Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_defer.h"
26#include "xfs_inode.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_cksum.h"
30#include "xfs_icache.h"
31#include "xfs_trans.h"
32#include "xfs_ialloc.h"
33#include "xfs_dir2.h"
34
35#include <linux/iversion.h>
36
37/*
38 * Check that none of the inode's in the buffer have a next
39 * unlinked field of 0.
40 */
41#if defined(DEBUG)
42void
43xfs_inobp_check(
44 xfs_mount_t *mp,
45 xfs_buf_t *bp)
46{
47 int i;
48 int j;
49 xfs_dinode_t *dip;
50
51 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
52
53 for (i = 0; i < j; i++) {
54 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
55 if (!dip->di_next_unlinked) {
56 xfs_alert(mp,
57 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
58 i, (long long)bp->b_bn);
59 }
60 }
61}
62#endif
63
64bool
65xfs_dinode_good_version(
66 struct xfs_mount *mp,
67 __u8 version)
68{
69 if (xfs_sb_version_hascrc(&mp->m_sb))
70 return version == 3;
71
72 return version == 1 || version == 2;
73}
74
75/*
76 * If we are doing readahead on an inode buffer, we might be in log recovery
77 * reading an inode allocation buffer that hasn't yet been replayed, and hence
78 * has not had the inode cores stamped into it. Hence for readahead, the buffer
79 * may be potentially invalid.
80 *
81 * If the readahead buffer is invalid, we need to mark it with an error and
82 * clear the DONE status of the buffer so that a followup read will re-read it
83 * from disk. We don't report the error otherwise to avoid warnings during log
84 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
85 * because all we want to do is say readahead failed; there is no-one to report
86 * the error to, so this will distinguish it from a non-ra verifier failure.
87 * Changes to this readahead error behavour also need to be reflected in
88 * xfs_dquot_buf_readahead_verify().
89 */
90static void
91xfs_inode_buf_verify(
92 struct xfs_buf *bp,
93 bool readahead)
94{
95 struct xfs_mount *mp = bp->b_target->bt_mount;
96 xfs_agnumber_t agno;
97 int i;
98 int ni;
99
100 /*
101 * Validate the magic number and version of every inode in the buffer
102 */
103 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
104 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
105 for (i = 0; i < ni; i++) {
106 int di_ok;
107 xfs_dinode_t *dip;
108 xfs_agino_t unlinked_ino;
109
110 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
111 unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
112 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
113 xfs_dinode_good_version(mp, dip->di_version) &&
114 (unlinked_ino == NULLAGINO ||
115 xfs_verify_agino(mp, agno, unlinked_ino));
116 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
117 XFS_ERRTAG_ITOBP_INOTOBP))) {
118 if (readahead) {
119 bp->b_flags &= ~XBF_DONE;
120 xfs_buf_ioerror(bp, -EIO);
121 return;
122 }
123
124#ifdef DEBUG
125 xfs_alert(mp,
126 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
127 (unsigned long long)bp->b_bn, i,
128 be16_to_cpu(dip->di_magic));
129#endif
130 xfs_buf_verifier_error(bp, -EFSCORRUPTED,
131 __func__, dip, sizeof(*dip),
132 NULL);
133 return;
134 }
135 }
136}
137
138
139static void
140xfs_inode_buf_read_verify(
141 struct xfs_buf *bp)
142{
143 xfs_inode_buf_verify(bp, false);
144}
145
146static void
147xfs_inode_buf_readahead_verify(
148 struct xfs_buf *bp)
149{
150 xfs_inode_buf_verify(bp, true);
151}
152
153static void
154xfs_inode_buf_write_verify(
155 struct xfs_buf *bp)
156{
157 xfs_inode_buf_verify(bp, false);
158}
159
160const struct xfs_buf_ops xfs_inode_buf_ops = {
161 .name = "xfs_inode",
162 .verify_read = xfs_inode_buf_read_verify,
163 .verify_write = xfs_inode_buf_write_verify,
164};
165
166const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
167 .name = "xxfs_inode_ra",
168 .verify_read = xfs_inode_buf_readahead_verify,
169 .verify_write = xfs_inode_buf_write_verify,
170};
171
172
173/*
174 * This routine is called to map an inode to the buffer containing the on-disk
175 * version of the inode. It returns a pointer to the buffer containing the
176 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
177 * pointer to the on-disk inode within that buffer.
178 *
179 * If a non-zero error is returned, then the contents of bpp and dipp are
180 * undefined.
181 */
182int
183xfs_imap_to_bp(
184 struct xfs_mount *mp,
185 struct xfs_trans *tp,
186 struct xfs_imap *imap,
187 struct xfs_dinode **dipp,
188 struct xfs_buf **bpp,
189 uint buf_flags,
190 uint iget_flags)
191{
192 struct xfs_buf *bp;
193 int error;
194
195 buf_flags |= XBF_UNMAPPED;
196 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
197 (int)imap->im_len, buf_flags, &bp,
198 &xfs_inode_buf_ops);
199 if (error) {
200 if (error == -EAGAIN) {
201 ASSERT(buf_flags & XBF_TRYLOCK);
202 return error;
203 }
204
205 if (error == -EFSCORRUPTED &&
206 (iget_flags & XFS_IGET_UNTRUSTED))
207 return -EINVAL;
208
209 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
210 __func__, error);
211 return error;
212 }
213
214 *bpp = bp;
215 *dipp = xfs_buf_offset(bp, imap->im_boffset);
216 return 0;
217}
218
219void
220xfs_inode_from_disk(
221 struct xfs_inode *ip,
222 struct xfs_dinode *from)
223{
224 struct xfs_icdinode *to = &ip->i_d;
225 struct inode *inode = VFS_I(ip);
226
227
228 /*
229 * Convert v1 inodes immediately to v2 inode format as this is the
230 * minimum inode version format we support in the rest of the code.
231 */
232 to->di_version = from->di_version;
233 if (to->di_version == 1) {
234 set_nlink(inode, be16_to_cpu(from->di_onlink));
235 to->di_projid_lo = 0;
236 to->di_projid_hi = 0;
237 to->di_version = 2;
238 } else {
239 set_nlink(inode, be32_to_cpu(from->di_nlink));
240 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
241 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
242 }
243
244 to->di_format = from->di_format;
245 to->di_uid = be32_to_cpu(from->di_uid);
246 to->di_gid = be32_to_cpu(from->di_gid);
247 to->di_flushiter = be16_to_cpu(from->di_flushiter);
248
249 /*
250 * Time is signed, so need to convert to signed 32 bit before
251 * storing in inode timestamp which may be 64 bit. Otherwise
252 * a time before epoch is converted to a time long after epoch
253 * on 64 bit systems.
254 */
255 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
256 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
257 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
258 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
259 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
260 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
261 inode->i_generation = be32_to_cpu(from->di_gen);
262 inode->i_mode = be16_to_cpu(from->di_mode);
263
264 to->di_size = be64_to_cpu(from->di_size);
265 to->di_nblocks = be64_to_cpu(from->di_nblocks);
266 to->di_extsize = be32_to_cpu(from->di_extsize);
267 to->di_nextents = be32_to_cpu(from->di_nextents);
268 to->di_anextents = be16_to_cpu(from->di_anextents);
269 to->di_forkoff = from->di_forkoff;
270 to->di_aformat = from->di_aformat;
271 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
272 to->di_dmstate = be16_to_cpu(from->di_dmstate);
273 to->di_flags = be16_to_cpu(from->di_flags);
274
275 if (to->di_version == 3) {
276 inode_set_iversion_queried(inode,
277 be64_to_cpu(from->di_changecount));
278 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
279 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
280 to->di_flags2 = be64_to_cpu(from->di_flags2);
281 to->di_cowextsize = be32_to_cpu(from->di_cowextsize);
282 }
283}
284
285void
286xfs_inode_to_disk(
287 struct xfs_inode *ip,
288 struct xfs_dinode *to,
289 xfs_lsn_t lsn)
290{
291 struct xfs_icdinode *from = &ip->i_d;
292 struct inode *inode = VFS_I(ip);
293
294 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
295 to->di_onlink = 0;
296
297 to->di_version = from->di_version;
298 to->di_format = from->di_format;
299 to->di_uid = cpu_to_be32(from->di_uid);
300 to->di_gid = cpu_to_be32(from->di_gid);
301 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
302 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
303
304 memset(to->di_pad, 0, sizeof(to->di_pad));
305 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
306 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
307 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
308 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
309 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
310 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
311 to->di_nlink = cpu_to_be32(inode->i_nlink);
312 to->di_gen = cpu_to_be32(inode->i_generation);
313 to->di_mode = cpu_to_be16(inode->i_mode);
314
315 to->di_size = cpu_to_be64(from->di_size);
316 to->di_nblocks = cpu_to_be64(from->di_nblocks);
317 to->di_extsize = cpu_to_be32(from->di_extsize);
318 to->di_nextents = cpu_to_be32(from->di_nextents);
319 to->di_anextents = cpu_to_be16(from->di_anextents);
320 to->di_forkoff = from->di_forkoff;
321 to->di_aformat = from->di_aformat;
322 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
323 to->di_dmstate = cpu_to_be16(from->di_dmstate);
324 to->di_flags = cpu_to_be16(from->di_flags);
325
326 if (from->di_version == 3) {
327 to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
328 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
329 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
330 to->di_flags2 = cpu_to_be64(from->di_flags2);
331 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
332 to->di_ino = cpu_to_be64(ip->i_ino);
333 to->di_lsn = cpu_to_be64(lsn);
334 memset(to->di_pad2, 0, sizeof(to->di_pad2));
335 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
336 to->di_flushiter = 0;
337 } else {
338 to->di_flushiter = cpu_to_be16(from->di_flushiter);
339 }
340}
341
342void
343xfs_log_dinode_to_disk(
344 struct xfs_log_dinode *from,
345 struct xfs_dinode *to)
346{
347 to->di_magic = cpu_to_be16(from->di_magic);
348 to->di_mode = cpu_to_be16(from->di_mode);
349 to->di_version = from->di_version;
350 to->di_format = from->di_format;
351 to->di_onlink = 0;
352 to->di_uid = cpu_to_be32(from->di_uid);
353 to->di_gid = cpu_to_be32(from->di_gid);
354 to->di_nlink = cpu_to_be32(from->di_nlink);
355 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
356 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
357 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
358
359 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
360 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
361 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
362 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
363 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
364 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
365
366 to->di_size = cpu_to_be64(from->di_size);
367 to->di_nblocks = cpu_to_be64(from->di_nblocks);
368 to->di_extsize = cpu_to_be32(from->di_extsize);
369 to->di_nextents = cpu_to_be32(from->di_nextents);
370 to->di_anextents = cpu_to_be16(from->di_anextents);
371 to->di_forkoff = from->di_forkoff;
372 to->di_aformat = from->di_aformat;
373 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
374 to->di_dmstate = cpu_to_be16(from->di_dmstate);
375 to->di_flags = cpu_to_be16(from->di_flags);
376 to->di_gen = cpu_to_be32(from->di_gen);
377
378 if (from->di_version == 3) {
379 to->di_changecount = cpu_to_be64(from->di_changecount);
380 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
381 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
382 to->di_flags2 = cpu_to_be64(from->di_flags2);
383 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
384 to->di_ino = cpu_to_be64(from->di_ino);
385 to->di_lsn = cpu_to_be64(from->di_lsn);
386 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
387 uuid_copy(&to->di_uuid, &from->di_uuid);
388 to->di_flushiter = 0;
389 } else {
390 to->di_flushiter = cpu_to_be16(from->di_flushiter);
391 }
392}
393
394xfs_failaddr_t
395xfs_dinode_verify(
396 struct xfs_mount *mp,
397 xfs_ino_t ino,
398 struct xfs_dinode *dip)
399{
400 uint16_t mode;
401 uint16_t flags;
402 uint64_t flags2;
403 uint64_t di_size;
404
405 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
406 return __this_address;
407
408 /* Verify v3 integrity information first */
409 if (dip->di_version >= 3) {
410 if (!xfs_sb_version_hascrc(&mp->m_sb))
411 return __this_address;
412 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
413 XFS_DINODE_CRC_OFF))
414 return __this_address;
415 if (be64_to_cpu(dip->di_ino) != ino)
416 return __this_address;
417 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
418 return __this_address;
419 }
420
421 /* don't allow invalid i_size */
422 di_size = be64_to_cpu(dip->di_size);
423 if (di_size & (1ULL << 63))
424 return __this_address;
425
426 mode = be16_to_cpu(dip->di_mode);
427 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
428 return __this_address;
429
430 /* No zero-length symlinks/dirs. */
431 if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0)
432 return __this_address;
433
434 /* Fork checks carried over from xfs_iformat_fork */
435 if (mode &&
436 be32_to_cpu(dip->di_nextents) + be16_to_cpu(dip->di_anextents) >
437 be64_to_cpu(dip->di_nblocks))
438 return __this_address;
439
440 if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
441 return __this_address;
442
443 flags = be16_to_cpu(dip->di_flags);
444
445 if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
446 return __this_address;
447
448 /* Do we have appropriate data fork formats for the mode? */
449 switch (mode & S_IFMT) {
450 case S_IFIFO:
451 case S_IFCHR:
452 case S_IFBLK:
453 case S_IFSOCK:
454 if (dip->di_format != XFS_DINODE_FMT_DEV)
455 return __this_address;
456 break;
457 case S_IFREG:
458 case S_IFLNK:
459 case S_IFDIR:
460 switch (dip->di_format) {
461 case XFS_DINODE_FMT_LOCAL:
462 /*
463 * no local regular files yet
464 */
465 if (S_ISREG(mode))
466 return __this_address;
467 if (di_size > XFS_DFORK_DSIZE(dip, mp))
468 return __this_address;
469 if (dip->di_nextents)
470 return __this_address;
471 /* fall through */
472 case XFS_DINODE_FMT_EXTENTS:
473 case XFS_DINODE_FMT_BTREE:
474 break;
475 default:
476 return __this_address;
477 }
478 break;
479 case 0:
480 /* Uninitialized inode ok. */
481 break;
482 default:
483 return __this_address;
484 }
485
486 if (XFS_DFORK_Q(dip)) {
487 switch (dip->di_aformat) {
488 case XFS_DINODE_FMT_LOCAL:
489 if (dip->di_anextents)
490 return __this_address;
491 /* fall through */
492 case XFS_DINODE_FMT_EXTENTS:
493 case XFS_DINODE_FMT_BTREE:
494 break;
495 default:
496 return __this_address;
497 }
498 } else {
499 /*
500 * If there is no fork offset, this may be a freshly-made inode
501 * in a new disk cluster, in which case di_aformat is zeroed.
502 * Otherwise, such an inode must be in EXTENTS format; this goes
503 * for freed inodes as well.
504 */
505 switch (dip->di_aformat) {
506 case 0:
507 case XFS_DINODE_FMT_EXTENTS:
508 break;
509 default:
510 return __this_address;
511 }
512 if (dip->di_anextents)
513 return __this_address;
514 }
515
516 /* only version 3 or greater inodes are extensively verified here */
517 if (dip->di_version < 3)
518 return NULL;
519
520 flags2 = be64_to_cpu(dip->di_flags2);
521
522 /* don't allow reflink/cowextsize if we don't have reflink */
523 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
524 !xfs_sb_version_hasreflink(&mp->m_sb))
525 return __this_address;
526
527 /* only regular files get reflink */
528 if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
529 return __this_address;
530
531 /* don't let reflink and realtime mix */
532 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
533 return __this_address;
534
535 /* don't let reflink and dax mix */
536 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX))
537 return __this_address;
538
539 return NULL;
540}
541
542void
543xfs_dinode_calc_crc(
544 struct xfs_mount *mp,
545 struct xfs_dinode *dip)
546{
547 uint32_t crc;
548
549 if (dip->di_version < 3)
550 return;
551
552 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
553 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
554 XFS_DINODE_CRC_OFF);
555 dip->di_crc = xfs_end_cksum(crc);
556}
557
558/*
559 * Read the disk inode attributes into the in-core inode structure.
560 *
561 * For version 5 superblocks, if we are initialising a new inode and we are not
562 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
563 * inode core with a random generation number. If we are keeping inodes around,
564 * we need to read the inode cluster to get the existing generation number off
565 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
566 * format) then log recovery is dependent on the di_flushiter field being
567 * initialised from the current on-disk value and hence we must also read the
568 * inode off disk.
569 */
570int
571xfs_iread(
572 xfs_mount_t *mp,
573 xfs_trans_t *tp,
574 xfs_inode_t *ip,
575 uint iget_flags)
576{
577 xfs_buf_t *bp;
578 xfs_dinode_t *dip;
579 xfs_failaddr_t fa;
580 int error;
581
582 /*
583 * Fill in the location information in the in-core inode.
584 */
585 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
586 if (error)
587 return error;
588
589 /* shortcut IO on inode allocation if possible */
590 if ((iget_flags & XFS_IGET_CREATE) &&
591 xfs_sb_version_hascrc(&mp->m_sb) &&
592 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
593 /* initialise the on-disk inode core */
594 memset(&ip->i_d, 0, sizeof(ip->i_d));
595 VFS_I(ip)->i_generation = prandom_u32();
596 ip->i_d.di_version = 3;
597 return 0;
598 }
599
600 /*
601 * Get pointers to the on-disk inode and the buffer containing it.
602 */
603 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
604 if (error)
605 return error;
606
607 /* even unallocated inodes are verified */
608 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
609 if (fa) {
610 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", dip,
611 sizeof(*dip), fa);
612 error = -EFSCORRUPTED;
613 goto out_brelse;
614 }
615
616 /*
617 * If the on-disk inode is already linked to a directory
618 * entry, copy all of the inode into the in-core inode.
619 * xfs_iformat_fork() handles copying in the inode format
620 * specific information.
621 * Otherwise, just get the truly permanent information.
622 */
623 if (dip->di_mode) {
624 xfs_inode_from_disk(ip, dip);
625 error = xfs_iformat_fork(ip, dip);
626 if (error) {
627#ifdef DEBUG
628 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
629 __func__, error);
630#endif /* DEBUG */
631 goto out_brelse;
632 }
633 } else {
634 /*
635 * Partial initialisation of the in-core inode. Just the bits
636 * that xfs_ialloc won't overwrite or relies on being correct.
637 */
638 ip->i_d.di_version = dip->di_version;
639 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
640 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
641
642 /*
643 * Make sure to pull in the mode here as well in
644 * case the inode is released without being used.
645 * This ensures that xfs_inactive() will see that
646 * the inode is already free and not try to mess
647 * with the uninitialized part of it.
648 */
649 VFS_I(ip)->i_mode = 0;
650 }
651
652 ASSERT(ip->i_d.di_version >= 2);
653 ip->i_delayed_blks = 0;
654
655 /*
656 * Mark the buffer containing the inode as something to keep
657 * around for a while. This helps to keep recently accessed
658 * meta-data in-core longer.
659 */
660 xfs_buf_set_ref(bp, XFS_INO_REF);
661
662 /*
663 * Use xfs_trans_brelse() to release the buffer containing the on-disk
664 * inode, because it was acquired with xfs_trans_read_buf() in
665 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
666 * brelse(). If we're within a transaction, then xfs_trans_brelse()
667 * will only release the buffer if it is not dirty within the
668 * transaction. It will be OK to release the buffer in this case,
669 * because inodes on disk are never destroyed and we will be locking the
670 * new in-core inode before putting it in the cache where other
671 * processes can find it. Thus we don't have to worry about the inode
672 * being changed just because we released the buffer.
673 */
674 out_brelse:
675 xfs_trans_brelse(tp, bp);
676 return error;
677}
678
679/*
680 * Validate di_extsize hint.
681 *
682 * The rules are documented at xfs_ioctl_setattr_check_extsize().
683 * These functions must be kept in sync with each other.
684 */
685xfs_failaddr_t
686xfs_inode_validate_extsize(
687 struct xfs_mount *mp,
688 uint32_t extsize,
689 uint16_t mode,
690 uint16_t flags)
691{
692 bool rt_flag;
693 bool hint_flag;
694 bool inherit_flag;
695 uint32_t extsize_bytes;
696 uint32_t blocksize_bytes;
697
698 rt_flag = (flags & XFS_DIFLAG_REALTIME);
699 hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
700 inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
701 extsize_bytes = XFS_FSB_TO_B(mp, extsize);
702
703 if (rt_flag)
704 blocksize_bytes = mp->m_sb.sb_rextsize << mp->m_sb.sb_blocklog;
705 else
706 blocksize_bytes = mp->m_sb.sb_blocksize;
707
708 if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
709 return __this_address;
710
711 if (hint_flag && !S_ISREG(mode))
712 return __this_address;
713
714 if (inherit_flag && !S_ISDIR(mode))
715 return __this_address;
716
717 if ((hint_flag || inherit_flag) && extsize == 0)
718 return __this_address;
719
720 if (!(hint_flag || inherit_flag) && extsize != 0)
721 return __this_address;
722
723 if (extsize_bytes % blocksize_bytes)
724 return __this_address;
725
726 if (extsize > MAXEXTLEN)
727 return __this_address;
728
729 if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
730 return __this_address;
731
732 return NULL;
733}
734
735/*
736 * Validate di_cowextsize hint.
737 *
738 * The rules are documented at xfs_ioctl_setattr_check_cowextsize().
739 * These functions must be kept in sync with each other.
740 */
741xfs_failaddr_t
742xfs_inode_validate_cowextsize(
743 struct xfs_mount *mp,
744 uint32_t cowextsize,
745 uint16_t mode,
746 uint16_t flags,
747 uint64_t flags2)
748{
749 bool rt_flag;
750 bool hint_flag;
751 uint32_t cowextsize_bytes;
752
753 rt_flag = (flags & XFS_DIFLAG_REALTIME);
754 hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
755 cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
756
757 if (hint_flag && !xfs_sb_version_hasreflink(&mp->m_sb))
758 return __this_address;
759
760 if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
761 return __this_address;
762
763 if (hint_flag && cowextsize == 0)
764 return __this_address;
765
766 if (!hint_flag && cowextsize != 0)
767 return __this_address;
768
769 if (hint_flag && rt_flag)
770 return __this_address;
771
772 if (cowextsize_bytes % mp->m_sb.sb_blocksize)
773 return __this_address;
774
775 if (cowextsize > MAXEXTLEN)
776 return __this_address;
777
778 if (cowextsize > mp->m_sb.sb_agblocks / 2)
779 return __this_address;
780
781 return NULL;
782}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_errortag.h"
15#include "xfs_error.h"
16#include "xfs_icache.h"
17#include "xfs_trans.h"
18#include "xfs_ialloc.h"
19#include "xfs_dir2.h"
20
21#include <linux/iversion.h>
22
23/*
24 * Check that none of the inode's in the buffer have a next
25 * unlinked field of 0.
26 */
27#if defined(DEBUG)
28void
29xfs_inobp_check(
30 xfs_mount_t *mp,
31 xfs_buf_t *bp)
32{
33 int i;
34 xfs_dinode_t *dip;
35
36 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
37 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
38 if (!dip->di_next_unlinked) {
39 xfs_alert(mp,
40 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
41 i, (long long)bp->b_bn);
42 }
43 }
44}
45#endif
46
47bool
48xfs_dinode_good_version(
49 struct xfs_mount *mp,
50 __u8 version)
51{
52 if (xfs_sb_version_hascrc(&mp->m_sb))
53 return version == 3;
54
55 return version == 1 || version == 2;
56}
57
58/*
59 * If we are doing readahead on an inode buffer, we might be in log recovery
60 * reading an inode allocation buffer that hasn't yet been replayed, and hence
61 * has not had the inode cores stamped into it. Hence for readahead, the buffer
62 * may be potentially invalid.
63 *
64 * If the readahead buffer is invalid, we need to mark it with an error and
65 * clear the DONE status of the buffer so that a followup read will re-read it
66 * from disk. We don't report the error otherwise to avoid warnings during log
67 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
68 * because all we want to do is say readahead failed; there is no-one to report
69 * the error to, so this will distinguish it from a non-ra verifier failure.
70 * Changes to this readahead error behavour also need to be reflected in
71 * xfs_dquot_buf_readahead_verify().
72 */
73static void
74xfs_inode_buf_verify(
75 struct xfs_buf *bp,
76 bool readahead)
77{
78 struct xfs_mount *mp = bp->b_mount;
79 xfs_agnumber_t agno;
80 int i;
81 int ni;
82
83 /*
84 * Validate the magic number and version of every inode in the buffer
85 */
86 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
87 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
88 for (i = 0; i < ni; i++) {
89 int di_ok;
90 xfs_dinode_t *dip;
91 xfs_agino_t unlinked_ino;
92
93 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
94 unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
95 di_ok = xfs_verify_magic16(bp, dip->di_magic) &&
96 xfs_dinode_good_version(mp, dip->di_version) &&
97 xfs_verify_agino_or_null(mp, agno, unlinked_ino);
98 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
99 XFS_ERRTAG_ITOBP_INOTOBP))) {
100 if (readahead) {
101 bp->b_flags &= ~XBF_DONE;
102 xfs_buf_ioerror(bp, -EIO);
103 return;
104 }
105
106#ifdef DEBUG
107 xfs_alert(mp,
108 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
109 (unsigned long long)bp->b_bn, i,
110 be16_to_cpu(dip->di_magic));
111#endif
112 xfs_buf_verifier_error(bp, -EFSCORRUPTED,
113 __func__, dip, sizeof(*dip),
114 NULL);
115 return;
116 }
117 }
118}
119
120
121static void
122xfs_inode_buf_read_verify(
123 struct xfs_buf *bp)
124{
125 xfs_inode_buf_verify(bp, false);
126}
127
128static void
129xfs_inode_buf_readahead_verify(
130 struct xfs_buf *bp)
131{
132 xfs_inode_buf_verify(bp, true);
133}
134
135static void
136xfs_inode_buf_write_verify(
137 struct xfs_buf *bp)
138{
139 xfs_inode_buf_verify(bp, false);
140}
141
142const struct xfs_buf_ops xfs_inode_buf_ops = {
143 .name = "xfs_inode",
144 .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
145 cpu_to_be16(XFS_DINODE_MAGIC) },
146 .verify_read = xfs_inode_buf_read_verify,
147 .verify_write = xfs_inode_buf_write_verify,
148};
149
150const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
151 .name = "xfs_inode_ra",
152 .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
153 cpu_to_be16(XFS_DINODE_MAGIC) },
154 .verify_read = xfs_inode_buf_readahead_verify,
155 .verify_write = xfs_inode_buf_write_verify,
156};
157
158
159/*
160 * This routine is called to map an inode to the buffer containing the on-disk
161 * version of the inode. It returns a pointer to the buffer containing the
162 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
163 * pointer to the on-disk inode within that buffer.
164 *
165 * If a non-zero error is returned, then the contents of bpp and dipp are
166 * undefined.
167 */
168int
169xfs_imap_to_bp(
170 struct xfs_mount *mp,
171 struct xfs_trans *tp,
172 struct xfs_imap *imap,
173 struct xfs_dinode **dipp,
174 struct xfs_buf **bpp,
175 uint buf_flags,
176 uint iget_flags)
177{
178 struct xfs_buf *bp;
179 int error;
180
181 buf_flags |= XBF_UNMAPPED;
182 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
183 (int)imap->im_len, buf_flags, &bp,
184 &xfs_inode_buf_ops);
185 if (error) {
186 if (error == -EAGAIN) {
187 ASSERT(buf_flags & XBF_TRYLOCK);
188 return error;
189 }
190 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
191 __func__, error);
192 return error;
193 }
194
195 *bpp = bp;
196 *dipp = xfs_buf_offset(bp, imap->im_boffset);
197 return 0;
198}
199
200void
201xfs_inode_from_disk(
202 struct xfs_inode *ip,
203 struct xfs_dinode *from)
204{
205 struct xfs_icdinode *to = &ip->i_d;
206 struct inode *inode = VFS_I(ip);
207
208
209 /*
210 * Convert v1 inodes immediately to v2 inode format as this is the
211 * minimum inode version format we support in the rest of the code.
212 */
213 to->di_version = from->di_version;
214 if (to->di_version == 1) {
215 set_nlink(inode, be16_to_cpu(from->di_onlink));
216 to->di_projid_lo = 0;
217 to->di_projid_hi = 0;
218 to->di_version = 2;
219 } else {
220 set_nlink(inode, be32_to_cpu(from->di_nlink));
221 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
222 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
223 }
224
225 to->di_format = from->di_format;
226 to->di_uid = be32_to_cpu(from->di_uid);
227 to->di_gid = be32_to_cpu(from->di_gid);
228 to->di_flushiter = be16_to_cpu(from->di_flushiter);
229
230 /*
231 * Time is signed, so need to convert to signed 32 bit before
232 * storing in inode timestamp which may be 64 bit. Otherwise
233 * a time before epoch is converted to a time long after epoch
234 * on 64 bit systems.
235 */
236 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
237 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
238 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
239 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
240 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
241 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
242 inode->i_generation = be32_to_cpu(from->di_gen);
243 inode->i_mode = be16_to_cpu(from->di_mode);
244
245 to->di_size = be64_to_cpu(from->di_size);
246 to->di_nblocks = be64_to_cpu(from->di_nblocks);
247 to->di_extsize = be32_to_cpu(from->di_extsize);
248 to->di_nextents = be32_to_cpu(from->di_nextents);
249 to->di_anextents = be16_to_cpu(from->di_anextents);
250 to->di_forkoff = from->di_forkoff;
251 to->di_aformat = from->di_aformat;
252 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
253 to->di_dmstate = be16_to_cpu(from->di_dmstate);
254 to->di_flags = be16_to_cpu(from->di_flags);
255
256 if (to->di_version == 3) {
257 inode_set_iversion_queried(inode,
258 be64_to_cpu(from->di_changecount));
259 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
260 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
261 to->di_flags2 = be64_to_cpu(from->di_flags2);
262 to->di_cowextsize = be32_to_cpu(from->di_cowextsize);
263 }
264}
265
266void
267xfs_inode_to_disk(
268 struct xfs_inode *ip,
269 struct xfs_dinode *to,
270 xfs_lsn_t lsn)
271{
272 struct xfs_icdinode *from = &ip->i_d;
273 struct inode *inode = VFS_I(ip);
274
275 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
276 to->di_onlink = 0;
277
278 to->di_version = from->di_version;
279 to->di_format = from->di_format;
280 to->di_uid = cpu_to_be32(from->di_uid);
281 to->di_gid = cpu_to_be32(from->di_gid);
282 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
283 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
284
285 memset(to->di_pad, 0, sizeof(to->di_pad));
286 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
287 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
288 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
289 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
290 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
291 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
292 to->di_nlink = cpu_to_be32(inode->i_nlink);
293 to->di_gen = cpu_to_be32(inode->i_generation);
294 to->di_mode = cpu_to_be16(inode->i_mode);
295
296 to->di_size = cpu_to_be64(from->di_size);
297 to->di_nblocks = cpu_to_be64(from->di_nblocks);
298 to->di_extsize = cpu_to_be32(from->di_extsize);
299 to->di_nextents = cpu_to_be32(from->di_nextents);
300 to->di_anextents = cpu_to_be16(from->di_anextents);
301 to->di_forkoff = from->di_forkoff;
302 to->di_aformat = from->di_aformat;
303 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
304 to->di_dmstate = cpu_to_be16(from->di_dmstate);
305 to->di_flags = cpu_to_be16(from->di_flags);
306
307 if (from->di_version == 3) {
308 to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
309 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
310 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
311 to->di_flags2 = cpu_to_be64(from->di_flags2);
312 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
313 to->di_ino = cpu_to_be64(ip->i_ino);
314 to->di_lsn = cpu_to_be64(lsn);
315 memset(to->di_pad2, 0, sizeof(to->di_pad2));
316 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
317 to->di_flushiter = 0;
318 } else {
319 to->di_flushiter = cpu_to_be16(from->di_flushiter);
320 }
321}
322
323void
324xfs_log_dinode_to_disk(
325 struct xfs_log_dinode *from,
326 struct xfs_dinode *to)
327{
328 to->di_magic = cpu_to_be16(from->di_magic);
329 to->di_mode = cpu_to_be16(from->di_mode);
330 to->di_version = from->di_version;
331 to->di_format = from->di_format;
332 to->di_onlink = 0;
333 to->di_uid = cpu_to_be32(from->di_uid);
334 to->di_gid = cpu_to_be32(from->di_gid);
335 to->di_nlink = cpu_to_be32(from->di_nlink);
336 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
337 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
338 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
339
340 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
341 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
342 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
343 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
344 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
345 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
346
347 to->di_size = cpu_to_be64(from->di_size);
348 to->di_nblocks = cpu_to_be64(from->di_nblocks);
349 to->di_extsize = cpu_to_be32(from->di_extsize);
350 to->di_nextents = cpu_to_be32(from->di_nextents);
351 to->di_anextents = cpu_to_be16(from->di_anextents);
352 to->di_forkoff = from->di_forkoff;
353 to->di_aformat = from->di_aformat;
354 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
355 to->di_dmstate = cpu_to_be16(from->di_dmstate);
356 to->di_flags = cpu_to_be16(from->di_flags);
357 to->di_gen = cpu_to_be32(from->di_gen);
358
359 if (from->di_version == 3) {
360 to->di_changecount = cpu_to_be64(from->di_changecount);
361 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
362 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
363 to->di_flags2 = cpu_to_be64(from->di_flags2);
364 to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
365 to->di_ino = cpu_to_be64(from->di_ino);
366 to->di_lsn = cpu_to_be64(from->di_lsn);
367 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
368 uuid_copy(&to->di_uuid, &from->di_uuid);
369 to->di_flushiter = 0;
370 } else {
371 to->di_flushiter = cpu_to_be16(from->di_flushiter);
372 }
373}
374
375static xfs_failaddr_t
376xfs_dinode_verify_fork(
377 struct xfs_dinode *dip,
378 struct xfs_mount *mp,
379 int whichfork)
380{
381 uint32_t di_nextents = XFS_DFORK_NEXTENTS(dip, whichfork);
382
383 switch (XFS_DFORK_FORMAT(dip, whichfork)) {
384 case XFS_DINODE_FMT_LOCAL:
385 /*
386 * no local regular files yet
387 */
388 if (whichfork == XFS_DATA_FORK) {
389 if (S_ISREG(be16_to_cpu(dip->di_mode)))
390 return __this_address;
391 if (be64_to_cpu(dip->di_size) >
392 XFS_DFORK_SIZE(dip, mp, whichfork))
393 return __this_address;
394 }
395 if (di_nextents)
396 return __this_address;
397 break;
398 case XFS_DINODE_FMT_EXTENTS:
399 if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork))
400 return __this_address;
401 break;
402 case XFS_DINODE_FMT_BTREE:
403 if (whichfork == XFS_ATTR_FORK) {
404 if (di_nextents > MAXAEXTNUM)
405 return __this_address;
406 } else if (di_nextents > MAXEXTNUM) {
407 return __this_address;
408 }
409 break;
410 default:
411 return __this_address;
412 }
413 return NULL;
414}
415
416static xfs_failaddr_t
417xfs_dinode_verify_forkoff(
418 struct xfs_dinode *dip,
419 struct xfs_mount *mp)
420{
421 if (!XFS_DFORK_Q(dip))
422 return NULL;
423
424 switch (dip->di_format) {
425 case XFS_DINODE_FMT_DEV:
426 if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3))
427 return __this_address;
428 break;
429 case XFS_DINODE_FMT_LOCAL: /* fall through ... */
430 case XFS_DINODE_FMT_EXTENTS: /* fall through ... */
431 case XFS_DINODE_FMT_BTREE:
432 if (dip->di_forkoff >= (XFS_LITINO(mp, dip->di_version) >> 3))
433 return __this_address;
434 break;
435 default:
436 return __this_address;
437 }
438 return NULL;
439}
440
441xfs_failaddr_t
442xfs_dinode_verify(
443 struct xfs_mount *mp,
444 xfs_ino_t ino,
445 struct xfs_dinode *dip)
446{
447 xfs_failaddr_t fa;
448 uint16_t mode;
449 uint16_t flags;
450 uint64_t flags2;
451 uint64_t di_size;
452
453 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
454 return __this_address;
455
456 /* Verify v3 integrity information first */
457 if (dip->di_version >= 3) {
458 if (!xfs_sb_version_hascrc(&mp->m_sb))
459 return __this_address;
460 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
461 XFS_DINODE_CRC_OFF))
462 return __this_address;
463 if (be64_to_cpu(dip->di_ino) != ino)
464 return __this_address;
465 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
466 return __this_address;
467 }
468
469 /* don't allow invalid i_size */
470 di_size = be64_to_cpu(dip->di_size);
471 if (di_size & (1ULL << 63))
472 return __this_address;
473
474 mode = be16_to_cpu(dip->di_mode);
475 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
476 return __this_address;
477
478 /* No zero-length symlinks/dirs. */
479 if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0)
480 return __this_address;
481
482 /* Fork checks carried over from xfs_iformat_fork */
483 if (mode &&
484 be32_to_cpu(dip->di_nextents) + be16_to_cpu(dip->di_anextents) >
485 be64_to_cpu(dip->di_nblocks))
486 return __this_address;
487
488 if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
489 return __this_address;
490
491 flags = be16_to_cpu(dip->di_flags);
492
493 if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
494 return __this_address;
495
496 /* check for illegal values of forkoff */
497 fa = xfs_dinode_verify_forkoff(dip, mp);
498 if (fa)
499 return fa;
500
501 /* Do we have appropriate data fork formats for the mode? */
502 switch (mode & S_IFMT) {
503 case S_IFIFO:
504 case S_IFCHR:
505 case S_IFBLK:
506 case S_IFSOCK:
507 if (dip->di_format != XFS_DINODE_FMT_DEV)
508 return __this_address;
509 break;
510 case S_IFREG:
511 case S_IFLNK:
512 case S_IFDIR:
513 fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK);
514 if (fa)
515 return fa;
516 break;
517 case 0:
518 /* Uninitialized inode ok. */
519 break;
520 default:
521 return __this_address;
522 }
523
524 if (XFS_DFORK_Q(dip)) {
525 fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK);
526 if (fa)
527 return fa;
528 } else {
529 /*
530 * If there is no fork offset, this may be a freshly-made inode
531 * in a new disk cluster, in which case di_aformat is zeroed.
532 * Otherwise, such an inode must be in EXTENTS format; this goes
533 * for freed inodes as well.
534 */
535 switch (dip->di_aformat) {
536 case 0:
537 case XFS_DINODE_FMT_EXTENTS:
538 break;
539 default:
540 return __this_address;
541 }
542 if (dip->di_anextents)
543 return __this_address;
544 }
545
546 /* extent size hint validation */
547 fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
548 mode, flags);
549 if (fa)
550 return fa;
551
552 /* only version 3 or greater inodes are extensively verified here */
553 if (dip->di_version < 3)
554 return NULL;
555
556 flags2 = be64_to_cpu(dip->di_flags2);
557
558 /* don't allow reflink/cowextsize if we don't have reflink */
559 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
560 !xfs_sb_version_hasreflink(&mp->m_sb))
561 return __this_address;
562
563 /* only regular files get reflink */
564 if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
565 return __this_address;
566
567 /* don't let reflink and realtime mix */
568 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
569 return __this_address;
570
571 /* don't let reflink and dax mix */
572 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags2 & XFS_DIFLAG2_DAX))
573 return __this_address;
574
575 /* COW extent size hint validation */
576 fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
577 mode, flags, flags2);
578 if (fa)
579 return fa;
580
581 return NULL;
582}
583
584void
585xfs_dinode_calc_crc(
586 struct xfs_mount *mp,
587 struct xfs_dinode *dip)
588{
589 uint32_t crc;
590
591 if (dip->di_version < 3)
592 return;
593
594 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
595 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
596 XFS_DINODE_CRC_OFF);
597 dip->di_crc = xfs_end_cksum(crc);
598}
599
600/*
601 * Read the disk inode attributes into the in-core inode structure.
602 *
603 * For version 5 superblocks, if we are initialising a new inode and we are not
604 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
605 * inode core with a random generation number. If we are keeping inodes around,
606 * we need to read the inode cluster to get the existing generation number off
607 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
608 * format) then log recovery is dependent on the di_flushiter field being
609 * initialised from the current on-disk value and hence we must also read the
610 * inode off disk.
611 */
612int
613xfs_iread(
614 xfs_mount_t *mp,
615 xfs_trans_t *tp,
616 xfs_inode_t *ip,
617 uint iget_flags)
618{
619 xfs_buf_t *bp;
620 xfs_dinode_t *dip;
621 xfs_failaddr_t fa;
622 int error;
623
624 /*
625 * Fill in the location information in the in-core inode.
626 */
627 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
628 if (error)
629 return error;
630
631 /* shortcut IO on inode allocation if possible */
632 if ((iget_flags & XFS_IGET_CREATE) &&
633 xfs_sb_version_hascrc(&mp->m_sb) &&
634 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
635 /* initialise the on-disk inode core */
636 memset(&ip->i_d, 0, sizeof(ip->i_d));
637 VFS_I(ip)->i_generation = prandom_u32();
638 ip->i_d.di_version = 3;
639 return 0;
640 }
641
642 /*
643 * Get pointers to the on-disk inode and the buffer containing it.
644 */
645 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
646 if (error)
647 return error;
648
649 /* even unallocated inodes are verified */
650 fa = xfs_dinode_verify(mp, ip->i_ino, dip);
651 if (fa) {
652 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", dip,
653 sizeof(*dip), fa);
654 error = -EFSCORRUPTED;
655 goto out_brelse;
656 }
657
658 /*
659 * If the on-disk inode is already linked to a directory
660 * entry, copy all of the inode into the in-core inode.
661 * xfs_iformat_fork() handles copying in the inode format
662 * specific information.
663 * Otherwise, just get the truly permanent information.
664 */
665 if (dip->di_mode) {
666 xfs_inode_from_disk(ip, dip);
667 error = xfs_iformat_fork(ip, dip);
668 if (error) {
669#ifdef DEBUG
670 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
671 __func__, error);
672#endif /* DEBUG */
673 goto out_brelse;
674 }
675 } else {
676 /*
677 * Partial initialisation of the in-core inode. Just the bits
678 * that xfs_ialloc won't overwrite or relies on being correct.
679 */
680 ip->i_d.di_version = dip->di_version;
681 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
682 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
683
684 /*
685 * Make sure to pull in the mode here as well in
686 * case the inode is released without being used.
687 * This ensures that xfs_inactive() will see that
688 * the inode is already free and not try to mess
689 * with the uninitialized part of it.
690 */
691 VFS_I(ip)->i_mode = 0;
692 }
693
694 ASSERT(ip->i_d.di_version >= 2);
695 ip->i_delayed_blks = 0;
696
697 /*
698 * Mark the buffer containing the inode as something to keep
699 * around for a while. This helps to keep recently accessed
700 * meta-data in-core longer.
701 */
702 xfs_buf_set_ref(bp, XFS_INO_REF);
703
704 /*
705 * Use xfs_trans_brelse() to release the buffer containing the on-disk
706 * inode, because it was acquired with xfs_trans_read_buf() in
707 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
708 * brelse(). If we're within a transaction, then xfs_trans_brelse()
709 * will only release the buffer if it is not dirty within the
710 * transaction. It will be OK to release the buffer in this case,
711 * because inodes on disk are never destroyed and we will be locking the
712 * new in-core inode before putting it in the cache where other
713 * processes can find it. Thus we don't have to worry about the inode
714 * being changed just because we released the buffer.
715 */
716 out_brelse:
717 xfs_trans_brelse(tp, bp);
718 return error;
719}
720
721/*
722 * Validate di_extsize hint.
723 *
724 * The rules are documented at xfs_ioctl_setattr_check_extsize().
725 * These functions must be kept in sync with each other.
726 */
727xfs_failaddr_t
728xfs_inode_validate_extsize(
729 struct xfs_mount *mp,
730 uint32_t extsize,
731 uint16_t mode,
732 uint16_t flags)
733{
734 bool rt_flag;
735 bool hint_flag;
736 bool inherit_flag;
737 uint32_t extsize_bytes;
738 uint32_t blocksize_bytes;
739
740 rt_flag = (flags & XFS_DIFLAG_REALTIME);
741 hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
742 inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
743 extsize_bytes = XFS_FSB_TO_B(mp, extsize);
744
745 if (rt_flag)
746 blocksize_bytes = mp->m_sb.sb_rextsize << mp->m_sb.sb_blocklog;
747 else
748 blocksize_bytes = mp->m_sb.sb_blocksize;
749
750 if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
751 return __this_address;
752
753 if (hint_flag && !S_ISREG(mode))
754 return __this_address;
755
756 if (inherit_flag && !S_ISDIR(mode))
757 return __this_address;
758
759 if ((hint_flag || inherit_flag) && extsize == 0)
760 return __this_address;
761
762 /* free inodes get flags set to zero but extsize remains */
763 if (mode && !(hint_flag || inherit_flag) && extsize != 0)
764 return __this_address;
765
766 if (extsize_bytes % blocksize_bytes)
767 return __this_address;
768
769 if (extsize > MAXEXTLEN)
770 return __this_address;
771
772 if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
773 return __this_address;
774
775 return NULL;
776}
777
778/*
779 * Validate di_cowextsize hint.
780 *
781 * The rules are documented at xfs_ioctl_setattr_check_cowextsize().
782 * These functions must be kept in sync with each other.
783 */
784xfs_failaddr_t
785xfs_inode_validate_cowextsize(
786 struct xfs_mount *mp,
787 uint32_t cowextsize,
788 uint16_t mode,
789 uint16_t flags,
790 uint64_t flags2)
791{
792 bool rt_flag;
793 bool hint_flag;
794 uint32_t cowextsize_bytes;
795
796 rt_flag = (flags & XFS_DIFLAG_REALTIME);
797 hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
798 cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
799
800 if (hint_flag && !xfs_sb_version_hasreflink(&mp->m_sb))
801 return __this_address;
802
803 if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
804 return __this_address;
805
806 if (hint_flag && cowextsize == 0)
807 return __this_address;
808
809 /* free inodes get flags set to zero but cowextsize remains */
810 if (mode && !hint_flag && cowextsize != 0)
811 return __this_address;
812
813 if (hint_flag && rt_flag)
814 return __this_address;
815
816 if (cowextsize_bytes % mp->m_sb.sb_blocksize)
817 return __this_address;
818
819 if (cowextsize > MAXEXTLEN)
820 return __this_address;
821
822 if (cowextsize > mp->m_sb.sb_agblocks / 2)
823 return __this_address;
824
825 return NULL;
826}