Linux Audio

Check our new training course

Loading...
v4.17
 
  1/* internal.h: mm/ internal definitions
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the License, or (at your option) any later version.
 10 */
 11#ifndef __MM_INTERNAL_H
 12#define __MM_INTERNAL_H
 13
 14#include <linux/fs.h>
 15#include <linux/mm.h>
 16#include <linux/pagemap.h>
 17#include <linux/tracepoint-defs.h>
 18
 19/*
 20 * The set of flags that only affect watermark checking and reclaim
 21 * behaviour. This is used by the MM to obey the caller constraints
 22 * about IO, FS and watermark checking while ignoring placement
 23 * hints such as HIGHMEM usage.
 24 */
 25#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 26			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 27			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 28			__GFP_ATOMIC)
 29
 30/* The GFP flags allowed during early boot */
 31#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 32
 33/* Control allocation cpuset and node placement constraints */
 34#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 35
 36/* Do not use these with a slab allocator */
 37#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 38
 39void page_writeback_init(void);
 40
 41int do_swap_page(struct vm_fault *vmf);
 42
 43void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 44		unsigned long floor, unsigned long ceiling);
 45
 46static inline bool can_madv_dontneed_vma(struct vm_area_struct *vma)
 47{
 48	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
 49}
 50
 51void unmap_page_range(struct mmu_gather *tlb,
 52			     struct vm_area_struct *vma,
 53			     unsigned long addr, unsigned long end,
 54			     struct zap_details *details);
 55
 56extern int __do_page_cache_readahead(struct address_space *mapping,
 57		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 58		unsigned long lookahead_size);
 59
 60/*
 61 * Submit IO for the read-ahead request in file_ra_state.
 62 */
 63static inline unsigned long ra_submit(struct file_ra_state *ra,
 64		struct address_space *mapping, struct file *filp)
 65{
 66	return __do_page_cache_readahead(mapping, filp,
 67					ra->start, ra->size, ra->async_size);
 68}
 69
 70/*
 71 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 72 * a count of one.
 73 */
 74static inline void set_page_refcounted(struct page *page)
 75{
 76	VM_BUG_ON_PAGE(PageTail(page), page);
 77	VM_BUG_ON_PAGE(page_ref_count(page), page);
 78	set_page_count(page, 1);
 79}
 80
 81extern unsigned long highest_memmap_pfn;
 82
 83/*
 84 * Maximum number of reclaim retries without progress before the OOM
 85 * killer is consider the only way forward.
 86 */
 87#define MAX_RECLAIM_RETRIES 16
 88
 89/*
 90 * in mm/vmscan.c:
 91 */
 92extern int isolate_lru_page(struct page *page);
 93extern void putback_lru_page(struct page *page);
 94
 95/*
 96 * in mm/rmap.c:
 97 */
 98extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 99
100/*
101 * in mm/page_alloc.c
102 */
103
104/*
105 * Structure for holding the mostly immutable allocation parameters passed
106 * between functions involved in allocations, including the alloc_pages*
107 * family of functions.
108 *
109 * nodemask, migratetype and high_zoneidx are initialized only once in
110 * __alloc_pages_nodemask() and then never change.
111 *
112 * zonelist, preferred_zone and classzone_idx are set first in
113 * __alloc_pages_nodemask() for the fast path, and might be later changed
114 * in __alloc_pages_slowpath(). All other functions pass the whole strucure
115 * by a const pointer.
116 */
117struct alloc_context {
118	struct zonelist *zonelist;
119	nodemask_t *nodemask;
120	struct zoneref *preferred_zoneref;
121	int migratetype;
122	enum zone_type high_zoneidx;
123	bool spread_dirty_pages;
124};
125
126#define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref)
127
128/*
129 * Locate the struct page for both the matching buddy in our
130 * pair (buddy1) and the combined O(n+1) page they form (page).
131 *
132 * 1) Any buddy B1 will have an order O twin B2 which satisfies
133 * the following equation:
134 *     B2 = B1 ^ (1 << O)
135 * For example, if the starting buddy (buddy2) is #8 its order
136 * 1 buddy is #10:
137 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
138 *
139 * 2) Any buddy B will have an order O+1 parent P which
140 * satisfies the following equation:
141 *     P = B & ~(1 << O)
142 *
143 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
144 */
145static inline unsigned long
146__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
147{
148	return page_pfn ^ (1 << order);
149}
150
151extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
152				unsigned long end_pfn, struct zone *zone);
153
154static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
155				unsigned long end_pfn, struct zone *zone)
156{
157	if (zone->contiguous)
158		return pfn_to_page(start_pfn);
159
160	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
161}
162
163extern int __isolate_free_page(struct page *page, unsigned int order);
164extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
165					unsigned int order);
 
166extern void prep_compound_page(struct page *page, unsigned int order);
167extern void post_alloc_hook(struct page *page, unsigned int order,
168					gfp_t gfp_flags);
169extern int user_min_free_kbytes;
170
171#if defined CONFIG_COMPACTION || defined CONFIG_CMA
172
173/*
174 * in mm/compaction.c
175 */
176/*
177 * compact_control is used to track pages being migrated and the free pages
178 * they are being migrated to during memory compaction. The free_pfn starts
179 * at the end of a zone and migrate_pfn begins at the start. Movable pages
180 * are moved to the end of a zone during a compaction run and the run
181 * completes when free_pfn <= migrate_pfn
182 */
183struct compact_control {
184	struct list_head freepages;	/* List of free pages to migrate to */
185	struct list_head migratepages;	/* List of pages being migrated */
 
 
 
 
 
186	struct zone *zone;
187	unsigned long nr_freepages;	/* Number of isolated free pages */
188	unsigned long nr_migratepages;	/* Number of pages to migrate */
189	unsigned long total_migrate_scanned;
190	unsigned long total_free_scanned;
191	unsigned long free_pfn;		/* isolate_freepages search base */
192	unsigned long migrate_pfn;	/* isolate_migratepages search base */
193	unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
194	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
195	int order;			/* order a direct compactor needs */
196	int migratetype;		/* migratetype of direct compactor */
197	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
198	const int classzone_idx;	/* zone index of a direct compactor */
199	enum migrate_mode mode;		/* Async or sync migration mode */
200	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
201	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
202	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
203	bool direct_compaction;		/* False from kcompactd or /proc/... */
204	bool whole_zone;		/* Whole zone should/has been scanned */
205	bool contended;			/* Signal lock or sched contention */
206	bool finishing_block;		/* Finishing current pageblock */
 
 
 
 
 
 
 
 
 
207};
208
209unsigned long
210isolate_freepages_range(struct compact_control *cc,
211			unsigned long start_pfn, unsigned long end_pfn);
212unsigned long
213isolate_migratepages_range(struct compact_control *cc,
214			   unsigned long low_pfn, unsigned long end_pfn);
215int find_suitable_fallback(struct free_area *area, unsigned int order,
216			int migratetype, bool only_stealable, bool *can_steal);
217
218#endif
219
220/*
221 * This function returns the order of a free page in the buddy system. In
222 * general, page_zone(page)->lock must be held by the caller to prevent the
223 * page from being allocated in parallel and returning garbage as the order.
224 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
225 * page cannot be allocated or merged in parallel. Alternatively, it must
226 * handle invalid values gracefully, and use page_order_unsafe() below.
227 */
228static inline unsigned int page_order(struct page *page)
229{
230	/* PageBuddy() must be checked by the caller */
231	return page_private(page);
232}
233
234/*
235 * Like page_order(), but for callers who cannot afford to hold the zone lock.
236 * PageBuddy() should be checked first by the caller to minimize race window,
237 * and invalid values must be handled gracefully.
238 *
239 * READ_ONCE is used so that if the caller assigns the result into a local
240 * variable and e.g. tests it for valid range before using, the compiler cannot
241 * decide to remove the variable and inline the page_private(page) multiple
242 * times, potentially observing different values in the tests and the actual
243 * use of the result.
244 */
245#define page_order_unsafe(page)		READ_ONCE(page_private(page))
246
247static inline bool is_cow_mapping(vm_flags_t flags)
248{
249	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
250}
251
252/*
253 * These three helpers classifies VMAs for virtual memory accounting.
254 */
255
256/*
257 * Executable code area - executable, not writable, not stack
258 */
259static inline bool is_exec_mapping(vm_flags_t flags)
260{
261	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
262}
263
264/*
265 * Stack area - atomatically grows in one direction
266 *
267 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
268 * do_mmap() forbids all other combinations.
269 */
270static inline bool is_stack_mapping(vm_flags_t flags)
271{
272	return (flags & VM_STACK) == VM_STACK;
273}
274
275/*
276 * Data area - private, writable, not stack
277 */
278static inline bool is_data_mapping(vm_flags_t flags)
279{
280	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
281}
282
283/* mm/util.c */
284void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
285		struct vm_area_struct *prev, struct rb_node *rb_parent);
286
287#ifdef CONFIG_MMU
288extern long populate_vma_page_range(struct vm_area_struct *vma,
289		unsigned long start, unsigned long end, int *nonblocking);
290extern void munlock_vma_pages_range(struct vm_area_struct *vma,
291			unsigned long start, unsigned long end);
292static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
293{
294	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
295}
296
297/*
298 * must be called with vma's mmap_sem held for read or write, and page locked.
299 */
300extern void mlock_vma_page(struct page *page);
301extern unsigned int munlock_vma_page(struct page *page);
302
303/*
304 * Clear the page's PageMlocked().  This can be useful in a situation where
305 * we want to unconditionally remove a page from the pagecache -- e.g.,
306 * on truncation or freeing.
307 *
308 * It is legal to call this function for any page, mlocked or not.
309 * If called for a page that is still mapped by mlocked vmas, all we do
310 * is revert to lazy LRU behaviour -- semantics are not broken.
311 */
312extern void clear_page_mlock(struct page *page);
313
314/*
315 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
316 * (because that does not go through the full procedure of migration ptes):
317 * to migrate the Mlocked page flag; update statistics.
318 */
319static inline void mlock_migrate_page(struct page *newpage, struct page *page)
320{
321	if (TestClearPageMlocked(page)) {
322		int nr_pages = hpage_nr_pages(page);
323
324		/* Holding pmd lock, no change in irq context: __mod is safe */
325		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
326		SetPageMlocked(newpage);
327		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
328	}
329}
330
331extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
332
333/*
334 * At what user virtual address is page expected in @vma?
335 */
336static inline unsigned long
337__vma_address(struct page *page, struct vm_area_struct *vma)
338{
339	pgoff_t pgoff = page_to_pgoff(page);
340	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
341}
342
343static inline unsigned long
344vma_address(struct page *page, struct vm_area_struct *vma)
345{
346	unsigned long start, end;
347
348	start = __vma_address(page, vma);
349	end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1);
350
351	/* page should be within @vma mapping range */
352	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
353
354	return max(start, vma->vm_start);
355}
356
357#else /* !CONFIG_MMU */
358static inline void clear_page_mlock(struct page *page) { }
359static inline void mlock_vma_page(struct page *page) { }
360static inline void mlock_migrate_page(struct page *new, struct page *old) { }
361
362#endif /* !CONFIG_MMU */
363
364/*
365 * Return the mem_map entry representing the 'offset' subpage within
366 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
367 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
368 */
369static inline struct page *mem_map_offset(struct page *base, int offset)
370{
371	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
372		return nth_page(base, offset);
373	return base + offset;
374}
375
376/*
377 * Iterator over all subpages within the maximally aligned gigantic
378 * page 'base'.  Handle any discontiguity in the mem_map.
379 */
380static inline struct page *mem_map_next(struct page *iter,
381						struct page *base, int offset)
382{
383	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
384		unsigned long pfn = page_to_pfn(base) + offset;
385		if (!pfn_valid(pfn))
386			return NULL;
387		return pfn_to_page(pfn);
388	}
389	return iter + 1;
390}
391
392/*
393 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
394 * so all functions starting at paging_init should be marked __init
395 * in those cases. SPARSEMEM, however, allows for memory hotplug,
396 * and alloc_bootmem_node is not used.
397 */
398#ifdef CONFIG_SPARSEMEM
399#define __paginginit __meminit
400#else
401#define __paginginit __init
402#endif
403
404/* Memory initialisation debug and verification */
405enum mminit_level {
406	MMINIT_WARNING,
407	MMINIT_VERIFY,
408	MMINIT_TRACE
409};
410
411#ifdef CONFIG_DEBUG_MEMORY_INIT
412
413extern int mminit_loglevel;
414
415#define mminit_dprintk(level, prefix, fmt, arg...) \
416do { \
417	if (level < mminit_loglevel) { \
418		if (level <= MMINIT_WARNING) \
419			pr_warn("mminit::" prefix " " fmt, ##arg);	\
420		else \
421			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
422	} \
423} while (0)
424
425extern void mminit_verify_pageflags_layout(void);
426extern void mminit_verify_zonelist(void);
427#else
428
429static inline void mminit_dprintk(enum mminit_level level,
430				const char *prefix, const char *fmt, ...)
431{
432}
433
434static inline void mminit_verify_pageflags_layout(void)
435{
436}
437
438static inline void mminit_verify_zonelist(void)
439{
440}
441#endif /* CONFIG_DEBUG_MEMORY_INIT */
442
443/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
444#if defined(CONFIG_SPARSEMEM)
445extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
446				unsigned long *end_pfn);
447#else
448static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
449				unsigned long *end_pfn)
450{
451}
452#endif /* CONFIG_SPARSEMEM */
453
454#define NODE_RECLAIM_NOSCAN	-2
455#define NODE_RECLAIM_FULL	-1
456#define NODE_RECLAIM_SOME	0
457#define NODE_RECLAIM_SUCCESS	1
458
 
 
 
 
 
 
 
 
 
 
459extern int hwpoison_filter(struct page *p);
460
461extern u32 hwpoison_filter_dev_major;
462extern u32 hwpoison_filter_dev_minor;
463extern u64 hwpoison_filter_flags_mask;
464extern u64 hwpoison_filter_flags_value;
465extern u64 hwpoison_filter_memcg;
466extern u32 hwpoison_filter_enable;
467
468extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
469        unsigned long, unsigned long,
470        unsigned long, unsigned long);
471
472extern void set_pageblock_order(void);
473unsigned long reclaim_clean_pages_from_list(struct zone *zone,
474					    struct list_head *page_list);
475/* The ALLOC_WMARK bits are used as an index to zone->watermark */
476#define ALLOC_WMARK_MIN		WMARK_MIN
477#define ALLOC_WMARK_LOW		WMARK_LOW
478#define ALLOC_WMARK_HIGH	WMARK_HIGH
479#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
480
481/* Mask to get the watermark bits */
482#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
483
484/*
485 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
486 * cannot assume a reduced access to memory reserves is sufficient for
487 * !MMU
488 */
489#ifdef CONFIG_MMU
490#define ALLOC_OOM		0x08
491#else
492#define ALLOC_OOM		ALLOC_NO_WATERMARKS
493#endif
494
495#define ALLOC_HARDER		0x10 /* try to alloc harder */
496#define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
497#define ALLOC_CPUSET		0x40 /* check for correct cpuset */
498#define ALLOC_CMA		0x80 /* allow allocations from CMA areas */
 
 
 
 
 
 
499
500enum ttu_flags;
501struct tlbflush_unmap_batch;
502
503
504/*
505 * only for MM internal work items which do not depend on
506 * any allocations or locks which might depend on allocations
507 */
508extern struct workqueue_struct *mm_percpu_wq;
509
510#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
511void try_to_unmap_flush(void);
512void try_to_unmap_flush_dirty(void);
513void flush_tlb_batched_pending(struct mm_struct *mm);
514#else
515static inline void try_to_unmap_flush(void)
516{
517}
518static inline void try_to_unmap_flush_dirty(void)
519{
520}
521static inline void flush_tlb_batched_pending(struct mm_struct *mm)
522{
523}
524#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
525
526extern const struct trace_print_flags pageflag_names[];
527extern const struct trace_print_flags vmaflag_names[];
528extern const struct trace_print_flags gfpflag_names[];
529
530static inline bool is_migrate_highatomic(enum migratetype migratetype)
531{
532	return migratetype == MIGRATE_HIGHATOMIC;
533}
534
535static inline bool is_migrate_highatomic_page(struct page *page)
536{
537	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
538}
539
540void setup_zone_pageset(struct zone *zone);
541extern struct page *alloc_new_node_page(struct page *page, unsigned long node);
542#endif	/* __MM_INTERNAL_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/* internal.h: mm/ internal definitions
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7#ifndef __MM_INTERNAL_H
  8#define __MM_INTERNAL_H
  9
 10#include <linux/fs.h>
 11#include <linux/mm.h>
 12#include <linux/pagemap.h>
 13#include <linux/tracepoint-defs.h>
 14
 15/*
 16 * The set of flags that only affect watermark checking and reclaim
 17 * behaviour. This is used by the MM to obey the caller constraints
 18 * about IO, FS and watermark checking while ignoring placement
 19 * hints such as HIGHMEM usage.
 20 */
 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 22			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 23			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 24			__GFP_ATOMIC)
 25
 26/* The GFP flags allowed during early boot */
 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 28
 29/* Control allocation cpuset and node placement constraints */
 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 31
 32/* Do not use these with a slab allocator */
 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 34
 35void page_writeback_init(void);
 36
 37vm_fault_t do_swap_page(struct vm_fault *vmf);
 38
 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 40		unsigned long floor, unsigned long ceiling);
 41
 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
 43{
 44	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
 45}
 46
 47void unmap_page_range(struct mmu_gather *tlb,
 48			     struct vm_area_struct *vma,
 49			     unsigned long addr, unsigned long end,
 50			     struct zap_details *details);
 51
 52extern unsigned int __do_page_cache_readahead(struct address_space *mapping,
 53		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 54		unsigned long lookahead_size);
 55
 56/*
 57 * Submit IO for the read-ahead request in file_ra_state.
 58 */
 59static inline unsigned long ra_submit(struct file_ra_state *ra,
 60		struct address_space *mapping, struct file *filp)
 61{
 62	return __do_page_cache_readahead(mapping, filp,
 63					ra->start, ra->size, ra->async_size);
 64}
 65
 66/*
 67 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 68 * a count of one.
 69 */
 70static inline void set_page_refcounted(struct page *page)
 71{
 72	VM_BUG_ON_PAGE(PageTail(page), page);
 73	VM_BUG_ON_PAGE(page_ref_count(page), page);
 74	set_page_count(page, 1);
 75}
 76
 77extern unsigned long highest_memmap_pfn;
 78
 79/*
 80 * Maximum number of reclaim retries without progress before the OOM
 81 * killer is consider the only way forward.
 82 */
 83#define MAX_RECLAIM_RETRIES 16
 84
 85/*
 86 * in mm/vmscan.c:
 87 */
 88extern int isolate_lru_page(struct page *page);
 89extern void putback_lru_page(struct page *page);
 90
 91/*
 92 * in mm/rmap.c:
 93 */
 94extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 95
 96/*
 97 * in mm/page_alloc.c
 98 */
 99
100/*
101 * Structure for holding the mostly immutable allocation parameters passed
102 * between functions involved in allocations, including the alloc_pages*
103 * family of functions.
104 *
105 * nodemask, migratetype and high_zoneidx are initialized only once in
106 * __alloc_pages_nodemask() and then never change.
107 *
108 * zonelist, preferred_zone and classzone_idx are set first in
109 * __alloc_pages_nodemask() for the fast path, and might be later changed
110 * in __alloc_pages_slowpath(). All other functions pass the whole strucure
111 * by a const pointer.
112 */
113struct alloc_context {
114	struct zonelist *zonelist;
115	nodemask_t *nodemask;
116	struct zoneref *preferred_zoneref;
117	int migratetype;
118	enum zone_type high_zoneidx;
119	bool spread_dirty_pages;
120};
121
122#define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref)
123
124/*
125 * Locate the struct page for both the matching buddy in our
126 * pair (buddy1) and the combined O(n+1) page they form (page).
127 *
128 * 1) Any buddy B1 will have an order O twin B2 which satisfies
129 * the following equation:
130 *     B2 = B1 ^ (1 << O)
131 * For example, if the starting buddy (buddy2) is #8 its order
132 * 1 buddy is #10:
133 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
134 *
135 * 2) Any buddy B will have an order O+1 parent P which
136 * satisfies the following equation:
137 *     P = B & ~(1 << O)
138 *
139 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
140 */
141static inline unsigned long
142__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
143{
144	return page_pfn ^ (1 << order);
145}
146
147extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
148				unsigned long end_pfn, struct zone *zone);
149
150static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
151				unsigned long end_pfn, struct zone *zone)
152{
153	if (zone->contiguous)
154		return pfn_to_page(start_pfn);
155
156	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
157}
158
159extern int __isolate_free_page(struct page *page, unsigned int order);
160extern void memblock_free_pages(struct page *page, unsigned long pfn,
161					unsigned int order);
162extern void __free_pages_core(struct page *page, unsigned int order);
163extern void prep_compound_page(struct page *page, unsigned int order);
164extern void post_alloc_hook(struct page *page, unsigned int order,
165					gfp_t gfp_flags);
166extern int user_min_free_kbytes;
167
168#if defined CONFIG_COMPACTION || defined CONFIG_CMA
169
170/*
171 * in mm/compaction.c
172 */
173/*
174 * compact_control is used to track pages being migrated and the free pages
175 * they are being migrated to during memory compaction. The free_pfn starts
176 * at the end of a zone and migrate_pfn begins at the start. Movable pages
177 * are moved to the end of a zone during a compaction run and the run
178 * completes when free_pfn <= migrate_pfn
179 */
180struct compact_control {
181	struct list_head freepages;	/* List of free pages to migrate to */
182	struct list_head migratepages;	/* List of pages being migrated */
183	unsigned int nr_freepages;	/* Number of isolated free pages */
184	unsigned int nr_migratepages;	/* Number of pages to migrate */
185	unsigned long free_pfn;		/* isolate_freepages search base */
186	unsigned long migrate_pfn;	/* isolate_migratepages search base */
187	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
188	struct zone *zone;
 
 
189	unsigned long total_migrate_scanned;
190	unsigned long total_free_scanned;
191	unsigned short fast_search_fail;/* failures to use free list searches */
192	short search_order;		/* order to start a fast search at */
 
193	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
194	int order;			/* order a direct compactor needs */
195	int migratetype;		/* migratetype of direct compactor */
196	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
197	const int classzone_idx;	/* zone index of a direct compactor */
198	enum migrate_mode mode;		/* Async or sync migration mode */
199	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
200	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
201	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
202	bool direct_compaction;		/* False from kcompactd or /proc/... */
203	bool whole_zone;		/* Whole zone should/has been scanned */
204	bool contended;			/* Signal lock or sched contention */
205	bool rescan;			/* Rescanning the same pageblock */
206};
207
208/*
209 * Used in direct compaction when a page should be taken from the freelists
210 * immediately when one is created during the free path.
211 */
212struct capture_control {
213	struct compact_control *cc;
214	struct page *page;
215};
216
217unsigned long
218isolate_freepages_range(struct compact_control *cc,
219			unsigned long start_pfn, unsigned long end_pfn);
220unsigned long
221isolate_migratepages_range(struct compact_control *cc,
222			   unsigned long low_pfn, unsigned long end_pfn);
223int find_suitable_fallback(struct free_area *area, unsigned int order,
224			int migratetype, bool only_stealable, bool *can_steal);
225
226#endif
227
228/*
229 * This function returns the order of a free page in the buddy system. In
230 * general, page_zone(page)->lock must be held by the caller to prevent the
231 * page from being allocated in parallel and returning garbage as the order.
232 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
233 * page cannot be allocated or merged in parallel. Alternatively, it must
234 * handle invalid values gracefully, and use page_order_unsafe() below.
235 */
236static inline unsigned int page_order(struct page *page)
237{
238	/* PageBuddy() must be checked by the caller */
239	return page_private(page);
240}
241
242/*
243 * Like page_order(), but for callers who cannot afford to hold the zone lock.
244 * PageBuddy() should be checked first by the caller to minimize race window,
245 * and invalid values must be handled gracefully.
246 *
247 * READ_ONCE is used so that if the caller assigns the result into a local
248 * variable and e.g. tests it for valid range before using, the compiler cannot
249 * decide to remove the variable and inline the page_private(page) multiple
250 * times, potentially observing different values in the tests and the actual
251 * use of the result.
252 */
253#define page_order_unsafe(page)		READ_ONCE(page_private(page))
254
255static inline bool is_cow_mapping(vm_flags_t flags)
256{
257	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
258}
259
260/*
261 * These three helpers classifies VMAs for virtual memory accounting.
262 */
263
264/*
265 * Executable code area - executable, not writable, not stack
266 */
267static inline bool is_exec_mapping(vm_flags_t flags)
268{
269	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
270}
271
272/*
273 * Stack area - atomatically grows in one direction
274 *
275 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
276 * do_mmap() forbids all other combinations.
277 */
278static inline bool is_stack_mapping(vm_flags_t flags)
279{
280	return (flags & VM_STACK) == VM_STACK;
281}
282
283/*
284 * Data area - private, writable, not stack
285 */
286static inline bool is_data_mapping(vm_flags_t flags)
287{
288	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
289}
290
291/* mm/util.c */
292void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
293		struct vm_area_struct *prev, struct rb_node *rb_parent);
294
295#ifdef CONFIG_MMU
296extern long populate_vma_page_range(struct vm_area_struct *vma,
297		unsigned long start, unsigned long end, int *nonblocking);
298extern void munlock_vma_pages_range(struct vm_area_struct *vma,
299			unsigned long start, unsigned long end);
300static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
301{
302	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
303}
304
305/*
306 * must be called with vma's mmap_sem held for read or write, and page locked.
307 */
308extern void mlock_vma_page(struct page *page);
309extern unsigned int munlock_vma_page(struct page *page);
310
311/*
312 * Clear the page's PageMlocked().  This can be useful in a situation where
313 * we want to unconditionally remove a page from the pagecache -- e.g.,
314 * on truncation or freeing.
315 *
316 * It is legal to call this function for any page, mlocked or not.
317 * If called for a page that is still mapped by mlocked vmas, all we do
318 * is revert to lazy LRU behaviour -- semantics are not broken.
319 */
320extern void clear_page_mlock(struct page *page);
321
322/*
323 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
324 * (because that does not go through the full procedure of migration ptes):
325 * to migrate the Mlocked page flag; update statistics.
326 */
327static inline void mlock_migrate_page(struct page *newpage, struct page *page)
328{
329	if (TestClearPageMlocked(page)) {
330		int nr_pages = hpage_nr_pages(page);
331
332		/* Holding pmd lock, no change in irq context: __mod is safe */
333		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
334		SetPageMlocked(newpage);
335		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
336	}
337}
338
339extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
340
341/*
342 * At what user virtual address is page expected in @vma?
343 */
344static inline unsigned long
345__vma_address(struct page *page, struct vm_area_struct *vma)
346{
347	pgoff_t pgoff = page_to_pgoff(page);
348	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
349}
350
351static inline unsigned long
352vma_address(struct page *page, struct vm_area_struct *vma)
353{
354	unsigned long start, end;
355
356	start = __vma_address(page, vma);
357	end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1);
358
359	/* page should be within @vma mapping range */
360	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
361
362	return max(start, vma->vm_start);
363}
364
365#else /* !CONFIG_MMU */
366static inline void clear_page_mlock(struct page *page) { }
367static inline void mlock_vma_page(struct page *page) { }
368static inline void mlock_migrate_page(struct page *new, struct page *old) { }
369
370#endif /* !CONFIG_MMU */
371
372/*
373 * Return the mem_map entry representing the 'offset' subpage within
374 * the maximally aligned gigantic page 'base'.  Handle any discontiguity
375 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
376 */
377static inline struct page *mem_map_offset(struct page *base, int offset)
378{
379	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
380		return nth_page(base, offset);
381	return base + offset;
382}
383
384/*
385 * Iterator over all subpages within the maximally aligned gigantic
386 * page 'base'.  Handle any discontiguity in the mem_map.
387 */
388static inline struct page *mem_map_next(struct page *iter,
389						struct page *base, int offset)
390{
391	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
392		unsigned long pfn = page_to_pfn(base) + offset;
393		if (!pfn_valid(pfn))
394			return NULL;
395		return pfn_to_page(pfn);
396	}
397	return iter + 1;
398}
399
 
 
 
 
 
 
 
 
 
 
 
 
400/* Memory initialisation debug and verification */
401enum mminit_level {
402	MMINIT_WARNING,
403	MMINIT_VERIFY,
404	MMINIT_TRACE
405};
406
407#ifdef CONFIG_DEBUG_MEMORY_INIT
408
409extern int mminit_loglevel;
410
411#define mminit_dprintk(level, prefix, fmt, arg...) \
412do { \
413	if (level < mminit_loglevel) { \
414		if (level <= MMINIT_WARNING) \
415			pr_warn("mminit::" prefix " " fmt, ##arg);	\
416		else \
417			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
418	} \
419} while (0)
420
421extern void mminit_verify_pageflags_layout(void);
422extern void mminit_verify_zonelist(void);
423#else
424
425static inline void mminit_dprintk(enum mminit_level level,
426				const char *prefix, const char *fmt, ...)
427{
428}
429
430static inline void mminit_verify_pageflags_layout(void)
431{
432}
433
434static inline void mminit_verify_zonelist(void)
435{
436}
437#endif /* CONFIG_DEBUG_MEMORY_INIT */
438
439/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
440#if defined(CONFIG_SPARSEMEM)
441extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
442				unsigned long *end_pfn);
443#else
444static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
445				unsigned long *end_pfn)
446{
447}
448#endif /* CONFIG_SPARSEMEM */
449
450#define NODE_RECLAIM_NOSCAN	-2
451#define NODE_RECLAIM_FULL	-1
452#define NODE_RECLAIM_SOME	0
453#define NODE_RECLAIM_SUCCESS	1
454
455#ifdef CONFIG_NUMA
456extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
457#else
458static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
459				unsigned int order)
460{
461	return NODE_RECLAIM_NOSCAN;
462}
463#endif
464
465extern int hwpoison_filter(struct page *p);
466
467extern u32 hwpoison_filter_dev_major;
468extern u32 hwpoison_filter_dev_minor;
469extern u64 hwpoison_filter_flags_mask;
470extern u64 hwpoison_filter_flags_value;
471extern u64 hwpoison_filter_memcg;
472extern u32 hwpoison_filter_enable;
473
474extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
475        unsigned long, unsigned long,
476        unsigned long, unsigned long);
477
478extern void set_pageblock_order(void);
479unsigned long reclaim_clean_pages_from_list(struct zone *zone,
480					    struct list_head *page_list);
481/* The ALLOC_WMARK bits are used as an index to zone->watermark */
482#define ALLOC_WMARK_MIN		WMARK_MIN
483#define ALLOC_WMARK_LOW		WMARK_LOW
484#define ALLOC_WMARK_HIGH	WMARK_HIGH
485#define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
486
487/* Mask to get the watermark bits */
488#define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
489
490/*
491 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
492 * cannot assume a reduced access to memory reserves is sufficient for
493 * !MMU
494 */
495#ifdef CONFIG_MMU
496#define ALLOC_OOM		0x08
497#else
498#define ALLOC_OOM		ALLOC_NO_WATERMARKS
499#endif
500
501#define ALLOC_HARDER		 0x10 /* try to alloc harder */
502#define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
503#define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
504#define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
505#ifdef CONFIG_ZONE_DMA32
506#define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
507#else
508#define ALLOC_NOFRAGMENT	  0x0
509#endif
510#define ALLOC_KSWAPD		0x200 /* allow waking of kswapd */
511
512enum ttu_flags;
513struct tlbflush_unmap_batch;
514
515
516/*
517 * only for MM internal work items which do not depend on
518 * any allocations or locks which might depend on allocations
519 */
520extern struct workqueue_struct *mm_percpu_wq;
521
522#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
523void try_to_unmap_flush(void);
524void try_to_unmap_flush_dirty(void);
525void flush_tlb_batched_pending(struct mm_struct *mm);
526#else
527static inline void try_to_unmap_flush(void)
528{
529}
530static inline void try_to_unmap_flush_dirty(void)
531{
532}
533static inline void flush_tlb_batched_pending(struct mm_struct *mm)
534{
535}
536#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
537
538extern const struct trace_print_flags pageflag_names[];
539extern const struct trace_print_flags vmaflag_names[];
540extern const struct trace_print_flags gfpflag_names[];
541
542static inline bool is_migrate_highatomic(enum migratetype migratetype)
543{
544	return migratetype == MIGRATE_HIGHATOMIC;
545}
546
547static inline bool is_migrate_highatomic_page(struct page *page)
548{
549	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
550}
551
552void setup_zone_pageset(struct zone *zone);
553extern struct page *alloc_new_node_page(struct page *page, unsigned long node);
554#endif	/* __MM_INTERNAL_H */