Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/device.h>
12#include <linux/err.h>
13#include <linux/fwnode.h>
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/string.h>
18#include <linux/kdev_t.h>
19#include <linux/notifier.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/genhd.h>
23#include <linux/mutex.h>
24#include <linux/pm_runtime.h>
25#include <linux/netdevice.h>
26#include <linux/sched/signal.h>
27#include <linux/sysfs.h>
28
29#include "base.h"
30#include "power/power.h"
31
32#ifdef CONFIG_SYSFS_DEPRECATED
33#ifdef CONFIG_SYSFS_DEPRECATED_V2
34long sysfs_deprecated = 1;
35#else
36long sysfs_deprecated = 0;
37#endif
38static int __init sysfs_deprecated_setup(char *arg)
39{
40 return kstrtol(arg, 10, &sysfs_deprecated);
41}
42early_param("sysfs.deprecated", sysfs_deprecated_setup);
43#endif
44
45/* Device links support. */
46
47#ifdef CONFIG_SRCU
48static DEFINE_MUTEX(device_links_lock);
49DEFINE_STATIC_SRCU(device_links_srcu);
50
51static inline void device_links_write_lock(void)
52{
53 mutex_lock(&device_links_lock);
54}
55
56static inline void device_links_write_unlock(void)
57{
58 mutex_unlock(&device_links_lock);
59}
60
61int device_links_read_lock(void)
62{
63 return srcu_read_lock(&device_links_srcu);
64}
65
66void device_links_read_unlock(int idx)
67{
68 srcu_read_unlock(&device_links_srcu, idx);
69}
70#else /* !CONFIG_SRCU */
71static DECLARE_RWSEM(device_links_lock);
72
73static inline void device_links_write_lock(void)
74{
75 down_write(&device_links_lock);
76}
77
78static inline void device_links_write_unlock(void)
79{
80 up_write(&device_links_lock);
81}
82
83int device_links_read_lock(void)
84{
85 down_read(&device_links_lock);
86 return 0;
87}
88
89void device_links_read_unlock(int not_used)
90{
91 up_read(&device_links_lock);
92}
93#endif /* !CONFIG_SRCU */
94
95/**
96 * device_is_dependent - Check if one device depends on another one
97 * @dev: Device to check dependencies for.
98 * @target: Device to check against.
99 *
100 * Check if @target depends on @dev or any device dependent on it (its child or
101 * its consumer etc). Return 1 if that is the case or 0 otherwise.
102 */
103static int device_is_dependent(struct device *dev, void *target)
104{
105 struct device_link *link;
106 int ret;
107
108 if (WARN_ON(dev == target))
109 return 1;
110
111 ret = device_for_each_child(dev, target, device_is_dependent);
112 if (ret)
113 return ret;
114
115 list_for_each_entry(link, &dev->links.consumers, s_node) {
116 if (WARN_ON(link->consumer == target))
117 return 1;
118
119 ret = device_is_dependent(link->consumer, target);
120 if (ret)
121 break;
122 }
123 return ret;
124}
125
126static int device_reorder_to_tail(struct device *dev, void *not_used)
127{
128 struct device_link *link;
129
130 /*
131 * Devices that have not been registered yet will be put to the ends
132 * of the lists during the registration, so skip them here.
133 */
134 if (device_is_registered(dev))
135 devices_kset_move_last(dev);
136
137 if (device_pm_initialized(dev))
138 device_pm_move_last(dev);
139
140 device_for_each_child(dev, NULL, device_reorder_to_tail);
141 list_for_each_entry(link, &dev->links.consumers, s_node)
142 device_reorder_to_tail(link->consumer, NULL);
143
144 return 0;
145}
146
147/**
148 * device_link_add - Create a link between two devices.
149 * @consumer: Consumer end of the link.
150 * @supplier: Supplier end of the link.
151 * @flags: Link flags.
152 *
153 * The caller is responsible for the proper synchronization of the link creation
154 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
155 * runtime PM framework to take the link into account. Second, if the
156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
157 * be forced into the active metastate and reference-counted upon the creation
158 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
159 * ignored.
160 *
161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
162 * when the consumer device driver unbinds from it. The combination of both
163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
164 * to be returned.
165 *
166 * A side effect of the link creation is re-ordering of dpm_list and the
167 * devices_kset list by moving the consumer device and all devices depending
168 * on it to the ends of these lists (that does not happen to devices that have
169 * not been registered when this function is called).
170 *
171 * The supplier device is required to be registered when this function is called
172 * and NULL will be returned if that is not the case. The consumer device need
173 * not be registered, however.
174 */
175struct device_link *device_link_add(struct device *consumer,
176 struct device *supplier, u32 flags)
177{
178 struct device_link *link;
179
180 if (!consumer || !supplier ||
181 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
182 return NULL;
183
184 device_links_write_lock();
185 device_pm_lock();
186
187 /*
188 * If the supplier has not been fully registered yet or there is a
189 * reverse dependency between the consumer and the supplier already in
190 * the graph, return NULL.
191 */
192 if (!device_pm_initialized(supplier)
193 || device_is_dependent(consumer, supplier)) {
194 link = NULL;
195 goto out;
196 }
197
198 list_for_each_entry(link, &supplier->links.consumers, s_node)
199 if (link->consumer == consumer) {
200 kref_get(&link->kref);
201 goto out;
202 }
203
204 link = kzalloc(sizeof(*link), GFP_KERNEL);
205 if (!link)
206 goto out;
207
208 if (flags & DL_FLAG_PM_RUNTIME) {
209 if (flags & DL_FLAG_RPM_ACTIVE) {
210 if (pm_runtime_get_sync(supplier) < 0) {
211 pm_runtime_put_noidle(supplier);
212 kfree(link);
213 link = NULL;
214 goto out;
215 }
216 link->rpm_active = true;
217 }
218 pm_runtime_new_link(consumer);
219 }
220 get_device(supplier);
221 link->supplier = supplier;
222 INIT_LIST_HEAD(&link->s_node);
223 get_device(consumer);
224 link->consumer = consumer;
225 INIT_LIST_HEAD(&link->c_node);
226 link->flags = flags;
227 kref_init(&link->kref);
228
229 /* Determine the initial link state. */
230 if (flags & DL_FLAG_STATELESS) {
231 link->status = DL_STATE_NONE;
232 } else {
233 switch (supplier->links.status) {
234 case DL_DEV_DRIVER_BOUND:
235 switch (consumer->links.status) {
236 case DL_DEV_PROBING:
237 /*
238 * Balance the decrementation of the supplier's
239 * runtime PM usage counter after consumer probe
240 * in driver_probe_device().
241 */
242 if (flags & DL_FLAG_PM_RUNTIME)
243 pm_runtime_get_sync(supplier);
244
245 link->status = DL_STATE_CONSUMER_PROBE;
246 break;
247 case DL_DEV_DRIVER_BOUND:
248 link->status = DL_STATE_ACTIVE;
249 break;
250 default:
251 link->status = DL_STATE_AVAILABLE;
252 break;
253 }
254 break;
255 case DL_DEV_UNBINDING:
256 link->status = DL_STATE_SUPPLIER_UNBIND;
257 break;
258 default:
259 link->status = DL_STATE_DORMANT;
260 break;
261 }
262 }
263
264 /*
265 * Move the consumer and all of the devices depending on it to the end
266 * of dpm_list and the devices_kset list.
267 *
268 * It is necessary to hold dpm_list locked throughout all that or else
269 * we may end up suspending with a wrong ordering of it.
270 */
271 device_reorder_to_tail(consumer, NULL);
272
273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275
276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277
278 out:
279 device_pm_unlock();
280 device_links_write_unlock();
281 return link;
282}
283EXPORT_SYMBOL_GPL(device_link_add);
284
285static void device_link_free(struct device_link *link)
286{
287 put_device(link->consumer);
288 put_device(link->supplier);
289 kfree(link);
290}
291
292#ifdef CONFIG_SRCU
293static void __device_link_free_srcu(struct rcu_head *rhead)
294{
295 device_link_free(container_of(rhead, struct device_link, rcu_head));
296}
297
298static void __device_link_del(struct kref *kref)
299{
300 struct device_link *link = container_of(kref, struct device_link, kref);
301
302 dev_info(link->consumer, "Dropping the link to %s\n",
303 dev_name(link->supplier));
304
305 if (link->flags & DL_FLAG_PM_RUNTIME)
306 pm_runtime_drop_link(link->consumer);
307
308 list_del_rcu(&link->s_node);
309 list_del_rcu(&link->c_node);
310 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
311}
312#else /* !CONFIG_SRCU */
313static void __device_link_del(struct kref *kref)
314{
315 struct device_link *link = container_of(kref, struct device_link, kref);
316
317 dev_info(link->consumer, "Dropping the link to %s\n",
318 dev_name(link->supplier));
319
320 if (link->flags & DL_FLAG_PM_RUNTIME)
321 pm_runtime_drop_link(link->consumer);
322
323 list_del(&link->s_node);
324 list_del(&link->c_node);
325 device_link_free(link);
326}
327#endif /* !CONFIG_SRCU */
328
329/**
330 * device_link_del - Delete a link between two devices.
331 * @link: Device link to delete.
332 *
333 * The caller must ensure proper synchronization of this function with runtime
334 * PM. If the link was added multiple times, it needs to be deleted as often.
335 * Care is required for hotplugged devices: Their links are purged on removal
336 * and calling device_link_del() is then no longer allowed.
337 */
338void device_link_del(struct device_link *link)
339{
340 device_links_write_lock();
341 device_pm_lock();
342 kref_put(&link->kref, __device_link_del);
343 device_pm_unlock();
344 device_links_write_unlock();
345}
346EXPORT_SYMBOL_GPL(device_link_del);
347
348static void device_links_missing_supplier(struct device *dev)
349{
350 struct device_link *link;
351
352 list_for_each_entry(link, &dev->links.suppliers, c_node)
353 if (link->status == DL_STATE_CONSUMER_PROBE)
354 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
355}
356
357/**
358 * device_links_check_suppliers - Check presence of supplier drivers.
359 * @dev: Consumer device.
360 *
361 * Check links from this device to any suppliers. Walk the list of the device's
362 * links to suppliers and see if all of them are available. If not, simply
363 * return -EPROBE_DEFER.
364 *
365 * We need to guarantee that the supplier will not go away after the check has
366 * been positive here. It only can go away in __device_release_driver() and
367 * that function checks the device's links to consumers. This means we need to
368 * mark the link as "consumer probe in progress" to make the supplier removal
369 * wait for us to complete (or bad things may happen).
370 *
371 * Links with the DL_FLAG_STATELESS flag set are ignored.
372 */
373int device_links_check_suppliers(struct device *dev)
374{
375 struct device_link *link;
376 int ret = 0;
377
378 device_links_write_lock();
379
380 list_for_each_entry(link, &dev->links.suppliers, c_node) {
381 if (link->flags & DL_FLAG_STATELESS)
382 continue;
383
384 if (link->status != DL_STATE_AVAILABLE) {
385 device_links_missing_supplier(dev);
386 ret = -EPROBE_DEFER;
387 break;
388 }
389 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
390 }
391 dev->links.status = DL_DEV_PROBING;
392
393 device_links_write_unlock();
394 return ret;
395}
396
397/**
398 * device_links_driver_bound - Update device links after probing its driver.
399 * @dev: Device to update the links for.
400 *
401 * The probe has been successful, so update links from this device to any
402 * consumers by changing their status to "available".
403 *
404 * Also change the status of @dev's links to suppliers to "active".
405 *
406 * Links with the DL_FLAG_STATELESS flag set are ignored.
407 */
408void device_links_driver_bound(struct device *dev)
409{
410 struct device_link *link;
411
412 device_links_write_lock();
413
414 list_for_each_entry(link, &dev->links.consumers, s_node) {
415 if (link->flags & DL_FLAG_STATELESS)
416 continue;
417
418 WARN_ON(link->status != DL_STATE_DORMANT);
419 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
420 }
421
422 list_for_each_entry(link, &dev->links.suppliers, c_node) {
423 if (link->flags & DL_FLAG_STATELESS)
424 continue;
425
426 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
427 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
428 }
429
430 dev->links.status = DL_DEV_DRIVER_BOUND;
431
432 device_links_write_unlock();
433}
434
435/**
436 * __device_links_no_driver - Update links of a device without a driver.
437 * @dev: Device without a drvier.
438 *
439 * Delete all non-persistent links from this device to any suppliers.
440 *
441 * Persistent links stay around, but their status is changed to "available",
442 * unless they already are in the "supplier unbind in progress" state in which
443 * case they need not be updated.
444 *
445 * Links with the DL_FLAG_STATELESS flag set are ignored.
446 */
447static void __device_links_no_driver(struct device *dev)
448{
449 struct device_link *link, *ln;
450
451 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
452 if (link->flags & DL_FLAG_STATELESS)
453 continue;
454
455 if (link->flags & DL_FLAG_AUTOREMOVE)
456 kref_put(&link->kref, __device_link_del);
457 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
458 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
459 }
460
461 dev->links.status = DL_DEV_NO_DRIVER;
462}
463
464void device_links_no_driver(struct device *dev)
465{
466 device_links_write_lock();
467 __device_links_no_driver(dev);
468 device_links_write_unlock();
469}
470
471/**
472 * device_links_driver_cleanup - Update links after driver removal.
473 * @dev: Device whose driver has just gone away.
474 *
475 * Update links to consumers for @dev by changing their status to "dormant" and
476 * invoke %__device_links_no_driver() to update links to suppliers for it as
477 * appropriate.
478 *
479 * Links with the DL_FLAG_STATELESS flag set are ignored.
480 */
481void device_links_driver_cleanup(struct device *dev)
482{
483 struct device_link *link;
484
485 device_links_write_lock();
486
487 list_for_each_entry(link, &dev->links.consumers, s_node) {
488 if (link->flags & DL_FLAG_STATELESS)
489 continue;
490
491 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
492 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
493 WRITE_ONCE(link->status, DL_STATE_DORMANT);
494 }
495
496 __device_links_no_driver(dev);
497
498 device_links_write_unlock();
499}
500
501/**
502 * device_links_busy - Check if there are any busy links to consumers.
503 * @dev: Device to check.
504 *
505 * Check each consumer of the device and return 'true' if its link's status
506 * is one of "consumer probe" or "active" (meaning that the given consumer is
507 * probing right now or its driver is present). Otherwise, change the link
508 * state to "supplier unbind" to prevent the consumer from being probed
509 * successfully going forward.
510 *
511 * Return 'false' if there are no probing or active consumers.
512 *
513 * Links with the DL_FLAG_STATELESS flag set are ignored.
514 */
515bool device_links_busy(struct device *dev)
516{
517 struct device_link *link;
518 bool ret = false;
519
520 device_links_write_lock();
521
522 list_for_each_entry(link, &dev->links.consumers, s_node) {
523 if (link->flags & DL_FLAG_STATELESS)
524 continue;
525
526 if (link->status == DL_STATE_CONSUMER_PROBE
527 || link->status == DL_STATE_ACTIVE) {
528 ret = true;
529 break;
530 }
531 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
532 }
533
534 dev->links.status = DL_DEV_UNBINDING;
535
536 device_links_write_unlock();
537 return ret;
538}
539
540/**
541 * device_links_unbind_consumers - Force unbind consumers of the given device.
542 * @dev: Device to unbind the consumers of.
543 *
544 * Walk the list of links to consumers for @dev and if any of them is in the
545 * "consumer probe" state, wait for all device probes in progress to complete
546 * and start over.
547 *
548 * If that's not the case, change the status of the link to "supplier unbind"
549 * and check if the link was in the "active" state. If so, force the consumer
550 * driver to unbind and start over (the consumer will not re-probe as we have
551 * changed the state of the link already).
552 *
553 * Links with the DL_FLAG_STATELESS flag set are ignored.
554 */
555void device_links_unbind_consumers(struct device *dev)
556{
557 struct device_link *link;
558
559 start:
560 device_links_write_lock();
561
562 list_for_each_entry(link, &dev->links.consumers, s_node) {
563 enum device_link_state status;
564
565 if (link->flags & DL_FLAG_STATELESS)
566 continue;
567
568 status = link->status;
569 if (status == DL_STATE_CONSUMER_PROBE) {
570 device_links_write_unlock();
571
572 wait_for_device_probe();
573 goto start;
574 }
575 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
576 if (status == DL_STATE_ACTIVE) {
577 struct device *consumer = link->consumer;
578
579 get_device(consumer);
580
581 device_links_write_unlock();
582
583 device_release_driver_internal(consumer, NULL,
584 consumer->parent);
585 put_device(consumer);
586 goto start;
587 }
588 }
589
590 device_links_write_unlock();
591}
592
593/**
594 * device_links_purge - Delete existing links to other devices.
595 * @dev: Target device.
596 */
597static void device_links_purge(struct device *dev)
598{
599 struct device_link *link, *ln;
600
601 /*
602 * Delete all of the remaining links from this device to any other
603 * devices (either consumers or suppliers).
604 */
605 device_links_write_lock();
606
607 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
608 WARN_ON(link->status == DL_STATE_ACTIVE);
609 __device_link_del(&link->kref);
610 }
611
612 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
613 WARN_ON(link->status != DL_STATE_DORMANT &&
614 link->status != DL_STATE_NONE);
615 __device_link_del(&link->kref);
616 }
617
618 device_links_write_unlock();
619}
620
621/* Device links support end. */
622
623int (*platform_notify)(struct device *dev) = NULL;
624int (*platform_notify_remove)(struct device *dev) = NULL;
625static struct kobject *dev_kobj;
626struct kobject *sysfs_dev_char_kobj;
627struct kobject *sysfs_dev_block_kobj;
628
629static DEFINE_MUTEX(device_hotplug_lock);
630
631void lock_device_hotplug(void)
632{
633 mutex_lock(&device_hotplug_lock);
634}
635
636void unlock_device_hotplug(void)
637{
638 mutex_unlock(&device_hotplug_lock);
639}
640
641int lock_device_hotplug_sysfs(void)
642{
643 if (mutex_trylock(&device_hotplug_lock))
644 return 0;
645
646 /* Avoid busy looping (5 ms of sleep should do). */
647 msleep(5);
648 return restart_syscall();
649}
650
651#ifdef CONFIG_BLOCK
652static inline int device_is_not_partition(struct device *dev)
653{
654 return !(dev->type == &part_type);
655}
656#else
657static inline int device_is_not_partition(struct device *dev)
658{
659 return 1;
660}
661#endif
662
663/**
664 * dev_driver_string - Return a device's driver name, if at all possible
665 * @dev: struct device to get the name of
666 *
667 * Will return the device's driver's name if it is bound to a device. If
668 * the device is not bound to a driver, it will return the name of the bus
669 * it is attached to. If it is not attached to a bus either, an empty
670 * string will be returned.
671 */
672const char *dev_driver_string(const struct device *dev)
673{
674 struct device_driver *drv;
675
676 /* dev->driver can change to NULL underneath us because of unbinding,
677 * so be careful about accessing it. dev->bus and dev->class should
678 * never change once they are set, so they don't need special care.
679 */
680 drv = READ_ONCE(dev->driver);
681 return drv ? drv->name :
682 (dev->bus ? dev->bus->name :
683 (dev->class ? dev->class->name : ""));
684}
685EXPORT_SYMBOL(dev_driver_string);
686
687#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
688
689static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
690 char *buf)
691{
692 struct device_attribute *dev_attr = to_dev_attr(attr);
693 struct device *dev = kobj_to_dev(kobj);
694 ssize_t ret = -EIO;
695
696 if (dev_attr->show)
697 ret = dev_attr->show(dev, dev_attr, buf);
698 if (ret >= (ssize_t)PAGE_SIZE) {
699 printk("dev_attr_show: %pS returned bad count\n",
700 dev_attr->show);
701 }
702 return ret;
703}
704
705static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
706 const char *buf, size_t count)
707{
708 struct device_attribute *dev_attr = to_dev_attr(attr);
709 struct device *dev = kobj_to_dev(kobj);
710 ssize_t ret = -EIO;
711
712 if (dev_attr->store)
713 ret = dev_attr->store(dev, dev_attr, buf, count);
714 return ret;
715}
716
717static const struct sysfs_ops dev_sysfs_ops = {
718 .show = dev_attr_show,
719 .store = dev_attr_store,
720};
721
722#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
723
724ssize_t device_store_ulong(struct device *dev,
725 struct device_attribute *attr,
726 const char *buf, size_t size)
727{
728 struct dev_ext_attribute *ea = to_ext_attr(attr);
729 char *end;
730 unsigned long new = simple_strtoul(buf, &end, 0);
731 if (end == buf)
732 return -EINVAL;
733 *(unsigned long *)(ea->var) = new;
734 /* Always return full write size even if we didn't consume all */
735 return size;
736}
737EXPORT_SYMBOL_GPL(device_store_ulong);
738
739ssize_t device_show_ulong(struct device *dev,
740 struct device_attribute *attr,
741 char *buf)
742{
743 struct dev_ext_attribute *ea = to_ext_attr(attr);
744 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
745}
746EXPORT_SYMBOL_GPL(device_show_ulong);
747
748ssize_t device_store_int(struct device *dev,
749 struct device_attribute *attr,
750 const char *buf, size_t size)
751{
752 struct dev_ext_attribute *ea = to_ext_attr(attr);
753 char *end;
754 long new = simple_strtol(buf, &end, 0);
755 if (end == buf || new > INT_MAX || new < INT_MIN)
756 return -EINVAL;
757 *(int *)(ea->var) = new;
758 /* Always return full write size even if we didn't consume all */
759 return size;
760}
761EXPORT_SYMBOL_GPL(device_store_int);
762
763ssize_t device_show_int(struct device *dev,
764 struct device_attribute *attr,
765 char *buf)
766{
767 struct dev_ext_attribute *ea = to_ext_attr(attr);
768
769 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
770}
771EXPORT_SYMBOL_GPL(device_show_int);
772
773ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
774 const char *buf, size_t size)
775{
776 struct dev_ext_attribute *ea = to_ext_attr(attr);
777
778 if (strtobool(buf, ea->var) < 0)
779 return -EINVAL;
780
781 return size;
782}
783EXPORT_SYMBOL_GPL(device_store_bool);
784
785ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
786 char *buf)
787{
788 struct dev_ext_attribute *ea = to_ext_attr(attr);
789
790 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
791}
792EXPORT_SYMBOL_GPL(device_show_bool);
793
794/**
795 * device_release - free device structure.
796 * @kobj: device's kobject.
797 *
798 * This is called once the reference count for the object
799 * reaches 0. We forward the call to the device's release
800 * method, which should handle actually freeing the structure.
801 */
802static void device_release(struct kobject *kobj)
803{
804 struct device *dev = kobj_to_dev(kobj);
805 struct device_private *p = dev->p;
806
807 /*
808 * Some platform devices are driven without driver attached
809 * and managed resources may have been acquired. Make sure
810 * all resources are released.
811 *
812 * Drivers still can add resources into device after device
813 * is deleted but alive, so release devres here to avoid
814 * possible memory leak.
815 */
816 devres_release_all(dev);
817
818 if (dev->release)
819 dev->release(dev);
820 else if (dev->type && dev->type->release)
821 dev->type->release(dev);
822 else if (dev->class && dev->class->dev_release)
823 dev->class->dev_release(dev);
824 else
825 WARN(1, KERN_ERR "Device '%s' does not have a release() "
826 "function, it is broken and must be fixed.\n",
827 dev_name(dev));
828 kfree(p);
829}
830
831static const void *device_namespace(struct kobject *kobj)
832{
833 struct device *dev = kobj_to_dev(kobj);
834 const void *ns = NULL;
835
836 if (dev->class && dev->class->ns_type)
837 ns = dev->class->namespace(dev);
838
839 return ns;
840}
841
842static struct kobj_type device_ktype = {
843 .release = device_release,
844 .sysfs_ops = &dev_sysfs_ops,
845 .namespace = device_namespace,
846};
847
848
849static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
850{
851 struct kobj_type *ktype = get_ktype(kobj);
852
853 if (ktype == &device_ktype) {
854 struct device *dev = kobj_to_dev(kobj);
855 if (dev->bus)
856 return 1;
857 if (dev->class)
858 return 1;
859 }
860 return 0;
861}
862
863static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
864{
865 struct device *dev = kobj_to_dev(kobj);
866
867 if (dev->bus)
868 return dev->bus->name;
869 if (dev->class)
870 return dev->class->name;
871 return NULL;
872}
873
874static int dev_uevent(struct kset *kset, struct kobject *kobj,
875 struct kobj_uevent_env *env)
876{
877 struct device *dev = kobj_to_dev(kobj);
878 int retval = 0;
879
880 /* add device node properties if present */
881 if (MAJOR(dev->devt)) {
882 const char *tmp;
883 const char *name;
884 umode_t mode = 0;
885 kuid_t uid = GLOBAL_ROOT_UID;
886 kgid_t gid = GLOBAL_ROOT_GID;
887
888 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
889 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
890 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
891 if (name) {
892 add_uevent_var(env, "DEVNAME=%s", name);
893 if (mode)
894 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
895 if (!uid_eq(uid, GLOBAL_ROOT_UID))
896 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
897 if (!gid_eq(gid, GLOBAL_ROOT_GID))
898 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
899 kfree(tmp);
900 }
901 }
902
903 if (dev->type && dev->type->name)
904 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
905
906 if (dev->driver)
907 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
908
909 /* Add common DT information about the device */
910 of_device_uevent(dev, env);
911
912 /* have the bus specific function add its stuff */
913 if (dev->bus && dev->bus->uevent) {
914 retval = dev->bus->uevent(dev, env);
915 if (retval)
916 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
917 dev_name(dev), __func__, retval);
918 }
919
920 /* have the class specific function add its stuff */
921 if (dev->class && dev->class->dev_uevent) {
922 retval = dev->class->dev_uevent(dev, env);
923 if (retval)
924 pr_debug("device: '%s': %s: class uevent() "
925 "returned %d\n", dev_name(dev),
926 __func__, retval);
927 }
928
929 /* have the device type specific function add its stuff */
930 if (dev->type && dev->type->uevent) {
931 retval = dev->type->uevent(dev, env);
932 if (retval)
933 pr_debug("device: '%s': %s: dev_type uevent() "
934 "returned %d\n", dev_name(dev),
935 __func__, retval);
936 }
937
938 return retval;
939}
940
941static const struct kset_uevent_ops device_uevent_ops = {
942 .filter = dev_uevent_filter,
943 .name = dev_uevent_name,
944 .uevent = dev_uevent,
945};
946
947static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
948 char *buf)
949{
950 struct kobject *top_kobj;
951 struct kset *kset;
952 struct kobj_uevent_env *env = NULL;
953 int i;
954 size_t count = 0;
955 int retval;
956
957 /* search the kset, the device belongs to */
958 top_kobj = &dev->kobj;
959 while (!top_kobj->kset && top_kobj->parent)
960 top_kobj = top_kobj->parent;
961 if (!top_kobj->kset)
962 goto out;
963
964 kset = top_kobj->kset;
965 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
966 goto out;
967
968 /* respect filter */
969 if (kset->uevent_ops && kset->uevent_ops->filter)
970 if (!kset->uevent_ops->filter(kset, &dev->kobj))
971 goto out;
972
973 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
974 if (!env)
975 return -ENOMEM;
976
977 /* let the kset specific function add its keys */
978 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
979 if (retval)
980 goto out;
981
982 /* copy keys to file */
983 for (i = 0; i < env->envp_idx; i++)
984 count += sprintf(&buf[count], "%s\n", env->envp[i]);
985out:
986 kfree(env);
987 return count;
988}
989
990static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
991 const char *buf, size_t count)
992{
993 if (kobject_synth_uevent(&dev->kobj, buf, count))
994 dev_err(dev, "uevent: failed to send synthetic uevent\n");
995
996 return count;
997}
998static DEVICE_ATTR_RW(uevent);
999
1000static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1001 char *buf)
1002{
1003 bool val;
1004
1005 device_lock(dev);
1006 val = !dev->offline;
1007 device_unlock(dev);
1008 return sprintf(buf, "%u\n", val);
1009}
1010
1011static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1012 const char *buf, size_t count)
1013{
1014 bool val;
1015 int ret;
1016
1017 ret = strtobool(buf, &val);
1018 if (ret < 0)
1019 return ret;
1020
1021 ret = lock_device_hotplug_sysfs();
1022 if (ret)
1023 return ret;
1024
1025 ret = val ? device_online(dev) : device_offline(dev);
1026 unlock_device_hotplug();
1027 return ret < 0 ? ret : count;
1028}
1029static DEVICE_ATTR_RW(online);
1030
1031int device_add_groups(struct device *dev, const struct attribute_group **groups)
1032{
1033 return sysfs_create_groups(&dev->kobj, groups);
1034}
1035EXPORT_SYMBOL_GPL(device_add_groups);
1036
1037void device_remove_groups(struct device *dev,
1038 const struct attribute_group **groups)
1039{
1040 sysfs_remove_groups(&dev->kobj, groups);
1041}
1042EXPORT_SYMBOL_GPL(device_remove_groups);
1043
1044union device_attr_group_devres {
1045 const struct attribute_group *group;
1046 const struct attribute_group **groups;
1047};
1048
1049static int devm_attr_group_match(struct device *dev, void *res, void *data)
1050{
1051 return ((union device_attr_group_devres *)res)->group == data;
1052}
1053
1054static void devm_attr_group_remove(struct device *dev, void *res)
1055{
1056 union device_attr_group_devres *devres = res;
1057 const struct attribute_group *group = devres->group;
1058
1059 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1060 sysfs_remove_group(&dev->kobj, group);
1061}
1062
1063static void devm_attr_groups_remove(struct device *dev, void *res)
1064{
1065 union device_attr_group_devres *devres = res;
1066 const struct attribute_group **groups = devres->groups;
1067
1068 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1069 sysfs_remove_groups(&dev->kobj, groups);
1070}
1071
1072/**
1073 * devm_device_add_group - given a device, create a managed attribute group
1074 * @dev: The device to create the group for
1075 * @grp: The attribute group to create
1076 *
1077 * This function creates a group for the first time. It will explicitly
1078 * warn and error if any of the attribute files being created already exist.
1079 *
1080 * Returns 0 on success or error code on failure.
1081 */
1082int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1083{
1084 union device_attr_group_devres *devres;
1085 int error;
1086
1087 devres = devres_alloc(devm_attr_group_remove,
1088 sizeof(*devres), GFP_KERNEL);
1089 if (!devres)
1090 return -ENOMEM;
1091
1092 error = sysfs_create_group(&dev->kobj, grp);
1093 if (error) {
1094 devres_free(devres);
1095 return error;
1096 }
1097
1098 devres->group = grp;
1099 devres_add(dev, devres);
1100 return 0;
1101}
1102EXPORT_SYMBOL_GPL(devm_device_add_group);
1103
1104/**
1105 * devm_device_remove_group: remove a managed group from a device
1106 * @dev: device to remove the group from
1107 * @grp: group to remove
1108 *
1109 * This function removes a group of attributes from a device. The attributes
1110 * previously have to have been created for this group, otherwise it will fail.
1111 */
1112void devm_device_remove_group(struct device *dev,
1113 const struct attribute_group *grp)
1114{
1115 WARN_ON(devres_release(dev, devm_attr_group_remove,
1116 devm_attr_group_match,
1117 /* cast away const */ (void *)grp));
1118}
1119EXPORT_SYMBOL_GPL(devm_device_remove_group);
1120
1121/**
1122 * devm_device_add_groups - create a bunch of managed attribute groups
1123 * @dev: The device to create the group for
1124 * @groups: The attribute groups to create, NULL terminated
1125 *
1126 * This function creates a bunch of managed attribute groups. If an error
1127 * occurs when creating a group, all previously created groups will be
1128 * removed, unwinding everything back to the original state when this
1129 * function was called. It will explicitly warn and error if any of the
1130 * attribute files being created already exist.
1131 *
1132 * Returns 0 on success or error code from sysfs_create_group on failure.
1133 */
1134int devm_device_add_groups(struct device *dev,
1135 const struct attribute_group **groups)
1136{
1137 union device_attr_group_devres *devres;
1138 int error;
1139
1140 devres = devres_alloc(devm_attr_groups_remove,
1141 sizeof(*devres), GFP_KERNEL);
1142 if (!devres)
1143 return -ENOMEM;
1144
1145 error = sysfs_create_groups(&dev->kobj, groups);
1146 if (error) {
1147 devres_free(devres);
1148 return error;
1149 }
1150
1151 devres->groups = groups;
1152 devres_add(dev, devres);
1153 return 0;
1154}
1155EXPORT_SYMBOL_GPL(devm_device_add_groups);
1156
1157/**
1158 * devm_device_remove_groups - remove a list of managed groups
1159 *
1160 * @dev: The device for the groups to be removed from
1161 * @groups: NULL terminated list of groups to be removed
1162 *
1163 * If groups is not NULL, remove the specified groups from the device.
1164 */
1165void devm_device_remove_groups(struct device *dev,
1166 const struct attribute_group **groups)
1167{
1168 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1169 devm_attr_group_match,
1170 /* cast away const */ (void *)groups));
1171}
1172EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1173
1174static int device_add_attrs(struct device *dev)
1175{
1176 struct class *class = dev->class;
1177 const struct device_type *type = dev->type;
1178 int error;
1179
1180 if (class) {
1181 error = device_add_groups(dev, class->dev_groups);
1182 if (error)
1183 return error;
1184 }
1185
1186 if (type) {
1187 error = device_add_groups(dev, type->groups);
1188 if (error)
1189 goto err_remove_class_groups;
1190 }
1191
1192 error = device_add_groups(dev, dev->groups);
1193 if (error)
1194 goto err_remove_type_groups;
1195
1196 if (device_supports_offline(dev) && !dev->offline_disabled) {
1197 error = device_create_file(dev, &dev_attr_online);
1198 if (error)
1199 goto err_remove_dev_groups;
1200 }
1201
1202 return 0;
1203
1204 err_remove_dev_groups:
1205 device_remove_groups(dev, dev->groups);
1206 err_remove_type_groups:
1207 if (type)
1208 device_remove_groups(dev, type->groups);
1209 err_remove_class_groups:
1210 if (class)
1211 device_remove_groups(dev, class->dev_groups);
1212
1213 return error;
1214}
1215
1216static void device_remove_attrs(struct device *dev)
1217{
1218 struct class *class = dev->class;
1219 const struct device_type *type = dev->type;
1220
1221 device_remove_file(dev, &dev_attr_online);
1222 device_remove_groups(dev, dev->groups);
1223
1224 if (type)
1225 device_remove_groups(dev, type->groups);
1226
1227 if (class)
1228 device_remove_groups(dev, class->dev_groups);
1229}
1230
1231static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1232 char *buf)
1233{
1234 return print_dev_t(buf, dev->devt);
1235}
1236static DEVICE_ATTR_RO(dev);
1237
1238/* /sys/devices/ */
1239struct kset *devices_kset;
1240
1241/**
1242 * devices_kset_move_before - Move device in the devices_kset's list.
1243 * @deva: Device to move.
1244 * @devb: Device @deva should come before.
1245 */
1246static void devices_kset_move_before(struct device *deva, struct device *devb)
1247{
1248 if (!devices_kset)
1249 return;
1250 pr_debug("devices_kset: Moving %s before %s\n",
1251 dev_name(deva), dev_name(devb));
1252 spin_lock(&devices_kset->list_lock);
1253 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1254 spin_unlock(&devices_kset->list_lock);
1255}
1256
1257/**
1258 * devices_kset_move_after - Move device in the devices_kset's list.
1259 * @deva: Device to move
1260 * @devb: Device @deva should come after.
1261 */
1262static void devices_kset_move_after(struct device *deva, struct device *devb)
1263{
1264 if (!devices_kset)
1265 return;
1266 pr_debug("devices_kset: Moving %s after %s\n",
1267 dev_name(deva), dev_name(devb));
1268 spin_lock(&devices_kset->list_lock);
1269 list_move(&deva->kobj.entry, &devb->kobj.entry);
1270 spin_unlock(&devices_kset->list_lock);
1271}
1272
1273/**
1274 * devices_kset_move_last - move the device to the end of devices_kset's list.
1275 * @dev: device to move
1276 */
1277void devices_kset_move_last(struct device *dev)
1278{
1279 if (!devices_kset)
1280 return;
1281 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1282 spin_lock(&devices_kset->list_lock);
1283 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1284 spin_unlock(&devices_kset->list_lock);
1285}
1286
1287/**
1288 * device_create_file - create sysfs attribute file for device.
1289 * @dev: device.
1290 * @attr: device attribute descriptor.
1291 */
1292int device_create_file(struct device *dev,
1293 const struct device_attribute *attr)
1294{
1295 int error = 0;
1296
1297 if (dev) {
1298 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1299 "Attribute %s: write permission without 'store'\n",
1300 attr->attr.name);
1301 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1302 "Attribute %s: read permission without 'show'\n",
1303 attr->attr.name);
1304 error = sysfs_create_file(&dev->kobj, &attr->attr);
1305 }
1306
1307 return error;
1308}
1309EXPORT_SYMBOL_GPL(device_create_file);
1310
1311/**
1312 * device_remove_file - remove sysfs attribute file.
1313 * @dev: device.
1314 * @attr: device attribute descriptor.
1315 */
1316void device_remove_file(struct device *dev,
1317 const struct device_attribute *attr)
1318{
1319 if (dev)
1320 sysfs_remove_file(&dev->kobj, &attr->attr);
1321}
1322EXPORT_SYMBOL_GPL(device_remove_file);
1323
1324/**
1325 * device_remove_file_self - remove sysfs attribute file from its own method.
1326 * @dev: device.
1327 * @attr: device attribute descriptor.
1328 *
1329 * See kernfs_remove_self() for details.
1330 */
1331bool device_remove_file_self(struct device *dev,
1332 const struct device_attribute *attr)
1333{
1334 if (dev)
1335 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1336 else
1337 return false;
1338}
1339EXPORT_SYMBOL_GPL(device_remove_file_self);
1340
1341/**
1342 * device_create_bin_file - create sysfs binary attribute file for device.
1343 * @dev: device.
1344 * @attr: device binary attribute descriptor.
1345 */
1346int device_create_bin_file(struct device *dev,
1347 const struct bin_attribute *attr)
1348{
1349 int error = -EINVAL;
1350 if (dev)
1351 error = sysfs_create_bin_file(&dev->kobj, attr);
1352 return error;
1353}
1354EXPORT_SYMBOL_GPL(device_create_bin_file);
1355
1356/**
1357 * device_remove_bin_file - remove sysfs binary attribute file
1358 * @dev: device.
1359 * @attr: device binary attribute descriptor.
1360 */
1361void device_remove_bin_file(struct device *dev,
1362 const struct bin_attribute *attr)
1363{
1364 if (dev)
1365 sysfs_remove_bin_file(&dev->kobj, attr);
1366}
1367EXPORT_SYMBOL_GPL(device_remove_bin_file);
1368
1369static void klist_children_get(struct klist_node *n)
1370{
1371 struct device_private *p = to_device_private_parent(n);
1372 struct device *dev = p->device;
1373
1374 get_device(dev);
1375}
1376
1377static void klist_children_put(struct klist_node *n)
1378{
1379 struct device_private *p = to_device_private_parent(n);
1380 struct device *dev = p->device;
1381
1382 put_device(dev);
1383}
1384
1385/**
1386 * device_initialize - init device structure.
1387 * @dev: device.
1388 *
1389 * This prepares the device for use by other layers by initializing
1390 * its fields.
1391 * It is the first half of device_register(), if called by
1392 * that function, though it can also be called separately, so one
1393 * may use @dev's fields. In particular, get_device()/put_device()
1394 * may be used for reference counting of @dev after calling this
1395 * function.
1396 *
1397 * All fields in @dev must be initialized by the caller to 0, except
1398 * for those explicitly set to some other value. The simplest
1399 * approach is to use kzalloc() to allocate the structure containing
1400 * @dev.
1401 *
1402 * NOTE: Use put_device() to give up your reference instead of freeing
1403 * @dev directly once you have called this function.
1404 */
1405void device_initialize(struct device *dev)
1406{
1407 dev->kobj.kset = devices_kset;
1408 kobject_init(&dev->kobj, &device_ktype);
1409 INIT_LIST_HEAD(&dev->dma_pools);
1410 mutex_init(&dev->mutex);
1411 lockdep_set_novalidate_class(&dev->mutex);
1412 spin_lock_init(&dev->devres_lock);
1413 INIT_LIST_HEAD(&dev->devres_head);
1414 device_pm_init(dev);
1415 set_dev_node(dev, -1);
1416#ifdef CONFIG_GENERIC_MSI_IRQ
1417 INIT_LIST_HEAD(&dev->msi_list);
1418#endif
1419 INIT_LIST_HEAD(&dev->links.consumers);
1420 INIT_LIST_HEAD(&dev->links.suppliers);
1421 dev->links.status = DL_DEV_NO_DRIVER;
1422}
1423EXPORT_SYMBOL_GPL(device_initialize);
1424
1425struct kobject *virtual_device_parent(struct device *dev)
1426{
1427 static struct kobject *virtual_dir = NULL;
1428
1429 if (!virtual_dir)
1430 virtual_dir = kobject_create_and_add("virtual",
1431 &devices_kset->kobj);
1432
1433 return virtual_dir;
1434}
1435
1436struct class_dir {
1437 struct kobject kobj;
1438 struct class *class;
1439};
1440
1441#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1442
1443static void class_dir_release(struct kobject *kobj)
1444{
1445 struct class_dir *dir = to_class_dir(kobj);
1446 kfree(dir);
1447}
1448
1449static const
1450struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1451{
1452 struct class_dir *dir = to_class_dir(kobj);
1453 return dir->class->ns_type;
1454}
1455
1456static struct kobj_type class_dir_ktype = {
1457 .release = class_dir_release,
1458 .sysfs_ops = &kobj_sysfs_ops,
1459 .child_ns_type = class_dir_child_ns_type
1460};
1461
1462static struct kobject *
1463class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1464{
1465 struct class_dir *dir;
1466 int retval;
1467
1468 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1469 if (!dir)
1470 return NULL;
1471
1472 dir->class = class;
1473 kobject_init(&dir->kobj, &class_dir_ktype);
1474
1475 dir->kobj.kset = &class->p->glue_dirs;
1476
1477 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1478 if (retval < 0) {
1479 kobject_put(&dir->kobj);
1480 return NULL;
1481 }
1482 return &dir->kobj;
1483}
1484
1485static DEFINE_MUTEX(gdp_mutex);
1486
1487static struct kobject *get_device_parent(struct device *dev,
1488 struct device *parent)
1489{
1490 if (dev->class) {
1491 struct kobject *kobj = NULL;
1492 struct kobject *parent_kobj;
1493 struct kobject *k;
1494
1495#ifdef CONFIG_BLOCK
1496 /* block disks show up in /sys/block */
1497 if (sysfs_deprecated && dev->class == &block_class) {
1498 if (parent && parent->class == &block_class)
1499 return &parent->kobj;
1500 return &block_class.p->subsys.kobj;
1501 }
1502#endif
1503
1504 /*
1505 * If we have no parent, we live in "virtual".
1506 * Class-devices with a non class-device as parent, live
1507 * in a "glue" directory to prevent namespace collisions.
1508 */
1509 if (parent == NULL)
1510 parent_kobj = virtual_device_parent(dev);
1511 else if (parent->class && !dev->class->ns_type)
1512 return &parent->kobj;
1513 else
1514 parent_kobj = &parent->kobj;
1515
1516 mutex_lock(&gdp_mutex);
1517
1518 /* find our class-directory at the parent and reference it */
1519 spin_lock(&dev->class->p->glue_dirs.list_lock);
1520 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1521 if (k->parent == parent_kobj) {
1522 kobj = kobject_get(k);
1523 break;
1524 }
1525 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1526 if (kobj) {
1527 mutex_unlock(&gdp_mutex);
1528 return kobj;
1529 }
1530
1531 /* or create a new class-directory at the parent device */
1532 k = class_dir_create_and_add(dev->class, parent_kobj);
1533 /* do not emit an uevent for this simple "glue" directory */
1534 mutex_unlock(&gdp_mutex);
1535 return k;
1536 }
1537
1538 /* subsystems can specify a default root directory for their devices */
1539 if (!parent && dev->bus && dev->bus->dev_root)
1540 return &dev->bus->dev_root->kobj;
1541
1542 if (parent)
1543 return &parent->kobj;
1544 return NULL;
1545}
1546
1547static inline bool live_in_glue_dir(struct kobject *kobj,
1548 struct device *dev)
1549{
1550 if (!kobj || !dev->class ||
1551 kobj->kset != &dev->class->p->glue_dirs)
1552 return false;
1553 return true;
1554}
1555
1556static inline struct kobject *get_glue_dir(struct device *dev)
1557{
1558 return dev->kobj.parent;
1559}
1560
1561/*
1562 * make sure cleaning up dir as the last step, we need to make
1563 * sure .release handler of kobject is run with holding the
1564 * global lock
1565 */
1566static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1567{
1568 /* see if we live in a "glue" directory */
1569 if (!live_in_glue_dir(glue_dir, dev))
1570 return;
1571
1572 mutex_lock(&gdp_mutex);
1573 kobject_put(glue_dir);
1574 mutex_unlock(&gdp_mutex);
1575}
1576
1577static int device_add_class_symlinks(struct device *dev)
1578{
1579 struct device_node *of_node = dev_of_node(dev);
1580 int error;
1581
1582 if (of_node) {
1583 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1584 if (error)
1585 dev_warn(dev, "Error %d creating of_node link\n",error);
1586 /* An error here doesn't warrant bringing down the device */
1587 }
1588
1589 if (!dev->class)
1590 return 0;
1591
1592 error = sysfs_create_link(&dev->kobj,
1593 &dev->class->p->subsys.kobj,
1594 "subsystem");
1595 if (error)
1596 goto out_devnode;
1597
1598 if (dev->parent && device_is_not_partition(dev)) {
1599 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1600 "device");
1601 if (error)
1602 goto out_subsys;
1603 }
1604
1605#ifdef CONFIG_BLOCK
1606 /* /sys/block has directories and does not need symlinks */
1607 if (sysfs_deprecated && dev->class == &block_class)
1608 return 0;
1609#endif
1610
1611 /* link in the class directory pointing to the device */
1612 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1613 &dev->kobj, dev_name(dev));
1614 if (error)
1615 goto out_device;
1616
1617 return 0;
1618
1619out_device:
1620 sysfs_remove_link(&dev->kobj, "device");
1621
1622out_subsys:
1623 sysfs_remove_link(&dev->kobj, "subsystem");
1624out_devnode:
1625 sysfs_remove_link(&dev->kobj, "of_node");
1626 return error;
1627}
1628
1629static void device_remove_class_symlinks(struct device *dev)
1630{
1631 if (dev_of_node(dev))
1632 sysfs_remove_link(&dev->kobj, "of_node");
1633
1634 if (!dev->class)
1635 return;
1636
1637 if (dev->parent && device_is_not_partition(dev))
1638 sysfs_remove_link(&dev->kobj, "device");
1639 sysfs_remove_link(&dev->kobj, "subsystem");
1640#ifdef CONFIG_BLOCK
1641 if (sysfs_deprecated && dev->class == &block_class)
1642 return;
1643#endif
1644 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1645}
1646
1647/**
1648 * dev_set_name - set a device name
1649 * @dev: device
1650 * @fmt: format string for the device's name
1651 */
1652int dev_set_name(struct device *dev, const char *fmt, ...)
1653{
1654 va_list vargs;
1655 int err;
1656
1657 va_start(vargs, fmt);
1658 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1659 va_end(vargs);
1660 return err;
1661}
1662EXPORT_SYMBOL_GPL(dev_set_name);
1663
1664/**
1665 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1666 * @dev: device
1667 *
1668 * By default we select char/ for new entries. Setting class->dev_obj
1669 * to NULL prevents an entry from being created. class->dev_kobj must
1670 * be set (or cleared) before any devices are registered to the class
1671 * otherwise device_create_sys_dev_entry() and
1672 * device_remove_sys_dev_entry() will disagree about the presence of
1673 * the link.
1674 */
1675static struct kobject *device_to_dev_kobj(struct device *dev)
1676{
1677 struct kobject *kobj;
1678
1679 if (dev->class)
1680 kobj = dev->class->dev_kobj;
1681 else
1682 kobj = sysfs_dev_char_kobj;
1683
1684 return kobj;
1685}
1686
1687static int device_create_sys_dev_entry(struct device *dev)
1688{
1689 struct kobject *kobj = device_to_dev_kobj(dev);
1690 int error = 0;
1691 char devt_str[15];
1692
1693 if (kobj) {
1694 format_dev_t(devt_str, dev->devt);
1695 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1696 }
1697
1698 return error;
1699}
1700
1701static void device_remove_sys_dev_entry(struct device *dev)
1702{
1703 struct kobject *kobj = device_to_dev_kobj(dev);
1704 char devt_str[15];
1705
1706 if (kobj) {
1707 format_dev_t(devt_str, dev->devt);
1708 sysfs_remove_link(kobj, devt_str);
1709 }
1710}
1711
1712int device_private_init(struct device *dev)
1713{
1714 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1715 if (!dev->p)
1716 return -ENOMEM;
1717 dev->p->device = dev;
1718 klist_init(&dev->p->klist_children, klist_children_get,
1719 klist_children_put);
1720 INIT_LIST_HEAD(&dev->p->deferred_probe);
1721 return 0;
1722}
1723
1724/**
1725 * device_add - add device to device hierarchy.
1726 * @dev: device.
1727 *
1728 * This is part 2 of device_register(), though may be called
1729 * separately _iff_ device_initialize() has been called separately.
1730 *
1731 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1732 * to the global and sibling lists for the device, then
1733 * adds it to the other relevant subsystems of the driver model.
1734 *
1735 * Do not call this routine or device_register() more than once for
1736 * any device structure. The driver model core is not designed to work
1737 * with devices that get unregistered and then spring back to life.
1738 * (Among other things, it's very hard to guarantee that all references
1739 * to the previous incarnation of @dev have been dropped.) Allocate
1740 * and register a fresh new struct device instead.
1741 *
1742 * NOTE: _Never_ directly free @dev after calling this function, even
1743 * if it returned an error! Always use put_device() to give up your
1744 * reference instead.
1745 */
1746int device_add(struct device *dev)
1747{
1748 struct device *parent;
1749 struct kobject *kobj;
1750 struct class_interface *class_intf;
1751 int error = -EINVAL;
1752 struct kobject *glue_dir = NULL;
1753
1754 dev = get_device(dev);
1755 if (!dev)
1756 goto done;
1757
1758 if (!dev->p) {
1759 error = device_private_init(dev);
1760 if (error)
1761 goto done;
1762 }
1763
1764 /*
1765 * for statically allocated devices, which should all be converted
1766 * some day, we need to initialize the name. We prevent reading back
1767 * the name, and force the use of dev_name()
1768 */
1769 if (dev->init_name) {
1770 dev_set_name(dev, "%s", dev->init_name);
1771 dev->init_name = NULL;
1772 }
1773
1774 /* subsystems can specify simple device enumeration */
1775 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1776 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1777
1778 if (!dev_name(dev)) {
1779 error = -EINVAL;
1780 goto name_error;
1781 }
1782
1783 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1784
1785 parent = get_device(dev->parent);
1786 kobj = get_device_parent(dev, parent);
1787 if (kobj)
1788 dev->kobj.parent = kobj;
1789
1790 /* use parent numa_node */
1791 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1792 set_dev_node(dev, dev_to_node(parent));
1793
1794 /* first, register with generic layer. */
1795 /* we require the name to be set before, and pass NULL */
1796 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1797 if (error) {
1798 glue_dir = get_glue_dir(dev);
1799 goto Error;
1800 }
1801
1802 /* notify platform of device entry */
1803 if (platform_notify)
1804 platform_notify(dev);
1805
1806 error = device_create_file(dev, &dev_attr_uevent);
1807 if (error)
1808 goto attrError;
1809
1810 error = device_add_class_symlinks(dev);
1811 if (error)
1812 goto SymlinkError;
1813 error = device_add_attrs(dev);
1814 if (error)
1815 goto AttrsError;
1816 error = bus_add_device(dev);
1817 if (error)
1818 goto BusError;
1819 error = dpm_sysfs_add(dev);
1820 if (error)
1821 goto DPMError;
1822 device_pm_add(dev);
1823
1824 if (MAJOR(dev->devt)) {
1825 error = device_create_file(dev, &dev_attr_dev);
1826 if (error)
1827 goto DevAttrError;
1828
1829 error = device_create_sys_dev_entry(dev);
1830 if (error)
1831 goto SysEntryError;
1832
1833 devtmpfs_create_node(dev);
1834 }
1835
1836 /* Notify clients of device addition. This call must come
1837 * after dpm_sysfs_add() and before kobject_uevent().
1838 */
1839 if (dev->bus)
1840 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1841 BUS_NOTIFY_ADD_DEVICE, dev);
1842
1843 kobject_uevent(&dev->kobj, KOBJ_ADD);
1844 bus_probe_device(dev);
1845 if (parent)
1846 klist_add_tail(&dev->p->knode_parent,
1847 &parent->p->klist_children);
1848
1849 if (dev->class) {
1850 mutex_lock(&dev->class->p->mutex);
1851 /* tie the class to the device */
1852 klist_add_tail(&dev->knode_class,
1853 &dev->class->p->klist_devices);
1854
1855 /* notify any interfaces that the device is here */
1856 list_for_each_entry(class_intf,
1857 &dev->class->p->interfaces, node)
1858 if (class_intf->add_dev)
1859 class_intf->add_dev(dev, class_intf);
1860 mutex_unlock(&dev->class->p->mutex);
1861 }
1862done:
1863 put_device(dev);
1864 return error;
1865 SysEntryError:
1866 if (MAJOR(dev->devt))
1867 device_remove_file(dev, &dev_attr_dev);
1868 DevAttrError:
1869 device_pm_remove(dev);
1870 dpm_sysfs_remove(dev);
1871 DPMError:
1872 bus_remove_device(dev);
1873 BusError:
1874 device_remove_attrs(dev);
1875 AttrsError:
1876 device_remove_class_symlinks(dev);
1877 SymlinkError:
1878 device_remove_file(dev, &dev_attr_uevent);
1879 attrError:
1880 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1881 glue_dir = get_glue_dir(dev);
1882 kobject_del(&dev->kobj);
1883 Error:
1884 cleanup_glue_dir(dev, glue_dir);
1885 put_device(parent);
1886name_error:
1887 kfree(dev->p);
1888 dev->p = NULL;
1889 goto done;
1890}
1891EXPORT_SYMBOL_GPL(device_add);
1892
1893/**
1894 * device_register - register a device with the system.
1895 * @dev: pointer to the device structure
1896 *
1897 * This happens in two clean steps - initialize the device
1898 * and add it to the system. The two steps can be called
1899 * separately, but this is the easiest and most common.
1900 * I.e. you should only call the two helpers separately if
1901 * have a clearly defined need to use and refcount the device
1902 * before it is added to the hierarchy.
1903 *
1904 * For more information, see the kerneldoc for device_initialize()
1905 * and device_add().
1906 *
1907 * NOTE: _Never_ directly free @dev after calling this function, even
1908 * if it returned an error! Always use put_device() to give up the
1909 * reference initialized in this function instead.
1910 */
1911int device_register(struct device *dev)
1912{
1913 device_initialize(dev);
1914 return device_add(dev);
1915}
1916EXPORT_SYMBOL_GPL(device_register);
1917
1918/**
1919 * get_device - increment reference count for device.
1920 * @dev: device.
1921 *
1922 * This simply forwards the call to kobject_get(), though
1923 * we do take care to provide for the case that we get a NULL
1924 * pointer passed in.
1925 */
1926struct device *get_device(struct device *dev)
1927{
1928 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1929}
1930EXPORT_SYMBOL_GPL(get_device);
1931
1932/**
1933 * put_device - decrement reference count.
1934 * @dev: device in question.
1935 */
1936void put_device(struct device *dev)
1937{
1938 /* might_sleep(); */
1939 if (dev)
1940 kobject_put(&dev->kobj);
1941}
1942EXPORT_SYMBOL_GPL(put_device);
1943
1944/**
1945 * device_del - delete device from system.
1946 * @dev: device.
1947 *
1948 * This is the first part of the device unregistration
1949 * sequence. This removes the device from the lists we control
1950 * from here, has it removed from the other driver model
1951 * subsystems it was added to in device_add(), and removes it
1952 * from the kobject hierarchy.
1953 *
1954 * NOTE: this should be called manually _iff_ device_add() was
1955 * also called manually.
1956 */
1957void device_del(struct device *dev)
1958{
1959 struct device *parent = dev->parent;
1960 struct kobject *glue_dir = NULL;
1961 struct class_interface *class_intf;
1962
1963 /* Notify clients of device removal. This call must come
1964 * before dpm_sysfs_remove().
1965 */
1966 if (dev->bus)
1967 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1968 BUS_NOTIFY_DEL_DEVICE, dev);
1969
1970 dpm_sysfs_remove(dev);
1971 if (parent)
1972 klist_del(&dev->p->knode_parent);
1973 if (MAJOR(dev->devt)) {
1974 devtmpfs_delete_node(dev);
1975 device_remove_sys_dev_entry(dev);
1976 device_remove_file(dev, &dev_attr_dev);
1977 }
1978 if (dev->class) {
1979 device_remove_class_symlinks(dev);
1980
1981 mutex_lock(&dev->class->p->mutex);
1982 /* notify any interfaces that the device is now gone */
1983 list_for_each_entry(class_intf,
1984 &dev->class->p->interfaces, node)
1985 if (class_intf->remove_dev)
1986 class_intf->remove_dev(dev, class_intf);
1987 /* remove the device from the class list */
1988 klist_del(&dev->knode_class);
1989 mutex_unlock(&dev->class->p->mutex);
1990 }
1991 device_remove_file(dev, &dev_attr_uevent);
1992 device_remove_attrs(dev);
1993 bus_remove_device(dev);
1994 device_pm_remove(dev);
1995 driver_deferred_probe_del(dev);
1996 device_remove_properties(dev);
1997 device_links_purge(dev);
1998
1999 /* Notify the platform of the removal, in case they
2000 * need to do anything...
2001 */
2002 if (platform_notify_remove)
2003 platform_notify_remove(dev);
2004 if (dev->bus)
2005 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2006 BUS_NOTIFY_REMOVED_DEVICE, dev);
2007 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2008 glue_dir = get_glue_dir(dev);
2009 kobject_del(&dev->kobj);
2010 cleanup_glue_dir(dev, glue_dir);
2011 put_device(parent);
2012}
2013EXPORT_SYMBOL_GPL(device_del);
2014
2015/**
2016 * device_unregister - unregister device from system.
2017 * @dev: device going away.
2018 *
2019 * We do this in two parts, like we do device_register(). First,
2020 * we remove it from all the subsystems with device_del(), then
2021 * we decrement the reference count via put_device(). If that
2022 * is the final reference count, the device will be cleaned up
2023 * via device_release() above. Otherwise, the structure will
2024 * stick around until the final reference to the device is dropped.
2025 */
2026void device_unregister(struct device *dev)
2027{
2028 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2029 device_del(dev);
2030 put_device(dev);
2031}
2032EXPORT_SYMBOL_GPL(device_unregister);
2033
2034static struct device *prev_device(struct klist_iter *i)
2035{
2036 struct klist_node *n = klist_prev(i);
2037 struct device *dev = NULL;
2038 struct device_private *p;
2039
2040 if (n) {
2041 p = to_device_private_parent(n);
2042 dev = p->device;
2043 }
2044 return dev;
2045}
2046
2047static struct device *next_device(struct klist_iter *i)
2048{
2049 struct klist_node *n = klist_next(i);
2050 struct device *dev = NULL;
2051 struct device_private *p;
2052
2053 if (n) {
2054 p = to_device_private_parent(n);
2055 dev = p->device;
2056 }
2057 return dev;
2058}
2059
2060/**
2061 * device_get_devnode - path of device node file
2062 * @dev: device
2063 * @mode: returned file access mode
2064 * @uid: returned file owner
2065 * @gid: returned file group
2066 * @tmp: possibly allocated string
2067 *
2068 * Return the relative path of a possible device node.
2069 * Non-default names may need to allocate a memory to compose
2070 * a name. This memory is returned in tmp and needs to be
2071 * freed by the caller.
2072 */
2073const char *device_get_devnode(struct device *dev,
2074 umode_t *mode, kuid_t *uid, kgid_t *gid,
2075 const char **tmp)
2076{
2077 char *s;
2078
2079 *tmp = NULL;
2080
2081 /* the device type may provide a specific name */
2082 if (dev->type && dev->type->devnode)
2083 *tmp = dev->type->devnode(dev, mode, uid, gid);
2084 if (*tmp)
2085 return *tmp;
2086
2087 /* the class may provide a specific name */
2088 if (dev->class && dev->class->devnode)
2089 *tmp = dev->class->devnode(dev, mode);
2090 if (*tmp)
2091 return *tmp;
2092
2093 /* return name without allocation, tmp == NULL */
2094 if (strchr(dev_name(dev), '!') == NULL)
2095 return dev_name(dev);
2096
2097 /* replace '!' in the name with '/' */
2098 s = kstrdup(dev_name(dev), GFP_KERNEL);
2099 if (!s)
2100 return NULL;
2101 strreplace(s, '!', '/');
2102 return *tmp = s;
2103}
2104
2105/**
2106 * device_for_each_child - device child iterator.
2107 * @parent: parent struct device.
2108 * @fn: function to be called for each device.
2109 * @data: data for the callback.
2110 *
2111 * Iterate over @parent's child devices, and call @fn for each,
2112 * passing it @data.
2113 *
2114 * We check the return of @fn each time. If it returns anything
2115 * other than 0, we break out and return that value.
2116 */
2117int device_for_each_child(struct device *parent, void *data,
2118 int (*fn)(struct device *dev, void *data))
2119{
2120 struct klist_iter i;
2121 struct device *child;
2122 int error = 0;
2123
2124 if (!parent->p)
2125 return 0;
2126
2127 klist_iter_init(&parent->p->klist_children, &i);
2128 while (!error && (child = next_device(&i)))
2129 error = fn(child, data);
2130 klist_iter_exit(&i);
2131 return error;
2132}
2133EXPORT_SYMBOL_GPL(device_for_each_child);
2134
2135/**
2136 * device_for_each_child_reverse - device child iterator in reversed order.
2137 * @parent: parent struct device.
2138 * @fn: function to be called for each device.
2139 * @data: data for the callback.
2140 *
2141 * Iterate over @parent's child devices, and call @fn for each,
2142 * passing it @data.
2143 *
2144 * We check the return of @fn each time. If it returns anything
2145 * other than 0, we break out and return that value.
2146 */
2147int device_for_each_child_reverse(struct device *parent, void *data,
2148 int (*fn)(struct device *dev, void *data))
2149{
2150 struct klist_iter i;
2151 struct device *child;
2152 int error = 0;
2153
2154 if (!parent->p)
2155 return 0;
2156
2157 klist_iter_init(&parent->p->klist_children, &i);
2158 while ((child = prev_device(&i)) && !error)
2159 error = fn(child, data);
2160 klist_iter_exit(&i);
2161 return error;
2162}
2163EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2164
2165/**
2166 * device_find_child - device iterator for locating a particular device.
2167 * @parent: parent struct device
2168 * @match: Callback function to check device
2169 * @data: Data to pass to match function
2170 *
2171 * This is similar to the device_for_each_child() function above, but it
2172 * returns a reference to a device that is 'found' for later use, as
2173 * determined by the @match callback.
2174 *
2175 * The callback should return 0 if the device doesn't match and non-zero
2176 * if it does. If the callback returns non-zero and a reference to the
2177 * current device can be obtained, this function will return to the caller
2178 * and not iterate over any more devices.
2179 *
2180 * NOTE: you will need to drop the reference with put_device() after use.
2181 */
2182struct device *device_find_child(struct device *parent, void *data,
2183 int (*match)(struct device *dev, void *data))
2184{
2185 struct klist_iter i;
2186 struct device *child;
2187
2188 if (!parent)
2189 return NULL;
2190
2191 klist_iter_init(&parent->p->klist_children, &i);
2192 while ((child = next_device(&i)))
2193 if (match(child, data) && get_device(child))
2194 break;
2195 klist_iter_exit(&i);
2196 return child;
2197}
2198EXPORT_SYMBOL_GPL(device_find_child);
2199
2200int __init devices_init(void)
2201{
2202 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2203 if (!devices_kset)
2204 return -ENOMEM;
2205 dev_kobj = kobject_create_and_add("dev", NULL);
2206 if (!dev_kobj)
2207 goto dev_kobj_err;
2208 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2209 if (!sysfs_dev_block_kobj)
2210 goto block_kobj_err;
2211 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2212 if (!sysfs_dev_char_kobj)
2213 goto char_kobj_err;
2214
2215 return 0;
2216
2217 char_kobj_err:
2218 kobject_put(sysfs_dev_block_kobj);
2219 block_kobj_err:
2220 kobject_put(dev_kobj);
2221 dev_kobj_err:
2222 kset_unregister(devices_kset);
2223 return -ENOMEM;
2224}
2225
2226static int device_check_offline(struct device *dev, void *not_used)
2227{
2228 int ret;
2229
2230 ret = device_for_each_child(dev, NULL, device_check_offline);
2231 if (ret)
2232 return ret;
2233
2234 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2235}
2236
2237/**
2238 * device_offline - Prepare the device for hot-removal.
2239 * @dev: Device to be put offline.
2240 *
2241 * Execute the device bus type's .offline() callback, if present, to prepare
2242 * the device for a subsequent hot-removal. If that succeeds, the device must
2243 * not be used until either it is removed or its bus type's .online() callback
2244 * is executed.
2245 *
2246 * Call under device_hotplug_lock.
2247 */
2248int device_offline(struct device *dev)
2249{
2250 int ret;
2251
2252 if (dev->offline_disabled)
2253 return -EPERM;
2254
2255 ret = device_for_each_child(dev, NULL, device_check_offline);
2256 if (ret)
2257 return ret;
2258
2259 device_lock(dev);
2260 if (device_supports_offline(dev)) {
2261 if (dev->offline) {
2262 ret = 1;
2263 } else {
2264 ret = dev->bus->offline(dev);
2265 if (!ret) {
2266 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2267 dev->offline = true;
2268 }
2269 }
2270 }
2271 device_unlock(dev);
2272
2273 return ret;
2274}
2275
2276/**
2277 * device_online - Put the device back online after successful device_offline().
2278 * @dev: Device to be put back online.
2279 *
2280 * If device_offline() has been successfully executed for @dev, but the device
2281 * has not been removed subsequently, execute its bus type's .online() callback
2282 * to indicate that the device can be used again.
2283 *
2284 * Call under device_hotplug_lock.
2285 */
2286int device_online(struct device *dev)
2287{
2288 int ret = 0;
2289
2290 device_lock(dev);
2291 if (device_supports_offline(dev)) {
2292 if (dev->offline) {
2293 ret = dev->bus->online(dev);
2294 if (!ret) {
2295 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2296 dev->offline = false;
2297 }
2298 } else {
2299 ret = 1;
2300 }
2301 }
2302 device_unlock(dev);
2303
2304 return ret;
2305}
2306
2307struct root_device {
2308 struct device dev;
2309 struct module *owner;
2310};
2311
2312static inline struct root_device *to_root_device(struct device *d)
2313{
2314 return container_of(d, struct root_device, dev);
2315}
2316
2317static void root_device_release(struct device *dev)
2318{
2319 kfree(to_root_device(dev));
2320}
2321
2322/**
2323 * __root_device_register - allocate and register a root device
2324 * @name: root device name
2325 * @owner: owner module of the root device, usually THIS_MODULE
2326 *
2327 * This function allocates a root device and registers it
2328 * using device_register(). In order to free the returned
2329 * device, use root_device_unregister().
2330 *
2331 * Root devices are dummy devices which allow other devices
2332 * to be grouped under /sys/devices. Use this function to
2333 * allocate a root device and then use it as the parent of
2334 * any device which should appear under /sys/devices/{name}
2335 *
2336 * The /sys/devices/{name} directory will also contain a
2337 * 'module' symlink which points to the @owner directory
2338 * in sysfs.
2339 *
2340 * Returns &struct device pointer on success, or ERR_PTR() on error.
2341 *
2342 * Note: You probably want to use root_device_register().
2343 */
2344struct device *__root_device_register(const char *name, struct module *owner)
2345{
2346 struct root_device *root;
2347 int err = -ENOMEM;
2348
2349 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2350 if (!root)
2351 return ERR_PTR(err);
2352
2353 err = dev_set_name(&root->dev, "%s", name);
2354 if (err) {
2355 kfree(root);
2356 return ERR_PTR(err);
2357 }
2358
2359 root->dev.release = root_device_release;
2360
2361 err = device_register(&root->dev);
2362 if (err) {
2363 put_device(&root->dev);
2364 return ERR_PTR(err);
2365 }
2366
2367#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2368 if (owner) {
2369 struct module_kobject *mk = &owner->mkobj;
2370
2371 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2372 if (err) {
2373 device_unregister(&root->dev);
2374 return ERR_PTR(err);
2375 }
2376 root->owner = owner;
2377 }
2378#endif
2379
2380 return &root->dev;
2381}
2382EXPORT_SYMBOL_GPL(__root_device_register);
2383
2384/**
2385 * root_device_unregister - unregister and free a root device
2386 * @dev: device going away
2387 *
2388 * This function unregisters and cleans up a device that was created by
2389 * root_device_register().
2390 */
2391void root_device_unregister(struct device *dev)
2392{
2393 struct root_device *root = to_root_device(dev);
2394
2395 if (root->owner)
2396 sysfs_remove_link(&root->dev.kobj, "module");
2397
2398 device_unregister(dev);
2399}
2400EXPORT_SYMBOL_GPL(root_device_unregister);
2401
2402
2403static void device_create_release(struct device *dev)
2404{
2405 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2406 kfree(dev);
2407}
2408
2409static struct device *
2410device_create_groups_vargs(struct class *class, struct device *parent,
2411 dev_t devt, void *drvdata,
2412 const struct attribute_group **groups,
2413 const char *fmt, va_list args)
2414{
2415 struct device *dev = NULL;
2416 int retval = -ENODEV;
2417
2418 if (class == NULL || IS_ERR(class))
2419 goto error;
2420
2421 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2422 if (!dev) {
2423 retval = -ENOMEM;
2424 goto error;
2425 }
2426
2427 device_initialize(dev);
2428 dev->devt = devt;
2429 dev->class = class;
2430 dev->parent = parent;
2431 dev->groups = groups;
2432 dev->release = device_create_release;
2433 dev_set_drvdata(dev, drvdata);
2434
2435 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2436 if (retval)
2437 goto error;
2438
2439 retval = device_add(dev);
2440 if (retval)
2441 goto error;
2442
2443 return dev;
2444
2445error:
2446 put_device(dev);
2447 return ERR_PTR(retval);
2448}
2449
2450/**
2451 * device_create_vargs - creates a device and registers it with sysfs
2452 * @class: pointer to the struct class that this device should be registered to
2453 * @parent: pointer to the parent struct device of this new device, if any
2454 * @devt: the dev_t for the char device to be added
2455 * @drvdata: the data to be added to the device for callbacks
2456 * @fmt: string for the device's name
2457 * @args: va_list for the device's name
2458 *
2459 * This function can be used by char device classes. A struct device
2460 * will be created in sysfs, registered to the specified class.
2461 *
2462 * A "dev" file will be created, showing the dev_t for the device, if
2463 * the dev_t is not 0,0.
2464 * If a pointer to a parent struct device is passed in, the newly created
2465 * struct device will be a child of that device in sysfs.
2466 * The pointer to the struct device will be returned from the call.
2467 * Any further sysfs files that might be required can be created using this
2468 * pointer.
2469 *
2470 * Returns &struct device pointer on success, or ERR_PTR() on error.
2471 *
2472 * Note: the struct class passed to this function must have previously
2473 * been created with a call to class_create().
2474 */
2475struct device *device_create_vargs(struct class *class, struct device *parent,
2476 dev_t devt, void *drvdata, const char *fmt,
2477 va_list args)
2478{
2479 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2480 fmt, args);
2481}
2482EXPORT_SYMBOL_GPL(device_create_vargs);
2483
2484/**
2485 * device_create - creates a device and registers it with sysfs
2486 * @class: pointer to the struct class that this device should be registered to
2487 * @parent: pointer to the parent struct device of this new device, if any
2488 * @devt: the dev_t for the char device to be added
2489 * @drvdata: the data to be added to the device for callbacks
2490 * @fmt: string for the device's name
2491 *
2492 * This function can be used by char device classes. A struct device
2493 * will be created in sysfs, registered to the specified class.
2494 *
2495 * A "dev" file will be created, showing the dev_t for the device, if
2496 * the dev_t is not 0,0.
2497 * If a pointer to a parent struct device is passed in, the newly created
2498 * struct device will be a child of that device in sysfs.
2499 * The pointer to the struct device will be returned from the call.
2500 * Any further sysfs files that might be required can be created using this
2501 * pointer.
2502 *
2503 * Returns &struct device pointer on success, or ERR_PTR() on error.
2504 *
2505 * Note: the struct class passed to this function must have previously
2506 * been created with a call to class_create().
2507 */
2508struct device *device_create(struct class *class, struct device *parent,
2509 dev_t devt, void *drvdata, const char *fmt, ...)
2510{
2511 va_list vargs;
2512 struct device *dev;
2513
2514 va_start(vargs, fmt);
2515 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2516 va_end(vargs);
2517 return dev;
2518}
2519EXPORT_SYMBOL_GPL(device_create);
2520
2521/**
2522 * device_create_with_groups - creates a device and registers it with sysfs
2523 * @class: pointer to the struct class that this device should be registered to
2524 * @parent: pointer to the parent struct device of this new device, if any
2525 * @devt: the dev_t for the char device to be added
2526 * @drvdata: the data to be added to the device for callbacks
2527 * @groups: NULL-terminated list of attribute groups to be created
2528 * @fmt: string for the device's name
2529 *
2530 * This function can be used by char device classes. A struct device
2531 * will be created in sysfs, registered to the specified class.
2532 * Additional attributes specified in the groups parameter will also
2533 * be created automatically.
2534 *
2535 * A "dev" file will be created, showing the dev_t for the device, if
2536 * the dev_t is not 0,0.
2537 * If a pointer to a parent struct device is passed in, the newly created
2538 * struct device will be a child of that device in sysfs.
2539 * The pointer to the struct device will be returned from the call.
2540 * Any further sysfs files that might be required can be created using this
2541 * pointer.
2542 *
2543 * Returns &struct device pointer on success, or ERR_PTR() on error.
2544 *
2545 * Note: the struct class passed to this function must have previously
2546 * been created with a call to class_create().
2547 */
2548struct device *device_create_with_groups(struct class *class,
2549 struct device *parent, dev_t devt,
2550 void *drvdata,
2551 const struct attribute_group **groups,
2552 const char *fmt, ...)
2553{
2554 va_list vargs;
2555 struct device *dev;
2556
2557 va_start(vargs, fmt);
2558 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2559 fmt, vargs);
2560 va_end(vargs);
2561 return dev;
2562}
2563EXPORT_SYMBOL_GPL(device_create_with_groups);
2564
2565static int __match_devt(struct device *dev, const void *data)
2566{
2567 const dev_t *devt = data;
2568
2569 return dev->devt == *devt;
2570}
2571
2572/**
2573 * device_destroy - removes a device that was created with device_create()
2574 * @class: pointer to the struct class that this device was registered with
2575 * @devt: the dev_t of the device that was previously registered
2576 *
2577 * This call unregisters and cleans up a device that was created with a
2578 * call to device_create().
2579 */
2580void device_destroy(struct class *class, dev_t devt)
2581{
2582 struct device *dev;
2583
2584 dev = class_find_device(class, NULL, &devt, __match_devt);
2585 if (dev) {
2586 put_device(dev);
2587 device_unregister(dev);
2588 }
2589}
2590EXPORT_SYMBOL_GPL(device_destroy);
2591
2592/**
2593 * device_rename - renames a device
2594 * @dev: the pointer to the struct device to be renamed
2595 * @new_name: the new name of the device
2596 *
2597 * It is the responsibility of the caller to provide mutual
2598 * exclusion between two different calls of device_rename
2599 * on the same device to ensure that new_name is valid and
2600 * won't conflict with other devices.
2601 *
2602 * Note: Don't call this function. Currently, the networking layer calls this
2603 * function, but that will change. The following text from Kay Sievers offers
2604 * some insight:
2605 *
2606 * Renaming devices is racy at many levels, symlinks and other stuff are not
2607 * replaced atomically, and you get a "move" uevent, but it's not easy to
2608 * connect the event to the old and new device. Device nodes are not renamed at
2609 * all, there isn't even support for that in the kernel now.
2610 *
2611 * In the meantime, during renaming, your target name might be taken by another
2612 * driver, creating conflicts. Or the old name is taken directly after you
2613 * renamed it -- then you get events for the same DEVPATH, before you even see
2614 * the "move" event. It's just a mess, and nothing new should ever rely on
2615 * kernel device renaming. Besides that, it's not even implemented now for
2616 * other things than (driver-core wise very simple) network devices.
2617 *
2618 * We are currently about to change network renaming in udev to completely
2619 * disallow renaming of devices in the same namespace as the kernel uses,
2620 * because we can't solve the problems properly, that arise with swapping names
2621 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2622 * be allowed to some other name than eth[0-9]*, for the aforementioned
2623 * reasons.
2624 *
2625 * Make up a "real" name in the driver before you register anything, or add
2626 * some other attributes for userspace to find the device, or use udev to add
2627 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2628 * don't even want to get into that and try to implement the missing pieces in
2629 * the core. We really have other pieces to fix in the driver core mess. :)
2630 */
2631int device_rename(struct device *dev, const char *new_name)
2632{
2633 struct kobject *kobj = &dev->kobj;
2634 char *old_device_name = NULL;
2635 int error;
2636
2637 dev = get_device(dev);
2638 if (!dev)
2639 return -EINVAL;
2640
2641 dev_dbg(dev, "renaming to %s\n", new_name);
2642
2643 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2644 if (!old_device_name) {
2645 error = -ENOMEM;
2646 goto out;
2647 }
2648
2649 if (dev->class) {
2650 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2651 kobj, old_device_name,
2652 new_name, kobject_namespace(kobj));
2653 if (error)
2654 goto out;
2655 }
2656
2657 error = kobject_rename(kobj, new_name);
2658 if (error)
2659 goto out;
2660
2661out:
2662 put_device(dev);
2663
2664 kfree(old_device_name);
2665
2666 return error;
2667}
2668EXPORT_SYMBOL_GPL(device_rename);
2669
2670static int device_move_class_links(struct device *dev,
2671 struct device *old_parent,
2672 struct device *new_parent)
2673{
2674 int error = 0;
2675
2676 if (old_parent)
2677 sysfs_remove_link(&dev->kobj, "device");
2678 if (new_parent)
2679 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2680 "device");
2681 return error;
2682}
2683
2684/**
2685 * device_move - moves a device to a new parent
2686 * @dev: the pointer to the struct device to be moved
2687 * @new_parent: the new parent of the device (can by NULL)
2688 * @dpm_order: how to reorder the dpm_list
2689 */
2690int device_move(struct device *dev, struct device *new_parent,
2691 enum dpm_order dpm_order)
2692{
2693 int error;
2694 struct device *old_parent;
2695 struct kobject *new_parent_kobj;
2696
2697 dev = get_device(dev);
2698 if (!dev)
2699 return -EINVAL;
2700
2701 device_pm_lock();
2702 new_parent = get_device(new_parent);
2703 new_parent_kobj = get_device_parent(dev, new_parent);
2704
2705 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2706 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2707 error = kobject_move(&dev->kobj, new_parent_kobj);
2708 if (error) {
2709 cleanup_glue_dir(dev, new_parent_kobj);
2710 put_device(new_parent);
2711 goto out;
2712 }
2713 old_parent = dev->parent;
2714 dev->parent = new_parent;
2715 if (old_parent)
2716 klist_remove(&dev->p->knode_parent);
2717 if (new_parent) {
2718 klist_add_tail(&dev->p->knode_parent,
2719 &new_parent->p->klist_children);
2720 set_dev_node(dev, dev_to_node(new_parent));
2721 }
2722
2723 if (dev->class) {
2724 error = device_move_class_links(dev, old_parent, new_parent);
2725 if (error) {
2726 /* We ignore errors on cleanup since we're hosed anyway... */
2727 device_move_class_links(dev, new_parent, old_parent);
2728 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2729 if (new_parent)
2730 klist_remove(&dev->p->knode_parent);
2731 dev->parent = old_parent;
2732 if (old_parent) {
2733 klist_add_tail(&dev->p->knode_parent,
2734 &old_parent->p->klist_children);
2735 set_dev_node(dev, dev_to_node(old_parent));
2736 }
2737 }
2738 cleanup_glue_dir(dev, new_parent_kobj);
2739 put_device(new_parent);
2740 goto out;
2741 }
2742 }
2743 switch (dpm_order) {
2744 case DPM_ORDER_NONE:
2745 break;
2746 case DPM_ORDER_DEV_AFTER_PARENT:
2747 device_pm_move_after(dev, new_parent);
2748 devices_kset_move_after(dev, new_parent);
2749 break;
2750 case DPM_ORDER_PARENT_BEFORE_DEV:
2751 device_pm_move_before(new_parent, dev);
2752 devices_kset_move_before(new_parent, dev);
2753 break;
2754 case DPM_ORDER_DEV_LAST:
2755 device_pm_move_last(dev);
2756 devices_kset_move_last(dev);
2757 break;
2758 }
2759
2760 put_device(old_parent);
2761out:
2762 device_pm_unlock();
2763 put_device(dev);
2764 return error;
2765}
2766EXPORT_SYMBOL_GPL(device_move);
2767
2768/**
2769 * device_shutdown - call ->shutdown() on each device to shutdown.
2770 */
2771void device_shutdown(void)
2772{
2773 struct device *dev, *parent;
2774
2775 spin_lock(&devices_kset->list_lock);
2776 /*
2777 * Walk the devices list backward, shutting down each in turn.
2778 * Beware that device unplug events may also start pulling
2779 * devices offline, even as the system is shutting down.
2780 */
2781 while (!list_empty(&devices_kset->list)) {
2782 dev = list_entry(devices_kset->list.prev, struct device,
2783 kobj.entry);
2784
2785 /*
2786 * hold reference count of device's parent to
2787 * prevent it from being freed because parent's
2788 * lock is to be held
2789 */
2790 parent = get_device(dev->parent);
2791 get_device(dev);
2792 /*
2793 * Make sure the device is off the kset list, in the
2794 * event that dev->*->shutdown() doesn't remove it.
2795 */
2796 list_del_init(&dev->kobj.entry);
2797 spin_unlock(&devices_kset->list_lock);
2798
2799 /* hold lock to avoid race with probe/release */
2800 if (parent)
2801 device_lock(parent);
2802 device_lock(dev);
2803
2804 /* Don't allow any more runtime suspends */
2805 pm_runtime_get_noresume(dev);
2806 pm_runtime_barrier(dev);
2807
2808 if (dev->class && dev->class->shutdown_pre) {
2809 if (initcall_debug)
2810 dev_info(dev, "shutdown_pre\n");
2811 dev->class->shutdown_pre(dev);
2812 }
2813 if (dev->bus && dev->bus->shutdown) {
2814 if (initcall_debug)
2815 dev_info(dev, "shutdown\n");
2816 dev->bus->shutdown(dev);
2817 } else if (dev->driver && dev->driver->shutdown) {
2818 if (initcall_debug)
2819 dev_info(dev, "shutdown\n");
2820 dev->driver->shutdown(dev);
2821 }
2822
2823 device_unlock(dev);
2824 if (parent)
2825 device_unlock(parent);
2826
2827 put_device(dev);
2828 put_device(parent);
2829
2830 spin_lock(&devices_kset->list_lock);
2831 }
2832 spin_unlock(&devices_kset->list_lock);
2833}
2834
2835/*
2836 * Device logging functions
2837 */
2838
2839#ifdef CONFIG_PRINTK
2840static int
2841create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2842{
2843 const char *subsys;
2844 size_t pos = 0;
2845
2846 if (dev->class)
2847 subsys = dev->class->name;
2848 else if (dev->bus)
2849 subsys = dev->bus->name;
2850 else
2851 return 0;
2852
2853 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2854 if (pos >= hdrlen)
2855 goto overflow;
2856
2857 /*
2858 * Add device identifier DEVICE=:
2859 * b12:8 block dev_t
2860 * c127:3 char dev_t
2861 * n8 netdev ifindex
2862 * +sound:card0 subsystem:devname
2863 */
2864 if (MAJOR(dev->devt)) {
2865 char c;
2866
2867 if (strcmp(subsys, "block") == 0)
2868 c = 'b';
2869 else
2870 c = 'c';
2871 pos++;
2872 pos += snprintf(hdr + pos, hdrlen - pos,
2873 "DEVICE=%c%u:%u",
2874 c, MAJOR(dev->devt), MINOR(dev->devt));
2875 } else if (strcmp(subsys, "net") == 0) {
2876 struct net_device *net = to_net_dev(dev);
2877
2878 pos++;
2879 pos += snprintf(hdr + pos, hdrlen - pos,
2880 "DEVICE=n%u", net->ifindex);
2881 } else {
2882 pos++;
2883 pos += snprintf(hdr + pos, hdrlen - pos,
2884 "DEVICE=+%s:%s", subsys, dev_name(dev));
2885 }
2886
2887 if (pos >= hdrlen)
2888 goto overflow;
2889
2890 return pos;
2891
2892overflow:
2893 dev_WARN(dev, "device/subsystem name too long");
2894 return 0;
2895}
2896
2897int dev_vprintk_emit(int level, const struct device *dev,
2898 const char *fmt, va_list args)
2899{
2900 char hdr[128];
2901 size_t hdrlen;
2902
2903 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2904
2905 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2906}
2907EXPORT_SYMBOL(dev_vprintk_emit);
2908
2909int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2910{
2911 va_list args;
2912 int r;
2913
2914 va_start(args, fmt);
2915
2916 r = dev_vprintk_emit(level, dev, fmt, args);
2917
2918 va_end(args);
2919
2920 return r;
2921}
2922EXPORT_SYMBOL(dev_printk_emit);
2923
2924static void __dev_printk(const char *level, const struct device *dev,
2925 struct va_format *vaf)
2926{
2927 if (dev)
2928 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2929 dev_driver_string(dev), dev_name(dev), vaf);
2930 else
2931 printk("%s(NULL device *): %pV", level, vaf);
2932}
2933
2934void dev_printk(const char *level, const struct device *dev,
2935 const char *fmt, ...)
2936{
2937 struct va_format vaf;
2938 va_list args;
2939
2940 va_start(args, fmt);
2941
2942 vaf.fmt = fmt;
2943 vaf.va = &args;
2944
2945 __dev_printk(level, dev, &vaf);
2946
2947 va_end(args);
2948}
2949EXPORT_SYMBOL(dev_printk);
2950
2951#define define_dev_printk_level(func, kern_level) \
2952void func(const struct device *dev, const char *fmt, ...) \
2953{ \
2954 struct va_format vaf; \
2955 va_list args; \
2956 \
2957 va_start(args, fmt); \
2958 \
2959 vaf.fmt = fmt; \
2960 vaf.va = &args; \
2961 \
2962 __dev_printk(kern_level, dev, &vaf); \
2963 \
2964 va_end(args); \
2965} \
2966EXPORT_SYMBOL(func);
2967
2968define_dev_printk_level(dev_emerg, KERN_EMERG);
2969define_dev_printk_level(dev_alert, KERN_ALERT);
2970define_dev_printk_level(dev_crit, KERN_CRIT);
2971define_dev_printk_level(dev_err, KERN_ERR);
2972define_dev_printk_level(dev_warn, KERN_WARNING);
2973define_dev_printk_level(dev_notice, KERN_NOTICE);
2974define_dev_printk_level(_dev_info, KERN_INFO);
2975
2976#endif
2977
2978static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2979{
2980 return fwnode && !IS_ERR(fwnode->secondary);
2981}
2982
2983/**
2984 * set_primary_fwnode - Change the primary firmware node of a given device.
2985 * @dev: Device to handle.
2986 * @fwnode: New primary firmware node of the device.
2987 *
2988 * Set the device's firmware node pointer to @fwnode, but if a secondary
2989 * firmware node of the device is present, preserve it.
2990 */
2991void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2992{
2993 if (fwnode) {
2994 struct fwnode_handle *fn = dev->fwnode;
2995
2996 if (fwnode_is_primary(fn))
2997 fn = fn->secondary;
2998
2999 if (fn) {
3000 WARN_ON(fwnode->secondary);
3001 fwnode->secondary = fn;
3002 }
3003 dev->fwnode = fwnode;
3004 } else {
3005 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3006 dev->fwnode->secondary : NULL;
3007 }
3008}
3009EXPORT_SYMBOL_GPL(set_primary_fwnode);
3010
3011/**
3012 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3013 * @dev: Device to handle.
3014 * @fwnode: New secondary firmware node of the device.
3015 *
3016 * If a primary firmware node of the device is present, set its secondary
3017 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3018 * @fwnode.
3019 */
3020void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3021{
3022 if (fwnode)
3023 fwnode->secondary = ERR_PTR(-ENODEV);
3024
3025 if (fwnode_is_primary(dev->fwnode))
3026 dev->fwnode->secondary = fwnode;
3027 else
3028 dev->fwnode = fwnode;
3029}
3030
3031/**
3032 * device_set_of_node_from_dev - reuse device-tree node of another device
3033 * @dev: device whose device-tree node is being set
3034 * @dev2: device whose device-tree node is being reused
3035 *
3036 * Takes another reference to the new device-tree node after first dropping
3037 * any reference held to the old node.
3038 */
3039void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3040{
3041 of_node_put(dev->of_node);
3042 dev->of_node = of_node_get(dev2->of_node);
3043 dev->of_node_reused = true;
3044}
3045EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sysfs.h>
30
31#include "base.h"
32#include "power/power.h"
33
34#ifdef CONFIG_SYSFS_DEPRECATED
35#ifdef CONFIG_SYSFS_DEPRECATED_V2
36long sysfs_deprecated = 1;
37#else
38long sysfs_deprecated = 0;
39#endif
40static int __init sysfs_deprecated_setup(char *arg)
41{
42 return kstrtol(arg, 10, &sysfs_deprecated);
43}
44early_param("sysfs.deprecated", sysfs_deprecated_setup);
45#endif
46
47/* Device links support. */
48
49#ifdef CONFIG_SRCU
50static DEFINE_MUTEX(device_links_lock);
51DEFINE_STATIC_SRCU(device_links_srcu);
52
53static inline void device_links_write_lock(void)
54{
55 mutex_lock(&device_links_lock);
56}
57
58static inline void device_links_write_unlock(void)
59{
60 mutex_unlock(&device_links_lock);
61}
62
63int device_links_read_lock(void)
64{
65 return srcu_read_lock(&device_links_srcu);
66}
67
68void device_links_read_unlock(int idx)
69{
70 srcu_read_unlock(&device_links_srcu, idx);
71}
72
73int device_links_read_lock_held(void)
74{
75 return srcu_read_lock_held(&device_links_srcu);
76}
77#else /* !CONFIG_SRCU */
78static DECLARE_RWSEM(device_links_lock);
79
80static inline void device_links_write_lock(void)
81{
82 down_write(&device_links_lock);
83}
84
85static inline void device_links_write_unlock(void)
86{
87 up_write(&device_links_lock);
88}
89
90int device_links_read_lock(void)
91{
92 down_read(&device_links_lock);
93 return 0;
94}
95
96void device_links_read_unlock(int not_used)
97{
98 up_read(&device_links_lock);
99}
100
101#ifdef CONFIG_DEBUG_LOCK_ALLOC
102int device_links_read_lock_held(void)
103{
104 return lockdep_is_held(&device_links_lock);
105}
106#endif
107#endif /* !CONFIG_SRCU */
108
109/**
110 * device_is_dependent - Check if one device depends on another one
111 * @dev: Device to check dependencies for.
112 * @target: Device to check against.
113 *
114 * Check if @target depends on @dev or any device dependent on it (its child or
115 * its consumer etc). Return 1 if that is the case or 0 otherwise.
116 */
117static int device_is_dependent(struct device *dev, void *target)
118{
119 struct device_link *link;
120 int ret;
121
122 if (dev == target)
123 return 1;
124
125 ret = device_for_each_child(dev, target, device_is_dependent);
126 if (ret)
127 return ret;
128
129 list_for_each_entry(link, &dev->links.consumers, s_node) {
130 if (link->consumer == target)
131 return 1;
132
133 ret = device_is_dependent(link->consumer, target);
134 if (ret)
135 break;
136 }
137 return ret;
138}
139
140static void device_link_init_status(struct device_link *link,
141 struct device *consumer,
142 struct device *supplier)
143{
144 switch (supplier->links.status) {
145 case DL_DEV_PROBING:
146 switch (consumer->links.status) {
147 case DL_DEV_PROBING:
148 /*
149 * A consumer driver can create a link to a supplier
150 * that has not completed its probing yet as long as it
151 * knows that the supplier is already functional (for
152 * example, it has just acquired some resources from the
153 * supplier).
154 */
155 link->status = DL_STATE_CONSUMER_PROBE;
156 break;
157 default:
158 link->status = DL_STATE_DORMANT;
159 break;
160 }
161 break;
162 case DL_DEV_DRIVER_BOUND:
163 switch (consumer->links.status) {
164 case DL_DEV_PROBING:
165 link->status = DL_STATE_CONSUMER_PROBE;
166 break;
167 case DL_DEV_DRIVER_BOUND:
168 link->status = DL_STATE_ACTIVE;
169 break;
170 default:
171 link->status = DL_STATE_AVAILABLE;
172 break;
173 }
174 break;
175 case DL_DEV_UNBINDING:
176 link->status = DL_STATE_SUPPLIER_UNBIND;
177 break;
178 default:
179 link->status = DL_STATE_DORMANT;
180 break;
181 }
182}
183
184static int device_reorder_to_tail(struct device *dev, void *not_used)
185{
186 struct device_link *link;
187
188 /*
189 * Devices that have not been registered yet will be put to the ends
190 * of the lists during the registration, so skip them here.
191 */
192 if (device_is_registered(dev))
193 devices_kset_move_last(dev);
194
195 if (device_pm_initialized(dev))
196 device_pm_move_last(dev);
197
198 device_for_each_child(dev, NULL, device_reorder_to_tail);
199 list_for_each_entry(link, &dev->links.consumers, s_node)
200 device_reorder_to_tail(link->consumer, NULL);
201
202 return 0;
203}
204
205/**
206 * device_pm_move_to_tail - Move set of devices to the end of device lists
207 * @dev: Device to move
208 *
209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
210 *
211 * It moves the @dev along with all of its children and all of its consumers
212 * to the ends of the device_kset and dpm_list, recursively.
213 */
214void device_pm_move_to_tail(struct device *dev)
215{
216 int idx;
217
218 idx = device_links_read_lock();
219 device_pm_lock();
220 device_reorder_to_tail(dev, NULL);
221 device_pm_unlock();
222 device_links_read_unlock(idx);
223}
224
225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
226 DL_FLAG_AUTOREMOVE_SUPPLIER | \
227 DL_FLAG_AUTOPROBE_CONSUMER)
228
229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
230 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
231
232/**
233 * device_link_add - Create a link between two devices.
234 * @consumer: Consumer end of the link.
235 * @supplier: Supplier end of the link.
236 * @flags: Link flags.
237 *
238 * The caller is responsible for the proper synchronization of the link creation
239 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
240 * runtime PM framework to take the link into account. Second, if the
241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
242 * be forced into the active metastate and reference-counted upon the creation
243 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
244 * ignored.
245 *
246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
247 * expected to release the link returned by it directly with the help of either
248 * device_link_del() or device_link_remove().
249 *
250 * If that flag is not set, however, the caller of this function is handing the
251 * management of the link over to the driver core entirely and its return value
252 * can only be used to check whether or not the link is present. In that case,
253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
254 * flags can be used to indicate to the driver core when the link can be safely
255 * deleted. Namely, setting one of them in @flags indicates to the driver core
256 * that the link is not going to be used (by the given caller of this function)
257 * after unbinding the consumer or supplier driver, respectively, from its
258 * device, so the link can be deleted at that point. If none of them is set,
259 * the link will be maintained until one of the devices pointed to by it (either
260 * the consumer or the supplier) is unregistered.
261 *
262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
265 * be used to request the driver core to automaticall probe for a consmer
266 * driver after successfully binding a driver to the supplier device.
267 *
268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
270 * the same time is invalid and will cause NULL to be returned upfront.
271 * However, if a device link between the given @consumer and @supplier pair
272 * exists already when this function is called for them, the existing link will
273 * be returned regardless of its current type and status (the link's flags may
274 * be modified then). The caller of this function is then expected to treat
275 * the link as though it has just been created, so (in particular) if
276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
277 * explicitly when not needed any more (as stated above).
278 *
279 * A side effect of the link creation is re-ordering of dpm_list and the
280 * devices_kset list by moving the consumer device and all devices depending
281 * on it to the ends of these lists (that does not happen to devices that have
282 * not been registered when this function is called).
283 *
284 * The supplier device is required to be registered when this function is called
285 * and NULL will be returned if that is not the case. The consumer device need
286 * not be registered, however.
287 */
288struct device_link *device_link_add(struct device *consumer,
289 struct device *supplier, u32 flags)
290{
291 struct device_link *link;
292
293 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
294 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
295 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
296 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
297 DL_FLAG_AUTOREMOVE_SUPPLIER)))
298 return NULL;
299
300 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
301 if (pm_runtime_get_sync(supplier) < 0) {
302 pm_runtime_put_noidle(supplier);
303 return NULL;
304 }
305 }
306
307 if (!(flags & DL_FLAG_STATELESS))
308 flags |= DL_FLAG_MANAGED;
309
310 device_links_write_lock();
311 device_pm_lock();
312
313 /*
314 * If the supplier has not been fully registered yet or there is a
315 * reverse dependency between the consumer and the supplier already in
316 * the graph, return NULL.
317 */
318 if (!device_pm_initialized(supplier)
319 || device_is_dependent(consumer, supplier)) {
320 link = NULL;
321 goto out;
322 }
323
324 /*
325 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
326 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
327 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
328 */
329 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
330 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
331
332 list_for_each_entry(link, &supplier->links.consumers, s_node) {
333 if (link->consumer != consumer)
334 continue;
335
336 if (flags & DL_FLAG_PM_RUNTIME) {
337 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
338 pm_runtime_new_link(consumer);
339 link->flags |= DL_FLAG_PM_RUNTIME;
340 }
341 if (flags & DL_FLAG_RPM_ACTIVE)
342 refcount_inc(&link->rpm_active);
343 }
344
345 if (flags & DL_FLAG_STATELESS) {
346 link->flags |= DL_FLAG_STATELESS;
347 kref_get(&link->kref);
348 goto out;
349 }
350
351 /*
352 * If the life time of the link following from the new flags is
353 * longer than indicated by the flags of the existing link,
354 * update the existing link to stay around longer.
355 */
356 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
357 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
358 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
359 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
360 }
361 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
362 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
363 DL_FLAG_AUTOREMOVE_SUPPLIER);
364 }
365 if (!(link->flags & DL_FLAG_MANAGED)) {
366 kref_get(&link->kref);
367 link->flags |= DL_FLAG_MANAGED;
368 device_link_init_status(link, consumer, supplier);
369 }
370 goto out;
371 }
372
373 link = kzalloc(sizeof(*link), GFP_KERNEL);
374 if (!link)
375 goto out;
376
377 refcount_set(&link->rpm_active, 1);
378
379 if (flags & DL_FLAG_PM_RUNTIME) {
380 if (flags & DL_FLAG_RPM_ACTIVE)
381 refcount_inc(&link->rpm_active);
382
383 pm_runtime_new_link(consumer);
384 }
385
386 get_device(supplier);
387 link->supplier = supplier;
388 INIT_LIST_HEAD(&link->s_node);
389 get_device(consumer);
390 link->consumer = consumer;
391 INIT_LIST_HEAD(&link->c_node);
392 link->flags = flags;
393 kref_init(&link->kref);
394
395 /* Determine the initial link state. */
396 if (flags & DL_FLAG_STATELESS)
397 link->status = DL_STATE_NONE;
398 else
399 device_link_init_status(link, consumer, supplier);
400
401 /*
402 * Some callers expect the link creation during consumer driver probe to
403 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
404 */
405 if (link->status == DL_STATE_CONSUMER_PROBE &&
406 flags & DL_FLAG_PM_RUNTIME)
407 pm_runtime_resume(supplier);
408
409 /*
410 * Move the consumer and all of the devices depending on it to the end
411 * of dpm_list and the devices_kset list.
412 *
413 * It is necessary to hold dpm_list locked throughout all that or else
414 * we may end up suspending with a wrong ordering of it.
415 */
416 device_reorder_to_tail(consumer, NULL);
417
418 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
419 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
420
421 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
422
423 out:
424 device_pm_unlock();
425 device_links_write_unlock();
426
427 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
428 pm_runtime_put(supplier);
429
430 return link;
431}
432EXPORT_SYMBOL_GPL(device_link_add);
433
434static void device_link_free(struct device_link *link)
435{
436 while (refcount_dec_not_one(&link->rpm_active))
437 pm_runtime_put(link->supplier);
438
439 put_device(link->consumer);
440 put_device(link->supplier);
441 kfree(link);
442}
443
444#ifdef CONFIG_SRCU
445static void __device_link_free_srcu(struct rcu_head *rhead)
446{
447 device_link_free(container_of(rhead, struct device_link, rcu_head));
448}
449
450static void __device_link_del(struct kref *kref)
451{
452 struct device_link *link = container_of(kref, struct device_link, kref);
453
454 dev_dbg(link->consumer, "Dropping the link to %s\n",
455 dev_name(link->supplier));
456
457 if (link->flags & DL_FLAG_PM_RUNTIME)
458 pm_runtime_drop_link(link->consumer);
459
460 list_del_rcu(&link->s_node);
461 list_del_rcu(&link->c_node);
462 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
463}
464#else /* !CONFIG_SRCU */
465static void __device_link_del(struct kref *kref)
466{
467 struct device_link *link = container_of(kref, struct device_link, kref);
468
469 dev_info(link->consumer, "Dropping the link to %s\n",
470 dev_name(link->supplier));
471
472 if (link->flags & DL_FLAG_PM_RUNTIME)
473 pm_runtime_drop_link(link->consumer);
474
475 list_del(&link->s_node);
476 list_del(&link->c_node);
477 device_link_free(link);
478}
479#endif /* !CONFIG_SRCU */
480
481static void device_link_put_kref(struct device_link *link)
482{
483 if (link->flags & DL_FLAG_STATELESS)
484 kref_put(&link->kref, __device_link_del);
485 else
486 WARN(1, "Unable to drop a managed device link reference\n");
487}
488
489/**
490 * device_link_del - Delete a stateless link between two devices.
491 * @link: Device link to delete.
492 *
493 * The caller must ensure proper synchronization of this function with runtime
494 * PM. If the link was added multiple times, it needs to be deleted as often.
495 * Care is required for hotplugged devices: Their links are purged on removal
496 * and calling device_link_del() is then no longer allowed.
497 */
498void device_link_del(struct device_link *link)
499{
500 device_links_write_lock();
501 device_pm_lock();
502 device_link_put_kref(link);
503 device_pm_unlock();
504 device_links_write_unlock();
505}
506EXPORT_SYMBOL_GPL(device_link_del);
507
508/**
509 * device_link_remove - Delete a stateless link between two devices.
510 * @consumer: Consumer end of the link.
511 * @supplier: Supplier end of the link.
512 *
513 * The caller must ensure proper synchronization of this function with runtime
514 * PM.
515 */
516void device_link_remove(void *consumer, struct device *supplier)
517{
518 struct device_link *link;
519
520 if (WARN_ON(consumer == supplier))
521 return;
522
523 device_links_write_lock();
524 device_pm_lock();
525
526 list_for_each_entry(link, &supplier->links.consumers, s_node) {
527 if (link->consumer == consumer) {
528 device_link_put_kref(link);
529 break;
530 }
531 }
532
533 device_pm_unlock();
534 device_links_write_unlock();
535}
536EXPORT_SYMBOL_GPL(device_link_remove);
537
538static void device_links_missing_supplier(struct device *dev)
539{
540 struct device_link *link;
541
542 list_for_each_entry(link, &dev->links.suppliers, c_node)
543 if (link->status == DL_STATE_CONSUMER_PROBE)
544 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
545}
546
547/**
548 * device_links_check_suppliers - Check presence of supplier drivers.
549 * @dev: Consumer device.
550 *
551 * Check links from this device to any suppliers. Walk the list of the device's
552 * links to suppliers and see if all of them are available. If not, simply
553 * return -EPROBE_DEFER.
554 *
555 * We need to guarantee that the supplier will not go away after the check has
556 * been positive here. It only can go away in __device_release_driver() and
557 * that function checks the device's links to consumers. This means we need to
558 * mark the link as "consumer probe in progress" to make the supplier removal
559 * wait for us to complete (or bad things may happen).
560 *
561 * Links without the DL_FLAG_MANAGED flag set are ignored.
562 */
563int device_links_check_suppliers(struct device *dev)
564{
565 struct device_link *link;
566 int ret = 0;
567
568 device_links_write_lock();
569
570 list_for_each_entry(link, &dev->links.suppliers, c_node) {
571 if (!(link->flags & DL_FLAG_MANAGED))
572 continue;
573
574 if (link->status != DL_STATE_AVAILABLE) {
575 device_links_missing_supplier(dev);
576 ret = -EPROBE_DEFER;
577 break;
578 }
579 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
580 }
581 dev->links.status = DL_DEV_PROBING;
582
583 device_links_write_unlock();
584 return ret;
585}
586
587/**
588 * device_links_driver_bound - Update device links after probing its driver.
589 * @dev: Device to update the links for.
590 *
591 * The probe has been successful, so update links from this device to any
592 * consumers by changing their status to "available".
593 *
594 * Also change the status of @dev's links to suppliers to "active".
595 *
596 * Links without the DL_FLAG_MANAGED flag set are ignored.
597 */
598void device_links_driver_bound(struct device *dev)
599{
600 struct device_link *link;
601
602 device_links_write_lock();
603
604 list_for_each_entry(link, &dev->links.consumers, s_node) {
605 if (!(link->flags & DL_FLAG_MANAGED))
606 continue;
607
608 /*
609 * Links created during consumer probe may be in the "consumer
610 * probe" state to start with if the supplier is still probing
611 * when they are created and they may become "active" if the
612 * consumer probe returns first. Skip them here.
613 */
614 if (link->status == DL_STATE_CONSUMER_PROBE ||
615 link->status == DL_STATE_ACTIVE)
616 continue;
617
618 WARN_ON(link->status != DL_STATE_DORMANT);
619 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
620
621 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
622 driver_deferred_probe_add(link->consumer);
623 }
624
625 list_for_each_entry(link, &dev->links.suppliers, c_node) {
626 if (!(link->flags & DL_FLAG_MANAGED))
627 continue;
628
629 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
630 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
631 }
632
633 dev->links.status = DL_DEV_DRIVER_BOUND;
634
635 device_links_write_unlock();
636}
637
638static void device_link_drop_managed(struct device_link *link)
639{
640 link->flags &= ~DL_FLAG_MANAGED;
641 WRITE_ONCE(link->status, DL_STATE_NONE);
642 kref_put(&link->kref, __device_link_del);
643}
644
645/**
646 * __device_links_no_driver - Update links of a device without a driver.
647 * @dev: Device without a drvier.
648 *
649 * Delete all non-persistent links from this device to any suppliers.
650 *
651 * Persistent links stay around, but their status is changed to "available",
652 * unless they already are in the "supplier unbind in progress" state in which
653 * case they need not be updated.
654 *
655 * Links without the DL_FLAG_MANAGED flag set are ignored.
656 */
657static void __device_links_no_driver(struct device *dev)
658{
659 struct device_link *link, *ln;
660
661 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
662 if (!(link->flags & DL_FLAG_MANAGED))
663 continue;
664
665 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
666 device_link_drop_managed(link);
667 else if (link->status == DL_STATE_CONSUMER_PROBE ||
668 link->status == DL_STATE_ACTIVE)
669 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
670 }
671
672 dev->links.status = DL_DEV_NO_DRIVER;
673}
674
675/**
676 * device_links_no_driver - Update links after failing driver probe.
677 * @dev: Device whose driver has just failed to probe.
678 *
679 * Clean up leftover links to consumers for @dev and invoke
680 * %__device_links_no_driver() to update links to suppliers for it as
681 * appropriate.
682 *
683 * Links without the DL_FLAG_MANAGED flag set are ignored.
684 */
685void device_links_no_driver(struct device *dev)
686{
687 struct device_link *link;
688
689 device_links_write_lock();
690
691 list_for_each_entry(link, &dev->links.consumers, s_node) {
692 if (!(link->flags & DL_FLAG_MANAGED))
693 continue;
694
695 /*
696 * The probe has failed, so if the status of the link is
697 * "consumer probe" or "active", it must have been added by
698 * a probing consumer while this device was still probing.
699 * Change its state to "dormant", as it represents a valid
700 * relationship, but it is not functionally meaningful.
701 */
702 if (link->status == DL_STATE_CONSUMER_PROBE ||
703 link->status == DL_STATE_ACTIVE)
704 WRITE_ONCE(link->status, DL_STATE_DORMANT);
705 }
706
707 __device_links_no_driver(dev);
708
709 device_links_write_unlock();
710}
711
712/**
713 * device_links_driver_cleanup - Update links after driver removal.
714 * @dev: Device whose driver has just gone away.
715 *
716 * Update links to consumers for @dev by changing their status to "dormant" and
717 * invoke %__device_links_no_driver() to update links to suppliers for it as
718 * appropriate.
719 *
720 * Links without the DL_FLAG_MANAGED flag set are ignored.
721 */
722void device_links_driver_cleanup(struct device *dev)
723{
724 struct device_link *link, *ln;
725
726 device_links_write_lock();
727
728 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
729 if (!(link->flags & DL_FLAG_MANAGED))
730 continue;
731
732 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
733 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
734
735 /*
736 * autoremove the links between this @dev and its consumer
737 * devices that are not active, i.e. where the link state
738 * has moved to DL_STATE_SUPPLIER_UNBIND.
739 */
740 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
741 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
742 device_link_drop_managed(link);
743
744 WRITE_ONCE(link->status, DL_STATE_DORMANT);
745 }
746
747 __device_links_no_driver(dev);
748
749 device_links_write_unlock();
750}
751
752/**
753 * device_links_busy - Check if there are any busy links to consumers.
754 * @dev: Device to check.
755 *
756 * Check each consumer of the device and return 'true' if its link's status
757 * is one of "consumer probe" or "active" (meaning that the given consumer is
758 * probing right now or its driver is present). Otherwise, change the link
759 * state to "supplier unbind" to prevent the consumer from being probed
760 * successfully going forward.
761 *
762 * Return 'false' if there are no probing or active consumers.
763 *
764 * Links without the DL_FLAG_MANAGED flag set are ignored.
765 */
766bool device_links_busy(struct device *dev)
767{
768 struct device_link *link;
769 bool ret = false;
770
771 device_links_write_lock();
772
773 list_for_each_entry(link, &dev->links.consumers, s_node) {
774 if (!(link->flags & DL_FLAG_MANAGED))
775 continue;
776
777 if (link->status == DL_STATE_CONSUMER_PROBE
778 || link->status == DL_STATE_ACTIVE) {
779 ret = true;
780 break;
781 }
782 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
783 }
784
785 dev->links.status = DL_DEV_UNBINDING;
786
787 device_links_write_unlock();
788 return ret;
789}
790
791/**
792 * device_links_unbind_consumers - Force unbind consumers of the given device.
793 * @dev: Device to unbind the consumers of.
794 *
795 * Walk the list of links to consumers for @dev and if any of them is in the
796 * "consumer probe" state, wait for all device probes in progress to complete
797 * and start over.
798 *
799 * If that's not the case, change the status of the link to "supplier unbind"
800 * and check if the link was in the "active" state. If so, force the consumer
801 * driver to unbind and start over (the consumer will not re-probe as we have
802 * changed the state of the link already).
803 *
804 * Links without the DL_FLAG_MANAGED flag set are ignored.
805 */
806void device_links_unbind_consumers(struct device *dev)
807{
808 struct device_link *link;
809
810 start:
811 device_links_write_lock();
812
813 list_for_each_entry(link, &dev->links.consumers, s_node) {
814 enum device_link_state status;
815
816 if (!(link->flags & DL_FLAG_MANAGED))
817 continue;
818
819 status = link->status;
820 if (status == DL_STATE_CONSUMER_PROBE) {
821 device_links_write_unlock();
822
823 wait_for_device_probe();
824 goto start;
825 }
826 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
827 if (status == DL_STATE_ACTIVE) {
828 struct device *consumer = link->consumer;
829
830 get_device(consumer);
831
832 device_links_write_unlock();
833
834 device_release_driver_internal(consumer, NULL,
835 consumer->parent);
836 put_device(consumer);
837 goto start;
838 }
839 }
840
841 device_links_write_unlock();
842}
843
844/**
845 * device_links_purge - Delete existing links to other devices.
846 * @dev: Target device.
847 */
848static void device_links_purge(struct device *dev)
849{
850 struct device_link *link, *ln;
851
852 /*
853 * Delete all of the remaining links from this device to any other
854 * devices (either consumers or suppliers).
855 */
856 device_links_write_lock();
857
858 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
859 WARN_ON(link->status == DL_STATE_ACTIVE);
860 __device_link_del(&link->kref);
861 }
862
863 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
864 WARN_ON(link->status != DL_STATE_DORMANT &&
865 link->status != DL_STATE_NONE);
866 __device_link_del(&link->kref);
867 }
868
869 device_links_write_unlock();
870}
871
872/* Device links support end. */
873
874int (*platform_notify)(struct device *dev) = NULL;
875int (*platform_notify_remove)(struct device *dev) = NULL;
876static struct kobject *dev_kobj;
877struct kobject *sysfs_dev_char_kobj;
878struct kobject *sysfs_dev_block_kobj;
879
880static DEFINE_MUTEX(device_hotplug_lock);
881
882void lock_device_hotplug(void)
883{
884 mutex_lock(&device_hotplug_lock);
885}
886
887void unlock_device_hotplug(void)
888{
889 mutex_unlock(&device_hotplug_lock);
890}
891
892int lock_device_hotplug_sysfs(void)
893{
894 if (mutex_trylock(&device_hotplug_lock))
895 return 0;
896
897 /* Avoid busy looping (5 ms of sleep should do). */
898 msleep(5);
899 return restart_syscall();
900}
901
902#ifdef CONFIG_BLOCK
903static inline int device_is_not_partition(struct device *dev)
904{
905 return !(dev->type == &part_type);
906}
907#else
908static inline int device_is_not_partition(struct device *dev)
909{
910 return 1;
911}
912#endif
913
914static int
915device_platform_notify(struct device *dev, enum kobject_action action)
916{
917 int ret;
918
919 ret = acpi_platform_notify(dev, action);
920 if (ret)
921 return ret;
922
923 ret = software_node_notify(dev, action);
924 if (ret)
925 return ret;
926
927 if (platform_notify && action == KOBJ_ADD)
928 platform_notify(dev);
929 else if (platform_notify_remove && action == KOBJ_REMOVE)
930 platform_notify_remove(dev);
931 return 0;
932}
933
934/**
935 * dev_driver_string - Return a device's driver name, if at all possible
936 * @dev: struct device to get the name of
937 *
938 * Will return the device's driver's name if it is bound to a device. If
939 * the device is not bound to a driver, it will return the name of the bus
940 * it is attached to. If it is not attached to a bus either, an empty
941 * string will be returned.
942 */
943const char *dev_driver_string(const struct device *dev)
944{
945 struct device_driver *drv;
946
947 /* dev->driver can change to NULL underneath us because of unbinding,
948 * so be careful about accessing it. dev->bus and dev->class should
949 * never change once they are set, so they don't need special care.
950 */
951 drv = READ_ONCE(dev->driver);
952 return drv ? drv->name :
953 (dev->bus ? dev->bus->name :
954 (dev->class ? dev->class->name : ""));
955}
956EXPORT_SYMBOL(dev_driver_string);
957
958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
959
960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
961 char *buf)
962{
963 struct device_attribute *dev_attr = to_dev_attr(attr);
964 struct device *dev = kobj_to_dev(kobj);
965 ssize_t ret = -EIO;
966
967 if (dev_attr->show)
968 ret = dev_attr->show(dev, dev_attr, buf);
969 if (ret >= (ssize_t)PAGE_SIZE) {
970 printk("dev_attr_show: %pS returned bad count\n",
971 dev_attr->show);
972 }
973 return ret;
974}
975
976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
977 const char *buf, size_t count)
978{
979 struct device_attribute *dev_attr = to_dev_attr(attr);
980 struct device *dev = kobj_to_dev(kobj);
981 ssize_t ret = -EIO;
982
983 if (dev_attr->store)
984 ret = dev_attr->store(dev, dev_attr, buf, count);
985 return ret;
986}
987
988static const struct sysfs_ops dev_sysfs_ops = {
989 .show = dev_attr_show,
990 .store = dev_attr_store,
991};
992
993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
994
995ssize_t device_store_ulong(struct device *dev,
996 struct device_attribute *attr,
997 const char *buf, size_t size)
998{
999 struct dev_ext_attribute *ea = to_ext_attr(attr);
1000 int ret;
1001 unsigned long new;
1002
1003 ret = kstrtoul(buf, 0, &new);
1004 if (ret)
1005 return ret;
1006 *(unsigned long *)(ea->var) = new;
1007 /* Always return full write size even if we didn't consume all */
1008 return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013 struct device_attribute *attr,
1014 char *buf)
1015{
1016 struct dev_ext_attribute *ea = to_ext_attr(attr);
1017 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022 struct device_attribute *attr,
1023 const char *buf, size_t size)
1024{
1025 struct dev_ext_attribute *ea = to_ext_attr(attr);
1026 int ret;
1027 long new;
1028
1029 ret = kstrtol(buf, 0, &new);
1030 if (ret)
1031 return ret;
1032
1033 if (new > INT_MAX || new < INT_MIN)
1034 return -EINVAL;
1035 *(int *)(ea->var) = new;
1036 /* Always return full write size even if we didn't consume all */
1037 return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042 struct device_attribute *attr,
1043 char *buf)
1044{
1045 struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052 const char *buf, size_t size)
1053{
1054 struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056 if (strtobool(buf, ea->var) < 0)
1057 return -EINVAL;
1058
1059 return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064 char *buf)
1065{
1066 struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082 struct device *dev = kobj_to_dev(kobj);
1083 struct device_private *p = dev->p;
1084
1085 /*
1086 * Some platform devices are driven without driver attached
1087 * and managed resources may have been acquired. Make sure
1088 * all resources are released.
1089 *
1090 * Drivers still can add resources into device after device
1091 * is deleted but alive, so release devres here to avoid
1092 * possible memory leak.
1093 */
1094 devres_release_all(dev);
1095
1096 if (dev->release)
1097 dev->release(dev);
1098 else if (dev->type && dev->type->release)
1099 dev->type->release(dev);
1100 else if (dev->class && dev->class->dev_release)
1101 dev->class->dev_release(dev);
1102 else
1103 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104 dev_name(dev));
1105 kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110 struct device *dev = kobj_to_dev(kobj);
1111 const void *ns = NULL;
1112
1113 if (dev->class && dev->class->ns_type)
1114 ns = dev->class->namespace(dev);
1115
1116 return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121 struct device *dev = kobj_to_dev(kobj);
1122
1123 if (dev->class && dev->class->get_ownership)
1124 dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128 .release = device_release,
1129 .sysfs_ops = &dev_sysfs_ops,
1130 .namespace = device_namespace,
1131 .get_ownership = device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137 struct kobj_type *ktype = get_ktype(kobj);
1138
1139 if (ktype == &device_ktype) {
1140 struct device *dev = kobj_to_dev(kobj);
1141 if (dev->bus)
1142 return 1;
1143 if (dev->class)
1144 return 1;
1145 }
1146 return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151 struct device *dev = kobj_to_dev(kobj);
1152
1153 if (dev->bus)
1154 return dev->bus->name;
1155 if (dev->class)
1156 return dev->class->name;
1157 return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161 struct kobj_uevent_env *env)
1162{
1163 struct device *dev = kobj_to_dev(kobj);
1164 int retval = 0;
1165
1166 /* add device node properties if present */
1167 if (MAJOR(dev->devt)) {
1168 const char *tmp;
1169 const char *name;
1170 umode_t mode = 0;
1171 kuid_t uid = GLOBAL_ROOT_UID;
1172 kgid_t gid = GLOBAL_ROOT_GID;
1173
1174 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177 if (name) {
1178 add_uevent_var(env, "DEVNAME=%s", name);
1179 if (mode)
1180 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185 kfree(tmp);
1186 }
1187 }
1188
1189 if (dev->type && dev->type->name)
1190 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192 if (dev->driver)
1193 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195 /* Add common DT information about the device */
1196 of_device_uevent(dev, env);
1197
1198 /* have the bus specific function add its stuff */
1199 if (dev->bus && dev->bus->uevent) {
1200 retval = dev->bus->uevent(dev, env);
1201 if (retval)
1202 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203 dev_name(dev), __func__, retval);
1204 }
1205
1206 /* have the class specific function add its stuff */
1207 if (dev->class && dev->class->dev_uevent) {
1208 retval = dev->class->dev_uevent(dev, env);
1209 if (retval)
1210 pr_debug("device: '%s': %s: class uevent() "
1211 "returned %d\n", dev_name(dev),
1212 __func__, retval);
1213 }
1214
1215 /* have the device type specific function add its stuff */
1216 if (dev->type && dev->type->uevent) {
1217 retval = dev->type->uevent(dev, env);
1218 if (retval)
1219 pr_debug("device: '%s': %s: dev_type uevent() "
1220 "returned %d\n", dev_name(dev),
1221 __func__, retval);
1222 }
1223
1224 return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228 .filter = dev_uevent_filter,
1229 .name = dev_uevent_name,
1230 .uevent = dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234 char *buf)
1235{
1236 struct kobject *top_kobj;
1237 struct kset *kset;
1238 struct kobj_uevent_env *env = NULL;
1239 int i;
1240 size_t count = 0;
1241 int retval;
1242
1243 /* search the kset, the device belongs to */
1244 top_kobj = &dev->kobj;
1245 while (!top_kobj->kset && top_kobj->parent)
1246 top_kobj = top_kobj->parent;
1247 if (!top_kobj->kset)
1248 goto out;
1249
1250 kset = top_kobj->kset;
1251 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252 goto out;
1253
1254 /* respect filter */
1255 if (kset->uevent_ops && kset->uevent_ops->filter)
1256 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257 goto out;
1258
1259 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260 if (!env)
1261 return -ENOMEM;
1262
1263 /* let the kset specific function add its keys */
1264 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265 if (retval)
1266 goto out;
1267
1268 /* copy keys to file */
1269 for (i = 0; i < env->envp_idx; i++)
1270 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272 kfree(env);
1273 return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277 const char *buf, size_t count)
1278{
1279 int rc;
1280
1281 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283 if (rc) {
1284 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285 return rc;
1286 }
1287
1288 return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293 char *buf)
1294{
1295 bool val;
1296
1297 device_lock(dev);
1298 val = !dev->offline;
1299 device_unlock(dev);
1300 return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304 const char *buf, size_t count)
1305{
1306 bool val;
1307 int ret;
1308
1309 ret = strtobool(buf, &val);
1310 if (ret < 0)
1311 return ret;
1312
1313 ret = lock_device_hotplug_sysfs();
1314 if (ret)
1315 return ret;
1316
1317 ret = val ? device_online(dev) : device_offline(dev);
1318 unlock_device_hotplug();
1319 return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325 return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330 const struct attribute_group **groups)
1331{
1332 sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337 const struct attribute_group *group;
1338 const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343 return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348 union device_attr_group_devres *devres = res;
1349 const struct attribute_group *group = devres->group;
1350
1351 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352 sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357 union device_attr_group_devres *devres = res;
1358 const struct attribute_group **groups = devres->groups;
1359
1360 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361 sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev: The device to create the group for
1367 * @grp: The attribute group to create
1368 *
1369 * This function creates a group for the first time. It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376 union device_attr_group_devres *devres;
1377 int error;
1378
1379 devres = devres_alloc(devm_attr_group_remove,
1380 sizeof(*devres), GFP_KERNEL);
1381 if (!devres)
1382 return -ENOMEM;
1383
1384 error = sysfs_create_group(&dev->kobj, grp);
1385 if (error) {
1386 devres_free(devres);
1387 return error;
1388 }
1389
1390 devres->group = grp;
1391 devres_add(dev, devres);
1392 return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev: device to remove the group from
1399 * @grp: group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405 const struct attribute_group *grp)
1406{
1407 WARN_ON(devres_release(dev, devm_attr_group_remove,
1408 devm_attr_group_match,
1409 /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev: The device to create the group for
1416 * @groups: The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups. If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called. It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427 const struct attribute_group **groups)
1428{
1429 union device_attr_group_devres *devres;
1430 int error;
1431
1432 devres = devres_alloc(devm_attr_groups_remove,
1433 sizeof(*devres), GFP_KERNEL);
1434 if (!devres)
1435 return -ENOMEM;
1436
1437 error = sysfs_create_groups(&dev->kobj, groups);
1438 if (error) {
1439 devres_free(devres);
1440 return error;
1441 }
1442
1443 devres->groups = groups;
1444 devres_add(dev, devres);
1445 return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev: The device for the groups to be removed from
1453 * @groups: NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458 const struct attribute_group **groups)
1459{
1460 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461 devm_attr_group_match,
1462 /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468 struct class *class = dev->class;
1469 const struct device_type *type = dev->type;
1470 int error;
1471
1472 if (class) {
1473 error = device_add_groups(dev, class->dev_groups);
1474 if (error)
1475 return error;
1476 }
1477
1478 if (type) {
1479 error = device_add_groups(dev, type->groups);
1480 if (error)
1481 goto err_remove_class_groups;
1482 }
1483
1484 error = device_add_groups(dev, dev->groups);
1485 if (error)
1486 goto err_remove_type_groups;
1487
1488 if (device_supports_offline(dev) && !dev->offline_disabled) {
1489 error = device_create_file(dev, &dev_attr_online);
1490 if (error)
1491 goto err_remove_dev_groups;
1492 }
1493
1494 return 0;
1495
1496 err_remove_dev_groups:
1497 device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499 if (type)
1500 device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502 if (class)
1503 device_remove_groups(dev, class->dev_groups);
1504
1505 return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510 struct class *class = dev->class;
1511 const struct device_type *type = dev->type;
1512
1513 device_remove_file(dev, &dev_attr_online);
1514 device_remove_groups(dev, dev->groups);
1515
1516 if (type)
1517 device_remove_groups(dev, type->groups);
1518
1519 if (class)
1520 device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524 char *buf)
1525{
1526 return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540 if (!devices_kset)
1541 return;
1542 pr_debug("devices_kset: Moving %s before %s\n",
1543 dev_name(deva), dev_name(devb));
1544 spin_lock(&devices_kset->list_lock);
1545 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546 spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556 if (!devices_kset)
1557 return;
1558 pr_debug("devices_kset: Moving %s after %s\n",
1559 dev_name(deva), dev_name(devb));
1560 spin_lock(&devices_kset->list_lock);
1561 list_move(&deva->kobj.entry, &devb->kobj.entry);
1562 spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571 if (!devices_kset)
1572 return;
1573 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574 spin_lock(&devices_kset->list_lock);
1575 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576 spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585 const struct device_attribute *attr)
1586{
1587 int error = 0;
1588
1589 if (dev) {
1590 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591 "Attribute %s: write permission without 'store'\n",
1592 attr->attr.name);
1593 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594 "Attribute %s: read permission without 'show'\n",
1595 attr->attr.name);
1596 error = sysfs_create_file(&dev->kobj, &attr->attr);
1597 }
1598
1599 return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609 const struct device_attribute *attr)
1610{
1611 if (dev)
1612 sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624 const struct device_attribute *attr)
1625{
1626 if (dev)
1627 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628 else
1629 return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639 const struct bin_attribute *attr)
1640{
1641 int error = -EINVAL;
1642 if (dev)
1643 error = sysfs_create_bin_file(&dev->kobj, attr);
1644 return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654 const struct bin_attribute *attr)
1655{
1656 if (dev)
1657 sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663 struct device_private *p = to_device_private_parent(n);
1664 struct device *dev = p->device;
1665
1666 get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671 struct device_private *p = to_device_private_parent(n);
1672 struct device *dev = p->device;
1673
1674 put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value. The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699 dev->kobj.kset = devices_kset;
1700 kobject_init(&dev->kobj, &device_ktype);
1701 INIT_LIST_HEAD(&dev->dma_pools);
1702 mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704 mutex_init(&dev->lockdep_mutex);
1705#endif
1706 lockdep_set_novalidate_class(&dev->mutex);
1707 spin_lock_init(&dev->devres_lock);
1708 INIT_LIST_HEAD(&dev->devres_head);
1709 device_pm_init(dev);
1710 set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712 INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714 INIT_LIST_HEAD(&dev->links.consumers);
1715 INIT_LIST_HEAD(&dev->links.suppliers);
1716 dev->links.status = DL_DEV_NO_DRIVER;
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722 static struct kobject *virtual_dir = NULL;
1723
1724 if (!virtual_dir)
1725 virtual_dir = kobject_create_and_add("virtual",
1726 &devices_kset->kobj);
1727
1728 return virtual_dir;
1729}
1730
1731struct class_dir {
1732 struct kobject kobj;
1733 struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740 struct class_dir *dir = to_class_dir(kobj);
1741 kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747 struct class_dir *dir = to_class_dir(kobj);
1748 return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752 .release = class_dir_release,
1753 .sysfs_ops = &kobj_sysfs_ops,
1754 .child_ns_type = class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760 struct class_dir *dir;
1761 int retval;
1762
1763 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764 if (!dir)
1765 return ERR_PTR(-ENOMEM);
1766
1767 dir->class = class;
1768 kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770 dir->kobj.kset = &class->p->glue_dirs;
1771
1772 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773 if (retval < 0) {
1774 kobject_put(&dir->kobj);
1775 return ERR_PTR(retval);
1776 }
1777 return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783 struct device *parent)
1784{
1785 if (dev->class) {
1786 struct kobject *kobj = NULL;
1787 struct kobject *parent_kobj;
1788 struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791 /* block disks show up in /sys/block */
1792 if (sysfs_deprecated && dev->class == &block_class) {
1793 if (parent && parent->class == &block_class)
1794 return &parent->kobj;
1795 return &block_class.p->subsys.kobj;
1796 }
1797#endif
1798
1799 /*
1800 * If we have no parent, we live in "virtual".
1801 * Class-devices with a non class-device as parent, live
1802 * in a "glue" directory to prevent namespace collisions.
1803 */
1804 if (parent == NULL)
1805 parent_kobj = virtual_device_parent(dev);
1806 else if (parent->class && !dev->class->ns_type)
1807 return &parent->kobj;
1808 else
1809 parent_kobj = &parent->kobj;
1810
1811 mutex_lock(&gdp_mutex);
1812
1813 /* find our class-directory at the parent and reference it */
1814 spin_lock(&dev->class->p->glue_dirs.list_lock);
1815 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816 if (k->parent == parent_kobj) {
1817 kobj = kobject_get(k);
1818 break;
1819 }
1820 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821 if (kobj) {
1822 mutex_unlock(&gdp_mutex);
1823 return kobj;
1824 }
1825
1826 /* or create a new class-directory at the parent device */
1827 k = class_dir_create_and_add(dev->class, parent_kobj);
1828 /* do not emit an uevent for this simple "glue" directory */
1829 mutex_unlock(&gdp_mutex);
1830 return k;
1831 }
1832
1833 /* subsystems can specify a default root directory for their devices */
1834 if (!parent && dev->bus && dev->bus->dev_root)
1835 return &dev->bus->dev_root->kobj;
1836
1837 if (parent)
1838 return &parent->kobj;
1839 return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843 struct device *dev)
1844{
1845 if (!kobj || !dev->class ||
1846 kobj->kset != &dev->class->p->glue_dirs)
1847 return false;
1848 return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853 return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863 unsigned int ref;
1864
1865 /* see if we live in a "glue" directory */
1866 if (!live_in_glue_dir(glue_dir, dev))
1867 return;
1868
1869 mutex_lock(&gdp_mutex);
1870 /**
1871 * There is a race condition between removing glue directory
1872 * and adding a new device under the glue directory.
1873 *
1874 * CPU1: CPU2:
1875 *
1876 * device_add()
1877 * get_device_parent()
1878 * class_dir_create_and_add()
1879 * kobject_add_internal()
1880 * create_dir() // create glue_dir
1881 *
1882 * device_add()
1883 * get_device_parent()
1884 * kobject_get() // get glue_dir
1885 *
1886 * device_del()
1887 * cleanup_glue_dir()
1888 * kobject_del(glue_dir)
1889 *
1890 * kobject_add()
1891 * kobject_add_internal()
1892 * create_dir() // in glue_dir
1893 * sysfs_create_dir_ns()
1894 * kernfs_create_dir_ns(sd)
1895 *
1896 * sysfs_remove_dir() // glue_dir->sd=NULL
1897 * sysfs_put() // free glue_dir->sd
1898 *
1899 * // sd is freed
1900 * kernfs_new_node(sd)
1901 * kernfs_get(glue_dir)
1902 * kernfs_add_one()
1903 * kernfs_put()
1904 *
1905 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906 * a new device under glue dir, the glue_dir kobject reference count
1907 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909 * and sysfs_put(). This result in glue_dir->sd is freed.
1910 *
1911 * Then the CPU2 will see a stale "empty" but still potentially used
1912 * glue dir around in kernfs_new_node().
1913 *
1914 * In order to avoid this happening, we also should make sure that
1915 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916 * for glue_dir kobj is 1.
1917 */
1918 ref = kref_read(&glue_dir->kref);
1919 if (!kobject_has_children(glue_dir) && !--ref)
1920 kobject_del(glue_dir);
1921 kobject_put(glue_dir);
1922 mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927 struct device_node *of_node = dev_of_node(dev);
1928 int error;
1929
1930 if (of_node) {
1931 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932 if (error)
1933 dev_warn(dev, "Error %d creating of_node link\n",error);
1934 /* An error here doesn't warrant bringing down the device */
1935 }
1936
1937 if (!dev->class)
1938 return 0;
1939
1940 error = sysfs_create_link(&dev->kobj,
1941 &dev->class->p->subsys.kobj,
1942 "subsystem");
1943 if (error)
1944 goto out_devnode;
1945
1946 if (dev->parent && device_is_not_partition(dev)) {
1947 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948 "device");
1949 if (error)
1950 goto out_subsys;
1951 }
1952
1953#ifdef CONFIG_BLOCK
1954 /* /sys/block has directories and does not need symlinks */
1955 if (sysfs_deprecated && dev->class == &block_class)
1956 return 0;
1957#endif
1958
1959 /* link in the class directory pointing to the device */
1960 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961 &dev->kobj, dev_name(dev));
1962 if (error)
1963 goto out_device;
1964
1965 return 0;
1966
1967out_device:
1968 sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971 sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973 sysfs_remove_link(&dev->kobj, "of_node");
1974 return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979 if (dev_of_node(dev))
1980 sysfs_remove_link(&dev->kobj, "of_node");
1981
1982 if (!dev->class)
1983 return;
1984
1985 if (dev->parent && device_is_not_partition(dev))
1986 sysfs_remove_link(&dev->kobj, "device");
1987 sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989 if (sysfs_deprecated && dev->class == &block_class)
1990 return;
1991#endif
1992 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002 va_list vargs;
2003 int err;
2004
2005 va_start(vargs, fmt);
2006 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007 va_end(vargs);
2008 return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries. Setting class->dev_obj
2017 * to NULL prevents an entry from being created. class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025 struct kobject *kobj;
2026
2027 if (dev->class)
2028 kobj = dev->class->dev_kobj;
2029 else
2030 kobj = sysfs_dev_char_kobj;
2031
2032 return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037 struct kobject *kobj = device_to_dev_kobj(dev);
2038 int error = 0;
2039 char devt_str[15];
2040
2041 if (kobj) {
2042 format_dev_t(devt_str, dev->devt);
2043 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044 }
2045
2046 return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051 struct kobject *kobj = device_to_dev_kobj(dev);
2052 char devt_str[15];
2053
2054 if (kobj) {
2055 format_dev_t(devt_str, dev->devt);
2056 sysfs_remove_link(kobj, devt_str);
2057 }
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063 if (!dev->p)
2064 return -ENOMEM;
2065 dev->p->device = dev;
2066 klist_init(&dev->p->klist_children, klist_children_get,
2067 klist_children_put);
2068 INIT_LIST_HEAD(&dev->p->deferred_probe);
2069 return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure. The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.) Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101 struct device *parent;
2102 struct kobject *kobj;
2103 struct class_interface *class_intf;
2104 int error = -EINVAL;
2105 struct kobject *glue_dir = NULL;
2106
2107 dev = get_device(dev);
2108 if (!dev)
2109 goto done;
2110
2111 if (!dev->p) {
2112 error = device_private_init(dev);
2113 if (error)
2114 goto done;
2115 }
2116
2117 /*
2118 * for statically allocated devices, which should all be converted
2119 * some day, we need to initialize the name. We prevent reading back
2120 * the name, and force the use of dev_name()
2121 */
2122 if (dev->init_name) {
2123 dev_set_name(dev, "%s", dev->init_name);
2124 dev->init_name = NULL;
2125 }
2126
2127 /* subsystems can specify simple device enumeration */
2128 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131 if (!dev_name(dev)) {
2132 error = -EINVAL;
2133 goto name_error;
2134 }
2135
2136 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138 parent = get_device(dev->parent);
2139 kobj = get_device_parent(dev, parent);
2140 if (IS_ERR(kobj)) {
2141 error = PTR_ERR(kobj);
2142 goto parent_error;
2143 }
2144 if (kobj)
2145 dev->kobj.parent = kobj;
2146
2147 /* use parent numa_node */
2148 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149 set_dev_node(dev, dev_to_node(parent));
2150
2151 /* first, register with generic layer. */
2152 /* we require the name to be set before, and pass NULL */
2153 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154 if (error) {
2155 glue_dir = get_glue_dir(dev);
2156 goto Error;
2157 }
2158
2159 /* notify platform of device entry */
2160 error = device_platform_notify(dev, KOBJ_ADD);
2161 if (error)
2162 goto platform_error;
2163
2164 error = device_create_file(dev, &dev_attr_uevent);
2165 if (error)
2166 goto attrError;
2167
2168 error = device_add_class_symlinks(dev);
2169 if (error)
2170 goto SymlinkError;
2171 error = device_add_attrs(dev);
2172 if (error)
2173 goto AttrsError;
2174 error = bus_add_device(dev);
2175 if (error)
2176 goto BusError;
2177 error = dpm_sysfs_add(dev);
2178 if (error)
2179 goto DPMError;
2180 device_pm_add(dev);
2181
2182 if (MAJOR(dev->devt)) {
2183 error = device_create_file(dev, &dev_attr_dev);
2184 if (error)
2185 goto DevAttrError;
2186
2187 error = device_create_sys_dev_entry(dev);
2188 if (error)
2189 goto SysEntryError;
2190
2191 devtmpfs_create_node(dev);
2192 }
2193
2194 /* Notify clients of device addition. This call must come
2195 * after dpm_sysfs_add() and before kobject_uevent().
2196 */
2197 if (dev->bus)
2198 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199 BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201 kobject_uevent(&dev->kobj, KOBJ_ADD);
2202 bus_probe_device(dev);
2203 if (parent)
2204 klist_add_tail(&dev->p->knode_parent,
2205 &parent->p->klist_children);
2206
2207 if (dev->class) {
2208 mutex_lock(&dev->class->p->mutex);
2209 /* tie the class to the device */
2210 klist_add_tail(&dev->p->knode_class,
2211 &dev->class->p->klist_devices);
2212
2213 /* notify any interfaces that the device is here */
2214 list_for_each_entry(class_intf,
2215 &dev->class->p->interfaces, node)
2216 if (class_intf->add_dev)
2217 class_intf->add_dev(dev, class_intf);
2218 mutex_unlock(&dev->class->p->mutex);
2219 }
2220done:
2221 put_device(dev);
2222 return error;
2223 SysEntryError:
2224 if (MAJOR(dev->devt))
2225 device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227 device_pm_remove(dev);
2228 dpm_sysfs_remove(dev);
2229 DPMError:
2230 bus_remove_device(dev);
2231 BusError:
2232 device_remove_attrs(dev);
2233 AttrsError:
2234 device_remove_class_symlinks(dev);
2235 SymlinkError:
2236 device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238 device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241 glue_dir = get_glue_dir(dev);
2242 kobject_del(&dev->kobj);
2243 Error:
2244 cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246 put_device(parent);
2247name_error:
2248 kfree(dev->p);
2249 dev->p = NULL;
2250 goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274 device_initialize(dev);
2275 return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299 /* might_sleep(); */
2300 if (dev)
2301 kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307 /*
2308 * Require the device lock and set the "dead" flag to guarantee that
2309 * the update behavior is consistent with the other bitfields near
2310 * it and that we cannot have an asynchronous probe routine trying
2311 * to run while we are tearing out the bus/class/sysfs from
2312 * underneath the device.
2313 */
2314 lockdep_assert_held(&dev->mutex);
2315
2316 if (dev->p->dead)
2317 return false;
2318 dev->p->dead = true;
2319 return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338 struct device *parent = dev->parent;
2339 struct kobject *glue_dir = NULL;
2340 struct class_interface *class_intf;
2341
2342 device_lock(dev);
2343 kill_device(dev);
2344 device_unlock(dev);
2345
2346 /* Notify clients of device removal. This call must come
2347 * before dpm_sysfs_remove().
2348 */
2349 if (dev->bus)
2350 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351 BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353 dpm_sysfs_remove(dev);
2354 if (parent)
2355 klist_del(&dev->p->knode_parent);
2356 if (MAJOR(dev->devt)) {
2357 devtmpfs_delete_node(dev);
2358 device_remove_sys_dev_entry(dev);
2359 device_remove_file(dev, &dev_attr_dev);
2360 }
2361 if (dev->class) {
2362 device_remove_class_symlinks(dev);
2363
2364 mutex_lock(&dev->class->p->mutex);
2365 /* notify any interfaces that the device is now gone */
2366 list_for_each_entry(class_intf,
2367 &dev->class->p->interfaces, node)
2368 if (class_intf->remove_dev)
2369 class_intf->remove_dev(dev, class_intf);
2370 /* remove the device from the class list */
2371 klist_del(&dev->p->knode_class);
2372 mutex_unlock(&dev->class->p->mutex);
2373 }
2374 device_remove_file(dev, &dev_attr_uevent);
2375 device_remove_attrs(dev);
2376 bus_remove_device(dev);
2377 device_pm_remove(dev);
2378 driver_deferred_probe_del(dev);
2379 device_platform_notify(dev, KOBJ_REMOVE);
2380 device_remove_properties(dev);
2381 device_links_purge(dev);
2382
2383 if (dev->bus)
2384 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385 BUS_NOTIFY_REMOVED_DEVICE, dev);
2386 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387 glue_dir = get_glue_dir(dev);
2388 kobject_del(&dev->kobj);
2389 cleanup_glue_dir(dev, glue_dir);
2390 put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408 device_del(dev);
2409 put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415 struct klist_node *n = klist_prev(i);
2416 struct device *dev = NULL;
2417 struct device_private *p;
2418
2419 if (n) {
2420 p = to_device_private_parent(n);
2421 dev = p->device;
2422 }
2423 return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428 struct klist_node *n = klist_next(i);
2429 struct device *dev = NULL;
2430 struct device_private *p;
2431
2432 if (n) {
2433 p = to_device_private_parent(n);
2434 dev = p->device;
2435 }
2436 return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453 umode_t *mode, kuid_t *uid, kgid_t *gid,
2454 const char **tmp)
2455{
2456 char *s;
2457
2458 *tmp = NULL;
2459
2460 /* the device type may provide a specific name */
2461 if (dev->type && dev->type->devnode)
2462 *tmp = dev->type->devnode(dev, mode, uid, gid);
2463 if (*tmp)
2464 return *tmp;
2465
2466 /* the class may provide a specific name */
2467 if (dev->class && dev->class->devnode)
2468 *tmp = dev->class->devnode(dev, mode);
2469 if (*tmp)
2470 return *tmp;
2471
2472 /* return name without allocation, tmp == NULL */
2473 if (strchr(dev_name(dev), '!') == NULL)
2474 return dev_name(dev);
2475
2476 /* replace '!' in the name with '/' */
2477 s = kstrdup(dev_name(dev), GFP_KERNEL);
2478 if (!s)
2479 return NULL;
2480 strreplace(s, '!', '/');
2481 return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497 int (*fn)(struct device *dev, void *data))
2498{
2499 struct klist_iter i;
2500 struct device *child;
2501 int error = 0;
2502
2503 if (!parent->p)
2504 return 0;
2505
2506 klist_iter_init(&parent->p->klist_children, &i);
2507 while (!error && (child = next_device(&i)))
2508 error = fn(child, data);
2509 klist_iter_exit(&i);
2510 return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527 int (*fn)(struct device *dev, void *data))
2528{
2529 struct klist_iter i;
2530 struct device *child;
2531 int error = 0;
2532
2533 if (!parent->p)
2534 return 0;
2535
2536 klist_iter_init(&parent->p->klist_children, &i);
2537 while ((child = prev_device(&i)) && !error)
2538 error = fn(child, data);
2539 klist_iter_exit(&i);
2540 return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does. If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562 int (*match)(struct device *dev, void *data))
2563{
2564 struct klist_iter i;
2565 struct device *child;
2566
2567 if (!parent)
2568 return NULL;
2569
2570 klist_iter_init(&parent->p->klist_children, &i);
2571 while ((child = next_device(&i)))
2572 if (match(child, data) && get_device(child))
2573 break;
2574 klist_iter_exit(&i);
2575 return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590 const char *name)
2591{
2592 struct klist_iter i;
2593 struct device *child;
2594
2595 if (!parent)
2596 return NULL;
2597
2598 klist_iter_init(&parent->p->klist_children, &i);
2599 while ((child = next_device(&i)))
2600 if (!strcmp(dev_name(child), name) && get_device(child))
2601 break;
2602 klist_iter_exit(&i);
2603 return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610 if (!devices_kset)
2611 return -ENOMEM;
2612 dev_kobj = kobject_create_and_add("dev", NULL);
2613 if (!dev_kobj)
2614 goto dev_kobj_err;
2615 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616 if (!sysfs_dev_block_kobj)
2617 goto block_kobj_err;
2618 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619 if (!sysfs_dev_char_kobj)
2620 goto char_kobj_err;
2621
2622 return 0;
2623
2624 char_kobj_err:
2625 kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627 kobject_put(dev_kobj);
2628 dev_kobj_err:
2629 kset_unregister(devices_kset);
2630 return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635 int ret;
2636
2637 ret = device_for_each_child(dev, NULL, device_check_offline);
2638 if (ret)
2639 return ret;
2640
2641 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal. If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657 int ret;
2658
2659 if (dev->offline_disabled)
2660 return -EPERM;
2661
2662 ret = device_for_each_child(dev, NULL, device_check_offline);
2663 if (ret)
2664 return ret;
2665
2666 device_lock(dev);
2667 if (device_supports_offline(dev)) {
2668 if (dev->offline) {
2669 ret = 1;
2670 } else {
2671 ret = dev->bus->offline(dev);
2672 if (!ret) {
2673 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674 dev->offline = true;
2675 }
2676 }
2677 }
2678 device_unlock(dev);
2679
2680 return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695 int ret = 0;
2696
2697 device_lock(dev);
2698 if (device_supports_offline(dev)) {
2699 if (dev->offline) {
2700 ret = dev->bus->online(dev);
2701 if (!ret) {
2702 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703 dev->offline = false;
2704 }
2705 } else {
2706 ret = 1;
2707 }
2708 }
2709 device_unlock(dev);
2710
2711 return ret;
2712}
2713
2714struct root_device {
2715 struct device dev;
2716 struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721 return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726 kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753 struct root_device *root;
2754 int err = -ENOMEM;
2755
2756 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757 if (!root)
2758 return ERR_PTR(err);
2759
2760 err = dev_set_name(&root->dev, "%s", name);
2761 if (err) {
2762 kfree(root);
2763 return ERR_PTR(err);
2764 }
2765
2766 root->dev.release = root_device_release;
2767
2768 err = device_register(&root->dev);
2769 if (err) {
2770 put_device(&root->dev);
2771 return ERR_PTR(err);
2772 }
2773
2774#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2775 if (owner) {
2776 struct module_kobject *mk = &owner->mkobj;
2777
2778 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779 if (err) {
2780 device_unregister(&root->dev);
2781 return ERR_PTR(err);
2782 }
2783 root->owner = owner;
2784 }
2785#endif
2786
2787 return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800 struct root_device *root = to_root_device(dev);
2801
2802 if (root->owner)
2803 sysfs_remove_link(&root->dev.kobj, "module");
2804
2805 device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813 kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818 dev_t devt, void *drvdata,
2819 const struct attribute_group **groups,
2820 const char *fmt, va_list args)
2821{
2822 struct device *dev = NULL;
2823 int retval = -ENODEV;
2824
2825 if (class == NULL || IS_ERR(class))
2826 goto error;
2827
2828 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829 if (!dev) {
2830 retval = -ENOMEM;
2831 goto error;
2832 }
2833
2834 device_initialize(dev);
2835 dev->devt = devt;
2836 dev->class = class;
2837 dev->parent = parent;
2838 dev->groups = groups;
2839 dev->release = device_create_release;
2840 dev_set_drvdata(dev, drvdata);
2841
2842 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843 if (retval)
2844 goto error;
2845
2846 retval = device_add(dev);
2847 if (retval)
2848 goto error;
2849
2850 return dev;
2851
2852error:
2853 put_device(dev);
2854 return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes. A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883 dev_t devt, void *drvdata, const char *fmt,
2884 va_list args)
2885{
2886 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887 fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes. A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916 dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918 va_list vargs;
2919 struct device *dev;
2920
2921 va_start(vargs, fmt);
2922 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923 va_end(vargs);
2924 return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes. A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956 struct device *parent, dev_t devt,
2957 void *drvdata,
2958 const struct attribute_group **groups,
2959 const char *fmt, ...)
2960{
2961 va_list vargs;
2962 struct device *dev;
2963
2964 va_start(vargs, fmt);
2965 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966 fmt, vargs);
2967 va_end(vargs);
2968 return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982 struct device *dev;
2983
2984 dev = class_find_device_by_devt(class, devt);
2985 if (dev) {
2986 put_device(dev);
2987 device_unregister(dev);
2988 }
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function. Currently, the networking layer calls this
3003 * function, but that will change. The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033 struct kobject *kobj = &dev->kobj;
3034 char *old_device_name = NULL;
3035 int error;
3036
3037 dev = get_device(dev);
3038 if (!dev)
3039 return -EINVAL;
3040
3041 dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044 if (!old_device_name) {
3045 error = -ENOMEM;
3046 goto out;
3047 }
3048
3049 if (dev->class) {
3050 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051 kobj, old_device_name,
3052 new_name, kobject_namespace(kobj));
3053 if (error)
3054 goto out;
3055 }
3056
3057 error = kobject_rename(kobj, new_name);
3058 if (error)
3059 goto out;
3060
3061out:
3062 put_device(dev);
3063
3064 kfree(old_device_name);
3065
3066 return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071 struct device *old_parent,
3072 struct device *new_parent)
3073{
3074 int error = 0;
3075
3076 if (old_parent)
3077 sysfs_remove_link(&dev->kobj, "device");
3078 if (new_parent)
3079 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080 "device");
3081 return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091 enum dpm_order dpm_order)
3092{
3093 int error;
3094 struct device *old_parent;
3095 struct kobject *new_parent_kobj;
3096
3097 dev = get_device(dev);
3098 if (!dev)
3099 return -EINVAL;
3100
3101 device_pm_lock();
3102 new_parent = get_device(new_parent);
3103 new_parent_kobj = get_device_parent(dev, new_parent);
3104 if (IS_ERR(new_parent_kobj)) {
3105 error = PTR_ERR(new_parent_kobj);
3106 put_device(new_parent);
3107 goto out;
3108 }
3109
3110 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112 error = kobject_move(&dev->kobj, new_parent_kobj);
3113 if (error) {
3114 cleanup_glue_dir(dev, new_parent_kobj);
3115 put_device(new_parent);
3116 goto out;
3117 }
3118 old_parent = dev->parent;
3119 dev->parent = new_parent;
3120 if (old_parent)
3121 klist_remove(&dev->p->knode_parent);
3122 if (new_parent) {
3123 klist_add_tail(&dev->p->knode_parent,
3124 &new_parent->p->klist_children);
3125 set_dev_node(dev, dev_to_node(new_parent));
3126 }
3127
3128 if (dev->class) {
3129 error = device_move_class_links(dev, old_parent, new_parent);
3130 if (error) {
3131 /* We ignore errors on cleanup since we're hosed anyway... */
3132 device_move_class_links(dev, new_parent, old_parent);
3133 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134 if (new_parent)
3135 klist_remove(&dev->p->knode_parent);
3136 dev->parent = old_parent;
3137 if (old_parent) {
3138 klist_add_tail(&dev->p->knode_parent,
3139 &old_parent->p->klist_children);
3140 set_dev_node(dev, dev_to_node(old_parent));
3141 }
3142 }
3143 cleanup_glue_dir(dev, new_parent_kobj);
3144 put_device(new_parent);
3145 goto out;
3146 }
3147 }
3148 switch (dpm_order) {
3149 case DPM_ORDER_NONE:
3150 break;
3151 case DPM_ORDER_DEV_AFTER_PARENT:
3152 device_pm_move_after(dev, new_parent);
3153 devices_kset_move_after(dev, new_parent);
3154 break;
3155 case DPM_ORDER_PARENT_BEFORE_DEV:
3156 device_pm_move_before(new_parent, dev);
3157 devices_kset_move_before(new_parent, dev);
3158 break;
3159 case DPM_ORDER_DEV_LAST:
3160 device_pm_move_last(dev);
3161 devices_kset_move_last(dev);
3162 break;
3163 }
3164
3165 put_device(old_parent);
3166out:
3167 device_pm_unlock();
3168 put_device(dev);
3169 return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178 struct device *dev, *parent;
3179
3180 wait_for_device_probe();
3181 device_block_probing();
3182
3183 cpufreq_suspend();
3184
3185 spin_lock(&devices_kset->list_lock);
3186 /*
3187 * Walk the devices list backward, shutting down each in turn.
3188 * Beware that device unplug events may also start pulling
3189 * devices offline, even as the system is shutting down.
3190 */
3191 while (!list_empty(&devices_kset->list)) {
3192 dev = list_entry(devices_kset->list.prev, struct device,
3193 kobj.entry);
3194
3195 /*
3196 * hold reference count of device's parent to
3197 * prevent it from being freed because parent's
3198 * lock is to be held
3199 */
3200 parent = get_device(dev->parent);
3201 get_device(dev);
3202 /*
3203 * Make sure the device is off the kset list, in the
3204 * event that dev->*->shutdown() doesn't remove it.
3205 */
3206 list_del_init(&dev->kobj.entry);
3207 spin_unlock(&devices_kset->list_lock);
3208
3209 /* hold lock to avoid race with probe/release */
3210 if (parent)
3211 device_lock(parent);
3212 device_lock(dev);
3213
3214 /* Don't allow any more runtime suspends */
3215 pm_runtime_get_noresume(dev);
3216 pm_runtime_barrier(dev);
3217
3218 if (dev->class && dev->class->shutdown_pre) {
3219 if (initcall_debug)
3220 dev_info(dev, "shutdown_pre\n");
3221 dev->class->shutdown_pre(dev);
3222 }
3223 if (dev->bus && dev->bus->shutdown) {
3224 if (initcall_debug)
3225 dev_info(dev, "shutdown\n");
3226 dev->bus->shutdown(dev);
3227 } else if (dev->driver && dev->driver->shutdown) {
3228 if (initcall_debug)
3229 dev_info(dev, "shutdown\n");
3230 dev->driver->shutdown(dev);
3231 }
3232
3233 device_unlock(dev);
3234 if (parent)
3235 device_unlock(parent);
3236
3237 put_device(dev);
3238 put_device(parent);
3239
3240 spin_lock(&devices_kset->list_lock);
3241 }
3242 spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253 const char *subsys;
3254 size_t pos = 0;
3255
3256 if (dev->class)
3257 subsys = dev->class->name;
3258 else if (dev->bus)
3259 subsys = dev->bus->name;
3260 else
3261 return 0;
3262
3263 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264 if (pos >= hdrlen)
3265 goto overflow;
3266
3267 /*
3268 * Add device identifier DEVICE=:
3269 * b12:8 block dev_t
3270 * c127:3 char dev_t
3271 * n8 netdev ifindex
3272 * +sound:card0 subsystem:devname
3273 */
3274 if (MAJOR(dev->devt)) {
3275 char c;
3276
3277 if (strcmp(subsys, "block") == 0)
3278 c = 'b';
3279 else
3280 c = 'c';
3281 pos++;
3282 pos += snprintf(hdr + pos, hdrlen - pos,
3283 "DEVICE=%c%u:%u",
3284 c, MAJOR(dev->devt), MINOR(dev->devt));
3285 } else if (strcmp(subsys, "net") == 0) {
3286 struct net_device *net = to_net_dev(dev);
3287
3288 pos++;
3289 pos += snprintf(hdr + pos, hdrlen - pos,
3290 "DEVICE=n%u", net->ifindex);
3291 } else {
3292 pos++;
3293 pos += snprintf(hdr + pos, hdrlen - pos,
3294 "DEVICE=+%s:%s", subsys, dev_name(dev));
3295 }
3296
3297 if (pos >= hdrlen)
3298 goto overflow;
3299
3300 return pos;
3301
3302overflow:
3303 dev_WARN(dev, "device/subsystem name too long");
3304 return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308 const char *fmt, va_list args)
3309{
3310 char hdr[128];
3311 size_t hdrlen;
3312
3313 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321 va_list args;
3322 int r;
3323
3324 va_start(args, fmt);
3325
3326 r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328 va_end(args);
3329
3330 return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335 struct va_format *vaf)
3336{
3337 if (dev)
3338 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339 dev_driver_string(dev), dev_name(dev), vaf);
3340 else
3341 printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345 const char *fmt, ...)
3346{
3347 struct va_format vaf;
3348 va_list args;
3349
3350 va_start(args, fmt);
3351
3352 vaf.fmt = fmt;
3353 vaf.va = &args;
3354
3355 __dev_printk(level, dev, &vaf);
3356
3357 va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level) \
3362void func(const struct device *dev, const char *fmt, ...) \
3363{ \
3364 struct va_format vaf; \
3365 va_list args; \
3366 \
3367 va_start(args, fmt); \
3368 \
3369 vaf.fmt = fmt; \
3370 vaf.va = &args; \
3371 \
3372 __dev_printk(kern_level, dev, &vaf); \
3373 \
3374 va_end(args); \
3375} \
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390 return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
3403 if (fwnode) {
3404 struct fwnode_handle *fn = dev->fwnode;
3405
3406 if (fwnode_is_primary(fn))
3407 fn = fn->secondary;
3408
3409 if (fn) {
3410 WARN_ON(fwnode->secondary);
3411 fwnode->secondary = fn;
3412 }
3413 dev->fwnode = fwnode;
3414 } else {
3415 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416 dev->fwnode->secondary : NULL;
3417 }
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432 if (fwnode)
3433 fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435 if (fwnode_is_primary(dev->fwnode))
3436 dev->fwnode->secondary = fwnode;
3437 else
3438 dev->fwnode = fwnode;
3439}
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451 of_node_put(dev->of_node);
3452 dev->of_node = of_node_get(dev2->of_node);
3453 dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459 return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465 return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471 return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477 return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483 return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489 return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);