAM size here */
1043 nfc->data = bcm_sf2_cfp_rule_size(priv);
1044 nfc->rule_cnt = rules_cnt;
1045
1046 return 0;
1047}
1048
1049int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050 struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051{
1052 struct net_device *p = ds->ports[port].cpu_dp->master;
1053 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054 int ret = 0;
1055
1056 mutex_lock(&priv->cfp.lock);
1057
1058 switch (nfc->cmd) {
1059 case ETHTOOL_GRXCLSRLCNT:
1060 /* Subtract the default, unusable rule */
1061 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062 priv->num_cfp_rules) - 1;
1063 /* We support specifying rule locations */
1064 nfc->data |= RX_CLS_LOC_SPECIAL;
1065 break;
1066 case ETHTOOL_GRXCLSRULE:
1067 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068 break;
1069 case ETHTOOL_GRXCLSRLALL:
1070 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071 break;
1072 default:
1073 ret = -EOPNOTSUPP;
1074 break;
1075 }
1076
1077 mutex_unlock(&priv->cfp.lock);
1078
1079 if (ret)
1080 return ret;
1081
1082 /* Pass up the commands to the attached master network device */
1083 if (p->ethtool_ops->get_rxnfc) {
1084 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085 if (ret == -EOPNOTSUPP)
1086 ret = 0;
1087 }
1088
1089 return ret;
1090}
1091
1092int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093 struct ethtool_rxnfc *nfc)
1094{
1095 struct net_device *p = ds->ports[port].cpu_dp->master;
1096 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097 int ret = 0;
1098
1099 mutex_lock(&priv->cfp.lock);
1100
1101 switch (nfc->cmd) {
1102 case ETHTOOL_SRXCLSRLINS:
1103 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104 break;
1105
1106 case ETHTOOL_SRXCLSRLDEL:
1107 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108 break;
1109 default:
1110 ret = -EOPNOTSUPP;
1111 break;
1112 }
1113
1114 mutex_unlock(&priv->cfp.lock);
1115
1116 if (ret)
1117 return ret;
1118
1119 /* Pass up the commands to the attached master network device.
1120 * This can fail, so rollback the operation if we need to.
1121 */
1122 if (p->ethtool_ops->set_rxnfc) {
1123 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124 if (ret && ret != -EOPNOTSUPP) {
1125 mutex_lock(&priv->cfp.lock);
1126 bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127 mutex_unlock(&priv->cfp.lock);
1128 } else {
1129 ret = 0;
1130 }
1131 }
1132
1133 return ret;
1134}
1135
1136int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137{
1138 unsigned int timeout = 1000;
1139 u32 reg;
1140
1141 reg = core_readl(priv, CORE_CFP_ACC);
1142 reg |= TCAM_RESET;
1143 core_writel(priv, reg, CORE_CFP_ACC);
1144
1145 do {
1146 reg = core_readl(priv, CORE_CFP_ACC);
1147 if (!(reg & TCAM_RESET))
1148 break;
1149
1150 cpu_relax();
1151 } while (timeout--);
1152
1153 if (!timeout)
1154 return -ETIMEDOUT;
1155
1156 return 0;
1157}
1158
1159void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160{
1161 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162 struct cfp_rule *rule, *n;
1163
1164 if (list_empty(&priv->cfp.rules_list))
1165 return;
1166
1167 list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169}
1170
1171int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172{
1173 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174 struct cfp_rule *rule;
1175 int ret = 0;
1176 u32 reg;
1177
1178 if (list_empty(&priv->cfp.rules_list))
1179 return ret;
1180
1181 reg = core_readl(priv, CORE_CFP_CTL_REG);
1182 reg &= ~CFP_EN_MAP_MASK;
1183 core_writel(priv, reg, CORE_CFP_CTL_REG);
1184
1185 ret = bcm_sf2_cfp_rst(priv);
1186 if (ret)
1187 return ret;
1188
1189 list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191 rule->fs.location);
1192 if (ret) {
1193 dev_err(ds->dev, "failed to remove rule\n");
1194 return ret;
1195 }
1196
1197 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198 if (ret) {
1199 dev_err(ds->dev, "failed to restore rule\n");
1200 return ret;
1201 }
1202 }
1203
1204 return ret;
1205}
1206
1207static const struct bcm_sf2_cfp_stat {
1208 unsigned int offset;
1209 unsigned int ram_loc;
1210 const char *name;
1211} bcm_sf2_cfp_stats[] = {
1212 {
1213 .offset = CORE_STAT_GREEN_CNTR,
1214 .ram_loc = GREEN_STAT_RAM,
1215 .name = "Green"
1216 },
1217 {
1218 .offset = CORE_STAT_YELLOW_CNTR,
1219 .ram_loc = YELLOW_STAT_RAM,
1220 .name = "Yellow"
1221 },
1222 {
1223 .offset = CORE_STAT_RED_CNTR,
1224 .ram_loc = RED_STAT_RAM,
1225 .name = "Red"
1226 },
1227};
1228
1229void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230 u32 stringset, uint8_t *data)
1231{
1232 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234 char buf[ETH_GSTRING_LEN];
1235 unsigned int i, j, iter;
1236
1237 if (stringset != ETH_SS_STATS)
1238 return;
1239
1240 for (i = 1; i < priv->num_cfp_rules; i++) {
1241 for (j = 0; j < s; j++) {
1242 snprintf(buf, sizeof(buf),
1243 "CFP%03d_%sCntr",
1244 i, bcm_sf2_cfp_stats[j].name);
1245 iter = (i - 1) * s + j;
1246 strlcpy(data + iter * ETH_GSTRING_LEN,
1247 buf, ETH_GSTRING_LEN);
1248 }
1249 }
1250}
1251
1252void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253 uint64_t *data)
1254{
1255 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256 unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257 const struct bcm_sf2_cfp_stat *stat;
1258 unsigned int i, j, iter;
1259 struct cfp_rule *rule;
1260 int ret;
1261
1262 mutex_lock(&priv->cfp.lock);
1263 for (i = 1; i < priv->num_cfp_rules; i++) {
1264 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265 if (!rule)
1266 continue;
1267
1268 for (j = 0; j < s; j++) {
1269 stat = &bcm_sf2_cfp_stats[j];
1270
1271 bcm_sf2_cfp_rule_addr_set(priv, i);
1272 ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273 if (ret)
1274 continue;
1275
1276 iter = (i - 1) * s + j;
1277 data[iter] = core_readl(priv, stat->offset);
1278 }
1279
1280 }
1281 mutex_unlock(&priv->cfp.lock);
1282}
1283
1284int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285{
1286 struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287
1288 if (sset != ETH_SS_STATS)
1289 return 0;
1290
1291 /* 3 counters per CFP rules */
1292 return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293}