Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Basic Node interface support
  4 */
  5
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/mm.h>
  9#include <linux/memory.h>
 10#include <linux/vmstat.h>
 11#include <linux/notifier.h>
 12#include <linux/node.h>
 13#include <linux/hugetlb.h>
 14#include <linux/compaction.h>
 15#include <linux/cpumask.h>
 16#include <linux/topology.h>
 17#include <linux/nodemask.h>
 18#include <linux/cpu.h>
 19#include <linux/device.h>
 
 20#include <linux/swap.h>
 21#include <linux/slab.h>
 22
 23static struct bus_type node_subsys = {
 24	.name = "node",
 25	.dev_name = "node",
 26};
 27
 28
 29static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
 30{
 31	ssize_t n;
 32	cpumask_var_t mask;
 33	struct node *node_dev = to_node(dev);
 34
 35	/* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
 36	BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
 37
 38	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 39		return 0;
 40
 41	cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
 42	n = cpumap_print_to_pagebuf(list, buf, mask);
 43	free_cpumask_var(mask);
 44
 45	return n;
 46}
 47
 48static inline ssize_t node_read_cpumask(struct device *dev,
 49				struct device_attribute *attr, char *buf)
 50{
 51	return node_read_cpumap(dev, false, buf);
 52}
 53static inline ssize_t node_read_cpulist(struct device *dev,
 54				struct device_attribute *attr, char *buf)
 55{
 56	return node_read_cpumap(dev, true, buf);
 57}
 58
 59static DEVICE_ATTR(cpumap,  S_IRUGO, node_read_cpumask, NULL);
 60static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
 61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62#define K(x) ((x) << (PAGE_SHIFT - 10))
 63static ssize_t node_read_meminfo(struct device *dev,
 64			struct device_attribute *attr, char *buf)
 65{
 66	int n;
 67	int nid = dev->id;
 68	struct pglist_data *pgdat = NODE_DATA(nid);
 69	struct sysinfo i;
 
 70
 71	si_meminfo_node(&i, nid);
 
 
 72	n = sprintf(buf,
 73		       "Node %d MemTotal:       %8lu kB\n"
 74		       "Node %d MemFree:        %8lu kB\n"
 75		       "Node %d MemUsed:        %8lu kB\n"
 76		       "Node %d Active:         %8lu kB\n"
 77		       "Node %d Inactive:       %8lu kB\n"
 78		       "Node %d Active(anon):   %8lu kB\n"
 79		       "Node %d Inactive(anon): %8lu kB\n"
 80		       "Node %d Active(file):   %8lu kB\n"
 81		       "Node %d Inactive(file): %8lu kB\n"
 82		       "Node %d Unevictable:    %8lu kB\n"
 83		       "Node %d Mlocked:        %8lu kB\n",
 84		       nid, K(i.totalram),
 85		       nid, K(i.freeram),
 86		       nid, K(i.totalram - i.freeram),
 87		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
 88				node_page_state(pgdat, NR_ACTIVE_FILE)),
 89		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
 90				node_page_state(pgdat, NR_INACTIVE_FILE)),
 91		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
 92		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
 93		       nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
 94		       nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
 95		       nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
 96		       nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
 97
 98#ifdef CONFIG_HIGHMEM
 99	n += sprintf(buf + n,
100		       "Node %d HighTotal:      %8lu kB\n"
101		       "Node %d HighFree:       %8lu kB\n"
102		       "Node %d LowTotal:       %8lu kB\n"
103		       "Node %d LowFree:        %8lu kB\n",
104		       nid, K(i.totalhigh),
105		       nid, K(i.freehigh),
106		       nid, K(i.totalram - i.totalhigh),
107		       nid, K(i.freeram - i.freehigh));
108#endif
109	n += sprintf(buf + n,
110		       "Node %d Dirty:          %8lu kB\n"
111		       "Node %d Writeback:      %8lu kB\n"
112		       "Node %d FilePages:      %8lu kB\n"
113		       "Node %d Mapped:         %8lu kB\n"
114		       "Node %d AnonPages:      %8lu kB\n"
115		       "Node %d Shmem:          %8lu kB\n"
116		       "Node %d KernelStack:    %8lu kB\n"
117		       "Node %d PageTables:     %8lu kB\n"
118		       "Node %d NFS_Unstable:   %8lu kB\n"
119		       "Node %d Bounce:         %8lu kB\n"
120		       "Node %d WritebackTmp:   %8lu kB\n"
 
121		       "Node %d Slab:           %8lu kB\n"
122		       "Node %d SReclaimable:   %8lu kB\n"
123		       "Node %d SUnreclaim:     %8lu kB\n"
124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
125		       "Node %d AnonHugePages:  %8lu kB\n"
126		       "Node %d ShmemHugePages: %8lu kB\n"
127		       "Node %d ShmemPmdMapped: %8lu kB\n"
 
 
128#endif
129			,
130		       nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
131		       nid, K(node_page_state(pgdat, NR_WRITEBACK)),
132		       nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
133		       nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
134		       nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
135		       nid, K(i.sharedram),
136		       nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
137		       nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
138		       nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
139		       nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
140		       nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
141		       nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE) +
142			      node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
143		       nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE)),
 
 
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145		       nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
146		       nid, K(node_page_state(pgdat, NR_ANON_THPS) *
147				       HPAGE_PMD_NR),
148		       nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
149				       HPAGE_PMD_NR),
150		       nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
151				       HPAGE_PMD_NR));
152#else
153		       nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)));
 
 
154#endif
 
155	n += hugetlb_report_node_meminfo(nid, buf + n);
156	return n;
157}
158
159#undef K
160static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
161
162static ssize_t node_read_numastat(struct device *dev,
163				struct device_attribute *attr, char *buf)
164{
165	return sprintf(buf,
166		       "numa_hit %lu\n"
167		       "numa_miss %lu\n"
168		       "numa_foreign %lu\n"
169		       "interleave_hit %lu\n"
170		       "local_node %lu\n"
171		       "other_node %lu\n",
172		       sum_zone_numa_state(dev->id, NUMA_HIT),
173		       sum_zone_numa_state(dev->id, NUMA_MISS),
174		       sum_zone_numa_state(dev->id, NUMA_FOREIGN),
175		       sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
176		       sum_zone_numa_state(dev->id, NUMA_LOCAL),
177		       sum_zone_numa_state(dev->id, NUMA_OTHER));
178}
179static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
180
181static ssize_t node_read_vmstat(struct device *dev,
182				struct device_attribute *attr, char *buf)
183{
184	int nid = dev->id;
185	struct pglist_data *pgdat = NODE_DATA(nid);
186	int i;
187	int n = 0;
188
189	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
190		n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
191			     sum_zone_node_page_state(nid, i));
192
193#ifdef CONFIG_NUMA
194	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
195		n += sprintf(buf+n, "%s %lu\n",
196			     vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
197			     sum_zone_numa_state(nid, i));
198#endif
199
200	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
201		n += sprintf(buf+n, "%s %lu\n",
202			     vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
203			     NR_VM_NUMA_STAT_ITEMS],
204			     node_page_state(pgdat, i));
205
206	return n;
207}
208static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
209
210static ssize_t node_read_distance(struct device *dev,
211			struct device_attribute *attr, char *buf)
212{
213	int nid = dev->id;
214	int len = 0;
215	int i;
216
217	/*
218	 * buf is currently PAGE_SIZE in length and each node needs 4 chars
219	 * at the most (distance + space or newline).
220	 */
221	BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
222
223	for_each_online_node(i)
224		len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
225
226	len += sprintf(buf + len, "\n");
227	return len;
228}
229static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
230
231static struct attribute *node_dev_attrs[] = {
232	&dev_attr_cpumap.attr,
233	&dev_attr_cpulist.attr,
234	&dev_attr_meminfo.attr,
235	&dev_attr_numastat.attr,
236	&dev_attr_distance.attr,
237	&dev_attr_vmstat.attr,
238	NULL
239};
240ATTRIBUTE_GROUPS(node_dev);
241
242#ifdef CONFIG_HUGETLBFS
243/*
244 * hugetlbfs per node attributes registration interface:
245 * When/if hugetlb[fs] subsystem initializes [sometime after this module],
246 * it will register its per node attributes for all online nodes with
247 * memory.  It will also call register_hugetlbfs_with_node(), below, to
248 * register its attribute registration functions with this node driver.
249 * Once these hooks have been initialized, the node driver will call into
250 * the hugetlb module to [un]register attributes for hot-plugged nodes.
251 */
252static node_registration_func_t __hugetlb_register_node;
253static node_registration_func_t __hugetlb_unregister_node;
254
255static inline bool hugetlb_register_node(struct node *node)
256{
257	if (__hugetlb_register_node &&
258			node_state(node->dev.id, N_MEMORY)) {
259		__hugetlb_register_node(node);
260		return true;
261	}
262	return false;
263}
264
265static inline void hugetlb_unregister_node(struct node *node)
266{
267	if (__hugetlb_unregister_node)
268		__hugetlb_unregister_node(node);
269}
270
271void register_hugetlbfs_with_node(node_registration_func_t doregister,
272				  node_registration_func_t unregister)
273{
274	__hugetlb_register_node   = doregister;
275	__hugetlb_unregister_node = unregister;
276}
277#else
278static inline void hugetlb_register_node(struct node *node) {}
279
280static inline void hugetlb_unregister_node(struct node *node) {}
281#endif
282
283static void node_device_release(struct device *dev)
284{
285	struct node *node = to_node(dev);
286
287#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
288	/*
289	 * We schedule the work only when a memory section is
290	 * onlined/offlined on this node. When we come here,
291	 * all the memory on this node has been offlined,
292	 * so we won't enqueue new work to this work.
293	 *
294	 * The work is using node->node_work, so we should
295	 * flush work before freeing the memory.
296	 */
297	flush_work(&node->node_work);
298#endif
299	kfree(node);
300}
301
302/*
303 * register_node - Setup a sysfs device for a node.
304 * @num - Node number to use when creating the device.
305 *
306 * Initialize and register the node device.
307 */
308static int register_node(struct node *node, int num)
309{
310	int error;
311
312	node->dev.id = num;
313	node->dev.bus = &node_subsys;
314	node->dev.release = node_device_release;
315	node->dev.groups = node_dev_groups;
316	error = device_register(&node->dev);
317
318	if (error)
319		put_device(&node->dev);
320	else {
321		hugetlb_register_node(node);
322
323		compaction_register_node(node);
324	}
325	return error;
326}
327
328/**
329 * unregister_node - unregister a node device
330 * @node: node going away
331 *
332 * Unregisters a node device @node.  All the devices on the node must be
333 * unregistered before calling this function.
334 */
335void unregister_node(struct node *node)
336{
337	hugetlb_unregister_node(node);		/* no-op, if memoryless node */
338
 
339	device_unregister(&node->dev);
340}
341
342struct node *node_devices[MAX_NUMNODES];
343
344/*
345 * register cpu under node
346 */
347int register_cpu_under_node(unsigned int cpu, unsigned int nid)
348{
349	int ret;
350	struct device *obj;
351
352	if (!node_online(nid))
353		return 0;
354
355	obj = get_cpu_device(cpu);
356	if (!obj)
357		return 0;
358
359	ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
360				&obj->kobj,
361				kobject_name(&obj->kobj));
362	if (ret)
363		return ret;
364
365	return sysfs_create_link(&obj->kobj,
366				 &node_devices[nid]->dev.kobj,
367				 kobject_name(&node_devices[nid]->dev.kobj));
368}
369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
371{
372	struct device *obj;
373
374	if (!node_online(nid))
375		return 0;
376
377	obj = get_cpu_device(cpu);
378	if (!obj)
379		return 0;
380
381	sysfs_remove_link(&node_devices[nid]->dev.kobj,
382			  kobject_name(&obj->kobj));
383	sysfs_remove_link(&obj->kobj,
384			  kobject_name(&node_devices[nid]->dev.kobj));
385
386	return 0;
387}
388
389#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
390static int __ref get_nid_for_pfn(unsigned long pfn)
391{
392	if (!pfn_valid_within(pfn))
393		return -1;
394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
395	if (system_state < SYSTEM_RUNNING)
396		return early_pfn_to_nid(pfn);
397#endif
398	return pfn_to_nid(pfn);
399}
400
401/* register memory section under specified node if it spans that node */
402int register_mem_sect_under_node(struct memory_block *mem_blk, int nid,
403				 bool check_nid)
404{
405	int ret;
406	unsigned long pfn, sect_start_pfn, sect_end_pfn;
407
408	if (!mem_blk)
409		return -EFAULT;
410
411	mem_blk->nid = nid;
412	if (!node_online(nid))
413		return 0;
414
415	sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
416	sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
417	sect_end_pfn += PAGES_PER_SECTION - 1;
418	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
419		int page_nid;
420
421		/*
422		 * memory block could have several absent sections from start.
423		 * skip pfn range from absent section
424		 */
425		if (!pfn_present(pfn)) {
426			pfn = round_down(pfn + PAGES_PER_SECTION,
427					 PAGES_PER_SECTION) - 1;
428			continue;
429		}
430
431		/*
432		 * We need to check if page belongs to nid only for the boot
433		 * case, during hotplug we know that all pages in the memory
434		 * block belong to the same node.
435		 */
436		if (check_nid) {
437			page_nid = get_nid_for_pfn(pfn);
438			if (page_nid < 0)
439				continue;
440			if (page_nid != nid)
441				continue;
442		}
 
 
 
 
 
 
 
443		ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
444					&mem_blk->dev.kobj,
445					kobject_name(&mem_blk->dev.kobj));
446		if (ret)
447			return ret;
448
449		return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
450				&node_devices[nid]->dev.kobj,
451				kobject_name(&node_devices[nid]->dev.kobj));
452	}
453	/* mem section does not span the specified node */
454	return 0;
455}
456
457/* unregister memory section under all nodes that it spans */
458int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
459				    unsigned long phys_index)
460{
461	NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
462	unsigned long pfn, sect_start_pfn, sect_end_pfn;
463
464	if (!mem_blk) {
465		NODEMASK_FREE(unlinked_nodes);
466		return -EFAULT;
467	}
468	if (!unlinked_nodes)
469		return -ENOMEM;
470	nodes_clear(*unlinked_nodes);
471
472	sect_start_pfn = section_nr_to_pfn(phys_index);
473	sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
474	for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
475		int nid;
476
477		nid = get_nid_for_pfn(pfn);
478		if (nid < 0)
479			continue;
480		if (!node_online(nid))
481			continue;
482		if (node_test_and_set(nid, *unlinked_nodes))
483			continue;
484		sysfs_remove_link(&node_devices[nid]->dev.kobj,
485			 kobject_name(&mem_blk->dev.kobj));
486		sysfs_remove_link(&mem_blk->dev.kobj,
487			 kobject_name(&node_devices[nid]->dev.kobj));
488	}
489	NODEMASK_FREE(unlinked_nodes);
490	return 0;
491}
492
493int link_mem_sections(int nid, unsigned long start_pfn, unsigned long nr_pages,
494		      bool check_nid)
495{
496	unsigned long end_pfn = start_pfn + nr_pages;
497	unsigned long pfn;
498	struct memory_block *mem_blk = NULL;
499	int err = 0;
500
501	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
502		unsigned long section_nr = pfn_to_section_nr(pfn);
503		struct mem_section *mem_sect;
504		int ret;
505
506		if (!present_section_nr(section_nr))
507			continue;
508		mem_sect = __nr_to_section(section_nr);
509
510		/* same memblock ? */
511		if (mem_blk)
512			if ((section_nr >= mem_blk->start_section_nr) &&
513			    (section_nr <= mem_blk->end_section_nr))
514				continue;
515
516		mem_blk = find_memory_block_hinted(mem_sect, mem_blk);
517
518		ret = register_mem_sect_under_node(mem_blk, nid, check_nid);
519		if (!err)
520			err = ret;
521
522		/* discard ref obtained in find_memory_block() */
523	}
524
525	if (mem_blk)
526		kobject_put(&mem_blk->dev.kobj);
527	return err;
528}
529
530#ifdef CONFIG_HUGETLBFS
531/*
532 * Handle per node hstate attribute [un]registration on transistions
533 * to/from memoryless state.
534 */
535static void node_hugetlb_work(struct work_struct *work)
536{
537	struct node *node = container_of(work, struct node, node_work);
538
539	/*
540	 * We only get here when a node transitions to/from memoryless state.
541	 * We can detect which transition occurred by examining whether the
542	 * node has memory now.  hugetlb_register_node() already check this
543	 * so we try to register the attributes.  If that fails, then the
544	 * node has transitioned to memoryless, try to unregister the
545	 * attributes.
546	 */
547	if (!hugetlb_register_node(node))
548		hugetlb_unregister_node(node);
549}
550
551static void init_node_hugetlb_work(int nid)
552{
553	INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
554}
555
556static int node_memory_callback(struct notifier_block *self,
557				unsigned long action, void *arg)
558{
559	struct memory_notify *mnb = arg;
560	int nid = mnb->status_change_nid;
561
562	switch (action) {
563	case MEM_ONLINE:
564	case MEM_OFFLINE:
565		/*
566		 * offload per node hstate [un]registration to a work thread
567		 * when transitioning to/from memoryless state.
568		 */
569		if (nid != NUMA_NO_NODE)
570			schedule_work(&node_devices[nid]->node_work);
571		break;
572
573	case MEM_GOING_ONLINE:
574	case MEM_GOING_OFFLINE:
575	case MEM_CANCEL_ONLINE:
576	case MEM_CANCEL_OFFLINE:
577	default:
578		break;
579	}
580
581	return NOTIFY_OK;
582}
583#endif	/* CONFIG_HUGETLBFS */
584#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
585
586#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
587    !defined(CONFIG_HUGETLBFS)
588static inline int node_memory_callback(struct notifier_block *self,
589				unsigned long action, void *arg)
590{
591	return NOTIFY_OK;
592}
593
594static void init_node_hugetlb_work(int nid) { }
595
596#endif
597
598int __register_one_node(int nid)
599{
600	int error;
601	int cpu;
602
603	node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
604	if (!node_devices[nid])
605		return -ENOMEM;
606
607	error = register_node(node_devices[nid], nid);
608
609	/* link cpu under this node */
610	for_each_present_cpu(cpu) {
611		if (cpu_to_node(cpu) == nid)
612			register_cpu_under_node(cpu, nid);
613	}
614
 
615	/* initialize work queue for memory hot plug */
616	init_node_hugetlb_work(nid);
 
617
618	return error;
619}
620
621void unregister_one_node(int nid)
622{
623	if (!node_devices[nid])
624		return;
625
626	unregister_node(node_devices[nid]);
627	node_devices[nid] = NULL;
628}
629
630/*
631 * node states attributes
632 */
633
634static ssize_t print_nodes_state(enum node_states state, char *buf)
635{
636	int n;
637
638	n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
639		      nodemask_pr_args(&node_states[state]));
640	buf[n++] = '\n';
641	buf[n] = '\0';
642	return n;
643}
644
645struct node_attr {
646	struct device_attribute attr;
647	enum node_states state;
648};
649
650static ssize_t show_node_state(struct device *dev,
651			       struct device_attribute *attr, char *buf)
652{
653	struct node_attr *na = container_of(attr, struct node_attr, attr);
654	return print_nodes_state(na->state, buf);
655}
656
657#define _NODE_ATTR(name, state) \
658	{ __ATTR(name, 0444, show_node_state, NULL), state }
659
660static struct node_attr node_state_attr[] = {
661	[N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
662	[N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
663	[N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
664#ifdef CONFIG_HIGHMEM
665	[N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
666#endif
667	[N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
668	[N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
669};
670
671static struct attribute *node_state_attrs[] = {
672	&node_state_attr[N_POSSIBLE].attr.attr,
673	&node_state_attr[N_ONLINE].attr.attr,
674	&node_state_attr[N_NORMAL_MEMORY].attr.attr,
675#ifdef CONFIG_HIGHMEM
676	&node_state_attr[N_HIGH_MEMORY].attr.attr,
677#endif
678	&node_state_attr[N_MEMORY].attr.attr,
679	&node_state_attr[N_CPU].attr.attr,
680	NULL
681};
682
683static struct attribute_group memory_root_attr_group = {
684	.attrs = node_state_attrs,
685};
686
687static const struct attribute_group *cpu_root_attr_groups[] = {
688	&memory_root_attr_group,
689	NULL,
690};
691
692#define NODE_CALLBACK_PRI	2	/* lower than SLAB */
693static int __init register_node_type(void)
694{
695	int ret;
696
697 	BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
698 	BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
699
700	ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
701	if (!ret) {
702		static struct notifier_block node_memory_callback_nb = {
703			.notifier_call = node_memory_callback,
704			.priority = NODE_CALLBACK_PRI,
705		};
706		register_hotmemory_notifier(&node_memory_callback_nb);
707	}
708
709	/*
710	 * Note:  we're not going to unregister the node class if we fail
711	 * to register the node state class attribute files.
712	 */
713	return ret;
714}
715postcore_initcall(register_node_type);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Basic Node interface support
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/memory.h>
  10#include <linux/vmstat.h>
  11#include <linux/notifier.h>
  12#include <linux/node.h>
  13#include <linux/hugetlb.h>
  14#include <linux/compaction.h>
  15#include <linux/cpumask.h>
  16#include <linux/topology.h>
  17#include <linux/nodemask.h>
  18#include <linux/cpu.h>
  19#include <linux/device.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/swap.h>
  22#include <linux/slab.h>
  23
  24static struct bus_type node_subsys = {
  25	.name = "node",
  26	.dev_name = "node",
  27};
  28
  29
  30static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
  31{
  32	ssize_t n;
  33	cpumask_var_t mask;
  34	struct node *node_dev = to_node(dev);
  35
  36	/* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
  37	BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
  38
  39	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  40		return 0;
  41
  42	cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
  43	n = cpumap_print_to_pagebuf(list, buf, mask);
  44	free_cpumask_var(mask);
  45
  46	return n;
  47}
  48
  49static inline ssize_t node_read_cpumask(struct device *dev,
  50				struct device_attribute *attr, char *buf)
  51{
  52	return node_read_cpumap(dev, false, buf);
  53}
  54static inline ssize_t node_read_cpulist(struct device *dev,
  55				struct device_attribute *attr, char *buf)
  56{
  57	return node_read_cpumap(dev, true, buf);
  58}
  59
  60static DEVICE_ATTR(cpumap,  S_IRUGO, node_read_cpumask, NULL);
  61static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
  62
  63/**
  64 * struct node_access_nodes - Access class device to hold user visible
  65 * 			      relationships to other nodes.
  66 * @dev:	Device for this memory access class
  67 * @list_node:	List element in the node's access list
  68 * @access:	The access class rank
  69 * @hmem_attrs: Heterogeneous memory performance attributes
  70 */
  71struct node_access_nodes {
  72	struct device		dev;
  73	struct list_head	list_node;
  74	unsigned		access;
  75#ifdef CONFIG_HMEM_REPORTING
  76	struct node_hmem_attrs	hmem_attrs;
  77#endif
  78};
  79#define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev)
  80
  81static struct attribute *node_init_access_node_attrs[] = {
  82	NULL,
  83};
  84
  85static struct attribute *node_targ_access_node_attrs[] = {
  86	NULL,
  87};
  88
  89static const struct attribute_group initiators = {
  90	.name	= "initiators",
  91	.attrs	= node_init_access_node_attrs,
  92};
  93
  94static const struct attribute_group targets = {
  95	.name	= "targets",
  96	.attrs	= node_targ_access_node_attrs,
  97};
  98
  99static const struct attribute_group *node_access_node_groups[] = {
 100	&initiators,
 101	&targets,
 102	NULL,
 103};
 104
 105static void node_remove_accesses(struct node *node)
 106{
 107	struct node_access_nodes *c, *cnext;
 108
 109	list_for_each_entry_safe(c, cnext, &node->access_list, list_node) {
 110		list_del(&c->list_node);
 111		device_unregister(&c->dev);
 112	}
 113}
 114
 115static void node_access_release(struct device *dev)
 116{
 117	kfree(to_access_nodes(dev));
 118}
 119
 120static struct node_access_nodes *node_init_node_access(struct node *node,
 121						       unsigned access)
 122{
 123	struct node_access_nodes *access_node;
 124	struct device *dev;
 125
 126	list_for_each_entry(access_node, &node->access_list, list_node)
 127		if (access_node->access == access)
 128			return access_node;
 129
 130	access_node = kzalloc(sizeof(*access_node), GFP_KERNEL);
 131	if (!access_node)
 132		return NULL;
 133
 134	access_node->access = access;
 135	dev = &access_node->dev;
 136	dev->parent = &node->dev;
 137	dev->release = node_access_release;
 138	dev->groups = node_access_node_groups;
 139	if (dev_set_name(dev, "access%u", access))
 140		goto free;
 141
 142	if (device_register(dev))
 143		goto free_name;
 144
 145	pm_runtime_no_callbacks(dev);
 146	list_add_tail(&access_node->list_node, &node->access_list);
 147	return access_node;
 148free_name:
 149	kfree_const(dev->kobj.name);
 150free:
 151	kfree(access_node);
 152	return NULL;
 153}
 154
 155#ifdef CONFIG_HMEM_REPORTING
 156#define ACCESS_ATTR(name) 						   \
 157static ssize_t name##_show(struct device *dev,				   \
 158			   struct device_attribute *attr,		   \
 159			   char *buf)					   \
 160{									   \
 161	return sprintf(buf, "%u\n", to_access_nodes(dev)->hmem_attrs.name); \
 162}									   \
 163static DEVICE_ATTR_RO(name);
 164
 165ACCESS_ATTR(read_bandwidth)
 166ACCESS_ATTR(read_latency)
 167ACCESS_ATTR(write_bandwidth)
 168ACCESS_ATTR(write_latency)
 169
 170static struct attribute *access_attrs[] = {
 171	&dev_attr_read_bandwidth.attr,
 172	&dev_attr_read_latency.attr,
 173	&dev_attr_write_bandwidth.attr,
 174	&dev_attr_write_latency.attr,
 175	NULL,
 176};
 177
 178/**
 179 * node_set_perf_attrs - Set the performance values for given access class
 180 * @nid: Node identifier to be set
 181 * @hmem_attrs: Heterogeneous memory performance attributes
 182 * @access: The access class the for the given attributes
 183 */
 184void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs,
 185			 unsigned access)
 186{
 187	struct node_access_nodes *c;
 188	struct node *node;
 189	int i;
 190
 191	if (WARN_ON_ONCE(!node_online(nid)))
 192		return;
 193
 194	node = node_devices[nid];
 195	c = node_init_node_access(node, access);
 196	if (!c)
 197		return;
 198
 199	c->hmem_attrs = *hmem_attrs;
 200	for (i = 0; access_attrs[i] != NULL; i++) {
 201		if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i],
 202					    "initiators")) {
 203			pr_info("failed to add performance attribute to node %d\n",
 204				nid);
 205			break;
 206		}
 207	}
 208}
 209
 210/**
 211 * struct node_cache_info - Internal tracking for memory node caches
 212 * @dev:	Device represeting the cache level
 213 * @node:	List element for tracking in the node
 214 * @cache_attrs:Attributes for this cache level
 215 */
 216struct node_cache_info {
 217	struct device dev;
 218	struct list_head node;
 219	struct node_cache_attrs cache_attrs;
 220};
 221#define to_cache_info(device) container_of(device, struct node_cache_info, dev)
 222
 223#define CACHE_ATTR(name, fmt) 						\
 224static ssize_t name##_show(struct device *dev,				\
 225			   struct device_attribute *attr,		\
 226			   char *buf)					\
 227{									\
 228	return sprintf(buf, fmt "\n", to_cache_info(dev)->cache_attrs.name);\
 229}									\
 230DEVICE_ATTR_RO(name);
 231
 232CACHE_ATTR(size, "%llu")
 233CACHE_ATTR(line_size, "%u")
 234CACHE_ATTR(indexing, "%u")
 235CACHE_ATTR(write_policy, "%u")
 236
 237static struct attribute *cache_attrs[] = {
 238	&dev_attr_indexing.attr,
 239	&dev_attr_size.attr,
 240	&dev_attr_line_size.attr,
 241	&dev_attr_write_policy.attr,
 242	NULL,
 243};
 244ATTRIBUTE_GROUPS(cache);
 245
 246static void node_cache_release(struct device *dev)
 247{
 248	kfree(dev);
 249}
 250
 251static void node_cacheinfo_release(struct device *dev)
 252{
 253	struct node_cache_info *info = to_cache_info(dev);
 254	kfree(info);
 255}
 256
 257static void node_init_cache_dev(struct node *node)
 258{
 259	struct device *dev;
 260
 261	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 262	if (!dev)
 263		return;
 264
 265	dev->parent = &node->dev;
 266	dev->release = node_cache_release;
 267	if (dev_set_name(dev, "memory_side_cache"))
 268		goto free_dev;
 269
 270	if (device_register(dev))
 271		goto free_name;
 272
 273	pm_runtime_no_callbacks(dev);
 274	node->cache_dev = dev;
 275	return;
 276free_name:
 277	kfree_const(dev->kobj.name);
 278free_dev:
 279	kfree(dev);
 280}
 281
 282/**
 283 * node_add_cache() - add cache attribute to a memory node
 284 * @nid: Node identifier that has new cache attributes
 285 * @cache_attrs: Attributes for the cache being added
 286 */
 287void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs)
 288{
 289	struct node_cache_info *info;
 290	struct device *dev;
 291	struct node *node;
 292
 293	if (!node_online(nid) || !node_devices[nid])
 294		return;
 295
 296	node = node_devices[nid];
 297	list_for_each_entry(info, &node->cache_attrs, node) {
 298		if (info->cache_attrs.level == cache_attrs->level) {
 299			dev_warn(&node->dev,
 300				"attempt to add duplicate cache level:%d\n",
 301				cache_attrs->level);
 302			return;
 303		}
 304	}
 305
 306	if (!node->cache_dev)
 307		node_init_cache_dev(node);
 308	if (!node->cache_dev)
 309		return;
 310
 311	info = kzalloc(sizeof(*info), GFP_KERNEL);
 312	if (!info)
 313		return;
 314
 315	dev = &info->dev;
 316	dev->parent = node->cache_dev;
 317	dev->release = node_cacheinfo_release;
 318	dev->groups = cache_groups;
 319	if (dev_set_name(dev, "index%d", cache_attrs->level))
 320		goto free_cache;
 321
 322	info->cache_attrs = *cache_attrs;
 323	if (device_register(dev)) {
 324		dev_warn(&node->dev, "failed to add cache level:%d\n",
 325			 cache_attrs->level);
 326		goto free_name;
 327	}
 328	pm_runtime_no_callbacks(dev);
 329	list_add_tail(&info->node, &node->cache_attrs);
 330	return;
 331free_name:
 332	kfree_const(dev->kobj.name);
 333free_cache:
 334	kfree(info);
 335}
 336
 337static void node_remove_caches(struct node *node)
 338{
 339	struct node_cache_info *info, *next;
 340
 341	if (!node->cache_dev)
 342		return;
 343
 344	list_for_each_entry_safe(info, next, &node->cache_attrs, node) {
 345		list_del(&info->node);
 346		device_unregister(&info->dev);
 347	}
 348	device_unregister(node->cache_dev);
 349}
 350
 351static void node_init_caches(unsigned int nid)
 352{
 353	INIT_LIST_HEAD(&node_devices[nid]->cache_attrs);
 354}
 355#else
 356static void node_init_caches(unsigned int nid) { }
 357static void node_remove_caches(struct node *node) { }
 358#endif
 359
 360#define K(x) ((x) << (PAGE_SHIFT - 10))
 361static ssize_t node_read_meminfo(struct device *dev,
 362			struct device_attribute *attr, char *buf)
 363{
 364	int n;
 365	int nid = dev->id;
 366	struct pglist_data *pgdat = NODE_DATA(nid);
 367	struct sysinfo i;
 368	unsigned long sreclaimable, sunreclaimable;
 369
 370	si_meminfo_node(&i, nid);
 371	sreclaimable = node_page_state(pgdat, NR_SLAB_RECLAIMABLE);
 372	sunreclaimable = node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE);
 373	n = sprintf(buf,
 374		       "Node %d MemTotal:       %8lu kB\n"
 375		       "Node %d MemFree:        %8lu kB\n"
 376		       "Node %d MemUsed:        %8lu kB\n"
 377		       "Node %d Active:         %8lu kB\n"
 378		       "Node %d Inactive:       %8lu kB\n"
 379		       "Node %d Active(anon):   %8lu kB\n"
 380		       "Node %d Inactive(anon): %8lu kB\n"
 381		       "Node %d Active(file):   %8lu kB\n"
 382		       "Node %d Inactive(file): %8lu kB\n"
 383		       "Node %d Unevictable:    %8lu kB\n"
 384		       "Node %d Mlocked:        %8lu kB\n",
 385		       nid, K(i.totalram),
 386		       nid, K(i.freeram),
 387		       nid, K(i.totalram - i.freeram),
 388		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
 389				node_page_state(pgdat, NR_ACTIVE_FILE)),
 390		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
 391				node_page_state(pgdat, NR_INACTIVE_FILE)),
 392		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
 393		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
 394		       nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
 395		       nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
 396		       nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
 397		       nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
 398
 399#ifdef CONFIG_HIGHMEM
 400	n += sprintf(buf + n,
 401		       "Node %d HighTotal:      %8lu kB\n"
 402		       "Node %d HighFree:       %8lu kB\n"
 403		       "Node %d LowTotal:       %8lu kB\n"
 404		       "Node %d LowFree:        %8lu kB\n",
 405		       nid, K(i.totalhigh),
 406		       nid, K(i.freehigh),
 407		       nid, K(i.totalram - i.totalhigh),
 408		       nid, K(i.freeram - i.freehigh));
 409#endif
 410	n += sprintf(buf + n,
 411		       "Node %d Dirty:          %8lu kB\n"
 412		       "Node %d Writeback:      %8lu kB\n"
 413		       "Node %d FilePages:      %8lu kB\n"
 414		       "Node %d Mapped:         %8lu kB\n"
 415		       "Node %d AnonPages:      %8lu kB\n"
 416		       "Node %d Shmem:          %8lu kB\n"
 417		       "Node %d KernelStack:    %8lu kB\n"
 418		       "Node %d PageTables:     %8lu kB\n"
 419		       "Node %d NFS_Unstable:   %8lu kB\n"
 420		       "Node %d Bounce:         %8lu kB\n"
 421		       "Node %d WritebackTmp:   %8lu kB\n"
 422		       "Node %d KReclaimable:   %8lu kB\n"
 423		       "Node %d Slab:           %8lu kB\n"
 424		       "Node %d SReclaimable:   %8lu kB\n"
 425		       "Node %d SUnreclaim:     %8lu kB\n"
 426#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 427		       "Node %d AnonHugePages:  %8lu kB\n"
 428		       "Node %d ShmemHugePages: %8lu kB\n"
 429		       "Node %d ShmemPmdMapped: %8lu kB\n"
 430		       "Node %d FileHugePages: %8lu kB\n"
 431		       "Node %d FilePmdMapped: %8lu kB\n"
 432#endif
 433			,
 434		       nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
 435		       nid, K(node_page_state(pgdat, NR_WRITEBACK)),
 436		       nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
 437		       nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
 438		       nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
 439		       nid, K(i.sharedram),
 440		       nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
 441		       nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
 442		       nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
 443		       nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
 444		       nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
 445		       nid, K(sreclaimable +
 446			      node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)),
 447		       nid, K(sreclaimable + sunreclaimable),
 448		       nid, K(sreclaimable),
 449		       nid, K(sunreclaimable)
 450#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 451		       ,
 452		       nid, K(node_page_state(pgdat, NR_ANON_THPS) *
 453				       HPAGE_PMD_NR),
 454		       nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
 455				       HPAGE_PMD_NR),
 456		       nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
 457				       HPAGE_PMD_NR),
 458		       nid, K(node_page_state(pgdat, NR_FILE_THPS) *
 459				       HPAGE_PMD_NR),
 460		       nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED) *
 461				       HPAGE_PMD_NR)
 462#endif
 463		       );
 464	n += hugetlb_report_node_meminfo(nid, buf + n);
 465	return n;
 466}
 467
 468#undef K
 469static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
 470
 471static ssize_t node_read_numastat(struct device *dev,
 472				struct device_attribute *attr, char *buf)
 473{
 474	return sprintf(buf,
 475		       "numa_hit %lu\n"
 476		       "numa_miss %lu\n"
 477		       "numa_foreign %lu\n"
 478		       "interleave_hit %lu\n"
 479		       "local_node %lu\n"
 480		       "other_node %lu\n",
 481		       sum_zone_numa_state(dev->id, NUMA_HIT),
 482		       sum_zone_numa_state(dev->id, NUMA_MISS),
 483		       sum_zone_numa_state(dev->id, NUMA_FOREIGN),
 484		       sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
 485		       sum_zone_numa_state(dev->id, NUMA_LOCAL),
 486		       sum_zone_numa_state(dev->id, NUMA_OTHER));
 487}
 488static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
 489
 490static ssize_t node_read_vmstat(struct device *dev,
 491				struct device_attribute *attr, char *buf)
 492{
 493	int nid = dev->id;
 494	struct pglist_data *pgdat = NODE_DATA(nid);
 495	int i;
 496	int n = 0;
 497
 498	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 499		n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
 500			     sum_zone_node_page_state(nid, i));
 501
 502#ifdef CONFIG_NUMA
 503	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
 504		n += sprintf(buf+n, "%s %lu\n",
 505			     vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
 506			     sum_zone_numa_state(nid, i));
 507#endif
 508
 509	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 510		n += sprintf(buf+n, "%s %lu\n",
 511			     vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
 512			     NR_VM_NUMA_STAT_ITEMS],
 513			     node_page_state(pgdat, i));
 514
 515	return n;
 516}
 517static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
 518
 519static ssize_t node_read_distance(struct device *dev,
 520			struct device_attribute *attr, char *buf)
 521{
 522	int nid = dev->id;
 523	int len = 0;
 524	int i;
 525
 526	/*
 527	 * buf is currently PAGE_SIZE in length and each node needs 4 chars
 528	 * at the most (distance + space or newline).
 529	 */
 530	BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
 531
 532	for_each_online_node(i)
 533		len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
 534
 535	len += sprintf(buf + len, "\n");
 536	return len;
 537}
 538static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
 539
 540static struct attribute *node_dev_attrs[] = {
 541	&dev_attr_cpumap.attr,
 542	&dev_attr_cpulist.attr,
 543	&dev_attr_meminfo.attr,
 544	&dev_attr_numastat.attr,
 545	&dev_attr_distance.attr,
 546	&dev_attr_vmstat.attr,
 547	NULL
 548};
 549ATTRIBUTE_GROUPS(node_dev);
 550
 551#ifdef CONFIG_HUGETLBFS
 552/*
 553 * hugetlbfs per node attributes registration interface:
 554 * When/if hugetlb[fs] subsystem initializes [sometime after this module],
 555 * it will register its per node attributes for all online nodes with
 556 * memory.  It will also call register_hugetlbfs_with_node(), below, to
 557 * register its attribute registration functions with this node driver.
 558 * Once these hooks have been initialized, the node driver will call into
 559 * the hugetlb module to [un]register attributes for hot-plugged nodes.
 560 */
 561static node_registration_func_t __hugetlb_register_node;
 562static node_registration_func_t __hugetlb_unregister_node;
 563
 564static inline bool hugetlb_register_node(struct node *node)
 565{
 566	if (__hugetlb_register_node &&
 567			node_state(node->dev.id, N_MEMORY)) {
 568		__hugetlb_register_node(node);
 569		return true;
 570	}
 571	return false;
 572}
 573
 574static inline void hugetlb_unregister_node(struct node *node)
 575{
 576	if (__hugetlb_unregister_node)
 577		__hugetlb_unregister_node(node);
 578}
 579
 580void register_hugetlbfs_with_node(node_registration_func_t doregister,
 581				  node_registration_func_t unregister)
 582{
 583	__hugetlb_register_node   = doregister;
 584	__hugetlb_unregister_node = unregister;
 585}
 586#else
 587static inline void hugetlb_register_node(struct node *node) {}
 588
 589static inline void hugetlb_unregister_node(struct node *node) {}
 590#endif
 591
 592static void node_device_release(struct device *dev)
 593{
 594	struct node *node = to_node(dev);
 595
 596#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
 597	/*
 598	 * We schedule the work only when a memory section is
 599	 * onlined/offlined on this node. When we come here,
 600	 * all the memory on this node has been offlined,
 601	 * so we won't enqueue new work to this work.
 602	 *
 603	 * The work is using node->node_work, so we should
 604	 * flush work before freeing the memory.
 605	 */
 606	flush_work(&node->node_work);
 607#endif
 608	kfree(node);
 609}
 610
 611/*
 612 * register_node - Setup a sysfs device for a node.
 613 * @num - Node number to use when creating the device.
 614 *
 615 * Initialize and register the node device.
 616 */
 617static int register_node(struct node *node, int num)
 618{
 619	int error;
 620
 621	node->dev.id = num;
 622	node->dev.bus = &node_subsys;
 623	node->dev.release = node_device_release;
 624	node->dev.groups = node_dev_groups;
 625	error = device_register(&node->dev);
 626
 627	if (error)
 628		put_device(&node->dev);
 629	else {
 630		hugetlb_register_node(node);
 631
 632		compaction_register_node(node);
 633	}
 634	return error;
 635}
 636
 637/**
 638 * unregister_node - unregister a node device
 639 * @node: node going away
 640 *
 641 * Unregisters a node device @node.  All the devices on the node must be
 642 * unregistered before calling this function.
 643 */
 644void unregister_node(struct node *node)
 645{
 646	hugetlb_unregister_node(node);		/* no-op, if memoryless node */
 647	node_remove_accesses(node);
 648	node_remove_caches(node);
 649	device_unregister(&node->dev);
 650}
 651
 652struct node *node_devices[MAX_NUMNODES];
 653
 654/*
 655 * register cpu under node
 656 */
 657int register_cpu_under_node(unsigned int cpu, unsigned int nid)
 658{
 659	int ret;
 660	struct device *obj;
 661
 662	if (!node_online(nid))
 663		return 0;
 664
 665	obj = get_cpu_device(cpu);
 666	if (!obj)
 667		return 0;
 668
 669	ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
 670				&obj->kobj,
 671				kobject_name(&obj->kobj));
 672	if (ret)
 673		return ret;
 674
 675	return sysfs_create_link(&obj->kobj,
 676				 &node_devices[nid]->dev.kobj,
 677				 kobject_name(&node_devices[nid]->dev.kobj));
 678}
 679
 680/**
 681 * register_memory_node_under_compute_node - link memory node to its compute
 682 *					     node for a given access class.
 683 * @mem_nid:	Memory node number
 684 * @cpu_nid:	Cpu  node number
 685 * @access:	Access class to register
 686 *
 687 * Description:
 688 * 	For use with platforms that may have separate memory and compute nodes.
 689 * 	This function will export node relationships linking which memory
 690 * 	initiator nodes can access memory targets at a given ranked access
 691 * 	class.
 692 */
 693int register_memory_node_under_compute_node(unsigned int mem_nid,
 694					    unsigned int cpu_nid,
 695					    unsigned access)
 696{
 697	struct node *init_node, *targ_node;
 698	struct node_access_nodes *initiator, *target;
 699	int ret;
 700
 701	if (!node_online(cpu_nid) || !node_online(mem_nid))
 702		return -ENODEV;
 703
 704	init_node = node_devices[cpu_nid];
 705	targ_node = node_devices[mem_nid];
 706	initiator = node_init_node_access(init_node, access);
 707	target = node_init_node_access(targ_node, access);
 708	if (!initiator || !target)
 709		return -ENOMEM;
 710
 711	ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets",
 712				      &targ_node->dev.kobj,
 713				      dev_name(&targ_node->dev));
 714	if (ret)
 715		return ret;
 716
 717	ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators",
 718				      &init_node->dev.kobj,
 719				      dev_name(&init_node->dev));
 720	if (ret)
 721		goto err;
 722
 723	return 0;
 724 err:
 725	sysfs_remove_link_from_group(&initiator->dev.kobj, "targets",
 726				     dev_name(&targ_node->dev));
 727	return ret;
 728}
 729
 730int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
 731{
 732	struct device *obj;
 733
 734	if (!node_online(nid))
 735		return 0;
 736
 737	obj = get_cpu_device(cpu);
 738	if (!obj)
 739		return 0;
 740
 741	sysfs_remove_link(&node_devices[nid]->dev.kobj,
 742			  kobject_name(&obj->kobj));
 743	sysfs_remove_link(&obj->kobj,
 744			  kobject_name(&node_devices[nid]->dev.kobj));
 745
 746	return 0;
 747}
 748
 749#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 750static int __ref get_nid_for_pfn(unsigned long pfn)
 751{
 752	if (!pfn_valid_within(pfn))
 753		return -1;
 754#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 755	if (system_state < SYSTEM_RUNNING)
 756		return early_pfn_to_nid(pfn);
 757#endif
 758	return pfn_to_nid(pfn);
 759}
 760
 761/* register memory section under specified node if it spans that node */
 762static int register_mem_sect_under_node(struct memory_block *mem_blk,
 763					 void *arg)
 764{
 765	unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE;
 766	unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
 767	unsigned long end_pfn = start_pfn + memory_block_pfns - 1;
 768	int ret, nid = *(int *)arg;
 769	unsigned long pfn;
 
 
 
 
 770
 771	for (pfn = start_pfn; pfn <= end_pfn; pfn++) {
 
 
 
 772		int page_nid;
 773
 774		/*
 775		 * memory block could have several absent sections from start.
 776		 * skip pfn range from absent section
 777		 */
 778		if (!pfn_present(pfn)) {
 779			pfn = round_down(pfn + PAGES_PER_SECTION,
 780					 PAGES_PER_SECTION) - 1;
 781			continue;
 782		}
 783
 784		/*
 785		 * We need to check if page belongs to nid only for the boot
 786		 * case, during hotplug we know that all pages in the memory
 787		 * block belong to the same node.
 788		 */
 789		if (system_state == SYSTEM_BOOTING) {
 790			page_nid = get_nid_for_pfn(pfn);
 791			if (page_nid < 0)
 792				continue;
 793			if (page_nid != nid)
 794				continue;
 795		}
 796
 797		/*
 798		 * If this memory block spans multiple nodes, we only indicate
 799		 * the last processed node.
 800		 */
 801		mem_blk->nid = nid;
 802
 803		ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
 804					&mem_blk->dev.kobj,
 805					kobject_name(&mem_blk->dev.kobj));
 806		if (ret)
 807			return ret;
 808
 809		return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
 810				&node_devices[nid]->dev.kobj,
 811				kobject_name(&node_devices[nid]->dev.kobj));
 812	}
 813	/* mem section does not span the specified node */
 814	return 0;
 815}
 816
 817/*
 818 * Unregister a memory block device under the node it spans. Memory blocks
 819 * with multiple nodes cannot be offlined and therefore also never be removed.
 820 */
 821void unregister_memory_block_under_nodes(struct memory_block *mem_blk)
 822{
 823	if (mem_blk->nid == NUMA_NO_NODE)
 824		return;
 
 
 
 
 
 
 
 
 
 
 
 825
 826	sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj,
 827			  kobject_name(&mem_blk->dev.kobj));
 828	sysfs_remove_link(&mem_blk->dev.kobj,
 829			  kobject_name(&node_devices[mem_blk->nid]->dev.kobj));
 
 
 
 
 
 
 
 
 
 
 830}
 831
 832int link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn)
 
 833{
 834	return walk_memory_blocks(PFN_PHYS(start_pfn),
 835				  PFN_PHYS(end_pfn - start_pfn), (void *)&nid,
 836				  register_mem_sect_under_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837}
 838
 839#ifdef CONFIG_HUGETLBFS
 840/*
 841 * Handle per node hstate attribute [un]registration on transistions
 842 * to/from memoryless state.
 843 */
 844static void node_hugetlb_work(struct work_struct *work)
 845{
 846	struct node *node = container_of(work, struct node, node_work);
 847
 848	/*
 849	 * We only get here when a node transitions to/from memoryless state.
 850	 * We can detect which transition occurred by examining whether the
 851	 * node has memory now.  hugetlb_register_node() already check this
 852	 * so we try to register the attributes.  If that fails, then the
 853	 * node has transitioned to memoryless, try to unregister the
 854	 * attributes.
 855	 */
 856	if (!hugetlb_register_node(node))
 857		hugetlb_unregister_node(node);
 858}
 859
 860static void init_node_hugetlb_work(int nid)
 861{
 862	INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
 863}
 864
 865static int node_memory_callback(struct notifier_block *self,
 866				unsigned long action, void *arg)
 867{
 868	struct memory_notify *mnb = arg;
 869	int nid = mnb->status_change_nid;
 870
 871	switch (action) {
 872	case MEM_ONLINE:
 873	case MEM_OFFLINE:
 874		/*
 875		 * offload per node hstate [un]registration to a work thread
 876		 * when transitioning to/from memoryless state.
 877		 */
 878		if (nid != NUMA_NO_NODE)
 879			schedule_work(&node_devices[nid]->node_work);
 880		break;
 881
 882	case MEM_GOING_ONLINE:
 883	case MEM_GOING_OFFLINE:
 884	case MEM_CANCEL_ONLINE:
 885	case MEM_CANCEL_OFFLINE:
 886	default:
 887		break;
 888	}
 889
 890	return NOTIFY_OK;
 891}
 892#endif	/* CONFIG_HUGETLBFS */
 893#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 894
 895#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
 896    !defined(CONFIG_HUGETLBFS)
 897static inline int node_memory_callback(struct notifier_block *self,
 898				unsigned long action, void *arg)
 899{
 900	return NOTIFY_OK;
 901}
 902
 903static void init_node_hugetlb_work(int nid) { }
 904
 905#endif
 906
 907int __register_one_node(int nid)
 908{
 909	int error;
 910	int cpu;
 911
 912	node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
 913	if (!node_devices[nid])
 914		return -ENOMEM;
 915
 916	error = register_node(node_devices[nid], nid);
 917
 918	/* link cpu under this node */
 919	for_each_present_cpu(cpu) {
 920		if (cpu_to_node(cpu) == nid)
 921			register_cpu_under_node(cpu, nid);
 922	}
 923
 924	INIT_LIST_HEAD(&node_devices[nid]->access_list);
 925	/* initialize work queue for memory hot plug */
 926	init_node_hugetlb_work(nid);
 927	node_init_caches(nid);
 928
 929	return error;
 930}
 931
 932void unregister_one_node(int nid)
 933{
 934	if (!node_devices[nid])
 935		return;
 936
 937	unregister_node(node_devices[nid]);
 938	node_devices[nid] = NULL;
 939}
 940
 941/*
 942 * node states attributes
 943 */
 944
 945static ssize_t print_nodes_state(enum node_states state, char *buf)
 946{
 947	int n;
 948
 949	n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
 950		      nodemask_pr_args(&node_states[state]));
 951	buf[n++] = '\n';
 952	buf[n] = '\0';
 953	return n;
 954}
 955
 956struct node_attr {
 957	struct device_attribute attr;
 958	enum node_states state;
 959};
 960
 961static ssize_t show_node_state(struct device *dev,
 962			       struct device_attribute *attr, char *buf)
 963{
 964	struct node_attr *na = container_of(attr, struct node_attr, attr);
 965	return print_nodes_state(na->state, buf);
 966}
 967
 968#define _NODE_ATTR(name, state) \
 969	{ __ATTR(name, 0444, show_node_state, NULL), state }
 970
 971static struct node_attr node_state_attr[] = {
 972	[N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
 973	[N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
 974	[N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
 975#ifdef CONFIG_HIGHMEM
 976	[N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
 977#endif
 978	[N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
 979	[N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
 980};
 981
 982static struct attribute *node_state_attrs[] = {
 983	&node_state_attr[N_POSSIBLE].attr.attr,
 984	&node_state_attr[N_ONLINE].attr.attr,
 985	&node_state_attr[N_NORMAL_MEMORY].attr.attr,
 986#ifdef CONFIG_HIGHMEM
 987	&node_state_attr[N_HIGH_MEMORY].attr.attr,
 988#endif
 989	&node_state_attr[N_MEMORY].attr.attr,
 990	&node_state_attr[N_CPU].attr.attr,
 991	NULL
 992};
 993
 994static struct attribute_group memory_root_attr_group = {
 995	.attrs = node_state_attrs,
 996};
 997
 998static const struct attribute_group *cpu_root_attr_groups[] = {
 999	&memory_root_attr_group,
1000	NULL,
1001};
1002
1003#define NODE_CALLBACK_PRI	2	/* lower than SLAB */
1004static int __init register_node_type(void)
1005{
1006	int ret;
1007
1008 	BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
1009 	BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
1010
1011	ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
1012	if (!ret) {
1013		static struct notifier_block node_memory_callback_nb = {
1014			.notifier_call = node_memory_callback,
1015			.priority = NODE_CALLBACK_PRI,
1016		};
1017		register_hotmemory_notifier(&node_memory_callback_nb);
1018	}
1019
1020	/*
1021	 * Note:  we're not going to unregister the node class if we fail
1022	 * to register the node state class attribute files.
1023	 */
1024	return ret;
1025}
1026postcore_initcall(register_node_type);