Loading...
1/*
2 * Port on Texas Instruments TMS320C6x architecture
3 *
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/dma-mapping.h>
12#include <linux/memblock.h>
13#include <linux/seq_file.h>
14#include <linux/bootmem.h>
15#include <linux/clkdev.h>
16#include <linux/initrd.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/of_fdt.h>
20#include <linux/string.h>
21#include <linux/errno.h>
22#include <linux/cache.h>
23#include <linux/delay.h>
24#include <linux/sched.h>
25#include <linux/clk.h>
26#include <linux/cpu.h>
27#include <linux/fs.h>
28#include <linux/of.h>
29#include <linux/console.h>
30#include <linux/screen_info.h>
31
32#include <asm/sections.h>
33#include <asm/div64.h>
34#include <asm/setup.h>
35#include <asm/dscr.h>
36#include <asm/clock.h>
37#include <asm/soc.h>
38#include <asm/special_insns.h>
39
40static const char *c6x_soc_name;
41
42struct screen_info screen_info;
43
44int c6x_num_cores;
45EXPORT_SYMBOL_GPL(c6x_num_cores);
46
47unsigned int c6x_silicon_rev;
48EXPORT_SYMBOL_GPL(c6x_silicon_rev);
49
50/*
51 * Device status register. This holds information
52 * about device configuration needed by some drivers.
53 */
54unsigned int c6x_devstat;
55EXPORT_SYMBOL_GPL(c6x_devstat);
56
57/*
58 * Some SoCs have fuse registers holding a unique MAC
59 * address. This is parsed out of the device tree with
60 * the resulting MAC being held here.
61 */
62unsigned char c6x_fuse_mac[6];
63
64unsigned long memory_start;
65unsigned long memory_end;
66EXPORT_SYMBOL(memory_end);
67
68unsigned long ram_start;
69unsigned long ram_end;
70
71/* Uncached memory for DMA consistent use (memdma=) */
72static unsigned long dma_start __initdata;
73static unsigned long dma_size __initdata;
74
75struct cpuinfo_c6x {
76 const char *cpu_name;
77 const char *cpu_voltage;
78 const char *mmu;
79 const char *fpu;
80 char *cpu_rev;
81 unsigned int core_id;
82 char __cpu_rev[5];
83};
84
85static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
86
87unsigned int ticks_per_ns_scaled;
88EXPORT_SYMBOL(ticks_per_ns_scaled);
89
90unsigned int c6x_core_freq;
91
92static void __init get_cpuinfo(void)
93{
94 unsigned cpu_id, rev_id, csr;
95 struct clk *coreclk = clk_get_sys(NULL, "core");
96 unsigned long core_khz;
97 u64 tmp;
98 struct cpuinfo_c6x *p;
99 struct device_node *node, *np;
100
101 p = &per_cpu(cpu_data, smp_processor_id());
102
103 if (!IS_ERR(coreclk))
104 c6x_core_freq = clk_get_rate(coreclk);
105 else {
106 printk(KERN_WARNING
107 "Cannot find core clock frequency. Using 700MHz\n");
108 c6x_core_freq = 700000000;
109 }
110
111 core_khz = c6x_core_freq / 1000;
112
113 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
114 do_div(tmp, 1000000);
115 ticks_per_ns_scaled = tmp;
116
117 csr = get_creg(CSR);
118 cpu_id = csr >> 24;
119 rev_id = (csr >> 16) & 0xff;
120
121 p->mmu = "none";
122 p->fpu = "none";
123 p->cpu_voltage = "unknown";
124
125 switch (cpu_id) {
126 case 0:
127 p->cpu_name = "C67x";
128 p->fpu = "yes";
129 break;
130 case 2:
131 p->cpu_name = "C62x";
132 break;
133 case 8:
134 p->cpu_name = "C64x";
135 break;
136 case 12:
137 p->cpu_name = "C64x";
138 break;
139 case 16:
140 p->cpu_name = "C64x+";
141 p->cpu_voltage = "1.2";
142 break;
143 case 21:
144 p->cpu_name = "C66X";
145 p->cpu_voltage = "1.2";
146 break;
147 default:
148 p->cpu_name = "unknown";
149 break;
150 }
151
152 if (cpu_id < 16) {
153 switch (rev_id) {
154 case 0x1:
155 if (cpu_id > 8) {
156 p->cpu_rev = "DM640/DM641/DM642/DM643";
157 p->cpu_voltage = "1.2 - 1.4";
158 } else {
159 p->cpu_rev = "C6201";
160 p->cpu_voltage = "2.5";
161 }
162 break;
163 case 0x2:
164 p->cpu_rev = "C6201B/C6202/C6211";
165 p->cpu_voltage = "1.8";
166 break;
167 case 0x3:
168 p->cpu_rev = "C6202B/C6203/C6204/C6205";
169 p->cpu_voltage = "1.5";
170 break;
171 case 0x201:
172 p->cpu_rev = "C6701 revision 0 (early CPU)";
173 p->cpu_voltage = "1.8";
174 break;
175 case 0x202:
176 p->cpu_rev = "C6701/C6711/C6712";
177 p->cpu_voltage = "1.8";
178 break;
179 case 0x801:
180 p->cpu_rev = "C64x";
181 p->cpu_voltage = "1.5";
182 break;
183 default:
184 p->cpu_rev = "unknown";
185 }
186 } else {
187 p->cpu_rev = p->__cpu_rev;
188 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
189 }
190
191 p->core_id = get_coreid();
192
193 node = of_find_node_by_name(NULL, "cpus");
194 if (node) {
195 for_each_child_of_node(node, np)
196 if (!strcmp("cpu", np->name))
197 ++c6x_num_cores;
198 of_node_put(node);
199 }
200
201 node = of_find_node_by_name(NULL, "soc");
202 if (node) {
203 if (of_property_read_string(node, "model", &c6x_soc_name))
204 c6x_soc_name = "unknown";
205 of_node_put(node);
206 } else
207 c6x_soc_name = "unknown";
208
209 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
210 p->core_id, p->cpu_name, p->cpu_rev,
211 p->cpu_voltage, c6x_core_freq / 1000000);
212}
213
214/*
215 * Early parsing of the command line
216 */
217static u32 mem_size __initdata;
218
219/* "mem=" parsing. */
220static int __init early_mem(char *p)
221{
222 if (!p)
223 return -EINVAL;
224
225 mem_size = memparse(p, &p);
226 /* don't remove all of memory when handling "mem={invalid}" */
227 if (mem_size == 0)
228 return -EINVAL;
229
230 return 0;
231}
232early_param("mem", early_mem);
233
234/* "memdma=<size>[@<address>]" parsing. */
235static int __init early_memdma(char *p)
236{
237 if (!p)
238 return -EINVAL;
239
240 dma_size = memparse(p, &p);
241 if (*p == '@')
242 dma_start = memparse(p, &p);
243
244 return 0;
245}
246early_param("memdma", early_memdma);
247
248int __init c6x_add_memory(phys_addr_t start, unsigned long size)
249{
250 static int ram_found __initdata;
251
252 /* We only handle one bank (the one with PAGE_OFFSET) for now */
253 if (ram_found)
254 return -EINVAL;
255
256 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
257 return 0;
258
259 ram_start = start;
260 ram_end = start + size;
261
262 ram_found = 1;
263 return 0;
264}
265
266/*
267 * Do early machine setup and device tree parsing. This is called very
268 * early on the boot process.
269 */
270notrace void __init machine_init(unsigned long dt_ptr)
271{
272 void *dtb = __va(dt_ptr);
273 void *fdt = _fdt_start;
274
275 /* interrupts must be masked */
276 set_creg(IER, 2);
277
278 /*
279 * Set the Interrupt Service Table (IST) to the beginning of the
280 * vector table.
281 */
282 set_ist(_vectors_start);
283
284 /*
285 * dtb is passed in from bootloader.
286 * fdt is linked in blob.
287 */
288 if (dtb && dtb != fdt)
289 fdt = dtb;
290
291 /* Do some early initialization based on the flat device tree */
292 early_init_dt_scan(fdt);
293
294 parse_early_param();
295}
296
297void __init setup_arch(char **cmdline_p)
298{
299 int bootmap_size;
300 struct memblock_region *reg;
301
302 printk(KERN_INFO "Initializing kernel\n");
303
304 /* Initialize command line */
305 *cmdline_p = boot_command_line;
306
307 memory_end = ram_end;
308 memory_end &= ~(PAGE_SIZE - 1);
309
310 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
311 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
312
313 /* add block that this kernel can use */
314 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
315
316 /* reserve kernel text/data/bss */
317 memblock_reserve(PAGE_OFFSET,
318 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
319
320 if (dma_size) {
321 /* align to cacheability granularity */
322 dma_size = CACHE_REGION_END(dma_size);
323
324 if (!dma_start)
325 dma_start = memory_end - dma_size;
326
327 /* align to cacheability granularity */
328 dma_start = CACHE_REGION_START(dma_start);
329
330 /* reserve DMA memory taken from kernel memory */
331 if (memblock_is_region_memory(dma_start, dma_size))
332 memblock_reserve(dma_start, dma_size);
333 }
334
335 memory_start = PAGE_ALIGN((unsigned int) &_end);
336
337 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
338 memory_start, memory_end);
339
340#ifdef CONFIG_BLK_DEV_INITRD
341 /*
342 * Reserve initrd memory if in kernel memory.
343 */
344 if (initrd_start < initrd_end)
345 if (memblock_is_region_memory(initrd_start,
346 initrd_end - initrd_start))
347 memblock_reserve(initrd_start,
348 initrd_end - initrd_start);
349#endif
350
351 init_mm.start_code = (unsigned long) &_stext;
352 init_mm.end_code = (unsigned long) &_etext;
353 init_mm.end_data = memory_start;
354 init_mm.brk = memory_start;
355
356 /*
357 * Give all the memory to the bootmap allocator, tell it to put the
358 * boot mem_map at the start of memory
359 */
360 bootmap_size = init_bootmem_node(NODE_DATA(0),
361 memory_start >> PAGE_SHIFT,
362 PAGE_OFFSET >> PAGE_SHIFT,
363 memory_end >> PAGE_SHIFT);
364 memblock_reserve(memory_start, bootmap_size);
365
366 unflatten_device_tree();
367
368 c6x_cache_init();
369
370 /* Set the whole external memory as non-cacheable */
371 disable_caching(ram_start, ram_end - 1);
372
373 /* Set caching of external RAM used by Linux */
374 for_each_memblock(memory, reg)
375 enable_caching(CACHE_REGION_START(reg->base),
376 CACHE_REGION_START(reg->base + reg->size - 1));
377
378#ifdef CONFIG_BLK_DEV_INITRD
379 /*
380 * Enable caching for initrd which falls outside kernel memory.
381 */
382 if (initrd_start < initrd_end) {
383 if (!memblock_is_region_memory(initrd_start,
384 initrd_end - initrd_start))
385 enable_caching(CACHE_REGION_START(initrd_start),
386 CACHE_REGION_START(initrd_end - 1));
387 }
388#endif
389
390 /*
391 * Disable caching for dma coherent memory taken from kernel memory.
392 */
393 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
394 disable_caching(dma_start,
395 CACHE_REGION_START(dma_start + dma_size - 1));
396
397 /* Initialize the coherent memory allocator */
398 coherent_mem_init(dma_start, dma_size);
399
400 /*
401 * Free all memory as a starting point.
402 */
403 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
404
405 /*
406 * Then reserve memory which is already being used.
407 */
408 for_each_memblock(reserved, reg) {
409 pr_debug("reserved - 0x%08x-0x%08x\n",
410 (u32) reg->base, (u32) reg->size);
411 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
412 }
413
414 max_low_pfn = PFN_DOWN(memory_end);
415 min_low_pfn = PFN_UP(memory_start);
416 max_mapnr = max_low_pfn - min_low_pfn;
417
418 /* Get kmalloc into gear */
419 paging_init();
420
421 /*
422 * Probe for Device State Configuration Registers.
423 * We have to do this early in case timer needs to be enabled
424 * through DSCR.
425 */
426 dscr_probe();
427
428 /* We do this early for timer and core clock frequency */
429 c64x_setup_clocks();
430
431 /* Get CPU info */
432 get_cpuinfo();
433
434#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
435 conswitchp = &dummy_con;
436#endif
437}
438
439#define cpu_to_ptr(n) ((void *)((long)(n)+1))
440#define ptr_to_cpu(p) ((long)(p) - 1)
441
442static int show_cpuinfo(struct seq_file *m, void *v)
443{
444 int n = ptr_to_cpu(v);
445 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
446
447 if (n == 0) {
448 seq_printf(m,
449 "soc\t\t: %s\n"
450 "soc revision\t: 0x%x\n"
451 "soc cores\t: %d\n",
452 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
453 }
454
455 seq_printf(m,
456 "\n"
457 "processor\t: %d\n"
458 "cpu\t\t: %s\n"
459 "core revision\t: %s\n"
460 "core voltage\t: %s\n"
461 "core id\t\t: %d\n"
462 "mmu\t\t: %s\n"
463 "fpu\t\t: %s\n"
464 "cpu MHz\t\t: %u\n"
465 "bogomips\t: %lu.%02lu\n\n",
466 n,
467 p->cpu_name, p->cpu_rev, p->cpu_voltage,
468 p->core_id, p->mmu, p->fpu,
469 (c6x_core_freq + 500000) / 1000000,
470 (loops_per_jiffy/(500000/HZ)),
471 (loops_per_jiffy/(5000/HZ))%100);
472
473 return 0;
474}
475
476static void *c_start(struct seq_file *m, loff_t *pos)
477{
478 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
479}
480static void *c_next(struct seq_file *m, void *v, loff_t *pos)
481{
482 ++*pos;
483 return NULL;
484}
485static void c_stop(struct seq_file *m, void *v)
486{
487}
488
489const struct seq_operations cpuinfo_op = {
490 c_start,
491 c_stop,
492 c_next,
493 show_cpuinfo
494};
495
496static struct cpu cpu_devices[NR_CPUS];
497
498static int __init topology_init(void)
499{
500 int i;
501
502 for_each_present_cpu(i)
503 register_cpu(&cpu_devices[i], i);
504
505 return 0;
506}
507
508subsys_initcall(topology_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Port on Texas Instruments TMS320C6x architecture
4 *
5 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
6 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
7 */
8#include <linux/dma-mapping.h>
9#include <linux/memblock.h>
10#include <linux/seq_file.h>
11#include <linux/clkdev.h>
12#include <linux/initrd.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/of_fdt.h>
16#include <linux/string.h>
17#include <linux/errno.h>
18#include <linux/cache.h>
19#include <linux/delay.h>
20#include <linux/sched.h>
21#include <linux/clk.h>
22#include <linux/cpu.h>
23#include <linux/fs.h>
24#include <linux/of.h>
25#include <linux/console.h>
26#include <linux/screen_info.h>
27
28#include <asm/sections.h>
29#include <asm/div64.h>
30#include <asm/setup.h>
31#include <asm/dscr.h>
32#include <asm/clock.h>
33#include <asm/soc.h>
34#include <asm/special_insns.h>
35
36static const char *c6x_soc_name;
37
38struct screen_info screen_info;
39
40int c6x_num_cores;
41EXPORT_SYMBOL_GPL(c6x_num_cores);
42
43unsigned int c6x_silicon_rev;
44EXPORT_SYMBOL_GPL(c6x_silicon_rev);
45
46/*
47 * Device status register. This holds information
48 * about device configuration needed by some drivers.
49 */
50unsigned int c6x_devstat;
51EXPORT_SYMBOL_GPL(c6x_devstat);
52
53/*
54 * Some SoCs have fuse registers holding a unique MAC
55 * address. This is parsed out of the device tree with
56 * the resulting MAC being held here.
57 */
58unsigned char c6x_fuse_mac[6];
59
60unsigned long memory_start;
61unsigned long memory_end;
62EXPORT_SYMBOL(memory_end);
63
64unsigned long ram_start;
65unsigned long ram_end;
66
67/* Uncached memory for DMA consistent use (memdma=) */
68static unsigned long dma_start __initdata;
69static unsigned long dma_size __initdata;
70
71struct cpuinfo_c6x {
72 const char *cpu_name;
73 const char *cpu_voltage;
74 const char *mmu;
75 const char *fpu;
76 char *cpu_rev;
77 unsigned int core_id;
78 char __cpu_rev[5];
79};
80
81static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
82
83unsigned int ticks_per_ns_scaled;
84EXPORT_SYMBOL(ticks_per_ns_scaled);
85
86unsigned int c6x_core_freq;
87
88static void __init get_cpuinfo(void)
89{
90 unsigned cpu_id, rev_id, csr;
91 struct clk *coreclk = clk_get_sys(NULL, "core");
92 unsigned long core_khz;
93 u64 tmp;
94 struct cpuinfo_c6x *p;
95 struct device_node *node;
96
97 p = &per_cpu(cpu_data, smp_processor_id());
98
99 if (!IS_ERR(coreclk))
100 c6x_core_freq = clk_get_rate(coreclk);
101 else {
102 printk(KERN_WARNING
103 "Cannot find core clock frequency. Using 700MHz\n");
104 c6x_core_freq = 700000000;
105 }
106
107 core_khz = c6x_core_freq / 1000;
108
109 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
110 do_div(tmp, 1000000);
111 ticks_per_ns_scaled = tmp;
112
113 csr = get_creg(CSR);
114 cpu_id = csr >> 24;
115 rev_id = (csr >> 16) & 0xff;
116
117 p->mmu = "none";
118 p->fpu = "none";
119 p->cpu_voltage = "unknown";
120
121 switch (cpu_id) {
122 case 0:
123 p->cpu_name = "C67x";
124 p->fpu = "yes";
125 break;
126 case 2:
127 p->cpu_name = "C62x";
128 break;
129 case 8:
130 p->cpu_name = "C64x";
131 break;
132 case 12:
133 p->cpu_name = "C64x";
134 break;
135 case 16:
136 p->cpu_name = "C64x+";
137 p->cpu_voltage = "1.2";
138 break;
139 case 21:
140 p->cpu_name = "C66X";
141 p->cpu_voltage = "1.2";
142 break;
143 default:
144 p->cpu_name = "unknown";
145 break;
146 }
147
148 if (cpu_id < 16) {
149 switch (rev_id) {
150 case 0x1:
151 if (cpu_id > 8) {
152 p->cpu_rev = "DM640/DM641/DM642/DM643";
153 p->cpu_voltage = "1.2 - 1.4";
154 } else {
155 p->cpu_rev = "C6201";
156 p->cpu_voltage = "2.5";
157 }
158 break;
159 case 0x2:
160 p->cpu_rev = "C6201B/C6202/C6211";
161 p->cpu_voltage = "1.8";
162 break;
163 case 0x3:
164 p->cpu_rev = "C6202B/C6203/C6204/C6205";
165 p->cpu_voltage = "1.5";
166 break;
167 case 0x201:
168 p->cpu_rev = "C6701 revision 0 (early CPU)";
169 p->cpu_voltage = "1.8";
170 break;
171 case 0x202:
172 p->cpu_rev = "C6701/C6711/C6712";
173 p->cpu_voltage = "1.8";
174 break;
175 case 0x801:
176 p->cpu_rev = "C64x";
177 p->cpu_voltage = "1.5";
178 break;
179 default:
180 p->cpu_rev = "unknown";
181 }
182 } else {
183 p->cpu_rev = p->__cpu_rev;
184 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
185 }
186
187 p->core_id = get_coreid();
188
189 for_each_of_cpu_node(node)
190 ++c6x_num_cores;
191
192 node = of_find_node_by_name(NULL, "soc");
193 if (node) {
194 if (of_property_read_string(node, "model", &c6x_soc_name))
195 c6x_soc_name = "unknown";
196 of_node_put(node);
197 } else
198 c6x_soc_name = "unknown";
199
200 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
201 p->core_id, p->cpu_name, p->cpu_rev,
202 p->cpu_voltage, c6x_core_freq / 1000000);
203}
204
205/*
206 * Early parsing of the command line
207 */
208static u32 mem_size __initdata;
209
210/* "mem=" parsing. */
211static int __init early_mem(char *p)
212{
213 if (!p)
214 return -EINVAL;
215
216 mem_size = memparse(p, &p);
217 /* don't remove all of memory when handling "mem={invalid}" */
218 if (mem_size == 0)
219 return -EINVAL;
220
221 return 0;
222}
223early_param("mem", early_mem);
224
225/* "memdma=<size>[@<address>]" parsing. */
226static int __init early_memdma(char *p)
227{
228 if (!p)
229 return -EINVAL;
230
231 dma_size = memparse(p, &p);
232 if (*p == '@')
233 dma_start = memparse(p, &p);
234
235 return 0;
236}
237early_param("memdma", early_memdma);
238
239int __init c6x_add_memory(phys_addr_t start, unsigned long size)
240{
241 static int ram_found __initdata;
242
243 /* We only handle one bank (the one with PAGE_OFFSET) for now */
244 if (ram_found)
245 return -EINVAL;
246
247 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
248 return 0;
249
250 ram_start = start;
251 ram_end = start + size;
252
253 ram_found = 1;
254 return 0;
255}
256
257/*
258 * Do early machine setup and device tree parsing. This is called very
259 * early on the boot process.
260 */
261notrace void __init machine_init(unsigned long dt_ptr)
262{
263 void *dtb = __va(dt_ptr);
264 void *fdt = __dtb_start;
265
266 /* interrupts must be masked */
267 set_creg(IER, 2);
268
269 /*
270 * Set the Interrupt Service Table (IST) to the beginning of the
271 * vector table.
272 */
273 set_ist(_vectors_start);
274
275 /*
276 * dtb is passed in from bootloader.
277 * fdt is linked in blob.
278 */
279 if (dtb && dtb != fdt)
280 fdt = dtb;
281
282 /* Do some early initialization based on the flat device tree */
283 early_init_dt_scan(fdt);
284
285 parse_early_param();
286}
287
288void __init setup_arch(char **cmdline_p)
289{
290 struct memblock_region *reg;
291
292 printk(KERN_INFO "Initializing kernel\n");
293
294 /* Initialize command line */
295 *cmdline_p = boot_command_line;
296
297 memory_end = ram_end;
298 memory_end &= ~(PAGE_SIZE - 1);
299
300 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
301 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
302
303 /* add block that this kernel can use */
304 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
305
306 /* reserve kernel text/data/bss */
307 memblock_reserve(PAGE_OFFSET,
308 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
309
310 if (dma_size) {
311 /* align to cacheability granularity */
312 dma_size = CACHE_REGION_END(dma_size);
313
314 if (!dma_start)
315 dma_start = memory_end - dma_size;
316
317 /* align to cacheability granularity */
318 dma_start = CACHE_REGION_START(dma_start);
319
320 /* reserve DMA memory taken from kernel memory */
321 if (memblock_is_region_memory(dma_start, dma_size))
322 memblock_reserve(dma_start, dma_size);
323 }
324
325 memory_start = PAGE_ALIGN((unsigned int) &_end);
326
327 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
328 memory_start, memory_end);
329
330#ifdef CONFIG_BLK_DEV_INITRD
331 /*
332 * Reserve initrd memory if in kernel memory.
333 */
334 if (initrd_start < initrd_end)
335 if (memblock_is_region_memory(initrd_start,
336 initrd_end - initrd_start))
337 memblock_reserve(initrd_start,
338 initrd_end - initrd_start);
339#endif
340
341 init_mm.start_code = (unsigned long) &_stext;
342 init_mm.end_code = (unsigned long) &_etext;
343 init_mm.end_data = memory_start;
344 init_mm.brk = memory_start;
345
346 unflatten_and_copy_device_tree();
347
348 c6x_cache_init();
349
350 /* Set the whole external memory as non-cacheable */
351 disable_caching(ram_start, ram_end - 1);
352
353 /* Set caching of external RAM used by Linux */
354 for_each_memblock(memory, reg)
355 enable_caching(CACHE_REGION_START(reg->base),
356 CACHE_REGION_START(reg->base + reg->size - 1));
357
358#ifdef CONFIG_BLK_DEV_INITRD
359 /*
360 * Enable caching for initrd which falls outside kernel memory.
361 */
362 if (initrd_start < initrd_end) {
363 if (!memblock_is_region_memory(initrd_start,
364 initrd_end - initrd_start))
365 enable_caching(CACHE_REGION_START(initrd_start),
366 CACHE_REGION_START(initrd_end - 1));
367 }
368#endif
369
370 /*
371 * Disable caching for dma coherent memory taken from kernel memory.
372 */
373 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
374 disable_caching(dma_start,
375 CACHE_REGION_START(dma_start + dma_size - 1));
376
377 /* Initialize the coherent memory allocator */
378 coherent_mem_init(dma_start, dma_size);
379
380 max_low_pfn = PFN_DOWN(memory_end);
381 min_low_pfn = PFN_UP(memory_start);
382 max_pfn = max_low_pfn;
383 max_mapnr = max_low_pfn - min_low_pfn;
384
385 /* Get kmalloc into gear */
386 paging_init();
387
388 /*
389 * Probe for Device State Configuration Registers.
390 * We have to do this early in case timer needs to be enabled
391 * through DSCR.
392 */
393 dscr_probe();
394
395 /* We do this early for timer and core clock frequency */
396 c64x_setup_clocks();
397
398 /* Get CPU info */
399 get_cpuinfo();
400
401#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
402 conswitchp = &dummy_con;
403#endif
404}
405
406#define cpu_to_ptr(n) ((void *)((long)(n)+1))
407#define ptr_to_cpu(p) ((long)(p) - 1)
408
409static int show_cpuinfo(struct seq_file *m, void *v)
410{
411 int n = ptr_to_cpu(v);
412 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
413
414 if (n == 0) {
415 seq_printf(m,
416 "soc\t\t: %s\n"
417 "soc revision\t: 0x%x\n"
418 "soc cores\t: %d\n",
419 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
420 }
421
422 seq_printf(m,
423 "\n"
424 "processor\t: %d\n"
425 "cpu\t\t: %s\n"
426 "core revision\t: %s\n"
427 "core voltage\t: %s\n"
428 "core id\t\t: %d\n"
429 "mmu\t\t: %s\n"
430 "fpu\t\t: %s\n"
431 "cpu MHz\t\t: %u\n"
432 "bogomips\t: %lu.%02lu\n\n",
433 n,
434 p->cpu_name, p->cpu_rev, p->cpu_voltage,
435 p->core_id, p->mmu, p->fpu,
436 (c6x_core_freq + 500000) / 1000000,
437 (loops_per_jiffy/(500000/HZ)),
438 (loops_per_jiffy/(5000/HZ))%100);
439
440 return 0;
441}
442
443static void *c_start(struct seq_file *m, loff_t *pos)
444{
445 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
446}
447static void *c_next(struct seq_file *m, void *v, loff_t *pos)
448{
449 ++*pos;
450 return NULL;
451}
452static void c_stop(struct seq_file *m, void *v)
453{
454}
455
456const struct seq_operations cpuinfo_op = {
457 c_start,
458 c_stop,
459 c_next,
460 show_cpuinfo
461};
462
463static struct cpu cpu_devices[NR_CPUS];
464
465static int __init topology_init(void)
466{
467 int i;
468
469 for_each_present_cpu(i)
470 register_cpu(&cpu_devices[i], i);
471
472 return 0;
473}
474
475subsys_initcall(topology_init);