Loading...
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_gpio.h>
34#include <linux/of_device.h>
35#include <linux/mmc/host.h>
36#include <linux/mmc/core.h>
37#include <linux/mmc/mmc.h>
38#include <linux/mmc/slot-gpio.h>
39#include <linux/io.h>
40#include <linux/irq.h>
41#include <linux/gpio.h>
42#include <linux/regulator/consumer.h>
43#include <linux/pinctrl/consumer.h>
44#include <linux/pm_runtime.h>
45#include <linux/pm_wakeirq.h>
46#include <linux/platform_data/hsmmc-omap.h>
47
48/* OMAP HSMMC Host Controller Registers */
49#define OMAP_HSMMC_SYSSTATUS 0x0014
50#define OMAP_HSMMC_CON 0x002C
51#define OMAP_HSMMC_SDMASA 0x0100
52#define OMAP_HSMMC_BLK 0x0104
53#define OMAP_HSMMC_ARG 0x0108
54#define OMAP_HSMMC_CMD 0x010C
55#define OMAP_HSMMC_RSP10 0x0110
56#define OMAP_HSMMC_RSP32 0x0114
57#define OMAP_HSMMC_RSP54 0x0118
58#define OMAP_HSMMC_RSP76 0x011C
59#define OMAP_HSMMC_DATA 0x0120
60#define OMAP_HSMMC_PSTATE 0x0124
61#define OMAP_HSMMC_HCTL 0x0128
62#define OMAP_HSMMC_SYSCTL 0x012C
63#define OMAP_HSMMC_STAT 0x0130
64#define OMAP_HSMMC_IE 0x0134
65#define OMAP_HSMMC_ISE 0x0138
66#define OMAP_HSMMC_AC12 0x013C
67#define OMAP_HSMMC_CAPA 0x0140
68
69#define VS18 (1 << 26)
70#define VS30 (1 << 25)
71#define HSS (1 << 21)
72#define SDVS18 (0x5 << 9)
73#define SDVS30 (0x6 << 9)
74#define SDVS33 (0x7 << 9)
75#define SDVS_MASK 0x00000E00
76#define SDVSCLR 0xFFFFF1FF
77#define SDVSDET 0x00000400
78#define AUTOIDLE 0x1
79#define SDBP (1 << 8)
80#define DTO 0xe
81#define ICE 0x1
82#define ICS 0x2
83#define CEN (1 << 2)
84#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
85#define CLKD_MASK 0x0000FFC0
86#define CLKD_SHIFT 6
87#define DTO_MASK 0x000F0000
88#define DTO_SHIFT 16
89#define INIT_STREAM (1 << 1)
90#define ACEN_ACMD23 (2 << 2)
91#define DP_SELECT (1 << 21)
92#define DDIR (1 << 4)
93#define DMAE 0x1
94#define MSBS (1 << 5)
95#define BCE (1 << 1)
96#define FOUR_BIT (1 << 1)
97#define HSPE (1 << 2)
98#define IWE (1 << 24)
99#define DDR (1 << 19)
100#define CLKEXTFREE (1 << 16)
101#define CTPL (1 << 11)
102#define DW8 (1 << 5)
103#define OD 0x1
104#define STAT_CLEAR 0xFFFFFFFF
105#define INIT_STREAM_CMD 0x00000000
106#define DUAL_VOLT_OCR_BIT 7
107#define SRC (1 << 25)
108#define SRD (1 << 26)
109#define SOFTRESET (1 << 1)
110
111/* PSTATE */
112#define DLEV_DAT(x) (1 << (20 + (x)))
113
114/* Interrupt masks for IE and ISE register */
115#define CC_EN (1 << 0)
116#define TC_EN (1 << 1)
117#define BWR_EN (1 << 4)
118#define BRR_EN (1 << 5)
119#define CIRQ_EN (1 << 8)
120#define ERR_EN (1 << 15)
121#define CTO_EN (1 << 16)
122#define CCRC_EN (1 << 17)
123#define CEB_EN (1 << 18)
124#define CIE_EN (1 << 19)
125#define DTO_EN (1 << 20)
126#define DCRC_EN (1 << 21)
127#define DEB_EN (1 << 22)
128#define ACE_EN (1 << 24)
129#define CERR_EN (1 << 28)
130#define BADA_EN (1 << 29)
131
132#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
133 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
134 BRR_EN | BWR_EN | TC_EN | CC_EN)
135
136#define CNI (1 << 7)
137#define ACIE (1 << 4)
138#define ACEB (1 << 3)
139#define ACCE (1 << 2)
140#define ACTO (1 << 1)
141#define ACNE (1 << 0)
142
143#define MMC_AUTOSUSPEND_DELAY 100
144#define MMC_TIMEOUT_MS 20 /* 20 mSec */
145#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
146#define OMAP_MMC_MIN_CLOCK 400000
147#define OMAP_MMC_MAX_CLOCK 52000000
148#define DRIVER_NAME "omap_hsmmc"
149
150/*
151 * One controller can have multiple slots, like on some omap boards using
152 * omap.c controller driver. Luckily this is not currently done on any known
153 * omap_hsmmc.c device.
154 */
155#define mmc_pdata(host) host->pdata
156
157/*
158 * MMC Host controller read/write API's
159 */
160#define OMAP_HSMMC_READ(base, reg) \
161 __raw_readl((base) + OMAP_HSMMC_##reg)
162
163#define OMAP_HSMMC_WRITE(base, reg, val) \
164 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
165
166struct omap_hsmmc_next {
167 unsigned int dma_len;
168 s32 cookie;
169};
170
171struct omap_hsmmc_host {
172 struct device *dev;
173 struct mmc_host *mmc;
174 struct mmc_request *mrq;
175 struct mmc_command *cmd;
176 struct mmc_data *data;
177 struct clk *fclk;
178 struct clk *dbclk;
179 struct regulator *pbias;
180 bool pbias_enabled;
181 void __iomem *base;
182 int vqmmc_enabled;
183 resource_size_t mapbase;
184 spinlock_t irq_lock; /* Prevent races with irq handler */
185 unsigned int dma_len;
186 unsigned int dma_sg_idx;
187 unsigned char bus_mode;
188 unsigned char power_mode;
189 int suspended;
190 u32 con;
191 u32 hctl;
192 u32 sysctl;
193 u32 capa;
194 int irq;
195 int wake_irq;
196 int use_dma, dma_ch;
197 struct dma_chan *tx_chan;
198 struct dma_chan *rx_chan;
199 int response_busy;
200 int context_loss;
201 int protect_card;
202 int reqs_blocked;
203 int req_in_progress;
204 unsigned long clk_rate;
205 unsigned int flags;
206#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
207#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
208 struct omap_hsmmc_next next_data;
209 struct omap_hsmmc_platform_data *pdata;
210
211 /* return MMC cover switch state, can be NULL if not supported.
212 *
213 * possible return values:
214 * 0 - closed
215 * 1 - open
216 */
217 int (*get_cover_state)(struct device *dev);
218
219 int (*card_detect)(struct device *dev);
220};
221
222struct omap_mmc_of_data {
223 u32 reg_offset;
224 u8 controller_flags;
225};
226
227static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
228
229static int omap_hsmmc_card_detect(struct device *dev)
230{
231 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
232
233 return mmc_gpio_get_cd(host->mmc);
234}
235
236static int omap_hsmmc_get_cover_state(struct device *dev)
237{
238 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
239
240 return mmc_gpio_get_cd(host->mmc);
241}
242
243static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
244{
245 int ret;
246 struct omap_hsmmc_host *host = mmc_priv(mmc);
247 struct mmc_ios *ios = &mmc->ios;
248
249 if (!IS_ERR(mmc->supply.vmmc)) {
250 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
251 if (ret)
252 return ret;
253 }
254
255 /* Enable interface voltage rail, if needed */
256 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
257 ret = regulator_enable(mmc->supply.vqmmc);
258 if (ret) {
259 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
260 goto err_vqmmc;
261 }
262 host->vqmmc_enabled = 1;
263 }
264
265 return 0;
266
267err_vqmmc:
268 if (!IS_ERR(mmc->supply.vmmc))
269 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
270
271 return ret;
272}
273
274static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
275{
276 int ret;
277 int status;
278 struct omap_hsmmc_host *host = mmc_priv(mmc);
279
280 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
281 ret = regulator_disable(mmc->supply.vqmmc);
282 if (ret) {
283 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
284 return ret;
285 }
286 host->vqmmc_enabled = 0;
287 }
288
289 if (!IS_ERR(mmc->supply.vmmc)) {
290 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
291 if (ret)
292 goto err_set_ocr;
293 }
294
295 return 0;
296
297err_set_ocr:
298 if (!IS_ERR(mmc->supply.vqmmc)) {
299 status = regulator_enable(mmc->supply.vqmmc);
300 if (status)
301 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
302 }
303
304 return ret;
305}
306
307static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
308{
309 int ret;
310
311 if (IS_ERR(host->pbias))
312 return 0;
313
314 if (power_on) {
315 if (host->pbias_enabled == 0) {
316 ret = regulator_enable(host->pbias);
317 if (ret) {
318 dev_err(host->dev, "pbias reg enable fail\n");
319 return ret;
320 }
321 host->pbias_enabled = 1;
322 }
323 } else {
324 if (host->pbias_enabled == 1) {
325 ret = regulator_disable(host->pbias);
326 if (ret) {
327 dev_err(host->dev, "pbias reg disable fail\n");
328 return ret;
329 }
330 host->pbias_enabled = 0;
331 }
332 }
333
334 return 0;
335}
336
337static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
338{
339 struct mmc_host *mmc = host->mmc;
340 int ret = 0;
341
342 /*
343 * If we don't see a Vcc regulator, assume it's a fixed
344 * voltage always-on regulator.
345 */
346 if (IS_ERR(mmc->supply.vmmc))
347 return 0;
348
349 ret = omap_hsmmc_set_pbias(host, false);
350 if (ret)
351 return ret;
352
353 /*
354 * Assume Vcc regulator is used only to power the card ... OMAP
355 * VDDS is used to power the pins, optionally with a transceiver to
356 * support cards using voltages other than VDDS (1.8V nominal). When a
357 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
358 *
359 * In some cases this regulator won't support enable/disable;
360 * e.g. it's a fixed rail for a WLAN chip.
361 *
362 * In other cases vcc_aux switches interface power. Example, for
363 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
364 * chips/cards need an interface voltage rail too.
365 */
366 if (power_on) {
367 ret = omap_hsmmc_enable_supply(mmc);
368 if (ret)
369 return ret;
370
371 ret = omap_hsmmc_set_pbias(host, true);
372 if (ret)
373 goto err_set_voltage;
374 } else {
375 ret = omap_hsmmc_disable_supply(mmc);
376 if (ret)
377 return ret;
378 }
379
380 return 0;
381
382err_set_voltage:
383 omap_hsmmc_disable_supply(mmc);
384
385 return ret;
386}
387
388static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
389{
390 int ret;
391
392 if (IS_ERR(reg))
393 return 0;
394
395 if (regulator_is_enabled(reg)) {
396 ret = regulator_enable(reg);
397 if (ret)
398 return ret;
399
400 ret = regulator_disable(reg);
401 if (ret)
402 return ret;
403 }
404
405 return 0;
406}
407
408static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
409{
410 struct mmc_host *mmc = host->mmc;
411 int ret;
412
413 /*
414 * disable regulators enabled during boot and get the usecount
415 * right so that regulators can be enabled/disabled by checking
416 * the return value of regulator_is_enabled
417 */
418 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
419 if (ret) {
420 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
421 return ret;
422 }
423
424 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
425 if (ret) {
426 dev_err(host->dev,
427 "fail to disable boot enabled vmmc_aux reg\n");
428 return ret;
429 }
430
431 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
432 if (ret) {
433 dev_err(host->dev,
434 "failed to disable boot enabled pbias reg\n");
435 return ret;
436 }
437
438 return 0;
439}
440
441static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
442{
443 int ret;
444 struct mmc_host *mmc = host->mmc;
445
446
447 ret = mmc_regulator_get_supply(mmc);
448 if (ret)
449 return ret;
450
451 /* Allow an aux regulator */
452 if (IS_ERR(mmc->supply.vqmmc)) {
453 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
454 "vmmc_aux");
455 if (IS_ERR(mmc->supply.vqmmc)) {
456 ret = PTR_ERR(mmc->supply.vqmmc);
457 if ((ret != -ENODEV) && host->dev->of_node)
458 return ret;
459 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
460 PTR_ERR(mmc->supply.vqmmc));
461 }
462 }
463
464 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
465 if (IS_ERR(host->pbias)) {
466 ret = PTR_ERR(host->pbias);
467 if ((ret != -ENODEV) && host->dev->of_node) {
468 dev_err(host->dev,
469 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
470 return ret;
471 }
472 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
473 PTR_ERR(host->pbias));
474 }
475
476 /* For eMMC do not power off when not in sleep state */
477 if (mmc_pdata(host)->no_regulator_off_init)
478 return 0;
479
480 ret = omap_hsmmc_disable_boot_regulators(host);
481 if (ret)
482 return ret;
483
484 return 0;
485}
486
487static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
488
489static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
490 struct omap_hsmmc_host *host,
491 struct omap_hsmmc_platform_data *pdata)
492{
493 int ret;
494
495 if (gpio_is_valid(pdata->gpio_cod)) {
496 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
497 if (ret)
498 return ret;
499
500 host->get_cover_state = omap_hsmmc_get_cover_state;
501 mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
502 } else if (gpio_is_valid(pdata->gpio_cd)) {
503 ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
504 if (ret)
505 return ret;
506
507 host->card_detect = omap_hsmmc_card_detect;
508 }
509
510 if (gpio_is_valid(pdata->gpio_wp)) {
511 ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
512 if (ret)
513 return ret;
514 }
515
516 return 0;
517}
518
519/*
520 * Start clock to the card
521 */
522static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
523{
524 OMAP_HSMMC_WRITE(host->base, SYSCTL,
525 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
526}
527
528/*
529 * Stop clock to the card
530 */
531static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
532{
533 OMAP_HSMMC_WRITE(host->base, SYSCTL,
534 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
535 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
536 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
537}
538
539static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
540 struct mmc_command *cmd)
541{
542 u32 irq_mask = INT_EN_MASK;
543 unsigned long flags;
544
545 if (host->use_dma)
546 irq_mask &= ~(BRR_EN | BWR_EN);
547
548 /* Disable timeout for erases */
549 if (cmd->opcode == MMC_ERASE)
550 irq_mask &= ~DTO_EN;
551
552 spin_lock_irqsave(&host->irq_lock, flags);
553 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
554 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
555
556 /* latch pending CIRQ, but don't signal MMC core */
557 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
558 irq_mask |= CIRQ_EN;
559 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
560 spin_unlock_irqrestore(&host->irq_lock, flags);
561}
562
563static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
564{
565 u32 irq_mask = 0;
566 unsigned long flags;
567
568 spin_lock_irqsave(&host->irq_lock, flags);
569 /* no transfer running but need to keep cirq if enabled */
570 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
571 irq_mask |= CIRQ_EN;
572 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
573 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
574 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
575 spin_unlock_irqrestore(&host->irq_lock, flags);
576}
577
578/* Calculate divisor for the given clock frequency */
579static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
580{
581 u16 dsor = 0;
582
583 if (ios->clock) {
584 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
585 if (dsor > CLKD_MAX)
586 dsor = CLKD_MAX;
587 }
588
589 return dsor;
590}
591
592static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
593{
594 struct mmc_ios *ios = &host->mmc->ios;
595 unsigned long regval;
596 unsigned long timeout;
597 unsigned long clkdiv;
598
599 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
600
601 omap_hsmmc_stop_clock(host);
602
603 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
604 regval = regval & ~(CLKD_MASK | DTO_MASK);
605 clkdiv = calc_divisor(host, ios);
606 regval = regval | (clkdiv << 6) | (DTO << 16);
607 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
608 OMAP_HSMMC_WRITE(host->base, SYSCTL,
609 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
610
611 /* Wait till the ICS bit is set */
612 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
613 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
614 && time_before(jiffies, timeout))
615 cpu_relax();
616
617 /*
618 * Enable High-Speed Support
619 * Pre-Requisites
620 * - Controller should support High-Speed-Enable Bit
621 * - Controller should not be using DDR Mode
622 * - Controller should advertise that it supports High Speed
623 * in capabilities register
624 * - MMC/SD clock coming out of controller > 25MHz
625 */
626 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
627 (ios->timing != MMC_TIMING_MMC_DDR52) &&
628 (ios->timing != MMC_TIMING_UHS_DDR50) &&
629 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
630 regval = OMAP_HSMMC_READ(host->base, HCTL);
631 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
632 regval |= HSPE;
633 else
634 regval &= ~HSPE;
635
636 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
637 }
638
639 omap_hsmmc_start_clock(host);
640}
641
642static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
643{
644 struct mmc_ios *ios = &host->mmc->ios;
645 u32 con;
646
647 con = OMAP_HSMMC_READ(host->base, CON);
648 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
649 ios->timing == MMC_TIMING_UHS_DDR50)
650 con |= DDR; /* configure in DDR mode */
651 else
652 con &= ~DDR;
653 switch (ios->bus_width) {
654 case MMC_BUS_WIDTH_8:
655 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
656 break;
657 case MMC_BUS_WIDTH_4:
658 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
659 OMAP_HSMMC_WRITE(host->base, HCTL,
660 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
661 break;
662 case MMC_BUS_WIDTH_1:
663 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
664 OMAP_HSMMC_WRITE(host->base, HCTL,
665 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
666 break;
667 }
668}
669
670static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
671{
672 struct mmc_ios *ios = &host->mmc->ios;
673 u32 con;
674
675 con = OMAP_HSMMC_READ(host->base, CON);
676 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
677 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
678 else
679 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
680}
681
682#ifdef CONFIG_PM
683
684/*
685 * Restore the MMC host context, if it was lost as result of a
686 * power state change.
687 */
688static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
689{
690 struct mmc_ios *ios = &host->mmc->ios;
691 u32 hctl, capa;
692 unsigned long timeout;
693
694 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
695 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
696 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
697 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
698 return 0;
699
700 host->context_loss++;
701
702 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
703 if (host->power_mode != MMC_POWER_OFF &&
704 (1 << ios->vdd) <= MMC_VDD_23_24)
705 hctl = SDVS18;
706 else
707 hctl = SDVS30;
708 capa = VS30 | VS18;
709 } else {
710 hctl = SDVS18;
711 capa = VS18;
712 }
713
714 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
715 hctl |= IWE;
716
717 OMAP_HSMMC_WRITE(host->base, HCTL,
718 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
719
720 OMAP_HSMMC_WRITE(host->base, CAPA,
721 OMAP_HSMMC_READ(host->base, CAPA) | capa);
722
723 OMAP_HSMMC_WRITE(host->base, HCTL,
724 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
725
726 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
727 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
728 && time_before(jiffies, timeout))
729 ;
730
731 OMAP_HSMMC_WRITE(host->base, ISE, 0);
732 OMAP_HSMMC_WRITE(host->base, IE, 0);
733 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
734
735 /* Do not initialize card-specific things if the power is off */
736 if (host->power_mode == MMC_POWER_OFF)
737 goto out;
738
739 omap_hsmmc_set_bus_width(host);
740
741 omap_hsmmc_set_clock(host);
742
743 omap_hsmmc_set_bus_mode(host);
744
745out:
746 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
747 host->context_loss);
748 return 0;
749}
750
751/*
752 * Save the MMC host context (store the number of power state changes so far).
753 */
754static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
755{
756 host->con = OMAP_HSMMC_READ(host->base, CON);
757 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
758 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
759 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
760}
761
762#else
763
764static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
765{
766 return 0;
767}
768
769static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
770{
771}
772
773#endif
774
775/*
776 * Send init stream sequence to card
777 * before sending IDLE command
778 */
779static void send_init_stream(struct omap_hsmmc_host *host)
780{
781 int reg = 0;
782 unsigned long timeout;
783
784 if (host->protect_card)
785 return;
786
787 disable_irq(host->irq);
788
789 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
790 OMAP_HSMMC_WRITE(host->base, CON,
791 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
792 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
793
794 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
795 while ((reg != CC_EN) && time_before(jiffies, timeout))
796 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
797
798 OMAP_HSMMC_WRITE(host->base, CON,
799 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
800
801 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
802 OMAP_HSMMC_READ(host->base, STAT);
803
804 enable_irq(host->irq);
805}
806
807static inline
808int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
809{
810 int r = 1;
811
812 if (host->get_cover_state)
813 r = host->get_cover_state(host->dev);
814 return r;
815}
816
817static ssize_t
818omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
819 char *buf)
820{
821 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
822 struct omap_hsmmc_host *host = mmc_priv(mmc);
823
824 return sprintf(buf, "%s\n",
825 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
826}
827
828static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
829
830static ssize_t
831omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
832 char *buf)
833{
834 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
835 struct omap_hsmmc_host *host = mmc_priv(mmc);
836
837 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
838}
839
840static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
841
842/*
843 * Configure the response type and send the cmd.
844 */
845static void
846omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
847 struct mmc_data *data)
848{
849 int cmdreg = 0, resptype = 0, cmdtype = 0;
850
851 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
852 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
853 host->cmd = cmd;
854
855 omap_hsmmc_enable_irq(host, cmd);
856
857 host->response_busy = 0;
858 if (cmd->flags & MMC_RSP_PRESENT) {
859 if (cmd->flags & MMC_RSP_136)
860 resptype = 1;
861 else if (cmd->flags & MMC_RSP_BUSY) {
862 resptype = 3;
863 host->response_busy = 1;
864 } else
865 resptype = 2;
866 }
867
868 /*
869 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
870 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
871 * a val of 0x3, rest 0x0.
872 */
873 if (cmd == host->mrq->stop)
874 cmdtype = 0x3;
875
876 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
877
878 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
879 host->mrq->sbc) {
880 cmdreg |= ACEN_ACMD23;
881 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
882 }
883 if (data) {
884 cmdreg |= DP_SELECT | MSBS | BCE;
885 if (data->flags & MMC_DATA_READ)
886 cmdreg |= DDIR;
887 else
888 cmdreg &= ~(DDIR);
889 }
890
891 if (host->use_dma)
892 cmdreg |= DMAE;
893
894 host->req_in_progress = 1;
895
896 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
897 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
898}
899
900static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
901 struct mmc_data *data)
902{
903 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
904}
905
906static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
907{
908 int dma_ch;
909 unsigned long flags;
910
911 spin_lock_irqsave(&host->irq_lock, flags);
912 host->req_in_progress = 0;
913 dma_ch = host->dma_ch;
914 spin_unlock_irqrestore(&host->irq_lock, flags);
915
916 omap_hsmmc_disable_irq(host);
917 /* Do not complete the request if DMA is still in progress */
918 if (mrq->data && host->use_dma && dma_ch != -1)
919 return;
920 host->mrq = NULL;
921 mmc_request_done(host->mmc, mrq);
922}
923
924/*
925 * Notify the transfer complete to MMC core
926 */
927static void
928omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
929{
930 if (!data) {
931 struct mmc_request *mrq = host->mrq;
932
933 /* TC before CC from CMD6 - don't know why, but it happens */
934 if (host->cmd && host->cmd->opcode == 6 &&
935 host->response_busy) {
936 host->response_busy = 0;
937 return;
938 }
939
940 omap_hsmmc_request_done(host, mrq);
941 return;
942 }
943
944 host->data = NULL;
945
946 if (!data->error)
947 data->bytes_xfered += data->blocks * (data->blksz);
948 else
949 data->bytes_xfered = 0;
950
951 if (data->stop && (data->error || !host->mrq->sbc))
952 omap_hsmmc_start_command(host, data->stop, NULL);
953 else
954 omap_hsmmc_request_done(host, data->mrq);
955}
956
957/*
958 * Notify the core about command completion
959 */
960static void
961omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
962{
963 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
964 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
965 host->cmd = NULL;
966 omap_hsmmc_start_dma_transfer(host);
967 omap_hsmmc_start_command(host, host->mrq->cmd,
968 host->mrq->data);
969 return;
970 }
971
972 host->cmd = NULL;
973
974 if (cmd->flags & MMC_RSP_PRESENT) {
975 if (cmd->flags & MMC_RSP_136) {
976 /* response type 2 */
977 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
978 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
979 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
980 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
981 } else {
982 /* response types 1, 1b, 3, 4, 5, 6 */
983 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
984 }
985 }
986 if ((host->data == NULL && !host->response_busy) || cmd->error)
987 omap_hsmmc_request_done(host, host->mrq);
988}
989
990/*
991 * DMA clean up for command errors
992 */
993static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
994{
995 int dma_ch;
996 unsigned long flags;
997
998 host->data->error = errno;
999
1000 spin_lock_irqsave(&host->irq_lock, flags);
1001 dma_ch = host->dma_ch;
1002 host->dma_ch = -1;
1003 spin_unlock_irqrestore(&host->irq_lock, flags);
1004
1005 if (host->use_dma && dma_ch != -1) {
1006 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1007
1008 dmaengine_terminate_all(chan);
1009 dma_unmap_sg(chan->device->dev,
1010 host->data->sg, host->data->sg_len,
1011 mmc_get_dma_dir(host->data));
1012
1013 host->data->host_cookie = 0;
1014 }
1015 host->data = NULL;
1016}
1017
1018/*
1019 * Readable error output
1020 */
1021#ifdef CONFIG_MMC_DEBUG
1022static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1023{
1024 /* --- means reserved bit without definition at documentation */
1025 static const char *omap_hsmmc_status_bits[] = {
1026 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1027 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1028 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1029 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1030 };
1031 char res[256];
1032 char *buf = res;
1033 int len, i;
1034
1035 len = sprintf(buf, "MMC IRQ 0x%x :", status);
1036 buf += len;
1037
1038 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1039 if (status & (1 << i)) {
1040 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1041 buf += len;
1042 }
1043
1044 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1045}
1046#else
1047static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1048 u32 status)
1049{
1050}
1051#endif /* CONFIG_MMC_DEBUG */
1052
1053/*
1054 * MMC controller internal state machines reset
1055 *
1056 * Used to reset command or data internal state machines, using respectively
1057 * SRC or SRD bit of SYSCTL register
1058 * Can be called from interrupt context
1059 */
1060static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1061 unsigned long bit)
1062{
1063 unsigned long i = 0;
1064 unsigned long limit = MMC_TIMEOUT_US;
1065
1066 OMAP_HSMMC_WRITE(host->base, SYSCTL,
1067 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1068
1069 /*
1070 * OMAP4 ES2 and greater has an updated reset logic.
1071 * Monitor a 0->1 transition first
1072 */
1073 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1074 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1075 && (i++ < limit))
1076 udelay(1);
1077 }
1078 i = 0;
1079
1080 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1081 (i++ < limit))
1082 udelay(1);
1083
1084 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1085 dev_err(mmc_dev(host->mmc),
1086 "Timeout waiting on controller reset in %s\n",
1087 __func__);
1088}
1089
1090static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1091 int err, int end_cmd)
1092{
1093 if (end_cmd) {
1094 omap_hsmmc_reset_controller_fsm(host, SRC);
1095 if (host->cmd)
1096 host->cmd->error = err;
1097 }
1098
1099 if (host->data) {
1100 omap_hsmmc_reset_controller_fsm(host, SRD);
1101 omap_hsmmc_dma_cleanup(host, err);
1102 } else if (host->mrq && host->mrq->cmd)
1103 host->mrq->cmd->error = err;
1104}
1105
1106static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1107{
1108 struct mmc_data *data;
1109 int end_cmd = 0, end_trans = 0;
1110 int error = 0;
1111
1112 data = host->data;
1113 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1114
1115 if (status & ERR_EN) {
1116 omap_hsmmc_dbg_report_irq(host, status);
1117
1118 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1119 end_cmd = 1;
1120 if (host->data || host->response_busy) {
1121 end_trans = !end_cmd;
1122 host->response_busy = 0;
1123 }
1124 if (status & (CTO_EN | DTO_EN))
1125 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1126 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1127 BADA_EN))
1128 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1129
1130 if (status & ACE_EN) {
1131 u32 ac12;
1132 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1133 if (!(ac12 & ACNE) && host->mrq->sbc) {
1134 end_cmd = 1;
1135 if (ac12 & ACTO)
1136 error = -ETIMEDOUT;
1137 else if (ac12 & (ACCE | ACEB | ACIE))
1138 error = -EILSEQ;
1139 host->mrq->sbc->error = error;
1140 hsmmc_command_incomplete(host, error, end_cmd);
1141 }
1142 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1143 }
1144 }
1145
1146 OMAP_HSMMC_WRITE(host->base, STAT, status);
1147 if (end_cmd || ((status & CC_EN) && host->cmd))
1148 omap_hsmmc_cmd_done(host, host->cmd);
1149 if ((end_trans || (status & TC_EN)) && host->mrq)
1150 omap_hsmmc_xfer_done(host, data);
1151}
1152
1153/*
1154 * MMC controller IRQ handler
1155 */
1156static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1157{
1158 struct omap_hsmmc_host *host = dev_id;
1159 int status;
1160
1161 status = OMAP_HSMMC_READ(host->base, STAT);
1162 while (status & (INT_EN_MASK | CIRQ_EN)) {
1163 if (host->req_in_progress)
1164 omap_hsmmc_do_irq(host, status);
1165
1166 if (status & CIRQ_EN)
1167 mmc_signal_sdio_irq(host->mmc);
1168
1169 /* Flush posted write */
1170 status = OMAP_HSMMC_READ(host->base, STAT);
1171 }
1172
1173 return IRQ_HANDLED;
1174}
1175
1176static void set_sd_bus_power(struct omap_hsmmc_host *host)
1177{
1178 unsigned long i;
1179
1180 OMAP_HSMMC_WRITE(host->base, HCTL,
1181 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1182 for (i = 0; i < loops_per_jiffy; i++) {
1183 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1184 break;
1185 cpu_relax();
1186 }
1187}
1188
1189/*
1190 * Switch MMC interface voltage ... only relevant for MMC1.
1191 *
1192 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1193 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1194 * Some chips, like eMMC ones, use internal transceivers.
1195 */
1196static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1197{
1198 u32 reg_val = 0;
1199 int ret;
1200
1201 /* Disable the clocks */
1202 if (host->dbclk)
1203 clk_disable_unprepare(host->dbclk);
1204
1205 /* Turn the power off */
1206 ret = omap_hsmmc_set_power(host, 0);
1207
1208 /* Turn the power ON with given VDD 1.8 or 3.0v */
1209 if (!ret)
1210 ret = omap_hsmmc_set_power(host, 1);
1211 if (host->dbclk)
1212 clk_prepare_enable(host->dbclk);
1213
1214 if (ret != 0)
1215 goto err;
1216
1217 OMAP_HSMMC_WRITE(host->base, HCTL,
1218 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1219 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1220
1221 /*
1222 * If a MMC dual voltage card is detected, the set_ios fn calls
1223 * this fn with VDD bit set for 1.8V. Upon card removal from the
1224 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1225 *
1226 * Cope with a bit of slop in the range ... per data sheets:
1227 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1228 * but recommended values are 1.71V to 1.89V
1229 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1230 * but recommended values are 2.7V to 3.3V
1231 *
1232 * Board setup code shouldn't permit anything very out-of-range.
1233 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1234 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1235 */
1236 if ((1 << vdd) <= MMC_VDD_23_24)
1237 reg_val |= SDVS18;
1238 else
1239 reg_val |= SDVS30;
1240
1241 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1242 set_sd_bus_power(host);
1243
1244 return 0;
1245err:
1246 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1247 return ret;
1248}
1249
1250/* Protect the card while the cover is open */
1251static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1252{
1253 if (!host->get_cover_state)
1254 return;
1255
1256 host->reqs_blocked = 0;
1257 if (host->get_cover_state(host->dev)) {
1258 if (host->protect_card) {
1259 dev_info(host->dev, "%s: cover is closed, "
1260 "card is now accessible\n",
1261 mmc_hostname(host->mmc));
1262 host->protect_card = 0;
1263 }
1264 } else {
1265 if (!host->protect_card) {
1266 dev_info(host->dev, "%s: cover is open, "
1267 "card is now inaccessible\n",
1268 mmc_hostname(host->mmc));
1269 host->protect_card = 1;
1270 }
1271 }
1272}
1273
1274/*
1275 * irq handler when (cell-phone) cover is mounted/removed
1276 */
1277static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1278{
1279 struct omap_hsmmc_host *host = dev_id;
1280
1281 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1282
1283 omap_hsmmc_protect_card(host);
1284 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1285 return IRQ_HANDLED;
1286}
1287
1288static void omap_hsmmc_dma_callback(void *param)
1289{
1290 struct omap_hsmmc_host *host = param;
1291 struct dma_chan *chan;
1292 struct mmc_data *data;
1293 int req_in_progress;
1294
1295 spin_lock_irq(&host->irq_lock);
1296 if (host->dma_ch < 0) {
1297 spin_unlock_irq(&host->irq_lock);
1298 return;
1299 }
1300
1301 data = host->mrq->data;
1302 chan = omap_hsmmc_get_dma_chan(host, data);
1303 if (!data->host_cookie)
1304 dma_unmap_sg(chan->device->dev,
1305 data->sg, data->sg_len,
1306 mmc_get_dma_dir(data));
1307
1308 req_in_progress = host->req_in_progress;
1309 host->dma_ch = -1;
1310 spin_unlock_irq(&host->irq_lock);
1311
1312 /* If DMA has finished after TC, complete the request */
1313 if (!req_in_progress) {
1314 struct mmc_request *mrq = host->mrq;
1315
1316 host->mrq = NULL;
1317 mmc_request_done(host->mmc, mrq);
1318 }
1319}
1320
1321static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1322 struct mmc_data *data,
1323 struct omap_hsmmc_next *next,
1324 struct dma_chan *chan)
1325{
1326 int dma_len;
1327
1328 if (!next && data->host_cookie &&
1329 data->host_cookie != host->next_data.cookie) {
1330 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1331 " host->next_data.cookie %d\n",
1332 __func__, data->host_cookie, host->next_data.cookie);
1333 data->host_cookie = 0;
1334 }
1335
1336 /* Check if next job is already prepared */
1337 if (next || data->host_cookie != host->next_data.cookie) {
1338 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1339 mmc_get_dma_dir(data));
1340
1341 } else {
1342 dma_len = host->next_data.dma_len;
1343 host->next_data.dma_len = 0;
1344 }
1345
1346
1347 if (dma_len == 0)
1348 return -EINVAL;
1349
1350 if (next) {
1351 next->dma_len = dma_len;
1352 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1353 } else
1354 host->dma_len = dma_len;
1355
1356 return 0;
1357}
1358
1359/*
1360 * Routine to configure and start DMA for the MMC card
1361 */
1362static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1363 struct mmc_request *req)
1364{
1365 struct dma_async_tx_descriptor *tx;
1366 int ret = 0, i;
1367 struct mmc_data *data = req->data;
1368 struct dma_chan *chan;
1369 struct dma_slave_config cfg = {
1370 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1371 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1372 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1373 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1374 .src_maxburst = data->blksz / 4,
1375 .dst_maxburst = data->blksz / 4,
1376 };
1377
1378 /* Sanity check: all the SG entries must be aligned by block size. */
1379 for (i = 0; i < data->sg_len; i++) {
1380 struct scatterlist *sgl;
1381
1382 sgl = data->sg + i;
1383 if (sgl->length % data->blksz)
1384 return -EINVAL;
1385 }
1386 if ((data->blksz % 4) != 0)
1387 /* REVISIT: The MMC buffer increments only when MSB is written.
1388 * Return error for blksz which is non multiple of four.
1389 */
1390 return -EINVAL;
1391
1392 BUG_ON(host->dma_ch != -1);
1393
1394 chan = omap_hsmmc_get_dma_chan(host, data);
1395
1396 ret = dmaengine_slave_config(chan, &cfg);
1397 if (ret)
1398 return ret;
1399
1400 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1401 if (ret)
1402 return ret;
1403
1404 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1405 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1406 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1407 if (!tx) {
1408 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1409 /* FIXME: cleanup */
1410 return -1;
1411 }
1412
1413 tx->callback = omap_hsmmc_dma_callback;
1414 tx->callback_param = host;
1415
1416 /* Does not fail */
1417 dmaengine_submit(tx);
1418
1419 host->dma_ch = 1;
1420
1421 return 0;
1422}
1423
1424static void set_data_timeout(struct omap_hsmmc_host *host,
1425 unsigned long long timeout_ns,
1426 unsigned int timeout_clks)
1427{
1428 unsigned long long timeout = timeout_ns;
1429 unsigned int cycle_ns;
1430 uint32_t reg, clkd, dto = 0;
1431
1432 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1433 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1434 if (clkd == 0)
1435 clkd = 1;
1436
1437 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1438 do_div(timeout, cycle_ns);
1439 timeout += timeout_clks;
1440 if (timeout) {
1441 while ((timeout & 0x80000000) == 0) {
1442 dto += 1;
1443 timeout <<= 1;
1444 }
1445 dto = 31 - dto;
1446 timeout <<= 1;
1447 if (timeout && dto)
1448 dto += 1;
1449 if (dto >= 13)
1450 dto -= 13;
1451 else
1452 dto = 0;
1453 if (dto > 14)
1454 dto = 14;
1455 }
1456
1457 reg &= ~DTO_MASK;
1458 reg |= dto << DTO_SHIFT;
1459 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1460}
1461
1462static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1463{
1464 struct mmc_request *req = host->mrq;
1465 struct dma_chan *chan;
1466
1467 if (!req->data)
1468 return;
1469 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1470 | (req->data->blocks << 16));
1471 set_data_timeout(host, req->data->timeout_ns,
1472 req->data->timeout_clks);
1473 chan = omap_hsmmc_get_dma_chan(host, req->data);
1474 dma_async_issue_pending(chan);
1475}
1476
1477/*
1478 * Configure block length for MMC/SD cards and initiate the transfer.
1479 */
1480static int
1481omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1482{
1483 int ret;
1484 unsigned long long timeout;
1485
1486 host->data = req->data;
1487
1488 if (req->data == NULL) {
1489 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1490 if (req->cmd->flags & MMC_RSP_BUSY) {
1491 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1492
1493 /*
1494 * Set an arbitrary 100ms data timeout for commands with
1495 * busy signal and no indication of busy_timeout.
1496 */
1497 if (!timeout)
1498 timeout = 100000000U;
1499
1500 set_data_timeout(host, timeout, 0);
1501 }
1502 return 0;
1503 }
1504
1505 if (host->use_dma) {
1506 ret = omap_hsmmc_setup_dma_transfer(host, req);
1507 if (ret != 0) {
1508 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1509 return ret;
1510 }
1511 }
1512 return 0;
1513}
1514
1515static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1516 int err)
1517{
1518 struct omap_hsmmc_host *host = mmc_priv(mmc);
1519 struct mmc_data *data = mrq->data;
1520
1521 if (host->use_dma && data->host_cookie) {
1522 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1523
1524 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1525 mmc_get_dma_dir(data));
1526 data->host_cookie = 0;
1527 }
1528}
1529
1530static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1531{
1532 struct omap_hsmmc_host *host = mmc_priv(mmc);
1533
1534 if (mrq->data->host_cookie) {
1535 mrq->data->host_cookie = 0;
1536 return ;
1537 }
1538
1539 if (host->use_dma) {
1540 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1541
1542 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1543 &host->next_data, c))
1544 mrq->data->host_cookie = 0;
1545 }
1546}
1547
1548/*
1549 * Request function. for read/write operation
1550 */
1551static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1552{
1553 struct omap_hsmmc_host *host = mmc_priv(mmc);
1554 int err;
1555
1556 BUG_ON(host->req_in_progress);
1557 BUG_ON(host->dma_ch != -1);
1558 if (host->protect_card) {
1559 if (host->reqs_blocked < 3) {
1560 /*
1561 * Ensure the controller is left in a consistent
1562 * state by resetting the command and data state
1563 * machines.
1564 */
1565 omap_hsmmc_reset_controller_fsm(host, SRD);
1566 omap_hsmmc_reset_controller_fsm(host, SRC);
1567 host->reqs_blocked += 1;
1568 }
1569 req->cmd->error = -EBADF;
1570 if (req->data)
1571 req->data->error = -EBADF;
1572 req->cmd->retries = 0;
1573 mmc_request_done(mmc, req);
1574 return;
1575 } else if (host->reqs_blocked)
1576 host->reqs_blocked = 0;
1577 WARN_ON(host->mrq != NULL);
1578 host->mrq = req;
1579 host->clk_rate = clk_get_rate(host->fclk);
1580 err = omap_hsmmc_prepare_data(host, req);
1581 if (err) {
1582 req->cmd->error = err;
1583 if (req->data)
1584 req->data->error = err;
1585 host->mrq = NULL;
1586 mmc_request_done(mmc, req);
1587 return;
1588 }
1589 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1590 omap_hsmmc_start_command(host, req->sbc, NULL);
1591 return;
1592 }
1593
1594 omap_hsmmc_start_dma_transfer(host);
1595 omap_hsmmc_start_command(host, req->cmd, req->data);
1596}
1597
1598/* Routine to configure clock values. Exposed API to core */
1599static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1600{
1601 struct omap_hsmmc_host *host = mmc_priv(mmc);
1602 int do_send_init_stream = 0;
1603
1604 if (ios->power_mode != host->power_mode) {
1605 switch (ios->power_mode) {
1606 case MMC_POWER_OFF:
1607 omap_hsmmc_set_power(host, 0);
1608 break;
1609 case MMC_POWER_UP:
1610 omap_hsmmc_set_power(host, 1);
1611 break;
1612 case MMC_POWER_ON:
1613 do_send_init_stream = 1;
1614 break;
1615 }
1616 host->power_mode = ios->power_mode;
1617 }
1618
1619 /* FIXME: set registers based only on changes to ios */
1620
1621 omap_hsmmc_set_bus_width(host);
1622
1623 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1624 /* Only MMC1 can interface at 3V without some flavor
1625 * of external transceiver; but they all handle 1.8V.
1626 */
1627 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1628 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1629 /*
1630 * The mmc_select_voltage fn of the core does
1631 * not seem to set the power_mode to
1632 * MMC_POWER_UP upon recalculating the voltage.
1633 * vdd 1.8v.
1634 */
1635 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1636 dev_dbg(mmc_dev(host->mmc),
1637 "Switch operation failed\n");
1638 }
1639 }
1640
1641 omap_hsmmc_set_clock(host);
1642
1643 if (do_send_init_stream)
1644 send_init_stream(host);
1645
1646 omap_hsmmc_set_bus_mode(host);
1647}
1648
1649static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1650{
1651 struct omap_hsmmc_host *host = mmc_priv(mmc);
1652
1653 if (!host->card_detect)
1654 return -ENOSYS;
1655 return host->card_detect(host->dev);
1656}
1657
1658static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1659{
1660 struct omap_hsmmc_host *host = mmc_priv(mmc);
1661
1662 if (mmc_pdata(host)->init_card)
1663 mmc_pdata(host)->init_card(card);
1664}
1665
1666static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1667{
1668 struct omap_hsmmc_host *host = mmc_priv(mmc);
1669 u32 irq_mask, con;
1670 unsigned long flags;
1671
1672 spin_lock_irqsave(&host->irq_lock, flags);
1673
1674 con = OMAP_HSMMC_READ(host->base, CON);
1675 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1676 if (enable) {
1677 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1678 irq_mask |= CIRQ_EN;
1679 con |= CTPL | CLKEXTFREE;
1680 } else {
1681 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1682 irq_mask &= ~CIRQ_EN;
1683 con &= ~(CTPL | CLKEXTFREE);
1684 }
1685 OMAP_HSMMC_WRITE(host->base, CON, con);
1686 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1687
1688 /*
1689 * if enable, piggy back detection on current request
1690 * but always disable immediately
1691 */
1692 if (!host->req_in_progress || !enable)
1693 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1694
1695 /* flush posted write */
1696 OMAP_HSMMC_READ(host->base, IE);
1697
1698 spin_unlock_irqrestore(&host->irq_lock, flags);
1699}
1700
1701static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1702{
1703 int ret;
1704
1705 /*
1706 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1707 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1708 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1709 * with functional clock disabled.
1710 */
1711 if (!host->dev->of_node || !host->wake_irq)
1712 return -ENODEV;
1713
1714 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1715 if (ret) {
1716 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1717 goto err;
1718 }
1719
1720 /*
1721 * Some omaps don't have wake-up path from deeper idle states
1722 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1723 */
1724 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1725 struct pinctrl *p = devm_pinctrl_get(host->dev);
1726 if (IS_ERR(p)) {
1727 ret = PTR_ERR(p);
1728 goto err_free_irq;
1729 }
1730 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1731 dev_info(host->dev, "missing default pinctrl state\n");
1732 devm_pinctrl_put(p);
1733 ret = -EINVAL;
1734 goto err_free_irq;
1735 }
1736
1737 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1738 dev_info(host->dev, "missing idle pinctrl state\n");
1739 devm_pinctrl_put(p);
1740 ret = -EINVAL;
1741 goto err_free_irq;
1742 }
1743 devm_pinctrl_put(p);
1744 }
1745
1746 OMAP_HSMMC_WRITE(host->base, HCTL,
1747 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1748 return 0;
1749
1750err_free_irq:
1751 dev_pm_clear_wake_irq(host->dev);
1752err:
1753 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1754 host->wake_irq = 0;
1755 return ret;
1756}
1757
1758static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1759{
1760 u32 hctl, capa, value;
1761
1762 /* Only MMC1 supports 3.0V */
1763 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1764 hctl = SDVS30;
1765 capa = VS30 | VS18;
1766 } else {
1767 hctl = SDVS18;
1768 capa = VS18;
1769 }
1770
1771 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1772 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1773
1774 value = OMAP_HSMMC_READ(host->base, CAPA);
1775 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1776
1777 /* Set SD bus power bit */
1778 set_sd_bus_power(host);
1779}
1780
1781static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1782 unsigned int direction, int blk_size)
1783{
1784 /* This controller can't do multiblock reads due to hw bugs */
1785 if (direction == MMC_DATA_READ)
1786 return 1;
1787
1788 return blk_size;
1789}
1790
1791static struct mmc_host_ops omap_hsmmc_ops = {
1792 .post_req = omap_hsmmc_post_req,
1793 .pre_req = omap_hsmmc_pre_req,
1794 .request = omap_hsmmc_request,
1795 .set_ios = omap_hsmmc_set_ios,
1796 .get_cd = omap_hsmmc_get_cd,
1797 .get_ro = mmc_gpio_get_ro,
1798 .init_card = omap_hsmmc_init_card,
1799 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1800};
1801
1802#ifdef CONFIG_DEBUG_FS
1803
1804static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1805{
1806 struct mmc_host *mmc = s->private;
1807 struct omap_hsmmc_host *host = mmc_priv(mmc);
1808
1809 seq_printf(s, "mmc%d:\n", mmc->index);
1810 seq_printf(s, "sdio irq mode\t%s\n",
1811 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1812
1813 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1814 seq_printf(s, "sdio irq \t%s\n",
1815 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1816 : "disabled");
1817 }
1818 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1819
1820 pm_runtime_get_sync(host->dev);
1821 seq_puts(s, "\nregs:\n");
1822 seq_printf(s, "CON:\t\t0x%08x\n",
1823 OMAP_HSMMC_READ(host->base, CON));
1824 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1825 OMAP_HSMMC_READ(host->base, PSTATE));
1826 seq_printf(s, "HCTL:\t\t0x%08x\n",
1827 OMAP_HSMMC_READ(host->base, HCTL));
1828 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1829 OMAP_HSMMC_READ(host->base, SYSCTL));
1830 seq_printf(s, "IE:\t\t0x%08x\n",
1831 OMAP_HSMMC_READ(host->base, IE));
1832 seq_printf(s, "ISE:\t\t0x%08x\n",
1833 OMAP_HSMMC_READ(host->base, ISE));
1834 seq_printf(s, "CAPA:\t\t0x%08x\n",
1835 OMAP_HSMMC_READ(host->base, CAPA));
1836
1837 pm_runtime_mark_last_busy(host->dev);
1838 pm_runtime_put_autosuspend(host->dev);
1839
1840 return 0;
1841}
1842
1843static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1844{
1845 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1846}
1847
1848static const struct file_operations mmc_regs_fops = {
1849 .open = omap_hsmmc_regs_open,
1850 .read = seq_read,
1851 .llseek = seq_lseek,
1852 .release = single_release,
1853};
1854
1855static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1856{
1857 if (mmc->debugfs_root)
1858 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1859 mmc, &mmc_regs_fops);
1860}
1861
1862#else
1863
1864static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1865{
1866}
1867
1868#endif
1869
1870#ifdef CONFIG_OF
1871static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1872 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1873 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1874};
1875
1876static const struct omap_mmc_of_data omap4_mmc_of_data = {
1877 .reg_offset = 0x100,
1878};
1879static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1880 .reg_offset = 0x100,
1881 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1882};
1883
1884static const struct of_device_id omap_mmc_of_match[] = {
1885 {
1886 .compatible = "ti,omap2-hsmmc",
1887 },
1888 {
1889 .compatible = "ti,omap3-pre-es3-hsmmc",
1890 .data = &omap3_pre_es3_mmc_of_data,
1891 },
1892 {
1893 .compatible = "ti,omap3-hsmmc",
1894 },
1895 {
1896 .compatible = "ti,omap4-hsmmc",
1897 .data = &omap4_mmc_of_data,
1898 },
1899 {
1900 .compatible = "ti,am33xx-hsmmc",
1901 .data = &am33xx_mmc_of_data,
1902 },
1903 {},
1904};
1905MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1906
1907static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1908{
1909 struct omap_hsmmc_platform_data *pdata, *legacy;
1910 struct device_node *np = dev->of_node;
1911
1912 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1913 if (!pdata)
1914 return ERR_PTR(-ENOMEM); /* out of memory */
1915
1916 legacy = dev_get_platdata(dev);
1917 if (legacy && legacy->name)
1918 pdata->name = legacy->name;
1919
1920 if (of_find_property(np, "ti,dual-volt", NULL))
1921 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1922
1923 pdata->gpio_cd = -EINVAL;
1924 pdata->gpio_cod = -EINVAL;
1925 pdata->gpio_wp = -EINVAL;
1926
1927 if (of_find_property(np, "ti,non-removable", NULL)) {
1928 pdata->nonremovable = true;
1929 pdata->no_regulator_off_init = true;
1930 }
1931
1932 if (of_find_property(np, "ti,needs-special-reset", NULL))
1933 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1934
1935 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1936 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1937
1938 return pdata;
1939}
1940#else
1941static inline struct omap_hsmmc_platform_data
1942 *of_get_hsmmc_pdata(struct device *dev)
1943{
1944 return ERR_PTR(-EINVAL);
1945}
1946#endif
1947
1948static int omap_hsmmc_probe(struct platform_device *pdev)
1949{
1950 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1951 struct mmc_host *mmc;
1952 struct omap_hsmmc_host *host = NULL;
1953 struct resource *res;
1954 int ret, irq;
1955 const struct of_device_id *match;
1956 const struct omap_mmc_of_data *data;
1957 void __iomem *base;
1958
1959 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1960 if (match) {
1961 pdata = of_get_hsmmc_pdata(&pdev->dev);
1962
1963 if (IS_ERR(pdata))
1964 return PTR_ERR(pdata);
1965
1966 if (match->data) {
1967 data = match->data;
1968 pdata->reg_offset = data->reg_offset;
1969 pdata->controller_flags |= data->controller_flags;
1970 }
1971 }
1972
1973 if (pdata == NULL) {
1974 dev_err(&pdev->dev, "Platform Data is missing\n");
1975 return -ENXIO;
1976 }
1977
1978 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1979 irq = platform_get_irq(pdev, 0);
1980 if (res == NULL || irq < 0)
1981 return -ENXIO;
1982
1983 base = devm_ioremap_resource(&pdev->dev, res);
1984 if (IS_ERR(base))
1985 return PTR_ERR(base);
1986
1987 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1988 if (!mmc) {
1989 ret = -ENOMEM;
1990 goto err;
1991 }
1992
1993 ret = mmc_of_parse(mmc);
1994 if (ret)
1995 goto err1;
1996
1997 host = mmc_priv(mmc);
1998 host->mmc = mmc;
1999 host->pdata = pdata;
2000 host->dev = &pdev->dev;
2001 host->use_dma = 1;
2002 host->dma_ch = -1;
2003 host->irq = irq;
2004 host->mapbase = res->start + pdata->reg_offset;
2005 host->base = base + pdata->reg_offset;
2006 host->power_mode = MMC_POWER_OFF;
2007 host->next_data.cookie = 1;
2008 host->pbias_enabled = 0;
2009 host->vqmmc_enabled = 0;
2010
2011 ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2012 if (ret)
2013 goto err_gpio;
2014
2015 platform_set_drvdata(pdev, host);
2016
2017 if (pdev->dev.of_node)
2018 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2019
2020 mmc->ops = &omap_hsmmc_ops;
2021
2022 mmc->f_min = OMAP_MMC_MIN_CLOCK;
2023
2024 if (pdata->max_freq > 0)
2025 mmc->f_max = pdata->max_freq;
2026 else if (mmc->f_max == 0)
2027 mmc->f_max = OMAP_MMC_MAX_CLOCK;
2028
2029 spin_lock_init(&host->irq_lock);
2030
2031 host->fclk = devm_clk_get(&pdev->dev, "fck");
2032 if (IS_ERR(host->fclk)) {
2033 ret = PTR_ERR(host->fclk);
2034 host->fclk = NULL;
2035 goto err1;
2036 }
2037
2038 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2039 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2040 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2041 }
2042
2043 device_init_wakeup(&pdev->dev, true);
2044 pm_runtime_enable(host->dev);
2045 pm_runtime_get_sync(host->dev);
2046 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2047 pm_runtime_use_autosuspend(host->dev);
2048
2049 omap_hsmmc_context_save(host);
2050
2051 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2052 /*
2053 * MMC can still work without debounce clock.
2054 */
2055 if (IS_ERR(host->dbclk)) {
2056 host->dbclk = NULL;
2057 } else if (clk_prepare_enable(host->dbclk) != 0) {
2058 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2059 host->dbclk = NULL;
2060 }
2061
2062 /* Set this to a value that allows allocating an entire descriptor
2063 * list within a page (zero order allocation). */
2064 mmc->max_segs = 64;
2065
2066 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
2067 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
2068 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2069 mmc->max_seg_size = mmc->max_req_size;
2070
2071 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2072 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE | MMC_CAP_CMD23;
2073
2074 mmc->caps |= mmc_pdata(host)->caps;
2075 if (mmc->caps & MMC_CAP_8_BIT_DATA)
2076 mmc->caps |= MMC_CAP_4_BIT_DATA;
2077
2078 if (mmc_pdata(host)->nonremovable)
2079 mmc->caps |= MMC_CAP_NONREMOVABLE;
2080
2081 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2082
2083 omap_hsmmc_conf_bus_power(host);
2084
2085 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
2086 if (IS_ERR(host->rx_chan)) {
2087 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
2088 ret = PTR_ERR(host->rx_chan);
2089 goto err_irq;
2090 }
2091
2092 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
2093 if (IS_ERR(host->tx_chan)) {
2094 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
2095 ret = PTR_ERR(host->tx_chan);
2096 goto err_irq;
2097 }
2098
2099 /* Request IRQ for MMC operations */
2100 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2101 mmc_hostname(mmc), host);
2102 if (ret) {
2103 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2104 goto err_irq;
2105 }
2106
2107 ret = omap_hsmmc_reg_get(host);
2108 if (ret)
2109 goto err_irq;
2110
2111 if (!mmc->ocr_avail)
2112 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2113
2114 omap_hsmmc_disable_irq(host);
2115
2116 /*
2117 * For now, only support SDIO interrupt if we have a separate
2118 * wake-up interrupt configured from device tree. This is because
2119 * the wake-up interrupt is needed for idle state and some
2120 * platforms need special quirks. And we don't want to add new
2121 * legacy mux platform init code callbacks any longer as we
2122 * are moving to DT based booting anyways.
2123 */
2124 ret = omap_hsmmc_configure_wake_irq(host);
2125 if (!ret)
2126 mmc->caps |= MMC_CAP_SDIO_IRQ;
2127
2128 omap_hsmmc_protect_card(host);
2129
2130 mmc_add_host(mmc);
2131
2132 if (mmc_pdata(host)->name != NULL) {
2133 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2134 if (ret < 0)
2135 goto err_slot_name;
2136 }
2137 if (host->get_cover_state) {
2138 ret = device_create_file(&mmc->class_dev,
2139 &dev_attr_cover_switch);
2140 if (ret < 0)
2141 goto err_slot_name;
2142 }
2143
2144 omap_hsmmc_debugfs(mmc);
2145 pm_runtime_mark_last_busy(host->dev);
2146 pm_runtime_put_autosuspend(host->dev);
2147
2148 return 0;
2149
2150err_slot_name:
2151 mmc_remove_host(mmc);
2152err_irq:
2153 device_init_wakeup(&pdev->dev, false);
2154 if (!IS_ERR_OR_NULL(host->tx_chan))
2155 dma_release_channel(host->tx_chan);
2156 if (!IS_ERR_OR_NULL(host->rx_chan))
2157 dma_release_channel(host->rx_chan);
2158 pm_runtime_dont_use_autosuspend(host->dev);
2159 pm_runtime_put_sync(host->dev);
2160 pm_runtime_disable(host->dev);
2161 if (host->dbclk)
2162 clk_disable_unprepare(host->dbclk);
2163err1:
2164err_gpio:
2165 mmc_free_host(mmc);
2166err:
2167 return ret;
2168}
2169
2170static int omap_hsmmc_remove(struct platform_device *pdev)
2171{
2172 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2173
2174 pm_runtime_get_sync(host->dev);
2175 mmc_remove_host(host->mmc);
2176
2177 dma_release_channel(host->tx_chan);
2178 dma_release_channel(host->rx_chan);
2179
2180 pm_runtime_dont_use_autosuspend(host->dev);
2181 pm_runtime_put_sync(host->dev);
2182 pm_runtime_disable(host->dev);
2183 device_init_wakeup(&pdev->dev, false);
2184 if (host->dbclk)
2185 clk_disable_unprepare(host->dbclk);
2186
2187 mmc_free_host(host->mmc);
2188
2189 return 0;
2190}
2191
2192#ifdef CONFIG_PM_SLEEP
2193static int omap_hsmmc_suspend(struct device *dev)
2194{
2195 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2196
2197 if (!host)
2198 return 0;
2199
2200 pm_runtime_get_sync(host->dev);
2201
2202 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2203 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2204 OMAP_HSMMC_WRITE(host->base, IE, 0);
2205 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2206 OMAP_HSMMC_WRITE(host->base, HCTL,
2207 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2208 }
2209
2210 if (host->dbclk)
2211 clk_disable_unprepare(host->dbclk);
2212
2213 pm_runtime_put_sync(host->dev);
2214 return 0;
2215}
2216
2217/* Routine to resume the MMC device */
2218static int omap_hsmmc_resume(struct device *dev)
2219{
2220 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2221
2222 if (!host)
2223 return 0;
2224
2225 pm_runtime_get_sync(host->dev);
2226
2227 if (host->dbclk)
2228 clk_prepare_enable(host->dbclk);
2229
2230 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2231 omap_hsmmc_conf_bus_power(host);
2232
2233 omap_hsmmc_protect_card(host);
2234 pm_runtime_mark_last_busy(host->dev);
2235 pm_runtime_put_autosuspend(host->dev);
2236 return 0;
2237}
2238#endif
2239
2240static int omap_hsmmc_runtime_suspend(struct device *dev)
2241{
2242 struct omap_hsmmc_host *host;
2243 unsigned long flags;
2244 int ret = 0;
2245
2246 host = platform_get_drvdata(to_platform_device(dev));
2247 omap_hsmmc_context_save(host);
2248 dev_dbg(dev, "disabled\n");
2249
2250 spin_lock_irqsave(&host->irq_lock, flags);
2251 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2252 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2253 /* disable sdio irq handling to prevent race */
2254 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2255 OMAP_HSMMC_WRITE(host->base, IE, 0);
2256
2257 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2258 /*
2259 * dat1 line low, pending sdio irq
2260 * race condition: possible irq handler running on
2261 * multi-core, abort
2262 */
2263 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2264 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2265 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2266 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2267 pm_runtime_mark_last_busy(dev);
2268 ret = -EBUSY;
2269 goto abort;
2270 }
2271
2272 pinctrl_pm_select_idle_state(dev);
2273 } else {
2274 pinctrl_pm_select_idle_state(dev);
2275 }
2276
2277abort:
2278 spin_unlock_irqrestore(&host->irq_lock, flags);
2279 return ret;
2280}
2281
2282static int omap_hsmmc_runtime_resume(struct device *dev)
2283{
2284 struct omap_hsmmc_host *host;
2285 unsigned long flags;
2286
2287 host = platform_get_drvdata(to_platform_device(dev));
2288 omap_hsmmc_context_restore(host);
2289 dev_dbg(dev, "enabled\n");
2290
2291 spin_lock_irqsave(&host->irq_lock, flags);
2292 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2293 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2294
2295 pinctrl_pm_select_default_state(host->dev);
2296
2297 /* irq lost, if pinmux incorrect */
2298 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2299 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2300 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2301 } else {
2302 pinctrl_pm_select_default_state(host->dev);
2303 }
2304 spin_unlock_irqrestore(&host->irq_lock, flags);
2305 return 0;
2306}
2307
2308static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2309 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2310 .runtime_suspend = omap_hsmmc_runtime_suspend,
2311 .runtime_resume = omap_hsmmc_runtime_resume,
2312};
2313
2314static struct platform_driver omap_hsmmc_driver = {
2315 .probe = omap_hsmmc_probe,
2316 .remove = omap_hsmmc_remove,
2317 .driver = {
2318 .name = DRIVER_NAME,
2319 .pm = &omap_hsmmc_dev_pm_ops,
2320 .of_match_table = of_match_ptr(omap_mmc_of_match),
2321 },
2322};
2323
2324module_platform_driver(omap_hsmmc_driver);
2325MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2326MODULE_LICENSE("GPL");
2327MODULE_ALIAS("platform:" DRIVER_NAME);
2328MODULE_AUTHOR("Texas Instruments Inc");
1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_device.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/core.h>
36#include <linux/mmc/mmc.h>
37#include <linux/mmc/slot-gpio.h>
38#include <linux/io.h>
39#include <linux/irq.h>
40#include <linux/regulator/consumer.h>
41#include <linux/pinctrl/consumer.h>
42#include <linux/pm_runtime.h>
43#include <linux/pm_wakeirq.h>
44#include <linux/platform_data/hsmmc-omap.h>
45
46/* OMAP HSMMC Host Controller Registers */
47#define OMAP_HSMMC_SYSSTATUS 0x0014
48#define OMAP_HSMMC_CON 0x002C
49#define OMAP_HSMMC_SDMASA 0x0100
50#define OMAP_HSMMC_BLK 0x0104
51#define OMAP_HSMMC_ARG 0x0108
52#define OMAP_HSMMC_CMD 0x010C
53#define OMAP_HSMMC_RSP10 0x0110
54#define OMAP_HSMMC_RSP32 0x0114
55#define OMAP_HSMMC_RSP54 0x0118
56#define OMAP_HSMMC_RSP76 0x011C
57#define OMAP_HSMMC_DATA 0x0120
58#define OMAP_HSMMC_PSTATE 0x0124
59#define OMAP_HSMMC_HCTL 0x0128
60#define OMAP_HSMMC_SYSCTL 0x012C
61#define OMAP_HSMMC_STAT 0x0130
62#define OMAP_HSMMC_IE 0x0134
63#define OMAP_HSMMC_ISE 0x0138
64#define OMAP_HSMMC_AC12 0x013C
65#define OMAP_HSMMC_CAPA 0x0140
66
67#define VS18 (1 << 26)
68#define VS30 (1 << 25)
69#define HSS (1 << 21)
70#define SDVS18 (0x5 << 9)
71#define SDVS30 (0x6 << 9)
72#define SDVS33 (0x7 << 9)
73#define SDVS_MASK 0x00000E00
74#define SDVSCLR 0xFFFFF1FF
75#define SDVSDET 0x00000400
76#define AUTOIDLE 0x1
77#define SDBP (1 << 8)
78#define DTO 0xe
79#define ICE 0x1
80#define ICS 0x2
81#define CEN (1 << 2)
82#define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
83#define CLKD_MASK 0x0000FFC0
84#define CLKD_SHIFT 6
85#define DTO_MASK 0x000F0000
86#define DTO_SHIFT 16
87#define INIT_STREAM (1 << 1)
88#define ACEN_ACMD23 (2 << 2)
89#define DP_SELECT (1 << 21)
90#define DDIR (1 << 4)
91#define DMAE 0x1
92#define MSBS (1 << 5)
93#define BCE (1 << 1)
94#define FOUR_BIT (1 << 1)
95#define HSPE (1 << 2)
96#define IWE (1 << 24)
97#define DDR (1 << 19)
98#define CLKEXTFREE (1 << 16)
99#define CTPL (1 << 11)
100#define DW8 (1 << 5)
101#define OD 0x1
102#define STAT_CLEAR 0xFFFFFFFF
103#define INIT_STREAM_CMD 0x00000000
104#define DUAL_VOLT_OCR_BIT 7
105#define SRC (1 << 25)
106#define SRD (1 << 26)
107#define SOFTRESET (1 << 1)
108
109/* PSTATE */
110#define DLEV_DAT(x) (1 << (20 + (x)))
111
112/* Interrupt masks for IE and ISE register */
113#define CC_EN (1 << 0)
114#define TC_EN (1 << 1)
115#define BWR_EN (1 << 4)
116#define BRR_EN (1 << 5)
117#define CIRQ_EN (1 << 8)
118#define ERR_EN (1 << 15)
119#define CTO_EN (1 << 16)
120#define CCRC_EN (1 << 17)
121#define CEB_EN (1 << 18)
122#define CIE_EN (1 << 19)
123#define DTO_EN (1 << 20)
124#define DCRC_EN (1 << 21)
125#define DEB_EN (1 << 22)
126#define ACE_EN (1 << 24)
127#define CERR_EN (1 << 28)
128#define BADA_EN (1 << 29)
129
130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134#define CNI (1 << 7)
135#define ACIE (1 << 4)
136#define ACEB (1 << 3)
137#define ACCE (1 << 2)
138#define ACTO (1 << 1)
139#define ACNE (1 << 0)
140
141#define MMC_AUTOSUSPEND_DELAY 100
142#define MMC_TIMEOUT_MS 20 /* 20 mSec */
143#define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
144#define OMAP_MMC_MIN_CLOCK 400000
145#define OMAP_MMC_MAX_CLOCK 52000000
146#define DRIVER_NAME "omap_hsmmc"
147
148/*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153#define mmc_pdata(host) host->pdata
154
155/*
156 * MMC Host controller read/write API's
157 */
158#define OMAP_HSMMC_READ(base, reg) \
159 __raw_readl((base) + OMAP_HSMMC_##reg)
160
161#define OMAP_HSMMC_WRITE(base, reg, val) \
162 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164struct omap_hsmmc_next {
165 unsigned int dma_len;
166 s32 cookie;
167};
168
169struct omap_hsmmc_host {
170 struct device *dev;
171 struct mmc_host *mmc;
172 struct mmc_request *mrq;
173 struct mmc_command *cmd;
174 struct mmc_data *data;
175 struct clk *fclk;
176 struct clk *dbclk;
177 struct regulator *pbias;
178 bool pbias_enabled;
179 void __iomem *base;
180 int vqmmc_enabled;
181 resource_size_t mapbase;
182 spinlock_t irq_lock; /* Prevent races with irq handler */
183 unsigned int dma_len;
184 unsigned int dma_sg_idx;
185 unsigned char bus_mode;
186 unsigned char power_mode;
187 int suspended;
188 u32 con;
189 u32 hctl;
190 u32 sysctl;
191 u32 capa;
192 int irq;
193 int wake_irq;
194 int use_dma, dma_ch;
195 struct dma_chan *tx_chan;
196 struct dma_chan *rx_chan;
197 int response_busy;
198 int context_loss;
199 int reqs_blocked;
200 int req_in_progress;
201 unsigned long clk_rate;
202 unsigned int flags;
203#define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
204#define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
205 struct omap_hsmmc_next next_data;
206 struct omap_hsmmc_platform_data *pdata;
207};
208
209struct omap_mmc_of_data {
210 u32 reg_offset;
211 u8 controller_flags;
212};
213
214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217{
218 int ret;
219 struct omap_hsmmc_host *host = mmc_priv(mmc);
220 struct mmc_ios *ios = &mmc->ios;
221
222 if (!IS_ERR(mmc->supply.vmmc)) {
223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 if (ret)
225 return ret;
226 }
227
228 /* Enable interface voltage rail, if needed */
229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 ret = regulator_enable(mmc->supply.vqmmc);
231 if (ret) {
232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 goto err_vqmmc;
234 }
235 host->vqmmc_enabled = 1;
236 }
237
238 return 0;
239
240err_vqmmc:
241 if (!IS_ERR(mmc->supply.vmmc))
242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244 return ret;
245}
246
247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248{
249 int ret;
250 int status;
251 struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 ret = regulator_disable(mmc->supply.vqmmc);
255 if (ret) {
256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 return ret;
258 }
259 host->vqmmc_enabled = 0;
260 }
261
262 if (!IS_ERR(mmc->supply.vmmc)) {
263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 if (ret)
265 goto err_set_ocr;
266 }
267
268 return 0;
269
270err_set_ocr:
271 if (!IS_ERR(mmc->supply.vqmmc)) {
272 status = regulator_enable(mmc->supply.vqmmc);
273 if (status)
274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 }
276
277 return ret;
278}
279
280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281{
282 int ret;
283
284 if (IS_ERR(host->pbias))
285 return 0;
286
287 if (power_on) {
288 if (host->pbias_enabled == 0) {
289 ret = regulator_enable(host->pbias);
290 if (ret) {
291 dev_err(host->dev, "pbias reg enable fail\n");
292 return ret;
293 }
294 host->pbias_enabled = 1;
295 }
296 } else {
297 if (host->pbias_enabled == 1) {
298 ret = regulator_disable(host->pbias);
299 if (ret) {
300 dev_err(host->dev, "pbias reg disable fail\n");
301 return ret;
302 }
303 host->pbias_enabled = 0;
304 }
305 }
306
307 return 0;
308}
309
310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311{
312 struct mmc_host *mmc = host->mmc;
313 int ret = 0;
314
315 /*
316 * If we don't see a Vcc regulator, assume it's a fixed
317 * voltage always-on regulator.
318 */
319 if (IS_ERR(mmc->supply.vmmc))
320 return 0;
321
322 ret = omap_hsmmc_set_pbias(host, false);
323 if (ret)
324 return ret;
325
326 /*
327 * Assume Vcc regulator is used only to power the card ... OMAP
328 * VDDS is used to power the pins, optionally with a transceiver to
329 * support cards using voltages other than VDDS (1.8V nominal). When a
330 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 *
332 * In some cases this regulator won't support enable/disable;
333 * e.g. it's a fixed rail for a WLAN chip.
334 *
335 * In other cases vcc_aux switches interface power. Example, for
336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
337 * chips/cards need an interface voltage rail too.
338 */
339 if (power_on) {
340 ret = omap_hsmmc_enable_supply(mmc);
341 if (ret)
342 return ret;
343
344 ret = omap_hsmmc_set_pbias(host, true);
345 if (ret)
346 goto err_set_voltage;
347 } else {
348 ret = omap_hsmmc_disable_supply(mmc);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354
355err_set_voltage:
356 omap_hsmmc_disable_supply(mmc);
357
358 return ret;
359}
360
361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362{
363 int ret;
364
365 if (IS_ERR(reg))
366 return 0;
367
368 if (regulator_is_enabled(reg)) {
369 ret = regulator_enable(reg);
370 if (ret)
371 return ret;
372
373 ret = regulator_disable(reg);
374 if (ret)
375 return ret;
376 }
377
378 return 0;
379}
380
381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382{
383 struct mmc_host *mmc = host->mmc;
384 int ret;
385
386 /*
387 * disable regulators enabled during boot and get the usecount
388 * right so that regulators can be enabled/disabled by checking
389 * the return value of regulator_is_enabled
390 */
391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 if (ret) {
393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 return ret;
395 }
396
397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 if (ret) {
399 dev_err(host->dev,
400 "fail to disable boot enabled vmmc_aux reg\n");
401 return ret;
402 }
403
404 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 if (ret) {
406 dev_err(host->dev,
407 "failed to disable boot enabled pbias reg\n");
408 return ret;
409 }
410
411 return 0;
412}
413
414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415{
416 int ret;
417 struct mmc_host *mmc = host->mmc;
418
419
420 ret = mmc_regulator_get_supply(mmc);
421 if (ret)
422 return ret;
423
424 /* Allow an aux regulator */
425 if (IS_ERR(mmc->supply.vqmmc)) {
426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 "vmmc_aux");
428 if (IS_ERR(mmc->supply.vqmmc)) {
429 ret = PTR_ERR(mmc->supply.vqmmc);
430 if ((ret != -ENODEV) && host->dev->of_node)
431 return ret;
432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 PTR_ERR(mmc->supply.vqmmc));
434 }
435 }
436
437 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 if (IS_ERR(host->pbias)) {
439 ret = PTR_ERR(host->pbias);
440 if ((ret != -ENODEV) && host->dev->of_node) {
441 dev_err(host->dev,
442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 return ret;
444 }
445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 PTR_ERR(host->pbias));
447 }
448
449 /* For eMMC do not power off when not in sleep state */
450 if (mmc_pdata(host)->no_regulator_off_init)
451 return 0;
452
453 ret = omap_hsmmc_disable_boot_regulators(host);
454 if (ret)
455 return ret;
456
457 return 0;
458}
459
460/*
461 * Start clock to the card
462 */
463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464{
465 OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467}
468
469/*
470 * Stop clock to the card
471 */
472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473{
474 OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478}
479
480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 struct mmc_command *cmd)
482{
483 u32 irq_mask = INT_EN_MASK;
484 unsigned long flags;
485
486 if (host->use_dma)
487 irq_mask &= ~(BRR_EN | BWR_EN);
488
489 /* Disable timeout for erases */
490 if (cmd->opcode == MMC_ERASE)
491 irq_mask &= ~DTO_EN;
492
493 spin_lock_irqsave(&host->irq_lock, flags);
494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497 /* latch pending CIRQ, but don't signal MMC core */
498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 irq_mask |= CIRQ_EN;
500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 spin_unlock_irqrestore(&host->irq_lock, flags);
502}
503
504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505{
506 u32 irq_mask = 0;
507 unsigned long flags;
508
509 spin_lock_irqsave(&host->irq_lock, flags);
510 /* no transfer running but need to keep cirq if enabled */
511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 irq_mask |= CIRQ_EN;
513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 spin_unlock_irqrestore(&host->irq_lock, flags);
517}
518
519/* Calculate divisor for the given clock frequency */
520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521{
522 u16 dsor = 0;
523
524 if (ios->clock) {
525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 if (dsor > CLKD_MAX)
527 dsor = CLKD_MAX;
528 }
529
530 return dsor;
531}
532
533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534{
535 struct mmc_ios *ios = &host->mmc->ios;
536 unsigned long regval;
537 unsigned long timeout;
538 unsigned long clkdiv;
539
540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542 omap_hsmmc_stop_clock(host);
543
544 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 regval = regval & ~(CLKD_MASK | DTO_MASK);
546 clkdiv = calc_divisor(host, ios);
547 regval = regval | (clkdiv << 6) | (DTO << 16);
548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552 /* Wait till the ICS bit is set */
553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 && time_before(jiffies, timeout))
556 cpu_relax();
557
558 /*
559 * Enable High-Speed Support
560 * Pre-Requisites
561 * - Controller should support High-Speed-Enable Bit
562 * - Controller should not be using DDR Mode
563 * - Controller should advertise that it supports High Speed
564 * in capabilities register
565 * - MMC/SD clock coming out of controller > 25MHz
566 */
567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 regval = OMAP_HSMMC_READ(host->base, HCTL);
572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 regval |= HSPE;
574 else
575 regval &= ~HSPE;
576
577 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 }
579
580 omap_hsmmc_start_clock(host);
581}
582
583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584{
585 struct mmc_ios *ios = &host->mmc->ios;
586 u32 con;
587
588 con = OMAP_HSMMC_READ(host->base, CON);
589 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 ios->timing == MMC_TIMING_UHS_DDR50)
591 con |= DDR; /* configure in DDR mode */
592 else
593 con &= ~DDR;
594 switch (ios->bus_width) {
595 case MMC_BUS_WIDTH_8:
596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 break;
598 case MMC_BUS_WIDTH_4:
599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 OMAP_HSMMC_WRITE(host->base, HCTL,
601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 break;
603 case MMC_BUS_WIDTH_1:
604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 OMAP_HSMMC_WRITE(host->base, HCTL,
606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 break;
608 }
609}
610
611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612{
613 struct mmc_ios *ios = &host->mmc->ios;
614 u32 con;
615
616 con = OMAP_HSMMC_READ(host->base, CON);
617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 else
620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621}
622
623#ifdef CONFIG_PM
624
625/*
626 * Restore the MMC host context, if it was lost as result of a
627 * power state change.
628 */
629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
630{
631 struct mmc_ios *ios = &host->mmc->ios;
632 u32 hctl, capa;
633 unsigned long timeout;
634
635 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
636 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
637 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
638 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
639 return 0;
640
641 host->context_loss++;
642
643 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
644 if (host->power_mode != MMC_POWER_OFF &&
645 (1 << ios->vdd) <= MMC_VDD_23_24)
646 hctl = SDVS18;
647 else
648 hctl = SDVS30;
649 capa = VS30 | VS18;
650 } else {
651 hctl = SDVS18;
652 capa = VS18;
653 }
654
655 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
656 hctl |= IWE;
657
658 OMAP_HSMMC_WRITE(host->base, HCTL,
659 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
660
661 OMAP_HSMMC_WRITE(host->base, CAPA,
662 OMAP_HSMMC_READ(host->base, CAPA) | capa);
663
664 OMAP_HSMMC_WRITE(host->base, HCTL,
665 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
666
667 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
668 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
669 && time_before(jiffies, timeout))
670 ;
671
672 OMAP_HSMMC_WRITE(host->base, ISE, 0);
673 OMAP_HSMMC_WRITE(host->base, IE, 0);
674 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
675
676 /* Do not initialize card-specific things if the power is off */
677 if (host->power_mode == MMC_POWER_OFF)
678 goto out;
679
680 omap_hsmmc_set_bus_width(host);
681
682 omap_hsmmc_set_clock(host);
683
684 omap_hsmmc_set_bus_mode(host);
685
686out:
687 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
688 host->context_loss);
689 return 0;
690}
691
692/*
693 * Save the MMC host context (store the number of power state changes so far).
694 */
695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
696{
697 host->con = OMAP_HSMMC_READ(host->base, CON);
698 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
699 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
700 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
701}
702
703#else
704
705static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
706{
707 return 0;
708}
709
710static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
711{
712}
713
714#endif
715
716/*
717 * Send init stream sequence to card
718 * before sending IDLE command
719 */
720static void send_init_stream(struct omap_hsmmc_host *host)
721{
722 int reg = 0;
723 unsigned long timeout;
724
725 disable_irq(host->irq);
726
727 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
728 OMAP_HSMMC_WRITE(host->base, CON,
729 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
730 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
731
732 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
733 while ((reg != CC_EN) && time_before(jiffies, timeout))
734 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
735
736 OMAP_HSMMC_WRITE(host->base, CON,
737 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
738
739 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
740 OMAP_HSMMC_READ(host->base, STAT);
741
742 enable_irq(host->irq);
743}
744
745static ssize_t
746omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
747 char *buf)
748{
749 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
750 struct omap_hsmmc_host *host = mmc_priv(mmc);
751
752 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
753}
754
755static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
756
757/*
758 * Configure the response type and send the cmd.
759 */
760static void
761omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
762 struct mmc_data *data)
763{
764 int cmdreg = 0, resptype = 0, cmdtype = 0;
765
766 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
767 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
768 host->cmd = cmd;
769
770 omap_hsmmc_enable_irq(host, cmd);
771
772 host->response_busy = 0;
773 if (cmd->flags & MMC_RSP_PRESENT) {
774 if (cmd->flags & MMC_RSP_136)
775 resptype = 1;
776 else if (cmd->flags & MMC_RSP_BUSY) {
777 resptype = 3;
778 host->response_busy = 1;
779 } else
780 resptype = 2;
781 }
782
783 /*
784 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
785 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
786 * a val of 0x3, rest 0x0.
787 */
788 if (cmd == host->mrq->stop)
789 cmdtype = 0x3;
790
791 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
792
793 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
794 host->mrq->sbc) {
795 cmdreg |= ACEN_ACMD23;
796 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
797 }
798 if (data) {
799 cmdreg |= DP_SELECT | MSBS | BCE;
800 if (data->flags & MMC_DATA_READ)
801 cmdreg |= DDIR;
802 else
803 cmdreg &= ~(DDIR);
804 }
805
806 if (host->use_dma)
807 cmdreg |= DMAE;
808
809 host->req_in_progress = 1;
810
811 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
812 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
813}
814
815static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
816 struct mmc_data *data)
817{
818 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
819}
820
821static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
822{
823 int dma_ch;
824 unsigned long flags;
825
826 spin_lock_irqsave(&host->irq_lock, flags);
827 host->req_in_progress = 0;
828 dma_ch = host->dma_ch;
829 spin_unlock_irqrestore(&host->irq_lock, flags);
830
831 omap_hsmmc_disable_irq(host);
832 /* Do not complete the request if DMA is still in progress */
833 if (mrq->data && host->use_dma && dma_ch != -1)
834 return;
835 host->mrq = NULL;
836 mmc_request_done(host->mmc, mrq);
837}
838
839/*
840 * Notify the transfer complete to MMC core
841 */
842static void
843omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
844{
845 if (!data) {
846 struct mmc_request *mrq = host->mrq;
847
848 /* TC before CC from CMD6 - don't know why, but it happens */
849 if (host->cmd && host->cmd->opcode == 6 &&
850 host->response_busy) {
851 host->response_busy = 0;
852 return;
853 }
854
855 omap_hsmmc_request_done(host, mrq);
856 return;
857 }
858
859 host->data = NULL;
860
861 if (!data->error)
862 data->bytes_xfered += data->blocks * (data->blksz);
863 else
864 data->bytes_xfered = 0;
865
866 if (data->stop && (data->error || !host->mrq->sbc))
867 omap_hsmmc_start_command(host, data->stop, NULL);
868 else
869 omap_hsmmc_request_done(host, data->mrq);
870}
871
872/*
873 * Notify the core about command completion
874 */
875static void
876omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
877{
878 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
879 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
880 host->cmd = NULL;
881 omap_hsmmc_start_dma_transfer(host);
882 omap_hsmmc_start_command(host, host->mrq->cmd,
883 host->mrq->data);
884 return;
885 }
886
887 host->cmd = NULL;
888
889 if (cmd->flags & MMC_RSP_PRESENT) {
890 if (cmd->flags & MMC_RSP_136) {
891 /* response type 2 */
892 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
893 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
894 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
895 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
896 } else {
897 /* response types 1, 1b, 3, 4, 5, 6 */
898 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
899 }
900 }
901 if ((host->data == NULL && !host->response_busy) || cmd->error)
902 omap_hsmmc_request_done(host, host->mrq);
903}
904
905/*
906 * DMA clean up for command errors
907 */
908static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
909{
910 int dma_ch;
911 unsigned long flags;
912
913 host->data->error = errno;
914
915 spin_lock_irqsave(&host->irq_lock, flags);
916 dma_ch = host->dma_ch;
917 host->dma_ch = -1;
918 spin_unlock_irqrestore(&host->irq_lock, flags);
919
920 if (host->use_dma && dma_ch != -1) {
921 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
922
923 dmaengine_terminate_all(chan);
924 dma_unmap_sg(chan->device->dev,
925 host->data->sg, host->data->sg_len,
926 mmc_get_dma_dir(host->data));
927
928 host->data->host_cookie = 0;
929 }
930 host->data = NULL;
931}
932
933/*
934 * Readable error output
935 */
936#ifdef CONFIG_MMC_DEBUG
937static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
938{
939 /* --- means reserved bit without definition at documentation */
940 static const char *omap_hsmmc_status_bits[] = {
941 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
942 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
943 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
944 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
945 };
946 char res[256];
947 char *buf = res;
948 int len, i;
949
950 len = sprintf(buf, "MMC IRQ 0x%x :", status);
951 buf += len;
952
953 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
954 if (status & (1 << i)) {
955 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
956 buf += len;
957 }
958
959 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
960}
961#else
962static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
963 u32 status)
964{
965}
966#endif /* CONFIG_MMC_DEBUG */
967
968/*
969 * MMC controller internal state machines reset
970 *
971 * Used to reset command or data internal state machines, using respectively
972 * SRC or SRD bit of SYSCTL register
973 * Can be called from interrupt context
974 */
975static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
976 unsigned long bit)
977{
978 unsigned long i = 0;
979 unsigned long limit = MMC_TIMEOUT_US;
980
981 OMAP_HSMMC_WRITE(host->base, SYSCTL,
982 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
983
984 /*
985 * OMAP4 ES2 and greater has an updated reset logic.
986 * Monitor a 0->1 transition first
987 */
988 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
989 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
990 && (i++ < limit))
991 udelay(1);
992 }
993 i = 0;
994
995 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
996 (i++ < limit))
997 udelay(1);
998
999 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1000 dev_err(mmc_dev(host->mmc),
1001 "Timeout waiting on controller reset in %s\n",
1002 __func__);
1003}
1004
1005static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1006 int err, int end_cmd)
1007{
1008 if (end_cmd) {
1009 omap_hsmmc_reset_controller_fsm(host, SRC);
1010 if (host->cmd)
1011 host->cmd->error = err;
1012 }
1013
1014 if (host->data) {
1015 omap_hsmmc_reset_controller_fsm(host, SRD);
1016 omap_hsmmc_dma_cleanup(host, err);
1017 } else if (host->mrq && host->mrq->cmd)
1018 host->mrq->cmd->error = err;
1019}
1020
1021static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1022{
1023 struct mmc_data *data;
1024 int end_cmd = 0, end_trans = 0;
1025 int error = 0;
1026
1027 data = host->data;
1028 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1029
1030 if (status & ERR_EN) {
1031 omap_hsmmc_dbg_report_irq(host, status);
1032
1033 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1034 end_cmd = 1;
1035 if (host->data || host->response_busy) {
1036 end_trans = !end_cmd;
1037 host->response_busy = 0;
1038 }
1039 if (status & (CTO_EN | DTO_EN))
1040 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1041 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1042 BADA_EN))
1043 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1044
1045 if (status & ACE_EN) {
1046 u32 ac12;
1047 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1048 if (!(ac12 & ACNE) && host->mrq->sbc) {
1049 end_cmd = 1;
1050 if (ac12 & ACTO)
1051 error = -ETIMEDOUT;
1052 else if (ac12 & (ACCE | ACEB | ACIE))
1053 error = -EILSEQ;
1054 host->mrq->sbc->error = error;
1055 hsmmc_command_incomplete(host, error, end_cmd);
1056 }
1057 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1058 }
1059 }
1060
1061 OMAP_HSMMC_WRITE(host->base, STAT, status);
1062 if (end_cmd || ((status & CC_EN) && host->cmd))
1063 omap_hsmmc_cmd_done(host, host->cmd);
1064 if ((end_trans || (status & TC_EN)) && host->mrq)
1065 omap_hsmmc_xfer_done(host, data);
1066}
1067
1068/*
1069 * MMC controller IRQ handler
1070 */
1071static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1072{
1073 struct omap_hsmmc_host *host = dev_id;
1074 int status;
1075
1076 status = OMAP_HSMMC_READ(host->base, STAT);
1077 while (status & (INT_EN_MASK | CIRQ_EN)) {
1078 if (host->req_in_progress)
1079 omap_hsmmc_do_irq(host, status);
1080
1081 if (status & CIRQ_EN)
1082 mmc_signal_sdio_irq(host->mmc);
1083
1084 /* Flush posted write */
1085 status = OMAP_HSMMC_READ(host->base, STAT);
1086 }
1087
1088 return IRQ_HANDLED;
1089}
1090
1091static void set_sd_bus_power(struct omap_hsmmc_host *host)
1092{
1093 unsigned long i;
1094
1095 OMAP_HSMMC_WRITE(host->base, HCTL,
1096 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1097 for (i = 0; i < loops_per_jiffy; i++) {
1098 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1099 break;
1100 cpu_relax();
1101 }
1102}
1103
1104/*
1105 * Switch MMC interface voltage ... only relevant for MMC1.
1106 *
1107 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1108 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1109 * Some chips, like eMMC ones, use internal transceivers.
1110 */
1111static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1112{
1113 u32 reg_val = 0;
1114 int ret;
1115
1116 /* Disable the clocks */
1117 if (host->dbclk)
1118 clk_disable_unprepare(host->dbclk);
1119
1120 /* Turn the power off */
1121 ret = omap_hsmmc_set_power(host, 0);
1122
1123 /* Turn the power ON with given VDD 1.8 or 3.0v */
1124 if (!ret)
1125 ret = omap_hsmmc_set_power(host, 1);
1126 if (host->dbclk)
1127 clk_prepare_enable(host->dbclk);
1128
1129 if (ret != 0)
1130 goto err;
1131
1132 OMAP_HSMMC_WRITE(host->base, HCTL,
1133 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1134 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1135
1136 /*
1137 * If a MMC dual voltage card is detected, the set_ios fn calls
1138 * this fn with VDD bit set for 1.8V. Upon card removal from the
1139 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1140 *
1141 * Cope with a bit of slop in the range ... per data sheets:
1142 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1143 * but recommended values are 1.71V to 1.89V
1144 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1145 * but recommended values are 2.7V to 3.3V
1146 *
1147 * Board setup code shouldn't permit anything very out-of-range.
1148 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1149 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1150 */
1151 if ((1 << vdd) <= MMC_VDD_23_24)
1152 reg_val |= SDVS18;
1153 else
1154 reg_val |= SDVS30;
1155
1156 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1157 set_sd_bus_power(host);
1158
1159 return 0;
1160err:
1161 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1162 return ret;
1163}
1164
1165static void omap_hsmmc_dma_callback(void *param)
1166{
1167 struct omap_hsmmc_host *host = param;
1168 struct dma_chan *chan;
1169 struct mmc_data *data;
1170 int req_in_progress;
1171
1172 spin_lock_irq(&host->irq_lock);
1173 if (host->dma_ch < 0) {
1174 spin_unlock_irq(&host->irq_lock);
1175 return;
1176 }
1177
1178 data = host->mrq->data;
1179 chan = omap_hsmmc_get_dma_chan(host, data);
1180 if (!data->host_cookie)
1181 dma_unmap_sg(chan->device->dev,
1182 data->sg, data->sg_len,
1183 mmc_get_dma_dir(data));
1184
1185 req_in_progress = host->req_in_progress;
1186 host->dma_ch = -1;
1187 spin_unlock_irq(&host->irq_lock);
1188
1189 /* If DMA has finished after TC, complete the request */
1190 if (!req_in_progress) {
1191 struct mmc_request *mrq = host->mrq;
1192
1193 host->mrq = NULL;
1194 mmc_request_done(host->mmc, mrq);
1195 }
1196}
1197
1198static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1199 struct mmc_data *data,
1200 struct omap_hsmmc_next *next,
1201 struct dma_chan *chan)
1202{
1203 int dma_len;
1204
1205 if (!next && data->host_cookie &&
1206 data->host_cookie != host->next_data.cookie) {
1207 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1208 " host->next_data.cookie %d\n",
1209 __func__, data->host_cookie, host->next_data.cookie);
1210 data->host_cookie = 0;
1211 }
1212
1213 /* Check if next job is already prepared */
1214 if (next || data->host_cookie != host->next_data.cookie) {
1215 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1216 mmc_get_dma_dir(data));
1217
1218 } else {
1219 dma_len = host->next_data.dma_len;
1220 host->next_data.dma_len = 0;
1221 }
1222
1223
1224 if (dma_len == 0)
1225 return -EINVAL;
1226
1227 if (next) {
1228 next->dma_len = dma_len;
1229 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1230 } else
1231 host->dma_len = dma_len;
1232
1233 return 0;
1234}
1235
1236/*
1237 * Routine to configure and start DMA for the MMC card
1238 */
1239static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1240 struct mmc_request *req)
1241{
1242 struct dma_async_tx_descriptor *tx;
1243 int ret = 0, i;
1244 struct mmc_data *data = req->data;
1245 struct dma_chan *chan;
1246 struct dma_slave_config cfg = {
1247 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1248 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1249 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1250 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1251 .src_maxburst = data->blksz / 4,
1252 .dst_maxburst = data->blksz / 4,
1253 };
1254
1255 /* Sanity check: all the SG entries must be aligned by block size. */
1256 for (i = 0; i < data->sg_len; i++) {
1257 struct scatterlist *sgl;
1258
1259 sgl = data->sg + i;
1260 if (sgl->length % data->blksz)
1261 return -EINVAL;
1262 }
1263 if ((data->blksz % 4) != 0)
1264 /* REVISIT: The MMC buffer increments only when MSB is written.
1265 * Return error for blksz which is non multiple of four.
1266 */
1267 return -EINVAL;
1268
1269 BUG_ON(host->dma_ch != -1);
1270
1271 chan = omap_hsmmc_get_dma_chan(host, data);
1272
1273 ret = dmaengine_slave_config(chan, &cfg);
1274 if (ret)
1275 return ret;
1276
1277 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1278 if (ret)
1279 return ret;
1280
1281 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1282 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1283 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1284 if (!tx) {
1285 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1286 /* FIXME: cleanup */
1287 return -1;
1288 }
1289
1290 tx->callback = omap_hsmmc_dma_callback;
1291 tx->callback_param = host;
1292
1293 /* Does not fail */
1294 dmaengine_submit(tx);
1295
1296 host->dma_ch = 1;
1297
1298 return 0;
1299}
1300
1301static void set_data_timeout(struct omap_hsmmc_host *host,
1302 unsigned long long timeout_ns,
1303 unsigned int timeout_clks)
1304{
1305 unsigned long long timeout = timeout_ns;
1306 unsigned int cycle_ns;
1307 uint32_t reg, clkd, dto = 0;
1308
1309 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1310 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1311 if (clkd == 0)
1312 clkd = 1;
1313
1314 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1315 do_div(timeout, cycle_ns);
1316 timeout += timeout_clks;
1317 if (timeout) {
1318 while ((timeout & 0x80000000) == 0) {
1319 dto += 1;
1320 timeout <<= 1;
1321 }
1322 dto = 31 - dto;
1323 timeout <<= 1;
1324 if (timeout && dto)
1325 dto += 1;
1326 if (dto >= 13)
1327 dto -= 13;
1328 else
1329 dto = 0;
1330 if (dto > 14)
1331 dto = 14;
1332 }
1333
1334 reg &= ~DTO_MASK;
1335 reg |= dto << DTO_SHIFT;
1336 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1337}
1338
1339static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1340{
1341 struct mmc_request *req = host->mrq;
1342 struct dma_chan *chan;
1343
1344 if (!req->data)
1345 return;
1346 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1347 | (req->data->blocks << 16));
1348 set_data_timeout(host, req->data->timeout_ns,
1349 req->data->timeout_clks);
1350 chan = omap_hsmmc_get_dma_chan(host, req->data);
1351 dma_async_issue_pending(chan);
1352}
1353
1354/*
1355 * Configure block length for MMC/SD cards and initiate the transfer.
1356 */
1357static int
1358omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1359{
1360 int ret;
1361 unsigned long long timeout;
1362
1363 host->data = req->data;
1364
1365 if (req->data == NULL) {
1366 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1367 if (req->cmd->flags & MMC_RSP_BUSY) {
1368 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1369
1370 /*
1371 * Set an arbitrary 100ms data timeout for commands with
1372 * busy signal and no indication of busy_timeout.
1373 */
1374 if (!timeout)
1375 timeout = 100000000U;
1376
1377 set_data_timeout(host, timeout, 0);
1378 }
1379 return 0;
1380 }
1381
1382 if (host->use_dma) {
1383 ret = omap_hsmmc_setup_dma_transfer(host, req);
1384 if (ret != 0) {
1385 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1386 return ret;
1387 }
1388 }
1389 return 0;
1390}
1391
1392static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1393 int err)
1394{
1395 struct omap_hsmmc_host *host = mmc_priv(mmc);
1396 struct mmc_data *data = mrq->data;
1397
1398 if (host->use_dma && data->host_cookie) {
1399 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1400
1401 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1402 mmc_get_dma_dir(data));
1403 data->host_cookie = 0;
1404 }
1405}
1406
1407static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1408{
1409 struct omap_hsmmc_host *host = mmc_priv(mmc);
1410
1411 if (mrq->data->host_cookie) {
1412 mrq->data->host_cookie = 0;
1413 return ;
1414 }
1415
1416 if (host->use_dma) {
1417 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1418
1419 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1420 &host->next_data, c))
1421 mrq->data->host_cookie = 0;
1422 }
1423}
1424
1425/*
1426 * Request function. for read/write operation
1427 */
1428static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1429{
1430 struct omap_hsmmc_host *host = mmc_priv(mmc);
1431 int err;
1432
1433 BUG_ON(host->req_in_progress);
1434 BUG_ON(host->dma_ch != -1);
1435 if (host->reqs_blocked)
1436 host->reqs_blocked = 0;
1437 WARN_ON(host->mrq != NULL);
1438 host->mrq = req;
1439 host->clk_rate = clk_get_rate(host->fclk);
1440 err = omap_hsmmc_prepare_data(host, req);
1441 if (err) {
1442 req->cmd->error = err;
1443 if (req->data)
1444 req->data->error = err;
1445 host->mrq = NULL;
1446 mmc_request_done(mmc, req);
1447 return;
1448 }
1449 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1450 omap_hsmmc_start_command(host, req->sbc, NULL);
1451 return;
1452 }
1453
1454 omap_hsmmc_start_dma_transfer(host);
1455 omap_hsmmc_start_command(host, req->cmd, req->data);
1456}
1457
1458/* Routine to configure clock values. Exposed API to core */
1459static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1460{
1461 struct omap_hsmmc_host *host = mmc_priv(mmc);
1462 int do_send_init_stream = 0;
1463
1464 if (ios->power_mode != host->power_mode) {
1465 switch (ios->power_mode) {
1466 case MMC_POWER_OFF:
1467 omap_hsmmc_set_power(host, 0);
1468 break;
1469 case MMC_POWER_UP:
1470 omap_hsmmc_set_power(host, 1);
1471 break;
1472 case MMC_POWER_ON:
1473 do_send_init_stream = 1;
1474 break;
1475 }
1476 host->power_mode = ios->power_mode;
1477 }
1478
1479 /* FIXME: set registers based only on changes to ios */
1480
1481 omap_hsmmc_set_bus_width(host);
1482
1483 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1484 /* Only MMC1 can interface at 3V without some flavor
1485 * of external transceiver; but they all handle 1.8V.
1486 */
1487 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1488 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1489 /*
1490 * The mmc_select_voltage fn of the core does
1491 * not seem to set the power_mode to
1492 * MMC_POWER_UP upon recalculating the voltage.
1493 * vdd 1.8v.
1494 */
1495 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1496 dev_dbg(mmc_dev(host->mmc),
1497 "Switch operation failed\n");
1498 }
1499 }
1500
1501 omap_hsmmc_set_clock(host);
1502
1503 if (do_send_init_stream)
1504 send_init_stream(host);
1505
1506 omap_hsmmc_set_bus_mode(host);
1507}
1508
1509static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1510{
1511 struct omap_hsmmc_host *host = mmc_priv(mmc);
1512
1513 if (mmc_pdata(host)->init_card)
1514 mmc_pdata(host)->init_card(card);
1515}
1516
1517static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1518{
1519 struct omap_hsmmc_host *host = mmc_priv(mmc);
1520 u32 irq_mask, con;
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&host->irq_lock, flags);
1524
1525 con = OMAP_HSMMC_READ(host->base, CON);
1526 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1527 if (enable) {
1528 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1529 irq_mask |= CIRQ_EN;
1530 con |= CTPL | CLKEXTFREE;
1531 } else {
1532 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1533 irq_mask &= ~CIRQ_EN;
1534 con &= ~(CTPL | CLKEXTFREE);
1535 }
1536 OMAP_HSMMC_WRITE(host->base, CON, con);
1537 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1538
1539 /*
1540 * if enable, piggy back detection on current request
1541 * but always disable immediately
1542 */
1543 if (!host->req_in_progress || !enable)
1544 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1545
1546 /* flush posted write */
1547 OMAP_HSMMC_READ(host->base, IE);
1548
1549 spin_unlock_irqrestore(&host->irq_lock, flags);
1550}
1551
1552static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1553{
1554 int ret;
1555
1556 /*
1557 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1558 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1559 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1560 * with functional clock disabled.
1561 */
1562 if (!host->dev->of_node || !host->wake_irq)
1563 return -ENODEV;
1564
1565 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1566 if (ret) {
1567 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1568 goto err;
1569 }
1570
1571 /*
1572 * Some omaps don't have wake-up path from deeper idle states
1573 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1574 */
1575 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1576 struct pinctrl *p = devm_pinctrl_get(host->dev);
1577 if (IS_ERR(p)) {
1578 ret = PTR_ERR(p);
1579 goto err_free_irq;
1580 }
1581 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1582 dev_info(host->dev, "missing default pinctrl state\n");
1583 devm_pinctrl_put(p);
1584 ret = -EINVAL;
1585 goto err_free_irq;
1586 }
1587
1588 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1589 dev_info(host->dev, "missing idle pinctrl state\n");
1590 devm_pinctrl_put(p);
1591 ret = -EINVAL;
1592 goto err_free_irq;
1593 }
1594 devm_pinctrl_put(p);
1595 }
1596
1597 OMAP_HSMMC_WRITE(host->base, HCTL,
1598 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1599 return 0;
1600
1601err_free_irq:
1602 dev_pm_clear_wake_irq(host->dev);
1603err:
1604 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1605 host->wake_irq = 0;
1606 return ret;
1607}
1608
1609static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1610{
1611 u32 hctl, capa, value;
1612
1613 /* Only MMC1 supports 3.0V */
1614 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1615 hctl = SDVS30;
1616 capa = VS30 | VS18;
1617 } else {
1618 hctl = SDVS18;
1619 capa = VS18;
1620 }
1621
1622 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1623 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1624
1625 value = OMAP_HSMMC_READ(host->base, CAPA);
1626 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1627
1628 /* Set SD bus power bit */
1629 set_sd_bus_power(host);
1630}
1631
1632static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1633 unsigned int direction, int blk_size)
1634{
1635 /* This controller can't do multiblock reads due to hw bugs */
1636 if (direction == MMC_DATA_READ)
1637 return 1;
1638
1639 return blk_size;
1640}
1641
1642static struct mmc_host_ops omap_hsmmc_ops = {
1643 .post_req = omap_hsmmc_post_req,
1644 .pre_req = omap_hsmmc_pre_req,
1645 .request = omap_hsmmc_request,
1646 .set_ios = omap_hsmmc_set_ios,
1647 .get_cd = mmc_gpio_get_cd,
1648 .get_ro = mmc_gpio_get_ro,
1649 .init_card = omap_hsmmc_init_card,
1650 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1651};
1652
1653#ifdef CONFIG_DEBUG_FS
1654
1655static int mmc_regs_show(struct seq_file *s, void *data)
1656{
1657 struct mmc_host *mmc = s->private;
1658 struct omap_hsmmc_host *host = mmc_priv(mmc);
1659
1660 seq_printf(s, "mmc%d:\n", mmc->index);
1661 seq_printf(s, "sdio irq mode\t%s\n",
1662 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1663
1664 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1665 seq_printf(s, "sdio irq \t%s\n",
1666 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1667 : "disabled");
1668 }
1669 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1670
1671 pm_runtime_get_sync(host->dev);
1672 seq_puts(s, "\nregs:\n");
1673 seq_printf(s, "CON:\t\t0x%08x\n",
1674 OMAP_HSMMC_READ(host->base, CON));
1675 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1676 OMAP_HSMMC_READ(host->base, PSTATE));
1677 seq_printf(s, "HCTL:\t\t0x%08x\n",
1678 OMAP_HSMMC_READ(host->base, HCTL));
1679 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1680 OMAP_HSMMC_READ(host->base, SYSCTL));
1681 seq_printf(s, "IE:\t\t0x%08x\n",
1682 OMAP_HSMMC_READ(host->base, IE));
1683 seq_printf(s, "ISE:\t\t0x%08x\n",
1684 OMAP_HSMMC_READ(host->base, ISE));
1685 seq_printf(s, "CAPA:\t\t0x%08x\n",
1686 OMAP_HSMMC_READ(host->base, CAPA));
1687
1688 pm_runtime_mark_last_busy(host->dev);
1689 pm_runtime_put_autosuspend(host->dev);
1690
1691 return 0;
1692}
1693
1694DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1695
1696static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1697{
1698 if (mmc->debugfs_root)
1699 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1700 mmc, &mmc_regs_fops);
1701}
1702
1703#else
1704
1705static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1706{
1707}
1708
1709#endif
1710
1711#ifdef CONFIG_OF
1712static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1713 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1714 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1715};
1716
1717static const struct omap_mmc_of_data omap4_mmc_of_data = {
1718 .reg_offset = 0x100,
1719};
1720static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1721 .reg_offset = 0x100,
1722 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1723};
1724
1725static const struct of_device_id omap_mmc_of_match[] = {
1726 {
1727 .compatible = "ti,omap2-hsmmc",
1728 },
1729 {
1730 .compatible = "ti,omap3-pre-es3-hsmmc",
1731 .data = &omap3_pre_es3_mmc_of_data,
1732 },
1733 {
1734 .compatible = "ti,omap3-hsmmc",
1735 },
1736 {
1737 .compatible = "ti,omap4-hsmmc",
1738 .data = &omap4_mmc_of_data,
1739 },
1740 {
1741 .compatible = "ti,am33xx-hsmmc",
1742 .data = &am33xx_mmc_of_data,
1743 },
1744 {},
1745};
1746MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1747
1748static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1749{
1750 struct omap_hsmmc_platform_data *pdata, *legacy;
1751 struct device_node *np = dev->of_node;
1752
1753 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1754 if (!pdata)
1755 return ERR_PTR(-ENOMEM); /* out of memory */
1756
1757 legacy = dev_get_platdata(dev);
1758 if (legacy && legacy->name)
1759 pdata->name = legacy->name;
1760
1761 if (of_find_property(np, "ti,dual-volt", NULL))
1762 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1763
1764 if (of_find_property(np, "ti,non-removable", NULL)) {
1765 pdata->nonremovable = true;
1766 pdata->no_regulator_off_init = true;
1767 }
1768
1769 if (of_find_property(np, "ti,needs-special-reset", NULL))
1770 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1771
1772 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1773 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1774
1775 return pdata;
1776}
1777#else
1778static inline struct omap_hsmmc_platform_data
1779 *of_get_hsmmc_pdata(struct device *dev)
1780{
1781 return ERR_PTR(-EINVAL);
1782}
1783#endif
1784
1785static int omap_hsmmc_probe(struct platform_device *pdev)
1786{
1787 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1788 struct mmc_host *mmc;
1789 struct omap_hsmmc_host *host = NULL;
1790 struct resource *res;
1791 int ret, irq;
1792 const struct of_device_id *match;
1793 const struct omap_mmc_of_data *data;
1794 void __iomem *base;
1795
1796 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1797 if (match) {
1798 pdata = of_get_hsmmc_pdata(&pdev->dev);
1799
1800 if (IS_ERR(pdata))
1801 return PTR_ERR(pdata);
1802
1803 if (match->data) {
1804 data = match->data;
1805 pdata->reg_offset = data->reg_offset;
1806 pdata->controller_flags |= data->controller_flags;
1807 }
1808 }
1809
1810 if (pdata == NULL) {
1811 dev_err(&pdev->dev, "Platform Data is missing\n");
1812 return -ENXIO;
1813 }
1814
1815 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1816 irq = platform_get_irq(pdev, 0);
1817 if (res == NULL || irq < 0)
1818 return -ENXIO;
1819
1820 base = devm_ioremap_resource(&pdev->dev, res);
1821 if (IS_ERR(base))
1822 return PTR_ERR(base);
1823
1824 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1825 if (!mmc) {
1826 ret = -ENOMEM;
1827 goto err;
1828 }
1829
1830 ret = mmc_of_parse(mmc);
1831 if (ret)
1832 goto err1;
1833
1834 host = mmc_priv(mmc);
1835 host->mmc = mmc;
1836 host->pdata = pdata;
1837 host->dev = &pdev->dev;
1838 host->use_dma = 1;
1839 host->dma_ch = -1;
1840 host->irq = irq;
1841 host->mapbase = res->start + pdata->reg_offset;
1842 host->base = base + pdata->reg_offset;
1843 host->power_mode = MMC_POWER_OFF;
1844 host->next_data.cookie = 1;
1845 host->pbias_enabled = 0;
1846 host->vqmmc_enabled = 0;
1847
1848 platform_set_drvdata(pdev, host);
1849
1850 if (pdev->dev.of_node)
1851 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1852
1853 mmc->ops = &omap_hsmmc_ops;
1854
1855 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1856
1857 if (pdata->max_freq > 0)
1858 mmc->f_max = pdata->max_freq;
1859 else if (mmc->f_max == 0)
1860 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1861
1862 spin_lock_init(&host->irq_lock);
1863
1864 host->fclk = devm_clk_get(&pdev->dev, "fck");
1865 if (IS_ERR(host->fclk)) {
1866 ret = PTR_ERR(host->fclk);
1867 host->fclk = NULL;
1868 goto err1;
1869 }
1870
1871 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1872 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1873 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1874 }
1875
1876 device_init_wakeup(&pdev->dev, true);
1877 pm_runtime_enable(host->dev);
1878 pm_runtime_get_sync(host->dev);
1879 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1880 pm_runtime_use_autosuspend(host->dev);
1881
1882 omap_hsmmc_context_save(host);
1883
1884 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1885 /*
1886 * MMC can still work without debounce clock.
1887 */
1888 if (IS_ERR(host->dbclk)) {
1889 host->dbclk = NULL;
1890 } else if (clk_prepare_enable(host->dbclk) != 0) {
1891 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1892 host->dbclk = NULL;
1893 }
1894
1895 /* Set this to a value that allows allocating an entire descriptor
1896 * list within a page (zero order allocation). */
1897 mmc->max_segs = 64;
1898
1899 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1900 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1901 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1902
1903 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1904 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE | MMC_CAP_CMD23;
1905
1906 mmc->caps |= mmc_pdata(host)->caps;
1907 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1908 mmc->caps |= MMC_CAP_4_BIT_DATA;
1909
1910 if (mmc_pdata(host)->nonremovable)
1911 mmc->caps |= MMC_CAP_NONREMOVABLE;
1912
1913 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1914
1915 omap_hsmmc_conf_bus_power(host);
1916
1917 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1918 if (IS_ERR(host->rx_chan)) {
1919 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1920 ret = PTR_ERR(host->rx_chan);
1921 goto err_irq;
1922 }
1923
1924 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1925 if (IS_ERR(host->tx_chan)) {
1926 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1927 ret = PTR_ERR(host->tx_chan);
1928 goto err_irq;
1929 }
1930
1931 /*
1932 * Limit the maximum segment size to the lower of the request size
1933 * and the DMA engine device segment size limits. In reality, with
1934 * 32-bit transfers, the DMA engine can do longer segments than this
1935 * but there is no way to represent that in the DMA model - if we
1936 * increase this figure here, we get warnings from the DMA API debug.
1937 */
1938 mmc->max_seg_size = min3(mmc->max_req_size,
1939 dma_get_max_seg_size(host->rx_chan->device->dev),
1940 dma_get_max_seg_size(host->tx_chan->device->dev));
1941
1942 /* Request IRQ for MMC operations */
1943 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1944 mmc_hostname(mmc), host);
1945 if (ret) {
1946 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1947 goto err_irq;
1948 }
1949
1950 ret = omap_hsmmc_reg_get(host);
1951 if (ret)
1952 goto err_irq;
1953
1954 if (!mmc->ocr_avail)
1955 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1956
1957 omap_hsmmc_disable_irq(host);
1958
1959 /*
1960 * For now, only support SDIO interrupt if we have a separate
1961 * wake-up interrupt configured from device tree. This is because
1962 * the wake-up interrupt is needed for idle state and some
1963 * platforms need special quirks. And we don't want to add new
1964 * legacy mux platform init code callbacks any longer as we
1965 * are moving to DT based booting anyways.
1966 */
1967 ret = omap_hsmmc_configure_wake_irq(host);
1968 if (!ret)
1969 mmc->caps |= MMC_CAP_SDIO_IRQ;
1970
1971 mmc_add_host(mmc);
1972
1973 if (mmc_pdata(host)->name != NULL) {
1974 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1975 if (ret < 0)
1976 goto err_slot_name;
1977 }
1978
1979 omap_hsmmc_debugfs(mmc);
1980 pm_runtime_mark_last_busy(host->dev);
1981 pm_runtime_put_autosuspend(host->dev);
1982
1983 return 0;
1984
1985err_slot_name:
1986 mmc_remove_host(mmc);
1987err_irq:
1988 device_init_wakeup(&pdev->dev, false);
1989 if (!IS_ERR_OR_NULL(host->tx_chan))
1990 dma_release_channel(host->tx_chan);
1991 if (!IS_ERR_OR_NULL(host->rx_chan))
1992 dma_release_channel(host->rx_chan);
1993 pm_runtime_dont_use_autosuspend(host->dev);
1994 pm_runtime_put_sync(host->dev);
1995 pm_runtime_disable(host->dev);
1996 if (host->dbclk)
1997 clk_disable_unprepare(host->dbclk);
1998err1:
1999 mmc_free_host(mmc);
2000err:
2001 return ret;
2002}
2003
2004static int omap_hsmmc_remove(struct platform_device *pdev)
2005{
2006 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2007
2008 pm_runtime_get_sync(host->dev);
2009 mmc_remove_host(host->mmc);
2010
2011 dma_release_channel(host->tx_chan);
2012 dma_release_channel(host->rx_chan);
2013
2014 dev_pm_clear_wake_irq(host->dev);
2015 pm_runtime_dont_use_autosuspend(host->dev);
2016 pm_runtime_put_sync(host->dev);
2017 pm_runtime_disable(host->dev);
2018 device_init_wakeup(&pdev->dev, false);
2019 if (host->dbclk)
2020 clk_disable_unprepare(host->dbclk);
2021
2022 mmc_free_host(host->mmc);
2023
2024 return 0;
2025}
2026
2027#ifdef CONFIG_PM_SLEEP
2028static int omap_hsmmc_suspend(struct device *dev)
2029{
2030 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2031
2032 if (!host)
2033 return 0;
2034
2035 pm_runtime_get_sync(host->dev);
2036
2037 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2038 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2039 OMAP_HSMMC_WRITE(host->base, IE, 0);
2040 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2041 OMAP_HSMMC_WRITE(host->base, HCTL,
2042 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2043 }
2044
2045 if (host->dbclk)
2046 clk_disable_unprepare(host->dbclk);
2047
2048 pm_runtime_put_sync(host->dev);
2049 return 0;
2050}
2051
2052/* Routine to resume the MMC device */
2053static int omap_hsmmc_resume(struct device *dev)
2054{
2055 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2056
2057 if (!host)
2058 return 0;
2059
2060 pm_runtime_get_sync(host->dev);
2061
2062 if (host->dbclk)
2063 clk_prepare_enable(host->dbclk);
2064
2065 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2066 omap_hsmmc_conf_bus_power(host);
2067
2068 pm_runtime_mark_last_busy(host->dev);
2069 pm_runtime_put_autosuspend(host->dev);
2070 return 0;
2071}
2072#endif
2073
2074static int omap_hsmmc_runtime_suspend(struct device *dev)
2075{
2076 struct omap_hsmmc_host *host;
2077 unsigned long flags;
2078 int ret = 0;
2079
2080 host = dev_get_drvdata(dev);
2081 omap_hsmmc_context_save(host);
2082 dev_dbg(dev, "disabled\n");
2083
2084 spin_lock_irqsave(&host->irq_lock, flags);
2085 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2086 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2087 /* disable sdio irq handling to prevent race */
2088 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2089 OMAP_HSMMC_WRITE(host->base, IE, 0);
2090
2091 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2092 /*
2093 * dat1 line low, pending sdio irq
2094 * race condition: possible irq handler running on
2095 * multi-core, abort
2096 */
2097 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2098 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2099 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2100 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2101 pm_runtime_mark_last_busy(dev);
2102 ret = -EBUSY;
2103 goto abort;
2104 }
2105
2106 pinctrl_pm_select_idle_state(dev);
2107 } else {
2108 pinctrl_pm_select_idle_state(dev);
2109 }
2110
2111abort:
2112 spin_unlock_irqrestore(&host->irq_lock, flags);
2113 return ret;
2114}
2115
2116static int omap_hsmmc_runtime_resume(struct device *dev)
2117{
2118 struct omap_hsmmc_host *host;
2119 unsigned long flags;
2120
2121 host = dev_get_drvdata(dev);
2122 omap_hsmmc_context_restore(host);
2123 dev_dbg(dev, "enabled\n");
2124
2125 spin_lock_irqsave(&host->irq_lock, flags);
2126 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2127 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2128
2129 pinctrl_pm_select_default_state(host->dev);
2130
2131 /* irq lost, if pinmux incorrect */
2132 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2133 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2134 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2135 } else {
2136 pinctrl_pm_select_default_state(host->dev);
2137 }
2138 spin_unlock_irqrestore(&host->irq_lock, flags);
2139 return 0;
2140}
2141
2142static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2143 SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2144 .runtime_suspend = omap_hsmmc_runtime_suspend,
2145 .runtime_resume = omap_hsmmc_runtime_resume,
2146};
2147
2148static struct platform_driver omap_hsmmc_driver = {
2149 .probe = omap_hsmmc_probe,
2150 .remove = omap_hsmmc_remove,
2151 .driver = {
2152 .name = DRIVER_NAME,
2153 .pm = &omap_hsmmc_dev_pm_ops,
2154 .of_match_table = of_match_ptr(omap_mmc_of_match),
2155 },
2156};
2157
2158module_platform_driver(omap_hsmmc_driver);
2159MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2160MODULE_LICENSE("GPL");
2161MODULE_ALIAS("platform:" DRIVER_NAME);
2162MODULE_AUTHOR("Texas Instruments Inc");