Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
 
 
  11#include <linux/device.h>
  12#include <linux/err.h>
  13#include <linux/fwnode.h>
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/string.h>
  18#include <linux/kdev_t.h>
  19#include <linux/notifier.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/genhd.h>
  23#include <linux/mutex.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/netdevice.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sysfs.h>
  28
  29#include "base.h"
  30#include "power/power.h"
  31
  32#ifdef CONFIG_SYSFS_DEPRECATED
  33#ifdef CONFIG_SYSFS_DEPRECATED_V2
  34long sysfs_deprecated = 1;
  35#else
  36long sysfs_deprecated = 0;
  37#endif
  38static int __init sysfs_deprecated_setup(char *arg)
  39{
  40	return kstrtol(arg, 10, &sysfs_deprecated);
  41}
  42early_param("sysfs.deprecated", sysfs_deprecated_setup);
  43#endif
  44
  45/* Device links support. */
  46
  47#ifdef CONFIG_SRCU
  48static DEFINE_MUTEX(device_links_lock);
  49DEFINE_STATIC_SRCU(device_links_srcu);
  50
  51static inline void device_links_write_lock(void)
  52{
  53	mutex_lock(&device_links_lock);
  54}
  55
  56static inline void device_links_write_unlock(void)
  57{
  58	mutex_unlock(&device_links_lock);
  59}
  60
  61int device_links_read_lock(void)
  62{
  63	return srcu_read_lock(&device_links_srcu);
  64}
  65
  66void device_links_read_unlock(int idx)
  67{
  68	srcu_read_unlock(&device_links_srcu, idx);
  69}
 
 
 
 
 
  70#else /* !CONFIG_SRCU */
  71static DECLARE_RWSEM(device_links_lock);
  72
  73static inline void device_links_write_lock(void)
  74{
  75	down_write(&device_links_lock);
  76}
  77
  78static inline void device_links_write_unlock(void)
  79{
  80	up_write(&device_links_lock);
  81}
  82
  83int device_links_read_lock(void)
  84{
  85	down_read(&device_links_lock);
  86	return 0;
  87}
  88
  89void device_links_read_unlock(int not_used)
  90{
  91	up_read(&device_links_lock);
  92}
 
 
 
 
 
 
 
  93#endif /* !CONFIG_SRCU */
  94
  95/**
  96 * device_is_dependent - Check if one device depends on another one
  97 * @dev: Device to check dependencies for.
  98 * @target: Device to check against.
  99 *
 100 * Check if @target depends on @dev or any device dependent on it (its child or
 101 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 102 */
 103static int device_is_dependent(struct device *dev, void *target)
 104{
 105	struct device_link *link;
 106	int ret;
 107
 108	if (WARN_ON(dev == target))
 109		return 1;
 110
 111	ret = device_for_each_child(dev, target, device_is_dependent);
 112	if (ret)
 113		return ret;
 114
 115	list_for_each_entry(link, &dev->links.consumers, s_node) {
 116		if (WARN_ON(link->consumer == target))
 117			return 1;
 118
 119		ret = device_is_dependent(link->consumer, target);
 120		if (ret)
 121			break;
 122	}
 123	return ret;
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126static int device_reorder_to_tail(struct device *dev, void *not_used)
 127{
 128	struct device_link *link;
 129
 130	/*
 131	 * Devices that have not been registered yet will be put to the ends
 132	 * of the lists during the registration, so skip them here.
 133	 */
 134	if (device_is_registered(dev))
 135		devices_kset_move_last(dev);
 136
 137	if (device_pm_initialized(dev))
 138		device_pm_move_last(dev);
 139
 140	device_for_each_child(dev, NULL, device_reorder_to_tail);
 141	list_for_each_entry(link, &dev->links.consumers, s_node)
 142		device_reorder_to_tail(link->consumer, NULL);
 143
 144	return 0;
 145}
 146
 147/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148 * device_link_add - Create a link between two devices.
 149 * @consumer: Consumer end of the link.
 150 * @supplier: Supplier end of the link.
 151 * @flags: Link flags.
 152 *
 153 * The caller is responsible for the proper synchronization of the link creation
 154 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 155 * runtime PM framework to take the link into account.  Second, if the
 156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 157 * be forced into the active metastate and reference-counted upon the creation
 158 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 159 * ignored.
 160 *
 161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
 162 * when the consumer device driver unbinds from it.  The combination of both
 163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
 164 * to be returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 *
 166 * A side effect of the link creation is re-ordering of dpm_list and the
 167 * devices_kset list by moving the consumer device and all devices depending
 168 * on it to the ends of these lists (that does not happen to devices that have
 169 * not been registered when this function is called).
 170 *
 171 * The supplier device is required to be registered when this function is called
 172 * and NULL will be returned if that is not the case.  The consumer device need
 173 * not be registered, however.
 174 */
 175struct device_link *device_link_add(struct device *consumer,
 176				    struct device *supplier, u32 flags)
 177{
 178	struct device_link *link;
 179
 180	if (!consumer || !supplier ||
 181	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
 
 
 
 182		return NULL;
 183
 
 
 
 
 
 
 
 
 
 
 184	device_links_write_lock();
 185	device_pm_lock();
 186
 187	/*
 188	 * If the supplier has not been fully registered yet or there is a
 189	 * reverse dependency between the consumer and the supplier already in
 190	 * the graph, return NULL.
 191	 */
 192	if (!device_pm_initialized(supplier)
 193	    || device_is_dependent(consumer, supplier)) {
 194		link = NULL;
 195		goto out;
 196	}
 197
 198	list_for_each_entry(link, &supplier->links.consumers, s_node)
 199		if (link->consumer == consumer) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200			kref_get(&link->kref);
 201			goto out;
 202		}
 203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204	link = kzalloc(sizeof(*link), GFP_KERNEL);
 205	if (!link)
 206		goto out;
 207
 
 
 208	if (flags & DL_FLAG_PM_RUNTIME) {
 209		if (flags & DL_FLAG_RPM_ACTIVE) {
 210			if (pm_runtime_get_sync(supplier) < 0) {
 211				pm_runtime_put_noidle(supplier);
 212				kfree(link);
 213				link = NULL;
 214				goto out;
 215			}
 216			link->rpm_active = true;
 217		}
 218		pm_runtime_new_link(consumer);
 219	}
 
 220	get_device(supplier);
 221	link->supplier = supplier;
 222	INIT_LIST_HEAD(&link->s_node);
 223	get_device(consumer);
 224	link->consumer = consumer;
 225	INIT_LIST_HEAD(&link->c_node);
 226	link->flags = flags;
 227	kref_init(&link->kref);
 228
 229	/* Determine the initial link state. */
 230	if (flags & DL_FLAG_STATELESS) {
 231		link->status = DL_STATE_NONE;
 232	} else {
 233		switch (supplier->links.status) {
 234		case DL_DEV_DRIVER_BOUND:
 235			switch (consumer->links.status) {
 236			case DL_DEV_PROBING:
 237				/*
 238				 * Balance the decrementation of the supplier's
 239				 * runtime PM usage counter after consumer probe
 240				 * in driver_probe_device().
 241				 */
 242				if (flags & DL_FLAG_PM_RUNTIME)
 243					pm_runtime_get_sync(supplier);
 244
 245				link->status = DL_STATE_CONSUMER_PROBE;
 246				break;
 247			case DL_DEV_DRIVER_BOUND:
 248				link->status = DL_STATE_ACTIVE;
 249				break;
 250			default:
 251				link->status = DL_STATE_AVAILABLE;
 252				break;
 253			}
 254			break;
 255		case DL_DEV_UNBINDING:
 256			link->status = DL_STATE_SUPPLIER_UNBIND;
 257			break;
 258		default:
 259			link->status = DL_STATE_DORMANT;
 260			break;
 261		}
 262	}
 263
 264	/*
 265	 * Move the consumer and all of the devices depending on it to the end
 266	 * of dpm_list and the devices_kset list.
 267	 *
 268	 * It is necessary to hold dpm_list locked throughout all that or else
 269	 * we may end up suspending with a wrong ordering of it.
 270	 */
 271	device_reorder_to_tail(consumer, NULL);
 272
 273	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 274	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 275
 276	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 277
 278 out:
 279	device_pm_unlock();
 280	device_links_write_unlock();
 
 
 
 
 281	return link;
 282}
 283EXPORT_SYMBOL_GPL(device_link_add);
 284
 285static void device_link_free(struct device_link *link)
 286{
 
 
 
 287	put_device(link->consumer);
 288	put_device(link->supplier);
 289	kfree(link);
 290}
 291
 292#ifdef CONFIG_SRCU
 293static void __device_link_free_srcu(struct rcu_head *rhead)
 294{
 295	device_link_free(container_of(rhead, struct device_link, rcu_head));
 296}
 297
 298static void __device_link_del(struct kref *kref)
 299{
 300	struct device_link *link = container_of(kref, struct device_link, kref);
 301
 302	dev_info(link->consumer, "Dropping the link to %s\n",
 303		 dev_name(link->supplier));
 304
 305	if (link->flags & DL_FLAG_PM_RUNTIME)
 306		pm_runtime_drop_link(link->consumer);
 307
 308	list_del_rcu(&link->s_node);
 309	list_del_rcu(&link->c_node);
 310	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 311}
 312#else /* !CONFIG_SRCU */
 313static void __device_link_del(struct kref *kref)
 314{
 315	struct device_link *link = container_of(kref, struct device_link, kref);
 316
 317	dev_info(link->consumer, "Dropping the link to %s\n",
 318		 dev_name(link->supplier));
 319
 320	if (link->flags & DL_FLAG_PM_RUNTIME)
 321		pm_runtime_drop_link(link->consumer);
 322
 323	list_del(&link->s_node);
 324	list_del(&link->c_node);
 325	device_link_free(link);
 326}
 327#endif /* !CONFIG_SRCU */
 328
 
 
 
 
 
 
 
 
 329/**
 330 * device_link_del - Delete a link between two devices.
 331 * @link: Device link to delete.
 332 *
 333 * The caller must ensure proper synchronization of this function with runtime
 334 * PM.  If the link was added multiple times, it needs to be deleted as often.
 335 * Care is required for hotplugged devices:  Their links are purged on removal
 336 * and calling device_link_del() is then no longer allowed.
 337 */
 338void device_link_del(struct device_link *link)
 339{
 340	device_links_write_lock();
 341	device_pm_lock();
 342	kref_put(&link->kref, __device_link_del);
 343	device_pm_unlock();
 344	device_links_write_unlock();
 345}
 346EXPORT_SYMBOL_GPL(device_link_del);
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static void device_links_missing_supplier(struct device *dev)
 349{
 350	struct device_link *link;
 351
 352	list_for_each_entry(link, &dev->links.suppliers, c_node)
 353		if (link->status == DL_STATE_CONSUMER_PROBE)
 354			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 355}
 356
 357/**
 358 * device_links_check_suppliers - Check presence of supplier drivers.
 359 * @dev: Consumer device.
 360 *
 361 * Check links from this device to any suppliers.  Walk the list of the device's
 362 * links to suppliers and see if all of them are available.  If not, simply
 363 * return -EPROBE_DEFER.
 364 *
 365 * We need to guarantee that the supplier will not go away after the check has
 366 * been positive here.  It only can go away in __device_release_driver() and
 367 * that function  checks the device's links to consumers.  This means we need to
 368 * mark the link as "consumer probe in progress" to make the supplier removal
 369 * wait for us to complete (or bad things may happen).
 370 *
 371 * Links with the DL_FLAG_STATELESS flag set are ignored.
 372 */
 373int device_links_check_suppliers(struct device *dev)
 374{
 375	struct device_link *link;
 376	int ret = 0;
 377
 378	device_links_write_lock();
 379
 380	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 381		if (link->flags & DL_FLAG_STATELESS)
 382			continue;
 383
 384		if (link->status != DL_STATE_AVAILABLE) {
 385			device_links_missing_supplier(dev);
 386			ret = -EPROBE_DEFER;
 387			break;
 388		}
 389		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 390	}
 391	dev->links.status = DL_DEV_PROBING;
 392
 393	device_links_write_unlock();
 394	return ret;
 395}
 396
 397/**
 398 * device_links_driver_bound - Update device links after probing its driver.
 399 * @dev: Device to update the links for.
 400 *
 401 * The probe has been successful, so update links from this device to any
 402 * consumers by changing their status to "available".
 403 *
 404 * Also change the status of @dev's links to suppliers to "active".
 405 *
 406 * Links with the DL_FLAG_STATELESS flag set are ignored.
 407 */
 408void device_links_driver_bound(struct device *dev)
 409{
 410	struct device_link *link;
 411
 412	device_links_write_lock();
 413
 414	list_for_each_entry(link, &dev->links.consumers, s_node) {
 415		if (link->flags & DL_FLAG_STATELESS)
 
 
 
 
 
 
 
 
 
 
 416			continue;
 417
 418		WARN_ON(link->status != DL_STATE_DORMANT);
 419		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 420	}
 421
 422	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 423		if (link->flags & DL_FLAG_STATELESS)
 424			continue;
 425
 426		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 427		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 428	}
 429
 430	dev->links.status = DL_DEV_DRIVER_BOUND;
 431
 432	device_links_write_unlock();
 433}
 434
 
 
 
 
 
 
 
 435/**
 436 * __device_links_no_driver - Update links of a device without a driver.
 437 * @dev: Device without a drvier.
 438 *
 439 * Delete all non-persistent links from this device to any suppliers.
 440 *
 441 * Persistent links stay around, but their status is changed to "available",
 442 * unless they already are in the "supplier unbind in progress" state in which
 443 * case they need not be updated.
 444 *
 445 * Links with the DL_FLAG_STATELESS flag set are ignored.
 446 */
 447static void __device_links_no_driver(struct device *dev)
 448{
 449	struct device_link *link, *ln;
 450
 451	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 452		if (link->flags & DL_FLAG_STATELESS)
 453			continue;
 454
 455		if (link->flags & DL_FLAG_AUTOREMOVE)
 456			kref_put(&link->kref, __device_link_del);
 457		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
 
 458			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 459	}
 460
 461	dev->links.status = DL_DEV_NO_DRIVER;
 462}
 463
 
 
 
 
 
 
 
 
 
 
 464void device_links_no_driver(struct device *dev)
 465{
 
 
 466	device_links_write_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467	__device_links_no_driver(dev);
 
 468	device_links_write_unlock();
 469}
 470
 471/**
 472 * device_links_driver_cleanup - Update links after driver removal.
 473 * @dev: Device whose driver has just gone away.
 474 *
 475 * Update links to consumers for @dev by changing their status to "dormant" and
 476 * invoke %__device_links_no_driver() to update links to suppliers for it as
 477 * appropriate.
 478 *
 479 * Links with the DL_FLAG_STATELESS flag set are ignored.
 480 */
 481void device_links_driver_cleanup(struct device *dev)
 482{
 483	struct device_link *link;
 484
 485	device_links_write_lock();
 486
 487	list_for_each_entry(link, &dev->links.consumers, s_node) {
 488		if (link->flags & DL_FLAG_STATELESS)
 489			continue;
 490
 491		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
 492		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 
 
 
 
 
 
 
 
 
 
 493		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 494	}
 495
 496	__device_links_no_driver(dev);
 497
 498	device_links_write_unlock();
 499}
 500
 501/**
 502 * device_links_busy - Check if there are any busy links to consumers.
 503 * @dev: Device to check.
 504 *
 505 * Check each consumer of the device and return 'true' if its link's status
 506 * is one of "consumer probe" or "active" (meaning that the given consumer is
 507 * probing right now or its driver is present).  Otherwise, change the link
 508 * state to "supplier unbind" to prevent the consumer from being probed
 509 * successfully going forward.
 510 *
 511 * Return 'false' if there are no probing or active consumers.
 512 *
 513 * Links with the DL_FLAG_STATELESS flag set are ignored.
 514 */
 515bool device_links_busy(struct device *dev)
 516{
 517	struct device_link *link;
 518	bool ret = false;
 519
 520	device_links_write_lock();
 521
 522	list_for_each_entry(link, &dev->links.consumers, s_node) {
 523		if (link->flags & DL_FLAG_STATELESS)
 524			continue;
 525
 526		if (link->status == DL_STATE_CONSUMER_PROBE
 527		    || link->status == DL_STATE_ACTIVE) {
 528			ret = true;
 529			break;
 530		}
 531		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 532	}
 533
 534	dev->links.status = DL_DEV_UNBINDING;
 535
 536	device_links_write_unlock();
 537	return ret;
 538}
 539
 540/**
 541 * device_links_unbind_consumers - Force unbind consumers of the given device.
 542 * @dev: Device to unbind the consumers of.
 543 *
 544 * Walk the list of links to consumers for @dev and if any of them is in the
 545 * "consumer probe" state, wait for all device probes in progress to complete
 546 * and start over.
 547 *
 548 * If that's not the case, change the status of the link to "supplier unbind"
 549 * and check if the link was in the "active" state.  If so, force the consumer
 550 * driver to unbind and start over (the consumer will not re-probe as we have
 551 * changed the state of the link already).
 552 *
 553 * Links with the DL_FLAG_STATELESS flag set are ignored.
 554 */
 555void device_links_unbind_consumers(struct device *dev)
 556{
 557	struct device_link *link;
 558
 559 start:
 560	device_links_write_lock();
 561
 562	list_for_each_entry(link, &dev->links.consumers, s_node) {
 563		enum device_link_state status;
 564
 565		if (link->flags & DL_FLAG_STATELESS)
 566			continue;
 567
 568		status = link->status;
 569		if (status == DL_STATE_CONSUMER_PROBE) {
 570			device_links_write_unlock();
 571
 572			wait_for_device_probe();
 573			goto start;
 574		}
 575		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 576		if (status == DL_STATE_ACTIVE) {
 577			struct device *consumer = link->consumer;
 578
 579			get_device(consumer);
 580
 581			device_links_write_unlock();
 582
 583			device_release_driver_internal(consumer, NULL,
 584						       consumer->parent);
 585			put_device(consumer);
 586			goto start;
 587		}
 588	}
 589
 590	device_links_write_unlock();
 591}
 592
 593/**
 594 * device_links_purge - Delete existing links to other devices.
 595 * @dev: Target device.
 596 */
 597static void device_links_purge(struct device *dev)
 598{
 599	struct device_link *link, *ln;
 600
 601	/*
 602	 * Delete all of the remaining links from this device to any other
 603	 * devices (either consumers or suppliers).
 604	 */
 605	device_links_write_lock();
 606
 607	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 608		WARN_ON(link->status == DL_STATE_ACTIVE);
 609		__device_link_del(&link->kref);
 610	}
 611
 612	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 613		WARN_ON(link->status != DL_STATE_DORMANT &&
 614			link->status != DL_STATE_NONE);
 615		__device_link_del(&link->kref);
 616	}
 617
 618	device_links_write_unlock();
 619}
 620
 621/* Device links support end. */
 622
 623int (*platform_notify)(struct device *dev) = NULL;
 624int (*platform_notify_remove)(struct device *dev) = NULL;
 625static struct kobject *dev_kobj;
 626struct kobject *sysfs_dev_char_kobj;
 627struct kobject *sysfs_dev_block_kobj;
 628
 629static DEFINE_MUTEX(device_hotplug_lock);
 630
 631void lock_device_hotplug(void)
 632{
 633	mutex_lock(&device_hotplug_lock);
 634}
 635
 636void unlock_device_hotplug(void)
 637{
 638	mutex_unlock(&device_hotplug_lock);
 639}
 640
 641int lock_device_hotplug_sysfs(void)
 642{
 643	if (mutex_trylock(&device_hotplug_lock))
 644		return 0;
 645
 646	/* Avoid busy looping (5 ms of sleep should do). */
 647	msleep(5);
 648	return restart_syscall();
 649}
 650
 651#ifdef CONFIG_BLOCK
 652static inline int device_is_not_partition(struct device *dev)
 653{
 654	return !(dev->type == &part_type);
 655}
 656#else
 657static inline int device_is_not_partition(struct device *dev)
 658{
 659	return 1;
 660}
 661#endif
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663/**
 664 * dev_driver_string - Return a device's driver name, if at all possible
 665 * @dev: struct device to get the name of
 666 *
 667 * Will return the device's driver's name if it is bound to a device.  If
 668 * the device is not bound to a driver, it will return the name of the bus
 669 * it is attached to.  If it is not attached to a bus either, an empty
 670 * string will be returned.
 671 */
 672const char *dev_driver_string(const struct device *dev)
 673{
 674	struct device_driver *drv;
 675
 676	/* dev->driver can change to NULL underneath us because of unbinding,
 677	 * so be careful about accessing it.  dev->bus and dev->class should
 678	 * never change once they are set, so they don't need special care.
 679	 */
 680	drv = READ_ONCE(dev->driver);
 681	return drv ? drv->name :
 682			(dev->bus ? dev->bus->name :
 683			(dev->class ? dev->class->name : ""));
 684}
 685EXPORT_SYMBOL(dev_driver_string);
 686
 687#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 688
 689static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 690			     char *buf)
 691{
 692	struct device_attribute *dev_attr = to_dev_attr(attr);
 693	struct device *dev = kobj_to_dev(kobj);
 694	ssize_t ret = -EIO;
 695
 696	if (dev_attr->show)
 697		ret = dev_attr->show(dev, dev_attr, buf);
 698	if (ret >= (ssize_t)PAGE_SIZE) {
 699		printk("dev_attr_show: %pS returned bad count\n",
 700				dev_attr->show);
 701	}
 702	return ret;
 703}
 704
 705static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 706			      const char *buf, size_t count)
 707{
 708	struct device_attribute *dev_attr = to_dev_attr(attr);
 709	struct device *dev = kobj_to_dev(kobj);
 710	ssize_t ret = -EIO;
 711
 712	if (dev_attr->store)
 713		ret = dev_attr->store(dev, dev_attr, buf, count);
 714	return ret;
 715}
 716
 717static const struct sysfs_ops dev_sysfs_ops = {
 718	.show	= dev_attr_show,
 719	.store	= dev_attr_store,
 720};
 721
 722#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 723
 724ssize_t device_store_ulong(struct device *dev,
 725			   struct device_attribute *attr,
 726			   const char *buf, size_t size)
 727{
 728	struct dev_ext_attribute *ea = to_ext_attr(attr);
 729	char *end;
 730	unsigned long new = simple_strtoul(buf, &end, 0);
 731	if (end == buf)
 732		return -EINVAL;
 
 
 733	*(unsigned long *)(ea->var) = new;
 734	/* Always return full write size even if we didn't consume all */
 735	return size;
 736}
 737EXPORT_SYMBOL_GPL(device_store_ulong);
 738
 739ssize_t device_show_ulong(struct device *dev,
 740			  struct device_attribute *attr,
 741			  char *buf)
 742{
 743	struct dev_ext_attribute *ea = to_ext_attr(attr);
 744	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
 745}
 746EXPORT_SYMBOL_GPL(device_show_ulong);
 747
 748ssize_t device_store_int(struct device *dev,
 749			 struct device_attribute *attr,
 750			 const char *buf, size_t size)
 751{
 752	struct dev_ext_attribute *ea = to_ext_attr(attr);
 753	char *end;
 754	long new = simple_strtol(buf, &end, 0);
 755	if (end == buf || new > INT_MAX || new < INT_MIN)
 
 
 
 
 
 756		return -EINVAL;
 757	*(int *)(ea->var) = new;
 758	/* Always return full write size even if we didn't consume all */
 759	return size;
 760}
 761EXPORT_SYMBOL_GPL(device_store_int);
 762
 763ssize_t device_show_int(struct device *dev,
 764			struct device_attribute *attr,
 765			char *buf)
 766{
 767	struct dev_ext_attribute *ea = to_ext_attr(attr);
 768
 769	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
 770}
 771EXPORT_SYMBOL_GPL(device_show_int);
 772
 773ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
 774			  const char *buf, size_t size)
 775{
 776	struct dev_ext_attribute *ea = to_ext_attr(attr);
 777
 778	if (strtobool(buf, ea->var) < 0)
 779		return -EINVAL;
 780
 781	return size;
 782}
 783EXPORT_SYMBOL_GPL(device_store_bool);
 784
 785ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
 786			 char *buf)
 787{
 788	struct dev_ext_attribute *ea = to_ext_attr(attr);
 789
 790	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
 791}
 792EXPORT_SYMBOL_GPL(device_show_bool);
 793
 794/**
 795 * device_release - free device structure.
 796 * @kobj: device's kobject.
 797 *
 798 * This is called once the reference count for the object
 799 * reaches 0. We forward the call to the device's release
 800 * method, which should handle actually freeing the structure.
 801 */
 802static void device_release(struct kobject *kobj)
 803{
 804	struct device *dev = kobj_to_dev(kobj);
 805	struct device_private *p = dev->p;
 806
 807	/*
 808	 * Some platform devices are driven without driver attached
 809	 * and managed resources may have been acquired.  Make sure
 810	 * all resources are released.
 811	 *
 812	 * Drivers still can add resources into device after device
 813	 * is deleted but alive, so release devres here to avoid
 814	 * possible memory leak.
 815	 */
 816	devres_release_all(dev);
 817
 818	if (dev->release)
 819		dev->release(dev);
 820	else if (dev->type && dev->type->release)
 821		dev->type->release(dev);
 822	else if (dev->class && dev->class->dev_release)
 823		dev->class->dev_release(dev);
 824	else
 825		WARN(1, KERN_ERR "Device '%s' does not have a release() "
 826			"function, it is broken and must be fixed.\n",
 827			dev_name(dev));
 828	kfree(p);
 829}
 830
 831static const void *device_namespace(struct kobject *kobj)
 832{
 833	struct device *dev = kobj_to_dev(kobj);
 834	const void *ns = NULL;
 835
 836	if (dev->class && dev->class->ns_type)
 837		ns = dev->class->namespace(dev);
 838
 839	return ns;
 840}
 841
 
 
 
 
 
 
 
 
 842static struct kobj_type device_ktype = {
 843	.release	= device_release,
 844	.sysfs_ops	= &dev_sysfs_ops,
 845	.namespace	= device_namespace,
 
 846};
 847
 848
 849static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
 850{
 851	struct kobj_type *ktype = get_ktype(kobj);
 852
 853	if (ktype == &device_ktype) {
 854		struct device *dev = kobj_to_dev(kobj);
 855		if (dev->bus)
 856			return 1;
 857		if (dev->class)
 858			return 1;
 859	}
 860	return 0;
 861}
 862
 863static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
 864{
 865	struct device *dev = kobj_to_dev(kobj);
 866
 867	if (dev->bus)
 868		return dev->bus->name;
 869	if (dev->class)
 870		return dev->class->name;
 871	return NULL;
 872}
 873
 874static int dev_uevent(struct kset *kset, struct kobject *kobj,
 875		      struct kobj_uevent_env *env)
 876{
 877	struct device *dev = kobj_to_dev(kobj);
 878	int retval = 0;
 879
 880	/* add device node properties if present */
 881	if (MAJOR(dev->devt)) {
 882		const char *tmp;
 883		const char *name;
 884		umode_t mode = 0;
 885		kuid_t uid = GLOBAL_ROOT_UID;
 886		kgid_t gid = GLOBAL_ROOT_GID;
 887
 888		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
 889		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
 890		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
 891		if (name) {
 892			add_uevent_var(env, "DEVNAME=%s", name);
 893			if (mode)
 894				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
 895			if (!uid_eq(uid, GLOBAL_ROOT_UID))
 896				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
 897			if (!gid_eq(gid, GLOBAL_ROOT_GID))
 898				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
 899			kfree(tmp);
 900		}
 901	}
 902
 903	if (dev->type && dev->type->name)
 904		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
 905
 906	if (dev->driver)
 907		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
 908
 909	/* Add common DT information about the device */
 910	of_device_uevent(dev, env);
 911
 912	/* have the bus specific function add its stuff */
 913	if (dev->bus && dev->bus->uevent) {
 914		retval = dev->bus->uevent(dev, env);
 915		if (retval)
 916			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
 917				 dev_name(dev), __func__, retval);
 918	}
 919
 920	/* have the class specific function add its stuff */
 921	if (dev->class && dev->class->dev_uevent) {
 922		retval = dev->class->dev_uevent(dev, env);
 923		if (retval)
 924			pr_debug("device: '%s': %s: class uevent() "
 925				 "returned %d\n", dev_name(dev),
 926				 __func__, retval);
 927	}
 928
 929	/* have the device type specific function add its stuff */
 930	if (dev->type && dev->type->uevent) {
 931		retval = dev->type->uevent(dev, env);
 932		if (retval)
 933			pr_debug("device: '%s': %s: dev_type uevent() "
 934				 "returned %d\n", dev_name(dev),
 935				 __func__, retval);
 936	}
 937
 938	return retval;
 939}
 940
 941static const struct kset_uevent_ops device_uevent_ops = {
 942	.filter =	dev_uevent_filter,
 943	.name =		dev_uevent_name,
 944	.uevent =	dev_uevent,
 945};
 946
 947static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
 948			   char *buf)
 949{
 950	struct kobject *top_kobj;
 951	struct kset *kset;
 952	struct kobj_uevent_env *env = NULL;
 953	int i;
 954	size_t count = 0;
 955	int retval;
 956
 957	/* search the kset, the device belongs to */
 958	top_kobj = &dev->kobj;
 959	while (!top_kobj->kset && top_kobj->parent)
 960		top_kobj = top_kobj->parent;
 961	if (!top_kobj->kset)
 962		goto out;
 963
 964	kset = top_kobj->kset;
 965	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
 966		goto out;
 967
 968	/* respect filter */
 969	if (kset->uevent_ops && kset->uevent_ops->filter)
 970		if (!kset->uevent_ops->filter(kset, &dev->kobj))
 971			goto out;
 972
 973	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
 974	if (!env)
 975		return -ENOMEM;
 976
 977	/* let the kset specific function add its keys */
 978	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 979	if (retval)
 980		goto out;
 981
 982	/* copy keys to file */
 983	for (i = 0; i < env->envp_idx; i++)
 984		count += sprintf(&buf[count], "%s\n", env->envp[i]);
 985out:
 986	kfree(env);
 987	return count;
 988}
 989
 990static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
 991			    const char *buf, size_t count)
 992{
 993	if (kobject_synth_uevent(&dev->kobj, buf, count))
 
 
 
 
 994		dev_err(dev, "uevent: failed to send synthetic uevent\n");
 
 
 995
 996	return count;
 997}
 998static DEVICE_ATTR_RW(uevent);
 999
1000static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1001			   char *buf)
1002{
1003	bool val;
1004
1005	device_lock(dev);
1006	val = !dev->offline;
1007	device_unlock(dev);
1008	return sprintf(buf, "%u\n", val);
1009}
1010
1011static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1012			    const char *buf, size_t count)
1013{
1014	bool val;
1015	int ret;
1016
1017	ret = strtobool(buf, &val);
1018	if (ret < 0)
1019		return ret;
1020
1021	ret = lock_device_hotplug_sysfs();
1022	if (ret)
1023		return ret;
1024
1025	ret = val ? device_online(dev) : device_offline(dev);
1026	unlock_device_hotplug();
1027	return ret < 0 ? ret : count;
1028}
1029static DEVICE_ATTR_RW(online);
1030
1031int device_add_groups(struct device *dev, const struct attribute_group **groups)
1032{
1033	return sysfs_create_groups(&dev->kobj, groups);
1034}
1035EXPORT_SYMBOL_GPL(device_add_groups);
1036
1037void device_remove_groups(struct device *dev,
1038			  const struct attribute_group **groups)
1039{
1040	sysfs_remove_groups(&dev->kobj, groups);
1041}
1042EXPORT_SYMBOL_GPL(device_remove_groups);
1043
1044union device_attr_group_devres {
1045	const struct attribute_group *group;
1046	const struct attribute_group **groups;
1047};
1048
1049static int devm_attr_group_match(struct device *dev, void *res, void *data)
1050{
1051	return ((union device_attr_group_devres *)res)->group == data;
1052}
1053
1054static void devm_attr_group_remove(struct device *dev, void *res)
1055{
1056	union device_attr_group_devres *devres = res;
1057	const struct attribute_group *group = devres->group;
1058
1059	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1060	sysfs_remove_group(&dev->kobj, group);
1061}
1062
1063static void devm_attr_groups_remove(struct device *dev, void *res)
1064{
1065	union device_attr_group_devres *devres = res;
1066	const struct attribute_group **groups = devres->groups;
1067
1068	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1069	sysfs_remove_groups(&dev->kobj, groups);
1070}
1071
1072/**
1073 * devm_device_add_group - given a device, create a managed attribute group
1074 * @dev:	The device to create the group for
1075 * @grp:	The attribute group to create
1076 *
1077 * This function creates a group for the first time.  It will explicitly
1078 * warn and error if any of the attribute files being created already exist.
1079 *
1080 * Returns 0 on success or error code on failure.
1081 */
1082int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1083{
1084	union device_attr_group_devres *devres;
1085	int error;
1086
1087	devres = devres_alloc(devm_attr_group_remove,
1088			      sizeof(*devres), GFP_KERNEL);
1089	if (!devres)
1090		return -ENOMEM;
1091
1092	error = sysfs_create_group(&dev->kobj, grp);
1093	if (error) {
1094		devres_free(devres);
1095		return error;
1096	}
1097
1098	devres->group = grp;
1099	devres_add(dev, devres);
1100	return 0;
1101}
1102EXPORT_SYMBOL_GPL(devm_device_add_group);
1103
1104/**
1105 * devm_device_remove_group: remove a managed group from a device
1106 * @dev:	device to remove the group from
1107 * @grp:	group to remove
1108 *
1109 * This function removes a group of attributes from a device. The attributes
1110 * previously have to have been created for this group, otherwise it will fail.
1111 */
1112void devm_device_remove_group(struct device *dev,
1113			      const struct attribute_group *grp)
1114{
1115	WARN_ON(devres_release(dev, devm_attr_group_remove,
1116			       devm_attr_group_match,
1117			       /* cast away const */ (void *)grp));
1118}
1119EXPORT_SYMBOL_GPL(devm_device_remove_group);
1120
1121/**
1122 * devm_device_add_groups - create a bunch of managed attribute groups
1123 * @dev:	The device to create the group for
1124 * @groups:	The attribute groups to create, NULL terminated
1125 *
1126 * This function creates a bunch of managed attribute groups.  If an error
1127 * occurs when creating a group, all previously created groups will be
1128 * removed, unwinding everything back to the original state when this
1129 * function was called.  It will explicitly warn and error if any of the
1130 * attribute files being created already exist.
1131 *
1132 * Returns 0 on success or error code from sysfs_create_group on failure.
1133 */
1134int devm_device_add_groups(struct device *dev,
1135			   const struct attribute_group **groups)
1136{
1137	union device_attr_group_devres *devres;
1138	int error;
1139
1140	devres = devres_alloc(devm_attr_groups_remove,
1141			      sizeof(*devres), GFP_KERNEL);
1142	if (!devres)
1143		return -ENOMEM;
1144
1145	error = sysfs_create_groups(&dev->kobj, groups);
1146	if (error) {
1147		devres_free(devres);
1148		return error;
1149	}
1150
1151	devres->groups = groups;
1152	devres_add(dev, devres);
1153	return 0;
1154}
1155EXPORT_SYMBOL_GPL(devm_device_add_groups);
1156
1157/**
1158 * devm_device_remove_groups - remove a list of managed groups
1159 *
1160 * @dev:	The device for the groups to be removed from
1161 * @groups:	NULL terminated list of groups to be removed
1162 *
1163 * If groups is not NULL, remove the specified groups from the device.
1164 */
1165void devm_device_remove_groups(struct device *dev,
1166			       const struct attribute_group **groups)
1167{
1168	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1169			       devm_attr_group_match,
1170			       /* cast away const */ (void *)groups));
1171}
1172EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1173
1174static int device_add_attrs(struct device *dev)
1175{
1176	struct class *class = dev->class;
1177	const struct device_type *type = dev->type;
1178	int error;
1179
1180	if (class) {
1181		error = device_add_groups(dev, class->dev_groups);
1182		if (error)
1183			return error;
1184	}
1185
1186	if (type) {
1187		error = device_add_groups(dev, type->groups);
1188		if (error)
1189			goto err_remove_class_groups;
1190	}
1191
1192	error = device_add_groups(dev, dev->groups);
1193	if (error)
1194		goto err_remove_type_groups;
1195
1196	if (device_supports_offline(dev) && !dev->offline_disabled) {
1197		error = device_create_file(dev, &dev_attr_online);
1198		if (error)
1199			goto err_remove_dev_groups;
1200	}
1201
1202	return 0;
1203
1204 err_remove_dev_groups:
1205	device_remove_groups(dev, dev->groups);
1206 err_remove_type_groups:
1207	if (type)
1208		device_remove_groups(dev, type->groups);
1209 err_remove_class_groups:
1210	if (class)
1211		device_remove_groups(dev, class->dev_groups);
1212
1213	return error;
1214}
1215
1216static void device_remove_attrs(struct device *dev)
1217{
1218	struct class *class = dev->class;
1219	const struct device_type *type = dev->type;
1220
1221	device_remove_file(dev, &dev_attr_online);
1222	device_remove_groups(dev, dev->groups);
1223
1224	if (type)
1225		device_remove_groups(dev, type->groups);
1226
1227	if (class)
1228		device_remove_groups(dev, class->dev_groups);
1229}
1230
1231static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1232			char *buf)
1233{
1234	return print_dev_t(buf, dev->devt);
1235}
1236static DEVICE_ATTR_RO(dev);
1237
1238/* /sys/devices/ */
1239struct kset *devices_kset;
1240
1241/**
1242 * devices_kset_move_before - Move device in the devices_kset's list.
1243 * @deva: Device to move.
1244 * @devb: Device @deva should come before.
1245 */
1246static void devices_kset_move_before(struct device *deva, struct device *devb)
1247{
1248	if (!devices_kset)
1249		return;
1250	pr_debug("devices_kset: Moving %s before %s\n",
1251		 dev_name(deva), dev_name(devb));
1252	spin_lock(&devices_kset->list_lock);
1253	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1254	spin_unlock(&devices_kset->list_lock);
1255}
1256
1257/**
1258 * devices_kset_move_after - Move device in the devices_kset's list.
1259 * @deva: Device to move
1260 * @devb: Device @deva should come after.
1261 */
1262static void devices_kset_move_after(struct device *deva, struct device *devb)
1263{
1264	if (!devices_kset)
1265		return;
1266	pr_debug("devices_kset: Moving %s after %s\n",
1267		 dev_name(deva), dev_name(devb));
1268	spin_lock(&devices_kset->list_lock);
1269	list_move(&deva->kobj.entry, &devb->kobj.entry);
1270	spin_unlock(&devices_kset->list_lock);
1271}
1272
1273/**
1274 * devices_kset_move_last - move the device to the end of devices_kset's list.
1275 * @dev: device to move
1276 */
1277void devices_kset_move_last(struct device *dev)
1278{
1279	if (!devices_kset)
1280		return;
1281	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1282	spin_lock(&devices_kset->list_lock);
1283	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1284	spin_unlock(&devices_kset->list_lock);
1285}
1286
1287/**
1288 * device_create_file - create sysfs attribute file for device.
1289 * @dev: device.
1290 * @attr: device attribute descriptor.
1291 */
1292int device_create_file(struct device *dev,
1293		       const struct device_attribute *attr)
1294{
1295	int error = 0;
1296
1297	if (dev) {
1298		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1299			"Attribute %s: write permission without 'store'\n",
1300			attr->attr.name);
1301		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1302			"Attribute %s: read permission without 'show'\n",
1303			attr->attr.name);
1304		error = sysfs_create_file(&dev->kobj, &attr->attr);
1305	}
1306
1307	return error;
1308}
1309EXPORT_SYMBOL_GPL(device_create_file);
1310
1311/**
1312 * device_remove_file - remove sysfs attribute file.
1313 * @dev: device.
1314 * @attr: device attribute descriptor.
1315 */
1316void device_remove_file(struct device *dev,
1317			const struct device_attribute *attr)
1318{
1319	if (dev)
1320		sysfs_remove_file(&dev->kobj, &attr->attr);
1321}
1322EXPORT_SYMBOL_GPL(device_remove_file);
1323
1324/**
1325 * device_remove_file_self - remove sysfs attribute file from its own method.
1326 * @dev: device.
1327 * @attr: device attribute descriptor.
1328 *
1329 * See kernfs_remove_self() for details.
1330 */
1331bool device_remove_file_self(struct device *dev,
1332			     const struct device_attribute *attr)
1333{
1334	if (dev)
1335		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1336	else
1337		return false;
1338}
1339EXPORT_SYMBOL_GPL(device_remove_file_self);
1340
1341/**
1342 * device_create_bin_file - create sysfs binary attribute file for device.
1343 * @dev: device.
1344 * @attr: device binary attribute descriptor.
1345 */
1346int device_create_bin_file(struct device *dev,
1347			   const struct bin_attribute *attr)
1348{
1349	int error = -EINVAL;
1350	if (dev)
1351		error = sysfs_create_bin_file(&dev->kobj, attr);
1352	return error;
1353}
1354EXPORT_SYMBOL_GPL(device_create_bin_file);
1355
1356/**
1357 * device_remove_bin_file - remove sysfs binary attribute file
1358 * @dev: device.
1359 * @attr: device binary attribute descriptor.
1360 */
1361void device_remove_bin_file(struct device *dev,
1362			    const struct bin_attribute *attr)
1363{
1364	if (dev)
1365		sysfs_remove_bin_file(&dev->kobj, attr);
1366}
1367EXPORT_SYMBOL_GPL(device_remove_bin_file);
1368
1369static void klist_children_get(struct klist_node *n)
1370{
1371	struct device_private *p = to_device_private_parent(n);
1372	struct device *dev = p->device;
1373
1374	get_device(dev);
1375}
1376
1377static void klist_children_put(struct klist_node *n)
1378{
1379	struct device_private *p = to_device_private_parent(n);
1380	struct device *dev = p->device;
1381
1382	put_device(dev);
1383}
1384
1385/**
1386 * device_initialize - init device structure.
1387 * @dev: device.
1388 *
1389 * This prepares the device for use by other layers by initializing
1390 * its fields.
1391 * It is the first half of device_register(), if called by
1392 * that function, though it can also be called separately, so one
1393 * may use @dev's fields. In particular, get_device()/put_device()
1394 * may be used for reference counting of @dev after calling this
1395 * function.
1396 *
1397 * All fields in @dev must be initialized by the caller to 0, except
1398 * for those explicitly set to some other value.  The simplest
1399 * approach is to use kzalloc() to allocate the structure containing
1400 * @dev.
1401 *
1402 * NOTE: Use put_device() to give up your reference instead of freeing
1403 * @dev directly once you have called this function.
1404 */
1405void device_initialize(struct device *dev)
1406{
1407	dev->kobj.kset = devices_kset;
1408	kobject_init(&dev->kobj, &device_ktype);
1409	INIT_LIST_HEAD(&dev->dma_pools);
1410	mutex_init(&dev->mutex);
 
 
 
1411	lockdep_set_novalidate_class(&dev->mutex);
1412	spin_lock_init(&dev->devres_lock);
1413	INIT_LIST_HEAD(&dev->devres_head);
1414	device_pm_init(dev);
1415	set_dev_node(dev, -1);
1416#ifdef CONFIG_GENERIC_MSI_IRQ
1417	INIT_LIST_HEAD(&dev->msi_list);
1418#endif
1419	INIT_LIST_HEAD(&dev->links.consumers);
1420	INIT_LIST_HEAD(&dev->links.suppliers);
1421	dev->links.status = DL_DEV_NO_DRIVER;
1422}
1423EXPORT_SYMBOL_GPL(device_initialize);
1424
1425struct kobject *virtual_device_parent(struct device *dev)
1426{
1427	static struct kobject *virtual_dir = NULL;
1428
1429	if (!virtual_dir)
1430		virtual_dir = kobject_create_and_add("virtual",
1431						     &devices_kset->kobj);
1432
1433	return virtual_dir;
1434}
1435
1436struct class_dir {
1437	struct kobject kobj;
1438	struct class *class;
1439};
1440
1441#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1442
1443static void class_dir_release(struct kobject *kobj)
1444{
1445	struct class_dir *dir = to_class_dir(kobj);
1446	kfree(dir);
1447}
1448
1449static const
1450struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1451{
1452	struct class_dir *dir = to_class_dir(kobj);
1453	return dir->class->ns_type;
1454}
1455
1456static struct kobj_type class_dir_ktype = {
1457	.release	= class_dir_release,
1458	.sysfs_ops	= &kobj_sysfs_ops,
1459	.child_ns_type	= class_dir_child_ns_type
1460};
1461
1462static struct kobject *
1463class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1464{
1465	struct class_dir *dir;
1466	int retval;
1467
1468	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1469	if (!dir)
1470		return NULL;
1471
1472	dir->class = class;
1473	kobject_init(&dir->kobj, &class_dir_ktype);
1474
1475	dir->kobj.kset = &class->p->glue_dirs;
1476
1477	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1478	if (retval < 0) {
1479		kobject_put(&dir->kobj);
1480		return NULL;
1481	}
1482	return &dir->kobj;
1483}
1484
1485static DEFINE_MUTEX(gdp_mutex);
1486
1487static struct kobject *get_device_parent(struct device *dev,
1488					 struct device *parent)
1489{
1490	if (dev->class) {
1491		struct kobject *kobj = NULL;
1492		struct kobject *parent_kobj;
1493		struct kobject *k;
1494
1495#ifdef CONFIG_BLOCK
1496		/* block disks show up in /sys/block */
1497		if (sysfs_deprecated && dev->class == &block_class) {
1498			if (parent && parent->class == &block_class)
1499				return &parent->kobj;
1500			return &block_class.p->subsys.kobj;
1501		}
1502#endif
1503
1504		/*
1505		 * If we have no parent, we live in "virtual".
1506		 * Class-devices with a non class-device as parent, live
1507		 * in a "glue" directory to prevent namespace collisions.
1508		 */
1509		if (parent == NULL)
1510			parent_kobj = virtual_device_parent(dev);
1511		else if (parent->class && !dev->class->ns_type)
1512			return &parent->kobj;
1513		else
1514			parent_kobj = &parent->kobj;
1515
1516		mutex_lock(&gdp_mutex);
1517
1518		/* find our class-directory at the parent and reference it */
1519		spin_lock(&dev->class->p->glue_dirs.list_lock);
1520		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1521			if (k->parent == parent_kobj) {
1522				kobj = kobject_get(k);
1523				break;
1524			}
1525		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1526		if (kobj) {
1527			mutex_unlock(&gdp_mutex);
1528			return kobj;
1529		}
1530
1531		/* or create a new class-directory at the parent device */
1532		k = class_dir_create_and_add(dev->class, parent_kobj);
1533		/* do not emit an uevent for this simple "glue" directory */
1534		mutex_unlock(&gdp_mutex);
1535		return k;
1536	}
1537
1538	/* subsystems can specify a default root directory for their devices */
1539	if (!parent && dev->bus && dev->bus->dev_root)
1540		return &dev->bus->dev_root->kobj;
1541
1542	if (parent)
1543		return &parent->kobj;
1544	return NULL;
1545}
1546
1547static inline bool live_in_glue_dir(struct kobject *kobj,
1548				    struct device *dev)
1549{
1550	if (!kobj || !dev->class ||
1551	    kobj->kset != &dev->class->p->glue_dirs)
1552		return false;
1553	return true;
1554}
1555
1556static inline struct kobject *get_glue_dir(struct device *dev)
1557{
1558	return dev->kobj.parent;
1559}
1560
1561/*
1562 * make sure cleaning up dir as the last step, we need to make
1563 * sure .release handler of kobject is run with holding the
1564 * global lock
1565 */
1566static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1567{
 
 
1568	/* see if we live in a "glue" directory */
1569	if (!live_in_glue_dir(glue_dir, dev))
1570		return;
1571
1572	mutex_lock(&gdp_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573	kobject_put(glue_dir);
1574	mutex_unlock(&gdp_mutex);
1575}
1576
1577static int device_add_class_symlinks(struct device *dev)
1578{
1579	struct device_node *of_node = dev_of_node(dev);
1580	int error;
1581
1582	if (of_node) {
1583		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1584		if (error)
1585			dev_warn(dev, "Error %d creating of_node link\n",error);
1586		/* An error here doesn't warrant bringing down the device */
1587	}
1588
1589	if (!dev->class)
1590		return 0;
1591
1592	error = sysfs_create_link(&dev->kobj,
1593				  &dev->class->p->subsys.kobj,
1594				  "subsystem");
1595	if (error)
1596		goto out_devnode;
1597
1598	if (dev->parent && device_is_not_partition(dev)) {
1599		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1600					  "device");
1601		if (error)
1602			goto out_subsys;
1603	}
1604
1605#ifdef CONFIG_BLOCK
1606	/* /sys/block has directories and does not need symlinks */
1607	if (sysfs_deprecated && dev->class == &block_class)
1608		return 0;
1609#endif
1610
1611	/* link in the class directory pointing to the device */
1612	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1613				  &dev->kobj, dev_name(dev));
1614	if (error)
1615		goto out_device;
1616
1617	return 0;
1618
1619out_device:
1620	sysfs_remove_link(&dev->kobj, "device");
1621
1622out_subsys:
1623	sysfs_remove_link(&dev->kobj, "subsystem");
1624out_devnode:
1625	sysfs_remove_link(&dev->kobj, "of_node");
1626	return error;
1627}
1628
1629static void device_remove_class_symlinks(struct device *dev)
1630{
1631	if (dev_of_node(dev))
1632		sysfs_remove_link(&dev->kobj, "of_node");
1633
1634	if (!dev->class)
1635		return;
1636
1637	if (dev->parent && device_is_not_partition(dev))
1638		sysfs_remove_link(&dev->kobj, "device");
1639	sysfs_remove_link(&dev->kobj, "subsystem");
1640#ifdef CONFIG_BLOCK
1641	if (sysfs_deprecated && dev->class == &block_class)
1642		return;
1643#endif
1644	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1645}
1646
1647/**
1648 * dev_set_name - set a device name
1649 * @dev: device
1650 * @fmt: format string for the device's name
1651 */
1652int dev_set_name(struct device *dev, const char *fmt, ...)
1653{
1654	va_list vargs;
1655	int err;
1656
1657	va_start(vargs, fmt);
1658	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1659	va_end(vargs);
1660	return err;
1661}
1662EXPORT_SYMBOL_GPL(dev_set_name);
1663
1664/**
1665 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1666 * @dev: device
1667 *
1668 * By default we select char/ for new entries.  Setting class->dev_obj
1669 * to NULL prevents an entry from being created.  class->dev_kobj must
1670 * be set (or cleared) before any devices are registered to the class
1671 * otherwise device_create_sys_dev_entry() and
1672 * device_remove_sys_dev_entry() will disagree about the presence of
1673 * the link.
1674 */
1675static struct kobject *device_to_dev_kobj(struct device *dev)
1676{
1677	struct kobject *kobj;
1678
1679	if (dev->class)
1680		kobj = dev->class->dev_kobj;
1681	else
1682		kobj = sysfs_dev_char_kobj;
1683
1684	return kobj;
1685}
1686
1687static int device_create_sys_dev_entry(struct device *dev)
1688{
1689	struct kobject *kobj = device_to_dev_kobj(dev);
1690	int error = 0;
1691	char devt_str[15];
1692
1693	if (kobj) {
1694		format_dev_t(devt_str, dev->devt);
1695		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1696	}
1697
1698	return error;
1699}
1700
1701static void device_remove_sys_dev_entry(struct device *dev)
1702{
1703	struct kobject *kobj = device_to_dev_kobj(dev);
1704	char devt_str[15];
1705
1706	if (kobj) {
1707		format_dev_t(devt_str, dev->devt);
1708		sysfs_remove_link(kobj, devt_str);
1709	}
1710}
1711
1712int device_private_init(struct device *dev)
1713{
1714	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1715	if (!dev->p)
1716		return -ENOMEM;
1717	dev->p->device = dev;
1718	klist_init(&dev->p->klist_children, klist_children_get,
1719		   klist_children_put);
1720	INIT_LIST_HEAD(&dev->p->deferred_probe);
1721	return 0;
1722}
1723
1724/**
1725 * device_add - add device to device hierarchy.
1726 * @dev: device.
1727 *
1728 * This is part 2 of device_register(), though may be called
1729 * separately _iff_ device_initialize() has been called separately.
1730 *
1731 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1732 * to the global and sibling lists for the device, then
1733 * adds it to the other relevant subsystems of the driver model.
1734 *
1735 * Do not call this routine or device_register() more than once for
1736 * any device structure.  The driver model core is not designed to work
1737 * with devices that get unregistered and then spring back to life.
1738 * (Among other things, it's very hard to guarantee that all references
1739 * to the previous incarnation of @dev have been dropped.)  Allocate
1740 * and register a fresh new struct device instead.
1741 *
1742 * NOTE: _Never_ directly free @dev after calling this function, even
1743 * if it returned an error! Always use put_device() to give up your
1744 * reference instead.
 
 
 
 
 
1745 */
1746int device_add(struct device *dev)
1747{
1748	struct device *parent;
1749	struct kobject *kobj;
1750	struct class_interface *class_intf;
1751	int error = -EINVAL;
1752	struct kobject *glue_dir = NULL;
1753
1754	dev = get_device(dev);
1755	if (!dev)
1756		goto done;
1757
1758	if (!dev->p) {
1759		error = device_private_init(dev);
1760		if (error)
1761			goto done;
1762	}
1763
1764	/*
1765	 * for statically allocated devices, which should all be converted
1766	 * some day, we need to initialize the name. We prevent reading back
1767	 * the name, and force the use of dev_name()
1768	 */
1769	if (dev->init_name) {
1770		dev_set_name(dev, "%s", dev->init_name);
1771		dev->init_name = NULL;
1772	}
1773
1774	/* subsystems can specify simple device enumeration */
1775	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1776		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1777
1778	if (!dev_name(dev)) {
1779		error = -EINVAL;
1780		goto name_error;
1781	}
1782
1783	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1784
1785	parent = get_device(dev->parent);
1786	kobj = get_device_parent(dev, parent);
 
 
 
 
1787	if (kobj)
1788		dev->kobj.parent = kobj;
1789
1790	/* use parent numa_node */
1791	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1792		set_dev_node(dev, dev_to_node(parent));
1793
1794	/* first, register with generic layer. */
1795	/* we require the name to be set before, and pass NULL */
1796	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1797	if (error) {
1798		glue_dir = get_glue_dir(dev);
1799		goto Error;
1800	}
1801
1802	/* notify platform of device entry */
1803	if (platform_notify)
1804		platform_notify(dev);
 
1805
1806	error = device_create_file(dev, &dev_attr_uevent);
1807	if (error)
1808		goto attrError;
1809
1810	error = device_add_class_symlinks(dev);
1811	if (error)
1812		goto SymlinkError;
1813	error = device_add_attrs(dev);
1814	if (error)
1815		goto AttrsError;
1816	error = bus_add_device(dev);
1817	if (error)
1818		goto BusError;
1819	error = dpm_sysfs_add(dev);
1820	if (error)
1821		goto DPMError;
1822	device_pm_add(dev);
1823
1824	if (MAJOR(dev->devt)) {
1825		error = device_create_file(dev, &dev_attr_dev);
1826		if (error)
1827			goto DevAttrError;
1828
1829		error = device_create_sys_dev_entry(dev);
1830		if (error)
1831			goto SysEntryError;
1832
1833		devtmpfs_create_node(dev);
1834	}
1835
1836	/* Notify clients of device addition.  This call must come
1837	 * after dpm_sysfs_add() and before kobject_uevent().
1838	 */
1839	if (dev->bus)
1840		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1841					     BUS_NOTIFY_ADD_DEVICE, dev);
1842
1843	kobject_uevent(&dev->kobj, KOBJ_ADD);
1844	bus_probe_device(dev);
1845	if (parent)
1846		klist_add_tail(&dev->p->knode_parent,
1847			       &parent->p->klist_children);
1848
1849	if (dev->class) {
1850		mutex_lock(&dev->class->p->mutex);
1851		/* tie the class to the device */
1852		klist_add_tail(&dev->knode_class,
1853			       &dev->class->p->klist_devices);
1854
1855		/* notify any interfaces that the device is here */
1856		list_for_each_entry(class_intf,
1857				    &dev->class->p->interfaces, node)
1858			if (class_intf->add_dev)
1859				class_intf->add_dev(dev, class_intf);
1860		mutex_unlock(&dev->class->p->mutex);
1861	}
1862done:
1863	put_device(dev);
1864	return error;
1865 SysEntryError:
1866	if (MAJOR(dev->devt))
1867		device_remove_file(dev, &dev_attr_dev);
1868 DevAttrError:
1869	device_pm_remove(dev);
1870	dpm_sysfs_remove(dev);
1871 DPMError:
1872	bus_remove_device(dev);
1873 BusError:
1874	device_remove_attrs(dev);
1875 AttrsError:
1876	device_remove_class_symlinks(dev);
1877 SymlinkError:
1878	device_remove_file(dev, &dev_attr_uevent);
1879 attrError:
 
 
1880	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1881	glue_dir = get_glue_dir(dev);
1882	kobject_del(&dev->kobj);
1883 Error:
1884	cleanup_glue_dir(dev, glue_dir);
 
1885	put_device(parent);
1886name_error:
1887	kfree(dev->p);
1888	dev->p = NULL;
1889	goto done;
1890}
1891EXPORT_SYMBOL_GPL(device_add);
1892
1893/**
1894 * device_register - register a device with the system.
1895 * @dev: pointer to the device structure
1896 *
1897 * This happens in two clean steps - initialize the device
1898 * and add it to the system. The two steps can be called
1899 * separately, but this is the easiest and most common.
1900 * I.e. you should only call the two helpers separately if
1901 * have a clearly defined need to use and refcount the device
1902 * before it is added to the hierarchy.
1903 *
1904 * For more information, see the kerneldoc for device_initialize()
1905 * and device_add().
1906 *
1907 * NOTE: _Never_ directly free @dev after calling this function, even
1908 * if it returned an error! Always use put_device() to give up the
1909 * reference initialized in this function instead.
1910 */
1911int device_register(struct device *dev)
1912{
1913	device_initialize(dev);
1914	return device_add(dev);
1915}
1916EXPORT_SYMBOL_GPL(device_register);
1917
1918/**
1919 * get_device - increment reference count for device.
1920 * @dev: device.
1921 *
1922 * This simply forwards the call to kobject_get(), though
1923 * we do take care to provide for the case that we get a NULL
1924 * pointer passed in.
1925 */
1926struct device *get_device(struct device *dev)
1927{
1928	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1929}
1930EXPORT_SYMBOL_GPL(get_device);
1931
1932/**
1933 * put_device - decrement reference count.
1934 * @dev: device in question.
1935 */
1936void put_device(struct device *dev)
1937{
1938	/* might_sleep(); */
1939	if (dev)
1940		kobject_put(&dev->kobj);
1941}
1942EXPORT_SYMBOL_GPL(put_device);
1943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944/**
1945 * device_del - delete device from system.
1946 * @dev: device.
1947 *
1948 * This is the first part of the device unregistration
1949 * sequence. This removes the device from the lists we control
1950 * from here, has it removed from the other driver model
1951 * subsystems it was added to in device_add(), and removes it
1952 * from the kobject hierarchy.
1953 *
1954 * NOTE: this should be called manually _iff_ device_add() was
1955 * also called manually.
1956 */
1957void device_del(struct device *dev)
1958{
1959	struct device *parent = dev->parent;
1960	struct kobject *glue_dir = NULL;
1961	struct class_interface *class_intf;
1962
 
 
 
 
1963	/* Notify clients of device removal.  This call must come
1964	 * before dpm_sysfs_remove().
1965	 */
1966	if (dev->bus)
1967		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1968					     BUS_NOTIFY_DEL_DEVICE, dev);
1969
1970	dpm_sysfs_remove(dev);
1971	if (parent)
1972		klist_del(&dev->p->knode_parent);
1973	if (MAJOR(dev->devt)) {
1974		devtmpfs_delete_node(dev);
1975		device_remove_sys_dev_entry(dev);
1976		device_remove_file(dev, &dev_attr_dev);
1977	}
1978	if (dev->class) {
1979		device_remove_class_symlinks(dev);
1980
1981		mutex_lock(&dev->class->p->mutex);
1982		/* notify any interfaces that the device is now gone */
1983		list_for_each_entry(class_intf,
1984				    &dev->class->p->interfaces, node)
1985			if (class_intf->remove_dev)
1986				class_intf->remove_dev(dev, class_intf);
1987		/* remove the device from the class list */
1988		klist_del(&dev->knode_class);
1989		mutex_unlock(&dev->class->p->mutex);
1990	}
1991	device_remove_file(dev, &dev_attr_uevent);
1992	device_remove_attrs(dev);
1993	bus_remove_device(dev);
1994	device_pm_remove(dev);
1995	driver_deferred_probe_del(dev);
 
1996	device_remove_properties(dev);
1997	device_links_purge(dev);
1998
1999	/* Notify the platform of the removal, in case they
2000	 * need to do anything...
2001	 */
2002	if (platform_notify_remove)
2003		platform_notify_remove(dev);
2004	if (dev->bus)
2005		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2006					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2007	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2008	glue_dir = get_glue_dir(dev);
2009	kobject_del(&dev->kobj);
2010	cleanup_glue_dir(dev, glue_dir);
2011	put_device(parent);
2012}
2013EXPORT_SYMBOL_GPL(device_del);
2014
2015/**
2016 * device_unregister - unregister device from system.
2017 * @dev: device going away.
2018 *
2019 * We do this in two parts, like we do device_register(). First,
2020 * we remove it from all the subsystems with device_del(), then
2021 * we decrement the reference count via put_device(). If that
2022 * is the final reference count, the device will be cleaned up
2023 * via device_release() above. Otherwise, the structure will
2024 * stick around until the final reference to the device is dropped.
2025 */
2026void device_unregister(struct device *dev)
2027{
2028	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2029	device_del(dev);
2030	put_device(dev);
2031}
2032EXPORT_SYMBOL_GPL(device_unregister);
2033
2034static struct device *prev_device(struct klist_iter *i)
2035{
2036	struct klist_node *n = klist_prev(i);
2037	struct device *dev = NULL;
2038	struct device_private *p;
2039
2040	if (n) {
2041		p = to_device_private_parent(n);
2042		dev = p->device;
2043	}
2044	return dev;
2045}
2046
2047static struct device *next_device(struct klist_iter *i)
2048{
2049	struct klist_node *n = klist_next(i);
2050	struct device *dev = NULL;
2051	struct device_private *p;
2052
2053	if (n) {
2054		p = to_device_private_parent(n);
2055		dev = p->device;
2056	}
2057	return dev;
2058}
2059
2060/**
2061 * device_get_devnode - path of device node file
2062 * @dev: device
2063 * @mode: returned file access mode
2064 * @uid: returned file owner
2065 * @gid: returned file group
2066 * @tmp: possibly allocated string
2067 *
2068 * Return the relative path of a possible device node.
2069 * Non-default names may need to allocate a memory to compose
2070 * a name. This memory is returned in tmp and needs to be
2071 * freed by the caller.
2072 */
2073const char *device_get_devnode(struct device *dev,
2074			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2075			       const char **tmp)
2076{
2077	char *s;
2078
2079	*tmp = NULL;
2080
2081	/* the device type may provide a specific name */
2082	if (dev->type && dev->type->devnode)
2083		*tmp = dev->type->devnode(dev, mode, uid, gid);
2084	if (*tmp)
2085		return *tmp;
2086
2087	/* the class may provide a specific name */
2088	if (dev->class && dev->class->devnode)
2089		*tmp = dev->class->devnode(dev, mode);
2090	if (*tmp)
2091		return *tmp;
2092
2093	/* return name without allocation, tmp == NULL */
2094	if (strchr(dev_name(dev), '!') == NULL)
2095		return dev_name(dev);
2096
2097	/* replace '!' in the name with '/' */
2098	s = kstrdup(dev_name(dev), GFP_KERNEL);
2099	if (!s)
2100		return NULL;
2101	strreplace(s, '!', '/');
2102	return *tmp = s;
2103}
2104
2105/**
2106 * device_for_each_child - device child iterator.
2107 * @parent: parent struct device.
2108 * @fn: function to be called for each device.
2109 * @data: data for the callback.
2110 *
2111 * Iterate over @parent's child devices, and call @fn for each,
2112 * passing it @data.
2113 *
2114 * We check the return of @fn each time. If it returns anything
2115 * other than 0, we break out and return that value.
2116 */
2117int device_for_each_child(struct device *parent, void *data,
2118			  int (*fn)(struct device *dev, void *data))
2119{
2120	struct klist_iter i;
2121	struct device *child;
2122	int error = 0;
2123
2124	if (!parent->p)
2125		return 0;
2126
2127	klist_iter_init(&parent->p->klist_children, &i);
2128	while (!error && (child = next_device(&i)))
2129		error = fn(child, data);
2130	klist_iter_exit(&i);
2131	return error;
2132}
2133EXPORT_SYMBOL_GPL(device_for_each_child);
2134
2135/**
2136 * device_for_each_child_reverse - device child iterator in reversed order.
2137 * @parent: parent struct device.
2138 * @fn: function to be called for each device.
2139 * @data: data for the callback.
2140 *
2141 * Iterate over @parent's child devices, and call @fn for each,
2142 * passing it @data.
2143 *
2144 * We check the return of @fn each time. If it returns anything
2145 * other than 0, we break out and return that value.
2146 */
2147int device_for_each_child_reverse(struct device *parent, void *data,
2148				  int (*fn)(struct device *dev, void *data))
2149{
2150	struct klist_iter i;
2151	struct device *child;
2152	int error = 0;
2153
2154	if (!parent->p)
2155		return 0;
2156
2157	klist_iter_init(&parent->p->klist_children, &i);
2158	while ((child = prev_device(&i)) && !error)
2159		error = fn(child, data);
2160	klist_iter_exit(&i);
2161	return error;
2162}
2163EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2164
2165/**
2166 * device_find_child - device iterator for locating a particular device.
2167 * @parent: parent struct device
2168 * @match: Callback function to check device
2169 * @data: Data to pass to match function
2170 *
2171 * This is similar to the device_for_each_child() function above, but it
2172 * returns a reference to a device that is 'found' for later use, as
2173 * determined by the @match callback.
2174 *
2175 * The callback should return 0 if the device doesn't match and non-zero
2176 * if it does.  If the callback returns non-zero and a reference to the
2177 * current device can be obtained, this function will return to the caller
2178 * and not iterate over any more devices.
2179 *
2180 * NOTE: you will need to drop the reference with put_device() after use.
2181 */
2182struct device *device_find_child(struct device *parent, void *data,
2183				 int (*match)(struct device *dev, void *data))
2184{
2185	struct klist_iter i;
2186	struct device *child;
2187
2188	if (!parent)
2189		return NULL;
2190
2191	klist_iter_init(&parent->p->klist_children, &i);
2192	while ((child = next_device(&i)))
2193		if (match(child, data) && get_device(child))
2194			break;
2195	klist_iter_exit(&i);
2196	return child;
2197}
2198EXPORT_SYMBOL_GPL(device_find_child);
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200int __init devices_init(void)
2201{
2202	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2203	if (!devices_kset)
2204		return -ENOMEM;
2205	dev_kobj = kobject_create_and_add("dev", NULL);
2206	if (!dev_kobj)
2207		goto dev_kobj_err;
2208	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2209	if (!sysfs_dev_block_kobj)
2210		goto block_kobj_err;
2211	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2212	if (!sysfs_dev_char_kobj)
2213		goto char_kobj_err;
2214
2215	return 0;
2216
2217 char_kobj_err:
2218	kobject_put(sysfs_dev_block_kobj);
2219 block_kobj_err:
2220	kobject_put(dev_kobj);
2221 dev_kobj_err:
2222	kset_unregister(devices_kset);
2223	return -ENOMEM;
2224}
2225
2226static int device_check_offline(struct device *dev, void *not_used)
2227{
2228	int ret;
2229
2230	ret = device_for_each_child(dev, NULL, device_check_offline);
2231	if (ret)
2232		return ret;
2233
2234	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2235}
2236
2237/**
2238 * device_offline - Prepare the device for hot-removal.
2239 * @dev: Device to be put offline.
2240 *
2241 * Execute the device bus type's .offline() callback, if present, to prepare
2242 * the device for a subsequent hot-removal.  If that succeeds, the device must
2243 * not be used until either it is removed or its bus type's .online() callback
2244 * is executed.
2245 *
2246 * Call under device_hotplug_lock.
2247 */
2248int device_offline(struct device *dev)
2249{
2250	int ret;
2251
2252	if (dev->offline_disabled)
2253		return -EPERM;
2254
2255	ret = device_for_each_child(dev, NULL, device_check_offline);
2256	if (ret)
2257		return ret;
2258
2259	device_lock(dev);
2260	if (device_supports_offline(dev)) {
2261		if (dev->offline) {
2262			ret = 1;
2263		} else {
2264			ret = dev->bus->offline(dev);
2265			if (!ret) {
2266				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2267				dev->offline = true;
2268			}
2269		}
2270	}
2271	device_unlock(dev);
2272
2273	return ret;
2274}
2275
2276/**
2277 * device_online - Put the device back online after successful device_offline().
2278 * @dev: Device to be put back online.
2279 *
2280 * If device_offline() has been successfully executed for @dev, but the device
2281 * has not been removed subsequently, execute its bus type's .online() callback
2282 * to indicate that the device can be used again.
2283 *
2284 * Call under device_hotplug_lock.
2285 */
2286int device_online(struct device *dev)
2287{
2288	int ret = 0;
2289
2290	device_lock(dev);
2291	if (device_supports_offline(dev)) {
2292		if (dev->offline) {
2293			ret = dev->bus->online(dev);
2294			if (!ret) {
2295				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2296				dev->offline = false;
2297			}
2298		} else {
2299			ret = 1;
2300		}
2301	}
2302	device_unlock(dev);
2303
2304	return ret;
2305}
2306
2307struct root_device {
2308	struct device dev;
2309	struct module *owner;
2310};
2311
2312static inline struct root_device *to_root_device(struct device *d)
2313{
2314	return container_of(d, struct root_device, dev);
2315}
2316
2317static void root_device_release(struct device *dev)
2318{
2319	kfree(to_root_device(dev));
2320}
2321
2322/**
2323 * __root_device_register - allocate and register a root device
2324 * @name: root device name
2325 * @owner: owner module of the root device, usually THIS_MODULE
2326 *
2327 * This function allocates a root device and registers it
2328 * using device_register(). In order to free the returned
2329 * device, use root_device_unregister().
2330 *
2331 * Root devices are dummy devices which allow other devices
2332 * to be grouped under /sys/devices. Use this function to
2333 * allocate a root device and then use it as the parent of
2334 * any device which should appear under /sys/devices/{name}
2335 *
2336 * The /sys/devices/{name} directory will also contain a
2337 * 'module' symlink which points to the @owner directory
2338 * in sysfs.
2339 *
2340 * Returns &struct device pointer on success, or ERR_PTR() on error.
2341 *
2342 * Note: You probably want to use root_device_register().
2343 */
2344struct device *__root_device_register(const char *name, struct module *owner)
2345{
2346	struct root_device *root;
2347	int err = -ENOMEM;
2348
2349	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2350	if (!root)
2351		return ERR_PTR(err);
2352
2353	err = dev_set_name(&root->dev, "%s", name);
2354	if (err) {
2355		kfree(root);
2356		return ERR_PTR(err);
2357	}
2358
2359	root->dev.release = root_device_release;
2360
2361	err = device_register(&root->dev);
2362	if (err) {
2363		put_device(&root->dev);
2364		return ERR_PTR(err);
2365	}
2366
2367#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2368	if (owner) {
2369		struct module_kobject *mk = &owner->mkobj;
2370
2371		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2372		if (err) {
2373			device_unregister(&root->dev);
2374			return ERR_PTR(err);
2375		}
2376		root->owner = owner;
2377	}
2378#endif
2379
2380	return &root->dev;
2381}
2382EXPORT_SYMBOL_GPL(__root_device_register);
2383
2384/**
2385 * root_device_unregister - unregister and free a root device
2386 * @dev: device going away
2387 *
2388 * This function unregisters and cleans up a device that was created by
2389 * root_device_register().
2390 */
2391void root_device_unregister(struct device *dev)
2392{
2393	struct root_device *root = to_root_device(dev);
2394
2395	if (root->owner)
2396		sysfs_remove_link(&root->dev.kobj, "module");
2397
2398	device_unregister(dev);
2399}
2400EXPORT_SYMBOL_GPL(root_device_unregister);
2401
2402
2403static void device_create_release(struct device *dev)
2404{
2405	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2406	kfree(dev);
2407}
2408
2409static struct device *
2410device_create_groups_vargs(struct class *class, struct device *parent,
2411			   dev_t devt, void *drvdata,
2412			   const struct attribute_group **groups,
2413			   const char *fmt, va_list args)
2414{
2415	struct device *dev = NULL;
2416	int retval = -ENODEV;
2417
2418	if (class == NULL || IS_ERR(class))
2419		goto error;
2420
2421	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2422	if (!dev) {
2423		retval = -ENOMEM;
2424		goto error;
2425	}
2426
2427	device_initialize(dev);
2428	dev->devt = devt;
2429	dev->class = class;
2430	dev->parent = parent;
2431	dev->groups = groups;
2432	dev->release = device_create_release;
2433	dev_set_drvdata(dev, drvdata);
2434
2435	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2436	if (retval)
2437		goto error;
2438
2439	retval = device_add(dev);
2440	if (retval)
2441		goto error;
2442
2443	return dev;
2444
2445error:
2446	put_device(dev);
2447	return ERR_PTR(retval);
2448}
2449
2450/**
2451 * device_create_vargs - creates a device and registers it with sysfs
2452 * @class: pointer to the struct class that this device should be registered to
2453 * @parent: pointer to the parent struct device of this new device, if any
2454 * @devt: the dev_t for the char device to be added
2455 * @drvdata: the data to be added to the device for callbacks
2456 * @fmt: string for the device's name
2457 * @args: va_list for the device's name
2458 *
2459 * This function can be used by char device classes.  A struct device
2460 * will be created in sysfs, registered to the specified class.
2461 *
2462 * A "dev" file will be created, showing the dev_t for the device, if
2463 * the dev_t is not 0,0.
2464 * If a pointer to a parent struct device is passed in, the newly created
2465 * struct device will be a child of that device in sysfs.
2466 * The pointer to the struct device will be returned from the call.
2467 * Any further sysfs files that might be required can be created using this
2468 * pointer.
2469 *
2470 * Returns &struct device pointer on success, or ERR_PTR() on error.
2471 *
2472 * Note: the struct class passed to this function must have previously
2473 * been created with a call to class_create().
2474 */
2475struct device *device_create_vargs(struct class *class, struct device *parent,
2476				   dev_t devt, void *drvdata, const char *fmt,
2477				   va_list args)
2478{
2479	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2480					  fmt, args);
2481}
2482EXPORT_SYMBOL_GPL(device_create_vargs);
2483
2484/**
2485 * device_create - creates a device and registers it with sysfs
2486 * @class: pointer to the struct class that this device should be registered to
2487 * @parent: pointer to the parent struct device of this new device, if any
2488 * @devt: the dev_t for the char device to be added
2489 * @drvdata: the data to be added to the device for callbacks
2490 * @fmt: string for the device's name
2491 *
2492 * This function can be used by char device classes.  A struct device
2493 * will be created in sysfs, registered to the specified class.
2494 *
2495 * A "dev" file will be created, showing the dev_t for the device, if
2496 * the dev_t is not 0,0.
2497 * If a pointer to a parent struct device is passed in, the newly created
2498 * struct device will be a child of that device in sysfs.
2499 * The pointer to the struct device will be returned from the call.
2500 * Any further sysfs files that might be required can be created using this
2501 * pointer.
2502 *
2503 * Returns &struct device pointer on success, or ERR_PTR() on error.
2504 *
2505 * Note: the struct class passed to this function must have previously
2506 * been created with a call to class_create().
2507 */
2508struct device *device_create(struct class *class, struct device *parent,
2509			     dev_t devt, void *drvdata, const char *fmt, ...)
2510{
2511	va_list vargs;
2512	struct device *dev;
2513
2514	va_start(vargs, fmt);
2515	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2516	va_end(vargs);
2517	return dev;
2518}
2519EXPORT_SYMBOL_GPL(device_create);
2520
2521/**
2522 * device_create_with_groups - creates a device and registers it with sysfs
2523 * @class: pointer to the struct class that this device should be registered to
2524 * @parent: pointer to the parent struct device of this new device, if any
2525 * @devt: the dev_t for the char device to be added
2526 * @drvdata: the data to be added to the device for callbacks
2527 * @groups: NULL-terminated list of attribute groups to be created
2528 * @fmt: string for the device's name
2529 *
2530 * This function can be used by char device classes.  A struct device
2531 * will be created in sysfs, registered to the specified class.
2532 * Additional attributes specified in the groups parameter will also
2533 * be created automatically.
2534 *
2535 * A "dev" file will be created, showing the dev_t for the device, if
2536 * the dev_t is not 0,0.
2537 * If a pointer to a parent struct device is passed in, the newly created
2538 * struct device will be a child of that device in sysfs.
2539 * The pointer to the struct device will be returned from the call.
2540 * Any further sysfs files that might be required can be created using this
2541 * pointer.
2542 *
2543 * Returns &struct device pointer on success, or ERR_PTR() on error.
2544 *
2545 * Note: the struct class passed to this function must have previously
2546 * been created with a call to class_create().
2547 */
2548struct device *device_create_with_groups(struct class *class,
2549					 struct device *parent, dev_t devt,
2550					 void *drvdata,
2551					 const struct attribute_group **groups,
2552					 const char *fmt, ...)
2553{
2554	va_list vargs;
2555	struct device *dev;
2556
2557	va_start(vargs, fmt);
2558	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2559					 fmt, vargs);
2560	va_end(vargs);
2561	return dev;
2562}
2563EXPORT_SYMBOL_GPL(device_create_with_groups);
2564
2565static int __match_devt(struct device *dev, const void *data)
2566{
2567	const dev_t *devt = data;
2568
2569	return dev->devt == *devt;
2570}
2571
2572/**
2573 * device_destroy - removes a device that was created with device_create()
2574 * @class: pointer to the struct class that this device was registered with
2575 * @devt: the dev_t of the device that was previously registered
2576 *
2577 * This call unregisters and cleans up a device that was created with a
2578 * call to device_create().
2579 */
2580void device_destroy(struct class *class, dev_t devt)
2581{
2582	struct device *dev;
2583
2584	dev = class_find_device(class, NULL, &devt, __match_devt);
2585	if (dev) {
2586		put_device(dev);
2587		device_unregister(dev);
2588	}
2589}
2590EXPORT_SYMBOL_GPL(device_destroy);
2591
2592/**
2593 * device_rename - renames a device
2594 * @dev: the pointer to the struct device to be renamed
2595 * @new_name: the new name of the device
2596 *
2597 * It is the responsibility of the caller to provide mutual
2598 * exclusion between two different calls of device_rename
2599 * on the same device to ensure that new_name is valid and
2600 * won't conflict with other devices.
2601 *
2602 * Note: Don't call this function.  Currently, the networking layer calls this
2603 * function, but that will change.  The following text from Kay Sievers offers
2604 * some insight:
2605 *
2606 * Renaming devices is racy at many levels, symlinks and other stuff are not
2607 * replaced atomically, and you get a "move" uevent, but it's not easy to
2608 * connect the event to the old and new device. Device nodes are not renamed at
2609 * all, there isn't even support for that in the kernel now.
2610 *
2611 * In the meantime, during renaming, your target name might be taken by another
2612 * driver, creating conflicts. Or the old name is taken directly after you
2613 * renamed it -- then you get events for the same DEVPATH, before you even see
2614 * the "move" event. It's just a mess, and nothing new should ever rely on
2615 * kernel device renaming. Besides that, it's not even implemented now for
2616 * other things than (driver-core wise very simple) network devices.
2617 *
2618 * We are currently about to change network renaming in udev to completely
2619 * disallow renaming of devices in the same namespace as the kernel uses,
2620 * because we can't solve the problems properly, that arise with swapping names
2621 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2622 * be allowed to some other name than eth[0-9]*, for the aforementioned
2623 * reasons.
2624 *
2625 * Make up a "real" name in the driver before you register anything, or add
2626 * some other attributes for userspace to find the device, or use udev to add
2627 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2628 * don't even want to get into that and try to implement the missing pieces in
2629 * the core. We really have other pieces to fix in the driver core mess. :)
2630 */
2631int device_rename(struct device *dev, const char *new_name)
2632{
2633	struct kobject *kobj = &dev->kobj;
2634	char *old_device_name = NULL;
2635	int error;
2636
2637	dev = get_device(dev);
2638	if (!dev)
2639		return -EINVAL;
2640
2641	dev_dbg(dev, "renaming to %s\n", new_name);
2642
2643	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2644	if (!old_device_name) {
2645		error = -ENOMEM;
2646		goto out;
2647	}
2648
2649	if (dev->class) {
2650		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2651					     kobj, old_device_name,
2652					     new_name, kobject_namespace(kobj));
2653		if (error)
2654			goto out;
2655	}
2656
2657	error = kobject_rename(kobj, new_name);
2658	if (error)
2659		goto out;
2660
2661out:
2662	put_device(dev);
2663
2664	kfree(old_device_name);
2665
2666	return error;
2667}
2668EXPORT_SYMBOL_GPL(device_rename);
2669
2670static int device_move_class_links(struct device *dev,
2671				   struct device *old_parent,
2672				   struct device *new_parent)
2673{
2674	int error = 0;
2675
2676	if (old_parent)
2677		sysfs_remove_link(&dev->kobj, "device");
2678	if (new_parent)
2679		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2680					  "device");
2681	return error;
2682}
2683
2684/**
2685 * device_move - moves a device to a new parent
2686 * @dev: the pointer to the struct device to be moved
2687 * @new_parent: the new parent of the device (can by NULL)
2688 * @dpm_order: how to reorder the dpm_list
2689 */
2690int device_move(struct device *dev, struct device *new_parent,
2691		enum dpm_order dpm_order)
2692{
2693	int error;
2694	struct device *old_parent;
2695	struct kobject *new_parent_kobj;
2696
2697	dev = get_device(dev);
2698	if (!dev)
2699		return -EINVAL;
2700
2701	device_pm_lock();
2702	new_parent = get_device(new_parent);
2703	new_parent_kobj = get_device_parent(dev, new_parent);
 
 
 
 
 
2704
2705	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2706		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2707	error = kobject_move(&dev->kobj, new_parent_kobj);
2708	if (error) {
2709		cleanup_glue_dir(dev, new_parent_kobj);
2710		put_device(new_parent);
2711		goto out;
2712	}
2713	old_parent = dev->parent;
2714	dev->parent = new_parent;
2715	if (old_parent)
2716		klist_remove(&dev->p->knode_parent);
2717	if (new_parent) {
2718		klist_add_tail(&dev->p->knode_parent,
2719			       &new_parent->p->klist_children);
2720		set_dev_node(dev, dev_to_node(new_parent));
2721	}
2722
2723	if (dev->class) {
2724		error = device_move_class_links(dev, old_parent, new_parent);
2725		if (error) {
2726			/* We ignore errors on cleanup since we're hosed anyway... */
2727			device_move_class_links(dev, new_parent, old_parent);
2728			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2729				if (new_parent)
2730					klist_remove(&dev->p->knode_parent);
2731				dev->parent = old_parent;
2732				if (old_parent) {
2733					klist_add_tail(&dev->p->knode_parent,
2734						       &old_parent->p->klist_children);
2735					set_dev_node(dev, dev_to_node(old_parent));
2736				}
2737			}
2738			cleanup_glue_dir(dev, new_parent_kobj);
2739			put_device(new_parent);
2740			goto out;
2741		}
2742	}
2743	switch (dpm_order) {
2744	case DPM_ORDER_NONE:
2745		break;
2746	case DPM_ORDER_DEV_AFTER_PARENT:
2747		device_pm_move_after(dev, new_parent);
2748		devices_kset_move_after(dev, new_parent);
2749		break;
2750	case DPM_ORDER_PARENT_BEFORE_DEV:
2751		device_pm_move_before(new_parent, dev);
2752		devices_kset_move_before(new_parent, dev);
2753		break;
2754	case DPM_ORDER_DEV_LAST:
2755		device_pm_move_last(dev);
2756		devices_kset_move_last(dev);
2757		break;
2758	}
2759
2760	put_device(old_parent);
2761out:
2762	device_pm_unlock();
2763	put_device(dev);
2764	return error;
2765}
2766EXPORT_SYMBOL_GPL(device_move);
2767
2768/**
2769 * device_shutdown - call ->shutdown() on each device to shutdown.
2770 */
2771void device_shutdown(void)
2772{
2773	struct device *dev, *parent;
2774
 
 
 
 
 
2775	spin_lock(&devices_kset->list_lock);
2776	/*
2777	 * Walk the devices list backward, shutting down each in turn.
2778	 * Beware that device unplug events may also start pulling
2779	 * devices offline, even as the system is shutting down.
2780	 */
2781	while (!list_empty(&devices_kset->list)) {
2782		dev = list_entry(devices_kset->list.prev, struct device,
2783				kobj.entry);
2784
2785		/*
2786		 * hold reference count of device's parent to
2787		 * prevent it from being freed because parent's
2788		 * lock is to be held
2789		 */
2790		parent = get_device(dev->parent);
2791		get_device(dev);
2792		/*
2793		 * Make sure the device is off the kset list, in the
2794		 * event that dev->*->shutdown() doesn't remove it.
2795		 */
2796		list_del_init(&dev->kobj.entry);
2797		spin_unlock(&devices_kset->list_lock);
2798
2799		/* hold lock to avoid race with probe/release */
2800		if (parent)
2801			device_lock(parent);
2802		device_lock(dev);
2803
2804		/* Don't allow any more runtime suspends */
2805		pm_runtime_get_noresume(dev);
2806		pm_runtime_barrier(dev);
2807
2808		if (dev->class && dev->class->shutdown_pre) {
2809			if (initcall_debug)
2810				dev_info(dev, "shutdown_pre\n");
2811			dev->class->shutdown_pre(dev);
2812		}
2813		if (dev->bus && dev->bus->shutdown) {
2814			if (initcall_debug)
2815				dev_info(dev, "shutdown\n");
2816			dev->bus->shutdown(dev);
2817		} else if (dev->driver && dev->driver->shutdown) {
2818			if (initcall_debug)
2819				dev_info(dev, "shutdown\n");
2820			dev->driver->shutdown(dev);
2821		}
2822
2823		device_unlock(dev);
2824		if (parent)
2825			device_unlock(parent);
2826
2827		put_device(dev);
2828		put_device(parent);
2829
2830		spin_lock(&devices_kset->list_lock);
2831	}
2832	spin_unlock(&devices_kset->list_lock);
2833}
2834
2835/*
2836 * Device logging functions
2837 */
2838
2839#ifdef CONFIG_PRINTK
2840static int
2841create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2842{
2843	const char *subsys;
2844	size_t pos = 0;
2845
2846	if (dev->class)
2847		subsys = dev->class->name;
2848	else if (dev->bus)
2849		subsys = dev->bus->name;
2850	else
2851		return 0;
2852
2853	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2854	if (pos >= hdrlen)
2855		goto overflow;
2856
2857	/*
2858	 * Add device identifier DEVICE=:
2859	 *   b12:8         block dev_t
2860	 *   c127:3        char dev_t
2861	 *   n8            netdev ifindex
2862	 *   +sound:card0  subsystem:devname
2863	 */
2864	if (MAJOR(dev->devt)) {
2865		char c;
2866
2867		if (strcmp(subsys, "block") == 0)
2868			c = 'b';
2869		else
2870			c = 'c';
2871		pos++;
2872		pos += snprintf(hdr + pos, hdrlen - pos,
2873				"DEVICE=%c%u:%u",
2874				c, MAJOR(dev->devt), MINOR(dev->devt));
2875	} else if (strcmp(subsys, "net") == 0) {
2876		struct net_device *net = to_net_dev(dev);
2877
2878		pos++;
2879		pos += snprintf(hdr + pos, hdrlen - pos,
2880				"DEVICE=n%u", net->ifindex);
2881	} else {
2882		pos++;
2883		pos += snprintf(hdr + pos, hdrlen - pos,
2884				"DEVICE=+%s:%s", subsys, dev_name(dev));
2885	}
2886
2887	if (pos >= hdrlen)
2888		goto overflow;
2889
2890	return pos;
2891
2892overflow:
2893	dev_WARN(dev, "device/subsystem name too long");
2894	return 0;
2895}
2896
2897int dev_vprintk_emit(int level, const struct device *dev,
2898		     const char *fmt, va_list args)
2899{
2900	char hdr[128];
2901	size_t hdrlen;
2902
2903	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2904
2905	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2906}
2907EXPORT_SYMBOL(dev_vprintk_emit);
2908
2909int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2910{
2911	va_list args;
2912	int r;
2913
2914	va_start(args, fmt);
2915
2916	r = dev_vprintk_emit(level, dev, fmt, args);
2917
2918	va_end(args);
2919
2920	return r;
2921}
2922EXPORT_SYMBOL(dev_printk_emit);
2923
2924static void __dev_printk(const char *level, const struct device *dev,
2925			struct va_format *vaf)
2926{
2927	if (dev)
2928		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2929				dev_driver_string(dev), dev_name(dev), vaf);
2930	else
2931		printk("%s(NULL device *): %pV", level, vaf);
2932}
2933
2934void dev_printk(const char *level, const struct device *dev,
2935		const char *fmt, ...)
2936{
2937	struct va_format vaf;
2938	va_list args;
2939
2940	va_start(args, fmt);
2941
2942	vaf.fmt = fmt;
2943	vaf.va = &args;
2944
2945	__dev_printk(level, dev, &vaf);
2946
2947	va_end(args);
2948}
2949EXPORT_SYMBOL(dev_printk);
2950
2951#define define_dev_printk_level(func, kern_level)		\
2952void func(const struct device *dev, const char *fmt, ...)	\
2953{								\
2954	struct va_format vaf;					\
2955	va_list args;						\
2956								\
2957	va_start(args, fmt);					\
2958								\
2959	vaf.fmt = fmt;						\
2960	vaf.va = &args;						\
2961								\
2962	__dev_printk(kern_level, dev, &vaf);			\
2963								\
2964	va_end(args);						\
2965}								\
2966EXPORT_SYMBOL(func);
2967
2968define_dev_printk_level(dev_emerg, KERN_EMERG);
2969define_dev_printk_level(dev_alert, KERN_ALERT);
2970define_dev_printk_level(dev_crit, KERN_CRIT);
2971define_dev_printk_level(dev_err, KERN_ERR);
2972define_dev_printk_level(dev_warn, KERN_WARNING);
2973define_dev_printk_level(dev_notice, KERN_NOTICE);
2974define_dev_printk_level(_dev_info, KERN_INFO);
2975
2976#endif
2977
2978static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2979{
2980	return fwnode && !IS_ERR(fwnode->secondary);
2981}
2982
2983/**
2984 * set_primary_fwnode - Change the primary firmware node of a given device.
2985 * @dev: Device to handle.
2986 * @fwnode: New primary firmware node of the device.
2987 *
2988 * Set the device's firmware node pointer to @fwnode, but if a secondary
2989 * firmware node of the device is present, preserve it.
2990 */
2991void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2992{
2993	if (fwnode) {
2994		struct fwnode_handle *fn = dev->fwnode;
2995
2996		if (fwnode_is_primary(fn))
2997			fn = fn->secondary;
2998
2999		if (fn) {
3000			WARN_ON(fwnode->secondary);
3001			fwnode->secondary = fn;
3002		}
3003		dev->fwnode = fwnode;
3004	} else {
3005		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3006			dev->fwnode->secondary : NULL;
3007	}
3008}
3009EXPORT_SYMBOL_GPL(set_primary_fwnode);
3010
3011/**
3012 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3013 * @dev: Device to handle.
3014 * @fwnode: New secondary firmware node of the device.
3015 *
3016 * If a primary firmware node of the device is present, set its secondary
3017 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3018 * @fwnode.
3019 */
3020void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3021{
3022	if (fwnode)
3023		fwnode->secondary = ERR_PTR(-ENODEV);
3024
3025	if (fwnode_is_primary(dev->fwnode))
3026		dev->fwnode->secondary = fwnode;
3027	else
3028		dev->fwnode = fwnode;
3029}
3030
3031/**
3032 * device_set_of_node_from_dev - reuse device-tree node of another device
3033 * @dev: device whose device-tree node is being set
3034 * @dev2: device whose device-tree node is being reused
3035 *
3036 * Takes another reference to the new device-tree node after first dropping
3037 * any reference held to the old node.
3038 */
3039void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3040{
3041	of_node_put(dev->of_node);
3042	dev->of_node = of_node_get(dev2->of_node);
3043	dev->of_node_reused = true;
3044}
3045EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
  72
  73int device_links_read_lock_held(void)
  74{
  75	return srcu_read_lock_held(&device_links_srcu);
  76}
  77#else /* !CONFIG_SRCU */
  78static DECLARE_RWSEM(device_links_lock);
  79
  80static inline void device_links_write_lock(void)
  81{
  82	down_write(&device_links_lock);
  83}
  84
  85static inline void device_links_write_unlock(void)
  86{
  87	up_write(&device_links_lock);
  88}
  89
  90int device_links_read_lock(void)
  91{
  92	down_read(&device_links_lock);
  93	return 0;
  94}
  95
  96void device_links_read_unlock(int not_used)
  97{
  98	up_read(&device_links_lock);
  99}
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102int device_links_read_lock_held(void)
 103{
 104	return lockdep_is_held(&device_links_lock);
 105}
 106#endif
 107#endif /* !CONFIG_SRCU */
 108
 109/**
 110 * device_is_dependent - Check if one device depends on another one
 111 * @dev: Device to check dependencies for.
 112 * @target: Device to check against.
 113 *
 114 * Check if @target depends on @dev or any device dependent on it (its child or
 115 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116 */
 117static int device_is_dependent(struct device *dev, void *target)
 118{
 119	struct device_link *link;
 120	int ret;
 121
 122	if (dev == target)
 123		return 1;
 124
 125	ret = device_for_each_child(dev, target, device_is_dependent);
 126	if (ret)
 127		return ret;
 128
 129	list_for_each_entry(link, &dev->links.consumers, s_node) {
 130		if (link->consumer == target)
 131			return 1;
 132
 133		ret = device_is_dependent(link->consumer, target);
 134		if (ret)
 135			break;
 136	}
 137	return ret;
 138}
 139
 140static void device_link_init_status(struct device_link *link,
 141				    struct device *consumer,
 142				    struct device *supplier)
 143{
 144	switch (supplier->links.status) {
 145	case DL_DEV_PROBING:
 146		switch (consumer->links.status) {
 147		case DL_DEV_PROBING:
 148			/*
 149			 * A consumer driver can create a link to a supplier
 150			 * that has not completed its probing yet as long as it
 151			 * knows that the supplier is already functional (for
 152			 * example, it has just acquired some resources from the
 153			 * supplier).
 154			 */
 155			link->status = DL_STATE_CONSUMER_PROBE;
 156			break;
 157		default:
 158			link->status = DL_STATE_DORMANT;
 159			break;
 160		}
 161		break;
 162	case DL_DEV_DRIVER_BOUND:
 163		switch (consumer->links.status) {
 164		case DL_DEV_PROBING:
 165			link->status = DL_STATE_CONSUMER_PROBE;
 166			break;
 167		case DL_DEV_DRIVER_BOUND:
 168			link->status = DL_STATE_ACTIVE;
 169			break;
 170		default:
 171			link->status = DL_STATE_AVAILABLE;
 172			break;
 173		}
 174		break;
 175	case DL_DEV_UNBINDING:
 176		link->status = DL_STATE_SUPPLIER_UNBIND;
 177		break;
 178	default:
 179		link->status = DL_STATE_DORMANT;
 180		break;
 181	}
 182}
 183
 184static int device_reorder_to_tail(struct device *dev, void *not_used)
 185{
 186	struct device_link *link;
 187
 188	/*
 189	 * Devices that have not been registered yet will be put to the ends
 190	 * of the lists during the registration, so skip them here.
 191	 */
 192	if (device_is_registered(dev))
 193		devices_kset_move_last(dev);
 194
 195	if (device_pm_initialized(dev))
 196		device_pm_move_last(dev);
 197
 198	device_for_each_child(dev, NULL, device_reorder_to_tail);
 199	list_for_each_entry(link, &dev->links.consumers, s_node)
 200		device_reorder_to_tail(link->consumer, NULL);
 201
 202	return 0;
 203}
 204
 205/**
 206 * device_pm_move_to_tail - Move set of devices to the end of device lists
 207 * @dev: Device to move
 208 *
 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210 *
 211 * It moves the @dev along with all of its children and all of its consumers
 212 * to the ends of the device_kset and dpm_list, recursively.
 213 */
 214void device_pm_move_to_tail(struct device *dev)
 215{
 216	int idx;
 217
 218	idx = device_links_read_lock();
 219	device_pm_lock();
 220	device_reorder_to_tail(dev, NULL);
 221	device_pm_unlock();
 222	device_links_read_unlock(idx);
 223}
 224
 225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227			       DL_FLAG_AUTOPROBE_CONSUMER)
 228
 229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231
 232/**
 233 * device_link_add - Create a link between two devices.
 234 * @consumer: Consumer end of the link.
 235 * @supplier: Supplier end of the link.
 236 * @flags: Link flags.
 237 *
 238 * The caller is responsible for the proper synchronization of the link creation
 239 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240 * runtime PM framework to take the link into account.  Second, if the
 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242 * be forced into the active metastate and reference-counted upon the creation
 243 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244 * ignored.
 245 *
 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247 * expected to release the link returned by it directly with the help of either
 248 * device_link_del() or device_link_remove().
 249 *
 250 * If that flag is not set, however, the caller of this function is handing the
 251 * management of the link over to the driver core entirely and its return value
 252 * can only be used to check whether or not the link is present.  In that case,
 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254 * flags can be used to indicate to the driver core when the link can be safely
 255 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256 * that the link is not going to be used (by the given caller of this function)
 257 * after unbinding the consumer or supplier driver, respectively, from its
 258 * device, so the link can be deleted at that point.  If none of them is set,
 259 * the link will be maintained until one of the devices pointed to by it (either
 260 * the consumer or the supplier) is unregistered.
 261 *
 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265 * be used to request the driver core to automaticall probe for a consmer
 266 * driver after successfully binding a driver to the supplier device.
 267 *
 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270 * the same time is invalid and will cause NULL to be returned upfront.
 271 * However, if a device link between the given @consumer and @supplier pair
 272 * exists already when this function is called for them, the existing link will
 273 * be returned regardless of its current type and status (the link's flags may
 274 * be modified then).  The caller of this function is then expected to treat
 275 * the link as though it has just been created, so (in particular) if
 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277 * explicitly when not needed any more (as stated above).
 278 *
 279 * A side effect of the link creation is re-ordering of dpm_list and the
 280 * devices_kset list by moving the consumer device and all devices depending
 281 * on it to the ends of these lists (that does not happen to devices that have
 282 * not been registered when this function is called).
 283 *
 284 * The supplier device is required to be registered when this function is called
 285 * and NULL will be returned if that is not the case.  The consumer device need
 286 * not be registered, however.
 287 */
 288struct device_link *device_link_add(struct device *consumer,
 289				    struct device *supplier, u32 flags)
 290{
 291	struct device_link *link;
 292
 293	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 294	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 295	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298		return NULL;
 299
 300	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301		if (pm_runtime_get_sync(supplier) < 0) {
 302			pm_runtime_put_noidle(supplier);
 303			return NULL;
 304		}
 305	}
 306
 307	if (!(flags & DL_FLAG_STATELESS))
 308		flags |= DL_FLAG_MANAGED;
 309
 310	device_links_write_lock();
 311	device_pm_lock();
 312
 313	/*
 314	 * If the supplier has not been fully registered yet or there is a
 315	 * reverse dependency between the consumer and the supplier already in
 316	 * the graph, return NULL.
 317	 */
 318	if (!device_pm_initialized(supplier)
 319	    || device_is_dependent(consumer, supplier)) {
 320		link = NULL;
 321		goto out;
 322	}
 323
 324	/*
 325	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328	 */
 329	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331
 332	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333		if (link->consumer != consumer)
 334			continue;
 335
 336		if (flags & DL_FLAG_PM_RUNTIME) {
 337			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338				pm_runtime_new_link(consumer);
 339				link->flags |= DL_FLAG_PM_RUNTIME;
 340			}
 341			if (flags & DL_FLAG_RPM_ACTIVE)
 342				refcount_inc(&link->rpm_active);
 343		}
 344
 345		if (flags & DL_FLAG_STATELESS) {
 346			link->flags |= DL_FLAG_STATELESS;
 347			kref_get(&link->kref);
 348			goto out;
 349		}
 350
 351		/*
 352		 * If the life time of the link following from the new flags is
 353		 * longer than indicated by the flags of the existing link,
 354		 * update the existing link to stay around longer.
 355		 */
 356		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360			}
 361		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 364		}
 365		if (!(link->flags & DL_FLAG_MANAGED)) {
 366			kref_get(&link->kref);
 367			link->flags |= DL_FLAG_MANAGED;
 368			device_link_init_status(link, consumer, supplier);
 369		}
 370		goto out;
 371	}
 372
 373	link = kzalloc(sizeof(*link), GFP_KERNEL);
 374	if (!link)
 375		goto out;
 376
 377	refcount_set(&link->rpm_active, 1);
 378
 379	if (flags & DL_FLAG_PM_RUNTIME) {
 380		if (flags & DL_FLAG_RPM_ACTIVE)
 381			refcount_inc(&link->rpm_active);
 382
 
 
 
 
 
 
 383		pm_runtime_new_link(consumer);
 384	}
 385
 386	get_device(supplier);
 387	link->supplier = supplier;
 388	INIT_LIST_HEAD(&link->s_node);
 389	get_device(consumer);
 390	link->consumer = consumer;
 391	INIT_LIST_HEAD(&link->c_node);
 392	link->flags = flags;
 393	kref_init(&link->kref);
 394
 395	/* Determine the initial link state. */
 396	if (flags & DL_FLAG_STATELESS)
 397		link->status = DL_STATE_NONE;
 398	else
 399		device_link_init_status(link, consumer, supplier);
 
 
 
 
 
 
 
 
 
 
 400
 401	/*
 402	 * Some callers expect the link creation during consumer driver probe to
 403	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404	 */
 405	if (link->status == DL_STATE_CONSUMER_PROBE &&
 406	    flags & DL_FLAG_PM_RUNTIME)
 407		pm_runtime_resume(supplier);
 
 
 
 
 
 
 
 
 
 
 
 408
 409	/*
 410	 * Move the consumer and all of the devices depending on it to the end
 411	 * of dpm_list and the devices_kset list.
 412	 *
 413	 * It is necessary to hold dpm_list locked throughout all that or else
 414	 * we may end up suspending with a wrong ordering of it.
 415	 */
 416	device_reorder_to_tail(consumer, NULL);
 417
 418	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420
 421	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422
 423 out:
 424	device_pm_unlock();
 425	device_links_write_unlock();
 426
 427	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428		pm_runtime_put(supplier);
 429
 430	return link;
 431}
 432EXPORT_SYMBOL_GPL(device_link_add);
 433
 434static void device_link_free(struct device_link *link)
 435{
 436	while (refcount_dec_not_one(&link->rpm_active))
 437		pm_runtime_put(link->supplier);
 438
 439	put_device(link->consumer);
 440	put_device(link->supplier);
 441	kfree(link);
 442}
 443
 444#ifdef CONFIG_SRCU
 445static void __device_link_free_srcu(struct rcu_head *rhead)
 446{
 447	device_link_free(container_of(rhead, struct device_link, rcu_head));
 448}
 449
 450static void __device_link_del(struct kref *kref)
 451{
 452	struct device_link *link = container_of(kref, struct device_link, kref);
 453
 454	dev_dbg(link->consumer, "Dropping the link to %s\n",
 455		dev_name(link->supplier));
 456
 457	if (link->flags & DL_FLAG_PM_RUNTIME)
 458		pm_runtime_drop_link(link->consumer);
 459
 460	list_del_rcu(&link->s_node);
 461	list_del_rcu(&link->c_node);
 462	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463}
 464#else /* !CONFIG_SRCU */
 465static void __device_link_del(struct kref *kref)
 466{
 467	struct device_link *link = container_of(kref, struct device_link, kref);
 468
 469	dev_info(link->consumer, "Dropping the link to %s\n",
 470		 dev_name(link->supplier));
 471
 472	if (link->flags & DL_FLAG_PM_RUNTIME)
 473		pm_runtime_drop_link(link->consumer);
 474
 475	list_del(&link->s_node);
 476	list_del(&link->c_node);
 477	device_link_free(link);
 478}
 479#endif /* !CONFIG_SRCU */
 480
 481static void device_link_put_kref(struct device_link *link)
 482{
 483	if (link->flags & DL_FLAG_STATELESS)
 484		kref_put(&link->kref, __device_link_del);
 485	else
 486		WARN(1, "Unable to drop a managed device link reference\n");
 487}
 488
 489/**
 490 * device_link_del - Delete a stateless link between two devices.
 491 * @link: Device link to delete.
 492 *
 493 * The caller must ensure proper synchronization of this function with runtime
 494 * PM.  If the link was added multiple times, it needs to be deleted as often.
 495 * Care is required for hotplugged devices:  Their links are purged on removal
 496 * and calling device_link_del() is then no longer allowed.
 497 */
 498void device_link_del(struct device_link *link)
 499{
 500	device_links_write_lock();
 501	device_pm_lock();
 502	device_link_put_kref(link);
 503	device_pm_unlock();
 504	device_links_write_unlock();
 505}
 506EXPORT_SYMBOL_GPL(device_link_del);
 507
 508/**
 509 * device_link_remove - Delete a stateless link between two devices.
 510 * @consumer: Consumer end of the link.
 511 * @supplier: Supplier end of the link.
 512 *
 513 * The caller must ensure proper synchronization of this function with runtime
 514 * PM.
 515 */
 516void device_link_remove(void *consumer, struct device *supplier)
 517{
 518	struct device_link *link;
 519
 520	if (WARN_ON(consumer == supplier))
 521		return;
 522
 523	device_links_write_lock();
 524	device_pm_lock();
 525
 526	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527		if (link->consumer == consumer) {
 528			device_link_put_kref(link);
 529			break;
 530		}
 531	}
 532
 533	device_pm_unlock();
 534	device_links_write_unlock();
 535}
 536EXPORT_SYMBOL_GPL(device_link_remove);
 537
 538static void device_links_missing_supplier(struct device *dev)
 539{
 540	struct device_link *link;
 541
 542	list_for_each_entry(link, &dev->links.suppliers, c_node)
 543		if (link->status == DL_STATE_CONSUMER_PROBE)
 544			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 545}
 546
 547/**
 548 * device_links_check_suppliers - Check presence of supplier drivers.
 549 * @dev: Consumer device.
 550 *
 551 * Check links from this device to any suppliers.  Walk the list of the device's
 552 * links to suppliers and see if all of them are available.  If not, simply
 553 * return -EPROBE_DEFER.
 554 *
 555 * We need to guarantee that the supplier will not go away after the check has
 556 * been positive here.  It only can go away in __device_release_driver() and
 557 * that function  checks the device's links to consumers.  This means we need to
 558 * mark the link as "consumer probe in progress" to make the supplier removal
 559 * wait for us to complete (or bad things may happen).
 560 *
 561 * Links without the DL_FLAG_MANAGED flag set are ignored.
 562 */
 563int device_links_check_suppliers(struct device *dev)
 564{
 565	struct device_link *link;
 566	int ret = 0;
 567
 568	device_links_write_lock();
 569
 570	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571		if (!(link->flags & DL_FLAG_MANAGED))
 572			continue;
 573
 574		if (link->status != DL_STATE_AVAILABLE) {
 575			device_links_missing_supplier(dev);
 576			ret = -EPROBE_DEFER;
 577			break;
 578		}
 579		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580	}
 581	dev->links.status = DL_DEV_PROBING;
 582
 583	device_links_write_unlock();
 584	return ret;
 585}
 586
 587/**
 588 * device_links_driver_bound - Update device links after probing its driver.
 589 * @dev: Device to update the links for.
 590 *
 591 * The probe has been successful, so update links from this device to any
 592 * consumers by changing their status to "available".
 593 *
 594 * Also change the status of @dev's links to suppliers to "active".
 595 *
 596 * Links without the DL_FLAG_MANAGED flag set are ignored.
 597 */
 598void device_links_driver_bound(struct device *dev)
 599{
 600	struct device_link *link;
 601
 602	device_links_write_lock();
 603
 604	list_for_each_entry(link, &dev->links.consumers, s_node) {
 605		if (!(link->flags & DL_FLAG_MANAGED))
 606			continue;
 607
 608		/*
 609		 * Links created during consumer probe may be in the "consumer
 610		 * probe" state to start with if the supplier is still probing
 611		 * when they are created and they may become "active" if the
 612		 * consumer probe returns first.  Skip them here.
 613		 */
 614		if (link->status == DL_STATE_CONSUMER_PROBE ||
 615		    link->status == DL_STATE_ACTIVE)
 616			continue;
 617
 618		WARN_ON(link->status != DL_STATE_DORMANT);
 619		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620
 621		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622			driver_deferred_probe_add(link->consumer);
 623	}
 624
 625	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 626		if (!(link->flags & DL_FLAG_MANAGED))
 627			continue;
 628
 629		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 631	}
 632
 633	dev->links.status = DL_DEV_DRIVER_BOUND;
 634
 635	device_links_write_unlock();
 636}
 637
 638static void device_link_drop_managed(struct device_link *link)
 639{
 640	link->flags &= ~DL_FLAG_MANAGED;
 641	WRITE_ONCE(link->status, DL_STATE_NONE);
 642	kref_put(&link->kref, __device_link_del);
 643}
 644
 645/**
 646 * __device_links_no_driver - Update links of a device without a driver.
 647 * @dev: Device without a drvier.
 648 *
 649 * Delete all non-persistent links from this device to any suppliers.
 650 *
 651 * Persistent links stay around, but their status is changed to "available",
 652 * unless they already are in the "supplier unbind in progress" state in which
 653 * case they need not be updated.
 654 *
 655 * Links without the DL_FLAG_MANAGED flag set are ignored.
 656 */
 657static void __device_links_no_driver(struct device *dev)
 658{
 659	struct device_link *link, *ln;
 660
 661	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662		if (!(link->flags & DL_FLAG_MANAGED))
 663			continue;
 664
 665		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666			device_link_drop_managed(link);
 667		else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668			 link->status == DL_STATE_ACTIVE)
 669			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 670	}
 671
 672	dev->links.status = DL_DEV_NO_DRIVER;
 673}
 674
 675/**
 676 * device_links_no_driver - Update links after failing driver probe.
 677 * @dev: Device whose driver has just failed to probe.
 678 *
 679 * Clean up leftover links to consumers for @dev and invoke
 680 * %__device_links_no_driver() to update links to suppliers for it as
 681 * appropriate.
 682 *
 683 * Links without the DL_FLAG_MANAGED flag set are ignored.
 684 */
 685void device_links_no_driver(struct device *dev)
 686{
 687	struct device_link *link;
 688
 689	device_links_write_lock();
 690
 691	list_for_each_entry(link, &dev->links.consumers, s_node) {
 692		if (!(link->flags & DL_FLAG_MANAGED))
 693			continue;
 694
 695		/*
 696		 * The probe has failed, so if the status of the link is
 697		 * "consumer probe" or "active", it must have been added by
 698		 * a probing consumer while this device was still probing.
 699		 * Change its state to "dormant", as it represents a valid
 700		 * relationship, but it is not functionally meaningful.
 701		 */
 702		if (link->status == DL_STATE_CONSUMER_PROBE ||
 703		    link->status == DL_STATE_ACTIVE)
 704			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705	}
 706
 707	__device_links_no_driver(dev);
 708
 709	device_links_write_unlock();
 710}
 711
 712/**
 713 * device_links_driver_cleanup - Update links after driver removal.
 714 * @dev: Device whose driver has just gone away.
 715 *
 716 * Update links to consumers for @dev by changing their status to "dormant" and
 717 * invoke %__device_links_no_driver() to update links to suppliers for it as
 718 * appropriate.
 719 *
 720 * Links without the DL_FLAG_MANAGED flag set are ignored.
 721 */
 722void device_links_driver_cleanup(struct device *dev)
 723{
 724	struct device_link *link, *ln;
 725
 726	device_links_write_lock();
 727
 728	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729		if (!(link->flags & DL_FLAG_MANAGED))
 730			continue;
 731
 732		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734
 735		/*
 736		 * autoremove the links between this @dev and its consumer
 737		 * devices that are not active, i.e. where the link state
 738		 * has moved to DL_STATE_SUPPLIER_UNBIND.
 739		 */
 740		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742			device_link_drop_managed(link);
 743
 744		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745	}
 746
 747	__device_links_no_driver(dev);
 748
 749	device_links_write_unlock();
 750}
 751
 752/**
 753 * device_links_busy - Check if there are any busy links to consumers.
 754 * @dev: Device to check.
 755 *
 756 * Check each consumer of the device and return 'true' if its link's status
 757 * is one of "consumer probe" or "active" (meaning that the given consumer is
 758 * probing right now or its driver is present).  Otherwise, change the link
 759 * state to "supplier unbind" to prevent the consumer from being probed
 760 * successfully going forward.
 761 *
 762 * Return 'false' if there are no probing or active consumers.
 763 *
 764 * Links without the DL_FLAG_MANAGED flag set are ignored.
 765 */
 766bool device_links_busy(struct device *dev)
 767{
 768	struct device_link *link;
 769	bool ret = false;
 770
 771	device_links_write_lock();
 772
 773	list_for_each_entry(link, &dev->links.consumers, s_node) {
 774		if (!(link->flags & DL_FLAG_MANAGED))
 775			continue;
 776
 777		if (link->status == DL_STATE_CONSUMER_PROBE
 778		    || link->status == DL_STATE_ACTIVE) {
 779			ret = true;
 780			break;
 781		}
 782		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783	}
 784
 785	dev->links.status = DL_DEV_UNBINDING;
 786
 787	device_links_write_unlock();
 788	return ret;
 789}
 790
 791/**
 792 * device_links_unbind_consumers - Force unbind consumers of the given device.
 793 * @dev: Device to unbind the consumers of.
 794 *
 795 * Walk the list of links to consumers for @dev and if any of them is in the
 796 * "consumer probe" state, wait for all device probes in progress to complete
 797 * and start over.
 798 *
 799 * If that's not the case, change the status of the link to "supplier unbind"
 800 * and check if the link was in the "active" state.  If so, force the consumer
 801 * driver to unbind and start over (the consumer will not re-probe as we have
 802 * changed the state of the link already).
 803 *
 804 * Links without the DL_FLAG_MANAGED flag set are ignored.
 805 */
 806void device_links_unbind_consumers(struct device *dev)
 807{
 808	struct device_link *link;
 809
 810 start:
 811	device_links_write_lock();
 812
 813	list_for_each_entry(link, &dev->links.consumers, s_node) {
 814		enum device_link_state status;
 815
 816		if (!(link->flags & DL_FLAG_MANAGED))
 817			continue;
 818
 819		status = link->status;
 820		if (status == DL_STATE_CONSUMER_PROBE) {
 821			device_links_write_unlock();
 822
 823			wait_for_device_probe();
 824			goto start;
 825		}
 826		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827		if (status == DL_STATE_ACTIVE) {
 828			struct device *consumer = link->consumer;
 829
 830			get_device(consumer);
 831
 832			device_links_write_unlock();
 833
 834			device_release_driver_internal(consumer, NULL,
 835						       consumer->parent);
 836			put_device(consumer);
 837			goto start;
 838		}
 839	}
 840
 841	device_links_write_unlock();
 842}
 843
 844/**
 845 * device_links_purge - Delete existing links to other devices.
 846 * @dev: Target device.
 847 */
 848static void device_links_purge(struct device *dev)
 849{
 850	struct device_link *link, *ln;
 851
 852	/*
 853	 * Delete all of the remaining links from this device to any other
 854	 * devices (either consumers or suppliers).
 855	 */
 856	device_links_write_lock();
 857
 858	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859		WARN_ON(link->status == DL_STATE_ACTIVE);
 860		__device_link_del(&link->kref);
 861	}
 862
 863	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864		WARN_ON(link->status != DL_STATE_DORMANT &&
 865			link->status != DL_STATE_NONE);
 866		__device_link_del(&link->kref);
 867	}
 868
 869	device_links_write_unlock();
 870}
 871
 872/* Device links support end. */
 873
 874int (*platform_notify)(struct device *dev) = NULL;
 875int (*platform_notify_remove)(struct device *dev) = NULL;
 876static struct kobject *dev_kobj;
 877struct kobject *sysfs_dev_char_kobj;
 878struct kobject *sysfs_dev_block_kobj;
 879
 880static DEFINE_MUTEX(device_hotplug_lock);
 881
 882void lock_device_hotplug(void)
 883{
 884	mutex_lock(&device_hotplug_lock);
 885}
 886
 887void unlock_device_hotplug(void)
 888{
 889	mutex_unlock(&device_hotplug_lock);
 890}
 891
 892int lock_device_hotplug_sysfs(void)
 893{
 894	if (mutex_trylock(&device_hotplug_lock))
 895		return 0;
 896
 897	/* Avoid busy looping (5 ms of sleep should do). */
 898	msleep(5);
 899	return restart_syscall();
 900}
 901
 902#ifdef CONFIG_BLOCK
 903static inline int device_is_not_partition(struct device *dev)
 904{
 905	return !(dev->type == &part_type);
 906}
 907#else
 908static inline int device_is_not_partition(struct device *dev)
 909{
 910	return 1;
 911}
 912#endif
 913
 914static int
 915device_platform_notify(struct device *dev, enum kobject_action action)
 916{
 917	int ret;
 918
 919	ret = acpi_platform_notify(dev, action);
 920	if (ret)
 921		return ret;
 922
 923	ret = software_node_notify(dev, action);
 924	if (ret)
 925		return ret;
 926
 927	if (platform_notify && action == KOBJ_ADD)
 928		platform_notify(dev);
 929	else if (platform_notify_remove && action == KOBJ_REMOVE)
 930		platform_notify_remove(dev);
 931	return 0;
 932}
 933
 934/**
 935 * dev_driver_string - Return a device's driver name, if at all possible
 936 * @dev: struct device to get the name of
 937 *
 938 * Will return the device's driver's name if it is bound to a device.  If
 939 * the device is not bound to a driver, it will return the name of the bus
 940 * it is attached to.  If it is not attached to a bus either, an empty
 941 * string will be returned.
 942 */
 943const char *dev_driver_string(const struct device *dev)
 944{
 945	struct device_driver *drv;
 946
 947	/* dev->driver can change to NULL underneath us because of unbinding,
 948	 * so be careful about accessing it.  dev->bus and dev->class should
 949	 * never change once they are set, so they don't need special care.
 950	 */
 951	drv = READ_ONCE(dev->driver);
 952	return drv ? drv->name :
 953			(dev->bus ? dev->bus->name :
 954			(dev->class ? dev->class->name : ""));
 955}
 956EXPORT_SYMBOL(dev_driver_string);
 957
 958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959
 960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961			     char *buf)
 962{
 963	struct device_attribute *dev_attr = to_dev_attr(attr);
 964	struct device *dev = kobj_to_dev(kobj);
 965	ssize_t ret = -EIO;
 966
 967	if (dev_attr->show)
 968		ret = dev_attr->show(dev, dev_attr, buf);
 969	if (ret >= (ssize_t)PAGE_SIZE) {
 970		printk("dev_attr_show: %pS returned bad count\n",
 971				dev_attr->show);
 972	}
 973	return ret;
 974}
 975
 976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977			      const char *buf, size_t count)
 978{
 979	struct device_attribute *dev_attr = to_dev_attr(attr);
 980	struct device *dev = kobj_to_dev(kobj);
 981	ssize_t ret = -EIO;
 982
 983	if (dev_attr->store)
 984		ret = dev_attr->store(dev, dev_attr, buf, count);
 985	return ret;
 986}
 987
 988static const struct sysfs_ops dev_sysfs_ops = {
 989	.show	= dev_attr_show,
 990	.store	= dev_attr_store,
 991};
 992
 993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994
 995ssize_t device_store_ulong(struct device *dev,
 996			   struct device_attribute *attr,
 997			   const char *buf, size_t size)
 998{
 999	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000	int ret;
1001	unsigned long new;
1002
1003	ret = kstrtoul(buf, 0, &new);
1004	if (ret)
1005		return ret;
1006	*(unsigned long *)(ea->var) = new;
1007	/* Always return full write size even if we didn't consume all */
1008	return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013			  struct device_attribute *attr,
1014			  char *buf)
1015{
1016	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022			 struct device_attribute *attr,
1023			 const char *buf, size_t size)
1024{
1025	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026	int ret;
1027	long new;
1028
1029	ret = kstrtol(buf, 0, &new);
1030	if (ret)
1031		return ret;
1032
1033	if (new > INT_MAX || new < INT_MIN)
1034		return -EINVAL;
1035	*(int *)(ea->var) = new;
1036	/* Always return full write size even if we didn't consume all */
1037	return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042			struct device_attribute *attr,
1043			char *buf)
1044{
1045	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052			  const char *buf, size_t size)
1053{
1054	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056	if (strtobool(buf, ea->var) < 0)
1057		return -EINVAL;
1058
1059	return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064			 char *buf)
1065{
1066	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082	struct device *dev = kobj_to_dev(kobj);
1083	struct device_private *p = dev->p;
1084
1085	/*
1086	 * Some platform devices are driven without driver attached
1087	 * and managed resources may have been acquired.  Make sure
1088	 * all resources are released.
1089	 *
1090	 * Drivers still can add resources into device after device
1091	 * is deleted but alive, so release devres here to avoid
1092	 * possible memory leak.
1093	 */
1094	devres_release_all(dev);
1095
1096	if (dev->release)
1097		dev->release(dev);
1098	else if (dev->type && dev->type->release)
1099		dev->type->release(dev);
1100	else if (dev->class && dev->class->dev_release)
1101		dev->class->dev_release(dev);
1102	else
1103		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
 
1104			dev_name(dev));
1105	kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110	struct device *dev = kobj_to_dev(kobj);
1111	const void *ns = NULL;
1112
1113	if (dev->class && dev->class->ns_type)
1114		ns = dev->class->namespace(dev);
1115
1116	return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121	struct device *dev = kobj_to_dev(kobj);
1122
1123	if (dev->class && dev->class->get_ownership)
1124		dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128	.release	= device_release,
1129	.sysfs_ops	= &dev_sysfs_ops,
1130	.namespace	= device_namespace,
1131	.get_ownership	= device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137	struct kobj_type *ktype = get_ktype(kobj);
1138
1139	if (ktype == &device_ktype) {
1140		struct device *dev = kobj_to_dev(kobj);
1141		if (dev->bus)
1142			return 1;
1143		if (dev->class)
1144			return 1;
1145	}
1146	return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151	struct device *dev = kobj_to_dev(kobj);
1152
1153	if (dev->bus)
1154		return dev->bus->name;
1155	if (dev->class)
1156		return dev->class->name;
1157	return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161		      struct kobj_uevent_env *env)
1162{
1163	struct device *dev = kobj_to_dev(kobj);
1164	int retval = 0;
1165
1166	/* add device node properties if present */
1167	if (MAJOR(dev->devt)) {
1168		const char *tmp;
1169		const char *name;
1170		umode_t mode = 0;
1171		kuid_t uid = GLOBAL_ROOT_UID;
1172		kgid_t gid = GLOBAL_ROOT_GID;
1173
1174		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177		if (name) {
1178			add_uevent_var(env, "DEVNAME=%s", name);
1179			if (mode)
1180				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185			kfree(tmp);
1186		}
1187	}
1188
1189	if (dev->type && dev->type->name)
1190		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192	if (dev->driver)
1193		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195	/* Add common DT information about the device */
1196	of_device_uevent(dev, env);
1197
1198	/* have the bus specific function add its stuff */
1199	if (dev->bus && dev->bus->uevent) {
1200		retval = dev->bus->uevent(dev, env);
1201		if (retval)
1202			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203				 dev_name(dev), __func__, retval);
1204	}
1205
1206	/* have the class specific function add its stuff */
1207	if (dev->class && dev->class->dev_uevent) {
1208		retval = dev->class->dev_uevent(dev, env);
1209		if (retval)
1210			pr_debug("device: '%s': %s: class uevent() "
1211				 "returned %d\n", dev_name(dev),
1212				 __func__, retval);
1213	}
1214
1215	/* have the device type specific function add its stuff */
1216	if (dev->type && dev->type->uevent) {
1217		retval = dev->type->uevent(dev, env);
1218		if (retval)
1219			pr_debug("device: '%s': %s: dev_type uevent() "
1220				 "returned %d\n", dev_name(dev),
1221				 __func__, retval);
1222	}
1223
1224	return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228	.filter =	dev_uevent_filter,
1229	.name =		dev_uevent_name,
1230	.uevent =	dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234			   char *buf)
1235{
1236	struct kobject *top_kobj;
1237	struct kset *kset;
1238	struct kobj_uevent_env *env = NULL;
1239	int i;
1240	size_t count = 0;
1241	int retval;
1242
1243	/* search the kset, the device belongs to */
1244	top_kobj = &dev->kobj;
1245	while (!top_kobj->kset && top_kobj->parent)
1246		top_kobj = top_kobj->parent;
1247	if (!top_kobj->kset)
1248		goto out;
1249
1250	kset = top_kobj->kset;
1251	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252		goto out;
1253
1254	/* respect filter */
1255	if (kset->uevent_ops && kset->uevent_ops->filter)
1256		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257			goto out;
1258
1259	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260	if (!env)
1261		return -ENOMEM;
1262
1263	/* let the kset specific function add its keys */
1264	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265	if (retval)
1266		goto out;
1267
1268	/* copy keys to file */
1269	for (i = 0; i < env->envp_idx; i++)
1270		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272	kfree(env);
1273	return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277			    const char *buf, size_t count)
1278{
1279	int rc;
1280
1281	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283	if (rc) {
1284		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285		return rc;
1286	}
1287
1288	return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293			   char *buf)
1294{
1295	bool val;
1296
1297	device_lock(dev);
1298	val = !dev->offline;
1299	device_unlock(dev);
1300	return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304			    const char *buf, size_t count)
1305{
1306	bool val;
1307	int ret;
1308
1309	ret = strtobool(buf, &val);
1310	if (ret < 0)
1311		return ret;
1312
1313	ret = lock_device_hotplug_sysfs();
1314	if (ret)
1315		return ret;
1316
1317	ret = val ? device_online(dev) : device_offline(dev);
1318	unlock_device_hotplug();
1319	return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325	return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330			  const struct attribute_group **groups)
1331{
1332	sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337	const struct attribute_group *group;
1338	const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343	return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348	union device_attr_group_devres *devres = res;
1349	const struct attribute_group *group = devres->group;
1350
1351	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352	sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357	union device_attr_group_devres *devres = res;
1358	const struct attribute_group **groups = devres->groups;
1359
1360	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361	sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev:	The device to create the group for
1367 * @grp:	The attribute group to create
1368 *
1369 * This function creates a group for the first time.  It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376	union device_attr_group_devres *devres;
1377	int error;
1378
1379	devres = devres_alloc(devm_attr_group_remove,
1380			      sizeof(*devres), GFP_KERNEL);
1381	if (!devres)
1382		return -ENOMEM;
1383
1384	error = sysfs_create_group(&dev->kobj, grp);
1385	if (error) {
1386		devres_free(devres);
1387		return error;
1388	}
1389
1390	devres->group = grp;
1391	devres_add(dev, devres);
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev:	device to remove the group from
1399 * @grp:	group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405			      const struct attribute_group *grp)
1406{
1407	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408			       devm_attr_group_match,
1409			       /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev:	The device to create the group for
1416 * @groups:	The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups.  If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called.  It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427			   const struct attribute_group **groups)
1428{
1429	union device_attr_group_devres *devres;
1430	int error;
1431
1432	devres = devres_alloc(devm_attr_groups_remove,
1433			      sizeof(*devres), GFP_KERNEL);
1434	if (!devres)
1435		return -ENOMEM;
1436
1437	error = sysfs_create_groups(&dev->kobj, groups);
1438	if (error) {
1439		devres_free(devres);
1440		return error;
1441	}
1442
1443	devres->groups = groups;
1444	devres_add(dev, devres);
1445	return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev:	The device for the groups to be removed from
1453 * @groups:	NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458			       const struct attribute_group **groups)
1459{
1460	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461			       devm_attr_group_match,
1462			       /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468	struct class *class = dev->class;
1469	const struct device_type *type = dev->type;
1470	int error;
1471
1472	if (class) {
1473		error = device_add_groups(dev, class->dev_groups);
1474		if (error)
1475			return error;
1476	}
1477
1478	if (type) {
1479		error = device_add_groups(dev, type->groups);
1480		if (error)
1481			goto err_remove_class_groups;
1482	}
1483
1484	error = device_add_groups(dev, dev->groups);
1485	if (error)
1486		goto err_remove_type_groups;
1487
1488	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489		error = device_create_file(dev, &dev_attr_online);
1490		if (error)
1491			goto err_remove_dev_groups;
1492	}
1493
1494	return 0;
1495
1496 err_remove_dev_groups:
1497	device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499	if (type)
1500		device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502	if (class)
1503		device_remove_groups(dev, class->dev_groups);
1504
1505	return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510	struct class *class = dev->class;
1511	const struct device_type *type = dev->type;
1512
1513	device_remove_file(dev, &dev_attr_online);
1514	device_remove_groups(dev, dev->groups);
1515
1516	if (type)
1517		device_remove_groups(dev, type->groups);
1518
1519	if (class)
1520		device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524			char *buf)
1525{
1526	return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540	if (!devices_kset)
1541		return;
1542	pr_debug("devices_kset: Moving %s before %s\n",
1543		 dev_name(deva), dev_name(devb));
1544	spin_lock(&devices_kset->list_lock);
1545	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546	spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556	if (!devices_kset)
1557		return;
1558	pr_debug("devices_kset: Moving %s after %s\n",
1559		 dev_name(deva), dev_name(devb));
1560	spin_lock(&devices_kset->list_lock);
1561	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562	spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571	if (!devices_kset)
1572		return;
1573	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574	spin_lock(&devices_kset->list_lock);
1575	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576	spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585		       const struct device_attribute *attr)
1586{
1587	int error = 0;
1588
1589	if (dev) {
1590		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591			"Attribute %s: write permission without 'store'\n",
1592			attr->attr.name);
1593		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594			"Attribute %s: read permission without 'show'\n",
1595			attr->attr.name);
1596		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597	}
1598
1599	return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609			const struct device_attribute *attr)
1610{
1611	if (dev)
1612		sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624			     const struct device_attribute *attr)
1625{
1626	if (dev)
1627		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628	else
1629		return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639			   const struct bin_attribute *attr)
1640{
1641	int error = -EINVAL;
1642	if (dev)
1643		error = sysfs_create_bin_file(&dev->kobj, attr);
1644	return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654			    const struct bin_attribute *attr)
1655{
1656	if (dev)
1657		sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663	struct device_private *p = to_device_private_parent(n);
1664	struct device *dev = p->device;
1665
1666	get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671	struct device_private *p = to_device_private_parent(n);
1672	struct device *dev = p->device;
1673
1674	put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value.  The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699	dev->kobj.kset = devices_kset;
1700	kobject_init(&dev->kobj, &device_ktype);
1701	INIT_LIST_HEAD(&dev->dma_pools);
1702	mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704	mutex_init(&dev->lockdep_mutex);
1705#endif
1706	lockdep_set_novalidate_class(&dev->mutex);
1707	spin_lock_init(&dev->devres_lock);
1708	INIT_LIST_HEAD(&dev->devres_head);
1709	device_pm_init(dev);
1710	set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712	INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714	INIT_LIST_HEAD(&dev->links.consumers);
1715	INIT_LIST_HEAD(&dev->links.suppliers);
1716	dev->links.status = DL_DEV_NO_DRIVER;
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722	static struct kobject *virtual_dir = NULL;
1723
1724	if (!virtual_dir)
1725		virtual_dir = kobject_create_and_add("virtual",
1726						     &devices_kset->kobj);
1727
1728	return virtual_dir;
1729}
1730
1731struct class_dir {
1732	struct kobject kobj;
1733	struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740	struct class_dir *dir = to_class_dir(kobj);
1741	kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747	struct class_dir *dir = to_class_dir(kobj);
1748	return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752	.release	= class_dir_release,
1753	.sysfs_ops	= &kobj_sysfs_ops,
1754	.child_ns_type	= class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760	struct class_dir *dir;
1761	int retval;
1762
1763	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764	if (!dir)
1765		return ERR_PTR(-ENOMEM);
1766
1767	dir->class = class;
1768	kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770	dir->kobj.kset = &class->p->glue_dirs;
1771
1772	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773	if (retval < 0) {
1774		kobject_put(&dir->kobj);
1775		return ERR_PTR(retval);
1776	}
1777	return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783					 struct device *parent)
1784{
1785	if (dev->class) {
1786		struct kobject *kobj = NULL;
1787		struct kobject *parent_kobj;
1788		struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791		/* block disks show up in /sys/block */
1792		if (sysfs_deprecated && dev->class == &block_class) {
1793			if (parent && parent->class == &block_class)
1794				return &parent->kobj;
1795			return &block_class.p->subsys.kobj;
1796		}
1797#endif
1798
1799		/*
1800		 * If we have no parent, we live in "virtual".
1801		 * Class-devices with a non class-device as parent, live
1802		 * in a "glue" directory to prevent namespace collisions.
1803		 */
1804		if (parent == NULL)
1805			parent_kobj = virtual_device_parent(dev);
1806		else if (parent->class && !dev->class->ns_type)
1807			return &parent->kobj;
1808		else
1809			parent_kobj = &parent->kobj;
1810
1811		mutex_lock(&gdp_mutex);
1812
1813		/* find our class-directory at the parent and reference it */
1814		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816			if (k->parent == parent_kobj) {
1817				kobj = kobject_get(k);
1818				break;
1819			}
1820		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821		if (kobj) {
1822			mutex_unlock(&gdp_mutex);
1823			return kobj;
1824		}
1825
1826		/* or create a new class-directory at the parent device */
1827		k = class_dir_create_and_add(dev->class, parent_kobj);
1828		/* do not emit an uevent for this simple "glue" directory */
1829		mutex_unlock(&gdp_mutex);
1830		return k;
1831	}
1832
1833	/* subsystems can specify a default root directory for their devices */
1834	if (!parent && dev->bus && dev->bus->dev_root)
1835		return &dev->bus->dev_root->kobj;
1836
1837	if (parent)
1838		return &parent->kobj;
1839	return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843				    struct device *dev)
1844{
1845	if (!kobj || !dev->class ||
1846	    kobj->kset != &dev->class->p->glue_dirs)
1847		return false;
1848	return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853	return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863	unsigned int ref;
1864
1865	/* see if we live in a "glue" directory */
1866	if (!live_in_glue_dir(glue_dir, dev))
1867		return;
1868
1869	mutex_lock(&gdp_mutex);
1870	/**
1871	 * There is a race condition between removing glue directory
1872	 * and adding a new device under the glue directory.
1873	 *
1874	 * CPU1:                                         CPU2:
1875	 *
1876	 * device_add()
1877	 *   get_device_parent()
1878	 *     class_dir_create_and_add()
1879	 *       kobject_add_internal()
1880	 *         create_dir()    // create glue_dir
1881	 *
1882	 *                                               device_add()
1883	 *                                                 get_device_parent()
1884	 *                                                   kobject_get() // get glue_dir
1885	 *
1886	 * device_del()
1887	 *   cleanup_glue_dir()
1888	 *     kobject_del(glue_dir)
1889	 *
1890	 *                                               kobject_add()
1891	 *                                                 kobject_add_internal()
1892	 *                                                   create_dir() // in glue_dir
1893	 *                                                     sysfs_create_dir_ns()
1894	 *                                                       kernfs_create_dir_ns(sd)
1895	 *
1896	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897	 *       sysfs_put()        // free glue_dir->sd
1898	 *
1899	 *                                                         // sd is freed
1900	 *                                                         kernfs_new_node(sd)
1901	 *                                                           kernfs_get(glue_dir)
1902	 *                                                           kernfs_add_one()
1903	 *                                                           kernfs_put()
1904	 *
1905	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906	 * a new device under glue dir, the glue_dir kobject reference count
1907	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910	 *
1911	 * Then the CPU2 will see a stale "empty" but still potentially used
1912	 * glue dir around in kernfs_new_node().
1913	 *
1914	 * In order to avoid this happening, we also should make sure that
1915	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916	 * for glue_dir kobj is 1.
1917	 */
1918	ref = kref_read(&glue_dir->kref);
1919	if (!kobject_has_children(glue_dir) && !--ref)
1920		kobject_del(glue_dir);
1921	kobject_put(glue_dir);
1922	mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927	struct device_node *of_node = dev_of_node(dev);
1928	int error;
1929
1930	if (of_node) {
1931		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932		if (error)
1933			dev_warn(dev, "Error %d creating of_node link\n",error);
1934		/* An error here doesn't warrant bringing down the device */
1935	}
1936
1937	if (!dev->class)
1938		return 0;
1939
1940	error = sysfs_create_link(&dev->kobj,
1941				  &dev->class->p->subsys.kobj,
1942				  "subsystem");
1943	if (error)
1944		goto out_devnode;
1945
1946	if (dev->parent && device_is_not_partition(dev)) {
1947		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948					  "device");
1949		if (error)
1950			goto out_subsys;
1951	}
1952
1953#ifdef CONFIG_BLOCK
1954	/* /sys/block has directories and does not need symlinks */
1955	if (sysfs_deprecated && dev->class == &block_class)
1956		return 0;
1957#endif
1958
1959	/* link in the class directory pointing to the device */
1960	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961				  &dev->kobj, dev_name(dev));
1962	if (error)
1963		goto out_device;
1964
1965	return 0;
1966
1967out_device:
1968	sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971	sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973	sysfs_remove_link(&dev->kobj, "of_node");
1974	return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979	if (dev_of_node(dev))
1980		sysfs_remove_link(&dev->kobj, "of_node");
1981
1982	if (!dev->class)
1983		return;
1984
1985	if (dev->parent && device_is_not_partition(dev))
1986		sysfs_remove_link(&dev->kobj, "device");
1987	sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989	if (sysfs_deprecated && dev->class == &block_class)
1990		return;
1991#endif
1992	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002	va_list vargs;
2003	int err;
2004
2005	va_start(vargs, fmt);
2006	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007	va_end(vargs);
2008	return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries.  Setting class->dev_obj
2017 * to NULL prevents an entry from being created.  class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025	struct kobject *kobj;
2026
2027	if (dev->class)
2028		kobj = dev->class->dev_kobj;
2029	else
2030		kobj = sysfs_dev_char_kobj;
2031
2032	return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037	struct kobject *kobj = device_to_dev_kobj(dev);
2038	int error = 0;
2039	char devt_str[15];
2040
2041	if (kobj) {
2042		format_dev_t(devt_str, dev->devt);
2043		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044	}
2045
2046	return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051	struct kobject *kobj = device_to_dev_kobj(dev);
2052	char devt_str[15];
2053
2054	if (kobj) {
2055		format_dev_t(devt_str, dev->devt);
2056		sysfs_remove_link(kobj, devt_str);
2057	}
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063	if (!dev->p)
2064		return -ENOMEM;
2065	dev->p->device = dev;
2066	klist_init(&dev->p->klist_children, klist_children_get,
2067		   klist_children_put);
2068	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069	return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure.  The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.)  Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101	struct device *parent;
2102	struct kobject *kobj;
2103	struct class_interface *class_intf;
2104	int error = -EINVAL;
2105	struct kobject *glue_dir = NULL;
2106
2107	dev = get_device(dev);
2108	if (!dev)
2109		goto done;
2110
2111	if (!dev->p) {
2112		error = device_private_init(dev);
2113		if (error)
2114			goto done;
2115	}
2116
2117	/*
2118	 * for statically allocated devices, which should all be converted
2119	 * some day, we need to initialize the name. We prevent reading back
2120	 * the name, and force the use of dev_name()
2121	 */
2122	if (dev->init_name) {
2123		dev_set_name(dev, "%s", dev->init_name);
2124		dev->init_name = NULL;
2125	}
2126
2127	/* subsystems can specify simple device enumeration */
2128	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131	if (!dev_name(dev)) {
2132		error = -EINVAL;
2133		goto name_error;
2134	}
2135
2136	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138	parent = get_device(dev->parent);
2139	kobj = get_device_parent(dev, parent);
2140	if (IS_ERR(kobj)) {
2141		error = PTR_ERR(kobj);
2142		goto parent_error;
2143	}
2144	if (kobj)
2145		dev->kobj.parent = kobj;
2146
2147	/* use parent numa_node */
2148	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149		set_dev_node(dev, dev_to_node(parent));
2150
2151	/* first, register with generic layer. */
2152	/* we require the name to be set before, and pass NULL */
2153	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154	if (error) {
2155		glue_dir = get_glue_dir(dev);
2156		goto Error;
2157	}
2158
2159	/* notify platform of device entry */
2160	error = device_platform_notify(dev, KOBJ_ADD);
2161	if (error)
2162		goto platform_error;
2163
2164	error = device_create_file(dev, &dev_attr_uevent);
2165	if (error)
2166		goto attrError;
2167
2168	error = device_add_class_symlinks(dev);
2169	if (error)
2170		goto SymlinkError;
2171	error = device_add_attrs(dev);
2172	if (error)
2173		goto AttrsError;
2174	error = bus_add_device(dev);
2175	if (error)
2176		goto BusError;
2177	error = dpm_sysfs_add(dev);
2178	if (error)
2179		goto DPMError;
2180	device_pm_add(dev);
2181
2182	if (MAJOR(dev->devt)) {
2183		error = device_create_file(dev, &dev_attr_dev);
2184		if (error)
2185			goto DevAttrError;
2186
2187		error = device_create_sys_dev_entry(dev);
2188		if (error)
2189			goto SysEntryError;
2190
2191		devtmpfs_create_node(dev);
2192	}
2193
2194	/* Notify clients of device addition.  This call must come
2195	 * after dpm_sysfs_add() and before kobject_uevent().
2196	 */
2197	if (dev->bus)
2198		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199					     BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201	kobject_uevent(&dev->kobj, KOBJ_ADD);
2202	bus_probe_device(dev);
2203	if (parent)
2204		klist_add_tail(&dev->p->knode_parent,
2205			       &parent->p->klist_children);
2206
2207	if (dev->class) {
2208		mutex_lock(&dev->class->p->mutex);
2209		/* tie the class to the device */
2210		klist_add_tail(&dev->p->knode_class,
2211			       &dev->class->p->klist_devices);
2212
2213		/* notify any interfaces that the device is here */
2214		list_for_each_entry(class_intf,
2215				    &dev->class->p->interfaces, node)
2216			if (class_intf->add_dev)
2217				class_intf->add_dev(dev, class_intf);
2218		mutex_unlock(&dev->class->p->mutex);
2219	}
2220done:
2221	put_device(dev);
2222	return error;
2223 SysEntryError:
2224	if (MAJOR(dev->devt))
2225		device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227	device_pm_remove(dev);
2228	dpm_sysfs_remove(dev);
2229 DPMError:
2230	bus_remove_device(dev);
2231 BusError:
2232	device_remove_attrs(dev);
2233 AttrsError:
2234	device_remove_class_symlinks(dev);
2235 SymlinkError:
2236	device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238	device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241	glue_dir = get_glue_dir(dev);
2242	kobject_del(&dev->kobj);
2243 Error:
2244	cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246	put_device(parent);
2247name_error:
2248	kfree(dev->p);
2249	dev->p = NULL;
2250	goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274	device_initialize(dev);
2275	return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299	/* might_sleep(); */
2300	if (dev)
2301		kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307	/*
2308	 * Require the device lock and set the "dead" flag to guarantee that
2309	 * the update behavior is consistent with the other bitfields near
2310	 * it and that we cannot have an asynchronous probe routine trying
2311	 * to run while we are tearing out the bus/class/sysfs from
2312	 * underneath the device.
2313	 */
2314	lockdep_assert_held(&dev->mutex);
2315
2316	if (dev->p->dead)
2317		return false;
2318	dev->p->dead = true;
2319	return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338	struct device *parent = dev->parent;
2339	struct kobject *glue_dir = NULL;
2340	struct class_interface *class_intf;
2341
2342	device_lock(dev);
2343	kill_device(dev);
2344	device_unlock(dev);
2345
2346	/* Notify clients of device removal.  This call must come
2347	 * before dpm_sysfs_remove().
2348	 */
2349	if (dev->bus)
2350		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351					     BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353	dpm_sysfs_remove(dev);
2354	if (parent)
2355		klist_del(&dev->p->knode_parent);
2356	if (MAJOR(dev->devt)) {
2357		devtmpfs_delete_node(dev);
2358		device_remove_sys_dev_entry(dev);
2359		device_remove_file(dev, &dev_attr_dev);
2360	}
2361	if (dev->class) {
2362		device_remove_class_symlinks(dev);
2363
2364		mutex_lock(&dev->class->p->mutex);
2365		/* notify any interfaces that the device is now gone */
2366		list_for_each_entry(class_intf,
2367				    &dev->class->p->interfaces, node)
2368			if (class_intf->remove_dev)
2369				class_intf->remove_dev(dev, class_intf);
2370		/* remove the device from the class list */
2371		klist_del(&dev->p->knode_class);
2372		mutex_unlock(&dev->class->p->mutex);
2373	}
2374	device_remove_file(dev, &dev_attr_uevent);
2375	device_remove_attrs(dev);
2376	bus_remove_device(dev);
2377	device_pm_remove(dev);
2378	driver_deferred_probe_del(dev);
2379	device_platform_notify(dev, KOBJ_REMOVE);
2380	device_remove_properties(dev);
2381	device_links_purge(dev);
2382
 
 
 
 
 
2383	if (dev->bus)
2384		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2386	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387	glue_dir = get_glue_dir(dev);
2388	kobject_del(&dev->kobj);
2389	cleanup_glue_dir(dev, glue_dir);
2390	put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408	device_del(dev);
2409	put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415	struct klist_node *n = klist_prev(i);
2416	struct device *dev = NULL;
2417	struct device_private *p;
2418
2419	if (n) {
2420		p = to_device_private_parent(n);
2421		dev = p->device;
2422	}
2423	return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428	struct klist_node *n = klist_next(i);
2429	struct device *dev = NULL;
2430	struct device_private *p;
2431
2432	if (n) {
2433		p = to_device_private_parent(n);
2434		dev = p->device;
2435	}
2436	return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454			       const char **tmp)
2455{
2456	char *s;
2457
2458	*tmp = NULL;
2459
2460	/* the device type may provide a specific name */
2461	if (dev->type && dev->type->devnode)
2462		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463	if (*tmp)
2464		return *tmp;
2465
2466	/* the class may provide a specific name */
2467	if (dev->class && dev->class->devnode)
2468		*tmp = dev->class->devnode(dev, mode);
2469	if (*tmp)
2470		return *tmp;
2471
2472	/* return name without allocation, tmp == NULL */
2473	if (strchr(dev_name(dev), '!') == NULL)
2474		return dev_name(dev);
2475
2476	/* replace '!' in the name with '/' */
2477	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478	if (!s)
2479		return NULL;
2480	strreplace(s, '!', '/');
2481	return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497			  int (*fn)(struct device *dev, void *data))
2498{
2499	struct klist_iter i;
2500	struct device *child;
2501	int error = 0;
2502
2503	if (!parent->p)
2504		return 0;
2505
2506	klist_iter_init(&parent->p->klist_children, &i);
2507	while (!error && (child = next_device(&i)))
2508		error = fn(child, data);
2509	klist_iter_exit(&i);
2510	return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527				  int (*fn)(struct device *dev, void *data))
2528{
2529	struct klist_iter i;
2530	struct device *child;
2531	int error = 0;
2532
2533	if (!parent->p)
2534		return 0;
2535
2536	klist_iter_init(&parent->p->klist_children, &i);
2537	while ((child = prev_device(&i)) && !error)
2538		error = fn(child, data);
2539	klist_iter_exit(&i);
2540	return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does.  If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562				 int (*match)(struct device *dev, void *data))
2563{
2564	struct klist_iter i;
2565	struct device *child;
2566
2567	if (!parent)
2568		return NULL;
2569
2570	klist_iter_init(&parent->p->klist_children, &i);
2571	while ((child = next_device(&i)))
2572		if (match(child, data) && get_device(child))
2573			break;
2574	klist_iter_exit(&i);
2575	return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590					 const char *name)
2591{
2592	struct klist_iter i;
2593	struct device *child;
2594
2595	if (!parent)
2596		return NULL;
2597
2598	klist_iter_init(&parent->p->klist_children, &i);
2599	while ((child = next_device(&i)))
2600		if (!strcmp(dev_name(child), name) && get_device(child))
2601			break;
2602	klist_iter_exit(&i);
2603	return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610	if (!devices_kset)
2611		return -ENOMEM;
2612	dev_kobj = kobject_create_and_add("dev", NULL);
2613	if (!dev_kobj)
2614		goto dev_kobj_err;
2615	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616	if (!sysfs_dev_block_kobj)
2617		goto block_kobj_err;
2618	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619	if (!sysfs_dev_char_kobj)
2620		goto char_kobj_err;
2621
2622	return 0;
2623
2624 char_kobj_err:
2625	kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627	kobject_put(dev_kobj);
2628 dev_kobj_err:
2629	kset_unregister(devices_kset);
2630	return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635	int ret;
2636
2637	ret = device_for_each_child(dev, NULL, device_check_offline);
2638	if (ret)
2639		return ret;
2640
2641	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal.  If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657	int ret;
2658
2659	if (dev->offline_disabled)
2660		return -EPERM;
2661
2662	ret = device_for_each_child(dev, NULL, device_check_offline);
2663	if (ret)
2664		return ret;
2665
2666	device_lock(dev);
2667	if (device_supports_offline(dev)) {
2668		if (dev->offline) {
2669			ret = 1;
2670		} else {
2671			ret = dev->bus->offline(dev);
2672			if (!ret) {
2673				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674				dev->offline = true;
2675			}
2676		}
2677	}
2678	device_unlock(dev);
2679
2680	return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695	int ret = 0;
2696
2697	device_lock(dev);
2698	if (device_supports_offline(dev)) {
2699		if (dev->offline) {
2700			ret = dev->bus->online(dev);
2701			if (!ret) {
2702				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703				dev->offline = false;
2704			}
2705		} else {
2706			ret = 1;
2707		}
2708	}
2709	device_unlock(dev);
2710
2711	return ret;
2712}
2713
2714struct root_device {
2715	struct device dev;
2716	struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721	return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726	kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753	struct root_device *root;
2754	int err = -ENOMEM;
2755
2756	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757	if (!root)
2758		return ERR_PTR(err);
2759
2760	err = dev_set_name(&root->dev, "%s", name);
2761	if (err) {
2762		kfree(root);
2763		return ERR_PTR(err);
2764	}
2765
2766	root->dev.release = root_device_release;
2767
2768	err = device_register(&root->dev);
2769	if (err) {
2770		put_device(&root->dev);
2771		return ERR_PTR(err);
2772	}
2773
2774#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775	if (owner) {
2776		struct module_kobject *mk = &owner->mkobj;
2777
2778		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779		if (err) {
2780			device_unregister(&root->dev);
2781			return ERR_PTR(err);
2782		}
2783		root->owner = owner;
2784	}
2785#endif
2786
2787	return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800	struct root_device *root = to_root_device(dev);
2801
2802	if (root->owner)
2803		sysfs_remove_link(&root->dev.kobj, "module");
2804
2805	device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813	kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818			   dev_t devt, void *drvdata,
2819			   const struct attribute_group **groups,
2820			   const char *fmt, va_list args)
2821{
2822	struct device *dev = NULL;
2823	int retval = -ENODEV;
2824
2825	if (class == NULL || IS_ERR(class))
2826		goto error;
2827
2828	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829	if (!dev) {
2830		retval = -ENOMEM;
2831		goto error;
2832	}
2833
2834	device_initialize(dev);
2835	dev->devt = devt;
2836	dev->class = class;
2837	dev->parent = parent;
2838	dev->groups = groups;
2839	dev->release = device_create_release;
2840	dev_set_drvdata(dev, drvdata);
2841
2842	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843	if (retval)
2844		goto error;
2845
2846	retval = device_add(dev);
2847	if (retval)
2848		goto error;
2849
2850	return dev;
2851
2852error:
2853	put_device(dev);
2854	return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes.  A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883				   dev_t devt, void *drvdata, const char *fmt,
2884				   va_list args)
2885{
2886	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887					  fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes.  A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916			     dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918	va_list vargs;
2919	struct device *dev;
2920
2921	va_start(vargs, fmt);
2922	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923	va_end(vargs);
2924	return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes.  A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956					 struct device *parent, dev_t devt,
2957					 void *drvdata,
2958					 const struct attribute_group **groups,
2959					 const char *fmt, ...)
2960{
2961	va_list vargs;
2962	struct device *dev;
2963
2964	va_start(vargs, fmt);
2965	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966					 fmt, vargs);
2967	va_end(vargs);
2968	return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
 
 
 
 
 
 
 
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982	struct device *dev;
2983
2984	dev = class_find_device_by_devt(class, devt);
2985	if (dev) {
2986		put_device(dev);
2987		device_unregister(dev);
2988	}
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function.  Currently, the networking layer calls this
3003 * function, but that will change.  The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033	struct kobject *kobj = &dev->kobj;
3034	char *old_device_name = NULL;
3035	int error;
3036
3037	dev = get_device(dev);
3038	if (!dev)
3039		return -EINVAL;
3040
3041	dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044	if (!old_device_name) {
3045		error = -ENOMEM;
3046		goto out;
3047	}
3048
3049	if (dev->class) {
3050		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051					     kobj, old_device_name,
3052					     new_name, kobject_namespace(kobj));
3053		if (error)
3054			goto out;
3055	}
3056
3057	error = kobject_rename(kobj, new_name);
3058	if (error)
3059		goto out;
3060
3061out:
3062	put_device(dev);
3063
3064	kfree(old_device_name);
3065
3066	return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071				   struct device *old_parent,
3072				   struct device *new_parent)
3073{
3074	int error = 0;
3075
3076	if (old_parent)
3077		sysfs_remove_link(&dev->kobj, "device");
3078	if (new_parent)
3079		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080					  "device");
3081	return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091		enum dpm_order dpm_order)
3092{
3093	int error;
3094	struct device *old_parent;
3095	struct kobject *new_parent_kobj;
3096
3097	dev = get_device(dev);
3098	if (!dev)
3099		return -EINVAL;
3100
3101	device_pm_lock();
3102	new_parent = get_device(new_parent);
3103	new_parent_kobj = get_device_parent(dev, new_parent);
3104	if (IS_ERR(new_parent_kobj)) {
3105		error = PTR_ERR(new_parent_kobj);
3106		put_device(new_parent);
3107		goto out;
3108	}
3109
3110	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112	error = kobject_move(&dev->kobj, new_parent_kobj);
3113	if (error) {
3114		cleanup_glue_dir(dev, new_parent_kobj);
3115		put_device(new_parent);
3116		goto out;
3117	}
3118	old_parent = dev->parent;
3119	dev->parent = new_parent;
3120	if (old_parent)
3121		klist_remove(&dev->p->knode_parent);
3122	if (new_parent) {
3123		klist_add_tail(&dev->p->knode_parent,
3124			       &new_parent->p->klist_children);
3125		set_dev_node(dev, dev_to_node(new_parent));
3126	}
3127
3128	if (dev->class) {
3129		error = device_move_class_links(dev, old_parent, new_parent);
3130		if (error) {
3131			/* We ignore errors on cleanup since we're hosed anyway... */
3132			device_move_class_links(dev, new_parent, old_parent);
3133			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134				if (new_parent)
3135					klist_remove(&dev->p->knode_parent);
3136				dev->parent = old_parent;
3137				if (old_parent) {
3138					klist_add_tail(&dev->p->knode_parent,
3139						       &old_parent->p->klist_children);
3140					set_dev_node(dev, dev_to_node(old_parent));
3141				}
3142			}
3143			cleanup_glue_dir(dev, new_parent_kobj);
3144			put_device(new_parent);
3145			goto out;
3146		}
3147	}
3148	switch (dpm_order) {
3149	case DPM_ORDER_NONE:
3150		break;
3151	case DPM_ORDER_DEV_AFTER_PARENT:
3152		device_pm_move_after(dev, new_parent);
3153		devices_kset_move_after(dev, new_parent);
3154		break;
3155	case DPM_ORDER_PARENT_BEFORE_DEV:
3156		device_pm_move_before(new_parent, dev);
3157		devices_kset_move_before(new_parent, dev);
3158		break;
3159	case DPM_ORDER_DEV_LAST:
3160		device_pm_move_last(dev);
3161		devices_kset_move_last(dev);
3162		break;
3163	}
3164
3165	put_device(old_parent);
3166out:
3167	device_pm_unlock();
3168	put_device(dev);
3169	return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178	struct device *dev, *parent;
3179
3180	wait_for_device_probe();
3181	device_block_probing();
3182
3183	cpufreq_suspend();
3184
3185	spin_lock(&devices_kset->list_lock);
3186	/*
3187	 * Walk the devices list backward, shutting down each in turn.
3188	 * Beware that device unplug events may also start pulling
3189	 * devices offline, even as the system is shutting down.
3190	 */
3191	while (!list_empty(&devices_kset->list)) {
3192		dev = list_entry(devices_kset->list.prev, struct device,
3193				kobj.entry);
3194
3195		/*
3196		 * hold reference count of device's parent to
3197		 * prevent it from being freed because parent's
3198		 * lock is to be held
3199		 */
3200		parent = get_device(dev->parent);
3201		get_device(dev);
3202		/*
3203		 * Make sure the device is off the kset list, in the
3204		 * event that dev->*->shutdown() doesn't remove it.
3205		 */
3206		list_del_init(&dev->kobj.entry);
3207		spin_unlock(&devices_kset->list_lock);
3208
3209		/* hold lock to avoid race with probe/release */
3210		if (parent)
3211			device_lock(parent);
3212		device_lock(dev);
3213
3214		/* Don't allow any more runtime suspends */
3215		pm_runtime_get_noresume(dev);
3216		pm_runtime_barrier(dev);
3217
3218		if (dev->class && dev->class->shutdown_pre) {
3219			if (initcall_debug)
3220				dev_info(dev, "shutdown_pre\n");
3221			dev->class->shutdown_pre(dev);
3222		}
3223		if (dev->bus && dev->bus->shutdown) {
3224			if (initcall_debug)
3225				dev_info(dev, "shutdown\n");
3226			dev->bus->shutdown(dev);
3227		} else if (dev->driver && dev->driver->shutdown) {
3228			if (initcall_debug)
3229				dev_info(dev, "shutdown\n");
3230			dev->driver->shutdown(dev);
3231		}
3232
3233		device_unlock(dev);
3234		if (parent)
3235			device_unlock(parent);
3236
3237		put_device(dev);
3238		put_device(parent);
3239
3240		spin_lock(&devices_kset->list_lock);
3241	}
3242	spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253	const char *subsys;
3254	size_t pos = 0;
3255
3256	if (dev->class)
3257		subsys = dev->class->name;
3258	else if (dev->bus)
3259		subsys = dev->bus->name;
3260	else
3261		return 0;
3262
3263	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264	if (pos >= hdrlen)
3265		goto overflow;
3266
3267	/*
3268	 * Add device identifier DEVICE=:
3269	 *   b12:8         block dev_t
3270	 *   c127:3        char dev_t
3271	 *   n8            netdev ifindex
3272	 *   +sound:card0  subsystem:devname
3273	 */
3274	if (MAJOR(dev->devt)) {
3275		char c;
3276
3277		if (strcmp(subsys, "block") == 0)
3278			c = 'b';
3279		else
3280			c = 'c';
3281		pos++;
3282		pos += snprintf(hdr + pos, hdrlen - pos,
3283				"DEVICE=%c%u:%u",
3284				c, MAJOR(dev->devt), MINOR(dev->devt));
3285	} else if (strcmp(subsys, "net") == 0) {
3286		struct net_device *net = to_net_dev(dev);
3287
3288		pos++;
3289		pos += snprintf(hdr + pos, hdrlen - pos,
3290				"DEVICE=n%u", net->ifindex);
3291	} else {
3292		pos++;
3293		pos += snprintf(hdr + pos, hdrlen - pos,
3294				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295	}
3296
3297	if (pos >= hdrlen)
3298		goto overflow;
3299
3300	return pos;
3301
3302overflow:
3303	dev_WARN(dev, "device/subsystem name too long");
3304	return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308		     const char *fmt, va_list args)
3309{
3310	char hdr[128];
3311	size_t hdrlen;
3312
3313	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321	va_list args;
3322	int r;
3323
3324	va_start(args, fmt);
3325
3326	r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328	va_end(args);
3329
3330	return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335			struct va_format *vaf)
3336{
3337	if (dev)
3338		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339				dev_driver_string(dev), dev_name(dev), vaf);
3340	else
3341		printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345		const char *fmt, ...)
3346{
3347	struct va_format vaf;
3348	va_list args;
3349
3350	va_start(args, fmt);
3351
3352	vaf.fmt = fmt;
3353	vaf.va = &args;
3354
3355	__dev_printk(level, dev, &vaf);
3356
3357	va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level)		\
3362void func(const struct device *dev, const char *fmt, ...)	\
3363{								\
3364	struct va_format vaf;					\
3365	va_list args;						\
3366								\
3367	va_start(args, fmt);					\
3368								\
3369	vaf.fmt = fmt;						\
3370	vaf.va = &args;						\
3371								\
3372	__dev_printk(kern_level, dev, &vaf);			\
3373								\
3374	va_end(args);						\
3375}								\
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390	return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
3403	if (fwnode) {
3404		struct fwnode_handle *fn = dev->fwnode;
3405
3406		if (fwnode_is_primary(fn))
3407			fn = fn->secondary;
3408
3409		if (fn) {
3410			WARN_ON(fwnode->secondary);
3411			fwnode->secondary = fn;
3412		}
3413		dev->fwnode = fwnode;
3414	} else {
3415		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416			dev->fwnode->secondary : NULL;
3417	}
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432	if (fwnode)
3433		fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435	if (fwnode_is_primary(dev->fwnode))
3436		dev->fwnode->secondary = fwnode;
3437	else
3438		dev->fwnode = fwnode;
3439}
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451	of_node_put(dev->of_node);
3452	dev->of_node = of_node_get(dev2->of_node);
3453	dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459	return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465	return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471	return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477	return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483	return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489	return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);