Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
  23#include <linux/sched/topology.h>
  24#include <linux/sched/signal.h>
  25#include <linux/delay.h>
  26#include <linux/crash_dump.h>
  27#include <linux/prefetch.h>
  28
  29#include <trace/events/block.h>
  30
  31#include <linux/blk-mq.h>
 
  32#include "blk.h"
  33#include "blk-mq.h"
  34#include "blk-mq-debugfs.h"
  35#include "blk-mq-tag.h"
 
  36#include "blk-stat.h"
  37#include "blk-wbt.h"
  38#include "blk-mq-sched.h"
 
  39
  40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
  41static void blk_mq_poll_stats_start(struct request_queue *q);
  42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  43
  44static int blk_mq_poll_stats_bkt(const struct request *rq)
  45{
  46	int ddir, bytes, bucket;
  47
  48	ddir = rq_data_dir(rq);
  49	bytes = blk_rq_bytes(rq);
  50
  51	bucket = ddir + 2*(ilog2(bytes) - 9);
  52
  53	if (bucket < 0)
  54		return -1;
  55	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  56		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  57
  58	return bucket;
  59}
  60
  61/*
  62 * Check if any of the ctx's have pending work in this hardware queue
 
  63 */
  64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  65{
  66	return !list_empty_careful(&hctx->dispatch) ||
  67		sbitmap_any_bit_set(&hctx->ctx_map) ||
  68			blk_mq_sched_has_work(hctx);
  69}
  70
  71/*
  72 * Mark this ctx as having pending work in this hardware queue
  73 */
  74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  75				     struct blk_mq_ctx *ctx)
  76{
  77	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
  78		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
 
 
  79}
  80
  81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  82				      struct blk_mq_ctx *ctx)
  83{
  84	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
 
 
  85}
  86
  87struct mq_inflight {
  88	struct hd_struct *part;
  89	unsigned int *inflight;
  90};
  91
  92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
  93				  struct request *rq, void *priv,
  94				  bool reserved)
  95{
  96	struct mq_inflight *mi = priv;
  97
  98	/*
  99	 * index[0] counts the specific partition that was asked for. index[1]
 100	 * counts the ones that are active on the whole device, so increment
 101	 * that if mi->part is indeed a partition, and not a whole device.
 102	 */
 103	if (rq->part == mi->part)
 104		mi->inflight[0]++;
 105	if (mi->part->partno)
 106		mi->inflight[1]++;
 107}
 108
 109void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
 110		      unsigned int inflight[2])
 111{
 
 112	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 113
 114	inflight[0] = inflight[1] = 0;
 115	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 
 
 116}
 117
 118static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 119				     struct request *rq, void *priv,
 120				     bool reserved)
 121{
 122	struct mq_inflight *mi = priv;
 123
 124	if (rq->part == mi->part)
 125		mi->inflight[rq_data_dir(rq)]++;
 
 
 126}
 127
 128void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 129			 unsigned int inflight[2])
 130{
 131	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 132
 133	inflight[0] = inflight[1] = 0;
 134	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 135}
 136
 137void blk_freeze_queue_start(struct request_queue *q)
 138{
 139	int freeze_depth;
 140
 141	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
 142	if (freeze_depth == 1) {
 143		percpu_ref_kill(&q->q_usage_counter);
 144		if (q->mq_ops)
 
 145			blk_mq_run_hw_queues(q, false);
 
 
 146	}
 147}
 148EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 149
 150void blk_mq_freeze_queue_wait(struct request_queue *q)
 151{
 152	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 153}
 154EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 155
 156int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 157				     unsigned long timeout)
 158{
 159	return wait_event_timeout(q->mq_freeze_wq,
 160					percpu_ref_is_zero(&q->q_usage_counter),
 161					timeout);
 162}
 163EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 164
 165/*
 166 * Guarantee no request is in use, so we can change any data structure of
 167 * the queue afterward.
 168 */
 169void blk_freeze_queue(struct request_queue *q)
 170{
 171	/*
 172	 * In the !blk_mq case we are only calling this to kill the
 173	 * q_usage_counter, otherwise this increases the freeze depth
 174	 * and waits for it to return to zero.  For this reason there is
 175	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 176	 * exported to drivers as the only user for unfreeze is blk_mq.
 177	 */
 178	blk_freeze_queue_start(q);
 179	if (!q->mq_ops)
 180		blk_drain_queue(q);
 181	blk_mq_freeze_queue_wait(q);
 182}
 183
 184void blk_mq_freeze_queue(struct request_queue *q)
 185{
 186	/*
 187	 * ...just an alias to keep freeze and unfreeze actions balanced
 188	 * in the blk_mq_* namespace
 189	 */
 190	blk_freeze_queue(q);
 191}
 192EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 193
 194void blk_mq_unfreeze_queue(struct request_queue *q)
 195{
 196	int freeze_depth;
 197
 198	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 199	WARN_ON_ONCE(freeze_depth < 0);
 200	if (!freeze_depth) {
 201		percpu_ref_reinit(&q->q_usage_counter);
 202		wake_up_all(&q->mq_freeze_wq);
 203	}
 
 204}
 205EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 206
 207/*
 208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 209 * mpt3sas driver such that this function can be removed.
 210 */
 211void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 212{
 213	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 214}
 215EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 216
 217/**
 218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 219 * @q: request queue.
 220 *
 221 * Note: this function does not prevent that the struct request end_io()
 222 * callback function is invoked. Once this function is returned, we make
 223 * sure no dispatch can happen until the queue is unquiesced via
 224 * blk_mq_unquiesce_queue().
 225 */
 226void blk_mq_quiesce_queue(struct request_queue *q)
 227{
 228	struct blk_mq_hw_ctx *hctx;
 229	unsigned int i;
 230	bool rcu = false;
 231
 232	blk_mq_quiesce_queue_nowait(q);
 233
 234	queue_for_each_hw_ctx(q, hctx, i) {
 235		if (hctx->flags & BLK_MQ_F_BLOCKING)
 236			synchronize_srcu(hctx->srcu);
 237		else
 238			rcu = true;
 239	}
 240	if (rcu)
 241		synchronize_rcu();
 242}
 243EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 244
 245/*
 246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 247 * @q: request queue.
 248 *
 249 * This function recovers queue into the state before quiescing
 250 * which is done by blk_mq_quiesce_queue.
 251 */
 252void blk_mq_unquiesce_queue(struct request_queue *q)
 253{
 254	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 255
 256	/* dispatch requests which are inserted during quiescing */
 257	blk_mq_run_hw_queues(q, true);
 258}
 259EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 260
 261void blk_mq_wake_waiters(struct request_queue *q)
 262{
 263	struct blk_mq_hw_ctx *hctx;
 264	unsigned int i;
 265
 266	queue_for_each_hw_ctx(q, hctx, i)
 267		if (blk_mq_hw_queue_mapped(hctx))
 268			blk_mq_tag_wakeup_all(hctx->tags, true);
 269}
 270
 271bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 272{
 273	return blk_mq_has_free_tags(hctx->tags);
 274}
 275EXPORT_SYMBOL(blk_mq_can_queue);
 276
 
 
 
 
 
 
 
 
 
 277static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 278		unsigned int tag, unsigned int op)
 279{
 280	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 281	struct request *rq = tags->static_rqs[tag];
 282	req_flags_t rq_flags = 0;
 283
 284	if (data->flags & BLK_MQ_REQ_INTERNAL) {
 285		rq->tag = -1;
 286		rq->internal_tag = tag;
 287	} else {
 288		if (blk_mq_tag_busy(data->hctx)) {
 289			rq_flags = RQF_MQ_INFLIGHT;
 290			atomic_inc(&data->hctx->nr_active);
 291		}
 292		rq->tag = tag;
 293		rq->internal_tag = -1;
 294		data->hctx->tags->rqs[rq->tag] = rq;
 295	}
 296
 297	/* csd/requeue_work/fifo_time is initialized before use */
 298	rq->q = data->q;
 299	rq->mq_ctx = data->ctx;
 
 300	rq->rq_flags = rq_flags;
 301	rq->cpu = -1;
 302	rq->cmd_flags = op;
 303	if (data->flags & BLK_MQ_REQ_PREEMPT)
 304		rq->rq_flags |= RQF_PREEMPT;
 305	if (blk_queue_io_stat(data->q))
 306		rq->rq_flags |= RQF_IO_STAT;
 307	INIT_LIST_HEAD(&rq->queuelist);
 308	INIT_HLIST_NODE(&rq->hash);
 309	RB_CLEAR_NODE(&rq->rb_node);
 310	rq->rq_disk = NULL;
 311	rq->part = NULL;
 312	rq->start_time = jiffies;
 
 
 
 
 
 
 
 
 313	rq->nr_phys_segments = 0;
 314#if defined(CONFIG_BLK_DEV_INTEGRITY)
 315	rq->nr_integrity_segments = 0;
 316#endif
 317	rq->special = NULL;
 318	/* tag was already set */
 319	rq->extra_len = 0;
 320	rq->__deadline = 0;
 321
 322	INIT_LIST_HEAD(&rq->timeout_list);
 323	rq->timeout = 0;
 324
 325	rq->end_io = NULL;
 326	rq->end_io_data = NULL;
 327	rq->next_rq = NULL;
 328
 329#ifdef CONFIG_BLK_CGROUP
 330	rq->rl = NULL;
 331	set_start_time_ns(rq);
 332	rq->io_start_time_ns = 0;
 333#endif
 334
 335	data->ctx->rq_dispatched[op_is_sync(op)]++;
 
 336	return rq;
 337}
 338
 339static struct request *blk_mq_get_request(struct request_queue *q,
 340		struct bio *bio, unsigned int op,
 341		struct blk_mq_alloc_data *data)
 342{
 343	struct elevator_queue *e = q->elevator;
 344	struct request *rq;
 345	unsigned int tag;
 346	bool put_ctx_on_error = false;
 
 347
 348	blk_queue_enter_live(q);
 
 
 
 
 
 349	data->q = q;
 350	if (likely(!data->ctx)) {
 351		data->ctx = blk_mq_get_ctx(q);
 352		put_ctx_on_error = true;
 353	}
 354	if (likely(!data->hctx))
 355		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
 356	if (op & REQ_NOWAIT)
 
 357		data->flags |= BLK_MQ_REQ_NOWAIT;
 358
 359	if (e) {
 360		data->flags |= BLK_MQ_REQ_INTERNAL;
 361
 362		/*
 363		 * Flush requests are special and go directly to the
 364		 * dispatch list.
 
 365		 */
 366		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
 367			e->type->ops.mq.limit_depth(op, data);
 
 
 
 
 368	}
 369
 370	tag = blk_mq_get_tag(data);
 371	if (tag == BLK_MQ_TAG_FAIL) {
 372		if (put_ctx_on_error) {
 373			blk_mq_put_ctx(data->ctx);
 374			data->ctx = NULL;
 375		}
 376		blk_queue_exit(q);
 377		return NULL;
 378	}
 379
 380	rq = blk_mq_rq_ctx_init(data, tag, op);
 381	if (!op_is_flush(op)) {
 382		rq->elv.icq = NULL;
 383		if (e && e->type->ops.mq.prepare_request) {
 384			if (e->type->icq_cache && rq_ioc(bio))
 385				blk_mq_sched_assign_ioc(rq, bio);
 386
 387			e->type->ops.mq.prepare_request(rq, bio);
 388			rq->rq_flags |= RQF_ELVPRIV;
 389		}
 390	}
 391	data->hctx->queued++;
 392	return rq;
 393}
 394
 395struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 396		blk_mq_req_flags_t flags)
 397{
 398	struct blk_mq_alloc_data alloc_data = { .flags = flags };
 399	struct request *rq;
 400	int ret;
 401
 402	ret = blk_queue_enter(q, flags);
 403	if (ret)
 404		return ERR_PTR(ret);
 405
 406	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
 407	blk_queue_exit(q);
 408
 409	if (!rq)
 410		return ERR_PTR(-EWOULDBLOCK);
 411
 412	blk_mq_put_ctx(alloc_data.ctx);
 413
 414	rq->__data_len = 0;
 415	rq->__sector = (sector_t) -1;
 416	rq->bio = rq->biotail = NULL;
 417	return rq;
 418}
 419EXPORT_SYMBOL(blk_mq_alloc_request);
 420
 421struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 422	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 423{
 424	struct blk_mq_alloc_data alloc_data = { .flags = flags };
 425	struct request *rq;
 426	unsigned int cpu;
 427	int ret;
 428
 429	/*
 430	 * If the tag allocator sleeps we could get an allocation for a
 431	 * different hardware context.  No need to complicate the low level
 432	 * allocator for this for the rare use case of a command tied to
 433	 * a specific queue.
 434	 */
 435	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 436		return ERR_PTR(-EINVAL);
 437
 438	if (hctx_idx >= q->nr_hw_queues)
 439		return ERR_PTR(-EIO);
 440
 441	ret = blk_queue_enter(q, flags);
 442	if (ret)
 443		return ERR_PTR(ret);
 444
 445	/*
 446	 * Check if the hardware context is actually mapped to anything.
 447	 * If not tell the caller that it should skip this queue.
 448	 */
 449	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 450	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 451		blk_queue_exit(q);
 452		return ERR_PTR(-EXDEV);
 453	}
 454	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 455	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 456
 457	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
 458	blk_queue_exit(q);
 459
 460	if (!rq)
 461		return ERR_PTR(-EWOULDBLOCK);
 462
 463	return rq;
 464}
 465EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467void blk_mq_free_request(struct request *rq)
 468{
 469	struct request_queue *q = rq->q;
 470	struct elevator_queue *e = q->elevator;
 471	struct blk_mq_ctx *ctx = rq->mq_ctx;
 472	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
 473	const int sched_tag = rq->internal_tag;
 474
 475	if (rq->rq_flags & RQF_ELVPRIV) {
 476		if (e && e->type->ops.mq.finish_request)
 477			e->type->ops.mq.finish_request(rq);
 478		if (rq->elv.icq) {
 479			put_io_context(rq->elv.icq->ioc);
 480			rq->elv.icq = NULL;
 481		}
 482	}
 483
 484	ctx->rq_completed[rq_is_sync(rq)]++;
 485	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 486		atomic_dec(&hctx->nr_active);
 487
 488	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 489		laptop_io_completion(q->backing_dev_info);
 490
 491	wbt_done(q->rq_wb, &rq->issue_stat);
 492
 493	if (blk_rq_rl(rq))
 494		blk_put_rl(blk_rq_rl(rq));
 495
 496	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
 497	if (rq->tag != -1)
 498		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 499	if (sched_tag != -1)
 500		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 501	blk_mq_sched_restart(hctx);
 502	blk_queue_exit(q);
 503}
 504EXPORT_SYMBOL_GPL(blk_mq_free_request);
 505
 506inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 507{
 508	blk_account_io_done(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 509
 510	if (rq->end_io) {
 511		wbt_done(rq->q->rq_wb, &rq->issue_stat);
 512		rq->end_io(rq, error);
 513	} else {
 514		if (unlikely(blk_bidi_rq(rq)))
 515			blk_mq_free_request(rq->next_rq);
 516		blk_mq_free_request(rq);
 517	}
 518}
 519EXPORT_SYMBOL(__blk_mq_end_request);
 520
 521void blk_mq_end_request(struct request *rq, blk_status_t error)
 522{
 523	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 524		BUG();
 525	__blk_mq_end_request(rq, error);
 526}
 527EXPORT_SYMBOL(blk_mq_end_request);
 528
 529static void __blk_mq_complete_request_remote(void *data)
 530{
 531	struct request *rq = data;
 
 532
 533	rq->q->softirq_done_fn(rq);
 534}
 535
 536static void __blk_mq_complete_request(struct request *rq)
 537{
 538	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 539	bool shared = false;
 540	int cpu;
 541
 542	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
 543	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
 544
 545	if (rq->internal_tag != -1)
 546		blk_mq_sched_completed_request(rq);
 547	if (rq->rq_flags & RQF_STATS) {
 548		blk_mq_poll_stats_start(rq->q);
 549		blk_stat_add(rq);
 
 
 
 
 
 550	}
 551
 552	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 553		rq->q->softirq_done_fn(rq);
 
 
 
 
 
 554		return;
 555	}
 556
 557	cpu = get_cpu();
 558	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 559		shared = cpus_share_cache(cpu, ctx->cpu);
 560
 561	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 562		rq->csd.func = __blk_mq_complete_request_remote;
 563		rq->csd.info = rq;
 564		rq->csd.flags = 0;
 565		smp_call_function_single_async(ctx->cpu, &rq->csd);
 566	} else {
 567		rq->q->softirq_done_fn(rq);
 568	}
 569	put_cpu();
 570}
 571
 572static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 573	__releases(hctx->srcu)
 574{
 575	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 576		rcu_read_unlock();
 577	else
 578		srcu_read_unlock(hctx->srcu, srcu_idx);
 579}
 580
 581static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 582	__acquires(hctx->srcu)
 583{
 584	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 585		/* shut up gcc false positive */
 586		*srcu_idx = 0;
 587		rcu_read_lock();
 588	} else
 589		*srcu_idx = srcu_read_lock(hctx->srcu);
 590}
 591
 592static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
 593{
 594	unsigned long flags;
 595
 596	/*
 597	 * blk_mq_rq_aborted_gstate() is used from the completion path and
 598	 * can thus be called from irq context.  u64_stats_fetch in the
 599	 * middle of update on the same CPU leads to lockup.  Disable irq
 600	 * while updating.
 601	 */
 602	local_irq_save(flags);
 603	u64_stats_update_begin(&rq->aborted_gstate_sync);
 604	rq->aborted_gstate = gstate;
 605	u64_stats_update_end(&rq->aborted_gstate_sync);
 606	local_irq_restore(flags);
 607}
 608
 609static u64 blk_mq_rq_aborted_gstate(struct request *rq)
 610{
 611	unsigned int start;
 612	u64 aborted_gstate;
 613
 614	do {
 615		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
 616		aborted_gstate = rq->aborted_gstate;
 617	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
 618
 619	return aborted_gstate;
 620}
 621
 622/**
 623 * blk_mq_complete_request - end I/O on a request
 624 * @rq:		the request being processed
 625 *
 626 * Description:
 627 *	Ends all I/O on a request. It does not handle partial completions.
 628 *	The actual completion happens out-of-order, through a IPI handler.
 629 **/
 630void blk_mq_complete_request(struct request *rq)
 631{
 632	struct request_queue *q = rq->q;
 633	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
 634	int srcu_idx;
 635
 636	if (unlikely(blk_should_fake_timeout(q)))
 637		return;
 638
 639	/*
 640	 * If @rq->aborted_gstate equals the current instance, timeout is
 641	 * claiming @rq and we lost.  This is synchronized through
 642	 * hctx_lock().  See blk_mq_timeout_work() for details.
 643	 *
 644	 * Completion path never blocks and we can directly use RCU here
 645	 * instead of hctx_lock() which can be either RCU or SRCU.
 646	 * However, that would complicate paths which want to synchronize
 647	 * against us.  Let stay in sync with the issue path so that
 648	 * hctx_lock() covers both issue and completion paths.
 649	 */
 650	hctx_lock(hctx, &srcu_idx);
 651	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
 652		__blk_mq_complete_request(rq);
 653	hctx_unlock(hctx, srcu_idx);
 654}
 655EXPORT_SYMBOL(blk_mq_complete_request);
 656
 657int blk_mq_request_started(struct request *rq)
 658{
 659	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 660}
 661EXPORT_SYMBOL_GPL(blk_mq_request_started);
 662
 
 
 
 
 
 
 663void blk_mq_start_request(struct request *rq)
 664{
 665	struct request_queue *q = rq->q;
 666
 667	blk_mq_sched_started_request(rq);
 668
 669	trace_block_rq_issue(q, rq);
 670
 671	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 672		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
 
 673		rq->rq_flags |= RQF_STATS;
 674		wbt_issue(q->rq_wb, &rq->issue_stat);
 675	}
 676
 677	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 678
 679	/*
 680	 * Mark @rq in-flight which also advances the generation number,
 681	 * and register for timeout.  Protect with a seqcount to allow the
 682	 * timeout path to read both @rq->gstate and @rq->deadline
 683	 * coherently.
 684	 *
 685	 * This is the only place where a request is marked in-flight.  If
 686	 * the timeout path reads an in-flight @rq->gstate, the
 687	 * @rq->deadline it reads together under @rq->gstate_seq is
 688	 * guaranteed to be the matching one.
 689	 */
 690	preempt_disable();
 691	write_seqcount_begin(&rq->gstate_seq);
 692
 693	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
 694	blk_add_timer(rq);
 695
 696	write_seqcount_end(&rq->gstate_seq);
 697	preempt_enable();
 698
 699	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 700		/*
 701		 * Make sure space for the drain appears.  We know we can do
 702		 * this because max_hw_segments has been adjusted to be one
 703		 * fewer than the device can handle.
 704		 */
 705		rq->nr_phys_segments++;
 706	}
 
 
 
 
 
 707}
 708EXPORT_SYMBOL(blk_mq_start_request);
 709
 710/*
 711 * When we reach here because queue is busy, it's safe to change the state
 712 * to IDLE without checking @rq->aborted_gstate because we should still be
 713 * holding the RCU read lock and thus protected against timeout.
 714 */
 715static void __blk_mq_requeue_request(struct request *rq)
 716{
 717	struct request_queue *q = rq->q;
 718
 719	blk_mq_put_driver_tag(rq);
 720
 721	trace_block_rq_requeue(q, rq);
 722	wbt_requeue(q->rq_wb, &rq->issue_stat);
 723
 724	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
 725		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
 
 726		if (q->dma_drain_size && blk_rq_bytes(rq))
 727			rq->nr_phys_segments--;
 728	}
 729}
 730
 731void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 732{
 733	__blk_mq_requeue_request(rq);
 734
 735	/* this request will be re-inserted to io scheduler queue */
 736	blk_mq_sched_requeue_request(rq);
 737
 738	BUG_ON(blk_queued_rq(rq));
 739	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 740}
 741EXPORT_SYMBOL(blk_mq_requeue_request);
 742
 743static void blk_mq_requeue_work(struct work_struct *work)
 744{
 745	struct request_queue *q =
 746		container_of(work, struct request_queue, requeue_work.work);
 747	LIST_HEAD(rq_list);
 748	struct request *rq, *next;
 749
 750	spin_lock_irq(&q->requeue_lock);
 751	list_splice_init(&q->requeue_list, &rq_list);
 752	spin_unlock_irq(&q->requeue_lock);
 753
 754	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 755		if (!(rq->rq_flags & RQF_SOFTBARRIER))
 756			continue;
 757
 758		rq->rq_flags &= ~RQF_SOFTBARRIER;
 759		list_del_init(&rq->queuelist);
 760		blk_mq_sched_insert_request(rq, true, false, false);
 
 
 
 
 
 
 
 
 761	}
 762
 763	while (!list_empty(&rq_list)) {
 764		rq = list_entry(rq_list.next, struct request, queuelist);
 765		list_del_init(&rq->queuelist);
 766		blk_mq_sched_insert_request(rq, false, false, false);
 767	}
 768
 769	blk_mq_run_hw_queues(q, false);
 770}
 771
 772void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 773				bool kick_requeue_list)
 774{
 775	struct request_queue *q = rq->q;
 776	unsigned long flags;
 777
 778	/*
 779	 * We abuse this flag that is otherwise used by the I/O scheduler to
 780	 * request head insertion from the workqueue.
 781	 */
 782	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 783
 784	spin_lock_irqsave(&q->requeue_lock, flags);
 785	if (at_head) {
 786		rq->rq_flags |= RQF_SOFTBARRIER;
 787		list_add(&rq->queuelist, &q->requeue_list);
 788	} else {
 789		list_add_tail(&rq->queuelist, &q->requeue_list);
 790	}
 791	spin_unlock_irqrestore(&q->requeue_lock, flags);
 792
 793	if (kick_requeue_list)
 794		blk_mq_kick_requeue_list(q);
 795}
 796EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 797
 798void blk_mq_kick_requeue_list(struct request_queue *q)
 799{
 800	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 801}
 802EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 803
 804void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 805				    unsigned long msecs)
 806{
 807	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 808				    msecs_to_jiffies(msecs));
 809}
 810EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 811
 812struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 813{
 814	if (tag < tags->nr_tags) {
 815		prefetch(tags->rqs[tag]);
 816		return tags->rqs[tag];
 817	}
 818
 819	return NULL;
 820}
 821EXPORT_SYMBOL(blk_mq_tag_to_rq);
 822
 823struct blk_mq_timeout_data {
 824	unsigned long next;
 825	unsigned int next_set;
 826	unsigned int nr_expired;
 827};
 
 
 
 
 828
 829static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 
 
 
 
 
 
 
 830{
 831	const struct blk_mq_ops *ops = req->q->mq_ops;
 832	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 833
 834	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
 
 
 
 835
 836	if (ops->timeout)
 837		ret = ops->timeout(req, reserved);
 
 
 
 838
 839	switch (ret) {
 840	case BLK_EH_HANDLED:
 841		__blk_mq_complete_request(req);
 842		break;
 843	case BLK_EH_RESET_TIMER:
 844		/*
 845		 * As nothing prevents from completion happening while
 846		 * ->aborted_gstate is set, this may lead to ignored
 847		 * completions and further spurious timeouts.
 848		 */
 849		blk_mq_rq_update_aborted_gstate(req, 0);
 850		blk_add_timer(req);
 851		break;
 852	case BLK_EH_NOT_HANDLED:
 853		break;
 854	default:
 855		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 856		break;
 857	}
 
 
 858}
 859
 860static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 861		struct request *rq, void *priv, bool reserved)
 862{
 863	struct blk_mq_timeout_data *data = priv;
 864	unsigned long gstate, deadline;
 865	int start;
 866
 867	might_sleep();
 868
 869	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
 870		return;
 
 
 871
 872	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
 873	while (true) {
 874		start = read_seqcount_begin(&rq->gstate_seq);
 875		gstate = READ_ONCE(rq->gstate);
 876		deadline = blk_rq_deadline(rq);
 877		if (!read_seqcount_retry(&rq->gstate_seq, start))
 878			break;
 879		cond_resched();
 880	}
 881
 882	/* if in-flight && overdue, mark for abortion */
 883	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
 884	    time_after_eq(jiffies, deadline)) {
 885		blk_mq_rq_update_aborted_gstate(rq, gstate);
 886		data->nr_expired++;
 887		hctx->nr_expired++;
 888	} else if (!data->next_set || time_after(data->next, deadline)) {
 889		data->next = deadline;
 890		data->next_set = 1;
 891	}
 892}
 893
 894static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
 895		struct request *rq, void *priv, bool reserved)
 896{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	/*
 898	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
 899	 * completions that we lost to, they would have finished and
 900	 * updated @rq->gstate by now; otherwise, the completion path is
 901	 * now guaranteed to see @rq->aborted_gstate and yield.  If
 902	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
 903	 */
 904	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
 905	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
 906		blk_mq_rq_timed_out(rq, reserved);
 
 
 
 
 
 
 
 907}
 908
 909static void blk_mq_timeout_work(struct work_struct *work)
 910{
 911	struct request_queue *q =
 912		container_of(work, struct request_queue, timeout_work);
 913	struct blk_mq_timeout_data data = {
 914		.next		= 0,
 915		.next_set	= 0,
 916		.nr_expired	= 0,
 917	};
 918	struct blk_mq_hw_ctx *hctx;
 919	int i;
 920
 921	/* A deadlock might occur if a request is stuck requiring a
 922	 * timeout at the same time a queue freeze is waiting
 923	 * completion, since the timeout code would not be able to
 924	 * acquire the queue reference here.
 925	 *
 926	 * That's why we don't use blk_queue_enter here; instead, we use
 927	 * percpu_ref_tryget directly, because we need to be able to
 928	 * obtain a reference even in the short window between the queue
 929	 * starting to freeze, by dropping the first reference in
 930	 * blk_freeze_queue_start, and the moment the last request is
 931	 * consumed, marked by the instant q_usage_counter reaches
 932	 * zero.
 933	 */
 934	if (!percpu_ref_tryget(&q->q_usage_counter))
 935		return;
 936
 937	/* scan for the expired ones and set their ->aborted_gstate */
 938	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 939
 940	if (data.nr_expired) {
 941		bool has_rcu = false;
 942
 943		/*
 944		 * Wait till everyone sees ->aborted_gstate.  The
 945		 * sequential waits for SRCUs aren't ideal.  If this ever
 946		 * becomes a problem, we can add per-hw_ctx rcu_head and
 947		 * wait in parallel.
 948		 */
 949		queue_for_each_hw_ctx(q, hctx, i) {
 950			if (!hctx->nr_expired)
 951				continue;
 952
 953			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 954				has_rcu = true;
 955			else
 956				synchronize_srcu(hctx->srcu);
 957
 958			hctx->nr_expired = 0;
 959		}
 960		if (has_rcu)
 961			synchronize_rcu();
 962
 963		/* terminate the ones we won */
 964		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
 965	}
 966
 967	if (data.next_set) {
 968		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 969		mod_timer(&q->timeout, data.next);
 970	} else {
 971		/*
 972		 * Request timeouts are handled as a forward rolling timer. If
 973		 * we end up here it means that no requests are pending and
 974		 * also that no request has been pending for a while. Mark
 975		 * each hctx as idle.
 976		 */
 977		queue_for_each_hw_ctx(q, hctx, i) {
 978			/* the hctx may be unmapped, so check it here */
 979			if (blk_mq_hw_queue_mapped(hctx))
 980				blk_mq_tag_idle(hctx);
 981		}
 982	}
 983	blk_queue_exit(q);
 984}
 985
 986struct flush_busy_ctx_data {
 987	struct blk_mq_hw_ctx *hctx;
 988	struct list_head *list;
 989};
 990
 991static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 992{
 993	struct flush_busy_ctx_data *flush_data = data;
 994	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 995	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 
 996
 997	spin_lock(&ctx->lock);
 998	list_splice_tail_init(&ctx->rq_list, flush_data->list);
 999	sbitmap_clear_bit(sb, bitnr);
1000	spin_unlock(&ctx->lock);
1001	return true;
1002}
1003
1004/*
1005 * Process software queues that have been marked busy, splicing them
1006 * to the for-dispatch
1007 */
1008void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009{
1010	struct flush_busy_ctx_data data = {
1011		.hctx = hctx,
1012		.list = list,
1013	};
1014
1015	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016}
1017EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018
1019struct dispatch_rq_data {
1020	struct blk_mq_hw_ctx *hctx;
1021	struct request *rq;
1022};
1023
1024static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1025		void *data)
1026{
1027	struct dispatch_rq_data *dispatch_data = data;
1028	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1029	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 
1030
1031	spin_lock(&ctx->lock);
1032	if (unlikely(!list_empty(&ctx->rq_list))) {
1033		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1034		list_del_init(&dispatch_data->rq->queuelist);
1035		if (list_empty(&ctx->rq_list))
1036			sbitmap_clear_bit(sb, bitnr);
1037	}
1038	spin_unlock(&ctx->lock);
1039
1040	return !dispatch_data->rq;
1041}
1042
1043struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1044					struct blk_mq_ctx *start)
1045{
1046	unsigned off = start ? start->index_hw : 0;
1047	struct dispatch_rq_data data = {
1048		.hctx = hctx,
1049		.rq   = NULL,
1050	};
1051
1052	__sbitmap_for_each_set(&hctx->ctx_map, off,
1053			       dispatch_rq_from_ctx, &data);
1054
1055	return data.rq;
1056}
1057
1058static inline unsigned int queued_to_index(unsigned int queued)
1059{
1060	if (!queued)
1061		return 0;
1062
1063	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064}
1065
1066bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1067			   bool wait)
1068{
1069	struct blk_mq_alloc_data data = {
1070		.q = rq->q,
1071		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1072		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
 
1073	};
1074
1075	might_sleep_if(wait);
1076
1077	if (rq->tag != -1)
1078		goto done;
1079
1080	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1081		data.flags |= BLK_MQ_REQ_RESERVED;
1082
 
1083	rq->tag = blk_mq_get_tag(&data);
1084	if (rq->tag >= 0) {
1085		if (blk_mq_tag_busy(data.hctx)) {
1086			rq->rq_flags |= RQF_MQ_INFLIGHT;
1087			atomic_inc(&data.hctx->nr_active);
1088		}
1089		data.hctx->tags->rqs[rq->tag] = rq;
1090	}
1091
1092done:
1093	if (hctx)
1094		*hctx = data.hctx;
1095	return rq->tag != -1;
1096}
1097
1098static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1099				int flags, void *key)
1100{
1101	struct blk_mq_hw_ctx *hctx;
1102
1103	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1104
1105	list_del_init(&wait->entry);
 
 
 
 
 
 
 
 
 
1106	blk_mq_run_hw_queue(hctx, true);
1107	return 1;
1108}
1109
1110/*
1111 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1112 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1113 * restart. For both cases, take care to check the condition again after
1114 * marking us as waiting.
1115 */
1116static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1117				 struct request *rq)
1118{
1119	struct blk_mq_hw_ctx *this_hctx = *hctx;
1120	struct sbq_wait_state *ws;
1121	wait_queue_entry_t *wait;
1122	bool ret;
1123
1124	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1125		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1126			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1127
1128		/*
1129		 * It's possible that a tag was freed in the window between the
1130		 * allocation failure and adding the hardware queue to the wait
1131		 * queue.
1132		 *
1133		 * Don't clear RESTART here, someone else could have set it.
1134		 * At most this will cost an extra queue run.
1135		 */
1136		return blk_mq_get_driver_tag(rq, hctx, false);
1137	}
1138
1139	wait = &this_hctx->dispatch_wait;
1140	if (!list_empty_careful(&wait->entry))
1141		return false;
1142
1143	spin_lock(&this_hctx->lock);
 
 
 
1144	if (!list_empty(&wait->entry)) {
1145		spin_unlock(&this_hctx->lock);
 
1146		return false;
1147	}
1148
1149	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1150	add_wait_queue(&ws->wait, wait);
 
1151
1152	/*
1153	 * It's possible that a tag was freed in the window between the
1154	 * allocation failure and adding the hardware queue to the wait
1155	 * queue.
1156	 */
1157	ret = blk_mq_get_driver_tag(rq, hctx, false);
1158	if (!ret) {
1159		spin_unlock(&this_hctx->lock);
 
1160		return false;
1161	}
1162
1163	/*
1164	 * We got a tag, remove ourselves from the wait queue to ensure
1165	 * someone else gets the wakeup.
1166	 */
1167	spin_lock_irq(&ws->wait.lock);
1168	list_del_init(&wait->entry);
1169	spin_unlock_irq(&ws->wait.lock);
1170	spin_unlock(&this_hctx->lock);
 
1171
1172	return true;
1173}
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1176
 
 
 
1177bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1178			     bool got_budget)
1179{
1180	struct blk_mq_hw_ctx *hctx;
1181	struct request *rq, *nxt;
1182	bool no_tag = false;
1183	int errors, queued;
1184	blk_status_t ret = BLK_STS_OK;
1185
1186	if (list_empty(list))
1187		return false;
1188
1189	WARN_ON(!list_is_singular(list) && got_budget);
1190
1191	/*
1192	 * Now process all the entries, sending them to the driver.
1193	 */
1194	errors = queued = 0;
1195	do {
1196		struct blk_mq_queue_data bd;
1197
1198		rq = list_first_entry(list, struct request, queuelist);
1199
1200		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1201		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1202			break;
1203
1204		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1205			/*
1206			 * The initial allocation attempt failed, so we need to
1207			 * rerun the hardware queue when a tag is freed. The
1208			 * waitqueue takes care of that. If the queue is run
1209			 * before we add this entry back on the dispatch list,
1210			 * we'll re-run it below.
1211			 */
1212			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1213				blk_mq_put_dispatch_budget(hctx);
1214				/*
1215				 * For non-shared tags, the RESTART check
1216				 * will suffice.
1217				 */
1218				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1219					no_tag = true;
1220				break;
1221			}
1222		}
1223
1224		list_del_init(&rq->queuelist);
1225
1226		bd.rq = rq;
1227
1228		/*
1229		 * Flag last if we have no more requests, or if we have more
1230		 * but can't assign a driver tag to it.
1231		 */
1232		if (list_empty(list))
1233			bd.last = true;
1234		else {
1235			nxt = list_first_entry(list, struct request, queuelist);
1236			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1237		}
1238
1239		ret = q->mq_ops->queue_rq(hctx, &bd);
1240		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1241			/*
1242			 * If an I/O scheduler has been configured and we got a
1243			 * driver tag for the next request already, free it
1244			 * again.
1245			 */
1246			if (!list_empty(list)) {
1247				nxt = list_first_entry(list, struct request, queuelist);
1248				blk_mq_put_driver_tag(nxt);
1249			}
1250			list_add(&rq->queuelist, list);
1251			__blk_mq_requeue_request(rq);
1252			break;
1253		}
1254
1255		if (unlikely(ret != BLK_STS_OK)) {
1256			errors++;
1257			blk_mq_end_request(rq, BLK_STS_IOERR);
1258			continue;
1259		}
1260
1261		queued++;
1262	} while (!list_empty(list));
1263
1264	hctx->dispatched[queued_to_index(queued)]++;
1265
1266	/*
1267	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1268	 * that is where we will continue on next queue run.
1269	 */
1270	if (!list_empty(list)) {
1271		bool needs_restart;
1272
 
 
 
 
 
 
 
 
1273		spin_lock(&hctx->lock);
1274		list_splice_init(list, &hctx->dispatch);
1275		spin_unlock(&hctx->lock);
1276
1277		/*
1278		 * If SCHED_RESTART was set by the caller of this function and
1279		 * it is no longer set that means that it was cleared by another
1280		 * thread and hence that a queue rerun is needed.
1281		 *
1282		 * If 'no_tag' is set, that means that we failed getting
1283		 * a driver tag with an I/O scheduler attached. If our dispatch
1284		 * waitqueue is no longer active, ensure that we run the queue
1285		 * AFTER adding our entries back to the list.
1286		 *
1287		 * If no I/O scheduler has been configured it is possible that
1288		 * the hardware queue got stopped and restarted before requests
1289		 * were pushed back onto the dispatch list. Rerun the queue to
1290		 * avoid starvation. Notes:
1291		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1292		 *   been stopped before rerunning a queue.
1293		 * - Some but not all block drivers stop a queue before
1294		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1295		 *   and dm-rq.
1296		 *
1297		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1298		 * bit is set, run queue after a delay to avoid IO stalls
1299		 * that could otherwise occur if the queue is idle.
1300		 */
1301		needs_restart = blk_mq_sched_needs_restart(hctx);
1302		if (!needs_restart ||
1303		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1304			blk_mq_run_hw_queue(hctx, true);
1305		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1306			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1307	}
 
 
 
 
 
 
 
 
 
 
 
1308
1309	return (queued + errors) != 0;
1310}
1311
1312static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1313{
1314	int srcu_idx;
1315
1316	/*
1317	 * We should be running this queue from one of the CPUs that
1318	 * are mapped to it.
1319	 *
1320	 * There are at least two related races now between setting
1321	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1322	 * __blk_mq_run_hw_queue():
1323	 *
1324	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1325	 *   but later it becomes online, then this warning is harmless
1326	 *   at all
1327	 *
1328	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1329	 *   but later it becomes offline, then the warning can't be
1330	 *   triggered, and we depend on blk-mq timeout handler to
1331	 *   handle dispatched requests to this hctx
1332	 */
1333	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1334		cpu_online(hctx->next_cpu)) {
1335		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1336			raw_smp_processor_id(),
1337			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1338		dump_stack();
1339	}
1340
1341	/*
1342	 * We can't run the queue inline with ints disabled. Ensure that
1343	 * we catch bad users of this early.
1344	 */
1345	WARN_ON_ONCE(in_interrupt());
1346
1347	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1348
1349	hctx_lock(hctx, &srcu_idx);
1350	blk_mq_sched_dispatch_requests(hctx);
1351	hctx_unlock(hctx, srcu_idx);
1352}
1353
1354static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1355{
1356	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1357
1358	if (cpu >= nr_cpu_ids)
1359		cpu = cpumask_first(hctx->cpumask);
1360	return cpu;
1361}
1362
1363/*
1364 * It'd be great if the workqueue API had a way to pass
1365 * in a mask and had some smarts for more clever placement.
1366 * For now we just round-robin here, switching for every
1367 * BLK_MQ_CPU_WORK_BATCH queued items.
1368 */
1369static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1370{
1371	bool tried = false;
1372	int next_cpu = hctx->next_cpu;
1373
1374	if (hctx->queue->nr_hw_queues == 1)
1375		return WORK_CPU_UNBOUND;
1376
1377	if (--hctx->next_cpu_batch <= 0) {
1378select_cpu:
1379		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380				cpu_online_mask);
1381		if (next_cpu >= nr_cpu_ids)
1382			next_cpu = blk_mq_first_mapped_cpu(hctx);
1383		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1384	}
1385
1386	/*
1387	 * Do unbound schedule if we can't find a online CPU for this hctx,
1388	 * and it should only happen in the path of handling CPU DEAD.
1389	 */
1390	if (!cpu_online(next_cpu)) {
1391		if (!tried) {
1392			tried = true;
1393			goto select_cpu;
1394		}
1395
1396		/*
1397		 * Make sure to re-select CPU next time once after CPUs
1398		 * in hctx->cpumask become online again.
1399		 */
1400		hctx->next_cpu = next_cpu;
1401		hctx->next_cpu_batch = 1;
1402		return WORK_CPU_UNBOUND;
1403	}
1404
1405	hctx->next_cpu = next_cpu;
1406	return next_cpu;
1407}
1408
1409static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1410					unsigned long msecs)
1411{
1412	if (unlikely(blk_mq_hctx_stopped(hctx)))
1413		return;
1414
1415	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416		int cpu = get_cpu();
1417		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418			__blk_mq_run_hw_queue(hctx);
1419			put_cpu();
1420			return;
1421		}
1422
1423		put_cpu();
1424	}
1425
1426	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1427				    msecs_to_jiffies(msecs));
1428}
1429
1430void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431{
1432	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1433}
1434EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1435
1436bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437{
1438	int srcu_idx;
1439	bool need_run;
1440
1441	/*
1442	 * When queue is quiesced, we may be switching io scheduler, or
1443	 * updating nr_hw_queues, or other things, and we can't run queue
1444	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1445	 *
1446	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1447	 * quiesced.
1448	 */
1449	hctx_lock(hctx, &srcu_idx);
1450	need_run = !blk_queue_quiesced(hctx->queue) &&
1451		blk_mq_hctx_has_pending(hctx);
1452	hctx_unlock(hctx, srcu_idx);
1453
1454	if (need_run) {
1455		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1456		return true;
1457	}
1458
1459	return false;
1460}
1461EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462
1463void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464{
1465	struct blk_mq_hw_ctx *hctx;
1466	int i;
1467
1468	queue_for_each_hw_ctx(q, hctx, i) {
1469		if (blk_mq_hctx_stopped(hctx))
1470			continue;
1471
1472		blk_mq_run_hw_queue(hctx, async);
1473	}
1474}
1475EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476
1477/**
1478 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1479 * @q: request queue.
1480 *
1481 * The caller is responsible for serializing this function against
1482 * blk_mq_{start,stop}_hw_queue().
1483 */
1484bool blk_mq_queue_stopped(struct request_queue *q)
1485{
1486	struct blk_mq_hw_ctx *hctx;
1487	int i;
1488
1489	queue_for_each_hw_ctx(q, hctx, i)
1490		if (blk_mq_hctx_stopped(hctx))
1491			return true;
1492
1493	return false;
1494}
1495EXPORT_SYMBOL(blk_mq_queue_stopped);
1496
1497/*
1498 * This function is often used for pausing .queue_rq() by driver when
1499 * there isn't enough resource or some conditions aren't satisfied, and
1500 * BLK_STS_RESOURCE is usually returned.
1501 *
1502 * We do not guarantee that dispatch can be drained or blocked
1503 * after blk_mq_stop_hw_queue() returns. Please use
1504 * blk_mq_quiesce_queue() for that requirement.
1505 */
1506void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1507{
1508	cancel_delayed_work(&hctx->run_work);
1509
1510	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511}
1512EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513
1514/*
1515 * This function is often used for pausing .queue_rq() by driver when
1516 * there isn't enough resource or some conditions aren't satisfied, and
1517 * BLK_STS_RESOURCE is usually returned.
1518 *
1519 * We do not guarantee that dispatch can be drained or blocked
1520 * after blk_mq_stop_hw_queues() returns. Please use
1521 * blk_mq_quiesce_queue() for that requirement.
1522 */
1523void blk_mq_stop_hw_queues(struct request_queue *q)
1524{
1525	struct blk_mq_hw_ctx *hctx;
1526	int i;
1527
1528	queue_for_each_hw_ctx(q, hctx, i)
1529		blk_mq_stop_hw_queue(hctx);
1530}
1531EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1532
1533void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1534{
1535	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536
1537	blk_mq_run_hw_queue(hctx, false);
1538}
1539EXPORT_SYMBOL(blk_mq_start_hw_queue);
1540
1541void blk_mq_start_hw_queues(struct request_queue *q)
1542{
1543	struct blk_mq_hw_ctx *hctx;
1544	int i;
1545
1546	queue_for_each_hw_ctx(q, hctx, i)
1547		blk_mq_start_hw_queue(hctx);
1548}
1549EXPORT_SYMBOL(blk_mq_start_hw_queues);
1550
1551void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1552{
1553	if (!blk_mq_hctx_stopped(hctx))
1554		return;
1555
1556	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1557	blk_mq_run_hw_queue(hctx, async);
1558}
1559EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1560
1561void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562{
1563	struct blk_mq_hw_ctx *hctx;
1564	int i;
1565
1566	queue_for_each_hw_ctx(q, hctx, i)
1567		blk_mq_start_stopped_hw_queue(hctx, async);
1568}
1569EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1570
1571static void blk_mq_run_work_fn(struct work_struct *work)
1572{
1573	struct blk_mq_hw_ctx *hctx;
1574
1575	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576
1577	/*
1578	 * If we are stopped, don't run the queue.
1579	 */
1580	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582
1583	__blk_mq_run_hw_queue(hctx);
1584}
1585
1586static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1587					    struct request *rq,
1588					    bool at_head)
1589{
1590	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
1591
1592	lockdep_assert_held(&ctx->lock);
1593
1594	trace_block_rq_insert(hctx->queue, rq);
1595
1596	if (at_head)
1597		list_add(&rq->queuelist, &ctx->rq_list);
1598	else
1599		list_add_tail(&rq->queuelist, &ctx->rq_list);
1600}
1601
1602void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1603			     bool at_head)
1604{
1605	struct blk_mq_ctx *ctx = rq->mq_ctx;
1606
1607	lockdep_assert_held(&ctx->lock);
1608
1609	__blk_mq_insert_req_list(hctx, rq, at_head);
1610	blk_mq_hctx_mark_pending(hctx, ctx);
1611}
1612
1613/*
1614 * Should only be used carefully, when the caller knows we want to
1615 * bypass a potential IO scheduler on the target device.
1616 */
1617void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618{
1619	struct blk_mq_ctx *ctx = rq->mq_ctx;
1620	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1621
1622	spin_lock(&hctx->lock);
1623	list_add_tail(&rq->queuelist, &hctx->dispatch);
1624	spin_unlock(&hctx->lock);
1625
1626	if (run_queue)
1627		blk_mq_run_hw_queue(hctx, false);
1628}
1629
1630void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1631			    struct list_head *list)
1632
1633{
 
 
 
1634	/*
1635	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1636	 * offline now
1637	 */
1638	spin_lock(&ctx->lock);
1639	while (!list_empty(list)) {
1640		struct request *rq;
1641
1642		rq = list_first_entry(list, struct request, queuelist);
1643		BUG_ON(rq->mq_ctx != ctx);
1644		list_del_init(&rq->queuelist);
1645		__blk_mq_insert_req_list(hctx, rq, false);
1646	}
 
 
 
1647	blk_mq_hctx_mark_pending(hctx, ctx);
1648	spin_unlock(&ctx->lock);
1649}
1650
1651static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1652{
1653	struct request *rqa = container_of(a, struct request, queuelist);
1654	struct request *rqb = container_of(b, struct request, queuelist);
1655
1656	return !(rqa->mq_ctx < rqb->mq_ctx ||
1657		 (rqa->mq_ctx == rqb->mq_ctx &&
1658		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
 
 
 
 
 
 
 
1659}
1660
1661void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1662{
 
1663	struct blk_mq_ctx *this_ctx;
1664	struct request_queue *this_q;
1665	struct request *rq;
1666	LIST_HEAD(list);
1667	LIST_HEAD(ctx_list);
1668	unsigned int depth;
1669
1670	list_splice_init(&plug->mq_list, &list);
1671
1672	list_sort(NULL, &list, plug_ctx_cmp);
 
 
 
1673
1674	this_q = NULL;
 
1675	this_ctx = NULL;
1676	depth = 0;
1677
1678	while (!list_empty(&list)) {
1679		rq = list_entry_rq(list.next);
1680		list_del_init(&rq->queuelist);
1681		BUG_ON(!rq->q);
1682		if (rq->mq_ctx != this_ctx) {
1683			if (this_ctx) {
1684				trace_block_unplug(this_q, depth, from_schedule);
1685				blk_mq_sched_insert_requests(this_q, this_ctx,
1686								&ctx_list,
1687								from_schedule);
1688			}
1689
1690			this_ctx = rq->mq_ctx;
1691			this_q = rq->q;
 
 
1692			depth = 0;
1693		}
1694
1695		depth++;
1696		list_add_tail(&rq->queuelist, &ctx_list);
1697	}
1698
1699	/*
1700	 * If 'this_ctx' is set, we know we have entries to complete
1701	 * on 'ctx_list'. Do those.
1702	 */
1703	if (this_ctx) {
1704		trace_block_unplug(this_q, depth, from_schedule);
1705		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1706						from_schedule);
1707	}
1708}
1709
1710static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
 
1711{
1712	blk_init_request_from_bio(rq, bio);
 
1713
1714	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
 
 
1715
1716	blk_account_io_start(rq, true);
1717}
1718
1719static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1720				   struct blk_mq_ctx *ctx,
1721				   struct request *rq)
1722{
1723	spin_lock(&ctx->lock);
1724	__blk_mq_insert_request(hctx, rq, false);
1725	spin_unlock(&ctx->lock);
1726}
1727
1728static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1729{
1730	if (rq->tag != -1)
1731		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1732
1733	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1734}
1735
1736static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1737					    struct request *rq,
1738					    blk_qc_t *cookie)
1739{
1740	struct request_queue *q = rq->q;
1741	struct blk_mq_queue_data bd = {
1742		.rq = rq,
1743		.last = true,
1744	};
1745	blk_qc_t new_cookie;
1746	blk_status_t ret;
1747
1748	new_cookie = request_to_qc_t(hctx, rq);
1749
1750	/*
1751	 * For OK queue, we are done. For error, caller may kill it.
1752	 * Any other error (busy), just add it to our list as we
1753	 * previously would have done.
1754	 */
1755	ret = q->mq_ops->queue_rq(hctx, &bd);
1756	switch (ret) {
1757	case BLK_STS_OK:
 
1758		*cookie = new_cookie;
1759		break;
1760	case BLK_STS_RESOURCE:
1761	case BLK_STS_DEV_RESOURCE:
 
1762		__blk_mq_requeue_request(rq);
1763		break;
1764	default:
 
1765		*cookie = BLK_QC_T_NONE;
1766		break;
1767	}
1768
1769	return ret;
1770}
1771
1772static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1773						struct request *rq,
1774						blk_qc_t *cookie,
1775						bool bypass_insert)
1776{
1777	struct request_queue *q = rq->q;
1778	bool run_queue = true;
1779
1780	/*
1781	 * RCU or SRCU read lock is needed before checking quiesced flag.
1782	 *
1783	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1784	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1785	 * and avoid driver to try to dispatch again.
1786	 */
1787	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1788		run_queue = false;
1789		bypass_insert = false;
1790		goto insert;
1791	}
1792
1793	if (q->elevator && !bypass_insert)
1794		goto insert;
1795
1796	if (!blk_mq_get_dispatch_budget(hctx))
1797		goto insert;
1798
1799	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1800		blk_mq_put_dispatch_budget(hctx);
1801		goto insert;
1802	}
1803
1804	return __blk_mq_issue_directly(hctx, rq, cookie);
1805insert:
1806	if (bypass_insert)
1807		return BLK_STS_RESOURCE;
1808
1809	blk_mq_sched_insert_request(rq, false, run_queue, false);
1810	return BLK_STS_OK;
1811}
1812
1813static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1814		struct request *rq, blk_qc_t *cookie)
1815{
1816	blk_status_t ret;
1817	int srcu_idx;
1818
1819	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1820
1821	hctx_lock(hctx, &srcu_idx);
1822
1823	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1824	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1825		blk_mq_sched_insert_request(rq, false, true, false);
1826	else if (ret != BLK_STS_OK)
1827		blk_mq_end_request(rq, ret);
1828
1829	hctx_unlock(hctx, srcu_idx);
1830}
1831
1832blk_status_t blk_mq_request_issue_directly(struct request *rq)
1833{
1834	blk_status_t ret;
1835	int srcu_idx;
1836	blk_qc_t unused_cookie;
1837	struct blk_mq_ctx *ctx = rq->mq_ctx;
1838	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1839
1840	hctx_lock(hctx, &srcu_idx);
1841	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1842	hctx_unlock(hctx, srcu_idx);
1843
1844	return ret;
1845}
1846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1848{
1849	const int is_sync = op_is_sync(bio->bi_opf);
1850	const int is_flush_fua = op_is_flush(bio->bi_opf);
1851	struct blk_mq_alloc_data data = { .flags = 0 };
1852	struct request *rq;
1853	unsigned int request_count = 0;
1854	struct blk_plug *plug;
1855	struct request *same_queue_rq = NULL;
 
1856	blk_qc_t cookie;
1857	unsigned int wb_acct;
1858
1859	blk_queue_bounce(q, &bio);
1860
1861	blk_queue_split(q, &bio);
1862
1863	if (!bio_integrity_prep(bio))
1864		return BLK_QC_T_NONE;
1865
1866	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1867	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1868		return BLK_QC_T_NONE;
1869
1870	if (blk_mq_sched_bio_merge(q, bio))
1871		return BLK_QC_T_NONE;
1872
1873	wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1874
1875	trace_block_getrq(q, bio, bio->bi_opf);
1876
1877	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
 
1878	if (unlikely(!rq)) {
1879		__wbt_done(q->rq_wb, wb_acct);
1880		if (bio->bi_opf & REQ_NOWAIT)
1881			bio_wouldblock_error(bio);
1882		return BLK_QC_T_NONE;
1883	}
1884
1885	wbt_track(&rq->issue_stat, wb_acct);
 
 
1886
1887	cookie = request_to_qc_t(data.hctx, rq);
1888
1889	plug = current->plug;
1890	if (unlikely(is_flush_fua)) {
1891		blk_mq_put_ctx(data.ctx);
1892		blk_mq_bio_to_request(rq, bio);
1893
 
 
1894		/* bypass scheduler for flush rq */
1895		blk_insert_flush(rq);
1896		blk_mq_run_hw_queue(data.hctx, true);
1897	} else if (plug && q->nr_hw_queues == 1) {
1898		struct request *last = NULL;
1899
1900		blk_mq_put_ctx(data.ctx);
1901		blk_mq_bio_to_request(rq, bio);
1902
1903		/*
1904		 * @request_count may become stale because of schedule
1905		 * out, so check the list again.
 
 
 
1906		 */
1907		if (list_empty(&plug->mq_list))
1908			request_count = 0;
1909		else if (blk_queue_nomerges(q))
1910			request_count = blk_plug_queued_count(q);
1911
1912		if (!request_count)
1913			trace_block_plug(q);
1914		else
1915			last = list_entry_rq(plug->mq_list.prev);
1916
1917		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1918		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1919			blk_flush_plug_list(plug, false);
1920			trace_block_plug(q);
1921		}
1922
1923		list_add_tail(&rq->queuelist, &plug->mq_list);
 
 
1924	} else if (plug && !blk_queue_nomerges(q)) {
1925		blk_mq_bio_to_request(rq, bio);
1926
1927		/*
1928		 * We do limited plugging. If the bio can be merged, do that.
1929		 * Otherwise the existing request in the plug list will be
1930		 * issued. So the plug list will have one request at most
1931		 * The plug list might get flushed before this. If that happens,
1932		 * the plug list is empty, and same_queue_rq is invalid.
1933		 */
1934		if (list_empty(&plug->mq_list))
1935			same_queue_rq = NULL;
1936		if (same_queue_rq)
1937			list_del_init(&same_queue_rq->queuelist);
1938		list_add_tail(&rq->queuelist, &plug->mq_list);
1939
1940		blk_mq_put_ctx(data.ctx);
 
1941
1942		if (same_queue_rq) {
1943			data.hctx = blk_mq_map_queue(q,
1944					same_queue_rq->mq_ctx->cpu);
1945			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1946					&cookie);
1947		}
1948	} else if (q->nr_hw_queues > 1 && is_sync) {
1949		blk_mq_put_ctx(data.ctx);
1950		blk_mq_bio_to_request(rq, bio);
1951		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1952	} else if (q->elevator) {
1953		blk_mq_put_ctx(data.ctx);
1954		blk_mq_bio_to_request(rq, bio);
1955		blk_mq_sched_insert_request(rq, false, true, true);
1956	} else {
1957		blk_mq_put_ctx(data.ctx);
1958		blk_mq_bio_to_request(rq, bio);
1959		blk_mq_queue_io(data.hctx, data.ctx, rq);
1960		blk_mq_run_hw_queue(data.hctx, true);
1961	}
1962
1963	return cookie;
1964}
1965
1966void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1967		     unsigned int hctx_idx)
1968{
1969	struct page *page;
1970
1971	if (tags->rqs && set->ops->exit_request) {
1972		int i;
1973
1974		for (i = 0; i < tags->nr_tags; i++) {
1975			struct request *rq = tags->static_rqs[i];
1976
1977			if (!rq)
1978				continue;
1979			set->ops->exit_request(set, rq, hctx_idx);
1980			tags->static_rqs[i] = NULL;
1981		}
1982	}
1983
1984	while (!list_empty(&tags->page_list)) {
1985		page = list_first_entry(&tags->page_list, struct page, lru);
1986		list_del_init(&page->lru);
1987		/*
1988		 * Remove kmemleak object previously allocated in
1989		 * blk_mq_init_rq_map().
1990		 */
1991		kmemleak_free(page_address(page));
1992		__free_pages(page, page->private);
1993	}
1994}
1995
1996void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1997{
1998	kfree(tags->rqs);
1999	tags->rqs = NULL;
2000	kfree(tags->static_rqs);
2001	tags->static_rqs = NULL;
2002
2003	blk_mq_free_tags(tags);
2004}
2005
2006struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2007					unsigned int hctx_idx,
2008					unsigned int nr_tags,
2009					unsigned int reserved_tags)
2010{
2011	struct blk_mq_tags *tags;
2012	int node;
2013
2014	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2015	if (node == NUMA_NO_NODE)
2016		node = set->numa_node;
2017
2018	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2019				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2020	if (!tags)
2021		return NULL;
2022
2023	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2024				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2025				 node);
2026	if (!tags->rqs) {
2027		blk_mq_free_tags(tags);
2028		return NULL;
2029	}
2030
2031	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2032				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2033				 node);
2034	if (!tags->static_rqs) {
2035		kfree(tags->rqs);
2036		blk_mq_free_tags(tags);
2037		return NULL;
2038	}
2039
2040	return tags;
2041}
2042
2043static size_t order_to_size(unsigned int order)
2044{
2045	return (size_t)PAGE_SIZE << order;
2046}
2047
2048static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2049			       unsigned int hctx_idx, int node)
2050{
2051	int ret;
2052
2053	if (set->ops->init_request) {
2054		ret = set->ops->init_request(set, rq, hctx_idx, node);
2055		if (ret)
2056			return ret;
2057	}
2058
2059	seqcount_init(&rq->gstate_seq);
2060	u64_stats_init(&rq->aborted_gstate_sync);
2061	/*
2062	 * start gstate with gen 1 instead of 0, otherwise it will be equal
2063	 * to aborted_gstate, and be identified timed out by
2064	 * blk_mq_terminate_expired.
2065	 */
2066	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
2067
2068	return 0;
2069}
2070
2071int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2072		     unsigned int hctx_idx, unsigned int depth)
2073{
2074	unsigned int i, j, entries_per_page, max_order = 4;
2075	size_t rq_size, left;
2076	int node;
2077
2078	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2079	if (node == NUMA_NO_NODE)
2080		node = set->numa_node;
2081
2082	INIT_LIST_HEAD(&tags->page_list);
2083
2084	/*
2085	 * rq_size is the size of the request plus driver payload, rounded
2086	 * to the cacheline size
2087	 */
2088	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2089				cache_line_size());
2090	left = rq_size * depth;
2091
2092	for (i = 0; i < depth; ) {
2093		int this_order = max_order;
2094		struct page *page;
2095		int to_do;
2096		void *p;
2097
2098		while (this_order && left < order_to_size(this_order - 1))
2099			this_order--;
2100
2101		do {
2102			page = alloc_pages_node(node,
2103				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2104				this_order);
2105			if (page)
2106				break;
2107			if (!this_order--)
2108				break;
2109			if (order_to_size(this_order) < rq_size)
2110				break;
2111		} while (1);
2112
2113		if (!page)
2114			goto fail;
2115
2116		page->private = this_order;
2117		list_add_tail(&page->lru, &tags->page_list);
2118
2119		p = page_address(page);
2120		/*
2121		 * Allow kmemleak to scan these pages as they contain pointers
2122		 * to additional allocations like via ops->init_request().
2123		 */
2124		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2125		entries_per_page = order_to_size(this_order) / rq_size;
2126		to_do = min(entries_per_page, depth - i);
2127		left -= to_do * rq_size;
2128		for (j = 0; j < to_do; j++) {
2129			struct request *rq = p;
2130
2131			tags->static_rqs[i] = rq;
2132			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2133				tags->static_rqs[i] = NULL;
2134				goto fail;
2135			}
2136
2137			p += rq_size;
2138			i++;
2139		}
2140	}
2141	return 0;
2142
2143fail:
2144	blk_mq_free_rqs(set, tags, hctx_idx);
2145	return -ENOMEM;
2146}
2147
2148/*
2149 * 'cpu' is going away. splice any existing rq_list entries from this
2150 * software queue to the hw queue dispatch list, and ensure that it
2151 * gets run.
2152 */
2153static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2154{
2155	struct blk_mq_hw_ctx *hctx;
2156	struct blk_mq_ctx *ctx;
2157	LIST_HEAD(tmp);
 
2158
2159	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2160	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
 
2161
2162	spin_lock(&ctx->lock);
2163	if (!list_empty(&ctx->rq_list)) {
2164		list_splice_init(&ctx->rq_list, &tmp);
2165		blk_mq_hctx_clear_pending(hctx, ctx);
2166	}
2167	spin_unlock(&ctx->lock);
2168
2169	if (list_empty(&tmp))
2170		return 0;
2171
2172	spin_lock(&hctx->lock);
2173	list_splice_tail_init(&tmp, &hctx->dispatch);
2174	spin_unlock(&hctx->lock);
2175
2176	blk_mq_run_hw_queue(hctx, true);
2177	return 0;
2178}
2179
2180static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2181{
2182	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2183					    &hctx->cpuhp_dead);
2184}
2185
2186/* hctx->ctxs will be freed in queue's release handler */
2187static void blk_mq_exit_hctx(struct request_queue *q,
2188		struct blk_mq_tag_set *set,
2189		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2190{
2191	blk_mq_debugfs_unregister_hctx(hctx);
2192
2193	if (blk_mq_hw_queue_mapped(hctx))
2194		blk_mq_tag_idle(hctx);
2195
2196	if (set->ops->exit_request)
2197		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2198
2199	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2200
2201	if (set->ops->exit_hctx)
2202		set->ops->exit_hctx(hctx, hctx_idx);
2203
2204	if (hctx->flags & BLK_MQ_F_BLOCKING)
2205		cleanup_srcu_struct(hctx->srcu);
2206
2207	blk_mq_remove_cpuhp(hctx);
2208	blk_free_flush_queue(hctx->fq);
2209	sbitmap_free(&hctx->ctx_map);
 
 
2210}
2211
2212static void blk_mq_exit_hw_queues(struct request_queue *q,
2213		struct blk_mq_tag_set *set, int nr_queue)
2214{
2215	struct blk_mq_hw_ctx *hctx;
2216	unsigned int i;
2217
2218	queue_for_each_hw_ctx(q, hctx, i) {
2219		if (i == nr_queue)
2220			break;
 
2221		blk_mq_exit_hctx(q, set, hctx, i);
2222	}
2223}
2224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225static int blk_mq_init_hctx(struct request_queue *q,
2226		struct blk_mq_tag_set *set,
2227		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228{
2229	int node;
2230
2231	node = hctx->numa_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232	if (node == NUMA_NO_NODE)
2233		node = hctx->numa_node = set->numa_node;
 
2234
2235	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236	spin_lock_init(&hctx->lock);
2237	INIT_LIST_HEAD(&hctx->dispatch);
2238	hctx->queue = q;
2239	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240
2241	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242
2243	hctx->tags = set->tags[hctx_idx];
2244
2245	/*
2246	 * Allocate space for all possible cpus to avoid allocation at
2247	 * runtime
2248	 */
2249	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250					GFP_KERNEL, node);
2251	if (!hctx->ctxs)
2252		goto unregister_cpu_notifier;
2253
2254	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2255			      node))
2256		goto free_ctxs;
2257
2258	hctx->nr_ctx = 0;
2259
 
2260	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2261	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2262
2263	if (set->ops->init_hctx &&
2264	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2265		goto free_bitmap;
2266
2267	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2268		goto exit_hctx;
2269
2270	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2271	if (!hctx->fq)
2272		goto sched_exit_hctx;
2273
2274	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2275		goto free_fq;
2276
2277	if (hctx->flags & BLK_MQ_F_BLOCKING)
2278		init_srcu_struct(hctx->srcu);
 
2279
2280	blk_mq_debugfs_register_hctx(q, hctx);
2281
2282	return 0;
2283
2284 free_fq:
2285	kfree(hctx->fq);
2286 sched_exit_hctx:
2287	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2288 exit_hctx:
2289	if (set->ops->exit_hctx)
2290		set->ops->exit_hctx(hctx, hctx_idx);
2291 free_bitmap:
2292	sbitmap_free(&hctx->ctx_map);
2293 free_ctxs:
2294	kfree(hctx->ctxs);
2295 unregister_cpu_notifier:
2296	blk_mq_remove_cpuhp(hctx);
2297	return -1;
 
 
 
2298}
2299
2300static void blk_mq_init_cpu_queues(struct request_queue *q,
2301				   unsigned int nr_hw_queues)
2302{
2303	unsigned int i;
 
2304
2305	for_each_possible_cpu(i) {
2306		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2307		struct blk_mq_hw_ctx *hctx;
 
2308
2309		__ctx->cpu = i;
2310		spin_lock_init(&__ctx->lock);
2311		INIT_LIST_HEAD(&__ctx->rq_list);
 
 
2312		__ctx->queue = q;
2313
2314		/*
2315		 * Set local node, IFF we have more than one hw queue. If
2316		 * not, we remain on the home node of the device
2317		 */
2318		hctx = blk_mq_map_queue(q, i);
2319		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2320			hctx->numa_node = local_memory_node(cpu_to_node(i));
 
 
2321	}
2322}
2323
2324static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2325{
2326	int ret = 0;
2327
2328	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2329					set->queue_depth, set->reserved_tags);
2330	if (!set->tags[hctx_idx])
2331		return false;
2332
2333	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2334				set->queue_depth);
2335	if (!ret)
2336		return true;
2337
2338	blk_mq_free_rq_map(set->tags[hctx_idx]);
2339	set->tags[hctx_idx] = NULL;
2340	return false;
2341}
2342
2343static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2344					 unsigned int hctx_idx)
2345{
2346	if (set->tags[hctx_idx]) {
2347		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2348		blk_mq_free_rq_map(set->tags[hctx_idx]);
2349		set->tags[hctx_idx] = NULL;
2350	}
2351}
2352
2353static void blk_mq_map_swqueue(struct request_queue *q)
2354{
2355	unsigned int i, hctx_idx;
2356	struct blk_mq_hw_ctx *hctx;
2357	struct blk_mq_ctx *ctx;
2358	struct blk_mq_tag_set *set = q->tag_set;
2359
2360	/*
2361	 * Avoid others reading imcomplete hctx->cpumask through sysfs
2362	 */
2363	mutex_lock(&q->sysfs_lock);
2364
2365	queue_for_each_hw_ctx(q, hctx, i) {
2366		cpumask_clear(hctx->cpumask);
2367		hctx->nr_ctx = 0;
 
2368	}
2369
2370	/*
2371	 * Map software to hardware queues.
2372	 *
2373	 * If the cpu isn't present, the cpu is mapped to first hctx.
2374	 */
2375	for_each_possible_cpu(i) {
2376		hctx_idx = q->mq_map[i];
2377		/* unmapped hw queue can be remapped after CPU topo changed */
2378		if (!set->tags[hctx_idx] &&
2379		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2380			/*
2381			 * If tags initialization fail for some hctx,
2382			 * that hctx won't be brought online.  In this
2383			 * case, remap the current ctx to hctx[0] which
2384			 * is guaranteed to always have tags allocated
2385			 */
2386			q->mq_map[i] = 0;
2387		}
2388
2389		ctx = per_cpu_ptr(q->queue_ctx, i);
2390		hctx = blk_mq_map_queue(q, i);
 
 
 
 
 
2391
2392		cpumask_set_cpu(i, hctx->cpumask);
2393		ctx->index_hw = hctx->nr_ctx;
2394		hctx->ctxs[hctx->nr_ctx++] = ctx;
2395	}
 
 
 
 
 
2396
2397	mutex_unlock(&q->sysfs_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398
2399	queue_for_each_hw_ctx(q, hctx, i) {
2400		/*
2401		 * If no software queues are mapped to this hardware queue,
2402		 * disable it and free the request entries.
2403		 */
2404		if (!hctx->nr_ctx) {
2405			/* Never unmap queue 0.  We need it as a
2406			 * fallback in case of a new remap fails
2407			 * allocation
2408			 */
2409			if (i && set->tags[i])
2410				blk_mq_free_map_and_requests(set, i);
2411
2412			hctx->tags = NULL;
2413			continue;
2414		}
2415
2416		hctx->tags = set->tags[i];
2417		WARN_ON(!hctx->tags);
2418
2419		/*
2420		 * Set the map size to the number of mapped software queues.
2421		 * This is more accurate and more efficient than looping
2422		 * over all possibly mapped software queues.
2423		 */
2424		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2425
2426		/*
2427		 * Initialize batch roundrobin counts
2428		 */
2429		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2430		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2431	}
2432}
2433
2434/*
2435 * Caller needs to ensure that we're either frozen/quiesced, or that
2436 * the queue isn't live yet.
2437 */
2438static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2439{
2440	struct blk_mq_hw_ctx *hctx;
2441	int i;
2442
2443	queue_for_each_hw_ctx(q, hctx, i) {
2444		if (shared) {
2445			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2446				atomic_inc(&q->shared_hctx_restart);
2447			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2448		} else {
2449			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2450				atomic_dec(&q->shared_hctx_restart);
2451			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2452		}
2453	}
2454}
2455
2456static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2457					bool shared)
2458{
2459	struct request_queue *q;
2460
2461	lockdep_assert_held(&set->tag_list_lock);
2462
2463	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2464		blk_mq_freeze_queue(q);
2465		queue_set_hctx_shared(q, shared);
2466		blk_mq_unfreeze_queue(q);
2467	}
2468}
2469
2470static void blk_mq_del_queue_tag_set(struct request_queue *q)
2471{
2472	struct blk_mq_tag_set *set = q->tag_set;
2473
2474	mutex_lock(&set->tag_list_lock);
2475	list_del_rcu(&q->tag_set_list);
2476	INIT_LIST_HEAD(&q->tag_set_list);
2477	if (list_is_singular(&set->tag_list)) {
2478		/* just transitioned to unshared */
2479		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2480		/* update existing queue */
2481		blk_mq_update_tag_set_depth(set, false);
2482	}
2483	mutex_unlock(&set->tag_list_lock);
2484
2485	synchronize_rcu();
2486}
2487
2488static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2489				     struct request_queue *q)
2490{
2491	q->tag_set = set;
2492
2493	mutex_lock(&set->tag_list_lock);
2494
2495	/*
2496	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2497	 */
2498	if (!list_empty(&set->tag_list) &&
2499	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2500		set->flags |= BLK_MQ_F_TAG_SHARED;
2501		/* update existing queue */
2502		blk_mq_update_tag_set_depth(set, true);
2503	}
2504	if (set->flags & BLK_MQ_F_TAG_SHARED)
2505		queue_set_hctx_shared(q, true);
2506	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2507
2508	mutex_unlock(&set->tag_list_lock);
2509}
2510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511/*
2512 * It is the actual release handler for mq, but we do it from
2513 * request queue's release handler for avoiding use-after-free
2514 * and headache because q->mq_kobj shouldn't have been introduced,
2515 * but we can't group ctx/kctx kobj without it.
2516 */
2517void blk_mq_release(struct request_queue *q)
2518{
2519	struct blk_mq_hw_ctx *hctx;
2520	unsigned int i;
2521
2522	/* hctx kobj stays in hctx */
2523	queue_for_each_hw_ctx(q, hctx, i) {
2524		if (!hctx)
2525			continue;
 
 
2526		kobject_put(&hctx->kobj);
2527	}
2528
2529	q->mq_map = NULL;
2530
2531	kfree(q->queue_hw_ctx);
2532
2533	/*
2534	 * release .mq_kobj and sw queue's kobject now because
2535	 * both share lifetime with request queue.
2536	 */
2537	blk_mq_sysfs_deinit(q);
2538
2539	free_percpu(q->queue_ctx);
2540}
2541
2542struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2543{
2544	struct request_queue *uninit_q, *q;
2545
2546	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2547	if (!uninit_q)
2548		return ERR_PTR(-ENOMEM);
2549
2550	q = blk_mq_init_allocated_queue(set, uninit_q);
 
 
 
 
2551	if (IS_ERR(q))
2552		blk_cleanup_queue(uninit_q);
2553
2554	return q;
2555}
2556EXPORT_SYMBOL(blk_mq_init_queue);
2557
2558static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
 
 
 
 
 
 
 
2559{
2560	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
 
2561
2562	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2563			   __alignof__(struct blk_mq_hw_ctx)) !=
2564		     sizeof(struct blk_mq_hw_ctx));
 
 
 
 
2565
2566	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2567		hw_ctx_size += sizeof(struct srcu_struct);
 
2568
2569	return hw_ctx_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570}
2571
2572static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2573						struct request_queue *q)
2574{
2575	int i, j;
2576	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2577
2578	blk_mq_sysfs_unregister(q);
2579
2580	/* protect against switching io scheduler  */
2581	mutex_lock(&q->sysfs_lock);
2582	for (i = 0; i < set->nr_hw_queues; i++) {
2583		int node;
 
2584
2585		if (hctxs[i])
 
 
 
 
 
 
2586			continue;
2587
2588		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2589		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2590					GFP_KERNEL, node);
2591		if (!hctxs[i])
2592			break;
2593
2594		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2595						node)) {
2596			kfree(hctxs[i]);
2597			hctxs[i] = NULL;
2598			break;
2599		}
2600
2601		atomic_set(&hctxs[i]->nr_active, 0);
2602		hctxs[i]->numa_node = node;
2603		hctxs[i]->queue_num = i;
2604
2605		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2606			free_cpumask_var(hctxs[i]->cpumask);
2607			kfree(hctxs[i]);
2608			hctxs[i] = NULL;
2609			break;
2610		}
2611		blk_mq_hctx_kobj_init(hctxs[i]);
2612	}
2613	for (j = i; j < q->nr_hw_queues; j++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
2614		struct blk_mq_hw_ctx *hctx = hctxs[j];
2615
2616		if (hctx) {
2617			if (hctx->tags)
2618				blk_mq_free_map_and_requests(set, j);
2619			blk_mq_exit_hctx(q, set, hctx, j);
2620			kobject_put(&hctx->kobj);
2621			hctxs[j] = NULL;
2622
2623		}
2624	}
2625	q->nr_hw_queues = i;
2626	mutex_unlock(&q->sysfs_lock);
2627	blk_mq_sysfs_register(q);
 
 
 
 
 
 
 
 
 
 
 
 
2628}
2629
2630struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2631						  struct request_queue *q)
 
2632{
2633	/* mark the queue as mq asap */
2634	q->mq_ops = set->ops;
2635
2636	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2637					     blk_mq_poll_stats_bkt,
2638					     BLK_MQ_POLL_STATS_BKTS, q);
2639	if (!q->poll_cb)
2640		goto err_exit;
2641
2642	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2643	if (!q->queue_ctx)
2644		goto err_exit;
2645
2646	/* init q->mq_kobj and sw queues' kobjects */
2647	blk_mq_sysfs_init(q);
2648
2649	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
 
2650						GFP_KERNEL, set->numa_node);
2651	if (!q->queue_hw_ctx)
2652		goto err_percpu;
2653
2654	q->mq_map = set->mq_map;
 
2655
2656	blk_mq_realloc_hw_ctxs(set, q);
2657	if (!q->nr_hw_queues)
2658		goto err_hctxs;
2659
2660	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2661	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2662
2663	q->nr_queues = nr_cpu_ids;
2664
2665	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2666
2667	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2668		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2669
2670	q->sg_reserved_size = INT_MAX;
2671
2672	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2673	INIT_LIST_HEAD(&q->requeue_list);
2674	spin_lock_init(&q->requeue_lock);
2675
2676	blk_queue_make_request(q, blk_mq_make_request);
2677	if (q->mq_ops->poll)
2678		q->poll_fn = blk_mq_poll;
2679
2680	/*
2681	 * Do this after blk_queue_make_request() overrides it...
2682	 */
2683	q->nr_requests = set->queue_depth;
2684
2685	/*
2686	 * Default to classic polling
2687	 */
2688	q->poll_nsec = -1;
2689
2690	if (set->ops->complete)
2691		blk_queue_softirq_done(q, set->ops->complete);
2692
2693	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2694	blk_mq_add_queue_tag_set(set, q);
2695	blk_mq_map_swqueue(q);
2696
2697	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2698		int ret;
2699
2700		ret = blk_mq_sched_init(q);
2701		if (ret)
2702			return ERR_PTR(ret);
2703	}
2704
2705	return q;
2706
2707err_hctxs:
2708	kfree(q->queue_hw_ctx);
2709err_percpu:
2710	free_percpu(q->queue_ctx);
 
 
 
 
2711err_exit:
2712	q->mq_ops = NULL;
2713	return ERR_PTR(-ENOMEM);
2714}
2715EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2716
2717void blk_mq_free_queue(struct request_queue *q)
 
2718{
2719	struct blk_mq_tag_set	*set = q->tag_set;
2720
2721	blk_mq_del_queue_tag_set(q);
2722	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2723}
2724
2725/* Basically redo blk_mq_init_queue with queue frozen */
2726static void blk_mq_queue_reinit(struct request_queue *q)
2727{
2728	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2729
2730	blk_mq_debugfs_unregister_hctxs(q);
2731	blk_mq_sysfs_unregister(q);
2732
2733	/*
2734	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2735	 * we should change hctx numa_node according to the new topology (this
2736	 * involves freeing and re-allocating memory, worth doing?)
2737	 */
2738	blk_mq_map_swqueue(q);
2739
2740	blk_mq_sysfs_register(q);
2741	blk_mq_debugfs_register_hctxs(q);
2742}
2743
2744static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2745{
2746	int i;
2747
2748	for (i = 0; i < set->nr_hw_queues; i++)
2749		if (!__blk_mq_alloc_rq_map(set, i))
2750			goto out_unwind;
2751
2752	return 0;
2753
2754out_unwind:
2755	while (--i >= 0)
2756		blk_mq_free_rq_map(set->tags[i]);
2757
2758	return -ENOMEM;
2759}
2760
2761/*
2762 * Allocate the request maps associated with this tag_set. Note that this
2763 * may reduce the depth asked for, if memory is tight. set->queue_depth
2764 * will be updated to reflect the allocated depth.
2765 */
2766static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2767{
2768	unsigned int depth;
2769	int err;
2770
2771	depth = set->queue_depth;
2772	do {
2773		err = __blk_mq_alloc_rq_maps(set);
2774		if (!err)
2775			break;
2776
2777		set->queue_depth >>= 1;
2778		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2779			err = -ENOMEM;
2780			break;
2781		}
2782	} while (set->queue_depth);
2783
2784	if (!set->queue_depth || err) {
2785		pr_err("blk-mq: failed to allocate request map\n");
2786		return -ENOMEM;
2787	}
2788
2789	if (depth != set->queue_depth)
2790		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2791						depth, set->queue_depth);
2792
2793	return 0;
2794}
2795
2796static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2797{
2798	if (set->ops->map_queues) {
2799		int cpu;
 
2800		/*
2801		 * transport .map_queues is usually done in the following
2802		 * way:
2803		 *
2804		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2805		 * 	mask = get_cpu_mask(queue)
2806		 * 	for_each_cpu(cpu, mask)
2807		 * 		set->mq_map[cpu] = queue;
2808		 * }
2809		 *
2810		 * When we need to remap, the table has to be cleared for
2811		 * killing stale mapping since one CPU may not be mapped
2812		 * to any hw queue.
2813		 */
2814		for_each_possible_cpu(cpu)
2815			set->mq_map[cpu] = 0;
2816
2817		return set->ops->map_queues(set);
2818	} else
2819		return blk_mq_map_queues(set);
 
 
2820}
2821
2822/*
2823 * Alloc a tag set to be associated with one or more request queues.
2824 * May fail with EINVAL for various error conditions. May adjust the
2825 * requested depth down, if if it too large. In that case, the set
2826 * value will be stored in set->queue_depth.
2827 */
2828int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2829{
2830	int ret;
2831
2832	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2833
2834	if (!set->nr_hw_queues)
2835		return -EINVAL;
2836	if (!set->queue_depth)
2837		return -EINVAL;
2838	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2839		return -EINVAL;
2840
2841	if (!set->ops->queue_rq)
2842		return -EINVAL;
2843
2844	if (!set->ops->get_budget ^ !set->ops->put_budget)
2845		return -EINVAL;
2846
2847	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2848		pr_info("blk-mq: reduced tag depth to %u\n",
2849			BLK_MQ_MAX_DEPTH);
2850		set->queue_depth = BLK_MQ_MAX_DEPTH;
2851	}
2852
 
 
 
 
 
2853	/*
2854	 * If a crashdump is active, then we are potentially in a very
2855	 * memory constrained environment. Limit us to 1 queue and
2856	 * 64 tags to prevent using too much memory.
2857	 */
2858	if (is_kdump_kernel()) {
2859		set->nr_hw_queues = 1;
 
2860		set->queue_depth = min(64U, set->queue_depth);
2861	}
2862	/*
2863	 * There is no use for more h/w queues than cpus.
 
2864	 */
2865	if (set->nr_hw_queues > nr_cpu_ids)
2866		set->nr_hw_queues = nr_cpu_ids;
2867
2868	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2869				 GFP_KERNEL, set->numa_node);
2870	if (!set->tags)
2871		return -ENOMEM;
2872
2873	ret = -ENOMEM;
2874	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2875			GFP_KERNEL, set->numa_node);
2876	if (!set->mq_map)
2877		goto out_free_tags;
 
 
 
 
2878
2879	ret = blk_mq_update_queue_map(set);
2880	if (ret)
2881		goto out_free_mq_map;
2882
2883	ret = blk_mq_alloc_rq_maps(set);
2884	if (ret)
2885		goto out_free_mq_map;
2886
2887	mutex_init(&set->tag_list_lock);
2888	INIT_LIST_HEAD(&set->tag_list);
2889
2890	return 0;
2891
2892out_free_mq_map:
2893	kfree(set->mq_map);
2894	set->mq_map = NULL;
2895out_free_tags:
 
2896	kfree(set->tags);
2897	set->tags = NULL;
2898	return ret;
2899}
2900EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2901
2902void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2903{
2904	int i;
2905
2906	for (i = 0; i < nr_cpu_ids; i++)
2907		blk_mq_free_map_and_requests(set, i);
2908
2909	kfree(set->mq_map);
2910	set->mq_map = NULL;
 
 
2911
2912	kfree(set->tags);
2913	set->tags = NULL;
2914}
2915EXPORT_SYMBOL(blk_mq_free_tag_set);
2916
2917int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2918{
2919	struct blk_mq_tag_set *set = q->tag_set;
2920	struct blk_mq_hw_ctx *hctx;
2921	int i, ret;
2922
2923	if (!set)
2924		return -EINVAL;
2925
 
 
 
2926	blk_mq_freeze_queue(q);
2927	blk_mq_quiesce_queue(q);
2928
2929	ret = 0;
2930	queue_for_each_hw_ctx(q, hctx, i) {
2931		if (!hctx->tags)
2932			continue;
2933		/*
2934		 * If we're using an MQ scheduler, just update the scheduler
2935		 * queue depth. This is similar to what the old code would do.
2936		 */
2937		if (!hctx->sched_tags) {
2938			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2939							false);
2940		} else {
2941			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2942							nr, true);
2943		}
2944		if (ret)
2945			break;
 
 
2946	}
2947
2948	if (!ret)
2949		q->nr_requests = nr;
2950
2951	blk_mq_unquiesce_queue(q);
2952	blk_mq_unfreeze_queue(q);
2953
2954	return ret;
2955}
2956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2958							int nr_hw_queues)
2959{
2960	struct request_queue *q;
 
 
2961
2962	lockdep_assert_held(&set->tag_list_lock);
2963
2964	if (nr_hw_queues > nr_cpu_ids)
2965		nr_hw_queues = nr_cpu_ids;
2966	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2967		return;
2968
2969	list_for_each_entry(q, &set->tag_list, tag_set_list)
2970		blk_mq_freeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
 
2971
 
 
 
 
 
 
2972	set->nr_hw_queues = nr_hw_queues;
2973	blk_mq_update_queue_map(set);
 
2974	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2975		blk_mq_realloc_hw_ctxs(set, q);
2976		blk_mq_queue_reinit(q);
 
 
 
 
 
 
 
2977	}
2978
 
 
 
 
 
 
 
 
 
2979	list_for_each_entry(q, &set->tag_list, tag_set_list)
2980		blk_mq_unfreeze_queue(q);
2981}
2982
2983void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2984{
2985	mutex_lock(&set->tag_list_lock);
2986	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2987	mutex_unlock(&set->tag_list_lock);
2988}
2989EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2990
2991/* Enable polling stats and return whether they were already enabled. */
2992static bool blk_poll_stats_enable(struct request_queue *q)
2993{
2994	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2995	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2996		return true;
2997	blk_stat_add_callback(q, q->poll_cb);
2998	return false;
2999}
3000
3001static void blk_mq_poll_stats_start(struct request_queue *q)
3002{
3003	/*
3004	 * We don't arm the callback if polling stats are not enabled or the
3005	 * callback is already active.
3006	 */
3007	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3008	    blk_stat_is_active(q->poll_cb))
3009		return;
3010
3011	blk_stat_activate_msecs(q->poll_cb, 100);
3012}
3013
3014static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3015{
3016	struct request_queue *q = cb->data;
3017	int bucket;
3018
3019	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3020		if (cb->stat[bucket].nr_samples)
3021			q->poll_stat[bucket] = cb->stat[bucket];
3022	}
3023}
3024
3025static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3026				       struct blk_mq_hw_ctx *hctx,
3027				       struct request *rq)
3028{
3029	unsigned long ret = 0;
3030	int bucket;
3031
3032	/*
3033	 * If stats collection isn't on, don't sleep but turn it on for
3034	 * future users
3035	 */
3036	if (!blk_poll_stats_enable(q))
3037		return 0;
3038
3039	/*
3040	 * As an optimistic guess, use half of the mean service time
3041	 * for this type of request. We can (and should) make this smarter.
3042	 * For instance, if the completion latencies are tight, we can
3043	 * get closer than just half the mean. This is especially
3044	 * important on devices where the completion latencies are longer
3045	 * than ~10 usec. We do use the stats for the relevant IO size
3046	 * if available which does lead to better estimates.
3047	 */
3048	bucket = blk_mq_poll_stats_bkt(rq);
3049	if (bucket < 0)
3050		return ret;
3051
3052	if (q->poll_stat[bucket].nr_samples)
3053		ret = (q->poll_stat[bucket].mean + 1) / 2;
3054
3055	return ret;
3056}
3057
3058static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3059				     struct blk_mq_hw_ctx *hctx,
3060				     struct request *rq)
3061{
3062	struct hrtimer_sleeper hs;
3063	enum hrtimer_mode mode;
3064	unsigned int nsecs;
3065	ktime_t kt;
3066
3067	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3068		return false;
3069
3070	/*
3071	 * poll_nsec can be:
3072	 *
3073	 * -1:	don't ever hybrid sleep
3074	 *  0:	use half of prev avg
3075	 * >0:	use this specific value
3076	 */
3077	if (q->poll_nsec == -1)
3078		return false;
3079	else if (q->poll_nsec > 0)
3080		nsecs = q->poll_nsec;
3081	else
3082		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3083
3084	if (!nsecs)
3085		return false;
3086
3087	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3088
3089	/*
3090	 * This will be replaced with the stats tracking code, using
3091	 * 'avg_completion_time / 2' as the pre-sleep target.
3092	 */
3093	kt = nsecs;
3094
3095	mode = HRTIMER_MODE_REL;
3096	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3097	hrtimer_set_expires(&hs.timer, kt);
3098
3099	hrtimer_init_sleeper(&hs, current);
3100	do {
3101		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3102			break;
3103		set_current_state(TASK_UNINTERRUPTIBLE);
3104		hrtimer_start_expires(&hs.timer, mode);
3105		if (hs.task)
3106			io_schedule();
3107		hrtimer_cancel(&hs.timer);
3108		mode = HRTIMER_MODE_ABS;
3109	} while (hs.task && !signal_pending(current));
3110
3111	__set_current_state(TASK_RUNNING);
3112	destroy_hrtimer_on_stack(&hs.timer);
3113	return true;
3114}
3115
3116static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3117{
3118	struct request_queue *q = hctx->queue;
3119	long state;
3120
 
 
 
 
 
 
 
 
 
3121	/*
3122	 * If we sleep, have the caller restart the poll loop to reset
3123	 * the state. Like for the other success return cases, the
3124	 * caller is responsible for checking if the IO completed. If
3125	 * the IO isn't complete, we'll get called again and will go
3126	 * straight to the busy poll loop.
3127	 */
3128	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3129		return true;
3130
3131	hctx->poll_considered++;
3132
3133	state = current->state;
3134	while (!need_resched()) {
3135		int ret;
3136
3137		hctx->poll_invoked++;
3138
3139		ret = q->mq_ops->poll(hctx, rq->tag);
3140		if (ret > 0) {
3141			hctx->poll_success++;
3142			set_current_state(TASK_RUNNING);
3143			return true;
3144		}
3145
3146		if (signal_pending_state(state, current))
3147			set_current_state(TASK_RUNNING);
3148
3149		if (current->state == TASK_RUNNING)
3150			return true;
3151		if (ret < 0)
3152			break;
3153		cpu_relax();
3154	}
3155
3156	__set_current_state(TASK_RUNNING);
3157	return false;
3158}
 
3159
3160static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3161{
3162	struct blk_mq_hw_ctx *hctx;
3163	struct request *rq;
3164
3165	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3166		return false;
3167
3168	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3169	if (!blk_qc_t_is_internal(cookie))
3170		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3171	else {
3172		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3173		/*
3174		 * With scheduling, if the request has completed, we'll
3175		 * get a NULL return here, as we clear the sched tag when
3176		 * that happens. The request still remains valid, like always,
3177		 * so we should be safe with just the NULL check.
3178		 */
3179		if (!rq)
3180			return false;
3181	}
3182
3183	return __blk_mq_poll(hctx, rq);
3184}
 
3185
3186static int __init blk_mq_init(void)
3187{
3188	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3189				blk_mq_hctx_notify_dead);
3190	return 0;
3191}
3192subsys_initcall(blk_mq_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29
  30#include <trace/events/block.h>
  31
  32#include <linux/blk-mq.h>
  33#include <linux/t10-pi.h>
  34#include "blk.h"
  35#include "blk-mq.h"
  36#include "blk-mq-debugfs.h"
  37#include "blk-mq-tag.h"
  38#include "blk-pm.h"
  39#include "blk-stat.h"
 
  40#include "blk-mq-sched.h"
  41#include "blk-rq-qos.h"
  42
 
  43static void blk_mq_poll_stats_start(struct request_queue *q);
  44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  45
  46static int blk_mq_poll_stats_bkt(const struct request *rq)
  47{
  48	int ddir, sectors, bucket;
  49
  50	ddir = rq_data_dir(rq);
  51	sectors = blk_rq_stats_sectors(rq);
  52
  53	bucket = ddir + 2 * ilog2(sectors);
  54
  55	if (bucket < 0)
  56		return -1;
  57	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  58		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  59
  60	return bucket;
  61}
  62
  63/*
  64 * Check if any of the ctx, dispatch list or elevator
  65 * have pending work in this hardware queue.
  66 */
  67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  68{
  69	return !list_empty_careful(&hctx->dispatch) ||
  70		sbitmap_any_bit_set(&hctx->ctx_map) ||
  71			blk_mq_sched_has_work(hctx);
  72}
  73
  74/*
  75 * Mark this ctx as having pending work in this hardware queue
  76 */
  77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  78				     struct blk_mq_ctx *ctx)
  79{
  80	const int bit = ctx->index_hw[hctx->type];
  81
  82	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  83		sbitmap_set_bit(&hctx->ctx_map, bit);
  84}
  85
  86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  87				      struct blk_mq_ctx *ctx)
  88{
  89	const int bit = ctx->index_hw[hctx->type];
  90
  91	sbitmap_clear_bit(&hctx->ctx_map, bit);
  92}
  93
  94struct mq_inflight {
  95	struct hd_struct *part;
  96	unsigned int *inflight;
  97};
  98
  99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 100				  struct request *rq, void *priv,
 101				  bool reserved)
 102{
 103	struct mq_inflight *mi = priv;
 104
 105	/*
 106	 * index[0] counts the specific partition that was asked for.
 
 
 107	 */
 108	if (rq->part == mi->part)
 109		mi->inflight[0]++;
 110
 111	return true;
 112}
 113
 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 
 115{
 116	unsigned inflight[2];
 117	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 118
 119	inflight[0] = inflight[1] = 0;
 120	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 121
 122	return inflight[0];
 123}
 124
 125static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
 126				     struct request *rq, void *priv,
 127				     bool reserved)
 128{
 129	struct mq_inflight *mi = priv;
 130
 131	if (rq->part == mi->part)
 132		mi->inflight[rq_data_dir(rq)]++;
 133
 134	return true;
 135}
 136
 137void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 138			 unsigned int inflight[2])
 139{
 140	struct mq_inflight mi = { .part = part, .inflight = inflight, };
 141
 142	inflight[0] = inflight[1] = 0;
 143	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
 144}
 145
 146void blk_freeze_queue_start(struct request_queue *q)
 147{
 148	mutex_lock(&q->mq_freeze_lock);
 149	if (++q->mq_freeze_depth == 1) {
 
 
 150		percpu_ref_kill(&q->q_usage_counter);
 151		mutex_unlock(&q->mq_freeze_lock);
 152		if (queue_is_mq(q))
 153			blk_mq_run_hw_queues(q, false);
 154	} else {
 155		mutex_unlock(&q->mq_freeze_lock);
 156	}
 157}
 158EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 159
 160void blk_mq_freeze_queue_wait(struct request_queue *q)
 161{
 162	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 163}
 164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 165
 166int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 167				     unsigned long timeout)
 168{
 169	return wait_event_timeout(q->mq_freeze_wq,
 170					percpu_ref_is_zero(&q->q_usage_counter),
 171					timeout);
 172}
 173EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 174
 175/*
 176 * Guarantee no request is in use, so we can change any data structure of
 177 * the queue afterward.
 178 */
 179void blk_freeze_queue(struct request_queue *q)
 180{
 181	/*
 182	 * In the !blk_mq case we are only calling this to kill the
 183	 * q_usage_counter, otherwise this increases the freeze depth
 184	 * and waits for it to return to zero.  For this reason there is
 185	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 186	 * exported to drivers as the only user for unfreeze is blk_mq.
 187	 */
 188	blk_freeze_queue_start(q);
 
 
 189	blk_mq_freeze_queue_wait(q);
 190}
 191
 192void blk_mq_freeze_queue(struct request_queue *q)
 193{
 194	/*
 195	 * ...just an alias to keep freeze and unfreeze actions balanced
 196	 * in the blk_mq_* namespace
 197	 */
 198	blk_freeze_queue(q);
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 201
 202void blk_mq_unfreeze_queue(struct request_queue *q)
 203{
 204	mutex_lock(&q->mq_freeze_lock);
 205	q->mq_freeze_depth--;
 206	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 207	if (!q->mq_freeze_depth) {
 208		percpu_ref_resurrect(&q->q_usage_counter);
 
 209		wake_up_all(&q->mq_freeze_wq);
 210	}
 211	mutex_unlock(&q->mq_freeze_lock);
 212}
 213EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 214
 215/*
 216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 217 * mpt3sas driver such that this function can be removed.
 218 */
 219void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 220{
 221	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 222}
 223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 224
 225/**
 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 227 * @q: request queue.
 228 *
 229 * Note: this function does not prevent that the struct request end_io()
 230 * callback function is invoked. Once this function is returned, we make
 231 * sure no dispatch can happen until the queue is unquiesced via
 232 * blk_mq_unquiesce_queue().
 233 */
 234void blk_mq_quiesce_queue(struct request_queue *q)
 235{
 236	struct blk_mq_hw_ctx *hctx;
 237	unsigned int i;
 238	bool rcu = false;
 239
 240	blk_mq_quiesce_queue_nowait(q);
 241
 242	queue_for_each_hw_ctx(q, hctx, i) {
 243		if (hctx->flags & BLK_MQ_F_BLOCKING)
 244			synchronize_srcu(hctx->srcu);
 245		else
 246			rcu = true;
 247	}
 248	if (rcu)
 249		synchronize_rcu();
 250}
 251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 252
 253/*
 254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 255 * @q: request queue.
 256 *
 257 * This function recovers queue into the state before quiescing
 258 * which is done by blk_mq_quiesce_queue.
 259 */
 260void blk_mq_unquiesce_queue(struct request_queue *q)
 261{
 262	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 263
 264	/* dispatch requests which are inserted during quiescing */
 265	blk_mq_run_hw_queues(q, true);
 266}
 267EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 268
 269void blk_mq_wake_waiters(struct request_queue *q)
 270{
 271	struct blk_mq_hw_ctx *hctx;
 272	unsigned int i;
 273
 274	queue_for_each_hw_ctx(q, hctx, i)
 275		if (blk_mq_hw_queue_mapped(hctx))
 276			blk_mq_tag_wakeup_all(hctx->tags, true);
 277}
 278
 279bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 280{
 281	return blk_mq_has_free_tags(hctx->tags);
 282}
 283EXPORT_SYMBOL(blk_mq_can_queue);
 284
 285/*
 286 * Only need start/end time stamping if we have iostat or
 287 * blk stats enabled, or using an IO scheduler.
 288 */
 289static inline bool blk_mq_need_time_stamp(struct request *rq)
 290{
 291	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 292}
 293
 294static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 295		unsigned int tag, unsigned int op, u64 alloc_time_ns)
 296{
 297	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 298	struct request *rq = tags->static_rqs[tag];
 299	req_flags_t rq_flags = 0;
 300
 301	if (data->flags & BLK_MQ_REQ_INTERNAL) {
 302		rq->tag = -1;
 303		rq->internal_tag = tag;
 304	} else {
 305		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
 306			rq_flags = RQF_MQ_INFLIGHT;
 307			atomic_inc(&data->hctx->nr_active);
 308		}
 309		rq->tag = tag;
 310		rq->internal_tag = -1;
 311		data->hctx->tags->rqs[rq->tag] = rq;
 312	}
 313
 314	/* csd/requeue_work/fifo_time is initialized before use */
 315	rq->q = data->q;
 316	rq->mq_ctx = data->ctx;
 317	rq->mq_hctx = data->hctx;
 318	rq->rq_flags = rq_flags;
 
 319	rq->cmd_flags = op;
 320	if (data->flags & BLK_MQ_REQ_PREEMPT)
 321		rq->rq_flags |= RQF_PREEMPT;
 322	if (blk_queue_io_stat(data->q))
 323		rq->rq_flags |= RQF_IO_STAT;
 324	INIT_LIST_HEAD(&rq->queuelist);
 325	INIT_HLIST_NODE(&rq->hash);
 326	RB_CLEAR_NODE(&rq->rb_node);
 327	rq->rq_disk = NULL;
 328	rq->part = NULL;
 329#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 330	rq->alloc_time_ns = alloc_time_ns;
 331#endif
 332	if (blk_mq_need_time_stamp(rq))
 333		rq->start_time_ns = ktime_get_ns();
 334	else
 335		rq->start_time_ns = 0;
 336	rq->io_start_time_ns = 0;
 337	rq->stats_sectors = 0;
 338	rq->nr_phys_segments = 0;
 339#if defined(CONFIG_BLK_DEV_INTEGRITY)
 340	rq->nr_integrity_segments = 0;
 341#endif
 
 342	/* tag was already set */
 343	rq->extra_len = 0;
 344	WRITE_ONCE(rq->deadline, 0);
 345
 
 346	rq->timeout = 0;
 347
 348	rq->end_io = NULL;
 349	rq->end_io_data = NULL;
 
 
 
 
 
 
 
 350
 351	data->ctx->rq_dispatched[op_is_sync(op)]++;
 352	refcount_set(&rq->ref, 1);
 353	return rq;
 354}
 355
 356static struct request *blk_mq_get_request(struct request_queue *q,
 357					  struct bio *bio,
 358					  struct blk_mq_alloc_data *data)
 359{
 360	struct elevator_queue *e = q->elevator;
 361	struct request *rq;
 362	unsigned int tag;
 363	bool clear_ctx_on_error = false;
 364	u64 alloc_time_ns = 0;
 365
 366	blk_queue_enter_live(q);
 367
 368	/* alloc_time includes depth and tag waits */
 369	if (blk_queue_rq_alloc_time(q))
 370		alloc_time_ns = ktime_get_ns();
 371
 372	data->q = q;
 373	if (likely(!data->ctx)) {
 374		data->ctx = blk_mq_get_ctx(q);
 375		clear_ctx_on_error = true;
 376	}
 377	if (likely(!data->hctx))
 378		data->hctx = blk_mq_map_queue(q, data->cmd_flags,
 379						data->ctx);
 380	if (data->cmd_flags & REQ_NOWAIT)
 381		data->flags |= BLK_MQ_REQ_NOWAIT;
 382
 383	if (e) {
 384		data->flags |= BLK_MQ_REQ_INTERNAL;
 385
 386		/*
 387		 * Flush requests are special and go directly to the
 388		 * dispatch list. Don't include reserved tags in the
 389		 * limiting, as it isn't useful.
 390		 */
 391		if (!op_is_flush(data->cmd_flags) &&
 392		    e->type->ops.limit_depth &&
 393		    !(data->flags & BLK_MQ_REQ_RESERVED))
 394			e->type->ops.limit_depth(data->cmd_flags, data);
 395	} else {
 396		blk_mq_tag_busy(data->hctx);
 397	}
 398
 399	tag = blk_mq_get_tag(data);
 400	if (tag == BLK_MQ_TAG_FAIL) {
 401		if (clear_ctx_on_error)
 
 402			data->ctx = NULL;
 
 403		blk_queue_exit(q);
 404		return NULL;
 405	}
 406
 407	rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
 408	if (!op_is_flush(data->cmd_flags)) {
 409		rq->elv.icq = NULL;
 410		if (e && e->type->ops.prepare_request) {
 411			if (e->type->icq_cache)
 412				blk_mq_sched_assign_ioc(rq);
 413
 414			e->type->ops.prepare_request(rq, bio);
 415			rq->rq_flags |= RQF_ELVPRIV;
 416		}
 417	}
 418	data->hctx->queued++;
 419	return rq;
 420}
 421
 422struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 423		blk_mq_req_flags_t flags)
 424{
 425	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 426	struct request *rq;
 427	int ret;
 428
 429	ret = blk_queue_enter(q, flags);
 430	if (ret)
 431		return ERR_PTR(ret);
 432
 433	rq = blk_mq_get_request(q, NULL, &alloc_data);
 434	blk_queue_exit(q);
 435
 436	if (!rq)
 437		return ERR_PTR(-EWOULDBLOCK);
 438
 
 
 439	rq->__data_len = 0;
 440	rq->__sector = (sector_t) -1;
 441	rq->bio = rq->biotail = NULL;
 442	return rq;
 443}
 444EXPORT_SYMBOL(blk_mq_alloc_request);
 445
 446struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 447	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 448{
 449	struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
 450	struct request *rq;
 451	unsigned int cpu;
 452	int ret;
 453
 454	/*
 455	 * If the tag allocator sleeps we could get an allocation for a
 456	 * different hardware context.  No need to complicate the low level
 457	 * allocator for this for the rare use case of a command tied to
 458	 * a specific queue.
 459	 */
 460	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
 461		return ERR_PTR(-EINVAL);
 462
 463	if (hctx_idx >= q->nr_hw_queues)
 464		return ERR_PTR(-EIO);
 465
 466	ret = blk_queue_enter(q, flags);
 467	if (ret)
 468		return ERR_PTR(ret);
 469
 470	/*
 471	 * Check if the hardware context is actually mapped to anything.
 472	 * If not tell the caller that it should skip this queue.
 473	 */
 474	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
 475	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
 476		blk_queue_exit(q);
 477		return ERR_PTR(-EXDEV);
 478	}
 479	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
 480	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
 481
 482	rq = blk_mq_get_request(q, NULL, &alloc_data);
 483	blk_queue_exit(q);
 484
 485	if (!rq)
 486		return ERR_PTR(-EWOULDBLOCK);
 487
 488	return rq;
 489}
 490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 491
 492static void __blk_mq_free_request(struct request *rq)
 493{
 494	struct request_queue *q = rq->q;
 495	struct blk_mq_ctx *ctx = rq->mq_ctx;
 496	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 497	const int sched_tag = rq->internal_tag;
 498
 499	blk_pm_mark_last_busy(rq);
 500	rq->mq_hctx = NULL;
 501	if (rq->tag != -1)
 502		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
 503	if (sched_tag != -1)
 504		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
 505	blk_mq_sched_restart(hctx);
 506	blk_queue_exit(q);
 507}
 508
 509void blk_mq_free_request(struct request *rq)
 510{
 511	struct request_queue *q = rq->q;
 512	struct elevator_queue *e = q->elevator;
 513	struct blk_mq_ctx *ctx = rq->mq_ctx;
 514	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
 515
 516	if (rq->rq_flags & RQF_ELVPRIV) {
 517		if (e && e->type->ops.finish_request)
 518			e->type->ops.finish_request(rq);
 519		if (rq->elv.icq) {
 520			put_io_context(rq->elv.icq->ioc);
 521			rq->elv.icq = NULL;
 522		}
 523	}
 524
 525	ctx->rq_completed[rq_is_sync(rq)]++;
 526	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 527		atomic_dec(&hctx->nr_active);
 528
 529	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 530		laptop_io_completion(q->backing_dev_info);
 531
 532	rq_qos_done(q, rq);
 
 
 
 533
 534	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 535	if (refcount_dec_and_test(&rq->ref))
 536		__blk_mq_free_request(rq);
 
 
 
 
 537}
 538EXPORT_SYMBOL_GPL(blk_mq_free_request);
 539
 540inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 541{
 542	u64 now = 0;
 543
 544	if (blk_mq_need_time_stamp(rq))
 545		now = ktime_get_ns();
 546
 547	if (rq->rq_flags & RQF_STATS) {
 548		blk_mq_poll_stats_start(rq->q);
 549		blk_stat_add(rq, now);
 550	}
 551
 552	if (rq->internal_tag != -1)
 553		blk_mq_sched_completed_request(rq, now);
 554
 555	blk_account_io_done(rq, now);
 556
 557	if (rq->end_io) {
 558		rq_qos_done(rq->q, rq);
 559		rq->end_io(rq, error);
 560	} else {
 
 
 561		blk_mq_free_request(rq);
 562	}
 563}
 564EXPORT_SYMBOL(__blk_mq_end_request);
 565
 566void blk_mq_end_request(struct request *rq, blk_status_t error)
 567{
 568	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 569		BUG();
 570	__blk_mq_end_request(rq, error);
 571}
 572EXPORT_SYMBOL(blk_mq_end_request);
 573
 574static void __blk_mq_complete_request_remote(void *data)
 575{
 576	struct request *rq = data;
 577	struct request_queue *q = rq->q;
 578
 579	q->mq_ops->complete(rq);
 580}
 581
 582static void __blk_mq_complete_request(struct request *rq)
 583{
 584	struct blk_mq_ctx *ctx = rq->mq_ctx;
 585	struct request_queue *q = rq->q;
 586	bool shared = false;
 587	int cpu;
 588
 589	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 590	/*
 591	 * Most of single queue controllers, there is only one irq vector
 592	 * for handling IO completion, and the only irq's affinity is set
 593	 * as all possible CPUs. On most of ARCHs, this affinity means the
 594	 * irq is handled on one specific CPU.
 595	 *
 596	 * So complete IO reqeust in softirq context in case of single queue
 597	 * for not degrading IO performance by irqsoff latency.
 598	 */
 599	if (q->nr_hw_queues == 1) {
 600		__blk_complete_request(rq);
 601		return;
 602	}
 603
 604	/*
 605	 * For a polled request, always complete locallly, it's pointless
 606	 * to redirect the completion.
 607	 */
 608	if ((rq->cmd_flags & REQ_HIPRI) ||
 609	    !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
 610		q->mq_ops->complete(rq);
 611		return;
 612	}
 613
 614	cpu = get_cpu();
 615	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
 616		shared = cpus_share_cache(cpu, ctx->cpu);
 617
 618	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 619		rq->csd.func = __blk_mq_complete_request_remote;
 620		rq->csd.info = rq;
 621		rq->csd.flags = 0;
 622		smp_call_function_single_async(ctx->cpu, &rq->csd);
 623	} else {
 624		q->mq_ops->complete(rq);
 625	}
 626	put_cpu();
 627}
 628
 629static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 630	__releases(hctx->srcu)
 631{
 632	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 633		rcu_read_unlock();
 634	else
 635		srcu_read_unlock(hctx->srcu, srcu_idx);
 636}
 637
 638static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 639	__acquires(hctx->srcu)
 640{
 641	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 642		/* shut up gcc false positive */
 643		*srcu_idx = 0;
 644		rcu_read_lock();
 645	} else
 646		*srcu_idx = srcu_read_lock(hctx->srcu);
 647}
 648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649/**
 650 * blk_mq_complete_request - end I/O on a request
 651 * @rq:		the request being processed
 652 *
 653 * Description:
 654 *	Ends all I/O on a request. It does not handle partial completions.
 655 *	The actual completion happens out-of-order, through a IPI handler.
 656 **/
 657bool blk_mq_complete_request(struct request *rq)
 658{
 659	if (unlikely(blk_should_fake_timeout(rq->q)))
 660		return false;
 661	__blk_mq_complete_request(rq);
 662	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663}
 664EXPORT_SYMBOL(blk_mq_complete_request);
 665
 666int blk_mq_request_started(struct request *rq)
 667{
 668	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
 669}
 670EXPORT_SYMBOL_GPL(blk_mq_request_started);
 671
 672int blk_mq_request_completed(struct request *rq)
 673{
 674	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
 675}
 676EXPORT_SYMBOL_GPL(blk_mq_request_completed);
 677
 678void blk_mq_start_request(struct request *rq)
 679{
 680	struct request_queue *q = rq->q;
 681
 
 
 682	trace_block_rq_issue(q, rq);
 683
 684	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 685		rq->io_start_time_ns = ktime_get_ns();
 686		rq->stats_sectors = blk_rq_sectors(rq);
 687		rq->rq_flags |= RQF_STATS;
 688		rq_qos_issue(q, rq);
 689	}
 690
 691	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693	blk_add_timer(rq);
 694	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 
 
 695
 696	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 697		/*
 698		 * Make sure space for the drain appears.  We know we can do
 699		 * this because max_hw_segments has been adjusted to be one
 700		 * fewer than the device can handle.
 701		 */
 702		rq->nr_phys_segments++;
 703	}
 704
 705#ifdef CONFIG_BLK_DEV_INTEGRITY
 706	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 707		q->integrity.profile->prepare_fn(rq);
 708#endif
 709}
 710EXPORT_SYMBOL(blk_mq_start_request);
 711
 
 
 
 
 
 712static void __blk_mq_requeue_request(struct request *rq)
 713{
 714	struct request_queue *q = rq->q;
 715
 716	blk_mq_put_driver_tag(rq);
 717
 718	trace_block_rq_requeue(q, rq);
 719	rq_qos_requeue(q, rq);
 720
 721	if (blk_mq_request_started(rq)) {
 722		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 723		rq->rq_flags &= ~RQF_TIMED_OUT;
 724		if (q->dma_drain_size && blk_rq_bytes(rq))
 725			rq->nr_phys_segments--;
 726	}
 727}
 728
 729void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 730{
 731	__blk_mq_requeue_request(rq);
 732
 733	/* this request will be re-inserted to io scheduler queue */
 734	blk_mq_sched_requeue_request(rq);
 735
 736	BUG_ON(!list_empty(&rq->queuelist));
 737	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 738}
 739EXPORT_SYMBOL(blk_mq_requeue_request);
 740
 741static void blk_mq_requeue_work(struct work_struct *work)
 742{
 743	struct request_queue *q =
 744		container_of(work, struct request_queue, requeue_work.work);
 745	LIST_HEAD(rq_list);
 746	struct request *rq, *next;
 747
 748	spin_lock_irq(&q->requeue_lock);
 749	list_splice_init(&q->requeue_list, &rq_list);
 750	spin_unlock_irq(&q->requeue_lock);
 751
 752	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 753		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 754			continue;
 755
 756		rq->rq_flags &= ~RQF_SOFTBARRIER;
 757		list_del_init(&rq->queuelist);
 758		/*
 759		 * If RQF_DONTPREP, rq has contained some driver specific
 760		 * data, so insert it to hctx dispatch list to avoid any
 761		 * merge.
 762		 */
 763		if (rq->rq_flags & RQF_DONTPREP)
 764			blk_mq_request_bypass_insert(rq, false);
 765		else
 766			blk_mq_sched_insert_request(rq, true, false, false);
 767	}
 768
 769	while (!list_empty(&rq_list)) {
 770		rq = list_entry(rq_list.next, struct request, queuelist);
 771		list_del_init(&rq->queuelist);
 772		blk_mq_sched_insert_request(rq, false, false, false);
 773	}
 774
 775	blk_mq_run_hw_queues(q, false);
 776}
 777
 778void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 779				bool kick_requeue_list)
 780{
 781	struct request_queue *q = rq->q;
 782	unsigned long flags;
 783
 784	/*
 785	 * We abuse this flag that is otherwise used by the I/O scheduler to
 786	 * request head insertion from the workqueue.
 787	 */
 788	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 789
 790	spin_lock_irqsave(&q->requeue_lock, flags);
 791	if (at_head) {
 792		rq->rq_flags |= RQF_SOFTBARRIER;
 793		list_add(&rq->queuelist, &q->requeue_list);
 794	} else {
 795		list_add_tail(&rq->queuelist, &q->requeue_list);
 796	}
 797	spin_unlock_irqrestore(&q->requeue_lock, flags);
 798
 799	if (kick_requeue_list)
 800		blk_mq_kick_requeue_list(q);
 801}
 
 802
 803void blk_mq_kick_requeue_list(struct request_queue *q)
 804{
 805	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 806}
 807EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 808
 809void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 810				    unsigned long msecs)
 811{
 812	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 813				    msecs_to_jiffies(msecs));
 814}
 815EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 816
 817struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 818{
 819	if (tag < tags->nr_tags) {
 820		prefetch(tags->rqs[tag]);
 821		return tags->rqs[tag];
 822	}
 823
 824	return NULL;
 825}
 826EXPORT_SYMBOL(blk_mq_tag_to_rq);
 827
 828static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 829			       void *priv, bool reserved)
 830{
 831	/*
 832	 * If we find a request that is inflight and the queue matches,
 833	 * we know the queue is busy. Return false to stop the iteration.
 834	 */
 835	if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
 836		bool *busy = priv;
 837
 838		*busy = true;
 839		return false;
 840	}
 841
 842	return true;
 843}
 844
 845bool blk_mq_queue_inflight(struct request_queue *q)
 846{
 847	bool busy = false;
 
 848
 849	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 850	return busy;
 851}
 852EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 853
 854static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 855{
 856	req->rq_flags |= RQF_TIMED_OUT;
 857	if (req->q->mq_ops->timeout) {
 858		enum blk_eh_timer_return ret;
 859
 860		ret = req->q->mq_ops->timeout(req, reserved);
 861		if (ret == BLK_EH_DONE)
 862			return;
 863		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864	}
 865
 866	blk_add_timer(req);
 867}
 868
 869static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 
 870{
 871	unsigned long deadline;
 
 
 
 
 872
 873	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 874		return false;
 875	if (rq->rq_flags & RQF_TIMED_OUT)
 876		return false;
 877
 878	deadline = READ_ONCE(rq->deadline);
 879	if (time_after_eq(jiffies, deadline))
 880		return true;
 
 
 
 
 
 
 881
 882	if (*next == 0)
 883		*next = deadline;
 884	else if (time_after(*next, deadline))
 885		*next = deadline;
 886	return false;
 
 
 
 
 
 887}
 888
 889static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 890		struct request *rq, void *priv, bool reserved)
 891{
 892	unsigned long *next = priv;
 893
 894	/*
 895	 * Just do a quick check if it is expired before locking the request in
 896	 * so we're not unnecessarilly synchronizing across CPUs.
 897	 */
 898	if (!blk_mq_req_expired(rq, next))
 899		return true;
 900
 901	/*
 902	 * We have reason to believe the request may be expired. Take a
 903	 * reference on the request to lock this request lifetime into its
 904	 * currently allocated context to prevent it from being reallocated in
 905	 * the event the completion by-passes this timeout handler.
 906	 *
 907	 * If the reference was already released, then the driver beat the
 908	 * timeout handler to posting a natural completion.
 909	 */
 910	if (!refcount_inc_not_zero(&rq->ref))
 911		return true;
 912
 913	/*
 914	 * The request is now locked and cannot be reallocated underneath the
 915	 * timeout handler's processing. Re-verify this exact request is truly
 916	 * expired; if it is not expired, then the request was completed and
 917	 * reallocated as a new request.
 
 918	 */
 919	if (blk_mq_req_expired(rq, next))
 
 920		blk_mq_rq_timed_out(rq, reserved);
 921
 922	if (is_flush_rq(rq, hctx))
 923		rq->end_io(rq, 0);
 924	else if (refcount_dec_and_test(&rq->ref))
 925		__blk_mq_free_request(rq);
 926
 927	return true;
 928}
 929
 930static void blk_mq_timeout_work(struct work_struct *work)
 931{
 932	struct request_queue *q =
 933		container_of(work, struct request_queue, timeout_work);
 934	unsigned long next = 0;
 
 
 
 
 935	struct blk_mq_hw_ctx *hctx;
 936	int i;
 937
 938	/* A deadlock might occur if a request is stuck requiring a
 939	 * timeout at the same time a queue freeze is waiting
 940	 * completion, since the timeout code would not be able to
 941	 * acquire the queue reference here.
 942	 *
 943	 * That's why we don't use blk_queue_enter here; instead, we use
 944	 * percpu_ref_tryget directly, because we need to be able to
 945	 * obtain a reference even in the short window between the queue
 946	 * starting to freeze, by dropping the first reference in
 947	 * blk_freeze_queue_start, and the moment the last request is
 948	 * consumed, marked by the instant q_usage_counter reaches
 949	 * zero.
 950	 */
 951	if (!percpu_ref_tryget(&q->q_usage_counter))
 952		return;
 953
 954	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 
 
 
 
 955
 956	if (next != 0) {
 957		mod_timer(&q->timeout, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958	} else {
 959		/*
 960		 * Request timeouts are handled as a forward rolling timer. If
 961		 * we end up here it means that no requests are pending and
 962		 * also that no request has been pending for a while. Mark
 963		 * each hctx as idle.
 964		 */
 965		queue_for_each_hw_ctx(q, hctx, i) {
 966			/* the hctx may be unmapped, so check it here */
 967			if (blk_mq_hw_queue_mapped(hctx))
 968				blk_mq_tag_idle(hctx);
 969		}
 970	}
 971	blk_queue_exit(q);
 972}
 973
 974struct flush_busy_ctx_data {
 975	struct blk_mq_hw_ctx *hctx;
 976	struct list_head *list;
 977};
 978
 979static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
 980{
 981	struct flush_busy_ctx_data *flush_data = data;
 982	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
 983	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
 984	enum hctx_type type = hctx->type;
 985
 986	spin_lock(&ctx->lock);
 987	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
 988	sbitmap_clear_bit(sb, bitnr);
 989	spin_unlock(&ctx->lock);
 990	return true;
 991}
 992
 993/*
 994 * Process software queues that have been marked busy, splicing them
 995 * to the for-dispatch
 996 */
 997void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 998{
 999	struct flush_busy_ctx_data data = {
1000		.hctx = hctx,
1001		.list = list,
1002	};
1003
1004	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1005}
1006EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1007
1008struct dispatch_rq_data {
1009	struct blk_mq_hw_ctx *hctx;
1010	struct request *rq;
1011};
1012
1013static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1014		void *data)
1015{
1016	struct dispatch_rq_data *dispatch_data = data;
1017	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1018	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1019	enum hctx_type type = hctx->type;
1020
1021	spin_lock(&ctx->lock);
1022	if (!list_empty(&ctx->rq_lists[type])) {
1023		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1024		list_del_init(&dispatch_data->rq->queuelist);
1025		if (list_empty(&ctx->rq_lists[type]))
1026			sbitmap_clear_bit(sb, bitnr);
1027	}
1028	spin_unlock(&ctx->lock);
1029
1030	return !dispatch_data->rq;
1031}
1032
1033struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034					struct blk_mq_ctx *start)
1035{
1036	unsigned off = start ? start->index_hw[hctx->type] : 0;
1037	struct dispatch_rq_data data = {
1038		.hctx = hctx,
1039		.rq   = NULL,
1040	};
1041
1042	__sbitmap_for_each_set(&hctx->ctx_map, off,
1043			       dispatch_rq_from_ctx, &data);
1044
1045	return data.rq;
1046}
1047
1048static inline unsigned int queued_to_index(unsigned int queued)
1049{
1050	if (!queued)
1051		return 0;
1052
1053	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1054}
1055
1056bool blk_mq_get_driver_tag(struct request *rq)
 
1057{
1058	struct blk_mq_alloc_data data = {
1059		.q = rq->q,
1060		.hctx = rq->mq_hctx,
1061		.flags = BLK_MQ_REQ_NOWAIT,
1062		.cmd_flags = rq->cmd_flags,
1063	};
1064	bool shared;
 
1065
1066	if (rq->tag != -1)
1067		goto done;
1068
1069	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1070		data.flags |= BLK_MQ_REQ_RESERVED;
1071
1072	shared = blk_mq_tag_busy(data.hctx);
1073	rq->tag = blk_mq_get_tag(&data);
1074	if (rq->tag >= 0) {
1075		if (shared) {
1076			rq->rq_flags |= RQF_MQ_INFLIGHT;
1077			atomic_inc(&data.hctx->nr_active);
1078		}
1079		data.hctx->tags->rqs[rq->tag] = rq;
1080	}
1081
1082done:
 
 
1083	return rq->tag != -1;
1084}
1085
1086static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087				int flags, void *key)
1088{
1089	struct blk_mq_hw_ctx *hctx;
1090
1091	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092
1093	spin_lock(&hctx->dispatch_wait_lock);
1094	if (!list_empty(&wait->entry)) {
1095		struct sbitmap_queue *sbq;
1096
1097		list_del_init(&wait->entry);
1098		sbq = &hctx->tags->bitmap_tags;
1099		atomic_dec(&sbq->ws_active);
1100	}
1101	spin_unlock(&hctx->dispatch_wait_lock);
1102
1103	blk_mq_run_hw_queue(hctx, true);
1104	return 1;
1105}
1106
1107/*
1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110 * restart. For both cases, take care to check the condition again after
1111 * marking us as waiting.
1112 */
1113static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1114				 struct request *rq)
1115{
1116	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1117	struct wait_queue_head *wq;
1118	wait_queue_entry_t *wait;
1119	bool ret;
1120
1121	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1122		blk_mq_sched_mark_restart_hctx(hctx);
 
1123
1124		/*
1125		 * It's possible that a tag was freed in the window between the
1126		 * allocation failure and adding the hardware queue to the wait
1127		 * queue.
1128		 *
1129		 * Don't clear RESTART here, someone else could have set it.
1130		 * At most this will cost an extra queue run.
1131		 */
1132		return blk_mq_get_driver_tag(rq);
1133	}
1134
1135	wait = &hctx->dispatch_wait;
1136	if (!list_empty_careful(&wait->entry))
1137		return false;
1138
1139	wq = &bt_wait_ptr(sbq, hctx)->wait;
1140
1141	spin_lock_irq(&wq->lock);
1142	spin_lock(&hctx->dispatch_wait_lock);
1143	if (!list_empty(&wait->entry)) {
1144		spin_unlock(&hctx->dispatch_wait_lock);
1145		spin_unlock_irq(&wq->lock);
1146		return false;
1147	}
1148
1149	atomic_inc(&sbq->ws_active);
1150	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1151	__add_wait_queue(wq, wait);
1152
1153	/*
1154	 * It's possible that a tag was freed in the window between the
1155	 * allocation failure and adding the hardware queue to the wait
1156	 * queue.
1157	 */
1158	ret = blk_mq_get_driver_tag(rq);
1159	if (!ret) {
1160		spin_unlock(&hctx->dispatch_wait_lock);
1161		spin_unlock_irq(&wq->lock);
1162		return false;
1163	}
1164
1165	/*
1166	 * We got a tag, remove ourselves from the wait queue to ensure
1167	 * someone else gets the wakeup.
1168	 */
 
1169	list_del_init(&wait->entry);
1170	atomic_dec(&sbq->ws_active);
1171	spin_unlock(&hctx->dispatch_wait_lock);
1172	spin_unlock_irq(&wq->lock);
1173
1174	return true;
1175}
1176
1177#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1178#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1179/*
1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181 * - EWMA is one simple way to compute running average value
1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183 * - take 4 as factor for avoiding to get too small(0) result, and this
1184 *   factor doesn't matter because EWMA decreases exponentially
1185 */
1186static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1187{
1188	unsigned int ewma;
1189
1190	if (hctx->queue->elevator)
1191		return;
1192
1193	ewma = hctx->dispatch_busy;
1194
1195	if (!ewma && !busy)
1196		return;
1197
1198	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1199	if (busy)
1200		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1201	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1202
1203	hctx->dispatch_busy = ewma;
1204}
1205
1206#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1207
1208/*
1209 * Returns true if we did some work AND can potentially do more.
1210 */
1211bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1212			     bool got_budget)
1213{
1214	struct blk_mq_hw_ctx *hctx;
1215	struct request *rq, *nxt;
1216	bool no_tag = false;
1217	int errors, queued;
1218	blk_status_t ret = BLK_STS_OK;
1219
1220	if (list_empty(list))
1221		return false;
1222
1223	WARN_ON(!list_is_singular(list) && got_budget);
1224
1225	/*
1226	 * Now process all the entries, sending them to the driver.
1227	 */
1228	errors = queued = 0;
1229	do {
1230		struct blk_mq_queue_data bd;
1231
1232		rq = list_first_entry(list, struct request, queuelist);
1233
1234		hctx = rq->mq_hctx;
1235		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1236			break;
1237
1238		if (!blk_mq_get_driver_tag(rq)) {
1239			/*
1240			 * The initial allocation attempt failed, so we need to
1241			 * rerun the hardware queue when a tag is freed. The
1242			 * waitqueue takes care of that. If the queue is run
1243			 * before we add this entry back on the dispatch list,
1244			 * we'll re-run it below.
1245			 */
1246			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1247				blk_mq_put_dispatch_budget(hctx);
1248				/*
1249				 * For non-shared tags, the RESTART check
1250				 * will suffice.
1251				 */
1252				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1253					no_tag = true;
1254				break;
1255			}
1256		}
1257
1258		list_del_init(&rq->queuelist);
1259
1260		bd.rq = rq;
1261
1262		/*
1263		 * Flag last if we have no more requests, or if we have more
1264		 * but can't assign a driver tag to it.
1265		 */
1266		if (list_empty(list))
1267			bd.last = true;
1268		else {
1269			nxt = list_first_entry(list, struct request, queuelist);
1270			bd.last = !blk_mq_get_driver_tag(nxt);
1271		}
1272
1273		ret = q->mq_ops->queue_rq(hctx, &bd);
1274		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1275			/*
1276			 * If an I/O scheduler has been configured and we got a
1277			 * driver tag for the next request already, free it
1278			 * again.
1279			 */
1280			if (!list_empty(list)) {
1281				nxt = list_first_entry(list, struct request, queuelist);
1282				blk_mq_put_driver_tag(nxt);
1283			}
1284			list_add(&rq->queuelist, list);
1285			__blk_mq_requeue_request(rq);
1286			break;
1287		}
1288
1289		if (unlikely(ret != BLK_STS_OK)) {
1290			errors++;
1291			blk_mq_end_request(rq, BLK_STS_IOERR);
1292			continue;
1293		}
1294
1295		queued++;
1296	} while (!list_empty(list));
1297
1298	hctx->dispatched[queued_to_index(queued)]++;
1299
1300	/*
1301	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1302	 * that is where we will continue on next queue run.
1303	 */
1304	if (!list_empty(list)) {
1305		bool needs_restart;
1306
1307		/*
1308		 * If we didn't flush the entire list, we could have told
1309		 * the driver there was more coming, but that turned out to
1310		 * be a lie.
1311		 */
1312		if (q->mq_ops->commit_rqs)
1313			q->mq_ops->commit_rqs(hctx);
1314
1315		spin_lock(&hctx->lock);
1316		list_splice_init(list, &hctx->dispatch);
1317		spin_unlock(&hctx->lock);
1318
1319		/*
1320		 * If SCHED_RESTART was set by the caller of this function and
1321		 * it is no longer set that means that it was cleared by another
1322		 * thread and hence that a queue rerun is needed.
1323		 *
1324		 * If 'no_tag' is set, that means that we failed getting
1325		 * a driver tag with an I/O scheduler attached. If our dispatch
1326		 * waitqueue is no longer active, ensure that we run the queue
1327		 * AFTER adding our entries back to the list.
1328		 *
1329		 * If no I/O scheduler has been configured it is possible that
1330		 * the hardware queue got stopped and restarted before requests
1331		 * were pushed back onto the dispatch list. Rerun the queue to
1332		 * avoid starvation. Notes:
1333		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334		 *   been stopped before rerunning a queue.
1335		 * - Some but not all block drivers stop a queue before
1336		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1337		 *   and dm-rq.
1338		 *
1339		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340		 * bit is set, run queue after a delay to avoid IO stalls
1341		 * that could otherwise occur if the queue is idle.
1342		 */
1343		needs_restart = blk_mq_sched_needs_restart(hctx);
1344		if (!needs_restart ||
1345		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1346			blk_mq_run_hw_queue(hctx, true);
1347		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1348			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1349
1350		blk_mq_update_dispatch_busy(hctx, true);
1351		return false;
1352	} else
1353		blk_mq_update_dispatch_busy(hctx, false);
1354
1355	/*
1356	 * If the host/device is unable to accept more work, inform the
1357	 * caller of that.
1358	 */
1359	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1360		return false;
1361
1362	return (queued + errors) != 0;
1363}
1364
1365static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1366{
1367	int srcu_idx;
1368
1369	/*
1370	 * We should be running this queue from one of the CPUs that
1371	 * are mapped to it.
1372	 *
1373	 * There are at least two related races now between setting
1374	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375	 * __blk_mq_run_hw_queue():
1376	 *
1377	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378	 *   but later it becomes online, then this warning is harmless
1379	 *   at all
1380	 *
1381	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382	 *   but later it becomes offline, then the warning can't be
1383	 *   triggered, and we depend on blk-mq timeout handler to
1384	 *   handle dispatched requests to this hctx
1385	 */
1386	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1387		cpu_online(hctx->next_cpu)) {
1388		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1389			raw_smp_processor_id(),
1390			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1391		dump_stack();
1392	}
1393
1394	/*
1395	 * We can't run the queue inline with ints disabled. Ensure that
1396	 * we catch bad users of this early.
1397	 */
1398	WARN_ON_ONCE(in_interrupt());
1399
1400	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1401
1402	hctx_lock(hctx, &srcu_idx);
1403	blk_mq_sched_dispatch_requests(hctx);
1404	hctx_unlock(hctx, srcu_idx);
1405}
1406
1407static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1408{
1409	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1410
1411	if (cpu >= nr_cpu_ids)
1412		cpu = cpumask_first(hctx->cpumask);
1413	return cpu;
1414}
1415
1416/*
1417 * It'd be great if the workqueue API had a way to pass
1418 * in a mask and had some smarts for more clever placement.
1419 * For now we just round-robin here, switching for every
1420 * BLK_MQ_CPU_WORK_BATCH queued items.
1421 */
1422static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1423{
1424	bool tried = false;
1425	int next_cpu = hctx->next_cpu;
1426
1427	if (hctx->queue->nr_hw_queues == 1)
1428		return WORK_CPU_UNBOUND;
1429
1430	if (--hctx->next_cpu_batch <= 0) {
1431select_cpu:
1432		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1433				cpu_online_mask);
1434		if (next_cpu >= nr_cpu_ids)
1435			next_cpu = blk_mq_first_mapped_cpu(hctx);
1436		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1437	}
1438
1439	/*
1440	 * Do unbound schedule if we can't find a online CPU for this hctx,
1441	 * and it should only happen in the path of handling CPU DEAD.
1442	 */
1443	if (!cpu_online(next_cpu)) {
1444		if (!tried) {
1445			tried = true;
1446			goto select_cpu;
1447		}
1448
1449		/*
1450		 * Make sure to re-select CPU next time once after CPUs
1451		 * in hctx->cpumask become online again.
1452		 */
1453		hctx->next_cpu = next_cpu;
1454		hctx->next_cpu_batch = 1;
1455		return WORK_CPU_UNBOUND;
1456	}
1457
1458	hctx->next_cpu = next_cpu;
1459	return next_cpu;
1460}
1461
1462static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1463					unsigned long msecs)
1464{
1465	if (unlikely(blk_mq_hctx_stopped(hctx)))
1466		return;
1467
1468	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1469		int cpu = get_cpu();
1470		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1471			__blk_mq_run_hw_queue(hctx);
1472			put_cpu();
1473			return;
1474		}
1475
1476		put_cpu();
1477	}
1478
1479	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1480				    msecs_to_jiffies(msecs));
1481}
1482
1483void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1484{
1485	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1486}
1487EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1488
1489bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1490{
1491	int srcu_idx;
1492	bool need_run;
1493
1494	/*
1495	 * When queue is quiesced, we may be switching io scheduler, or
1496	 * updating nr_hw_queues, or other things, and we can't run queue
1497	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1498	 *
1499	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1500	 * quiesced.
1501	 */
1502	hctx_lock(hctx, &srcu_idx);
1503	need_run = !blk_queue_quiesced(hctx->queue) &&
1504		blk_mq_hctx_has_pending(hctx);
1505	hctx_unlock(hctx, srcu_idx);
1506
1507	if (need_run) {
1508		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1509		return true;
1510	}
1511
1512	return false;
1513}
1514EXPORT_SYMBOL(blk_mq_run_hw_queue);
1515
1516void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1517{
1518	struct blk_mq_hw_ctx *hctx;
1519	int i;
1520
1521	queue_for_each_hw_ctx(q, hctx, i) {
1522		if (blk_mq_hctx_stopped(hctx))
1523			continue;
1524
1525		blk_mq_run_hw_queue(hctx, async);
1526	}
1527}
1528EXPORT_SYMBOL(blk_mq_run_hw_queues);
1529
1530/**
1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532 * @q: request queue.
1533 *
1534 * The caller is responsible for serializing this function against
1535 * blk_mq_{start,stop}_hw_queue().
1536 */
1537bool blk_mq_queue_stopped(struct request_queue *q)
1538{
1539	struct blk_mq_hw_ctx *hctx;
1540	int i;
1541
1542	queue_for_each_hw_ctx(q, hctx, i)
1543		if (blk_mq_hctx_stopped(hctx))
1544			return true;
1545
1546	return false;
1547}
1548EXPORT_SYMBOL(blk_mq_queue_stopped);
1549
1550/*
1551 * This function is often used for pausing .queue_rq() by driver when
1552 * there isn't enough resource or some conditions aren't satisfied, and
1553 * BLK_STS_RESOURCE is usually returned.
1554 *
1555 * We do not guarantee that dispatch can be drained or blocked
1556 * after blk_mq_stop_hw_queue() returns. Please use
1557 * blk_mq_quiesce_queue() for that requirement.
1558 */
1559void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1560{
1561	cancel_delayed_work(&hctx->run_work);
1562
1563	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1564}
1565EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1566
1567/*
1568 * This function is often used for pausing .queue_rq() by driver when
1569 * there isn't enough resource or some conditions aren't satisfied, and
1570 * BLK_STS_RESOURCE is usually returned.
1571 *
1572 * We do not guarantee that dispatch can be drained or blocked
1573 * after blk_mq_stop_hw_queues() returns. Please use
1574 * blk_mq_quiesce_queue() for that requirement.
1575 */
1576void blk_mq_stop_hw_queues(struct request_queue *q)
1577{
1578	struct blk_mq_hw_ctx *hctx;
1579	int i;
1580
1581	queue_for_each_hw_ctx(q, hctx, i)
1582		blk_mq_stop_hw_queue(hctx);
1583}
1584EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1585
1586void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1587{
1588	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1589
1590	blk_mq_run_hw_queue(hctx, false);
1591}
1592EXPORT_SYMBOL(blk_mq_start_hw_queue);
1593
1594void blk_mq_start_hw_queues(struct request_queue *q)
1595{
1596	struct blk_mq_hw_ctx *hctx;
1597	int i;
1598
1599	queue_for_each_hw_ctx(q, hctx, i)
1600		blk_mq_start_hw_queue(hctx);
1601}
1602EXPORT_SYMBOL(blk_mq_start_hw_queues);
1603
1604void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605{
1606	if (!blk_mq_hctx_stopped(hctx))
1607		return;
1608
1609	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1610	blk_mq_run_hw_queue(hctx, async);
1611}
1612EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1613
1614void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1615{
1616	struct blk_mq_hw_ctx *hctx;
1617	int i;
1618
1619	queue_for_each_hw_ctx(q, hctx, i)
1620		blk_mq_start_stopped_hw_queue(hctx, async);
1621}
1622EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1623
1624static void blk_mq_run_work_fn(struct work_struct *work)
1625{
1626	struct blk_mq_hw_ctx *hctx;
1627
1628	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1629
1630	/*
1631	 * If we are stopped, don't run the queue.
1632	 */
1633	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1634		return;
1635
1636	__blk_mq_run_hw_queue(hctx);
1637}
1638
1639static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1640					    struct request *rq,
1641					    bool at_head)
1642{
1643	struct blk_mq_ctx *ctx = rq->mq_ctx;
1644	enum hctx_type type = hctx->type;
1645
1646	lockdep_assert_held(&ctx->lock);
1647
1648	trace_block_rq_insert(hctx->queue, rq);
1649
1650	if (at_head)
1651		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1652	else
1653		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1654}
1655
1656void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1657			     bool at_head)
1658{
1659	struct blk_mq_ctx *ctx = rq->mq_ctx;
1660
1661	lockdep_assert_held(&ctx->lock);
1662
1663	__blk_mq_insert_req_list(hctx, rq, at_head);
1664	blk_mq_hctx_mark_pending(hctx, ctx);
1665}
1666
1667/*
1668 * Should only be used carefully, when the caller knows we want to
1669 * bypass a potential IO scheduler on the target device.
1670 */
1671void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1672{
1673	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
1674
1675	spin_lock(&hctx->lock);
1676	list_add_tail(&rq->queuelist, &hctx->dispatch);
1677	spin_unlock(&hctx->lock);
1678
1679	if (run_queue)
1680		blk_mq_run_hw_queue(hctx, false);
1681}
1682
1683void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1684			    struct list_head *list)
1685
1686{
1687	struct request *rq;
1688	enum hctx_type type = hctx->type;
1689
1690	/*
1691	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1692	 * offline now
1693	 */
1694	list_for_each_entry(rq, list, queuelist) {
 
 
 
 
1695		BUG_ON(rq->mq_ctx != ctx);
1696		trace_block_rq_insert(hctx->queue, rq);
 
1697	}
1698
1699	spin_lock(&ctx->lock);
1700	list_splice_tail_init(list, &ctx->rq_lists[type]);
1701	blk_mq_hctx_mark_pending(hctx, ctx);
1702	spin_unlock(&ctx->lock);
1703}
1704
1705static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1706{
1707	struct request *rqa = container_of(a, struct request, queuelist);
1708	struct request *rqb = container_of(b, struct request, queuelist);
1709
1710	if (rqa->mq_ctx < rqb->mq_ctx)
1711		return -1;
1712	else if (rqa->mq_ctx > rqb->mq_ctx)
1713		return 1;
1714	else if (rqa->mq_hctx < rqb->mq_hctx)
1715		return -1;
1716	else if (rqa->mq_hctx > rqb->mq_hctx)
1717		return 1;
1718
1719	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1720}
1721
1722void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1723{
1724	struct blk_mq_hw_ctx *this_hctx;
1725	struct blk_mq_ctx *this_ctx;
1726	struct request_queue *this_q;
1727	struct request *rq;
1728	LIST_HEAD(list);
1729	LIST_HEAD(rq_list);
1730	unsigned int depth;
1731
1732	list_splice_init(&plug->mq_list, &list);
1733
1734	if (plug->rq_count > 2 && plug->multiple_queues)
1735		list_sort(NULL, &list, plug_rq_cmp);
1736
1737	plug->rq_count = 0;
1738
1739	this_q = NULL;
1740	this_hctx = NULL;
1741	this_ctx = NULL;
1742	depth = 0;
1743
1744	while (!list_empty(&list)) {
1745		rq = list_entry_rq(list.next);
1746		list_del_init(&rq->queuelist);
1747		BUG_ON(!rq->q);
1748		if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1749			if (this_hctx) {
1750				trace_block_unplug(this_q, depth, !from_schedule);
1751				blk_mq_sched_insert_requests(this_hctx, this_ctx,
1752								&rq_list,
1753								from_schedule);
1754			}
1755
 
1756			this_q = rq->q;
1757			this_ctx = rq->mq_ctx;
1758			this_hctx = rq->mq_hctx;
1759			depth = 0;
1760		}
1761
1762		depth++;
1763		list_add_tail(&rq->queuelist, &rq_list);
1764	}
1765
1766	/*
1767	 * If 'this_hctx' is set, we know we have entries to complete
1768	 * on 'rq_list'. Do those.
1769	 */
1770	if (this_hctx) {
1771		trace_block_unplug(this_q, depth, !from_schedule);
1772		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1773						from_schedule);
1774	}
1775}
1776
1777static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1778		unsigned int nr_segs)
1779{
1780	if (bio->bi_opf & REQ_RAHEAD)
1781		rq->cmd_flags |= REQ_FAILFAST_MASK;
1782
1783	rq->__sector = bio->bi_iter.bi_sector;
1784	rq->write_hint = bio->bi_write_hint;
1785	blk_rq_bio_prep(rq, bio, nr_segs);
1786
1787	blk_account_io_start(rq, true);
1788}
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1791					    struct request *rq,
1792					    blk_qc_t *cookie, bool last)
1793{
1794	struct request_queue *q = rq->q;
1795	struct blk_mq_queue_data bd = {
1796		.rq = rq,
1797		.last = last,
1798	};
1799	blk_qc_t new_cookie;
1800	blk_status_t ret;
1801
1802	new_cookie = request_to_qc_t(hctx, rq);
1803
1804	/*
1805	 * For OK queue, we are done. For error, caller may kill it.
1806	 * Any other error (busy), just add it to our list as we
1807	 * previously would have done.
1808	 */
1809	ret = q->mq_ops->queue_rq(hctx, &bd);
1810	switch (ret) {
1811	case BLK_STS_OK:
1812		blk_mq_update_dispatch_busy(hctx, false);
1813		*cookie = new_cookie;
1814		break;
1815	case BLK_STS_RESOURCE:
1816	case BLK_STS_DEV_RESOURCE:
1817		blk_mq_update_dispatch_busy(hctx, true);
1818		__blk_mq_requeue_request(rq);
1819		break;
1820	default:
1821		blk_mq_update_dispatch_busy(hctx, false);
1822		*cookie = BLK_QC_T_NONE;
1823		break;
1824	}
1825
1826	return ret;
1827}
1828
1829static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1830						struct request *rq,
1831						blk_qc_t *cookie,
1832						bool bypass_insert, bool last)
1833{
1834	struct request_queue *q = rq->q;
1835	bool run_queue = true;
1836
1837	/*
1838	 * RCU or SRCU read lock is needed before checking quiesced flag.
1839	 *
1840	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1841	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1842	 * and avoid driver to try to dispatch again.
1843	 */
1844	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1845		run_queue = false;
1846		bypass_insert = false;
1847		goto insert;
1848	}
1849
1850	if (q->elevator && !bypass_insert)
1851		goto insert;
1852
1853	if (!blk_mq_get_dispatch_budget(hctx))
1854		goto insert;
1855
1856	if (!blk_mq_get_driver_tag(rq)) {
1857		blk_mq_put_dispatch_budget(hctx);
1858		goto insert;
1859	}
1860
1861	return __blk_mq_issue_directly(hctx, rq, cookie, last);
1862insert:
1863	if (bypass_insert)
1864		return BLK_STS_RESOURCE;
1865
1866	blk_mq_request_bypass_insert(rq, run_queue);
1867	return BLK_STS_OK;
1868}
1869
1870static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871		struct request *rq, blk_qc_t *cookie)
1872{
1873	blk_status_t ret;
1874	int srcu_idx;
1875
1876	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1877
1878	hctx_lock(hctx, &srcu_idx);
1879
1880	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1881	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1882		blk_mq_request_bypass_insert(rq, true);
1883	else if (ret != BLK_STS_OK)
1884		blk_mq_end_request(rq, ret);
1885
1886	hctx_unlock(hctx, srcu_idx);
1887}
1888
1889blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1890{
1891	blk_status_t ret;
1892	int srcu_idx;
1893	blk_qc_t unused_cookie;
1894	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
1895
1896	hctx_lock(hctx, &srcu_idx);
1897	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1898	hctx_unlock(hctx, srcu_idx);
1899
1900	return ret;
1901}
1902
1903void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1904		struct list_head *list)
1905{
1906	while (!list_empty(list)) {
1907		blk_status_t ret;
1908		struct request *rq = list_first_entry(list, struct request,
1909				queuelist);
1910
1911		list_del_init(&rq->queuelist);
1912		ret = blk_mq_request_issue_directly(rq, list_empty(list));
1913		if (ret != BLK_STS_OK) {
1914			if (ret == BLK_STS_RESOURCE ||
1915					ret == BLK_STS_DEV_RESOURCE) {
1916				blk_mq_request_bypass_insert(rq,
1917							list_empty(list));
1918				break;
1919			}
1920			blk_mq_end_request(rq, ret);
1921		}
1922	}
1923
1924	/*
1925	 * If we didn't flush the entire list, we could have told
1926	 * the driver there was more coming, but that turned out to
1927	 * be a lie.
1928	 */
1929	if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1930		hctx->queue->mq_ops->commit_rqs(hctx);
1931}
1932
1933static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1934{
1935	list_add_tail(&rq->queuelist, &plug->mq_list);
1936	plug->rq_count++;
1937	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1938		struct request *tmp;
1939
1940		tmp = list_first_entry(&plug->mq_list, struct request,
1941						queuelist);
1942		if (tmp->q != rq->q)
1943			plug->multiple_queues = true;
1944	}
1945}
1946
1947static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1948{
1949	const int is_sync = op_is_sync(bio->bi_opf);
1950	const int is_flush_fua = op_is_flush(bio->bi_opf);
1951	struct blk_mq_alloc_data data = { .flags = 0};
1952	struct request *rq;
 
1953	struct blk_plug *plug;
1954	struct request *same_queue_rq = NULL;
1955	unsigned int nr_segs;
1956	blk_qc_t cookie;
 
1957
1958	blk_queue_bounce(q, &bio);
1959	__blk_queue_split(q, &bio, &nr_segs);
 
1960
1961	if (!bio_integrity_prep(bio))
1962		return BLK_QC_T_NONE;
1963
1964	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1965	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1966		return BLK_QC_T_NONE;
1967
1968	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1969		return BLK_QC_T_NONE;
1970
1971	rq_qos_throttle(q, bio);
 
 
1972
1973	data.cmd_flags = bio->bi_opf;
1974	rq = blk_mq_get_request(q, bio, &data);
1975	if (unlikely(!rq)) {
1976		rq_qos_cleanup(q, bio);
1977		if (bio->bi_opf & REQ_NOWAIT)
1978			bio_wouldblock_error(bio);
1979		return BLK_QC_T_NONE;
1980	}
1981
1982	trace_block_getrq(q, bio, bio->bi_opf);
1983
1984	rq_qos_track(q, rq, bio);
1985
1986	cookie = request_to_qc_t(data.hctx, rq);
1987
1988	blk_mq_bio_to_request(rq, bio, nr_segs);
 
 
 
1989
1990	plug = blk_mq_plug(q, bio);
1991	if (unlikely(is_flush_fua)) {
1992		/* bypass scheduler for flush rq */
1993		blk_insert_flush(rq);
1994		blk_mq_run_hw_queue(data.hctx, true);
1995	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1996				!blk_queue_nonrot(q))) {
 
 
 
 
1997		/*
1998		 * Use plugging if we have a ->commit_rqs() hook as well, as
1999		 * we know the driver uses bd->last in a smart fashion.
2000		 *
2001		 * Use normal plugging if this disk is slow HDD, as sequential
2002		 * IO may benefit a lot from plug merging.
2003		 */
2004		unsigned int request_count = plug->rq_count;
2005		struct request *last = NULL;
 
 
2006
2007		if (!request_count)
2008			trace_block_plug(q);
2009		else
2010			last = list_entry_rq(plug->mq_list.prev);
2011
2012		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2013		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2014			blk_flush_plug_list(plug, false);
2015			trace_block_plug(q);
2016		}
2017
2018		blk_add_rq_to_plug(plug, rq);
2019	} else if (q->elevator) {
2020		blk_mq_sched_insert_request(rq, false, true, true);
2021	} else if (plug && !blk_queue_nomerges(q)) {
 
 
2022		/*
2023		 * We do limited plugging. If the bio can be merged, do that.
2024		 * Otherwise the existing request in the plug list will be
2025		 * issued. So the plug list will have one request at most
2026		 * The plug list might get flushed before this. If that happens,
2027		 * the plug list is empty, and same_queue_rq is invalid.
2028		 */
2029		if (list_empty(&plug->mq_list))
2030			same_queue_rq = NULL;
2031		if (same_queue_rq) {
2032			list_del_init(&same_queue_rq->queuelist);
2033			plug->rq_count--;
2034		}
2035		blk_add_rq_to_plug(plug, rq);
2036		trace_block_plug(q);
2037
2038		if (same_queue_rq) {
2039			data.hctx = same_queue_rq->mq_hctx;
2040			trace_block_unplug(q, 1, true);
2041			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2042					&cookie);
2043		}
2044	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2045			!data.hctx->dispatch_busy) {
 
2046		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
 
 
 
 
2047	} else {
2048		blk_mq_sched_insert_request(rq, false, true, true);
 
 
 
2049	}
2050
2051	return cookie;
2052}
2053
2054void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2055		     unsigned int hctx_idx)
2056{
2057	struct page *page;
2058
2059	if (tags->rqs && set->ops->exit_request) {
2060		int i;
2061
2062		for (i = 0; i < tags->nr_tags; i++) {
2063			struct request *rq = tags->static_rqs[i];
2064
2065			if (!rq)
2066				continue;
2067			set->ops->exit_request(set, rq, hctx_idx);
2068			tags->static_rqs[i] = NULL;
2069		}
2070	}
2071
2072	while (!list_empty(&tags->page_list)) {
2073		page = list_first_entry(&tags->page_list, struct page, lru);
2074		list_del_init(&page->lru);
2075		/*
2076		 * Remove kmemleak object previously allocated in
2077		 * blk_mq_alloc_rqs().
2078		 */
2079		kmemleak_free(page_address(page));
2080		__free_pages(page, page->private);
2081	}
2082}
2083
2084void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2085{
2086	kfree(tags->rqs);
2087	tags->rqs = NULL;
2088	kfree(tags->static_rqs);
2089	tags->static_rqs = NULL;
2090
2091	blk_mq_free_tags(tags);
2092}
2093
2094struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2095					unsigned int hctx_idx,
2096					unsigned int nr_tags,
2097					unsigned int reserved_tags)
2098{
2099	struct blk_mq_tags *tags;
2100	int node;
2101
2102	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2103	if (node == NUMA_NO_NODE)
2104		node = set->numa_node;
2105
2106	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2107				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2108	if (!tags)
2109		return NULL;
2110
2111	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2112				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2113				 node);
2114	if (!tags->rqs) {
2115		blk_mq_free_tags(tags);
2116		return NULL;
2117	}
2118
2119	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2120					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2121					node);
2122	if (!tags->static_rqs) {
2123		kfree(tags->rqs);
2124		blk_mq_free_tags(tags);
2125		return NULL;
2126	}
2127
2128	return tags;
2129}
2130
2131static size_t order_to_size(unsigned int order)
2132{
2133	return (size_t)PAGE_SIZE << order;
2134}
2135
2136static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2137			       unsigned int hctx_idx, int node)
2138{
2139	int ret;
2140
2141	if (set->ops->init_request) {
2142		ret = set->ops->init_request(set, rq, hctx_idx, node);
2143		if (ret)
2144			return ret;
2145	}
2146
2147	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 
 
 
 
 
 
 
 
2148	return 0;
2149}
2150
2151int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152		     unsigned int hctx_idx, unsigned int depth)
2153{
2154	unsigned int i, j, entries_per_page, max_order = 4;
2155	size_t rq_size, left;
2156	int node;
2157
2158	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2159	if (node == NUMA_NO_NODE)
2160		node = set->numa_node;
2161
2162	INIT_LIST_HEAD(&tags->page_list);
2163
2164	/*
2165	 * rq_size is the size of the request plus driver payload, rounded
2166	 * to the cacheline size
2167	 */
2168	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2169				cache_line_size());
2170	left = rq_size * depth;
2171
2172	for (i = 0; i < depth; ) {
2173		int this_order = max_order;
2174		struct page *page;
2175		int to_do;
2176		void *p;
2177
2178		while (this_order && left < order_to_size(this_order - 1))
2179			this_order--;
2180
2181		do {
2182			page = alloc_pages_node(node,
2183				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2184				this_order);
2185			if (page)
2186				break;
2187			if (!this_order--)
2188				break;
2189			if (order_to_size(this_order) < rq_size)
2190				break;
2191		} while (1);
2192
2193		if (!page)
2194			goto fail;
2195
2196		page->private = this_order;
2197		list_add_tail(&page->lru, &tags->page_list);
2198
2199		p = page_address(page);
2200		/*
2201		 * Allow kmemleak to scan these pages as they contain pointers
2202		 * to additional allocations like via ops->init_request().
2203		 */
2204		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2205		entries_per_page = order_to_size(this_order) / rq_size;
2206		to_do = min(entries_per_page, depth - i);
2207		left -= to_do * rq_size;
2208		for (j = 0; j < to_do; j++) {
2209			struct request *rq = p;
2210
2211			tags->static_rqs[i] = rq;
2212			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2213				tags->static_rqs[i] = NULL;
2214				goto fail;
2215			}
2216
2217			p += rq_size;
2218			i++;
2219		}
2220	}
2221	return 0;
2222
2223fail:
2224	blk_mq_free_rqs(set, tags, hctx_idx);
2225	return -ENOMEM;
2226}
2227
2228/*
2229 * 'cpu' is going away. splice any existing rq_list entries from this
2230 * software queue to the hw queue dispatch list, and ensure that it
2231 * gets run.
2232 */
2233static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2234{
2235	struct blk_mq_hw_ctx *hctx;
2236	struct blk_mq_ctx *ctx;
2237	LIST_HEAD(tmp);
2238	enum hctx_type type;
2239
2240	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2241	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2242	type = hctx->type;
2243
2244	spin_lock(&ctx->lock);
2245	if (!list_empty(&ctx->rq_lists[type])) {
2246		list_splice_init(&ctx->rq_lists[type], &tmp);
2247		blk_mq_hctx_clear_pending(hctx, ctx);
2248	}
2249	spin_unlock(&ctx->lock);
2250
2251	if (list_empty(&tmp))
2252		return 0;
2253
2254	spin_lock(&hctx->lock);
2255	list_splice_tail_init(&tmp, &hctx->dispatch);
2256	spin_unlock(&hctx->lock);
2257
2258	blk_mq_run_hw_queue(hctx, true);
2259	return 0;
2260}
2261
2262static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2263{
2264	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2265					    &hctx->cpuhp_dead);
2266}
2267
2268/* hctx->ctxs will be freed in queue's release handler */
2269static void blk_mq_exit_hctx(struct request_queue *q,
2270		struct blk_mq_tag_set *set,
2271		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2272{
 
 
2273	if (blk_mq_hw_queue_mapped(hctx))
2274		blk_mq_tag_idle(hctx);
2275
2276	if (set->ops->exit_request)
2277		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2278
 
 
2279	if (set->ops->exit_hctx)
2280		set->ops->exit_hctx(hctx, hctx_idx);
2281
 
 
 
2282	blk_mq_remove_cpuhp(hctx);
2283
2284	spin_lock(&q->unused_hctx_lock);
2285	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2286	spin_unlock(&q->unused_hctx_lock);
2287}
2288
2289static void blk_mq_exit_hw_queues(struct request_queue *q,
2290		struct blk_mq_tag_set *set, int nr_queue)
2291{
2292	struct blk_mq_hw_ctx *hctx;
2293	unsigned int i;
2294
2295	queue_for_each_hw_ctx(q, hctx, i) {
2296		if (i == nr_queue)
2297			break;
2298		blk_mq_debugfs_unregister_hctx(hctx);
2299		blk_mq_exit_hctx(q, set, hctx, i);
2300	}
2301}
2302
2303static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2304{
2305	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2306
2307	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2308			   __alignof__(struct blk_mq_hw_ctx)) !=
2309		     sizeof(struct blk_mq_hw_ctx));
2310
2311	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2312		hw_ctx_size += sizeof(struct srcu_struct);
2313
2314	return hw_ctx_size;
2315}
2316
2317static int blk_mq_init_hctx(struct request_queue *q,
2318		struct blk_mq_tag_set *set,
2319		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2320{
2321	hctx->queue_num = hctx_idx;
2322
2323	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2324
2325	hctx->tags = set->tags[hctx_idx];
2326
2327	if (set->ops->init_hctx &&
2328	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2329		goto unregister_cpu_notifier;
2330
2331	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2332				hctx->numa_node))
2333		goto exit_hctx;
2334	return 0;
2335
2336 exit_hctx:
2337	if (set->ops->exit_hctx)
2338		set->ops->exit_hctx(hctx, hctx_idx);
2339 unregister_cpu_notifier:
2340	blk_mq_remove_cpuhp(hctx);
2341	return -1;
2342}
2343
2344static struct blk_mq_hw_ctx *
2345blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2346		int node)
2347{
2348	struct blk_mq_hw_ctx *hctx;
2349	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2350
2351	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2352	if (!hctx)
2353		goto fail_alloc_hctx;
2354
2355	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2356		goto free_hctx;
2357
2358	atomic_set(&hctx->nr_active, 0);
2359	if (node == NUMA_NO_NODE)
2360		node = set->numa_node;
2361	hctx->numa_node = node;
2362
2363	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2364	spin_lock_init(&hctx->lock);
2365	INIT_LIST_HEAD(&hctx->dispatch);
2366	hctx->queue = q;
2367	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2368
2369	INIT_LIST_HEAD(&hctx->hctx_list);
 
 
2370
2371	/*
2372	 * Allocate space for all possible cpus to avoid allocation at
2373	 * runtime
2374	 */
2375	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2376			gfp, node);
2377	if (!hctx->ctxs)
2378		goto free_cpumask;
2379
2380	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2381				gfp, node))
2382		goto free_ctxs;
 
2383	hctx->nr_ctx = 0;
2384
2385	spin_lock_init(&hctx->dispatch_wait_lock);
2386	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2387	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2388
2389	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2390			gfp);
 
 
 
 
 
 
2391	if (!hctx->fq)
2392		goto free_bitmap;
 
 
 
2393
2394	if (hctx->flags & BLK_MQ_F_BLOCKING)
2395		init_srcu_struct(hctx->srcu);
2396	blk_mq_hctx_kobj_init(hctx);
2397
2398	return hctx;
2399
 
 
 
 
 
 
 
 
 
2400 free_bitmap:
2401	sbitmap_free(&hctx->ctx_map);
2402 free_ctxs:
2403	kfree(hctx->ctxs);
2404 free_cpumask:
2405	free_cpumask_var(hctx->cpumask);
2406 free_hctx:
2407	kfree(hctx);
2408 fail_alloc_hctx:
2409	return NULL;
2410}
2411
2412static void blk_mq_init_cpu_queues(struct request_queue *q,
2413				   unsigned int nr_hw_queues)
2414{
2415	struct blk_mq_tag_set *set = q->tag_set;
2416	unsigned int i, j;
2417
2418	for_each_possible_cpu(i) {
2419		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2420		struct blk_mq_hw_ctx *hctx;
2421		int k;
2422
2423		__ctx->cpu = i;
2424		spin_lock_init(&__ctx->lock);
2425		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2426			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2427
2428		__ctx->queue = q;
2429
2430		/*
2431		 * Set local node, IFF we have more than one hw queue. If
2432		 * not, we remain on the home node of the device
2433		 */
2434		for (j = 0; j < set->nr_maps; j++) {
2435			hctx = blk_mq_map_queue_type(q, j, i);
2436			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2437				hctx->numa_node = local_memory_node(cpu_to_node(i));
2438		}
2439	}
2440}
2441
2442static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2443{
2444	int ret = 0;
2445
2446	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2447					set->queue_depth, set->reserved_tags);
2448	if (!set->tags[hctx_idx])
2449		return false;
2450
2451	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2452				set->queue_depth);
2453	if (!ret)
2454		return true;
2455
2456	blk_mq_free_rq_map(set->tags[hctx_idx]);
2457	set->tags[hctx_idx] = NULL;
2458	return false;
2459}
2460
2461static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2462					 unsigned int hctx_idx)
2463{
2464	if (set->tags && set->tags[hctx_idx]) {
2465		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2466		blk_mq_free_rq_map(set->tags[hctx_idx]);
2467		set->tags[hctx_idx] = NULL;
2468	}
2469}
2470
2471static void blk_mq_map_swqueue(struct request_queue *q)
2472{
2473	unsigned int i, j, hctx_idx;
2474	struct blk_mq_hw_ctx *hctx;
2475	struct blk_mq_ctx *ctx;
2476	struct blk_mq_tag_set *set = q->tag_set;
2477
 
 
 
 
 
2478	queue_for_each_hw_ctx(q, hctx, i) {
2479		cpumask_clear(hctx->cpumask);
2480		hctx->nr_ctx = 0;
2481		hctx->dispatch_from = NULL;
2482	}
2483
2484	/*
2485	 * Map software to hardware queues.
2486	 *
2487	 * If the cpu isn't present, the cpu is mapped to first hctx.
2488	 */
2489	for_each_possible_cpu(i) {
2490		hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2491		/* unmapped hw queue can be remapped after CPU topo changed */
2492		if (!set->tags[hctx_idx] &&
2493		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2494			/*
2495			 * If tags initialization fail for some hctx,
2496			 * that hctx won't be brought online.  In this
2497			 * case, remap the current ctx to hctx[0] which
2498			 * is guaranteed to always have tags allocated
2499			 */
2500			set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2501		}
2502
2503		ctx = per_cpu_ptr(q->queue_ctx, i);
2504		for (j = 0; j < set->nr_maps; j++) {
2505			if (!set->map[j].nr_queues) {
2506				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2507						HCTX_TYPE_DEFAULT, i);
2508				continue;
2509			}
2510
2511			hctx = blk_mq_map_queue_type(q, j, i);
2512			ctx->hctxs[j] = hctx;
2513			/*
2514			 * If the CPU is already set in the mask, then we've
2515			 * mapped this one already. This can happen if
2516			 * devices share queues across queue maps.
2517			 */
2518			if (cpumask_test_cpu(i, hctx->cpumask))
2519				continue;
2520
2521			cpumask_set_cpu(i, hctx->cpumask);
2522			hctx->type = j;
2523			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2524			hctx->ctxs[hctx->nr_ctx++] = ctx;
2525
2526			/*
2527			 * If the nr_ctx type overflows, we have exceeded the
2528			 * amount of sw queues we can support.
2529			 */
2530			BUG_ON(!hctx->nr_ctx);
2531		}
2532
2533		for (; j < HCTX_MAX_TYPES; j++)
2534			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2535					HCTX_TYPE_DEFAULT, i);
2536	}
2537
2538	queue_for_each_hw_ctx(q, hctx, i) {
2539		/*
2540		 * If no software queues are mapped to this hardware queue,
2541		 * disable it and free the request entries.
2542		 */
2543		if (!hctx->nr_ctx) {
2544			/* Never unmap queue 0.  We need it as a
2545			 * fallback in case of a new remap fails
2546			 * allocation
2547			 */
2548			if (i && set->tags[i])
2549				blk_mq_free_map_and_requests(set, i);
2550
2551			hctx->tags = NULL;
2552			continue;
2553		}
2554
2555		hctx->tags = set->tags[i];
2556		WARN_ON(!hctx->tags);
2557
2558		/*
2559		 * Set the map size to the number of mapped software queues.
2560		 * This is more accurate and more efficient than looping
2561		 * over all possibly mapped software queues.
2562		 */
2563		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2564
2565		/*
2566		 * Initialize batch roundrobin counts
2567		 */
2568		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2569		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2570	}
2571}
2572
2573/*
2574 * Caller needs to ensure that we're either frozen/quiesced, or that
2575 * the queue isn't live yet.
2576 */
2577static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2578{
2579	struct blk_mq_hw_ctx *hctx;
2580	int i;
2581
2582	queue_for_each_hw_ctx(q, hctx, i) {
2583		if (shared)
 
 
2584			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2585		else
 
 
2586			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
2587	}
2588}
2589
2590static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2591					bool shared)
2592{
2593	struct request_queue *q;
2594
2595	lockdep_assert_held(&set->tag_list_lock);
2596
2597	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2598		blk_mq_freeze_queue(q);
2599		queue_set_hctx_shared(q, shared);
2600		blk_mq_unfreeze_queue(q);
2601	}
2602}
2603
2604static void blk_mq_del_queue_tag_set(struct request_queue *q)
2605{
2606	struct blk_mq_tag_set *set = q->tag_set;
2607
2608	mutex_lock(&set->tag_list_lock);
2609	list_del_rcu(&q->tag_set_list);
 
2610	if (list_is_singular(&set->tag_list)) {
2611		/* just transitioned to unshared */
2612		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2613		/* update existing queue */
2614		blk_mq_update_tag_set_depth(set, false);
2615	}
2616	mutex_unlock(&set->tag_list_lock);
2617	INIT_LIST_HEAD(&q->tag_set_list);
 
2618}
2619
2620static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2621				     struct request_queue *q)
2622{
 
 
2623	mutex_lock(&set->tag_list_lock);
2624
2625	/*
2626	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2627	 */
2628	if (!list_empty(&set->tag_list) &&
2629	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2630		set->flags |= BLK_MQ_F_TAG_SHARED;
2631		/* update existing queue */
2632		blk_mq_update_tag_set_depth(set, true);
2633	}
2634	if (set->flags & BLK_MQ_F_TAG_SHARED)
2635		queue_set_hctx_shared(q, true);
2636	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2637
2638	mutex_unlock(&set->tag_list_lock);
2639}
2640
2641/* All allocations will be freed in release handler of q->mq_kobj */
2642static int blk_mq_alloc_ctxs(struct request_queue *q)
2643{
2644	struct blk_mq_ctxs *ctxs;
2645	int cpu;
2646
2647	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2648	if (!ctxs)
2649		return -ENOMEM;
2650
2651	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2652	if (!ctxs->queue_ctx)
2653		goto fail;
2654
2655	for_each_possible_cpu(cpu) {
2656		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2657		ctx->ctxs = ctxs;
2658	}
2659
2660	q->mq_kobj = &ctxs->kobj;
2661	q->queue_ctx = ctxs->queue_ctx;
2662
2663	return 0;
2664 fail:
2665	kfree(ctxs);
2666	return -ENOMEM;
2667}
2668
2669/*
2670 * It is the actual release handler for mq, but we do it from
2671 * request queue's release handler for avoiding use-after-free
2672 * and headache because q->mq_kobj shouldn't have been introduced,
2673 * but we can't group ctx/kctx kobj without it.
2674 */
2675void blk_mq_release(struct request_queue *q)
2676{
2677	struct blk_mq_hw_ctx *hctx, *next;
2678	int i;
2679
2680	queue_for_each_hw_ctx(q, hctx, i)
2681		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2682
2683	/* all hctx are in .unused_hctx_list now */
2684	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2685		list_del_init(&hctx->hctx_list);
2686		kobject_put(&hctx->kobj);
2687	}
2688
 
 
2689	kfree(q->queue_hw_ctx);
2690
2691	/*
2692	 * release .mq_kobj and sw queue's kobject now because
2693	 * both share lifetime with request queue.
2694	 */
2695	blk_mq_sysfs_deinit(q);
 
 
2696}
2697
2698struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2699{
2700	struct request_queue *uninit_q, *q;
2701
2702	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2703	if (!uninit_q)
2704		return ERR_PTR(-ENOMEM);
2705
2706	/*
2707	 * Initialize the queue without an elevator. device_add_disk() will do
2708	 * the initialization.
2709	 */
2710	q = blk_mq_init_allocated_queue(set, uninit_q, false);
2711	if (IS_ERR(q))
2712		blk_cleanup_queue(uninit_q);
2713
2714	return q;
2715}
2716EXPORT_SYMBOL(blk_mq_init_queue);
2717
2718/*
2719 * Helper for setting up a queue with mq ops, given queue depth, and
2720 * the passed in mq ops flags.
2721 */
2722struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2723					   const struct blk_mq_ops *ops,
2724					   unsigned int queue_depth,
2725					   unsigned int set_flags)
2726{
2727	struct request_queue *q;
2728	int ret;
2729
2730	memset(set, 0, sizeof(*set));
2731	set->ops = ops;
2732	set->nr_hw_queues = 1;
2733	set->nr_maps = 1;
2734	set->queue_depth = queue_depth;
2735	set->numa_node = NUMA_NO_NODE;
2736	set->flags = set_flags;
2737
2738	ret = blk_mq_alloc_tag_set(set);
2739	if (ret)
2740		return ERR_PTR(ret);
2741
2742	q = blk_mq_init_queue(set);
2743	if (IS_ERR(q)) {
2744		blk_mq_free_tag_set(set);
2745		return q;
2746	}
2747
2748	return q;
2749}
2750EXPORT_SYMBOL(blk_mq_init_sq_queue);
2751
2752static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2753		struct blk_mq_tag_set *set, struct request_queue *q,
2754		int hctx_idx, int node)
2755{
2756	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2757
2758	/* reuse dead hctx first */
2759	spin_lock(&q->unused_hctx_lock);
2760	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2761		if (tmp->numa_node == node) {
2762			hctx = tmp;
2763			break;
2764		}
2765	}
2766	if (hctx)
2767		list_del_init(&hctx->hctx_list);
2768	spin_unlock(&q->unused_hctx_lock);
2769
2770	if (!hctx)
2771		hctx = blk_mq_alloc_hctx(q, set, node);
2772	if (!hctx)
2773		goto fail;
2774
2775	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2776		goto free_hctx;
2777
2778	return hctx;
2779
2780 free_hctx:
2781	kobject_put(&hctx->kobj);
2782 fail:
2783	return NULL;
2784}
2785
2786static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2787						struct request_queue *q)
2788{
2789	int i, j, end;
2790	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2791
 
 
2792	/* protect against switching io scheduler  */
2793	mutex_lock(&q->sysfs_lock);
2794	for (i = 0; i < set->nr_hw_queues; i++) {
2795		int node;
2796		struct blk_mq_hw_ctx *hctx;
2797
2798		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2799		/*
2800		 * If the hw queue has been mapped to another numa node,
2801		 * we need to realloc the hctx. If allocation fails, fallback
2802		 * to use the previous one.
2803		 */
2804		if (hctxs[i] && (hctxs[i]->numa_node == node))
2805			continue;
2806
2807		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2808		if (hctx) {
2809			if (hctxs[i])
2810				blk_mq_exit_hctx(q, set, hctxs[i], i);
2811			hctxs[i] = hctx;
2812		} else {
2813			if (hctxs[i])
2814				pr_warn("Allocate new hctx on node %d fails,\
2815						fallback to previous one on node %d\n",
2816						node, hctxs[i]->numa_node);
2817			else
2818				break;
 
 
 
 
 
 
 
 
 
 
2819		}
 
2820	}
2821	/*
2822	 * Increasing nr_hw_queues fails. Free the newly allocated
2823	 * hctxs and keep the previous q->nr_hw_queues.
2824	 */
2825	if (i != set->nr_hw_queues) {
2826		j = q->nr_hw_queues;
2827		end = i;
2828	} else {
2829		j = i;
2830		end = q->nr_hw_queues;
2831		q->nr_hw_queues = set->nr_hw_queues;
2832	}
2833
2834	for (; j < end; j++) {
2835		struct blk_mq_hw_ctx *hctx = hctxs[j];
2836
2837		if (hctx) {
2838			if (hctx->tags)
2839				blk_mq_free_map_and_requests(set, j);
2840			blk_mq_exit_hctx(q, set, hctx, j);
 
2841			hctxs[j] = NULL;
 
2842		}
2843	}
 
2844	mutex_unlock(&q->sysfs_lock);
2845}
2846
2847/*
2848 * Maximum number of hardware queues we support. For single sets, we'll never
2849 * have more than the CPUs (software queues). For multiple sets, the tag_set
2850 * user may have set ->nr_hw_queues larger.
2851 */
2852static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2853{
2854	if (set->nr_maps == 1)
2855		return nr_cpu_ids;
2856
2857	return max(set->nr_hw_queues, nr_cpu_ids);
2858}
2859
2860struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2861						  struct request_queue *q,
2862						  bool elevator_init)
2863{
2864	/* mark the queue as mq asap */
2865	q->mq_ops = set->ops;
2866
2867	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2868					     blk_mq_poll_stats_bkt,
2869					     BLK_MQ_POLL_STATS_BKTS, q);
2870	if (!q->poll_cb)
2871		goto err_exit;
2872
2873	if (blk_mq_alloc_ctxs(q))
2874		goto err_poll;
 
2875
2876	/* init q->mq_kobj and sw queues' kobjects */
2877	blk_mq_sysfs_init(q);
2878
2879	q->nr_queues = nr_hw_queues(set);
2880	q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2881						GFP_KERNEL, set->numa_node);
2882	if (!q->queue_hw_ctx)
2883		goto err_sys_init;
2884
2885	INIT_LIST_HEAD(&q->unused_hctx_list);
2886	spin_lock_init(&q->unused_hctx_lock);
2887
2888	blk_mq_realloc_hw_ctxs(set, q);
2889	if (!q->nr_hw_queues)
2890		goto err_hctxs;
2891
2892	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2893	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2894
2895	q->tag_set = set;
2896
2897	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2898	if (set->nr_maps > HCTX_TYPE_POLL &&
2899	    set->map[HCTX_TYPE_POLL].nr_queues)
2900		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2901
2902	q->sg_reserved_size = INT_MAX;
2903
2904	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2905	INIT_LIST_HEAD(&q->requeue_list);
2906	spin_lock_init(&q->requeue_lock);
2907
2908	blk_queue_make_request(q, blk_mq_make_request);
 
 
2909
2910	/*
2911	 * Do this after blk_queue_make_request() overrides it...
2912	 */
2913	q->nr_requests = set->queue_depth;
2914
2915	/*
2916	 * Default to classic polling
2917	 */
2918	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
 
 
 
2919
2920	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2921	blk_mq_add_queue_tag_set(set, q);
2922	blk_mq_map_swqueue(q);
2923
2924	if (elevator_init)
2925		elevator_init_mq(q);
 
 
 
 
 
2926
2927	return q;
2928
2929err_hctxs:
2930	kfree(q->queue_hw_ctx);
2931	q->nr_hw_queues = 0;
2932err_sys_init:
2933	blk_mq_sysfs_deinit(q);
2934err_poll:
2935	blk_stat_free_callback(q->poll_cb);
2936	q->poll_cb = NULL;
2937err_exit:
2938	q->mq_ops = NULL;
2939	return ERR_PTR(-ENOMEM);
2940}
2941EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2942
2943/* tags can _not_ be used after returning from blk_mq_exit_queue */
2944void blk_mq_exit_queue(struct request_queue *q)
2945{
2946	struct blk_mq_tag_set	*set = q->tag_set;
2947
2948	blk_mq_del_queue_tag_set(q);
2949	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2950}
2951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2953{
2954	int i;
2955
2956	for (i = 0; i < set->nr_hw_queues; i++)
2957		if (!__blk_mq_alloc_rq_map(set, i))
2958			goto out_unwind;
2959
2960	return 0;
2961
2962out_unwind:
2963	while (--i >= 0)
2964		blk_mq_free_rq_map(set->tags[i]);
2965
2966	return -ENOMEM;
2967}
2968
2969/*
2970 * Allocate the request maps associated with this tag_set. Note that this
2971 * may reduce the depth asked for, if memory is tight. set->queue_depth
2972 * will be updated to reflect the allocated depth.
2973 */
2974static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2975{
2976	unsigned int depth;
2977	int err;
2978
2979	depth = set->queue_depth;
2980	do {
2981		err = __blk_mq_alloc_rq_maps(set);
2982		if (!err)
2983			break;
2984
2985		set->queue_depth >>= 1;
2986		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2987			err = -ENOMEM;
2988			break;
2989		}
2990	} while (set->queue_depth);
2991
2992	if (!set->queue_depth || err) {
2993		pr_err("blk-mq: failed to allocate request map\n");
2994		return -ENOMEM;
2995	}
2996
2997	if (depth != set->queue_depth)
2998		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2999						depth, set->queue_depth);
3000
3001	return 0;
3002}
3003
3004static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3005{
3006	if (set->ops->map_queues && !is_kdump_kernel()) {
3007		int i;
3008
3009		/*
3010		 * transport .map_queues is usually done in the following
3011		 * way:
3012		 *
3013		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3014		 * 	mask = get_cpu_mask(queue)
3015		 * 	for_each_cpu(cpu, mask)
3016		 * 		set->map[x].mq_map[cpu] = queue;
3017		 * }
3018		 *
3019		 * When we need to remap, the table has to be cleared for
3020		 * killing stale mapping since one CPU may not be mapped
3021		 * to any hw queue.
3022		 */
3023		for (i = 0; i < set->nr_maps; i++)
3024			blk_mq_clear_mq_map(&set->map[i]);
3025
3026		return set->ops->map_queues(set);
3027	} else {
3028		BUG_ON(set->nr_maps > 1);
3029		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3030	}
3031}
3032
3033/*
3034 * Alloc a tag set to be associated with one or more request queues.
3035 * May fail with EINVAL for various error conditions. May adjust the
3036 * requested depth down, if it's too large. In that case, the set
3037 * value will be stored in set->queue_depth.
3038 */
3039int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3040{
3041	int i, ret;
3042
3043	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3044
3045	if (!set->nr_hw_queues)
3046		return -EINVAL;
3047	if (!set->queue_depth)
3048		return -EINVAL;
3049	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3050		return -EINVAL;
3051
3052	if (!set->ops->queue_rq)
3053		return -EINVAL;
3054
3055	if (!set->ops->get_budget ^ !set->ops->put_budget)
3056		return -EINVAL;
3057
3058	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3059		pr_info("blk-mq: reduced tag depth to %u\n",
3060			BLK_MQ_MAX_DEPTH);
3061		set->queue_depth = BLK_MQ_MAX_DEPTH;
3062	}
3063
3064	if (!set->nr_maps)
3065		set->nr_maps = 1;
3066	else if (set->nr_maps > HCTX_MAX_TYPES)
3067		return -EINVAL;
3068
3069	/*
3070	 * If a crashdump is active, then we are potentially in a very
3071	 * memory constrained environment. Limit us to 1 queue and
3072	 * 64 tags to prevent using too much memory.
3073	 */
3074	if (is_kdump_kernel()) {
3075		set->nr_hw_queues = 1;
3076		set->nr_maps = 1;
3077		set->queue_depth = min(64U, set->queue_depth);
3078	}
3079	/*
3080	 * There is no use for more h/w queues than cpus if we just have
3081	 * a single map
3082	 */
3083	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3084		set->nr_hw_queues = nr_cpu_ids;
3085
3086	set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3087				 GFP_KERNEL, set->numa_node);
3088	if (!set->tags)
3089		return -ENOMEM;
3090
3091	ret = -ENOMEM;
3092	for (i = 0; i < set->nr_maps; i++) {
3093		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3094						  sizeof(set->map[i].mq_map[0]),
3095						  GFP_KERNEL, set->numa_node);
3096		if (!set->map[i].mq_map)
3097			goto out_free_mq_map;
3098		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3099	}
3100
3101	ret = blk_mq_update_queue_map(set);
3102	if (ret)
3103		goto out_free_mq_map;
3104
3105	ret = blk_mq_alloc_rq_maps(set);
3106	if (ret)
3107		goto out_free_mq_map;
3108
3109	mutex_init(&set->tag_list_lock);
3110	INIT_LIST_HEAD(&set->tag_list);
3111
3112	return 0;
3113
3114out_free_mq_map:
3115	for (i = 0; i < set->nr_maps; i++) {
3116		kfree(set->map[i].mq_map);
3117		set->map[i].mq_map = NULL;
3118	}
3119	kfree(set->tags);
3120	set->tags = NULL;
3121	return ret;
3122}
3123EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3124
3125void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3126{
3127	int i, j;
3128
3129	for (i = 0; i < nr_hw_queues(set); i++)
3130		blk_mq_free_map_and_requests(set, i);
3131
3132	for (j = 0; j < set->nr_maps; j++) {
3133		kfree(set->map[j].mq_map);
3134		set->map[j].mq_map = NULL;
3135	}
3136
3137	kfree(set->tags);
3138	set->tags = NULL;
3139}
3140EXPORT_SYMBOL(blk_mq_free_tag_set);
3141
3142int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3143{
3144	struct blk_mq_tag_set *set = q->tag_set;
3145	struct blk_mq_hw_ctx *hctx;
3146	int i, ret;
3147
3148	if (!set)
3149		return -EINVAL;
3150
3151	if (q->nr_requests == nr)
3152		return 0;
3153
3154	blk_mq_freeze_queue(q);
3155	blk_mq_quiesce_queue(q);
3156
3157	ret = 0;
3158	queue_for_each_hw_ctx(q, hctx, i) {
3159		if (!hctx->tags)
3160			continue;
3161		/*
3162		 * If we're using an MQ scheduler, just update the scheduler
3163		 * queue depth. This is similar to what the old code would do.
3164		 */
3165		if (!hctx->sched_tags) {
3166			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3167							false);
3168		} else {
3169			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3170							nr, true);
3171		}
3172		if (ret)
3173			break;
3174		if (q->elevator && q->elevator->type->ops.depth_updated)
3175			q->elevator->type->ops.depth_updated(hctx);
3176	}
3177
3178	if (!ret)
3179		q->nr_requests = nr;
3180
3181	blk_mq_unquiesce_queue(q);
3182	blk_mq_unfreeze_queue(q);
3183
3184	return ret;
3185}
3186
3187/*
3188 * request_queue and elevator_type pair.
3189 * It is just used by __blk_mq_update_nr_hw_queues to cache
3190 * the elevator_type associated with a request_queue.
3191 */
3192struct blk_mq_qe_pair {
3193	struct list_head node;
3194	struct request_queue *q;
3195	struct elevator_type *type;
3196};
3197
3198/*
3199 * Cache the elevator_type in qe pair list and switch the
3200 * io scheduler to 'none'
3201 */
3202static bool blk_mq_elv_switch_none(struct list_head *head,
3203		struct request_queue *q)
3204{
3205	struct blk_mq_qe_pair *qe;
3206
3207	if (!q->elevator)
3208		return true;
3209
3210	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3211	if (!qe)
3212		return false;
3213
3214	INIT_LIST_HEAD(&qe->node);
3215	qe->q = q;
3216	qe->type = q->elevator->type;
3217	list_add(&qe->node, head);
3218
3219	mutex_lock(&q->sysfs_lock);
3220	/*
3221	 * After elevator_switch_mq, the previous elevator_queue will be
3222	 * released by elevator_release. The reference of the io scheduler
3223	 * module get by elevator_get will also be put. So we need to get
3224	 * a reference of the io scheduler module here to prevent it to be
3225	 * removed.
3226	 */
3227	__module_get(qe->type->elevator_owner);
3228	elevator_switch_mq(q, NULL);
3229	mutex_unlock(&q->sysfs_lock);
3230
3231	return true;
3232}
3233
3234static void blk_mq_elv_switch_back(struct list_head *head,
3235		struct request_queue *q)
3236{
3237	struct blk_mq_qe_pair *qe;
3238	struct elevator_type *t = NULL;
3239
3240	list_for_each_entry(qe, head, node)
3241		if (qe->q == q) {
3242			t = qe->type;
3243			break;
3244		}
3245
3246	if (!t)
3247		return;
3248
3249	list_del(&qe->node);
3250	kfree(qe);
3251
3252	mutex_lock(&q->sysfs_lock);
3253	elevator_switch_mq(q, t);
3254	mutex_unlock(&q->sysfs_lock);
3255}
3256
3257static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3258							int nr_hw_queues)
3259{
3260	struct request_queue *q;
3261	LIST_HEAD(head);
3262	int prev_nr_hw_queues;
3263
3264	lockdep_assert_held(&set->tag_list_lock);
3265
3266	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3267		nr_hw_queues = nr_cpu_ids;
3268	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3269		return;
3270
3271	list_for_each_entry(q, &set->tag_list, tag_set_list)
3272		blk_mq_freeze_queue(q);
3273	/*
3274	 * Sync with blk_mq_queue_tag_busy_iter.
3275	 */
3276	synchronize_rcu();
3277	/*
3278	 * Switch IO scheduler to 'none', cleaning up the data associated
3279	 * with the previous scheduler. We will switch back once we are done
3280	 * updating the new sw to hw queue mappings.
3281	 */
3282	list_for_each_entry(q, &set->tag_list, tag_set_list)
3283		if (!blk_mq_elv_switch_none(&head, q))
3284			goto switch_back;
3285
3286	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287		blk_mq_debugfs_unregister_hctxs(q);
3288		blk_mq_sysfs_unregister(q);
3289	}
3290
3291	prev_nr_hw_queues = set->nr_hw_queues;
3292	set->nr_hw_queues = nr_hw_queues;
3293	blk_mq_update_queue_map(set);
3294fallback:
3295	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296		blk_mq_realloc_hw_ctxs(set, q);
3297		if (q->nr_hw_queues != set->nr_hw_queues) {
3298			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3299					nr_hw_queues, prev_nr_hw_queues);
3300			set->nr_hw_queues = prev_nr_hw_queues;
3301			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3302			goto fallback;
3303		}
3304		blk_mq_map_swqueue(q);
3305	}
3306
3307	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3308		blk_mq_sysfs_register(q);
3309		blk_mq_debugfs_register_hctxs(q);
3310	}
3311
3312switch_back:
3313	list_for_each_entry(q, &set->tag_list, tag_set_list)
3314		blk_mq_elv_switch_back(&head, q);
3315
3316	list_for_each_entry(q, &set->tag_list, tag_set_list)
3317		blk_mq_unfreeze_queue(q);
3318}
3319
3320void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3321{
3322	mutex_lock(&set->tag_list_lock);
3323	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3324	mutex_unlock(&set->tag_list_lock);
3325}
3326EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3327
3328/* Enable polling stats and return whether they were already enabled. */
3329static bool blk_poll_stats_enable(struct request_queue *q)
3330{
3331	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3332	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3333		return true;
3334	blk_stat_add_callback(q, q->poll_cb);
3335	return false;
3336}
3337
3338static void blk_mq_poll_stats_start(struct request_queue *q)
3339{
3340	/*
3341	 * We don't arm the callback if polling stats are not enabled or the
3342	 * callback is already active.
3343	 */
3344	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3345	    blk_stat_is_active(q->poll_cb))
3346		return;
3347
3348	blk_stat_activate_msecs(q->poll_cb, 100);
3349}
3350
3351static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3352{
3353	struct request_queue *q = cb->data;
3354	int bucket;
3355
3356	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3357		if (cb->stat[bucket].nr_samples)
3358			q->poll_stat[bucket] = cb->stat[bucket];
3359	}
3360}
3361
3362static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3363				       struct blk_mq_hw_ctx *hctx,
3364				       struct request *rq)
3365{
3366	unsigned long ret = 0;
3367	int bucket;
3368
3369	/*
3370	 * If stats collection isn't on, don't sleep but turn it on for
3371	 * future users
3372	 */
3373	if (!blk_poll_stats_enable(q))
3374		return 0;
3375
3376	/*
3377	 * As an optimistic guess, use half of the mean service time
3378	 * for this type of request. We can (and should) make this smarter.
3379	 * For instance, if the completion latencies are tight, we can
3380	 * get closer than just half the mean. This is especially
3381	 * important on devices where the completion latencies are longer
3382	 * than ~10 usec. We do use the stats for the relevant IO size
3383	 * if available which does lead to better estimates.
3384	 */
3385	bucket = blk_mq_poll_stats_bkt(rq);
3386	if (bucket < 0)
3387		return ret;
3388
3389	if (q->poll_stat[bucket].nr_samples)
3390		ret = (q->poll_stat[bucket].mean + 1) / 2;
3391
3392	return ret;
3393}
3394
3395static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3396				     struct blk_mq_hw_ctx *hctx,
3397				     struct request *rq)
3398{
3399	struct hrtimer_sleeper hs;
3400	enum hrtimer_mode mode;
3401	unsigned int nsecs;
3402	ktime_t kt;
3403
3404	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3405		return false;
3406
3407	/*
3408	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3409	 *
 
3410	 *  0:	use half of prev avg
3411	 * >0:	use this specific value
3412	 */
3413	if (q->poll_nsec > 0)
 
 
3414		nsecs = q->poll_nsec;
3415	else
3416		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3417
3418	if (!nsecs)
3419		return false;
3420
3421	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3422
3423	/*
3424	 * This will be replaced with the stats tracking code, using
3425	 * 'avg_completion_time / 2' as the pre-sleep target.
3426	 */
3427	kt = nsecs;
3428
3429	mode = HRTIMER_MODE_REL;
3430	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3431	hrtimer_set_expires(&hs.timer, kt);
3432
 
3433	do {
3434		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3435			break;
3436		set_current_state(TASK_UNINTERRUPTIBLE);
3437		hrtimer_sleeper_start_expires(&hs, mode);
3438		if (hs.task)
3439			io_schedule();
3440		hrtimer_cancel(&hs.timer);
3441		mode = HRTIMER_MODE_ABS;
3442	} while (hs.task && !signal_pending(current));
3443
3444	__set_current_state(TASK_RUNNING);
3445	destroy_hrtimer_on_stack(&hs.timer);
3446	return true;
3447}
3448
3449static bool blk_mq_poll_hybrid(struct request_queue *q,
3450			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3451{
3452	struct request *rq;
3453
3454	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3455		return false;
3456
3457	if (!blk_qc_t_is_internal(cookie))
3458		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3459	else {
3460		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3461		/*
3462		 * With scheduling, if the request has completed, we'll
3463		 * get a NULL return here, as we clear the sched tag when
3464		 * that happens. The request still remains valid, like always,
3465		 * so we should be safe with just the NULL check.
3466		 */
3467		if (!rq)
3468			return false;
3469	}
3470
3471	return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3472}
3473
3474/**
3475 * blk_poll - poll for IO completions
3476 * @q:  the queue
3477 * @cookie: cookie passed back at IO submission time
3478 * @spin: whether to spin for completions
3479 *
3480 * Description:
3481 *    Poll for completions on the passed in queue. Returns number of
3482 *    completed entries found. If @spin is true, then blk_poll will continue
3483 *    looping until at least one completion is found, unless the task is
3484 *    otherwise marked running (or we need to reschedule).
3485 */
3486int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3487{
3488	struct blk_mq_hw_ctx *hctx;
3489	long state;
3490
3491	if (!blk_qc_t_valid(cookie) ||
3492	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3493		return 0;
3494
3495	if (current->plug)
3496		blk_flush_plug_list(current->plug, false);
3497
3498	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3499
3500	/*
3501	 * If we sleep, have the caller restart the poll loop to reset
3502	 * the state. Like for the other success return cases, the
3503	 * caller is responsible for checking if the IO completed. If
3504	 * the IO isn't complete, we'll get called again and will go
3505	 * straight to the busy poll loop.
3506	 */
3507	if (blk_mq_poll_hybrid(q, hctx, cookie))
3508		return 1;
3509
3510	hctx->poll_considered++;
3511
3512	state = current->state;
3513	do {
3514		int ret;
3515
3516		hctx->poll_invoked++;
3517
3518		ret = q->mq_ops->poll(hctx);
3519		if (ret > 0) {
3520			hctx->poll_success++;
3521			__set_current_state(TASK_RUNNING);
3522			return ret;
3523		}
3524
3525		if (signal_pending_state(state, current))
3526			__set_current_state(TASK_RUNNING);
3527
3528		if (current->state == TASK_RUNNING)
3529			return 1;
3530		if (ret < 0 || !spin)
3531			break;
3532		cpu_relax();
3533	} while (!need_resched());
3534
3535	__set_current_state(TASK_RUNNING);
3536	return 0;
3537}
3538EXPORT_SYMBOL_GPL(blk_poll);
3539
3540unsigned int blk_mq_rq_cpu(struct request *rq)
3541{
3542	return rq->mq_ctx->cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543}
3544EXPORT_SYMBOL(blk_mq_rq_cpu);
3545
3546static int __init blk_mq_init(void)
3547{
3548	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3549				blk_mq_hctx_notify_dead);
3550	return 0;
3551}
3552subsys_initcall(blk_mq_init);