Loading...
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 */
11
12/*
13 * The MMCIF driver is now processing MMC requests asynchronously, according
14 * to the Linux MMC API requirement.
15 *
16 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
17 * data, and optional stop. To achieve asynchronous processing each of these
18 * stages is split into two halves: a top and a bottom half. The top half
19 * initialises the hardware, installs a timeout handler to handle completion
20 * timeouts, and returns. In case of the command stage this immediately returns
21 * control to the caller, leaving all further processing to run asynchronously.
22 * All further request processing is performed by the bottom halves.
23 *
24 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
25 * thread, a DMA completion callback, if DMA is used, a timeout work, and
26 * request- and stage-specific handler methods.
27 *
28 * Each bottom half run begins with either a hardware interrupt, a DMA callback
29 * invocation, or a timeout work run. In case of an error or a successful
30 * processing completion, the MMC core is informed and the request processing is
31 * finished. In case processing has to continue, i.e., if data has to be read
32 * from or written to the card, or if a stop command has to be sent, the next
33 * top half is called, which performs the necessary hardware handling and
34 * reschedules the timeout work. This returns the driver state machine into the
35 * bottom half waiting state.
36 */
37
38#include <linux/bitops.h>
39#include <linux/clk.h>
40#include <linux/completion.h>
41#include <linux/delay.h>
42#include <linux/dma-mapping.h>
43#include <linux/dmaengine.h>
44#include <linux/mmc/card.h>
45#include <linux/mmc/core.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sdio.h>
49#include <linux/mmc/sh_mmcif.h>
50#include <linux/mmc/slot-gpio.h>
51#include <linux/mod_devicetable.h>
52#include <linux/mutex.h>
53#include <linux/of_device.h>
54#include <linux/pagemap.h>
55#include <linux/platform_device.h>
56#include <linux/pm_qos.h>
57#include <linux/pm_runtime.h>
58#include <linux/sh_dma.h>
59#include <linux/spinlock.h>
60#include <linux/module.h>
61
62#define DRIVER_NAME "sh_mmcif"
63
64/* CE_CMD_SET */
65#define CMD_MASK 0x3f000000
66#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
67#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
68#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
69#define CMD_SET_RBSY (1 << 21) /* R1b */
70#define CMD_SET_CCSEN (1 << 20)
71#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
72#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
73#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
74#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
75#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
76#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
77#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
78#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
79#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
80#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
81#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
82#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
83#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
84#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
85#define CMD_SET_CCSH (1 << 5)
86#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
87#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
88#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
89#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
90
91/* CE_CMD_CTRL */
92#define CMD_CTRL_BREAK (1 << 0)
93
94/* CE_BLOCK_SET */
95#define BLOCK_SIZE_MASK 0x0000ffff
96
97/* CE_INT */
98#define INT_CCSDE (1 << 29)
99#define INT_CMD12DRE (1 << 26)
100#define INT_CMD12RBE (1 << 25)
101#define INT_CMD12CRE (1 << 24)
102#define INT_DTRANE (1 << 23)
103#define INT_BUFRE (1 << 22)
104#define INT_BUFWEN (1 << 21)
105#define INT_BUFREN (1 << 20)
106#define INT_CCSRCV (1 << 19)
107#define INT_RBSYE (1 << 17)
108#define INT_CRSPE (1 << 16)
109#define INT_CMDVIO (1 << 15)
110#define INT_BUFVIO (1 << 14)
111#define INT_WDATERR (1 << 11)
112#define INT_RDATERR (1 << 10)
113#define INT_RIDXERR (1 << 9)
114#define INT_RSPERR (1 << 8)
115#define INT_CCSTO (1 << 5)
116#define INT_CRCSTO (1 << 4)
117#define INT_WDATTO (1 << 3)
118#define INT_RDATTO (1 << 2)
119#define INT_RBSYTO (1 << 1)
120#define INT_RSPTO (1 << 0)
121#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
122 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
123 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
124 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
125
126#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
127 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
128 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
129
130#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
131
132/* CE_INT_MASK */
133#define MASK_ALL 0x00000000
134#define MASK_MCCSDE (1 << 29)
135#define MASK_MCMD12DRE (1 << 26)
136#define MASK_MCMD12RBE (1 << 25)
137#define MASK_MCMD12CRE (1 << 24)
138#define MASK_MDTRANE (1 << 23)
139#define MASK_MBUFRE (1 << 22)
140#define MASK_MBUFWEN (1 << 21)
141#define MASK_MBUFREN (1 << 20)
142#define MASK_MCCSRCV (1 << 19)
143#define MASK_MRBSYE (1 << 17)
144#define MASK_MCRSPE (1 << 16)
145#define MASK_MCMDVIO (1 << 15)
146#define MASK_MBUFVIO (1 << 14)
147#define MASK_MWDATERR (1 << 11)
148#define MASK_MRDATERR (1 << 10)
149#define MASK_MRIDXERR (1 << 9)
150#define MASK_MRSPERR (1 << 8)
151#define MASK_MCCSTO (1 << 5)
152#define MASK_MCRCSTO (1 << 4)
153#define MASK_MWDATTO (1 << 3)
154#define MASK_MRDATTO (1 << 2)
155#define MASK_MRBSYTO (1 << 1)
156#define MASK_MRSPTO (1 << 0)
157
158#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
159 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
160 MASK_MCRCSTO | MASK_MWDATTO | \
161 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
162
163#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
164 MASK_MBUFREN | MASK_MBUFWEN | \
165 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
166 MASK_MCMD12RBE | MASK_MCMD12CRE)
167
168/* CE_HOST_STS1 */
169#define STS1_CMDSEQ (1 << 31)
170
171/* CE_HOST_STS2 */
172#define STS2_CRCSTE (1 << 31)
173#define STS2_CRC16E (1 << 30)
174#define STS2_AC12CRCE (1 << 29)
175#define STS2_RSPCRC7E (1 << 28)
176#define STS2_CRCSTEBE (1 << 27)
177#define STS2_RDATEBE (1 << 26)
178#define STS2_AC12REBE (1 << 25)
179#define STS2_RSPEBE (1 << 24)
180#define STS2_AC12IDXE (1 << 23)
181#define STS2_RSPIDXE (1 << 22)
182#define STS2_CCSTO (1 << 15)
183#define STS2_RDATTO (1 << 14)
184#define STS2_DATBSYTO (1 << 13)
185#define STS2_CRCSTTO (1 << 12)
186#define STS2_AC12BSYTO (1 << 11)
187#define STS2_RSPBSYTO (1 << 10)
188#define STS2_AC12RSPTO (1 << 9)
189#define STS2_RSPTO (1 << 8)
190#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
191 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
192#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
193 STS2_DATBSYTO | STS2_CRCSTTO | \
194 STS2_AC12BSYTO | STS2_RSPBSYTO | \
195 STS2_AC12RSPTO | STS2_RSPTO)
196
197#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
198#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
199#define CLKDEV_INIT 400000 /* 400 KHz */
200
201enum sh_mmcif_state {
202 STATE_IDLE,
203 STATE_REQUEST,
204 STATE_IOS,
205 STATE_TIMEOUT,
206};
207
208enum sh_mmcif_wait_for {
209 MMCIF_WAIT_FOR_REQUEST,
210 MMCIF_WAIT_FOR_CMD,
211 MMCIF_WAIT_FOR_MREAD,
212 MMCIF_WAIT_FOR_MWRITE,
213 MMCIF_WAIT_FOR_READ,
214 MMCIF_WAIT_FOR_WRITE,
215 MMCIF_WAIT_FOR_READ_END,
216 MMCIF_WAIT_FOR_WRITE_END,
217 MMCIF_WAIT_FOR_STOP,
218};
219
220/*
221 * difference for each SoC
222 */
223struct sh_mmcif_host {
224 struct mmc_host *mmc;
225 struct mmc_request *mrq;
226 struct platform_device *pd;
227 struct clk *clk;
228 int bus_width;
229 unsigned char timing;
230 bool sd_error;
231 bool dying;
232 long timeout;
233 void __iomem *addr;
234 u32 *pio_ptr;
235 spinlock_t lock; /* protect sh_mmcif_host::state */
236 enum sh_mmcif_state state;
237 enum sh_mmcif_wait_for wait_for;
238 struct delayed_work timeout_work;
239 size_t blocksize;
240 int sg_idx;
241 int sg_blkidx;
242 bool power;
243 bool ccs_enable; /* Command Completion Signal support */
244 bool clk_ctrl2_enable;
245 struct mutex thread_lock;
246 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
247
248 /* DMA support */
249 struct dma_chan *chan_rx;
250 struct dma_chan *chan_tx;
251 struct completion dma_complete;
252 bool dma_active;
253};
254
255static const struct of_device_id sh_mmcif_of_match[] = {
256 { .compatible = "renesas,sh-mmcif" },
257 { }
258};
259MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
260
261#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
262
263static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
264 unsigned int reg, u32 val)
265{
266 writel(val | readl(host->addr + reg), host->addr + reg);
267}
268
269static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
270 unsigned int reg, u32 val)
271{
272 writel(~val & readl(host->addr + reg), host->addr + reg);
273}
274
275static void sh_mmcif_dma_complete(void *arg)
276{
277 struct sh_mmcif_host *host = arg;
278 struct mmc_request *mrq = host->mrq;
279 struct device *dev = sh_mmcif_host_to_dev(host);
280
281 dev_dbg(dev, "Command completed\n");
282
283 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
284 dev_name(dev)))
285 return;
286
287 complete(&host->dma_complete);
288}
289
290static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
291{
292 struct mmc_data *data = host->mrq->data;
293 struct scatterlist *sg = data->sg;
294 struct dma_async_tx_descriptor *desc = NULL;
295 struct dma_chan *chan = host->chan_rx;
296 struct device *dev = sh_mmcif_host_to_dev(host);
297 dma_cookie_t cookie = -EINVAL;
298 int ret;
299
300 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
301 DMA_FROM_DEVICE);
302 if (ret > 0) {
303 host->dma_active = true;
304 desc = dmaengine_prep_slave_sg(chan, sg, ret,
305 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
306 }
307
308 if (desc) {
309 desc->callback = sh_mmcif_dma_complete;
310 desc->callback_param = host;
311 cookie = dmaengine_submit(desc);
312 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
313 dma_async_issue_pending(chan);
314 }
315 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
316 __func__, data->sg_len, ret, cookie);
317
318 if (!desc) {
319 /* DMA failed, fall back to PIO */
320 if (ret >= 0)
321 ret = -EIO;
322 host->chan_rx = NULL;
323 host->dma_active = false;
324 dma_release_channel(chan);
325 /* Free the Tx channel too */
326 chan = host->chan_tx;
327 if (chan) {
328 host->chan_tx = NULL;
329 dma_release_channel(chan);
330 }
331 dev_warn(dev,
332 "DMA failed: %d, falling back to PIO\n", ret);
333 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
334 }
335
336 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
337 desc, cookie, data->sg_len);
338}
339
340static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
341{
342 struct mmc_data *data = host->mrq->data;
343 struct scatterlist *sg = data->sg;
344 struct dma_async_tx_descriptor *desc = NULL;
345 struct dma_chan *chan = host->chan_tx;
346 struct device *dev = sh_mmcif_host_to_dev(host);
347 dma_cookie_t cookie = -EINVAL;
348 int ret;
349
350 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
351 DMA_TO_DEVICE);
352 if (ret > 0) {
353 host->dma_active = true;
354 desc = dmaengine_prep_slave_sg(chan, sg, ret,
355 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
356 }
357
358 if (desc) {
359 desc->callback = sh_mmcif_dma_complete;
360 desc->callback_param = host;
361 cookie = dmaengine_submit(desc);
362 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
363 dma_async_issue_pending(chan);
364 }
365 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
366 __func__, data->sg_len, ret, cookie);
367
368 if (!desc) {
369 /* DMA failed, fall back to PIO */
370 if (ret >= 0)
371 ret = -EIO;
372 host->chan_tx = NULL;
373 host->dma_active = false;
374 dma_release_channel(chan);
375 /* Free the Rx channel too */
376 chan = host->chan_rx;
377 if (chan) {
378 host->chan_rx = NULL;
379 dma_release_channel(chan);
380 }
381 dev_warn(dev,
382 "DMA failed: %d, falling back to PIO\n", ret);
383 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
384 }
385
386 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
387 desc, cookie);
388}
389
390static struct dma_chan *
391sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
392{
393 dma_cap_mask_t mask;
394
395 dma_cap_zero(mask);
396 dma_cap_set(DMA_SLAVE, mask);
397 if (slave_id <= 0)
398 return NULL;
399
400 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
401}
402
403static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
404 struct dma_chan *chan,
405 enum dma_transfer_direction direction)
406{
407 struct resource *res;
408 struct dma_slave_config cfg = { 0, };
409
410 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
411 cfg.direction = direction;
412
413 if (direction == DMA_DEV_TO_MEM) {
414 cfg.src_addr = res->start + MMCIF_CE_DATA;
415 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 } else {
417 cfg.dst_addr = res->start + MMCIF_CE_DATA;
418 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
419 }
420
421 return dmaengine_slave_config(chan, &cfg);
422}
423
424static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
425{
426 struct device *dev = sh_mmcif_host_to_dev(host);
427 host->dma_active = false;
428
429 /* We can only either use DMA for both Tx and Rx or not use it at all */
430 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
431 struct sh_mmcif_plat_data *pdata = dev->platform_data;
432
433 host->chan_tx = sh_mmcif_request_dma_pdata(host,
434 pdata->slave_id_tx);
435 host->chan_rx = sh_mmcif_request_dma_pdata(host,
436 pdata->slave_id_rx);
437 } else {
438 host->chan_tx = dma_request_slave_channel(dev, "tx");
439 host->chan_rx = dma_request_slave_channel(dev, "rx");
440 }
441 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
442 host->chan_rx);
443
444 if (!host->chan_tx || !host->chan_rx ||
445 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
446 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
447 goto error;
448
449 return;
450
451error:
452 if (host->chan_tx)
453 dma_release_channel(host->chan_tx);
454 if (host->chan_rx)
455 dma_release_channel(host->chan_rx);
456 host->chan_tx = host->chan_rx = NULL;
457}
458
459static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460{
461 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462 /* Descriptors are freed automatically */
463 if (host->chan_tx) {
464 struct dma_chan *chan = host->chan_tx;
465 host->chan_tx = NULL;
466 dma_release_channel(chan);
467 }
468 if (host->chan_rx) {
469 struct dma_chan *chan = host->chan_rx;
470 host->chan_rx = NULL;
471 dma_release_channel(chan);
472 }
473
474 host->dma_active = false;
475}
476
477static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478{
479 struct device *dev = sh_mmcif_host_to_dev(host);
480 struct sh_mmcif_plat_data *p = dev->platform_data;
481 bool sup_pclk = p ? p->sup_pclk : false;
482 unsigned int current_clk = clk_get_rate(host->clk);
483 unsigned int clkdiv;
484
485 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
487
488 if (!clk)
489 return;
490
491 if (host->clkdiv_map) {
492 unsigned int freq, best_freq, myclk, div, diff_min, diff;
493 int i;
494
495 clkdiv = 0;
496 diff_min = ~0;
497 best_freq = 0;
498 for (i = 31; i >= 0; i--) {
499 if (!((1 << i) & host->clkdiv_map))
500 continue;
501
502 /*
503 * clk = parent_freq / div
504 * -> parent_freq = clk x div
505 */
506
507 div = 1 << (i + 1);
508 freq = clk_round_rate(host->clk, clk * div);
509 myclk = freq / div;
510 diff = (myclk > clk) ? myclk - clk : clk - myclk;
511
512 if (diff <= diff_min) {
513 best_freq = freq;
514 clkdiv = i;
515 diff_min = diff;
516 }
517 }
518
519 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
520 (best_freq / (1 << (clkdiv + 1))), clk,
521 best_freq, clkdiv);
522
523 clk_set_rate(host->clk, best_freq);
524 clkdiv = clkdiv << 16;
525 } else if (sup_pclk && clk == current_clk) {
526 clkdiv = CLK_SUP_PCLK;
527 } else {
528 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
529 }
530
531 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
533}
534
535static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
536{
537 u32 tmp;
538
539 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
540
541 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543 if (host->ccs_enable)
544 tmp |= SCCSTO_29;
545 if (host->clk_ctrl2_enable)
546 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549 /* byte swap on */
550 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
551}
552
553static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
554{
555 struct device *dev = sh_mmcif_host_to_dev(host);
556 u32 state1, state2;
557 int ret, timeout;
558
559 host->sd_error = false;
560
561 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
565
566 if (state1 & STS1_CMDSEQ) {
567 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569 for (timeout = 10000; timeout; timeout--) {
570 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571 & STS1_CMDSEQ))
572 break;
573 mdelay(1);
574 }
575 if (!timeout) {
576 dev_err(dev,
577 "Forced end of command sequence timeout err\n");
578 return -EIO;
579 }
580 sh_mmcif_sync_reset(host);
581 dev_dbg(dev, "Forced end of command sequence\n");
582 return -EIO;
583 }
584
585 if (state2 & STS2_CRC_ERR) {
586 dev_err(dev, " CRC error: state %u, wait %u\n",
587 host->state, host->wait_for);
588 ret = -EIO;
589 } else if (state2 & STS2_TIMEOUT_ERR) {
590 dev_err(dev, " Timeout: state %u, wait %u\n",
591 host->state, host->wait_for);
592 ret = -ETIMEDOUT;
593 } else {
594 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595 host->state, host->wait_for);
596 ret = -EIO;
597 }
598 return ret;
599}
600
601static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
602{
603 struct mmc_data *data = host->mrq->data;
604
605 host->sg_blkidx += host->blocksize;
606
607 /* data->sg->length must be a multiple of host->blocksize? */
608 BUG_ON(host->sg_blkidx > data->sg->length);
609
610 if (host->sg_blkidx == data->sg->length) {
611 host->sg_blkidx = 0;
612 if (++host->sg_idx < data->sg_len)
613 host->pio_ptr = sg_virt(++data->sg);
614 } else {
615 host->pio_ptr = p;
616 }
617
618 return host->sg_idx != data->sg_len;
619}
620
621static void sh_mmcif_single_read(struct sh_mmcif_host *host,
622 struct mmc_request *mrq)
623{
624 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625 BLOCK_SIZE_MASK) + 3;
626
627 host->wait_for = MMCIF_WAIT_FOR_READ;
628
629 /* buf read enable */
630 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
631}
632
633static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
634{
635 struct device *dev = sh_mmcif_host_to_dev(host);
636 struct mmc_data *data = host->mrq->data;
637 u32 *p = sg_virt(data->sg);
638 int i;
639
640 if (host->sd_error) {
641 data->error = sh_mmcif_error_manage(host);
642 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
643 return false;
644 }
645
646 for (i = 0; i < host->blocksize / 4; i++)
647 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
648
649 /* buffer read end */
650 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
651 host->wait_for = MMCIF_WAIT_FOR_READ_END;
652
653 return true;
654}
655
656static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
657 struct mmc_request *mrq)
658{
659 struct mmc_data *data = mrq->data;
660
661 if (!data->sg_len || !data->sg->length)
662 return;
663
664 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
665 BLOCK_SIZE_MASK;
666
667 host->wait_for = MMCIF_WAIT_FOR_MREAD;
668 host->sg_idx = 0;
669 host->sg_blkidx = 0;
670 host->pio_ptr = sg_virt(data->sg);
671
672 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
673}
674
675static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
676{
677 struct device *dev = sh_mmcif_host_to_dev(host);
678 struct mmc_data *data = host->mrq->data;
679 u32 *p = host->pio_ptr;
680 int i;
681
682 if (host->sd_error) {
683 data->error = sh_mmcif_error_manage(host);
684 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
685 return false;
686 }
687
688 BUG_ON(!data->sg->length);
689
690 for (i = 0; i < host->blocksize / 4; i++)
691 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
692
693 if (!sh_mmcif_next_block(host, p))
694 return false;
695
696 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
697
698 return true;
699}
700
701static void sh_mmcif_single_write(struct sh_mmcif_host *host,
702 struct mmc_request *mrq)
703{
704 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
705 BLOCK_SIZE_MASK) + 3;
706
707 host->wait_for = MMCIF_WAIT_FOR_WRITE;
708
709 /* buf write enable */
710 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711}
712
713static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
714{
715 struct device *dev = sh_mmcif_host_to_dev(host);
716 struct mmc_data *data = host->mrq->data;
717 u32 *p = sg_virt(data->sg);
718 int i;
719
720 if (host->sd_error) {
721 data->error = sh_mmcif_error_manage(host);
722 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
723 return false;
724 }
725
726 for (i = 0; i < host->blocksize / 4; i++)
727 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
728
729 /* buffer write end */
730 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
731 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
732
733 return true;
734}
735
736static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
737 struct mmc_request *mrq)
738{
739 struct mmc_data *data = mrq->data;
740
741 if (!data->sg_len || !data->sg->length)
742 return;
743
744 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
745 BLOCK_SIZE_MASK;
746
747 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
748 host->sg_idx = 0;
749 host->sg_blkidx = 0;
750 host->pio_ptr = sg_virt(data->sg);
751
752 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
753}
754
755static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
756{
757 struct device *dev = sh_mmcif_host_to_dev(host);
758 struct mmc_data *data = host->mrq->data;
759 u32 *p = host->pio_ptr;
760 int i;
761
762 if (host->sd_error) {
763 data->error = sh_mmcif_error_manage(host);
764 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
765 return false;
766 }
767
768 BUG_ON(!data->sg->length);
769
770 for (i = 0; i < host->blocksize / 4; i++)
771 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
772
773 if (!sh_mmcif_next_block(host, p))
774 return false;
775
776 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
777
778 return true;
779}
780
781static void sh_mmcif_get_response(struct sh_mmcif_host *host,
782 struct mmc_command *cmd)
783{
784 if (cmd->flags & MMC_RSP_136) {
785 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
786 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
787 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
788 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
789 } else
790 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
791}
792
793static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
794 struct mmc_command *cmd)
795{
796 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
797}
798
799static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
800 struct mmc_request *mrq)
801{
802 struct device *dev = sh_mmcif_host_to_dev(host);
803 struct mmc_data *data = mrq->data;
804 struct mmc_command *cmd = mrq->cmd;
805 u32 opc = cmd->opcode;
806 u32 tmp = 0;
807
808 /* Response Type check */
809 switch (mmc_resp_type(cmd)) {
810 case MMC_RSP_NONE:
811 tmp |= CMD_SET_RTYP_NO;
812 break;
813 case MMC_RSP_R1:
814 case MMC_RSP_R3:
815 tmp |= CMD_SET_RTYP_6B;
816 break;
817 case MMC_RSP_R1B:
818 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
819 break;
820 case MMC_RSP_R2:
821 tmp |= CMD_SET_RTYP_17B;
822 break;
823 default:
824 dev_err(dev, "Unsupported response type.\n");
825 break;
826 }
827
828 /* WDAT / DATW */
829 if (data) {
830 tmp |= CMD_SET_WDAT;
831 switch (host->bus_width) {
832 case MMC_BUS_WIDTH_1:
833 tmp |= CMD_SET_DATW_1;
834 break;
835 case MMC_BUS_WIDTH_4:
836 tmp |= CMD_SET_DATW_4;
837 break;
838 case MMC_BUS_WIDTH_8:
839 tmp |= CMD_SET_DATW_8;
840 break;
841 default:
842 dev_err(dev, "Unsupported bus width.\n");
843 break;
844 }
845 switch (host->timing) {
846 case MMC_TIMING_MMC_DDR52:
847 /*
848 * MMC core will only set this timing, if the host
849 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
850 * capability. MMCIF implementations with this
851 * capability, e.g. sh73a0, will have to set it
852 * in their platform data.
853 */
854 tmp |= CMD_SET_DARS;
855 break;
856 }
857 }
858 /* DWEN */
859 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
860 tmp |= CMD_SET_DWEN;
861 /* CMLTE/CMD12EN */
862 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
863 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
864 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
865 data->blocks << 16);
866 }
867 /* RIDXC[1:0] check bits */
868 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
869 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
870 tmp |= CMD_SET_RIDXC_BITS;
871 /* RCRC7C[1:0] check bits */
872 if (opc == MMC_SEND_OP_COND)
873 tmp |= CMD_SET_CRC7C_BITS;
874 /* RCRC7C[1:0] internal CRC7 */
875 if (opc == MMC_ALL_SEND_CID ||
876 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
877 tmp |= CMD_SET_CRC7C_INTERNAL;
878
879 return (opc << 24) | tmp;
880}
881
882static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
883 struct mmc_request *mrq, u32 opc)
884{
885 struct device *dev = sh_mmcif_host_to_dev(host);
886
887 switch (opc) {
888 case MMC_READ_MULTIPLE_BLOCK:
889 sh_mmcif_multi_read(host, mrq);
890 return 0;
891 case MMC_WRITE_MULTIPLE_BLOCK:
892 sh_mmcif_multi_write(host, mrq);
893 return 0;
894 case MMC_WRITE_BLOCK:
895 sh_mmcif_single_write(host, mrq);
896 return 0;
897 case MMC_READ_SINGLE_BLOCK:
898 case MMC_SEND_EXT_CSD:
899 sh_mmcif_single_read(host, mrq);
900 return 0;
901 default:
902 dev_err(dev, "Unsupported CMD%d\n", opc);
903 return -EINVAL;
904 }
905}
906
907static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
908 struct mmc_request *mrq)
909{
910 struct mmc_command *cmd = mrq->cmd;
911 u32 opc;
912 u32 mask = 0;
913 unsigned long flags;
914
915 if (cmd->flags & MMC_RSP_BUSY)
916 mask = MASK_START_CMD | MASK_MRBSYE;
917 else
918 mask = MASK_START_CMD | MASK_MCRSPE;
919
920 if (host->ccs_enable)
921 mask |= MASK_MCCSTO;
922
923 if (mrq->data) {
924 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
925 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
926 mrq->data->blksz);
927 }
928 opc = sh_mmcif_set_cmd(host, mrq);
929
930 if (host->ccs_enable)
931 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
932 else
933 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
934 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
935 /* set arg */
936 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
937 /* set cmd */
938 spin_lock_irqsave(&host->lock, flags);
939 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
940
941 host->wait_for = MMCIF_WAIT_FOR_CMD;
942 schedule_delayed_work(&host->timeout_work, host->timeout);
943 spin_unlock_irqrestore(&host->lock, flags);
944}
945
946static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
947 struct mmc_request *mrq)
948{
949 struct device *dev = sh_mmcif_host_to_dev(host);
950
951 switch (mrq->cmd->opcode) {
952 case MMC_READ_MULTIPLE_BLOCK:
953 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
954 break;
955 case MMC_WRITE_MULTIPLE_BLOCK:
956 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
957 break;
958 default:
959 dev_err(dev, "unsupported stop cmd\n");
960 mrq->stop->error = sh_mmcif_error_manage(host);
961 return;
962 }
963
964 host->wait_for = MMCIF_WAIT_FOR_STOP;
965}
966
967static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
968{
969 struct sh_mmcif_host *host = mmc_priv(mmc);
970 struct device *dev = sh_mmcif_host_to_dev(host);
971 unsigned long flags;
972
973 spin_lock_irqsave(&host->lock, flags);
974 if (host->state != STATE_IDLE) {
975 dev_dbg(dev, "%s() rejected, state %u\n",
976 __func__, host->state);
977 spin_unlock_irqrestore(&host->lock, flags);
978 mrq->cmd->error = -EAGAIN;
979 mmc_request_done(mmc, mrq);
980 return;
981 }
982
983 host->state = STATE_REQUEST;
984 spin_unlock_irqrestore(&host->lock, flags);
985
986 host->mrq = mrq;
987
988 sh_mmcif_start_cmd(host, mrq);
989}
990
991static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
992{
993 struct device *dev = sh_mmcif_host_to_dev(host);
994
995 if (host->mmc->f_max) {
996 unsigned int f_max, f_min = 0, f_min_old;
997
998 f_max = host->mmc->f_max;
999 for (f_min_old = f_max; f_min_old > 2;) {
1000 f_min = clk_round_rate(host->clk, f_min_old / 2);
1001 if (f_min == f_min_old)
1002 break;
1003 f_min_old = f_min;
1004 }
1005
1006 /*
1007 * This driver assumes this SoC is R-Car Gen2 or later
1008 */
1009 host->clkdiv_map = 0x3ff;
1010
1011 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1012 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1013 } else {
1014 unsigned int clk = clk_get_rate(host->clk);
1015
1016 host->mmc->f_max = clk / 2;
1017 host->mmc->f_min = clk / 512;
1018 }
1019
1020 dev_dbg(dev, "clk max/min = %d/%d\n",
1021 host->mmc->f_max, host->mmc->f_min);
1022}
1023
1024static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1025{
1026 struct sh_mmcif_host *host = mmc_priv(mmc);
1027 struct device *dev = sh_mmcif_host_to_dev(host);
1028 unsigned long flags;
1029
1030 spin_lock_irqsave(&host->lock, flags);
1031 if (host->state != STATE_IDLE) {
1032 dev_dbg(dev, "%s() rejected, state %u\n",
1033 __func__, host->state);
1034 spin_unlock_irqrestore(&host->lock, flags);
1035 return;
1036 }
1037
1038 host->state = STATE_IOS;
1039 spin_unlock_irqrestore(&host->lock, flags);
1040
1041 switch (ios->power_mode) {
1042 case MMC_POWER_UP:
1043 if (!IS_ERR(mmc->supply.vmmc))
1044 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1045 if (!host->power) {
1046 clk_prepare_enable(host->clk);
1047 pm_runtime_get_sync(dev);
1048 sh_mmcif_sync_reset(host);
1049 sh_mmcif_request_dma(host);
1050 host->power = true;
1051 }
1052 break;
1053 case MMC_POWER_OFF:
1054 if (!IS_ERR(mmc->supply.vmmc))
1055 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1056 if (host->power) {
1057 sh_mmcif_clock_control(host, 0);
1058 sh_mmcif_release_dma(host);
1059 pm_runtime_put(dev);
1060 clk_disable_unprepare(host->clk);
1061 host->power = false;
1062 }
1063 break;
1064 case MMC_POWER_ON:
1065 sh_mmcif_clock_control(host, ios->clock);
1066 break;
1067 }
1068
1069 host->timing = ios->timing;
1070 host->bus_width = ios->bus_width;
1071 host->state = STATE_IDLE;
1072}
1073
1074static const struct mmc_host_ops sh_mmcif_ops = {
1075 .request = sh_mmcif_request,
1076 .set_ios = sh_mmcif_set_ios,
1077 .get_cd = mmc_gpio_get_cd,
1078};
1079
1080static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1081{
1082 struct mmc_command *cmd = host->mrq->cmd;
1083 struct mmc_data *data = host->mrq->data;
1084 struct device *dev = sh_mmcif_host_to_dev(host);
1085 long time;
1086
1087 if (host->sd_error) {
1088 switch (cmd->opcode) {
1089 case MMC_ALL_SEND_CID:
1090 case MMC_SELECT_CARD:
1091 case MMC_APP_CMD:
1092 cmd->error = -ETIMEDOUT;
1093 break;
1094 default:
1095 cmd->error = sh_mmcif_error_manage(host);
1096 break;
1097 }
1098 dev_dbg(dev, "CMD%d error %d\n",
1099 cmd->opcode, cmd->error);
1100 host->sd_error = false;
1101 return false;
1102 }
1103 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1104 cmd->error = 0;
1105 return false;
1106 }
1107
1108 sh_mmcif_get_response(host, cmd);
1109
1110 if (!data)
1111 return false;
1112
1113 /*
1114 * Completion can be signalled from DMA callback and error, so, have to
1115 * reset here, before setting .dma_active
1116 */
1117 init_completion(&host->dma_complete);
1118
1119 if (data->flags & MMC_DATA_READ) {
1120 if (host->chan_rx)
1121 sh_mmcif_start_dma_rx(host);
1122 } else {
1123 if (host->chan_tx)
1124 sh_mmcif_start_dma_tx(host);
1125 }
1126
1127 if (!host->dma_active) {
1128 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1129 return !data->error;
1130 }
1131
1132 /* Running in the IRQ thread, can sleep */
1133 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1134 host->timeout);
1135
1136 if (data->flags & MMC_DATA_READ)
1137 dma_unmap_sg(host->chan_rx->device->dev,
1138 data->sg, data->sg_len,
1139 DMA_FROM_DEVICE);
1140 else
1141 dma_unmap_sg(host->chan_tx->device->dev,
1142 data->sg, data->sg_len,
1143 DMA_TO_DEVICE);
1144
1145 if (host->sd_error) {
1146 dev_err(host->mmc->parent,
1147 "Error IRQ while waiting for DMA completion!\n");
1148 /* Woken up by an error IRQ: abort DMA */
1149 data->error = sh_mmcif_error_manage(host);
1150 } else if (!time) {
1151 dev_err(host->mmc->parent, "DMA timeout!\n");
1152 data->error = -ETIMEDOUT;
1153 } else if (time < 0) {
1154 dev_err(host->mmc->parent,
1155 "wait_for_completion_...() error %ld!\n", time);
1156 data->error = time;
1157 }
1158 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1159 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1160 host->dma_active = false;
1161
1162 if (data->error) {
1163 data->bytes_xfered = 0;
1164 /* Abort DMA */
1165 if (data->flags & MMC_DATA_READ)
1166 dmaengine_terminate_all(host->chan_rx);
1167 else
1168 dmaengine_terminate_all(host->chan_tx);
1169 }
1170
1171 return false;
1172}
1173
1174static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1175{
1176 struct sh_mmcif_host *host = dev_id;
1177 struct mmc_request *mrq;
1178 struct device *dev = sh_mmcif_host_to_dev(host);
1179 bool wait = false;
1180 unsigned long flags;
1181 int wait_work;
1182
1183 spin_lock_irqsave(&host->lock, flags);
1184 wait_work = host->wait_for;
1185 spin_unlock_irqrestore(&host->lock, flags);
1186
1187 cancel_delayed_work_sync(&host->timeout_work);
1188
1189 mutex_lock(&host->thread_lock);
1190
1191 mrq = host->mrq;
1192 if (!mrq) {
1193 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194 host->state, host->wait_for);
1195 mutex_unlock(&host->thread_lock);
1196 return IRQ_HANDLED;
1197 }
1198
1199 /*
1200 * All handlers return true, if processing continues, and false, if the
1201 * request has to be completed - successfully or not
1202 */
1203 switch (wait_work) {
1204 case MMCIF_WAIT_FOR_REQUEST:
1205 /* We're too late, the timeout has already kicked in */
1206 mutex_unlock(&host->thread_lock);
1207 return IRQ_HANDLED;
1208 case MMCIF_WAIT_FOR_CMD:
1209 /* Wait for data? */
1210 wait = sh_mmcif_end_cmd(host);
1211 break;
1212 case MMCIF_WAIT_FOR_MREAD:
1213 /* Wait for more data? */
1214 wait = sh_mmcif_mread_block(host);
1215 break;
1216 case MMCIF_WAIT_FOR_READ:
1217 /* Wait for data end? */
1218 wait = sh_mmcif_read_block(host);
1219 break;
1220 case MMCIF_WAIT_FOR_MWRITE:
1221 /* Wait data to write? */
1222 wait = sh_mmcif_mwrite_block(host);
1223 break;
1224 case MMCIF_WAIT_FOR_WRITE:
1225 /* Wait for data end? */
1226 wait = sh_mmcif_write_block(host);
1227 break;
1228 case MMCIF_WAIT_FOR_STOP:
1229 if (host->sd_error) {
1230 mrq->stop->error = sh_mmcif_error_manage(host);
1231 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1232 break;
1233 }
1234 sh_mmcif_get_cmd12response(host, mrq->stop);
1235 mrq->stop->error = 0;
1236 break;
1237 case MMCIF_WAIT_FOR_READ_END:
1238 case MMCIF_WAIT_FOR_WRITE_END:
1239 if (host->sd_error) {
1240 mrq->data->error = sh_mmcif_error_manage(host);
1241 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1242 }
1243 break;
1244 default:
1245 BUG();
1246 }
1247
1248 if (wait) {
1249 schedule_delayed_work(&host->timeout_work, host->timeout);
1250 /* Wait for more data */
1251 mutex_unlock(&host->thread_lock);
1252 return IRQ_HANDLED;
1253 }
1254
1255 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1256 struct mmc_data *data = mrq->data;
1257 if (!mrq->cmd->error && data && !data->error)
1258 data->bytes_xfered =
1259 data->blocks * data->blksz;
1260
1261 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1262 sh_mmcif_stop_cmd(host, mrq);
1263 if (!mrq->stop->error) {
1264 schedule_delayed_work(&host->timeout_work, host->timeout);
1265 mutex_unlock(&host->thread_lock);
1266 return IRQ_HANDLED;
1267 }
1268 }
1269 }
1270
1271 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1272 host->state = STATE_IDLE;
1273 host->mrq = NULL;
1274 mmc_request_done(host->mmc, mrq);
1275
1276 mutex_unlock(&host->thread_lock);
1277
1278 return IRQ_HANDLED;
1279}
1280
1281static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1282{
1283 struct sh_mmcif_host *host = dev_id;
1284 struct device *dev = sh_mmcif_host_to_dev(host);
1285 u32 state, mask;
1286
1287 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1288 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1289 if (host->ccs_enable)
1290 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1291 else
1292 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1293 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1294
1295 if (state & ~MASK_CLEAN)
1296 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1297 state);
1298
1299 if (state & INT_ERR_STS || state & ~INT_ALL) {
1300 host->sd_error = true;
1301 dev_dbg(dev, "int err state = 0x%08x\n", state);
1302 }
1303 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1304 if (!host->mrq)
1305 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1306 if (!host->dma_active)
1307 return IRQ_WAKE_THREAD;
1308 else if (host->sd_error)
1309 sh_mmcif_dma_complete(host);
1310 } else {
1311 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1312 }
1313
1314 return IRQ_HANDLED;
1315}
1316
1317static void sh_mmcif_timeout_work(struct work_struct *work)
1318{
1319 struct delayed_work *d = to_delayed_work(work);
1320 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1321 struct mmc_request *mrq = host->mrq;
1322 struct device *dev = sh_mmcif_host_to_dev(host);
1323 unsigned long flags;
1324
1325 if (host->dying)
1326 /* Don't run after mmc_remove_host() */
1327 return;
1328
1329 spin_lock_irqsave(&host->lock, flags);
1330 if (host->state == STATE_IDLE) {
1331 spin_unlock_irqrestore(&host->lock, flags);
1332 return;
1333 }
1334
1335 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1336 host->wait_for, mrq->cmd->opcode);
1337
1338 host->state = STATE_TIMEOUT;
1339 spin_unlock_irqrestore(&host->lock, flags);
1340
1341 /*
1342 * Handle races with cancel_delayed_work(), unless
1343 * cancel_delayed_work_sync() is used
1344 */
1345 switch (host->wait_for) {
1346 case MMCIF_WAIT_FOR_CMD:
1347 mrq->cmd->error = sh_mmcif_error_manage(host);
1348 break;
1349 case MMCIF_WAIT_FOR_STOP:
1350 mrq->stop->error = sh_mmcif_error_manage(host);
1351 break;
1352 case MMCIF_WAIT_FOR_MREAD:
1353 case MMCIF_WAIT_FOR_MWRITE:
1354 case MMCIF_WAIT_FOR_READ:
1355 case MMCIF_WAIT_FOR_WRITE:
1356 case MMCIF_WAIT_FOR_READ_END:
1357 case MMCIF_WAIT_FOR_WRITE_END:
1358 mrq->data->error = sh_mmcif_error_manage(host);
1359 break;
1360 default:
1361 BUG();
1362 }
1363
1364 host->state = STATE_IDLE;
1365 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1366 host->mrq = NULL;
1367 mmc_request_done(host->mmc, mrq);
1368}
1369
1370static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1371{
1372 struct device *dev = sh_mmcif_host_to_dev(host);
1373 struct sh_mmcif_plat_data *pd = dev->platform_data;
1374 struct mmc_host *mmc = host->mmc;
1375
1376 mmc_regulator_get_supply(mmc);
1377
1378 if (!pd)
1379 return;
1380
1381 if (!mmc->ocr_avail)
1382 mmc->ocr_avail = pd->ocr;
1383 else if (pd->ocr)
1384 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1385}
1386
1387static int sh_mmcif_probe(struct platform_device *pdev)
1388{
1389 int ret = 0, irq[2];
1390 struct mmc_host *mmc;
1391 struct sh_mmcif_host *host;
1392 struct device *dev = &pdev->dev;
1393 struct sh_mmcif_plat_data *pd = dev->platform_data;
1394 struct resource *res;
1395 void __iomem *reg;
1396 const char *name;
1397
1398 irq[0] = platform_get_irq(pdev, 0);
1399 irq[1] = platform_get_irq(pdev, 1);
1400 if (irq[0] < 0) {
1401 dev_err(dev, "Get irq error\n");
1402 return -ENXIO;
1403 }
1404
1405 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1406 reg = devm_ioremap_resource(dev, res);
1407 if (IS_ERR(reg))
1408 return PTR_ERR(reg);
1409
1410 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1411 if (!mmc)
1412 return -ENOMEM;
1413
1414 ret = mmc_of_parse(mmc);
1415 if (ret < 0)
1416 goto err_host;
1417
1418 host = mmc_priv(mmc);
1419 host->mmc = mmc;
1420 host->addr = reg;
1421 host->timeout = msecs_to_jiffies(10000);
1422 host->ccs_enable = true;
1423 host->clk_ctrl2_enable = false;
1424
1425 host->pd = pdev;
1426
1427 spin_lock_init(&host->lock);
1428
1429 mmc->ops = &sh_mmcif_ops;
1430 sh_mmcif_init_ocr(host);
1431
1432 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1433 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1434 mmc->max_busy_timeout = 10000;
1435
1436 if (pd && pd->caps)
1437 mmc->caps |= pd->caps;
1438 mmc->max_segs = 32;
1439 mmc->max_blk_size = 512;
1440 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1441 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1442 mmc->max_seg_size = mmc->max_req_size;
1443
1444 platform_set_drvdata(pdev, host);
1445
1446 host->clk = devm_clk_get(dev, NULL);
1447 if (IS_ERR(host->clk)) {
1448 ret = PTR_ERR(host->clk);
1449 dev_err(dev, "cannot get clock: %d\n", ret);
1450 goto err_host;
1451 }
1452
1453 ret = clk_prepare_enable(host->clk);
1454 if (ret < 0)
1455 goto err_host;
1456
1457 sh_mmcif_clk_setup(host);
1458
1459 pm_runtime_enable(dev);
1460 host->power = false;
1461
1462 ret = pm_runtime_get_sync(dev);
1463 if (ret < 0)
1464 goto err_clk;
1465
1466 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1467
1468 sh_mmcif_sync_reset(host);
1469 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1470
1471 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1472 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1473 sh_mmcif_irqt, 0, name, host);
1474 if (ret) {
1475 dev_err(dev, "request_irq error (%s)\n", name);
1476 goto err_clk;
1477 }
1478 if (irq[1] >= 0) {
1479 ret = devm_request_threaded_irq(dev, irq[1],
1480 sh_mmcif_intr, sh_mmcif_irqt,
1481 0, "sh_mmc:int", host);
1482 if (ret) {
1483 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1484 goto err_clk;
1485 }
1486 }
1487
1488 mutex_init(&host->thread_lock);
1489
1490 ret = mmc_add_host(mmc);
1491 if (ret < 0)
1492 goto err_clk;
1493
1494 dev_pm_qos_expose_latency_limit(dev, 100);
1495
1496 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1497 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1498 clk_get_rate(host->clk) / 1000000UL);
1499
1500 pm_runtime_put(dev);
1501 clk_disable_unprepare(host->clk);
1502 return ret;
1503
1504err_clk:
1505 clk_disable_unprepare(host->clk);
1506 pm_runtime_put_sync(dev);
1507 pm_runtime_disable(dev);
1508err_host:
1509 mmc_free_host(mmc);
1510 return ret;
1511}
1512
1513static int sh_mmcif_remove(struct platform_device *pdev)
1514{
1515 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1516
1517 host->dying = true;
1518 clk_prepare_enable(host->clk);
1519 pm_runtime_get_sync(&pdev->dev);
1520
1521 dev_pm_qos_hide_latency_limit(&pdev->dev);
1522
1523 mmc_remove_host(host->mmc);
1524 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1525
1526 /*
1527 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528 * mmc_remove_host() call above. But swapping order doesn't help either
1529 * (a query on the linux-mmc mailing list didn't bring any replies).
1530 */
1531 cancel_delayed_work_sync(&host->timeout_work);
1532
1533 clk_disable_unprepare(host->clk);
1534 mmc_free_host(host->mmc);
1535 pm_runtime_put_sync(&pdev->dev);
1536 pm_runtime_disable(&pdev->dev);
1537
1538 return 0;
1539}
1540
1541#ifdef CONFIG_PM_SLEEP
1542static int sh_mmcif_suspend(struct device *dev)
1543{
1544 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1545
1546 pm_runtime_get_sync(dev);
1547 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1548 pm_runtime_put(dev);
1549
1550 return 0;
1551}
1552
1553static int sh_mmcif_resume(struct device *dev)
1554{
1555 return 0;
1556}
1557#endif
1558
1559static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1560 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1561};
1562
1563static struct platform_driver sh_mmcif_driver = {
1564 .probe = sh_mmcif_probe,
1565 .remove = sh_mmcif_remove,
1566 .driver = {
1567 .name = DRIVER_NAME,
1568 .pm = &sh_mmcif_dev_pm_ops,
1569 .of_match_table = sh_mmcif_of_match,
1570 },
1571};
1572
1573module_platform_driver(sh_mmcif_driver);
1574
1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576MODULE_LICENSE("GPL");
1577MODULE_ALIAS("platform:" DRIVER_NAME);
1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9/*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/dma-mapping.h>
40#include <linux/dmaengine.h>
41#include <linux/mmc/card.h>
42#include <linux/mmc/core.h>
43#include <linux/mmc/host.h>
44#include <linux/mmc/mmc.h>
45#include <linux/mmc/sdio.h>
46#include <linux/mmc/sh_mmcif.h>
47#include <linux/mmc/slot-gpio.h>
48#include <linux/mod_devicetable.h>
49#include <linux/mutex.h>
50#include <linux/of_device.h>
51#include <linux/pagemap.h>
52#include <linux/platform_device.h>
53#include <linux/pm_qos.h>
54#include <linux/pm_runtime.h>
55#include <linux/sh_dma.h>
56#include <linux/spinlock.h>
57#include <linux/module.h>
58
59#define DRIVER_NAME "sh_mmcif"
60
61/* CE_CMD_SET */
62#define CMD_MASK 0x3f000000
63#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
64#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
65#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
66#define CMD_SET_RBSY (1 << 21) /* R1b */
67#define CMD_SET_CCSEN (1 << 20)
68#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
69#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
70#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
71#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
72#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
73#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
74#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
75#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
76#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
77#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
78#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
79#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
80#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
81#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
82#define CMD_SET_CCSH (1 << 5)
83#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
84#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
85#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
86#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
87
88/* CE_CMD_CTRL */
89#define CMD_CTRL_BREAK (1 << 0)
90
91/* CE_BLOCK_SET */
92#define BLOCK_SIZE_MASK 0x0000ffff
93
94/* CE_INT */
95#define INT_CCSDE (1 << 29)
96#define INT_CMD12DRE (1 << 26)
97#define INT_CMD12RBE (1 << 25)
98#define INT_CMD12CRE (1 << 24)
99#define INT_DTRANE (1 << 23)
100#define INT_BUFRE (1 << 22)
101#define INT_BUFWEN (1 << 21)
102#define INT_BUFREN (1 << 20)
103#define INT_CCSRCV (1 << 19)
104#define INT_RBSYE (1 << 17)
105#define INT_CRSPE (1 << 16)
106#define INT_CMDVIO (1 << 15)
107#define INT_BUFVIO (1 << 14)
108#define INT_WDATERR (1 << 11)
109#define INT_RDATERR (1 << 10)
110#define INT_RIDXERR (1 << 9)
111#define INT_RSPERR (1 << 8)
112#define INT_CCSTO (1 << 5)
113#define INT_CRCSTO (1 << 4)
114#define INT_WDATTO (1 << 3)
115#define INT_RDATTO (1 << 2)
116#define INT_RBSYTO (1 << 1)
117#define INT_RSPTO (1 << 0)
118#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
121 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129/* CE_INT_MASK */
130#define MASK_ALL 0x00000000
131#define MASK_MCCSDE (1 << 29)
132#define MASK_MCMD12DRE (1 << 26)
133#define MASK_MCMD12RBE (1 << 25)
134#define MASK_MCMD12CRE (1 << 24)
135#define MASK_MDTRANE (1 << 23)
136#define MASK_MBUFRE (1 << 22)
137#define MASK_MBUFWEN (1 << 21)
138#define MASK_MBUFREN (1 << 20)
139#define MASK_MCCSRCV (1 << 19)
140#define MASK_MRBSYE (1 << 17)
141#define MASK_MCRSPE (1 << 16)
142#define MASK_MCMDVIO (1 << 15)
143#define MASK_MBUFVIO (1 << 14)
144#define MASK_MWDATERR (1 << 11)
145#define MASK_MRDATERR (1 << 10)
146#define MASK_MRIDXERR (1 << 9)
147#define MASK_MRSPERR (1 << 8)
148#define MASK_MCCSTO (1 << 5)
149#define MASK_MCRCSTO (1 << 4)
150#define MASK_MWDATTO (1 << 3)
151#define MASK_MRDATTO (1 << 2)
152#define MASK_MRBSYTO (1 << 1)
153#define MASK_MRSPTO (1 << 0)
154
155#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 MASK_MCRCSTO | MASK_MWDATTO | \
158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
161 MASK_MBUFREN | MASK_MBUFWEN | \
162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
163 MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165/* CE_HOST_STS1 */
166#define STS1_CMDSEQ (1 << 31)
167
168/* CE_HOST_STS2 */
169#define STS2_CRCSTE (1 << 31)
170#define STS2_CRC16E (1 << 30)
171#define STS2_AC12CRCE (1 << 29)
172#define STS2_RSPCRC7E (1 << 28)
173#define STS2_CRCSTEBE (1 << 27)
174#define STS2_RDATEBE (1 << 26)
175#define STS2_AC12REBE (1 << 25)
176#define STS2_RSPEBE (1 << 24)
177#define STS2_AC12IDXE (1 << 23)
178#define STS2_RSPIDXE (1 << 22)
179#define STS2_CCSTO (1 << 15)
180#define STS2_RDATTO (1 << 14)
181#define STS2_DATBSYTO (1 << 13)
182#define STS2_CRCSTTO (1 << 12)
183#define STS2_AC12BSYTO (1 << 11)
184#define STS2_RSPBSYTO (1 << 10)
185#define STS2_AC12RSPTO (1 << 9)
186#define STS2_RSPTO (1 << 8)
187#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
190 STS2_DATBSYTO | STS2_CRCSTTO | \
191 STS2_AC12BSYTO | STS2_RSPBSYTO | \
192 STS2_AC12RSPTO | STS2_RSPTO)
193
194#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
195#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
196#define CLKDEV_INIT 400000 /* 400 KHz */
197
198enum sh_mmcif_state {
199 STATE_IDLE,
200 STATE_REQUEST,
201 STATE_IOS,
202 STATE_TIMEOUT,
203};
204
205enum sh_mmcif_wait_for {
206 MMCIF_WAIT_FOR_REQUEST,
207 MMCIF_WAIT_FOR_CMD,
208 MMCIF_WAIT_FOR_MREAD,
209 MMCIF_WAIT_FOR_MWRITE,
210 MMCIF_WAIT_FOR_READ,
211 MMCIF_WAIT_FOR_WRITE,
212 MMCIF_WAIT_FOR_READ_END,
213 MMCIF_WAIT_FOR_WRITE_END,
214 MMCIF_WAIT_FOR_STOP,
215};
216
217/*
218 * difference for each SoC
219 */
220struct sh_mmcif_host {
221 struct mmc_host *mmc;
222 struct mmc_request *mrq;
223 struct platform_device *pd;
224 struct clk *clk;
225 int bus_width;
226 unsigned char timing;
227 bool sd_error;
228 bool dying;
229 long timeout;
230 void __iomem *addr;
231 u32 *pio_ptr;
232 spinlock_t lock; /* protect sh_mmcif_host::state */
233 enum sh_mmcif_state state;
234 enum sh_mmcif_wait_for wait_for;
235 struct delayed_work timeout_work;
236 size_t blocksize;
237 int sg_idx;
238 int sg_blkidx;
239 bool power;
240 bool ccs_enable; /* Command Completion Signal support */
241 bool clk_ctrl2_enable;
242 struct mutex thread_lock;
243 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
244
245 /* DMA support */
246 struct dma_chan *chan_rx;
247 struct dma_chan *chan_tx;
248 struct completion dma_complete;
249 bool dma_active;
250};
251
252static const struct of_device_id sh_mmcif_of_match[] = {
253 { .compatible = "renesas,sh-mmcif" },
254 { }
255};
256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
262{
263 writel(val | readl(host->addr + reg), host->addr + reg);
264}
265
266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
268{
269 writel(~val & readl(host->addr + reg), host->addr + reg);
270}
271
272static void sh_mmcif_dma_complete(void *arg)
273{
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276 struct device *dev = sh_mmcif_host_to_dev(host);
277
278 dev_dbg(dev, "Command completed\n");
279
280 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281 dev_name(dev)))
282 return;
283
284 complete(&host->dma_complete);
285}
286
287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288{
289 struct mmc_data *data = host->mrq->data;
290 struct scatterlist *sg = data->sg;
291 struct dma_async_tx_descriptor *desc = NULL;
292 struct dma_chan *chan = host->chan_rx;
293 struct device *dev = sh_mmcif_host_to_dev(host);
294 dma_cookie_t cookie = -EINVAL;
295 int ret;
296
297 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 DMA_FROM_DEVICE);
299 if (ret > 0) {
300 host->dma_active = true;
301 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 }
304
305 if (desc) {
306 desc->callback = sh_mmcif_dma_complete;
307 desc->callback_param = host;
308 cookie = dmaengine_submit(desc);
309 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310 dma_async_issue_pending(chan);
311 }
312 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313 __func__, data->sg_len, ret, cookie);
314
315 if (!desc) {
316 /* DMA failed, fall back to PIO */
317 if (ret >= 0)
318 ret = -EIO;
319 host->chan_rx = NULL;
320 host->dma_active = false;
321 dma_release_channel(chan);
322 /* Free the Tx channel too */
323 chan = host->chan_tx;
324 if (chan) {
325 host->chan_tx = NULL;
326 dma_release_channel(chan);
327 }
328 dev_warn(dev,
329 "DMA failed: %d, falling back to PIO\n", ret);
330 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 }
332
333 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334 desc, cookie, data->sg_len);
335}
336
337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338{
339 struct mmc_data *data = host->mrq->data;
340 struct scatterlist *sg = data->sg;
341 struct dma_async_tx_descriptor *desc = NULL;
342 struct dma_chan *chan = host->chan_tx;
343 struct device *dev = sh_mmcif_host_to_dev(host);
344 dma_cookie_t cookie = -EINVAL;
345 int ret;
346
347 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348 DMA_TO_DEVICE);
349 if (ret > 0) {
350 host->dma_active = true;
351 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353 }
354
355 if (desc) {
356 desc->callback = sh_mmcif_dma_complete;
357 desc->callback_param = host;
358 cookie = dmaengine_submit(desc);
359 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360 dma_async_issue_pending(chan);
361 }
362 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363 __func__, data->sg_len, ret, cookie);
364
365 if (!desc) {
366 /* DMA failed, fall back to PIO */
367 if (ret >= 0)
368 ret = -EIO;
369 host->chan_tx = NULL;
370 host->dma_active = false;
371 dma_release_channel(chan);
372 /* Free the Rx channel too */
373 chan = host->chan_rx;
374 if (chan) {
375 host->chan_rx = NULL;
376 dma_release_channel(chan);
377 }
378 dev_warn(dev,
379 "DMA failed: %d, falling back to PIO\n", ret);
380 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381 }
382
383 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384 desc, cookie);
385}
386
387static struct dma_chan *
388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389{
390 dma_cap_mask_t mask;
391
392 dma_cap_zero(mask);
393 dma_cap_set(DMA_SLAVE, mask);
394 if (slave_id <= 0)
395 return NULL;
396
397 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398}
399
400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401 struct dma_chan *chan,
402 enum dma_transfer_direction direction)
403{
404 struct resource *res;
405 struct dma_slave_config cfg = { 0, };
406
407 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408 cfg.direction = direction;
409
410 if (direction == DMA_DEV_TO_MEM) {
411 cfg.src_addr = res->start + MMCIF_CE_DATA;
412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 } else {
414 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 }
417
418 return dmaengine_slave_config(chan, &cfg);
419}
420
421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422{
423 struct device *dev = sh_mmcif_host_to_dev(host);
424 host->dma_active = false;
425
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 pdata->slave_id_tx);
432 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_rx);
434 } else {
435 host->chan_tx = dma_request_slave_channel(dev, "tx");
436 host->chan_rx = dma_request_slave_channel(dev, "rx");
437 }
438 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
439 host->chan_rx);
440
441 if (!host->chan_tx || !host->chan_rx ||
442 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
443 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
444 goto error;
445
446 return;
447
448error:
449 if (host->chan_tx)
450 dma_release_channel(host->chan_tx);
451 if (host->chan_rx)
452 dma_release_channel(host->chan_rx);
453 host->chan_tx = host->chan_rx = NULL;
454}
455
456static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
457{
458 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
459 /* Descriptors are freed automatically */
460 if (host->chan_tx) {
461 struct dma_chan *chan = host->chan_tx;
462 host->chan_tx = NULL;
463 dma_release_channel(chan);
464 }
465 if (host->chan_rx) {
466 struct dma_chan *chan = host->chan_rx;
467 host->chan_rx = NULL;
468 dma_release_channel(chan);
469 }
470
471 host->dma_active = false;
472}
473
474static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
475{
476 struct device *dev = sh_mmcif_host_to_dev(host);
477 struct sh_mmcif_plat_data *p = dev->platform_data;
478 bool sup_pclk = p ? p->sup_pclk : false;
479 unsigned int current_clk = clk_get_rate(host->clk);
480 unsigned int clkdiv;
481
482 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484
485 if (!clk)
486 return;
487
488 if (host->clkdiv_map) {
489 unsigned int freq, best_freq, myclk, div, diff_min, diff;
490 int i;
491
492 clkdiv = 0;
493 diff_min = ~0;
494 best_freq = 0;
495 for (i = 31; i >= 0; i--) {
496 if (!((1 << i) & host->clkdiv_map))
497 continue;
498
499 /*
500 * clk = parent_freq / div
501 * -> parent_freq = clk x div
502 */
503
504 div = 1 << (i + 1);
505 freq = clk_round_rate(host->clk, clk * div);
506 myclk = freq / div;
507 diff = (myclk > clk) ? myclk - clk : clk - myclk;
508
509 if (diff <= diff_min) {
510 best_freq = freq;
511 clkdiv = i;
512 diff_min = diff;
513 }
514 }
515
516 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
517 (best_freq / (1 << (clkdiv + 1))), clk,
518 best_freq, clkdiv);
519
520 clk_set_rate(host->clk, best_freq);
521 clkdiv = clkdiv << 16;
522 } else if (sup_pclk && clk == current_clk) {
523 clkdiv = CLK_SUP_PCLK;
524 } else {
525 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
526 }
527
528 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
529 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
530}
531
532static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
533{
534 u32 tmp;
535
536 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
537
538 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
539 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
540 if (host->ccs_enable)
541 tmp |= SCCSTO_29;
542 if (host->clk_ctrl2_enable)
543 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
544 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
545 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
546 /* byte swap on */
547 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
548}
549
550static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
551{
552 struct device *dev = sh_mmcif_host_to_dev(host);
553 u32 state1, state2;
554 int ret, timeout;
555
556 host->sd_error = false;
557
558 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
559 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
560 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
561 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
562
563 if (state1 & STS1_CMDSEQ) {
564 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
565 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
566 for (timeout = 10000; timeout; timeout--) {
567 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
568 & STS1_CMDSEQ))
569 break;
570 mdelay(1);
571 }
572 if (!timeout) {
573 dev_err(dev,
574 "Forced end of command sequence timeout err\n");
575 return -EIO;
576 }
577 sh_mmcif_sync_reset(host);
578 dev_dbg(dev, "Forced end of command sequence\n");
579 return -EIO;
580 }
581
582 if (state2 & STS2_CRC_ERR) {
583 dev_err(dev, " CRC error: state %u, wait %u\n",
584 host->state, host->wait_for);
585 ret = -EIO;
586 } else if (state2 & STS2_TIMEOUT_ERR) {
587 dev_err(dev, " Timeout: state %u, wait %u\n",
588 host->state, host->wait_for);
589 ret = -ETIMEDOUT;
590 } else {
591 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
592 host->state, host->wait_for);
593 ret = -EIO;
594 }
595 return ret;
596}
597
598static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
599{
600 struct mmc_data *data = host->mrq->data;
601
602 host->sg_blkidx += host->blocksize;
603
604 /* data->sg->length must be a multiple of host->blocksize? */
605 BUG_ON(host->sg_blkidx > data->sg->length);
606
607 if (host->sg_blkidx == data->sg->length) {
608 host->sg_blkidx = 0;
609 if (++host->sg_idx < data->sg_len)
610 host->pio_ptr = sg_virt(++data->sg);
611 } else {
612 host->pio_ptr = p;
613 }
614
615 return host->sg_idx != data->sg_len;
616}
617
618static void sh_mmcif_single_read(struct sh_mmcif_host *host,
619 struct mmc_request *mrq)
620{
621 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
622 BLOCK_SIZE_MASK) + 3;
623
624 host->wait_for = MMCIF_WAIT_FOR_READ;
625
626 /* buf read enable */
627 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
628}
629
630static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
631{
632 struct device *dev = sh_mmcif_host_to_dev(host);
633 struct mmc_data *data = host->mrq->data;
634 u32 *p = sg_virt(data->sg);
635 int i;
636
637 if (host->sd_error) {
638 data->error = sh_mmcif_error_manage(host);
639 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
640 return false;
641 }
642
643 for (i = 0; i < host->blocksize / 4; i++)
644 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645
646 /* buffer read end */
647 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648 host->wait_for = MMCIF_WAIT_FOR_READ_END;
649
650 return true;
651}
652
653static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654 struct mmc_request *mrq)
655{
656 struct mmc_data *data = mrq->data;
657
658 if (!data->sg_len || !data->sg->length)
659 return;
660
661 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
662 BLOCK_SIZE_MASK;
663
664 host->wait_for = MMCIF_WAIT_FOR_MREAD;
665 host->sg_idx = 0;
666 host->sg_blkidx = 0;
667 host->pio_ptr = sg_virt(data->sg);
668
669 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
670}
671
672static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
673{
674 struct device *dev = sh_mmcif_host_to_dev(host);
675 struct mmc_data *data = host->mrq->data;
676 u32 *p = host->pio_ptr;
677 int i;
678
679 if (host->sd_error) {
680 data->error = sh_mmcif_error_manage(host);
681 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
682 return false;
683 }
684
685 BUG_ON(!data->sg->length);
686
687 for (i = 0; i < host->blocksize / 4; i++)
688 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
689
690 if (!sh_mmcif_next_block(host, p))
691 return false;
692
693 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
694
695 return true;
696}
697
698static void sh_mmcif_single_write(struct sh_mmcif_host *host,
699 struct mmc_request *mrq)
700{
701 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
702 BLOCK_SIZE_MASK) + 3;
703
704 host->wait_for = MMCIF_WAIT_FOR_WRITE;
705
706 /* buf write enable */
707 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
708}
709
710static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
711{
712 struct device *dev = sh_mmcif_host_to_dev(host);
713 struct mmc_data *data = host->mrq->data;
714 u32 *p = sg_virt(data->sg);
715 int i;
716
717 if (host->sd_error) {
718 data->error = sh_mmcif_error_manage(host);
719 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
720 return false;
721 }
722
723 for (i = 0; i < host->blocksize / 4; i++)
724 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725
726 /* buffer write end */
727 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
728 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
729
730 return true;
731}
732
733static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
734 struct mmc_request *mrq)
735{
736 struct mmc_data *data = mrq->data;
737
738 if (!data->sg_len || !data->sg->length)
739 return;
740
741 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
742 BLOCK_SIZE_MASK;
743
744 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
745 host->sg_idx = 0;
746 host->sg_blkidx = 0;
747 host->pio_ptr = sg_virt(data->sg);
748
749 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
750}
751
752static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
753{
754 struct device *dev = sh_mmcif_host_to_dev(host);
755 struct mmc_data *data = host->mrq->data;
756 u32 *p = host->pio_ptr;
757 int i;
758
759 if (host->sd_error) {
760 data->error = sh_mmcif_error_manage(host);
761 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
762 return false;
763 }
764
765 BUG_ON(!data->sg->length);
766
767 for (i = 0; i < host->blocksize / 4; i++)
768 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
769
770 if (!sh_mmcif_next_block(host, p))
771 return false;
772
773 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
774
775 return true;
776}
777
778static void sh_mmcif_get_response(struct sh_mmcif_host *host,
779 struct mmc_command *cmd)
780{
781 if (cmd->flags & MMC_RSP_136) {
782 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
783 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
784 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
785 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
786 } else
787 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
788}
789
790static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
791 struct mmc_command *cmd)
792{
793 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
794}
795
796static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
797 struct mmc_request *mrq)
798{
799 struct device *dev = sh_mmcif_host_to_dev(host);
800 struct mmc_data *data = mrq->data;
801 struct mmc_command *cmd = mrq->cmd;
802 u32 opc = cmd->opcode;
803 u32 tmp = 0;
804
805 /* Response Type check */
806 switch (mmc_resp_type(cmd)) {
807 case MMC_RSP_NONE:
808 tmp |= CMD_SET_RTYP_NO;
809 break;
810 case MMC_RSP_R1:
811 case MMC_RSP_R3:
812 tmp |= CMD_SET_RTYP_6B;
813 break;
814 case MMC_RSP_R1B:
815 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
816 break;
817 case MMC_RSP_R2:
818 tmp |= CMD_SET_RTYP_17B;
819 break;
820 default:
821 dev_err(dev, "Unsupported response type.\n");
822 break;
823 }
824
825 /* WDAT / DATW */
826 if (data) {
827 tmp |= CMD_SET_WDAT;
828 switch (host->bus_width) {
829 case MMC_BUS_WIDTH_1:
830 tmp |= CMD_SET_DATW_1;
831 break;
832 case MMC_BUS_WIDTH_4:
833 tmp |= CMD_SET_DATW_4;
834 break;
835 case MMC_BUS_WIDTH_8:
836 tmp |= CMD_SET_DATW_8;
837 break;
838 default:
839 dev_err(dev, "Unsupported bus width.\n");
840 break;
841 }
842 switch (host->timing) {
843 case MMC_TIMING_MMC_DDR52:
844 /*
845 * MMC core will only set this timing, if the host
846 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
847 * capability. MMCIF implementations with this
848 * capability, e.g. sh73a0, will have to set it
849 * in their platform data.
850 */
851 tmp |= CMD_SET_DARS;
852 break;
853 }
854 }
855 /* DWEN */
856 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
857 tmp |= CMD_SET_DWEN;
858 /* CMLTE/CMD12EN */
859 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
860 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
861 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
862 data->blocks << 16);
863 }
864 /* RIDXC[1:0] check bits */
865 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
866 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
867 tmp |= CMD_SET_RIDXC_BITS;
868 /* RCRC7C[1:0] check bits */
869 if (opc == MMC_SEND_OP_COND)
870 tmp |= CMD_SET_CRC7C_BITS;
871 /* RCRC7C[1:0] internal CRC7 */
872 if (opc == MMC_ALL_SEND_CID ||
873 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
874 tmp |= CMD_SET_CRC7C_INTERNAL;
875
876 return (opc << 24) | tmp;
877}
878
879static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
880 struct mmc_request *mrq, u32 opc)
881{
882 struct device *dev = sh_mmcif_host_to_dev(host);
883
884 switch (opc) {
885 case MMC_READ_MULTIPLE_BLOCK:
886 sh_mmcif_multi_read(host, mrq);
887 return 0;
888 case MMC_WRITE_MULTIPLE_BLOCK:
889 sh_mmcif_multi_write(host, mrq);
890 return 0;
891 case MMC_WRITE_BLOCK:
892 sh_mmcif_single_write(host, mrq);
893 return 0;
894 case MMC_READ_SINGLE_BLOCK:
895 case MMC_SEND_EXT_CSD:
896 sh_mmcif_single_read(host, mrq);
897 return 0;
898 default:
899 dev_err(dev, "Unsupported CMD%d\n", opc);
900 return -EINVAL;
901 }
902}
903
904static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
905 struct mmc_request *mrq)
906{
907 struct mmc_command *cmd = mrq->cmd;
908 u32 opc;
909 u32 mask = 0;
910 unsigned long flags;
911
912 if (cmd->flags & MMC_RSP_BUSY)
913 mask = MASK_START_CMD | MASK_MRBSYE;
914 else
915 mask = MASK_START_CMD | MASK_MCRSPE;
916
917 if (host->ccs_enable)
918 mask |= MASK_MCCSTO;
919
920 if (mrq->data) {
921 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
922 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
923 mrq->data->blksz);
924 }
925 opc = sh_mmcif_set_cmd(host, mrq);
926
927 if (host->ccs_enable)
928 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
929 else
930 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
931 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
932 /* set arg */
933 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
934 /* set cmd */
935 spin_lock_irqsave(&host->lock, flags);
936 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
937
938 host->wait_for = MMCIF_WAIT_FOR_CMD;
939 schedule_delayed_work(&host->timeout_work, host->timeout);
940 spin_unlock_irqrestore(&host->lock, flags);
941}
942
943static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
944 struct mmc_request *mrq)
945{
946 struct device *dev = sh_mmcif_host_to_dev(host);
947
948 switch (mrq->cmd->opcode) {
949 case MMC_READ_MULTIPLE_BLOCK:
950 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
951 break;
952 case MMC_WRITE_MULTIPLE_BLOCK:
953 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
954 break;
955 default:
956 dev_err(dev, "unsupported stop cmd\n");
957 mrq->stop->error = sh_mmcif_error_manage(host);
958 return;
959 }
960
961 host->wait_for = MMCIF_WAIT_FOR_STOP;
962}
963
964static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
965{
966 struct sh_mmcif_host *host = mmc_priv(mmc);
967 struct device *dev = sh_mmcif_host_to_dev(host);
968 unsigned long flags;
969
970 spin_lock_irqsave(&host->lock, flags);
971 if (host->state != STATE_IDLE) {
972 dev_dbg(dev, "%s() rejected, state %u\n",
973 __func__, host->state);
974 spin_unlock_irqrestore(&host->lock, flags);
975 mrq->cmd->error = -EAGAIN;
976 mmc_request_done(mmc, mrq);
977 return;
978 }
979
980 host->state = STATE_REQUEST;
981 spin_unlock_irqrestore(&host->lock, flags);
982
983 host->mrq = mrq;
984
985 sh_mmcif_start_cmd(host, mrq);
986}
987
988static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
989{
990 struct device *dev = sh_mmcif_host_to_dev(host);
991
992 if (host->mmc->f_max) {
993 unsigned int f_max, f_min = 0, f_min_old;
994
995 f_max = host->mmc->f_max;
996 for (f_min_old = f_max; f_min_old > 2;) {
997 f_min = clk_round_rate(host->clk, f_min_old / 2);
998 if (f_min == f_min_old)
999 break;
1000 f_min_old = f_min;
1001 }
1002
1003 /*
1004 * This driver assumes this SoC is R-Car Gen2 or later
1005 */
1006 host->clkdiv_map = 0x3ff;
1007
1008 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010 } else {
1011 unsigned int clk = clk_get_rate(host->clk);
1012
1013 host->mmc->f_max = clk / 2;
1014 host->mmc->f_min = clk / 512;
1015 }
1016
1017 dev_dbg(dev, "clk max/min = %d/%d\n",
1018 host->mmc->f_max, host->mmc->f_min);
1019}
1020
1021static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022{
1023 struct sh_mmcif_host *host = mmc_priv(mmc);
1024 struct device *dev = sh_mmcif_host_to_dev(host);
1025 unsigned long flags;
1026
1027 spin_lock_irqsave(&host->lock, flags);
1028 if (host->state != STATE_IDLE) {
1029 dev_dbg(dev, "%s() rejected, state %u\n",
1030 __func__, host->state);
1031 spin_unlock_irqrestore(&host->lock, flags);
1032 return;
1033 }
1034
1035 host->state = STATE_IOS;
1036 spin_unlock_irqrestore(&host->lock, flags);
1037
1038 switch (ios->power_mode) {
1039 case MMC_POWER_UP:
1040 if (!IS_ERR(mmc->supply.vmmc))
1041 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042 if (!host->power) {
1043 clk_prepare_enable(host->clk);
1044 pm_runtime_get_sync(dev);
1045 sh_mmcif_sync_reset(host);
1046 sh_mmcif_request_dma(host);
1047 host->power = true;
1048 }
1049 break;
1050 case MMC_POWER_OFF:
1051 if (!IS_ERR(mmc->supply.vmmc))
1052 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053 if (host->power) {
1054 sh_mmcif_clock_control(host, 0);
1055 sh_mmcif_release_dma(host);
1056 pm_runtime_put(dev);
1057 clk_disable_unprepare(host->clk);
1058 host->power = false;
1059 }
1060 break;
1061 case MMC_POWER_ON:
1062 sh_mmcif_clock_control(host, ios->clock);
1063 break;
1064 }
1065
1066 host->timing = ios->timing;
1067 host->bus_width = ios->bus_width;
1068 host->state = STATE_IDLE;
1069}
1070
1071static const struct mmc_host_ops sh_mmcif_ops = {
1072 .request = sh_mmcif_request,
1073 .set_ios = sh_mmcif_set_ios,
1074 .get_cd = mmc_gpio_get_cd,
1075};
1076
1077static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078{
1079 struct mmc_command *cmd = host->mrq->cmd;
1080 struct mmc_data *data = host->mrq->data;
1081 struct device *dev = sh_mmcif_host_to_dev(host);
1082 long time;
1083
1084 if (host->sd_error) {
1085 switch (cmd->opcode) {
1086 case MMC_ALL_SEND_CID:
1087 case MMC_SELECT_CARD:
1088 case MMC_APP_CMD:
1089 cmd->error = -ETIMEDOUT;
1090 break;
1091 default:
1092 cmd->error = sh_mmcif_error_manage(host);
1093 break;
1094 }
1095 dev_dbg(dev, "CMD%d error %d\n",
1096 cmd->opcode, cmd->error);
1097 host->sd_error = false;
1098 return false;
1099 }
1100 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101 cmd->error = 0;
1102 return false;
1103 }
1104
1105 sh_mmcif_get_response(host, cmd);
1106
1107 if (!data)
1108 return false;
1109
1110 /*
1111 * Completion can be signalled from DMA callback and error, so, have to
1112 * reset here, before setting .dma_active
1113 */
1114 init_completion(&host->dma_complete);
1115
1116 if (data->flags & MMC_DATA_READ) {
1117 if (host->chan_rx)
1118 sh_mmcif_start_dma_rx(host);
1119 } else {
1120 if (host->chan_tx)
1121 sh_mmcif_start_dma_tx(host);
1122 }
1123
1124 if (!host->dma_active) {
1125 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126 return !data->error;
1127 }
1128
1129 /* Running in the IRQ thread, can sleep */
1130 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131 host->timeout);
1132
1133 if (data->flags & MMC_DATA_READ)
1134 dma_unmap_sg(host->chan_rx->device->dev,
1135 data->sg, data->sg_len,
1136 DMA_FROM_DEVICE);
1137 else
1138 dma_unmap_sg(host->chan_tx->device->dev,
1139 data->sg, data->sg_len,
1140 DMA_TO_DEVICE);
1141
1142 if (host->sd_error) {
1143 dev_err(host->mmc->parent,
1144 "Error IRQ while waiting for DMA completion!\n");
1145 /* Woken up by an error IRQ: abort DMA */
1146 data->error = sh_mmcif_error_manage(host);
1147 } else if (!time) {
1148 dev_err(host->mmc->parent, "DMA timeout!\n");
1149 data->error = -ETIMEDOUT;
1150 } else if (time < 0) {
1151 dev_err(host->mmc->parent,
1152 "wait_for_completion_...() error %ld!\n", time);
1153 data->error = time;
1154 }
1155 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157 host->dma_active = false;
1158
1159 if (data->error) {
1160 data->bytes_xfered = 0;
1161 /* Abort DMA */
1162 if (data->flags & MMC_DATA_READ)
1163 dmaengine_terminate_all(host->chan_rx);
1164 else
1165 dmaengine_terminate_all(host->chan_tx);
1166 }
1167
1168 return false;
1169}
1170
1171static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172{
1173 struct sh_mmcif_host *host = dev_id;
1174 struct mmc_request *mrq;
1175 struct device *dev = sh_mmcif_host_to_dev(host);
1176 bool wait = false;
1177 unsigned long flags;
1178 int wait_work;
1179
1180 spin_lock_irqsave(&host->lock, flags);
1181 wait_work = host->wait_for;
1182 spin_unlock_irqrestore(&host->lock, flags);
1183
1184 cancel_delayed_work_sync(&host->timeout_work);
1185
1186 mutex_lock(&host->thread_lock);
1187
1188 mrq = host->mrq;
1189 if (!mrq) {
1190 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191 host->state, host->wait_for);
1192 mutex_unlock(&host->thread_lock);
1193 return IRQ_HANDLED;
1194 }
1195
1196 /*
1197 * All handlers return true, if processing continues, and false, if the
1198 * request has to be completed - successfully or not
1199 */
1200 switch (wait_work) {
1201 case MMCIF_WAIT_FOR_REQUEST:
1202 /* We're too late, the timeout has already kicked in */
1203 mutex_unlock(&host->thread_lock);
1204 return IRQ_HANDLED;
1205 case MMCIF_WAIT_FOR_CMD:
1206 /* Wait for data? */
1207 wait = sh_mmcif_end_cmd(host);
1208 break;
1209 case MMCIF_WAIT_FOR_MREAD:
1210 /* Wait for more data? */
1211 wait = sh_mmcif_mread_block(host);
1212 break;
1213 case MMCIF_WAIT_FOR_READ:
1214 /* Wait for data end? */
1215 wait = sh_mmcif_read_block(host);
1216 break;
1217 case MMCIF_WAIT_FOR_MWRITE:
1218 /* Wait data to write? */
1219 wait = sh_mmcif_mwrite_block(host);
1220 break;
1221 case MMCIF_WAIT_FOR_WRITE:
1222 /* Wait for data end? */
1223 wait = sh_mmcif_write_block(host);
1224 break;
1225 case MMCIF_WAIT_FOR_STOP:
1226 if (host->sd_error) {
1227 mrq->stop->error = sh_mmcif_error_manage(host);
1228 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229 break;
1230 }
1231 sh_mmcif_get_cmd12response(host, mrq->stop);
1232 mrq->stop->error = 0;
1233 break;
1234 case MMCIF_WAIT_FOR_READ_END:
1235 case MMCIF_WAIT_FOR_WRITE_END:
1236 if (host->sd_error) {
1237 mrq->data->error = sh_mmcif_error_manage(host);
1238 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239 }
1240 break;
1241 default:
1242 BUG();
1243 }
1244
1245 if (wait) {
1246 schedule_delayed_work(&host->timeout_work, host->timeout);
1247 /* Wait for more data */
1248 mutex_unlock(&host->thread_lock);
1249 return IRQ_HANDLED;
1250 }
1251
1252 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253 struct mmc_data *data = mrq->data;
1254 if (!mrq->cmd->error && data && !data->error)
1255 data->bytes_xfered =
1256 data->blocks * data->blksz;
1257
1258 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259 sh_mmcif_stop_cmd(host, mrq);
1260 if (!mrq->stop->error) {
1261 schedule_delayed_work(&host->timeout_work, host->timeout);
1262 mutex_unlock(&host->thread_lock);
1263 return IRQ_HANDLED;
1264 }
1265 }
1266 }
1267
1268 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269 host->state = STATE_IDLE;
1270 host->mrq = NULL;
1271 mmc_request_done(host->mmc, mrq);
1272
1273 mutex_unlock(&host->thread_lock);
1274
1275 return IRQ_HANDLED;
1276}
1277
1278static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279{
1280 struct sh_mmcif_host *host = dev_id;
1281 struct device *dev = sh_mmcif_host_to_dev(host);
1282 u32 state, mask;
1283
1284 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286 if (host->ccs_enable)
1287 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288 else
1289 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291
1292 if (state & ~MASK_CLEAN)
1293 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294 state);
1295
1296 if (state & INT_ERR_STS || state & ~INT_ALL) {
1297 host->sd_error = true;
1298 dev_dbg(dev, "int err state = 0x%08x\n", state);
1299 }
1300 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301 if (!host->mrq)
1302 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303 if (!host->dma_active)
1304 return IRQ_WAKE_THREAD;
1305 else if (host->sd_error)
1306 sh_mmcif_dma_complete(host);
1307 } else {
1308 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309 }
1310
1311 return IRQ_HANDLED;
1312}
1313
1314static void sh_mmcif_timeout_work(struct work_struct *work)
1315{
1316 struct delayed_work *d = to_delayed_work(work);
1317 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318 struct mmc_request *mrq = host->mrq;
1319 struct device *dev = sh_mmcif_host_to_dev(host);
1320 unsigned long flags;
1321
1322 if (host->dying)
1323 /* Don't run after mmc_remove_host() */
1324 return;
1325
1326 spin_lock_irqsave(&host->lock, flags);
1327 if (host->state == STATE_IDLE) {
1328 spin_unlock_irqrestore(&host->lock, flags);
1329 return;
1330 }
1331
1332 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333 host->wait_for, mrq->cmd->opcode);
1334
1335 host->state = STATE_TIMEOUT;
1336 spin_unlock_irqrestore(&host->lock, flags);
1337
1338 /*
1339 * Handle races with cancel_delayed_work(), unless
1340 * cancel_delayed_work_sync() is used
1341 */
1342 switch (host->wait_for) {
1343 case MMCIF_WAIT_FOR_CMD:
1344 mrq->cmd->error = sh_mmcif_error_manage(host);
1345 break;
1346 case MMCIF_WAIT_FOR_STOP:
1347 mrq->stop->error = sh_mmcif_error_manage(host);
1348 break;
1349 case MMCIF_WAIT_FOR_MREAD:
1350 case MMCIF_WAIT_FOR_MWRITE:
1351 case MMCIF_WAIT_FOR_READ:
1352 case MMCIF_WAIT_FOR_WRITE:
1353 case MMCIF_WAIT_FOR_READ_END:
1354 case MMCIF_WAIT_FOR_WRITE_END:
1355 mrq->data->error = sh_mmcif_error_manage(host);
1356 break;
1357 default:
1358 BUG();
1359 }
1360
1361 host->state = STATE_IDLE;
1362 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363 host->mrq = NULL;
1364 mmc_request_done(host->mmc, mrq);
1365}
1366
1367static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368{
1369 struct device *dev = sh_mmcif_host_to_dev(host);
1370 struct sh_mmcif_plat_data *pd = dev->platform_data;
1371 struct mmc_host *mmc = host->mmc;
1372
1373 mmc_regulator_get_supply(mmc);
1374
1375 if (!pd)
1376 return;
1377
1378 if (!mmc->ocr_avail)
1379 mmc->ocr_avail = pd->ocr;
1380 else if (pd->ocr)
1381 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382}
1383
1384static int sh_mmcif_probe(struct platform_device *pdev)
1385{
1386 int ret = 0, irq[2];
1387 struct mmc_host *mmc;
1388 struct sh_mmcif_host *host;
1389 struct device *dev = &pdev->dev;
1390 struct sh_mmcif_plat_data *pd = dev->platform_data;
1391 struct resource *res;
1392 void __iomem *reg;
1393 const char *name;
1394
1395 irq[0] = platform_get_irq(pdev, 0);
1396 irq[1] = platform_get_irq_optional(pdev, 1);
1397 if (irq[0] < 0)
1398 return -ENXIO;
1399
1400 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401 reg = devm_ioremap_resource(dev, res);
1402 if (IS_ERR(reg))
1403 return PTR_ERR(reg);
1404
1405 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406 if (!mmc)
1407 return -ENOMEM;
1408
1409 ret = mmc_of_parse(mmc);
1410 if (ret < 0)
1411 goto err_host;
1412
1413 host = mmc_priv(mmc);
1414 host->mmc = mmc;
1415 host->addr = reg;
1416 host->timeout = msecs_to_jiffies(10000);
1417 host->ccs_enable = true;
1418 host->clk_ctrl2_enable = false;
1419
1420 host->pd = pdev;
1421
1422 spin_lock_init(&host->lock);
1423
1424 mmc->ops = &sh_mmcif_ops;
1425 sh_mmcif_init_ocr(host);
1426
1427 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429 mmc->max_busy_timeout = 10000;
1430
1431 if (pd && pd->caps)
1432 mmc->caps |= pd->caps;
1433 mmc->max_segs = 32;
1434 mmc->max_blk_size = 512;
1435 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437 mmc->max_seg_size = mmc->max_req_size;
1438
1439 platform_set_drvdata(pdev, host);
1440
1441 host->clk = devm_clk_get(dev, NULL);
1442 if (IS_ERR(host->clk)) {
1443 ret = PTR_ERR(host->clk);
1444 dev_err(dev, "cannot get clock: %d\n", ret);
1445 goto err_host;
1446 }
1447
1448 ret = clk_prepare_enable(host->clk);
1449 if (ret < 0)
1450 goto err_host;
1451
1452 sh_mmcif_clk_setup(host);
1453
1454 pm_runtime_enable(dev);
1455 host->power = false;
1456
1457 ret = pm_runtime_get_sync(dev);
1458 if (ret < 0)
1459 goto err_clk;
1460
1461 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462
1463 sh_mmcif_sync_reset(host);
1464 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465
1466 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468 sh_mmcif_irqt, 0, name, host);
1469 if (ret) {
1470 dev_err(dev, "request_irq error (%s)\n", name);
1471 goto err_clk;
1472 }
1473 if (irq[1] >= 0) {
1474 ret = devm_request_threaded_irq(dev, irq[1],
1475 sh_mmcif_intr, sh_mmcif_irqt,
1476 0, "sh_mmc:int", host);
1477 if (ret) {
1478 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479 goto err_clk;
1480 }
1481 }
1482
1483 mutex_init(&host->thread_lock);
1484
1485 ret = mmc_add_host(mmc);
1486 if (ret < 0)
1487 goto err_clk;
1488
1489 dev_pm_qos_expose_latency_limit(dev, 100);
1490
1491 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493 clk_get_rate(host->clk) / 1000000UL);
1494
1495 pm_runtime_put(dev);
1496 clk_disable_unprepare(host->clk);
1497 return ret;
1498
1499err_clk:
1500 clk_disable_unprepare(host->clk);
1501 pm_runtime_put_sync(dev);
1502 pm_runtime_disable(dev);
1503err_host:
1504 mmc_free_host(mmc);
1505 return ret;
1506}
1507
1508static int sh_mmcif_remove(struct platform_device *pdev)
1509{
1510 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1511
1512 host->dying = true;
1513 clk_prepare_enable(host->clk);
1514 pm_runtime_get_sync(&pdev->dev);
1515
1516 dev_pm_qos_hide_latency_limit(&pdev->dev);
1517
1518 mmc_remove_host(host->mmc);
1519 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520
1521 /*
1522 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523 * mmc_remove_host() call above. But swapping order doesn't help either
1524 * (a query on the linux-mmc mailing list didn't bring any replies).
1525 */
1526 cancel_delayed_work_sync(&host->timeout_work);
1527
1528 clk_disable_unprepare(host->clk);
1529 mmc_free_host(host->mmc);
1530 pm_runtime_put_sync(&pdev->dev);
1531 pm_runtime_disable(&pdev->dev);
1532
1533 return 0;
1534}
1535
1536#ifdef CONFIG_PM_SLEEP
1537static int sh_mmcif_suspend(struct device *dev)
1538{
1539 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1540
1541 pm_runtime_get_sync(dev);
1542 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543 pm_runtime_put(dev);
1544
1545 return 0;
1546}
1547
1548static int sh_mmcif_resume(struct device *dev)
1549{
1550 return 0;
1551}
1552#endif
1553
1554static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1556};
1557
1558static struct platform_driver sh_mmcif_driver = {
1559 .probe = sh_mmcif_probe,
1560 .remove = sh_mmcif_remove,
1561 .driver = {
1562 .name = DRIVER_NAME,
1563 .pm = &sh_mmcif_dev_pm_ops,
1564 .of_match_table = sh_mmcif_of_match,
1565 },
1566};
1567
1568module_platform_driver(sh_mmcif_driver);
1569
1570MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571MODULE_LICENSE("GPL v2");
1572MODULE_ALIAS("platform:" DRIVER_NAME);
1573MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");