Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) STMicroelectronics SA 2017
   3 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   4 * License terms:  GNU General Public License (GPL), version 2
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
 
  14#include <linux/reset.h>
  15
  16#include <crypto/aes.h>
  17#include <crypto/des.h>
  18#include <crypto/engine.h>
  19#include <crypto/scatterwalk.h>
  20#include <crypto/internal/aead.h>
  21
  22#define DRIVER_NAME             "stm32-cryp"
  23
  24/* Bit [0] encrypt / decrypt */
  25#define FLG_ENCRYPT             BIT(0)
  26/* Bit [8..1] algo & operation mode */
  27#define FLG_AES                 BIT(1)
  28#define FLG_DES                 BIT(2)
  29#define FLG_TDES                BIT(3)
  30#define FLG_ECB                 BIT(4)
  31#define FLG_CBC                 BIT(5)
  32#define FLG_CTR                 BIT(6)
  33#define FLG_GCM                 BIT(7)
  34#define FLG_CCM                 BIT(8)
  35/* Mode mask = bits [15..0] */
  36#define FLG_MODE_MASK           GENMASK(15, 0)
  37/* Bit [31..16] status  */
  38#define FLG_CCM_PADDED_WA       BIT(16)
  39
  40/* Registers */
  41#define CRYP_CR                 0x00000000
  42#define CRYP_SR                 0x00000004
  43#define CRYP_DIN                0x00000008
  44#define CRYP_DOUT               0x0000000C
  45#define CRYP_DMACR              0x00000010
  46#define CRYP_IMSCR              0x00000014
  47#define CRYP_RISR               0x00000018
  48#define CRYP_MISR               0x0000001C
  49#define CRYP_K0LR               0x00000020
  50#define CRYP_K0RR               0x00000024
  51#define CRYP_K1LR               0x00000028
  52#define CRYP_K1RR               0x0000002C
  53#define CRYP_K2LR               0x00000030
  54#define CRYP_K2RR               0x00000034
  55#define CRYP_K3LR               0x00000038
  56#define CRYP_K3RR               0x0000003C
  57#define CRYP_IV0LR              0x00000040
  58#define CRYP_IV0RR              0x00000044
  59#define CRYP_IV1LR              0x00000048
  60#define CRYP_IV1RR              0x0000004C
  61#define CRYP_CSGCMCCM0R         0x00000050
  62#define CRYP_CSGCM0R            0x00000070
  63
  64/* Registers values */
  65#define CR_DEC_NOT_ENC          0x00000004
  66#define CR_TDES_ECB             0x00000000
  67#define CR_TDES_CBC             0x00000008
  68#define CR_DES_ECB              0x00000010
  69#define CR_DES_CBC              0x00000018
  70#define CR_AES_ECB              0x00000020
  71#define CR_AES_CBC              0x00000028
  72#define CR_AES_CTR              0x00000030
  73#define CR_AES_KP               0x00000038
  74#define CR_AES_GCM              0x00080000
  75#define CR_AES_CCM              0x00080008
  76#define CR_AES_UNKNOWN          0xFFFFFFFF
  77#define CR_ALGO_MASK            0x00080038
  78#define CR_DATA32               0x00000000
  79#define CR_DATA16               0x00000040
  80#define CR_DATA8                0x00000080
  81#define CR_DATA1                0x000000C0
  82#define CR_KEY128               0x00000000
  83#define CR_KEY192               0x00000100
  84#define CR_KEY256               0x00000200
  85#define CR_FFLUSH               0x00004000
  86#define CR_CRYPEN               0x00008000
  87#define CR_PH_INIT              0x00000000
  88#define CR_PH_HEADER            0x00010000
  89#define CR_PH_PAYLOAD           0x00020000
  90#define CR_PH_FINAL             0x00030000
  91#define CR_PH_MASK              0x00030000
  92#define CR_NBPBL_SHIFT          20
  93
  94#define SR_BUSY                 0x00000010
  95#define SR_OFNE                 0x00000004
  96
  97#define IMSCR_IN                BIT(0)
  98#define IMSCR_OUT               BIT(1)
  99
 100#define MISR_IN                 BIT(0)
 101#define MISR_OUT                BIT(1)
 102
 103/* Misc */
 104#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 105#define GCM_CTR_INIT            2
 106#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 107#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 
 108
 109struct stm32_cryp_caps {
 110	bool                    swap_final;
 111	bool                    padding_wa;
 112};
 113
 114struct stm32_cryp_ctx {
 115	struct crypto_engine_ctx enginectx;
 116	struct stm32_cryp       *cryp;
 117	int                     keylen;
 118	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 119	unsigned long           flags;
 120};
 121
 122struct stm32_cryp_reqctx {
 123	unsigned long mode;
 124};
 125
 126struct stm32_cryp {
 127	struct list_head        list;
 128	struct device           *dev;
 129	void __iomem            *regs;
 130	struct clk              *clk;
 131	unsigned long           flags;
 132	u32                     irq_status;
 133	const struct stm32_cryp_caps *caps;
 134	struct stm32_cryp_ctx   *ctx;
 135
 136	struct crypto_engine    *engine;
 137
 138	struct mutex            lock; /* protects req / areq */
 139	struct ablkcipher_request *req;
 140	struct aead_request     *areq;
 141
 142	size_t                  authsize;
 143	size_t                  hw_blocksize;
 144
 145	size_t                  total_in;
 146	size_t                  total_in_save;
 147	size_t                  total_out;
 148	size_t                  total_out_save;
 149
 150	struct scatterlist      *in_sg;
 151	struct scatterlist      *out_sg;
 152	struct scatterlist      *out_sg_save;
 153
 154	struct scatterlist      in_sgl;
 155	struct scatterlist      out_sgl;
 156	bool                    sgs_copied;
 157
 158	int                     in_sg_len;
 159	int                     out_sg_len;
 160
 161	struct scatter_walk     in_walk;
 162	struct scatter_walk     out_walk;
 163
 164	u32                     last_ctr[4];
 165	u32                     gcm_ctr;
 166};
 167
 168struct stm32_cryp_list {
 169	struct list_head        dev_list;
 170	spinlock_t              lock; /* protect dev_list */
 171};
 172
 173static struct stm32_cryp_list cryp_list = {
 174	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 175	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 176};
 177
 178static inline bool is_aes(struct stm32_cryp *cryp)
 179{
 180	return cryp->flags & FLG_AES;
 181}
 182
 183static inline bool is_des(struct stm32_cryp *cryp)
 184{
 185	return cryp->flags & FLG_DES;
 186}
 187
 188static inline bool is_tdes(struct stm32_cryp *cryp)
 189{
 190	return cryp->flags & FLG_TDES;
 191}
 192
 193static inline bool is_ecb(struct stm32_cryp *cryp)
 194{
 195	return cryp->flags & FLG_ECB;
 196}
 197
 198static inline bool is_cbc(struct stm32_cryp *cryp)
 199{
 200	return cryp->flags & FLG_CBC;
 201}
 202
 203static inline bool is_ctr(struct stm32_cryp *cryp)
 204{
 205	return cryp->flags & FLG_CTR;
 206}
 207
 208static inline bool is_gcm(struct stm32_cryp *cryp)
 209{
 210	return cryp->flags & FLG_GCM;
 211}
 212
 213static inline bool is_ccm(struct stm32_cryp *cryp)
 214{
 215	return cryp->flags & FLG_CCM;
 216}
 217
 218static inline bool is_encrypt(struct stm32_cryp *cryp)
 219{
 220	return cryp->flags & FLG_ENCRYPT;
 221}
 222
 223static inline bool is_decrypt(struct stm32_cryp *cryp)
 224{
 225	return !is_encrypt(cryp);
 226}
 227
 228static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 229{
 230	return readl_relaxed(cryp->regs + ofst);
 231}
 232
 233static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 234{
 235	writel_relaxed(val, cryp->regs + ofst);
 236}
 237
 238static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 239{
 240	u32 status;
 241
 242	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 243			!(status & SR_BUSY), 10, 100000);
 244}
 245
 246static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 247{
 248	u32 status;
 249
 250	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 251			!(status & CR_CRYPEN), 10, 100000);
 252}
 253
 254static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 255{
 256	u32 status;
 257
 258	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 259			status & SR_OFNE, 10, 100000);
 260}
 261
 262static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 263
 264static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 265{
 266	struct stm32_cryp *tmp, *cryp = NULL;
 267
 268	spin_lock_bh(&cryp_list.lock);
 269	if (!ctx->cryp) {
 270		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 271			cryp = tmp;
 272			break;
 273		}
 274		ctx->cryp = cryp;
 275	} else {
 276		cryp = ctx->cryp;
 277	}
 278
 279	spin_unlock_bh(&cryp_list.lock);
 280
 281	return cryp;
 282}
 283
 284static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 285				    size_t align)
 286{
 287	int len = 0;
 288
 289	if (!total)
 290		return 0;
 291
 292	if (!IS_ALIGNED(total, align))
 293		return -EINVAL;
 294
 295	while (sg) {
 296		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 297			return -EINVAL;
 298
 299		if (!IS_ALIGNED(sg->length, align))
 300			return -EINVAL;
 301
 302		len += sg->length;
 303		sg = sg_next(sg);
 304	}
 305
 306	if (len != total)
 307		return -EINVAL;
 308
 309	return 0;
 310}
 311
 312static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 313{
 314	int ret;
 315
 316	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 317				       cryp->hw_blocksize);
 318	if (ret)
 319		return ret;
 320
 321	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 322				       cryp->hw_blocksize);
 323
 324	return ret;
 325}
 326
 327static void sg_copy_buf(void *buf, struct scatterlist *sg,
 328			unsigned int start, unsigned int nbytes, int out)
 329{
 330	struct scatter_walk walk;
 331
 332	if (!nbytes)
 333		return;
 334
 335	scatterwalk_start(&walk, sg);
 336	scatterwalk_advance(&walk, start);
 337	scatterwalk_copychunks(buf, &walk, nbytes, out);
 338	scatterwalk_done(&walk, out, 0);
 339}
 340
 341static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 342{
 343	void *buf_in, *buf_out;
 344	int pages, total_in, total_out;
 345
 346	if (!stm32_cryp_check_io_aligned(cryp)) {
 347		cryp->sgs_copied = 0;
 348		return 0;
 349	}
 350
 351	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 352	pages = total_in ? get_order(total_in) : 1;
 353	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 354
 355	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 356	pages = total_out ? get_order(total_out) : 1;
 357	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 358
 359	if (!buf_in || !buf_out) {
 360		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 361		cryp->sgs_copied = 0;
 362		return -EFAULT;
 363	}
 364
 365	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 366
 367	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 368	cryp->in_sg = &cryp->in_sgl;
 369	cryp->in_sg_len = 1;
 370
 371	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 372	cryp->out_sg_save = cryp->out_sg;
 373	cryp->out_sg = &cryp->out_sgl;
 374	cryp->out_sg_len = 1;
 375
 376	cryp->sgs_copied = 1;
 377
 378	return 0;
 379}
 380
 381static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 382{
 383	if (!iv)
 384		return;
 385
 386	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 387	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 388
 389	if (is_aes(cryp)) {
 390		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 391		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 392	}
 393}
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 396{
 397	unsigned int i;
 398	int r_id;
 399
 400	if (is_des(c)) {
 401		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 402		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 403	} else {
 404		r_id = CRYP_K3RR;
 405		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 406			stm32_cryp_write(c, r_id,
 407					 cpu_to_be32(c->ctx->key[i - 1]));
 408	}
 409}
 410
 411static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 412{
 413	if (is_aes(cryp) && is_ecb(cryp))
 414		return CR_AES_ECB;
 415
 416	if (is_aes(cryp) && is_cbc(cryp))
 417		return CR_AES_CBC;
 418
 419	if (is_aes(cryp) && is_ctr(cryp))
 420		return CR_AES_CTR;
 421
 422	if (is_aes(cryp) && is_gcm(cryp))
 423		return CR_AES_GCM;
 424
 425	if (is_aes(cryp) && is_ccm(cryp))
 426		return CR_AES_CCM;
 427
 428	if (is_des(cryp) && is_ecb(cryp))
 429		return CR_DES_ECB;
 430
 431	if (is_des(cryp) && is_cbc(cryp))
 432		return CR_DES_CBC;
 433
 434	if (is_tdes(cryp) && is_ecb(cryp))
 435		return CR_TDES_ECB;
 436
 437	if (is_tdes(cryp) && is_cbc(cryp))
 438		return CR_TDES_CBC;
 439
 440	dev_err(cryp->dev, "Unknown mode\n");
 441	return CR_AES_UNKNOWN;
 442}
 443
 444static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 445{
 446	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 447				  cryp->areq->cryptlen - cryp->authsize;
 448}
 449
 450static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 451{
 452	int ret;
 453	u32 iv[4];
 454
 455	/* Phase 1 : init */
 456	memcpy(iv, cryp->areq->iv, 12);
 457	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 458	cryp->gcm_ctr = GCM_CTR_INIT;
 459	stm32_cryp_hw_write_iv(cryp, iv);
 460
 461	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 462
 463	/* Wait for end of processing */
 464	ret = stm32_cryp_wait_enable(cryp);
 465	if (ret)
 466		dev_err(cryp->dev, "Timeout (gcm init)\n");
 467
 468	return ret;
 469}
 470
 471static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 472{
 473	int ret;
 474	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 475	u32 *d;
 476	unsigned int i, textlen;
 477
 478	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 479	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 480	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 481	iv[AES_BLOCK_SIZE - 1] = 1;
 482	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 483
 484	/* Build B0 */
 485	memcpy(b0, iv, AES_BLOCK_SIZE);
 486
 487	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 488
 489	if (cryp->areq->assoclen)
 490		b0[0] |= 0x40;
 491
 492	textlen = stm32_cryp_get_input_text_len(cryp);
 493
 494	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 495	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 496
 497	/* Enable HW */
 498	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 499
 500	/* Write B0 */
 501	d = (u32 *)b0;
 502
 503	for (i = 0; i < AES_BLOCK_32; i++) {
 504		if (!cryp->caps->padding_wa)
 505			*d = cpu_to_be32(*d);
 506		stm32_cryp_write(cryp, CRYP_DIN, *d++);
 507	}
 508
 509	/* Wait for end of processing */
 510	ret = stm32_cryp_wait_enable(cryp);
 511	if (ret)
 512		dev_err(cryp->dev, "Timeout (ccm init)\n");
 513
 514	return ret;
 515}
 516
 517static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 518{
 519	int ret;
 520	u32 cfg, hw_mode;
 521
 
 
 522	/* Disable interrupt */
 523	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 524
 525	/* Set key */
 526	stm32_cryp_hw_write_key(cryp);
 527
 528	/* Set configuration */
 529	cfg = CR_DATA8 | CR_FFLUSH;
 530
 531	switch (cryp->ctx->keylen) {
 532	case AES_KEYSIZE_128:
 533		cfg |= CR_KEY128;
 534		break;
 535
 536	case AES_KEYSIZE_192:
 537		cfg |= CR_KEY192;
 538		break;
 539
 540	default:
 541	case AES_KEYSIZE_256:
 542		cfg |= CR_KEY256;
 543		break;
 544	}
 545
 546	hw_mode = stm32_cryp_get_hw_mode(cryp);
 547	if (hw_mode == CR_AES_UNKNOWN)
 548		return -EINVAL;
 549
 550	/* AES ECB/CBC decrypt: run key preparation first */
 551	if (is_decrypt(cryp) &&
 552	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 553		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 554
 555		/* Wait for end of processing */
 556		ret = stm32_cryp_wait_busy(cryp);
 557		if (ret) {
 558			dev_err(cryp->dev, "Timeout (key preparation)\n");
 559			return ret;
 560		}
 561	}
 562
 563	cfg |= hw_mode;
 564
 565	if (is_decrypt(cryp))
 566		cfg |= CR_DEC_NOT_ENC;
 567
 568	/* Apply config and flush (valid when CRYPEN = 0) */
 569	stm32_cryp_write(cryp, CRYP_CR, cfg);
 570
 571	switch (hw_mode) {
 572	case CR_AES_GCM:
 573	case CR_AES_CCM:
 574		/* Phase 1 : init */
 575		if (hw_mode == CR_AES_CCM)
 576			ret = stm32_cryp_ccm_init(cryp, cfg);
 577		else
 578			ret = stm32_cryp_gcm_init(cryp, cfg);
 579
 580		if (ret)
 581			return ret;
 582
 583		/* Phase 2 : header (authenticated data) */
 584		if (cryp->areq->assoclen) {
 585			cfg |= CR_PH_HEADER;
 586		} else if (stm32_cryp_get_input_text_len(cryp)) {
 587			cfg |= CR_PH_PAYLOAD;
 588			stm32_cryp_write(cryp, CRYP_CR, cfg);
 589		} else {
 590			cfg |= CR_PH_INIT;
 591		}
 592
 593		break;
 594
 595	case CR_DES_CBC:
 596	case CR_TDES_CBC:
 597	case CR_AES_CBC:
 598	case CR_AES_CTR:
 599		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
 600		break;
 601
 602	default:
 603		break;
 604	}
 605
 606	/* Enable now */
 607	cfg |= CR_CRYPEN;
 608
 609	stm32_cryp_write(cryp, CRYP_CR, cfg);
 610
 611	cryp->flags &= ~FLG_CCM_PADDED_WA;
 612
 613	return 0;
 614}
 615
 616static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 617{
 618	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 619		/* Phase 4 : output tag */
 620		err = stm32_cryp_read_auth_tag(cryp);
 621
 
 
 
 622	if (cryp->sgs_copied) {
 623		void *buf_in, *buf_out;
 624		int pages, len;
 625
 626		buf_in = sg_virt(&cryp->in_sgl);
 627		buf_out = sg_virt(&cryp->out_sgl);
 628
 629		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 630			    cryp->total_out_save, 1);
 631
 632		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 633		pages = len ? get_order(len) : 1;
 634		free_pages((unsigned long)buf_in, pages);
 635
 636		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 637		pages = len ? get_order(len) : 1;
 638		free_pages((unsigned long)buf_out, pages);
 639	}
 640
 641	if (is_gcm(cryp) || is_ccm(cryp)) {
 
 
 
 642		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 643		cryp->areq = NULL;
 644	} else {
 645		crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
 646						   err);
 647		cryp->req = NULL;
 648	}
 649
 650	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 651
 652	mutex_unlock(&cryp->lock);
 653}
 654
 655static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 656{
 657	/* Enable interrupt and let the IRQ handler do everything */
 658	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 659
 660	return 0;
 661}
 662
 663static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 664static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 665					 void *areq);
 666
 667static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
 668{
 669	struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
 670
 671	tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
 672
 673	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 674	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 675	ctx->enginectx.op.unprepare_request = NULL;
 676	return 0;
 677}
 678
 679static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 680static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 681				       void *areq);
 682
 683static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 684{
 685	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 686
 687	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 688
 689	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 690	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 691	ctx->enginectx.op.unprepare_request = NULL;
 692
 693	return 0;
 694}
 695
 696static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
 697{
 698	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
 699			crypto_ablkcipher_reqtfm(req));
 700	struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
 701	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 702
 703	if (!cryp)
 704		return -ENODEV;
 705
 706	rctx->mode = mode;
 707
 708	return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
 709}
 710
 711static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 712{
 713	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 714	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 715	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 716
 717	if (!cryp)
 718		return -ENODEV;
 719
 720	rctx->mode = mode;
 721
 722	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 723}
 724
 725static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 726			     unsigned int keylen)
 727{
 728	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 729
 730	memcpy(ctx->key, key, keylen);
 731	ctx->keylen = keylen;
 732
 733	return 0;
 734}
 735
 736static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 737				 unsigned int keylen)
 738{
 739	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 740	    keylen != AES_KEYSIZE_256)
 741		return -EINVAL;
 742	else
 743		return stm32_cryp_setkey(tfm, key, keylen);
 744}
 745
 746static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 747				 unsigned int keylen)
 748{
 749	if (keylen != DES_KEY_SIZE)
 750		return -EINVAL;
 751	else
 752		return stm32_cryp_setkey(tfm, key, keylen);
 753}
 754
 755static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 756				  unsigned int keylen)
 757{
 758	if (keylen != (3 * DES_KEY_SIZE))
 759		return -EINVAL;
 760	else
 761		return stm32_cryp_setkey(tfm, key, keylen);
 762}
 763
 764static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 765				      unsigned int keylen)
 766{
 767	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 768
 769	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 770	    keylen != AES_KEYSIZE_256)
 771		return -EINVAL;
 772
 773	memcpy(ctx->key, key, keylen);
 774	ctx->keylen = keylen;
 775
 776	return 0;
 777}
 778
 779static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 780					  unsigned int authsize)
 781{
 782	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 783}
 784
 785static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 786					  unsigned int authsize)
 787{
 788	switch (authsize) {
 789	case 4:
 790	case 6:
 791	case 8:
 792	case 10:
 793	case 12:
 794	case 14:
 795	case 16:
 796		break;
 797	default:
 798		return -EINVAL;
 799	}
 800
 801	return 0;
 802}
 803
 804static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
 805{
 806	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 807}
 808
 809static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
 810{
 811	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 812}
 813
 814static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
 815{
 816	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 817}
 818
 819static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
 820{
 821	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 822}
 823
 824static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
 825{
 826	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 827}
 828
 829static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
 830{
 831	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 832}
 833
 834static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 835{
 836	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 837}
 838
 839static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 840{
 841	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 842}
 843
 844static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 845{
 846	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 847}
 848
 849static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 850{
 851	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 852}
 853
 854static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
 855{
 856	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 857}
 858
 859static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
 860{
 861	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 862}
 863
 864static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
 865{
 866	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 867}
 868
 869static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
 870{
 871	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 872}
 873
 874static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
 875{
 876	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 877}
 878
 879static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
 880{
 881	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 882}
 883
 884static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
 885{
 886	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 887}
 888
 889static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
 890{
 891	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 892}
 893
 894static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
 895				  struct aead_request *areq)
 896{
 897	struct stm32_cryp_ctx *ctx;
 898	struct stm32_cryp *cryp;
 899	struct stm32_cryp_reqctx *rctx;
 900	int ret;
 901
 902	if (!req && !areq)
 903		return -EINVAL;
 904
 905	ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
 906		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 907
 908	cryp = ctx->cryp;
 909
 910	if (!cryp)
 911		return -ENODEV;
 912
 913	mutex_lock(&cryp->lock);
 914
 915	rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
 916	rctx->mode &= FLG_MODE_MASK;
 917
 918	ctx->cryp = cryp;
 919
 920	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 921	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 922	cryp->ctx = ctx;
 923
 924	if (req) {
 925		cryp->req = req;
 
 926		cryp->total_in = req->nbytes;
 927		cryp->total_out = cryp->total_in;
 928	} else {
 929		/*
 930		 * Length of input and output data:
 931		 * Encryption case:
 932		 *  INPUT  =   AssocData  ||   PlainText
 933		 *          <- assoclen ->  <- cryptlen ->
 934		 *          <------- total_in ----------->
 935		 *
 936		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 937		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 938		 *          <---------------- total_out ----------------->
 939		 *
 940		 * Decryption case:
 941		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 942		 *          <- assoclen ->  <--------- cryptlen --------->
 943		 *                                          <- authsize ->
 944		 *          <---------------- total_in ------------------>
 945		 *
 946		 *  OUTPUT =   AssocData  ||   PlainText
 947		 *          <- assoclen ->  <- crypten - authsize ->
 948		 *          <---------- total_out ----------------->
 949		 */
 950		cryp->areq = areq;
 
 951		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 952		cryp->total_in = areq->assoclen + areq->cryptlen;
 953		if (is_encrypt(cryp))
 954			/* Append auth tag to output */
 955			cryp->total_out = cryp->total_in + cryp->authsize;
 956		else
 957			/* No auth tag in output */
 958			cryp->total_out = cryp->total_in - cryp->authsize;
 959	}
 960
 961	cryp->total_in_save = cryp->total_in;
 962	cryp->total_out_save = cryp->total_out;
 963
 964	cryp->in_sg = req ? req->src : areq->src;
 965	cryp->out_sg = req ? req->dst : areq->dst;
 966	cryp->out_sg_save = cryp->out_sg;
 967
 968	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 969	if (cryp->in_sg_len < 0) {
 970		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 971		ret = cryp->in_sg_len;
 972		goto out;
 973	}
 974
 975	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 976	if (cryp->out_sg_len < 0) {
 977		dev_err(cryp->dev, "Cannot get out_sg_len\n");
 978		ret = cryp->out_sg_len;
 979		goto out;
 980	}
 981
 982	ret = stm32_cryp_copy_sgs(cryp);
 983	if (ret)
 984		goto out;
 985
 986	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
 987	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
 988
 989	if (is_gcm(cryp) || is_ccm(cryp)) {
 990		/* In output, jump after assoc data */
 991		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
 992		cryp->total_out -= cryp->areq->assoclen;
 993	}
 994
 995	ret = stm32_cryp_hw_init(cryp);
 996out:
 997	if (ret)
 998		mutex_unlock(&cryp->lock);
 999
1000	return ret;
1001}
1002
1003static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1004					 void *areq)
1005{
1006	struct ablkcipher_request *req = container_of(areq,
1007						      struct ablkcipher_request,
1008						      base);
1009
1010	return stm32_cryp_prepare_req(req, NULL);
1011}
1012
1013static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1014{
1015	struct ablkcipher_request *req = container_of(areq,
1016						      struct ablkcipher_request,
1017						      base);
1018	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1019			crypto_ablkcipher_reqtfm(req));
1020	struct stm32_cryp *cryp = ctx->cryp;
1021
1022	if (!cryp)
1023		return -ENODEV;
1024
1025	return stm32_cryp_cpu_start(cryp);
1026}
1027
1028static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1029{
1030	struct aead_request *req = container_of(areq, struct aead_request,
1031						base);
1032
1033	return stm32_cryp_prepare_req(NULL, req);
1034}
1035
1036static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1037{
1038	struct aead_request *req = container_of(areq, struct aead_request,
1039						base);
1040	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1041	struct stm32_cryp *cryp = ctx->cryp;
1042
1043	if (!cryp)
1044		return -ENODEV;
1045
1046	if (unlikely(!cryp->areq->assoclen &&
1047		     !stm32_cryp_get_input_text_len(cryp))) {
1048		/* No input data to process: get tag and finish */
1049		stm32_cryp_finish_req(cryp, 0);
1050		return 0;
1051	}
1052
1053	return stm32_cryp_cpu_start(cryp);
1054}
1055
1056static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1057				unsigned int n)
1058{
1059	scatterwalk_advance(&cryp->out_walk, n);
1060
1061	if (unlikely(cryp->out_sg->length == _walked_out)) {
1062		cryp->out_sg = sg_next(cryp->out_sg);
1063		if (cryp->out_sg) {
1064			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1065			return (sg_virt(cryp->out_sg) + _walked_out);
1066		}
1067	}
1068
1069	return (u32 *)((u8 *)dst + n);
1070}
1071
1072static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1073			       unsigned int n)
1074{
1075	scatterwalk_advance(&cryp->in_walk, n);
1076
1077	if (unlikely(cryp->in_sg->length == _walked_in)) {
1078		cryp->in_sg = sg_next(cryp->in_sg);
1079		if (cryp->in_sg) {
1080			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1081			return (sg_virt(cryp->in_sg) + _walked_in);
1082		}
1083	}
1084
1085	return (u32 *)((u8 *)src + n);
1086}
1087
1088static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1089{
1090	u32 cfg, size_bit, *dst, d32;
1091	u8 *d8;
1092	unsigned int i, j;
1093	int ret = 0;
1094
1095	/* Update Config */
1096	cfg = stm32_cryp_read(cryp, CRYP_CR);
1097
1098	cfg &= ~CR_PH_MASK;
1099	cfg |= CR_PH_FINAL;
1100	cfg &= ~CR_DEC_NOT_ENC;
1101	cfg |= CR_CRYPEN;
1102
1103	stm32_cryp_write(cryp, CRYP_CR, cfg);
1104
1105	if (is_gcm(cryp)) {
1106		/* GCM: write aad and payload size (in bits) */
1107		size_bit = cryp->areq->assoclen * 8;
1108		if (cryp->caps->swap_final)
1109			size_bit = cpu_to_be32(size_bit);
1110
1111		stm32_cryp_write(cryp, CRYP_DIN, 0);
1112		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1113
1114		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1115				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1116		size_bit *= 8;
1117		if (cryp->caps->swap_final)
1118			size_bit = cpu_to_be32(size_bit);
1119
1120		stm32_cryp_write(cryp, CRYP_DIN, 0);
1121		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1122	} else {
1123		/* CCM: write CTR0 */
1124		u8 iv[AES_BLOCK_SIZE];
1125		u32 *iv32 = (u32 *)iv;
1126
1127		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1128		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1129
1130		for (i = 0; i < AES_BLOCK_32; i++) {
1131			if (!cryp->caps->padding_wa)
1132				*iv32 = cpu_to_be32(*iv32);
1133			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1134		}
1135	}
1136
1137	/* Wait for output data */
1138	ret = stm32_cryp_wait_output(cryp);
1139	if (ret) {
1140		dev_err(cryp->dev, "Timeout (read tag)\n");
1141		return ret;
1142	}
1143
1144	if (is_encrypt(cryp)) {
1145		/* Get and write tag */
1146		dst = sg_virt(cryp->out_sg) + _walked_out;
1147
1148		for (i = 0; i < AES_BLOCK_32; i++) {
1149			if (cryp->total_out >= sizeof(u32)) {
1150				/* Read a full u32 */
1151				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1152
1153				dst = stm32_cryp_next_out(cryp, dst,
1154							  sizeof(u32));
1155				cryp->total_out -= sizeof(u32);
1156			} else if (!cryp->total_out) {
1157				/* Empty fifo out (data from input padding) */
1158				stm32_cryp_read(cryp, CRYP_DOUT);
1159			} else {
1160				/* Read less than an u32 */
1161				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1162				d8 = (u8 *)&d32;
1163
1164				for (j = 0; j < cryp->total_out; j++) {
1165					*((u8 *)dst) = *(d8++);
1166					dst = stm32_cryp_next_out(cryp, dst, 1);
1167				}
1168				cryp->total_out = 0;
1169			}
1170		}
1171	} else {
1172		/* Get and check tag */
1173		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1174
1175		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1176					 cryp->total_in_save - cryp->authsize,
1177					 cryp->authsize, 0);
1178
1179		for (i = 0; i < AES_BLOCK_32; i++)
1180			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1181
1182		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1183			ret = -EBADMSG;
1184	}
1185
1186	/* Disable cryp */
1187	cfg &= ~CR_CRYPEN;
1188	stm32_cryp_write(cryp, CRYP_CR, cfg);
1189
1190	return ret;
1191}
1192
1193static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1194{
1195	u32 cr;
1196
1197	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1198		cryp->last_ctr[3] = 0;
1199		cryp->last_ctr[2]++;
1200		if (!cryp->last_ctr[2]) {
1201			cryp->last_ctr[1]++;
1202			if (!cryp->last_ctr[1])
1203				cryp->last_ctr[0]++;
1204		}
1205
1206		cr = stm32_cryp_read(cryp, CRYP_CR);
1207		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1208
1209		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1210
1211		stm32_cryp_write(cryp, CRYP_CR, cr);
1212	}
1213
1214	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1215	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1216	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1217	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1218}
1219
1220static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1221{
1222	unsigned int i, j;
1223	u32 d32, *dst;
1224	u8 *d8;
1225	size_t tag_size;
1226
1227	/* Do no read tag now (if any) */
1228	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1229		tag_size = cryp->authsize;
1230	else
1231		tag_size = 0;
1232
1233	dst = sg_virt(cryp->out_sg) + _walked_out;
1234
1235	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1236		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1237			/* Read a full u32 */
1238			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1239
1240			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1241			cryp->total_out -= sizeof(u32);
1242		} else if (cryp->total_out == tag_size) {
1243			/* Empty fifo out (data from input padding) */
1244			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1245		} else {
1246			/* Read less than an u32 */
1247			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1248			d8 = (u8 *)&d32;
1249
1250			for (j = 0; j < cryp->total_out - tag_size; j++) {
1251				*((u8 *)dst) = *(d8++);
1252				dst = stm32_cryp_next_out(cryp, dst, 1);
1253			}
1254			cryp->total_out = tag_size;
1255		}
1256	}
1257
1258	return !(cryp->total_out - tag_size) || !cryp->total_in;
1259}
1260
1261static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1262{
1263	unsigned int i, j;
1264	u32 *src;
1265	u8 d8[4];
1266	size_t tag_size;
1267
1268	/* Do no write tag (if any) */
1269	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1270		tag_size = cryp->authsize;
1271	else
1272		tag_size = 0;
1273
1274	src = sg_virt(cryp->in_sg) + _walked_in;
1275
1276	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1277		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1278			/* Write a full u32 */
1279			stm32_cryp_write(cryp, CRYP_DIN, *src);
1280
1281			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1282			cryp->total_in -= sizeof(u32);
1283		} else if (cryp->total_in == tag_size) {
1284			/* Write padding data */
1285			stm32_cryp_write(cryp, CRYP_DIN, 0);
1286		} else {
1287			/* Write less than an u32 */
1288			memset(d8, 0, sizeof(u32));
1289			for (j = 0; j < cryp->total_in - tag_size; j++) {
1290				d8[j] = *((u8 *)src);
1291				src = stm32_cryp_next_in(cryp, src, 1);
1292			}
1293
1294			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1295			cryp->total_in = tag_size;
1296		}
1297	}
1298}
1299
1300static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1301{
1302	int err;
1303	u32 cfg, tmp[AES_BLOCK_32];
1304	size_t total_in_ori = cryp->total_in;
1305	struct scatterlist *out_sg_ori = cryp->out_sg;
1306	unsigned int i;
1307
1308	/* 'Special workaround' procedure described in the datasheet */
1309
1310	/* a) disable ip */
1311	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1312	cfg = stm32_cryp_read(cryp, CRYP_CR);
1313	cfg &= ~CR_CRYPEN;
1314	stm32_cryp_write(cryp, CRYP_CR, cfg);
1315
1316	/* b) Update IV1R */
1317	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1318
1319	/* c) change mode to CTR */
1320	cfg &= ~CR_ALGO_MASK;
1321	cfg |= CR_AES_CTR;
1322	stm32_cryp_write(cryp, CRYP_CR, cfg);
1323
1324	/* a) enable IP */
1325	cfg |= CR_CRYPEN;
1326	stm32_cryp_write(cryp, CRYP_CR, cfg);
1327
1328	/* b) pad and write the last block */
1329	stm32_cryp_irq_write_block(cryp);
1330	cryp->total_in = total_in_ori;
1331	err = stm32_cryp_wait_output(cryp);
1332	if (err) {
1333		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1334		return stm32_cryp_finish_req(cryp, err);
1335	}
1336
1337	/* c) get and store encrypted data */
1338	stm32_cryp_irq_read_data(cryp);
1339	scatterwalk_map_and_copy(tmp, out_sg_ori,
1340				 cryp->total_in_save - total_in_ori,
1341				 total_in_ori, 0);
1342
1343	/* d) change mode back to AES GCM */
1344	cfg &= ~CR_ALGO_MASK;
1345	cfg |= CR_AES_GCM;
1346	stm32_cryp_write(cryp, CRYP_CR, cfg);
1347
1348	/* e) change phase to Final */
1349	cfg &= ~CR_PH_MASK;
1350	cfg |= CR_PH_FINAL;
1351	stm32_cryp_write(cryp, CRYP_CR, cfg);
1352
1353	/* f) write padded data */
1354	for (i = 0; i < AES_BLOCK_32; i++) {
1355		if (cryp->total_in)
1356			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1357		else
1358			stm32_cryp_write(cryp, CRYP_DIN, 0);
1359
1360		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1361	}
1362
1363	/* g) Empty fifo out */
1364	err = stm32_cryp_wait_output(cryp);
1365	if (err) {
1366		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1367		return stm32_cryp_finish_req(cryp, err);
1368	}
1369
1370	for (i = 0; i < AES_BLOCK_32; i++)
1371		stm32_cryp_read(cryp, CRYP_DOUT);
1372
1373	/* h) run the he normal Final phase */
1374	stm32_cryp_finish_req(cryp, 0);
1375}
1376
1377static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1378{
1379	u32 cfg, payload_bytes;
1380
1381	/* disable ip, set NPBLB and reneable ip */
1382	cfg = stm32_cryp_read(cryp, CRYP_CR);
1383	cfg &= ~CR_CRYPEN;
1384	stm32_cryp_write(cryp, CRYP_CR, cfg);
1385
1386	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1387					   cryp->total_in;
1388	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1389	cfg |= CR_CRYPEN;
1390	stm32_cryp_write(cryp, CRYP_CR, cfg);
1391}
1392
1393static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1394{
1395	int err = 0;
1396	u32 cfg, iv1tmp;
1397	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1398	size_t last_total_out, total_in_ori = cryp->total_in;
1399	struct scatterlist *out_sg_ori = cryp->out_sg;
1400	unsigned int i;
1401
1402	/* 'Special workaround' procedure described in the datasheet */
1403	cryp->flags |= FLG_CCM_PADDED_WA;
1404
1405	/* a) disable ip */
1406	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1407
1408	cfg = stm32_cryp_read(cryp, CRYP_CR);
1409	cfg &= ~CR_CRYPEN;
1410	stm32_cryp_write(cryp, CRYP_CR, cfg);
1411
1412	/* b) get IV1 from CRYP_CSGCMCCM7 */
1413	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1414
1415	/* c) Load CRYP_CSGCMCCMxR */
1416	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1417		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1418
1419	/* d) Write IV1R */
1420	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1421
1422	/* e) change mode to CTR */
1423	cfg &= ~CR_ALGO_MASK;
1424	cfg |= CR_AES_CTR;
1425	stm32_cryp_write(cryp, CRYP_CR, cfg);
1426
1427	/* a) enable IP */
1428	cfg |= CR_CRYPEN;
1429	stm32_cryp_write(cryp, CRYP_CR, cfg);
1430
1431	/* b) pad and write the last block */
1432	stm32_cryp_irq_write_block(cryp);
1433	cryp->total_in = total_in_ori;
1434	err = stm32_cryp_wait_output(cryp);
1435	if (err) {
1436		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1437		return stm32_cryp_finish_req(cryp, err);
1438	}
1439
1440	/* c) get and store decrypted data */
1441	last_total_out = cryp->total_out;
1442	stm32_cryp_irq_read_data(cryp);
1443
1444	memset(tmp, 0, sizeof(tmp));
1445	scatterwalk_map_and_copy(tmp, out_sg_ori,
1446				 cryp->total_out_save - last_total_out,
1447				 last_total_out, 0);
1448
1449	/* d) Load again CRYP_CSGCMCCMxR */
1450	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1451		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1452
1453	/* e) change mode back to AES CCM */
1454	cfg &= ~CR_ALGO_MASK;
1455	cfg |= CR_AES_CCM;
1456	stm32_cryp_write(cryp, CRYP_CR, cfg);
1457
1458	/* f) change phase to header */
1459	cfg &= ~CR_PH_MASK;
1460	cfg |= CR_PH_HEADER;
1461	stm32_cryp_write(cryp, CRYP_CR, cfg);
1462
1463	/* g) XOR and write padded data */
1464	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1465		tmp[i] ^= cstmp1[i];
1466		tmp[i] ^= cstmp2[i];
1467		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1468	}
1469
1470	/* h) wait for completion */
1471	err = stm32_cryp_wait_busy(cryp);
1472	if (err)
1473		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1474
1475	/* i) run the he normal Final phase */
1476	stm32_cryp_finish_req(cryp, err);
1477}
1478
1479static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1480{
1481	if (unlikely(!cryp->total_in)) {
1482		dev_warn(cryp->dev, "No more data to process\n");
1483		return;
1484	}
1485
1486	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1487		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1488		     is_encrypt(cryp))) {
1489		/* Padding for AES GCM encryption */
1490		if (cryp->caps->padding_wa)
1491			/* Special case 1 */
1492			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1493
1494		/* Setting padding bytes (NBBLB) */
1495		stm32_cryp_irq_set_npblb(cryp);
1496	}
1497
1498	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1499		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1500		     is_decrypt(cryp))) {
1501		/* Padding for AES CCM decryption */
1502		if (cryp->caps->padding_wa)
1503			/* Special case 2 */
1504			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1505
1506		/* Setting padding bytes (NBBLB) */
1507		stm32_cryp_irq_set_npblb(cryp);
1508	}
1509
1510	if (is_aes(cryp) && is_ctr(cryp))
1511		stm32_cryp_check_ctr_counter(cryp);
1512
1513	stm32_cryp_irq_write_block(cryp);
1514}
1515
1516static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1517{
1518	int err;
1519	unsigned int i, j;
1520	u32 cfg, *src;
1521
1522	src = sg_virt(cryp->in_sg) + _walked_in;
1523
1524	for (i = 0; i < AES_BLOCK_32; i++) {
1525		stm32_cryp_write(cryp, CRYP_DIN, *src);
1526
1527		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1528		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1529
1530		/* Check if whole header written */
1531		if ((cryp->total_in_save - cryp->total_in) ==
1532				cryp->areq->assoclen) {
1533			/* Write padding if needed */
1534			for (j = i + 1; j < AES_BLOCK_32; j++)
1535				stm32_cryp_write(cryp, CRYP_DIN, 0);
1536
1537			/* Wait for completion */
1538			err = stm32_cryp_wait_busy(cryp);
1539			if (err) {
1540				dev_err(cryp->dev, "Timeout (gcm header)\n");
1541				return stm32_cryp_finish_req(cryp, err);
1542			}
1543
1544			if (stm32_cryp_get_input_text_len(cryp)) {
1545				/* Phase 3 : payload */
1546				cfg = stm32_cryp_read(cryp, CRYP_CR);
1547				cfg &= ~CR_CRYPEN;
1548				stm32_cryp_write(cryp, CRYP_CR, cfg);
1549
1550				cfg &= ~CR_PH_MASK;
1551				cfg |= CR_PH_PAYLOAD;
1552				cfg |= CR_CRYPEN;
1553				stm32_cryp_write(cryp, CRYP_CR, cfg);
1554			} else {
1555				/* Phase 4 : tag */
1556				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1557				stm32_cryp_finish_req(cryp, 0);
1558			}
1559
1560			break;
1561		}
1562
1563		if (!cryp->total_in)
1564			break;
1565	}
1566}
1567
1568static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1569{
1570	int err;
1571	unsigned int i = 0, j, k;
1572	u32 alen, cfg, *src;
1573	u8 d8[4];
1574
1575	src = sg_virt(cryp->in_sg) + _walked_in;
1576	alen = cryp->areq->assoclen;
1577
1578	if (!_walked_in) {
1579		if (cryp->areq->assoclen <= 65280) {
1580			/* Write first u32 of B1 */
1581			d8[0] = (alen >> 8) & 0xFF;
1582			d8[1] = alen & 0xFF;
1583			d8[2] = *((u8 *)src);
1584			src = stm32_cryp_next_in(cryp, src, 1);
1585			d8[3] = *((u8 *)src);
1586			src = stm32_cryp_next_in(cryp, src, 1);
1587
1588			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1589			i++;
1590
1591			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1592		} else {
1593			/* Build the two first u32 of B1 */
1594			d8[0] = 0xFF;
1595			d8[1] = 0xFE;
1596			d8[2] = alen & 0xFF000000;
1597			d8[3] = alen & 0x00FF0000;
1598
1599			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1600			i++;
1601
1602			d8[0] = alen & 0x0000FF00;
1603			d8[1] = alen & 0x000000FF;
1604			d8[2] = *((u8 *)src);
1605			src = stm32_cryp_next_in(cryp, src, 1);
1606			d8[3] = *((u8 *)src);
1607			src = stm32_cryp_next_in(cryp, src, 1);
1608
1609			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1610			i++;
1611
1612			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1613		}
1614	}
1615
1616	/* Write next u32 */
1617	for (; i < AES_BLOCK_32; i++) {
1618		/* Build an u32 */
1619		memset(d8, 0, sizeof(u32));
1620		for (k = 0; k < sizeof(u32); k++) {
1621			d8[k] = *((u8 *)src);
1622			src = stm32_cryp_next_in(cryp, src, 1);
1623
1624			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1625			if ((cryp->total_in_save - cryp->total_in) == alen)
1626				break;
1627		}
1628
1629		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1630
1631		if ((cryp->total_in_save - cryp->total_in) == alen) {
1632			/* Write padding if needed */
1633			for (j = i + 1; j < AES_BLOCK_32; j++)
1634				stm32_cryp_write(cryp, CRYP_DIN, 0);
1635
1636			/* Wait for completion */
1637			err = stm32_cryp_wait_busy(cryp);
1638			if (err) {
1639				dev_err(cryp->dev, "Timeout (ccm header)\n");
1640				return stm32_cryp_finish_req(cryp, err);
1641			}
1642
1643			if (stm32_cryp_get_input_text_len(cryp)) {
1644				/* Phase 3 : payload */
1645				cfg = stm32_cryp_read(cryp, CRYP_CR);
1646				cfg &= ~CR_CRYPEN;
1647				stm32_cryp_write(cryp, CRYP_CR, cfg);
1648
1649				cfg &= ~CR_PH_MASK;
1650				cfg |= CR_PH_PAYLOAD;
1651				cfg |= CR_CRYPEN;
1652				stm32_cryp_write(cryp, CRYP_CR, cfg);
1653			} else {
1654				/* Phase 4 : tag */
1655				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1656				stm32_cryp_finish_req(cryp, 0);
1657			}
1658
1659			break;
1660		}
1661	}
1662}
1663
1664static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1665{
1666	struct stm32_cryp *cryp = arg;
1667	u32 ph;
1668
1669	if (cryp->irq_status & MISR_OUT)
1670		/* Output FIFO IRQ: read data */
1671		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1672			/* All bytes processed, finish */
1673			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1674			stm32_cryp_finish_req(cryp, 0);
1675			return IRQ_HANDLED;
1676		}
1677
1678	if (cryp->irq_status & MISR_IN) {
1679		if (is_gcm(cryp)) {
1680			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1681			if (unlikely(ph == CR_PH_HEADER))
1682				/* Write Header */
1683				stm32_cryp_irq_write_gcm_header(cryp);
1684			else
1685				/* Input FIFO IRQ: write data */
1686				stm32_cryp_irq_write_data(cryp);
1687			cryp->gcm_ctr++;
1688		} else if (is_ccm(cryp)) {
1689			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1690			if (unlikely(ph == CR_PH_HEADER))
1691				/* Write Header */
1692				stm32_cryp_irq_write_ccm_header(cryp);
1693			else
1694				/* Input FIFO IRQ: write data */
1695				stm32_cryp_irq_write_data(cryp);
1696		} else {
1697			/* Input FIFO IRQ: write data */
1698			stm32_cryp_irq_write_data(cryp);
1699		}
1700	}
1701
1702	return IRQ_HANDLED;
1703}
1704
1705static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1706{
1707	struct stm32_cryp *cryp = arg;
1708
1709	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1710
1711	return IRQ_WAKE_THREAD;
1712}
1713
1714static struct crypto_alg crypto_algs[] = {
1715{
1716	.cra_name		= "ecb(aes)",
1717	.cra_driver_name	= "stm32-ecb-aes",
1718	.cra_priority		= 200,
1719	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1720				  CRYPTO_ALG_ASYNC,
1721	.cra_blocksize		= AES_BLOCK_SIZE,
1722	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1723	.cra_alignmask		= 0xf,
1724	.cra_type		= &crypto_ablkcipher_type,
1725	.cra_module		= THIS_MODULE,
1726	.cra_init		= stm32_cryp_cra_init,
1727	.cra_ablkcipher = {
1728		.min_keysize	= AES_MIN_KEY_SIZE,
1729		.max_keysize	= AES_MAX_KEY_SIZE,
1730		.setkey		= stm32_cryp_aes_setkey,
1731		.encrypt	= stm32_cryp_aes_ecb_encrypt,
1732		.decrypt	= stm32_cryp_aes_ecb_decrypt,
1733	}
1734},
1735{
1736	.cra_name		= "cbc(aes)",
1737	.cra_driver_name	= "stm32-cbc-aes",
1738	.cra_priority		= 200,
1739	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1740				  CRYPTO_ALG_ASYNC,
1741	.cra_blocksize		= AES_BLOCK_SIZE,
1742	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1743	.cra_alignmask		= 0xf,
1744	.cra_type		= &crypto_ablkcipher_type,
1745	.cra_module		= THIS_MODULE,
1746	.cra_init		= stm32_cryp_cra_init,
1747	.cra_ablkcipher = {
1748		.min_keysize	= AES_MIN_KEY_SIZE,
1749		.max_keysize	= AES_MAX_KEY_SIZE,
1750		.ivsize		= AES_BLOCK_SIZE,
1751		.setkey		= stm32_cryp_aes_setkey,
1752		.encrypt	= stm32_cryp_aes_cbc_encrypt,
1753		.decrypt	= stm32_cryp_aes_cbc_decrypt,
1754	}
1755},
1756{
1757	.cra_name		= "ctr(aes)",
1758	.cra_driver_name	= "stm32-ctr-aes",
1759	.cra_priority		= 200,
1760	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1761				  CRYPTO_ALG_ASYNC,
1762	.cra_blocksize		= 1,
1763	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1764	.cra_alignmask		= 0xf,
1765	.cra_type		= &crypto_ablkcipher_type,
1766	.cra_module		= THIS_MODULE,
1767	.cra_init		= stm32_cryp_cra_init,
1768	.cra_ablkcipher = {
1769		.min_keysize	= AES_MIN_KEY_SIZE,
1770		.max_keysize	= AES_MAX_KEY_SIZE,
1771		.ivsize		= AES_BLOCK_SIZE,
1772		.setkey		= stm32_cryp_aes_setkey,
1773		.encrypt	= stm32_cryp_aes_ctr_encrypt,
1774		.decrypt	= stm32_cryp_aes_ctr_decrypt,
1775	}
1776},
1777{
1778	.cra_name		= "ecb(des)",
1779	.cra_driver_name	= "stm32-ecb-des",
1780	.cra_priority		= 200,
1781	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1782				  CRYPTO_ALG_ASYNC,
1783	.cra_blocksize		= DES_BLOCK_SIZE,
1784	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1785	.cra_alignmask		= 0xf,
1786	.cra_type		= &crypto_ablkcipher_type,
1787	.cra_module		= THIS_MODULE,
1788	.cra_init		= stm32_cryp_cra_init,
1789	.cra_ablkcipher = {
1790		.min_keysize	= DES_BLOCK_SIZE,
1791		.max_keysize	= DES_BLOCK_SIZE,
1792		.setkey		= stm32_cryp_des_setkey,
1793		.encrypt	= stm32_cryp_des_ecb_encrypt,
1794		.decrypt	= stm32_cryp_des_ecb_decrypt,
1795	}
1796},
1797{
1798	.cra_name		= "cbc(des)",
1799	.cra_driver_name	= "stm32-cbc-des",
1800	.cra_priority		= 200,
1801	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1802				  CRYPTO_ALG_ASYNC,
1803	.cra_blocksize		= DES_BLOCK_SIZE,
1804	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1805	.cra_alignmask		= 0xf,
1806	.cra_type		= &crypto_ablkcipher_type,
1807	.cra_module		= THIS_MODULE,
1808	.cra_init		= stm32_cryp_cra_init,
1809	.cra_ablkcipher = {
1810		.min_keysize	= DES_BLOCK_SIZE,
1811		.max_keysize	= DES_BLOCK_SIZE,
1812		.ivsize		= DES_BLOCK_SIZE,
1813		.setkey		= stm32_cryp_des_setkey,
1814		.encrypt	= stm32_cryp_des_cbc_encrypt,
1815		.decrypt	= stm32_cryp_des_cbc_decrypt,
1816	}
1817},
1818{
1819	.cra_name		= "ecb(des3_ede)",
1820	.cra_driver_name	= "stm32-ecb-des3",
1821	.cra_priority		= 200,
1822	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1823				  CRYPTO_ALG_ASYNC,
1824	.cra_blocksize		= DES_BLOCK_SIZE,
1825	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1826	.cra_alignmask		= 0xf,
1827	.cra_type		= &crypto_ablkcipher_type,
1828	.cra_module		= THIS_MODULE,
1829	.cra_init		= stm32_cryp_cra_init,
1830	.cra_ablkcipher = {
1831		.min_keysize	= 3 * DES_BLOCK_SIZE,
1832		.max_keysize	= 3 * DES_BLOCK_SIZE,
1833		.setkey		= stm32_cryp_tdes_setkey,
1834		.encrypt	= stm32_cryp_tdes_ecb_encrypt,
1835		.decrypt	= stm32_cryp_tdes_ecb_decrypt,
1836	}
1837},
1838{
1839	.cra_name		= "cbc(des3_ede)",
1840	.cra_driver_name	= "stm32-cbc-des3",
1841	.cra_priority		= 200,
1842	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1843				  CRYPTO_ALG_ASYNC,
1844	.cra_blocksize		= DES_BLOCK_SIZE,
1845	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1846	.cra_alignmask		= 0xf,
1847	.cra_type		= &crypto_ablkcipher_type,
1848	.cra_module		= THIS_MODULE,
1849	.cra_init		= stm32_cryp_cra_init,
1850	.cra_ablkcipher = {
1851		.min_keysize	= 3 * DES_BLOCK_SIZE,
1852		.max_keysize	= 3 * DES_BLOCK_SIZE,
1853		.ivsize		= DES_BLOCK_SIZE,
1854		.setkey		= stm32_cryp_tdes_setkey,
1855		.encrypt	= stm32_cryp_tdes_cbc_encrypt,
1856		.decrypt	= stm32_cryp_tdes_cbc_decrypt,
1857	}
1858},
1859};
1860
1861static struct aead_alg aead_algs[] = {
1862{
1863	.setkey		= stm32_cryp_aes_aead_setkey,
1864	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1865	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1866	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1867	.init		= stm32_cryp_aes_aead_init,
1868	.ivsize		= 12,
1869	.maxauthsize	= AES_BLOCK_SIZE,
1870
1871	.base = {
1872		.cra_name		= "gcm(aes)",
1873		.cra_driver_name	= "stm32-gcm-aes",
1874		.cra_priority		= 200,
1875		.cra_flags		= CRYPTO_ALG_ASYNC,
1876		.cra_blocksize		= 1,
1877		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1878		.cra_alignmask		= 0xf,
1879		.cra_module		= THIS_MODULE,
1880	},
1881},
1882{
1883	.setkey		= stm32_cryp_aes_aead_setkey,
1884	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1885	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1886	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1887	.init		= stm32_cryp_aes_aead_init,
1888	.ivsize		= AES_BLOCK_SIZE,
1889	.maxauthsize	= AES_BLOCK_SIZE,
1890
1891	.base = {
1892		.cra_name		= "ccm(aes)",
1893		.cra_driver_name	= "stm32-ccm-aes",
1894		.cra_priority		= 200,
1895		.cra_flags		= CRYPTO_ALG_ASYNC,
1896		.cra_blocksize		= 1,
1897		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1898		.cra_alignmask		= 0xf,
1899		.cra_module		= THIS_MODULE,
1900	},
1901},
1902};
1903
1904static const struct stm32_cryp_caps f7_data = {
1905	.swap_final = true,
1906	.padding_wa = true,
1907};
1908
1909static const struct stm32_cryp_caps mp1_data = {
1910	.swap_final = false,
1911	.padding_wa = false,
1912};
1913
1914static const struct of_device_id stm32_dt_ids[] = {
1915	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1916	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1917	{},
1918};
1919MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1920
1921static int stm32_cryp_probe(struct platform_device *pdev)
1922{
1923	struct device *dev = &pdev->dev;
1924	struct stm32_cryp *cryp;
1925	struct resource *res;
1926	struct reset_control *rst;
1927	int irq, ret;
1928
1929	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1930	if (!cryp)
1931		return -ENOMEM;
1932
1933	cryp->caps = of_device_get_match_data(dev);
1934	if (!cryp->caps)
1935		return -ENODEV;
1936
1937	cryp->dev = dev;
1938
1939	mutex_init(&cryp->lock);
1940
1941	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1942	cryp->regs = devm_ioremap_resource(dev, res);
1943	if (IS_ERR(cryp->regs))
1944		return PTR_ERR(cryp->regs);
1945
1946	irq = platform_get_irq(pdev, 0);
1947	if (irq < 0) {
1948		dev_err(dev, "Cannot get IRQ resource\n");
1949		return irq;
1950	}
1951
1952	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1953					stm32_cryp_irq_thread, IRQF_ONESHOT,
1954					dev_name(dev), cryp);
1955	if (ret) {
1956		dev_err(dev, "Cannot grab IRQ\n");
1957		return ret;
1958	}
1959
1960	cryp->clk = devm_clk_get(dev, NULL);
1961	if (IS_ERR(cryp->clk)) {
1962		dev_err(dev, "Could not get clock\n");
1963		return PTR_ERR(cryp->clk);
1964	}
1965
1966	ret = clk_prepare_enable(cryp->clk);
1967	if (ret) {
1968		dev_err(cryp->dev, "Failed to enable clock\n");
1969		return ret;
1970	}
1971
 
 
 
 
 
 
 
1972	rst = devm_reset_control_get(dev, NULL);
1973	if (!IS_ERR(rst)) {
1974		reset_control_assert(rst);
1975		udelay(2);
1976		reset_control_deassert(rst);
1977	}
1978
1979	platform_set_drvdata(pdev, cryp);
1980
1981	spin_lock(&cryp_list.lock);
1982	list_add(&cryp->list, &cryp_list.dev_list);
1983	spin_unlock(&cryp_list.lock);
1984
1985	/* Initialize crypto engine */
1986	cryp->engine = crypto_engine_alloc_init(dev, 1);
1987	if (!cryp->engine) {
1988		dev_err(dev, "Could not init crypto engine\n");
1989		ret = -ENOMEM;
1990		goto err_engine1;
1991	}
1992
1993	ret = crypto_engine_start(cryp->engine);
1994	if (ret) {
1995		dev_err(dev, "Could not start crypto engine\n");
1996		goto err_engine2;
1997	}
1998
1999	ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2000	if (ret) {
2001		dev_err(dev, "Could not register algs\n");
2002		goto err_algs;
2003	}
2004
2005	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2006	if (ret)
2007		goto err_aead_algs;
2008
2009	dev_info(dev, "Initialized\n");
2010
 
 
2011	return 0;
2012
2013err_aead_algs:
2014	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2015err_algs:
2016err_engine2:
2017	crypto_engine_exit(cryp->engine);
2018err_engine1:
2019	spin_lock(&cryp_list.lock);
2020	list_del(&cryp->list);
2021	spin_unlock(&cryp_list.lock);
2022
 
 
 
 
 
2023	clk_disable_unprepare(cryp->clk);
2024
2025	return ret;
2026}
2027
2028static int stm32_cryp_remove(struct platform_device *pdev)
2029{
2030	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
 
2031
2032	if (!cryp)
2033		return -ENODEV;
2034
 
 
 
 
2035	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2036	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2037
2038	crypto_engine_exit(cryp->engine);
2039
2040	spin_lock(&cryp_list.lock);
2041	list_del(&cryp->list);
2042	spin_unlock(&cryp_list.lock);
2043
 
 
 
2044	clk_disable_unprepare(cryp->clk);
2045
2046	return 0;
2047}
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049static struct platform_driver stm32_cryp_driver = {
2050	.probe  = stm32_cryp_probe,
2051	.remove = stm32_cryp_remove,
2052	.driver = {
2053		.name           = DRIVER_NAME,
 
2054		.of_match_table = stm32_dt_ids,
2055	},
2056};
2057
2058module_platform_driver(stm32_cryp_driver);
2059
2060MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2061MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2062MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22
  23#define DRIVER_NAME             "stm32-cryp"
  24
  25/* Bit [0] encrypt / decrypt */
  26#define FLG_ENCRYPT             BIT(0)
  27/* Bit [8..1] algo & operation mode */
  28#define FLG_AES                 BIT(1)
  29#define FLG_DES                 BIT(2)
  30#define FLG_TDES                BIT(3)
  31#define FLG_ECB                 BIT(4)
  32#define FLG_CBC                 BIT(5)
  33#define FLG_CTR                 BIT(6)
  34#define FLG_GCM                 BIT(7)
  35#define FLG_CCM                 BIT(8)
  36/* Mode mask = bits [15..0] */
  37#define FLG_MODE_MASK           GENMASK(15, 0)
  38/* Bit [31..16] status  */
  39#define FLG_CCM_PADDED_WA       BIT(16)
  40
  41/* Registers */
  42#define CRYP_CR                 0x00000000
  43#define CRYP_SR                 0x00000004
  44#define CRYP_DIN                0x00000008
  45#define CRYP_DOUT               0x0000000C
  46#define CRYP_DMACR              0x00000010
  47#define CRYP_IMSCR              0x00000014
  48#define CRYP_RISR               0x00000018
  49#define CRYP_MISR               0x0000001C
  50#define CRYP_K0LR               0x00000020
  51#define CRYP_K0RR               0x00000024
  52#define CRYP_K1LR               0x00000028
  53#define CRYP_K1RR               0x0000002C
  54#define CRYP_K2LR               0x00000030
  55#define CRYP_K2RR               0x00000034
  56#define CRYP_K3LR               0x00000038
  57#define CRYP_K3RR               0x0000003C
  58#define CRYP_IV0LR              0x00000040
  59#define CRYP_IV0RR              0x00000044
  60#define CRYP_IV1LR              0x00000048
  61#define CRYP_IV1RR              0x0000004C
  62#define CRYP_CSGCMCCM0R         0x00000050
  63#define CRYP_CSGCM0R            0x00000070
  64
  65/* Registers values */
  66#define CR_DEC_NOT_ENC          0x00000004
  67#define CR_TDES_ECB             0x00000000
  68#define CR_TDES_CBC             0x00000008
  69#define CR_DES_ECB              0x00000010
  70#define CR_DES_CBC              0x00000018
  71#define CR_AES_ECB              0x00000020
  72#define CR_AES_CBC              0x00000028
  73#define CR_AES_CTR              0x00000030
  74#define CR_AES_KP               0x00000038
  75#define CR_AES_GCM              0x00080000
  76#define CR_AES_CCM              0x00080008
  77#define CR_AES_UNKNOWN          0xFFFFFFFF
  78#define CR_ALGO_MASK            0x00080038
  79#define CR_DATA32               0x00000000
  80#define CR_DATA16               0x00000040
  81#define CR_DATA8                0x00000080
  82#define CR_DATA1                0x000000C0
  83#define CR_KEY128               0x00000000
  84#define CR_KEY192               0x00000100
  85#define CR_KEY256               0x00000200
  86#define CR_FFLUSH               0x00004000
  87#define CR_CRYPEN               0x00008000
  88#define CR_PH_INIT              0x00000000
  89#define CR_PH_HEADER            0x00010000
  90#define CR_PH_PAYLOAD           0x00020000
  91#define CR_PH_FINAL             0x00030000
  92#define CR_PH_MASK              0x00030000
  93#define CR_NBPBL_SHIFT          20
  94
  95#define SR_BUSY                 0x00000010
  96#define SR_OFNE                 0x00000004
  97
  98#define IMSCR_IN                BIT(0)
  99#define IMSCR_OUT               BIT(1)
 100
 101#define MISR_IN                 BIT(0)
 102#define MISR_OUT                BIT(1)
 103
 104/* Misc */
 105#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 106#define GCM_CTR_INIT            2
 107#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 108#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 109#define CRYP_AUTOSUSPEND_DELAY	50
 110
 111struct stm32_cryp_caps {
 112	bool                    swap_final;
 113	bool                    padding_wa;
 114};
 115
 116struct stm32_cryp_ctx {
 117	struct crypto_engine_ctx enginectx;
 118	struct stm32_cryp       *cryp;
 119	int                     keylen;
 120	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 121	unsigned long           flags;
 122};
 123
 124struct stm32_cryp_reqctx {
 125	unsigned long mode;
 126};
 127
 128struct stm32_cryp {
 129	struct list_head        list;
 130	struct device           *dev;
 131	void __iomem            *regs;
 132	struct clk              *clk;
 133	unsigned long           flags;
 134	u32                     irq_status;
 135	const struct stm32_cryp_caps *caps;
 136	struct stm32_cryp_ctx   *ctx;
 137
 138	struct crypto_engine    *engine;
 139
 
 140	struct ablkcipher_request *req;
 141	struct aead_request     *areq;
 142
 143	size_t                  authsize;
 144	size_t                  hw_blocksize;
 145
 146	size_t                  total_in;
 147	size_t                  total_in_save;
 148	size_t                  total_out;
 149	size_t                  total_out_save;
 150
 151	struct scatterlist      *in_sg;
 152	struct scatterlist      *out_sg;
 153	struct scatterlist      *out_sg_save;
 154
 155	struct scatterlist      in_sgl;
 156	struct scatterlist      out_sgl;
 157	bool                    sgs_copied;
 158
 159	int                     in_sg_len;
 160	int                     out_sg_len;
 161
 162	struct scatter_walk     in_walk;
 163	struct scatter_walk     out_walk;
 164
 165	u32                     last_ctr[4];
 166	u32                     gcm_ctr;
 167};
 168
 169struct stm32_cryp_list {
 170	struct list_head        dev_list;
 171	spinlock_t              lock; /* protect dev_list */
 172};
 173
 174static struct stm32_cryp_list cryp_list = {
 175	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 176	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 177};
 178
 179static inline bool is_aes(struct stm32_cryp *cryp)
 180{
 181	return cryp->flags & FLG_AES;
 182}
 183
 184static inline bool is_des(struct stm32_cryp *cryp)
 185{
 186	return cryp->flags & FLG_DES;
 187}
 188
 189static inline bool is_tdes(struct stm32_cryp *cryp)
 190{
 191	return cryp->flags & FLG_TDES;
 192}
 193
 194static inline bool is_ecb(struct stm32_cryp *cryp)
 195{
 196	return cryp->flags & FLG_ECB;
 197}
 198
 199static inline bool is_cbc(struct stm32_cryp *cryp)
 200{
 201	return cryp->flags & FLG_CBC;
 202}
 203
 204static inline bool is_ctr(struct stm32_cryp *cryp)
 205{
 206	return cryp->flags & FLG_CTR;
 207}
 208
 209static inline bool is_gcm(struct stm32_cryp *cryp)
 210{
 211	return cryp->flags & FLG_GCM;
 212}
 213
 214static inline bool is_ccm(struct stm32_cryp *cryp)
 215{
 216	return cryp->flags & FLG_CCM;
 217}
 218
 219static inline bool is_encrypt(struct stm32_cryp *cryp)
 220{
 221	return cryp->flags & FLG_ENCRYPT;
 222}
 223
 224static inline bool is_decrypt(struct stm32_cryp *cryp)
 225{
 226	return !is_encrypt(cryp);
 227}
 228
 229static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 230{
 231	return readl_relaxed(cryp->regs + ofst);
 232}
 233
 234static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 235{
 236	writel_relaxed(val, cryp->regs + ofst);
 237}
 238
 239static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 240{
 241	u32 status;
 242
 243	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 244			!(status & SR_BUSY), 10, 100000);
 245}
 246
 247static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 248{
 249	u32 status;
 250
 251	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 252			!(status & CR_CRYPEN), 10, 100000);
 253}
 254
 255static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 256{
 257	u32 status;
 258
 259	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 260			status & SR_OFNE, 10, 100000);
 261}
 262
 263static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 264
 265static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 266{
 267	struct stm32_cryp *tmp, *cryp = NULL;
 268
 269	spin_lock_bh(&cryp_list.lock);
 270	if (!ctx->cryp) {
 271		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 272			cryp = tmp;
 273			break;
 274		}
 275		ctx->cryp = cryp;
 276	} else {
 277		cryp = ctx->cryp;
 278	}
 279
 280	spin_unlock_bh(&cryp_list.lock);
 281
 282	return cryp;
 283}
 284
 285static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 286				    size_t align)
 287{
 288	int len = 0;
 289
 290	if (!total)
 291		return 0;
 292
 293	if (!IS_ALIGNED(total, align))
 294		return -EINVAL;
 295
 296	while (sg) {
 297		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 298			return -EINVAL;
 299
 300		if (!IS_ALIGNED(sg->length, align))
 301			return -EINVAL;
 302
 303		len += sg->length;
 304		sg = sg_next(sg);
 305	}
 306
 307	if (len != total)
 308		return -EINVAL;
 309
 310	return 0;
 311}
 312
 313static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 314{
 315	int ret;
 316
 317	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 318				       cryp->hw_blocksize);
 319	if (ret)
 320		return ret;
 321
 322	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 323				       cryp->hw_blocksize);
 324
 325	return ret;
 326}
 327
 328static void sg_copy_buf(void *buf, struct scatterlist *sg,
 329			unsigned int start, unsigned int nbytes, int out)
 330{
 331	struct scatter_walk walk;
 332
 333	if (!nbytes)
 334		return;
 335
 336	scatterwalk_start(&walk, sg);
 337	scatterwalk_advance(&walk, start);
 338	scatterwalk_copychunks(buf, &walk, nbytes, out);
 339	scatterwalk_done(&walk, out, 0);
 340}
 341
 342static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 343{
 344	void *buf_in, *buf_out;
 345	int pages, total_in, total_out;
 346
 347	if (!stm32_cryp_check_io_aligned(cryp)) {
 348		cryp->sgs_copied = 0;
 349		return 0;
 350	}
 351
 352	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 353	pages = total_in ? get_order(total_in) : 1;
 354	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 355
 356	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 357	pages = total_out ? get_order(total_out) : 1;
 358	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 359
 360	if (!buf_in || !buf_out) {
 361		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 362		cryp->sgs_copied = 0;
 363		return -EFAULT;
 364	}
 365
 366	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 367
 368	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 369	cryp->in_sg = &cryp->in_sgl;
 370	cryp->in_sg_len = 1;
 371
 372	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 373	cryp->out_sg_save = cryp->out_sg;
 374	cryp->out_sg = &cryp->out_sgl;
 375	cryp->out_sg_len = 1;
 376
 377	cryp->sgs_copied = 1;
 378
 379	return 0;
 380}
 381
 382static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 383{
 384	if (!iv)
 385		return;
 386
 387	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 388	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 389
 390	if (is_aes(cryp)) {
 391		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 392		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 393	}
 394}
 395
 396static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 397{
 398	struct ablkcipher_request *req = cryp->req;
 399	u32 *tmp = req->info;
 400
 401	if (!tmp)
 402		return;
 403
 404	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 405	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 406
 407	if (is_aes(cryp)) {
 408		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 409		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 410	}
 411}
 412
 413static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 414{
 415	unsigned int i;
 416	int r_id;
 417
 418	if (is_des(c)) {
 419		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 420		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 421	} else {
 422		r_id = CRYP_K3RR;
 423		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 424			stm32_cryp_write(c, r_id,
 425					 cpu_to_be32(c->ctx->key[i - 1]));
 426	}
 427}
 428
 429static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 430{
 431	if (is_aes(cryp) && is_ecb(cryp))
 432		return CR_AES_ECB;
 433
 434	if (is_aes(cryp) && is_cbc(cryp))
 435		return CR_AES_CBC;
 436
 437	if (is_aes(cryp) && is_ctr(cryp))
 438		return CR_AES_CTR;
 439
 440	if (is_aes(cryp) && is_gcm(cryp))
 441		return CR_AES_GCM;
 442
 443	if (is_aes(cryp) && is_ccm(cryp))
 444		return CR_AES_CCM;
 445
 446	if (is_des(cryp) && is_ecb(cryp))
 447		return CR_DES_ECB;
 448
 449	if (is_des(cryp) && is_cbc(cryp))
 450		return CR_DES_CBC;
 451
 452	if (is_tdes(cryp) && is_ecb(cryp))
 453		return CR_TDES_ECB;
 454
 455	if (is_tdes(cryp) && is_cbc(cryp))
 456		return CR_TDES_CBC;
 457
 458	dev_err(cryp->dev, "Unknown mode\n");
 459	return CR_AES_UNKNOWN;
 460}
 461
 462static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 463{
 464	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 465				  cryp->areq->cryptlen - cryp->authsize;
 466}
 467
 468static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 469{
 470	int ret;
 471	u32 iv[4];
 472
 473	/* Phase 1 : init */
 474	memcpy(iv, cryp->areq->iv, 12);
 475	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 476	cryp->gcm_ctr = GCM_CTR_INIT;
 477	stm32_cryp_hw_write_iv(cryp, iv);
 478
 479	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 480
 481	/* Wait for end of processing */
 482	ret = stm32_cryp_wait_enable(cryp);
 483	if (ret)
 484		dev_err(cryp->dev, "Timeout (gcm init)\n");
 485
 486	return ret;
 487}
 488
 489static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 490{
 491	int ret;
 492	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 493	u32 *d;
 494	unsigned int i, textlen;
 495
 496	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 497	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 498	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 499	iv[AES_BLOCK_SIZE - 1] = 1;
 500	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 501
 502	/* Build B0 */
 503	memcpy(b0, iv, AES_BLOCK_SIZE);
 504
 505	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 506
 507	if (cryp->areq->assoclen)
 508		b0[0] |= 0x40;
 509
 510	textlen = stm32_cryp_get_input_text_len(cryp);
 511
 512	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 513	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 514
 515	/* Enable HW */
 516	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 517
 518	/* Write B0 */
 519	d = (u32 *)b0;
 520
 521	for (i = 0; i < AES_BLOCK_32; i++) {
 522		if (!cryp->caps->padding_wa)
 523			*d = cpu_to_be32(*d);
 524		stm32_cryp_write(cryp, CRYP_DIN, *d++);
 525	}
 526
 527	/* Wait for end of processing */
 528	ret = stm32_cryp_wait_enable(cryp);
 529	if (ret)
 530		dev_err(cryp->dev, "Timeout (ccm init)\n");
 531
 532	return ret;
 533}
 534
 535static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 536{
 537	int ret;
 538	u32 cfg, hw_mode;
 539
 540	pm_runtime_get_sync(cryp->dev);
 541
 542	/* Disable interrupt */
 543	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 544
 545	/* Set key */
 546	stm32_cryp_hw_write_key(cryp);
 547
 548	/* Set configuration */
 549	cfg = CR_DATA8 | CR_FFLUSH;
 550
 551	switch (cryp->ctx->keylen) {
 552	case AES_KEYSIZE_128:
 553		cfg |= CR_KEY128;
 554		break;
 555
 556	case AES_KEYSIZE_192:
 557		cfg |= CR_KEY192;
 558		break;
 559
 560	default:
 561	case AES_KEYSIZE_256:
 562		cfg |= CR_KEY256;
 563		break;
 564	}
 565
 566	hw_mode = stm32_cryp_get_hw_mode(cryp);
 567	if (hw_mode == CR_AES_UNKNOWN)
 568		return -EINVAL;
 569
 570	/* AES ECB/CBC decrypt: run key preparation first */
 571	if (is_decrypt(cryp) &&
 572	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 573		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 574
 575		/* Wait for end of processing */
 576		ret = stm32_cryp_wait_busy(cryp);
 577		if (ret) {
 578			dev_err(cryp->dev, "Timeout (key preparation)\n");
 579			return ret;
 580		}
 581	}
 582
 583	cfg |= hw_mode;
 584
 585	if (is_decrypt(cryp))
 586		cfg |= CR_DEC_NOT_ENC;
 587
 588	/* Apply config and flush (valid when CRYPEN = 0) */
 589	stm32_cryp_write(cryp, CRYP_CR, cfg);
 590
 591	switch (hw_mode) {
 592	case CR_AES_GCM:
 593	case CR_AES_CCM:
 594		/* Phase 1 : init */
 595		if (hw_mode == CR_AES_CCM)
 596			ret = stm32_cryp_ccm_init(cryp, cfg);
 597		else
 598			ret = stm32_cryp_gcm_init(cryp, cfg);
 599
 600		if (ret)
 601			return ret;
 602
 603		/* Phase 2 : header (authenticated data) */
 604		if (cryp->areq->assoclen) {
 605			cfg |= CR_PH_HEADER;
 606		} else if (stm32_cryp_get_input_text_len(cryp)) {
 607			cfg |= CR_PH_PAYLOAD;
 608			stm32_cryp_write(cryp, CRYP_CR, cfg);
 609		} else {
 610			cfg |= CR_PH_INIT;
 611		}
 612
 613		break;
 614
 615	case CR_DES_CBC:
 616	case CR_TDES_CBC:
 617	case CR_AES_CBC:
 618	case CR_AES_CTR:
 619		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
 620		break;
 621
 622	default:
 623		break;
 624	}
 625
 626	/* Enable now */
 627	cfg |= CR_CRYPEN;
 628
 629	stm32_cryp_write(cryp, CRYP_CR, cfg);
 630
 631	cryp->flags &= ~FLG_CCM_PADDED_WA;
 632
 633	return 0;
 634}
 635
 636static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 637{
 638	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 639		/* Phase 4 : output tag */
 640		err = stm32_cryp_read_auth_tag(cryp);
 641
 642	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 643		stm32_cryp_get_iv(cryp);
 644
 645	if (cryp->sgs_copied) {
 646		void *buf_in, *buf_out;
 647		int pages, len;
 648
 649		buf_in = sg_virt(&cryp->in_sgl);
 650		buf_out = sg_virt(&cryp->out_sgl);
 651
 652		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 653			    cryp->total_out_save, 1);
 654
 655		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 656		pages = len ? get_order(len) : 1;
 657		free_pages((unsigned long)buf_in, pages);
 658
 659		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 660		pages = len ? get_order(len) : 1;
 661		free_pages((unsigned long)buf_out, pages);
 662	}
 663
 664	pm_runtime_mark_last_busy(cryp->dev);
 665	pm_runtime_put_autosuspend(cryp->dev);
 666
 667	if (is_gcm(cryp) || is_ccm(cryp))
 668		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 669	else
 
 670		crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
 671						   err);
 
 
 672
 673	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 
 
 674}
 675
 676static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 677{
 678	/* Enable interrupt and let the IRQ handler do everything */
 679	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 680
 681	return 0;
 682}
 683
 684static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 685static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 686					 void *areq);
 687
 688static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
 689{
 690	struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
 691
 692	tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
 693
 694	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 695	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 696	ctx->enginectx.op.unprepare_request = NULL;
 697	return 0;
 698}
 699
 700static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 701static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 702				       void *areq);
 703
 704static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 705{
 706	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 707
 708	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 709
 710	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 711	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 712	ctx->enginectx.op.unprepare_request = NULL;
 713
 714	return 0;
 715}
 716
 717static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
 718{
 719	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
 720			crypto_ablkcipher_reqtfm(req));
 721	struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
 722	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 723
 724	if (!cryp)
 725		return -ENODEV;
 726
 727	rctx->mode = mode;
 728
 729	return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
 730}
 731
 732static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 733{
 734	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 735	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 736	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 737
 738	if (!cryp)
 739		return -ENODEV;
 740
 741	rctx->mode = mode;
 742
 743	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 744}
 745
 746static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 747			     unsigned int keylen)
 748{
 749	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 750
 751	memcpy(ctx->key, key, keylen);
 752	ctx->keylen = keylen;
 753
 754	return 0;
 755}
 756
 757static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 758				 unsigned int keylen)
 759{
 760	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 761	    keylen != AES_KEYSIZE_256)
 762		return -EINVAL;
 763	else
 764		return stm32_cryp_setkey(tfm, key, keylen);
 765}
 766
 767static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 768				 unsigned int keylen)
 769{
 770	return verify_ablkcipher_des_key(tfm, key) ?:
 771	       stm32_cryp_setkey(tfm, key, keylen);
 
 
 772}
 773
 774static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 775				  unsigned int keylen)
 776{
 777	return verify_ablkcipher_des3_key(tfm, key) ?:
 778	       stm32_cryp_setkey(tfm, key, keylen);
 
 
 779}
 780
 781static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 782				      unsigned int keylen)
 783{
 784	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 785
 786	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 787	    keylen != AES_KEYSIZE_256)
 788		return -EINVAL;
 789
 790	memcpy(ctx->key, key, keylen);
 791	ctx->keylen = keylen;
 792
 793	return 0;
 794}
 795
 796static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 797					  unsigned int authsize)
 798{
 799	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 800}
 801
 802static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 803					  unsigned int authsize)
 804{
 805	switch (authsize) {
 806	case 4:
 807	case 6:
 808	case 8:
 809	case 10:
 810	case 12:
 811	case 14:
 812	case 16:
 813		break;
 814	default:
 815		return -EINVAL;
 816	}
 817
 818	return 0;
 819}
 820
 821static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
 822{
 823	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 824}
 825
 826static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
 827{
 828	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 829}
 830
 831static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
 832{
 833	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 834}
 835
 836static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
 837{
 838	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 839}
 840
 841static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
 842{
 843	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 844}
 845
 846static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
 847{
 848	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 849}
 850
 851static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 852{
 853	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 854}
 855
 856static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 857{
 858	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 859}
 860
 861static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 862{
 863	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 864}
 865
 866static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 867{
 868	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 869}
 870
 871static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
 872{
 873	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 874}
 875
 876static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
 877{
 878	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 879}
 880
 881static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
 882{
 883	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 884}
 885
 886static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
 887{
 888	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 889}
 890
 891static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
 892{
 893	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 894}
 895
 896static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
 897{
 898	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 899}
 900
 901static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
 902{
 903	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 904}
 905
 906static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
 907{
 908	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 909}
 910
 911static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
 912				  struct aead_request *areq)
 913{
 914	struct stm32_cryp_ctx *ctx;
 915	struct stm32_cryp *cryp;
 916	struct stm32_cryp_reqctx *rctx;
 917	int ret;
 918
 919	if (!req && !areq)
 920		return -EINVAL;
 921
 922	ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
 923		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 924
 925	cryp = ctx->cryp;
 926
 927	if (!cryp)
 928		return -ENODEV;
 929
 
 
 930	rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
 931	rctx->mode &= FLG_MODE_MASK;
 932
 933	ctx->cryp = cryp;
 934
 935	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 936	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 937	cryp->ctx = ctx;
 938
 939	if (req) {
 940		cryp->req = req;
 941		cryp->areq = NULL;
 942		cryp->total_in = req->nbytes;
 943		cryp->total_out = cryp->total_in;
 944	} else {
 945		/*
 946		 * Length of input and output data:
 947		 * Encryption case:
 948		 *  INPUT  =   AssocData  ||   PlainText
 949		 *          <- assoclen ->  <- cryptlen ->
 950		 *          <------- total_in ----------->
 951		 *
 952		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 953		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 954		 *          <---------------- total_out ----------------->
 955		 *
 956		 * Decryption case:
 957		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 958		 *          <- assoclen ->  <--------- cryptlen --------->
 959		 *                                          <- authsize ->
 960		 *          <---------------- total_in ------------------>
 961		 *
 962		 *  OUTPUT =   AssocData  ||   PlainText
 963		 *          <- assoclen ->  <- crypten - authsize ->
 964		 *          <---------- total_out ----------------->
 965		 */
 966		cryp->areq = areq;
 967		cryp->req = NULL;
 968		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 969		cryp->total_in = areq->assoclen + areq->cryptlen;
 970		if (is_encrypt(cryp))
 971			/* Append auth tag to output */
 972			cryp->total_out = cryp->total_in + cryp->authsize;
 973		else
 974			/* No auth tag in output */
 975			cryp->total_out = cryp->total_in - cryp->authsize;
 976	}
 977
 978	cryp->total_in_save = cryp->total_in;
 979	cryp->total_out_save = cryp->total_out;
 980
 981	cryp->in_sg = req ? req->src : areq->src;
 982	cryp->out_sg = req ? req->dst : areq->dst;
 983	cryp->out_sg_save = cryp->out_sg;
 984
 985	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 986	if (cryp->in_sg_len < 0) {
 987		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 988		ret = cryp->in_sg_len;
 989		return ret;
 990	}
 991
 992	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 993	if (cryp->out_sg_len < 0) {
 994		dev_err(cryp->dev, "Cannot get out_sg_len\n");
 995		ret = cryp->out_sg_len;
 996		return ret;
 997	}
 998
 999	ret = stm32_cryp_copy_sgs(cryp);
1000	if (ret)
1001		return ret;
1002
1003	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1004	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1005
1006	if (is_gcm(cryp) || is_ccm(cryp)) {
1007		/* In output, jump after assoc data */
1008		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1009		cryp->total_out -= cryp->areq->assoclen;
1010	}
1011
1012	ret = stm32_cryp_hw_init(cryp);
 
 
 
 
1013	return ret;
1014}
1015
1016static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1017					 void *areq)
1018{
1019	struct ablkcipher_request *req = container_of(areq,
1020						      struct ablkcipher_request,
1021						      base);
1022
1023	return stm32_cryp_prepare_req(req, NULL);
1024}
1025
1026static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1027{
1028	struct ablkcipher_request *req = container_of(areq,
1029						      struct ablkcipher_request,
1030						      base);
1031	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1032			crypto_ablkcipher_reqtfm(req));
1033	struct stm32_cryp *cryp = ctx->cryp;
1034
1035	if (!cryp)
1036		return -ENODEV;
1037
1038	return stm32_cryp_cpu_start(cryp);
1039}
1040
1041static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1042{
1043	struct aead_request *req = container_of(areq, struct aead_request,
1044						base);
1045
1046	return stm32_cryp_prepare_req(NULL, req);
1047}
1048
1049static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1050{
1051	struct aead_request *req = container_of(areq, struct aead_request,
1052						base);
1053	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1054	struct stm32_cryp *cryp = ctx->cryp;
1055
1056	if (!cryp)
1057		return -ENODEV;
1058
1059	if (unlikely(!cryp->areq->assoclen &&
1060		     !stm32_cryp_get_input_text_len(cryp))) {
1061		/* No input data to process: get tag and finish */
1062		stm32_cryp_finish_req(cryp, 0);
1063		return 0;
1064	}
1065
1066	return stm32_cryp_cpu_start(cryp);
1067}
1068
1069static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1070				unsigned int n)
1071{
1072	scatterwalk_advance(&cryp->out_walk, n);
1073
1074	if (unlikely(cryp->out_sg->length == _walked_out)) {
1075		cryp->out_sg = sg_next(cryp->out_sg);
1076		if (cryp->out_sg) {
1077			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1078			return (sg_virt(cryp->out_sg) + _walked_out);
1079		}
1080	}
1081
1082	return (u32 *)((u8 *)dst + n);
1083}
1084
1085static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1086			       unsigned int n)
1087{
1088	scatterwalk_advance(&cryp->in_walk, n);
1089
1090	if (unlikely(cryp->in_sg->length == _walked_in)) {
1091		cryp->in_sg = sg_next(cryp->in_sg);
1092		if (cryp->in_sg) {
1093			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1094			return (sg_virt(cryp->in_sg) + _walked_in);
1095		}
1096	}
1097
1098	return (u32 *)((u8 *)src + n);
1099}
1100
1101static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1102{
1103	u32 cfg, size_bit, *dst, d32;
1104	u8 *d8;
1105	unsigned int i, j;
1106	int ret = 0;
1107
1108	/* Update Config */
1109	cfg = stm32_cryp_read(cryp, CRYP_CR);
1110
1111	cfg &= ~CR_PH_MASK;
1112	cfg |= CR_PH_FINAL;
1113	cfg &= ~CR_DEC_NOT_ENC;
1114	cfg |= CR_CRYPEN;
1115
1116	stm32_cryp_write(cryp, CRYP_CR, cfg);
1117
1118	if (is_gcm(cryp)) {
1119		/* GCM: write aad and payload size (in bits) */
1120		size_bit = cryp->areq->assoclen * 8;
1121		if (cryp->caps->swap_final)
1122			size_bit = cpu_to_be32(size_bit);
1123
1124		stm32_cryp_write(cryp, CRYP_DIN, 0);
1125		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1126
1127		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1128				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1129		size_bit *= 8;
1130		if (cryp->caps->swap_final)
1131			size_bit = cpu_to_be32(size_bit);
1132
1133		stm32_cryp_write(cryp, CRYP_DIN, 0);
1134		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1135	} else {
1136		/* CCM: write CTR0 */
1137		u8 iv[AES_BLOCK_SIZE];
1138		u32 *iv32 = (u32 *)iv;
1139
1140		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1141		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1142
1143		for (i = 0; i < AES_BLOCK_32; i++) {
1144			if (!cryp->caps->padding_wa)
1145				*iv32 = cpu_to_be32(*iv32);
1146			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1147		}
1148	}
1149
1150	/* Wait for output data */
1151	ret = stm32_cryp_wait_output(cryp);
1152	if (ret) {
1153		dev_err(cryp->dev, "Timeout (read tag)\n");
1154		return ret;
1155	}
1156
1157	if (is_encrypt(cryp)) {
1158		/* Get and write tag */
1159		dst = sg_virt(cryp->out_sg) + _walked_out;
1160
1161		for (i = 0; i < AES_BLOCK_32; i++) {
1162			if (cryp->total_out >= sizeof(u32)) {
1163				/* Read a full u32 */
1164				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1165
1166				dst = stm32_cryp_next_out(cryp, dst,
1167							  sizeof(u32));
1168				cryp->total_out -= sizeof(u32);
1169			} else if (!cryp->total_out) {
1170				/* Empty fifo out (data from input padding) */
1171				stm32_cryp_read(cryp, CRYP_DOUT);
1172			} else {
1173				/* Read less than an u32 */
1174				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1175				d8 = (u8 *)&d32;
1176
1177				for (j = 0; j < cryp->total_out; j++) {
1178					*((u8 *)dst) = *(d8++);
1179					dst = stm32_cryp_next_out(cryp, dst, 1);
1180				}
1181				cryp->total_out = 0;
1182			}
1183		}
1184	} else {
1185		/* Get and check tag */
1186		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1187
1188		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1189					 cryp->total_in_save - cryp->authsize,
1190					 cryp->authsize, 0);
1191
1192		for (i = 0; i < AES_BLOCK_32; i++)
1193			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1194
1195		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1196			ret = -EBADMSG;
1197	}
1198
1199	/* Disable cryp */
1200	cfg &= ~CR_CRYPEN;
1201	stm32_cryp_write(cryp, CRYP_CR, cfg);
1202
1203	return ret;
1204}
1205
1206static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1207{
1208	u32 cr;
1209
1210	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1211		cryp->last_ctr[3] = 0;
1212		cryp->last_ctr[2]++;
1213		if (!cryp->last_ctr[2]) {
1214			cryp->last_ctr[1]++;
1215			if (!cryp->last_ctr[1])
1216				cryp->last_ctr[0]++;
1217		}
1218
1219		cr = stm32_cryp_read(cryp, CRYP_CR);
1220		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1221
1222		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1223
1224		stm32_cryp_write(cryp, CRYP_CR, cr);
1225	}
1226
1227	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1228	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1229	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1230	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1231}
1232
1233static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1234{
1235	unsigned int i, j;
1236	u32 d32, *dst;
1237	u8 *d8;
1238	size_t tag_size;
1239
1240	/* Do no read tag now (if any) */
1241	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1242		tag_size = cryp->authsize;
1243	else
1244		tag_size = 0;
1245
1246	dst = sg_virt(cryp->out_sg) + _walked_out;
1247
1248	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1249		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1250			/* Read a full u32 */
1251			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1252
1253			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1254			cryp->total_out -= sizeof(u32);
1255		} else if (cryp->total_out == tag_size) {
1256			/* Empty fifo out (data from input padding) */
1257			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1258		} else {
1259			/* Read less than an u32 */
1260			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1261			d8 = (u8 *)&d32;
1262
1263			for (j = 0; j < cryp->total_out - tag_size; j++) {
1264				*((u8 *)dst) = *(d8++);
1265				dst = stm32_cryp_next_out(cryp, dst, 1);
1266			}
1267			cryp->total_out = tag_size;
1268		}
1269	}
1270
1271	return !(cryp->total_out - tag_size) || !cryp->total_in;
1272}
1273
1274static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1275{
1276	unsigned int i, j;
1277	u32 *src;
1278	u8 d8[4];
1279	size_t tag_size;
1280
1281	/* Do no write tag (if any) */
1282	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1283		tag_size = cryp->authsize;
1284	else
1285		tag_size = 0;
1286
1287	src = sg_virt(cryp->in_sg) + _walked_in;
1288
1289	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1290		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1291			/* Write a full u32 */
1292			stm32_cryp_write(cryp, CRYP_DIN, *src);
1293
1294			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1295			cryp->total_in -= sizeof(u32);
1296		} else if (cryp->total_in == tag_size) {
1297			/* Write padding data */
1298			stm32_cryp_write(cryp, CRYP_DIN, 0);
1299		} else {
1300			/* Write less than an u32 */
1301			memset(d8, 0, sizeof(u32));
1302			for (j = 0; j < cryp->total_in - tag_size; j++) {
1303				d8[j] = *((u8 *)src);
1304				src = stm32_cryp_next_in(cryp, src, 1);
1305			}
1306
1307			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1308			cryp->total_in = tag_size;
1309		}
1310	}
1311}
1312
1313static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1314{
1315	int err;
1316	u32 cfg, tmp[AES_BLOCK_32];
1317	size_t total_in_ori = cryp->total_in;
1318	struct scatterlist *out_sg_ori = cryp->out_sg;
1319	unsigned int i;
1320
1321	/* 'Special workaround' procedure described in the datasheet */
1322
1323	/* a) disable ip */
1324	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1325	cfg = stm32_cryp_read(cryp, CRYP_CR);
1326	cfg &= ~CR_CRYPEN;
1327	stm32_cryp_write(cryp, CRYP_CR, cfg);
1328
1329	/* b) Update IV1R */
1330	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1331
1332	/* c) change mode to CTR */
1333	cfg &= ~CR_ALGO_MASK;
1334	cfg |= CR_AES_CTR;
1335	stm32_cryp_write(cryp, CRYP_CR, cfg);
1336
1337	/* a) enable IP */
1338	cfg |= CR_CRYPEN;
1339	stm32_cryp_write(cryp, CRYP_CR, cfg);
1340
1341	/* b) pad and write the last block */
1342	stm32_cryp_irq_write_block(cryp);
1343	cryp->total_in = total_in_ori;
1344	err = stm32_cryp_wait_output(cryp);
1345	if (err) {
1346		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1347		return stm32_cryp_finish_req(cryp, err);
1348	}
1349
1350	/* c) get and store encrypted data */
1351	stm32_cryp_irq_read_data(cryp);
1352	scatterwalk_map_and_copy(tmp, out_sg_ori,
1353				 cryp->total_in_save - total_in_ori,
1354				 total_in_ori, 0);
1355
1356	/* d) change mode back to AES GCM */
1357	cfg &= ~CR_ALGO_MASK;
1358	cfg |= CR_AES_GCM;
1359	stm32_cryp_write(cryp, CRYP_CR, cfg);
1360
1361	/* e) change phase to Final */
1362	cfg &= ~CR_PH_MASK;
1363	cfg |= CR_PH_FINAL;
1364	stm32_cryp_write(cryp, CRYP_CR, cfg);
1365
1366	/* f) write padded data */
1367	for (i = 0; i < AES_BLOCK_32; i++) {
1368		if (cryp->total_in)
1369			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1370		else
1371			stm32_cryp_write(cryp, CRYP_DIN, 0);
1372
1373		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1374	}
1375
1376	/* g) Empty fifo out */
1377	err = stm32_cryp_wait_output(cryp);
1378	if (err) {
1379		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1380		return stm32_cryp_finish_req(cryp, err);
1381	}
1382
1383	for (i = 0; i < AES_BLOCK_32; i++)
1384		stm32_cryp_read(cryp, CRYP_DOUT);
1385
1386	/* h) run the he normal Final phase */
1387	stm32_cryp_finish_req(cryp, 0);
1388}
1389
1390static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1391{
1392	u32 cfg, payload_bytes;
1393
1394	/* disable ip, set NPBLB and reneable ip */
1395	cfg = stm32_cryp_read(cryp, CRYP_CR);
1396	cfg &= ~CR_CRYPEN;
1397	stm32_cryp_write(cryp, CRYP_CR, cfg);
1398
1399	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1400					   cryp->total_in;
1401	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1402	cfg |= CR_CRYPEN;
1403	stm32_cryp_write(cryp, CRYP_CR, cfg);
1404}
1405
1406static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1407{
1408	int err = 0;
1409	u32 cfg, iv1tmp;
1410	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1411	size_t last_total_out, total_in_ori = cryp->total_in;
1412	struct scatterlist *out_sg_ori = cryp->out_sg;
1413	unsigned int i;
1414
1415	/* 'Special workaround' procedure described in the datasheet */
1416	cryp->flags |= FLG_CCM_PADDED_WA;
1417
1418	/* a) disable ip */
1419	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1420
1421	cfg = stm32_cryp_read(cryp, CRYP_CR);
1422	cfg &= ~CR_CRYPEN;
1423	stm32_cryp_write(cryp, CRYP_CR, cfg);
1424
1425	/* b) get IV1 from CRYP_CSGCMCCM7 */
1426	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1427
1428	/* c) Load CRYP_CSGCMCCMxR */
1429	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1430		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1431
1432	/* d) Write IV1R */
1433	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1434
1435	/* e) change mode to CTR */
1436	cfg &= ~CR_ALGO_MASK;
1437	cfg |= CR_AES_CTR;
1438	stm32_cryp_write(cryp, CRYP_CR, cfg);
1439
1440	/* a) enable IP */
1441	cfg |= CR_CRYPEN;
1442	stm32_cryp_write(cryp, CRYP_CR, cfg);
1443
1444	/* b) pad and write the last block */
1445	stm32_cryp_irq_write_block(cryp);
1446	cryp->total_in = total_in_ori;
1447	err = stm32_cryp_wait_output(cryp);
1448	if (err) {
1449		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1450		return stm32_cryp_finish_req(cryp, err);
1451	}
1452
1453	/* c) get and store decrypted data */
1454	last_total_out = cryp->total_out;
1455	stm32_cryp_irq_read_data(cryp);
1456
1457	memset(tmp, 0, sizeof(tmp));
1458	scatterwalk_map_and_copy(tmp, out_sg_ori,
1459				 cryp->total_out_save - last_total_out,
1460				 last_total_out, 0);
1461
1462	/* d) Load again CRYP_CSGCMCCMxR */
1463	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1464		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1465
1466	/* e) change mode back to AES CCM */
1467	cfg &= ~CR_ALGO_MASK;
1468	cfg |= CR_AES_CCM;
1469	stm32_cryp_write(cryp, CRYP_CR, cfg);
1470
1471	/* f) change phase to header */
1472	cfg &= ~CR_PH_MASK;
1473	cfg |= CR_PH_HEADER;
1474	stm32_cryp_write(cryp, CRYP_CR, cfg);
1475
1476	/* g) XOR and write padded data */
1477	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1478		tmp[i] ^= cstmp1[i];
1479		tmp[i] ^= cstmp2[i];
1480		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1481	}
1482
1483	/* h) wait for completion */
1484	err = stm32_cryp_wait_busy(cryp);
1485	if (err)
1486		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1487
1488	/* i) run the he normal Final phase */
1489	stm32_cryp_finish_req(cryp, err);
1490}
1491
1492static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1493{
1494	if (unlikely(!cryp->total_in)) {
1495		dev_warn(cryp->dev, "No more data to process\n");
1496		return;
1497	}
1498
1499	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1500		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1501		     is_encrypt(cryp))) {
1502		/* Padding for AES GCM encryption */
1503		if (cryp->caps->padding_wa)
1504			/* Special case 1 */
1505			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1506
1507		/* Setting padding bytes (NBBLB) */
1508		stm32_cryp_irq_set_npblb(cryp);
1509	}
1510
1511	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1512		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1513		     is_decrypt(cryp))) {
1514		/* Padding for AES CCM decryption */
1515		if (cryp->caps->padding_wa)
1516			/* Special case 2 */
1517			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1518
1519		/* Setting padding bytes (NBBLB) */
1520		stm32_cryp_irq_set_npblb(cryp);
1521	}
1522
1523	if (is_aes(cryp) && is_ctr(cryp))
1524		stm32_cryp_check_ctr_counter(cryp);
1525
1526	stm32_cryp_irq_write_block(cryp);
1527}
1528
1529static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1530{
1531	int err;
1532	unsigned int i, j;
1533	u32 cfg, *src;
1534
1535	src = sg_virt(cryp->in_sg) + _walked_in;
1536
1537	for (i = 0; i < AES_BLOCK_32; i++) {
1538		stm32_cryp_write(cryp, CRYP_DIN, *src);
1539
1540		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1541		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1542
1543		/* Check if whole header written */
1544		if ((cryp->total_in_save - cryp->total_in) ==
1545				cryp->areq->assoclen) {
1546			/* Write padding if needed */
1547			for (j = i + 1; j < AES_BLOCK_32; j++)
1548				stm32_cryp_write(cryp, CRYP_DIN, 0);
1549
1550			/* Wait for completion */
1551			err = stm32_cryp_wait_busy(cryp);
1552			if (err) {
1553				dev_err(cryp->dev, "Timeout (gcm header)\n");
1554				return stm32_cryp_finish_req(cryp, err);
1555			}
1556
1557			if (stm32_cryp_get_input_text_len(cryp)) {
1558				/* Phase 3 : payload */
1559				cfg = stm32_cryp_read(cryp, CRYP_CR);
1560				cfg &= ~CR_CRYPEN;
1561				stm32_cryp_write(cryp, CRYP_CR, cfg);
1562
1563				cfg &= ~CR_PH_MASK;
1564				cfg |= CR_PH_PAYLOAD;
1565				cfg |= CR_CRYPEN;
1566				stm32_cryp_write(cryp, CRYP_CR, cfg);
1567			} else {
1568				/* Phase 4 : tag */
1569				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1570				stm32_cryp_finish_req(cryp, 0);
1571			}
1572
1573			break;
1574		}
1575
1576		if (!cryp->total_in)
1577			break;
1578	}
1579}
1580
1581static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1582{
1583	int err;
1584	unsigned int i = 0, j, k;
1585	u32 alen, cfg, *src;
1586	u8 d8[4];
1587
1588	src = sg_virt(cryp->in_sg) + _walked_in;
1589	alen = cryp->areq->assoclen;
1590
1591	if (!_walked_in) {
1592		if (cryp->areq->assoclen <= 65280) {
1593			/* Write first u32 of B1 */
1594			d8[0] = (alen >> 8) & 0xFF;
1595			d8[1] = alen & 0xFF;
1596			d8[2] = *((u8 *)src);
1597			src = stm32_cryp_next_in(cryp, src, 1);
1598			d8[3] = *((u8 *)src);
1599			src = stm32_cryp_next_in(cryp, src, 1);
1600
1601			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1602			i++;
1603
1604			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1605		} else {
1606			/* Build the two first u32 of B1 */
1607			d8[0] = 0xFF;
1608			d8[1] = 0xFE;
1609			d8[2] = alen & 0xFF000000;
1610			d8[3] = alen & 0x00FF0000;
1611
1612			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1613			i++;
1614
1615			d8[0] = alen & 0x0000FF00;
1616			d8[1] = alen & 0x000000FF;
1617			d8[2] = *((u8 *)src);
1618			src = stm32_cryp_next_in(cryp, src, 1);
1619			d8[3] = *((u8 *)src);
1620			src = stm32_cryp_next_in(cryp, src, 1);
1621
1622			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623			i++;
1624
1625			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1626		}
1627	}
1628
1629	/* Write next u32 */
1630	for (; i < AES_BLOCK_32; i++) {
1631		/* Build an u32 */
1632		memset(d8, 0, sizeof(u32));
1633		for (k = 0; k < sizeof(u32); k++) {
1634			d8[k] = *((u8 *)src);
1635			src = stm32_cryp_next_in(cryp, src, 1);
1636
1637			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1638			if ((cryp->total_in_save - cryp->total_in) == alen)
1639				break;
1640		}
1641
1642		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643
1644		if ((cryp->total_in_save - cryp->total_in) == alen) {
1645			/* Write padding if needed */
1646			for (j = i + 1; j < AES_BLOCK_32; j++)
1647				stm32_cryp_write(cryp, CRYP_DIN, 0);
1648
1649			/* Wait for completion */
1650			err = stm32_cryp_wait_busy(cryp);
1651			if (err) {
1652				dev_err(cryp->dev, "Timeout (ccm header)\n");
1653				return stm32_cryp_finish_req(cryp, err);
1654			}
1655
1656			if (stm32_cryp_get_input_text_len(cryp)) {
1657				/* Phase 3 : payload */
1658				cfg = stm32_cryp_read(cryp, CRYP_CR);
1659				cfg &= ~CR_CRYPEN;
1660				stm32_cryp_write(cryp, CRYP_CR, cfg);
1661
1662				cfg &= ~CR_PH_MASK;
1663				cfg |= CR_PH_PAYLOAD;
1664				cfg |= CR_CRYPEN;
1665				stm32_cryp_write(cryp, CRYP_CR, cfg);
1666			} else {
1667				/* Phase 4 : tag */
1668				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1669				stm32_cryp_finish_req(cryp, 0);
1670			}
1671
1672			break;
1673		}
1674	}
1675}
1676
1677static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1678{
1679	struct stm32_cryp *cryp = arg;
1680	u32 ph;
1681
1682	if (cryp->irq_status & MISR_OUT)
1683		/* Output FIFO IRQ: read data */
1684		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1685			/* All bytes processed, finish */
1686			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1687			stm32_cryp_finish_req(cryp, 0);
1688			return IRQ_HANDLED;
1689		}
1690
1691	if (cryp->irq_status & MISR_IN) {
1692		if (is_gcm(cryp)) {
1693			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1694			if (unlikely(ph == CR_PH_HEADER))
1695				/* Write Header */
1696				stm32_cryp_irq_write_gcm_header(cryp);
1697			else
1698				/* Input FIFO IRQ: write data */
1699				stm32_cryp_irq_write_data(cryp);
1700			cryp->gcm_ctr++;
1701		} else if (is_ccm(cryp)) {
1702			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1703			if (unlikely(ph == CR_PH_HEADER))
1704				/* Write Header */
1705				stm32_cryp_irq_write_ccm_header(cryp);
1706			else
1707				/* Input FIFO IRQ: write data */
1708				stm32_cryp_irq_write_data(cryp);
1709		} else {
1710			/* Input FIFO IRQ: write data */
1711			stm32_cryp_irq_write_data(cryp);
1712		}
1713	}
1714
1715	return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720	struct stm32_cryp *cryp = arg;
1721
1722	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1723
1724	return IRQ_WAKE_THREAD;
1725}
1726
1727static struct crypto_alg crypto_algs[] = {
1728{
1729	.cra_name		= "ecb(aes)",
1730	.cra_driver_name	= "stm32-ecb-aes",
1731	.cra_priority		= 200,
1732	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1733				  CRYPTO_ALG_ASYNC,
1734	.cra_blocksize		= AES_BLOCK_SIZE,
1735	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1736	.cra_alignmask		= 0xf,
1737	.cra_type		= &crypto_ablkcipher_type,
1738	.cra_module		= THIS_MODULE,
1739	.cra_init		= stm32_cryp_cra_init,
1740	.cra_ablkcipher = {
1741		.min_keysize	= AES_MIN_KEY_SIZE,
1742		.max_keysize	= AES_MAX_KEY_SIZE,
1743		.setkey		= stm32_cryp_aes_setkey,
1744		.encrypt	= stm32_cryp_aes_ecb_encrypt,
1745		.decrypt	= stm32_cryp_aes_ecb_decrypt,
1746	}
1747},
1748{
1749	.cra_name		= "cbc(aes)",
1750	.cra_driver_name	= "stm32-cbc-aes",
1751	.cra_priority		= 200,
1752	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1753				  CRYPTO_ALG_ASYNC,
1754	.cra_blocksize		= AES_BLOCK_SIZE,
1755	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1756	.cra_alignmask		= 0xf,
1757	.cra_type		= &crypto_ablkcipher_type,
1758	.cra_module		= THIS_MODULE,
1759	.cra_init		= stm32_cryp_cra_init,
1760	.cra_ablkcipher = {
1761		.min_keysize	= AES_MIN_KEY_SIZE,
1762		.max_keysize	= AES_MAX_KEY_SIZE,
1763		.ivsize		= AES_BLOCK_SIZE,
1764		.setkey		= stm32_cryp_aes_setkey,
1765		.encrypt	= stm32_cryp_aes_cbc_encrypt,
1766		.decrypt	= stm32_cryp_aes_cbc_decrypt,
1767	}
1768},
1769{
1770	.cra_name		= "ctr(aes)",
1771	.cra_driver_name	= "stm32-ctr-aes",
1772	.cra_priority		= 200,
1773	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1774				  CRYPTO_ALG_ASYNC,
1775	.cra_blocksize		= 1,
1776	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1777	.cra_alignmask		= 0xf,
1778	.cra_type		= &crypto_ablkcipher_type,
1779	.cra_module		= THIS_MODULE,
1780	.cra_init		= stm32_cryp_cra_init,
1781	.cra_ablkcipher = {
1782		.min_keysize	= AES_MIN_KEY_SIZE,
1783		.max_keysize	= AES_MAX_KEY_SIZE,
1784		.ivsize		= AES_BLOCK_SIZE,
1785		.setkey		= stm32_cryp_aes_setkey,
1786		.encrypt	= stm32_cryp_aes_ctr_encrypt,
1787		.decrypt	= stm32_cryp_aes_ctr_decrypt,
1788	}
1789},
1790{
1791	.cra_name		= "ecb(des)",
1792	.cra_driver_name	= "stm32-ecb-des",
1793	.cra_priority		= 200,
1794	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1795				  CRYPTO_ALG_ASYNC,
1796	.cra_blocksize		= DES_BLOCK_SIZE,
1797	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1798	.cra_alignmask		= 0xf,
1799	.cra_type		= &crypto_ablkcipher_type,
1800	.cra_module		= THIS_MODULE,
1801	.cra_init		= stm32_cryp_cra_init,
1802	.cra_ablkcipher = {
1803		.min_keysize	= DES_BLOCK_SIZE,
1804		.max_keysize	= DES_BLOCK_SIZE,
1805		.setkey		= stm32_cryp_des_setkey,
1806		.encrypt	= stm32_cryp_des_ecb_encrypt,
1807		.decrypt	= stm32_cryp_des_ecb_decrypt,
1808	}
1809},
1810{
1811	.cra_name		= "cbc(des)",
1812	.cra_driver_name	= "stm32-cbc-des",
1813	.cra_priority		= 200,
1814	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1815				  CRYPTO_ALG_ASYNC,
1816	.cra_blocksize		= DES_BLOCK_SIZE,
1817	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1818	.cra_alignmask		= 0xf,
1819	.cra_type		= &crypto_ablkcipher_type,
1820	.cra_module		= THIS_MODULE,
1821	.cra_init		= stm32_cryp_cra_init,
1822	.cra_ablkcipher = {
1823		.min_keysize	= DES_BLOCK_SIZE,
1824		.max_keysize	= DES_BLOCK_SIZE,
1825		.ivsize		= DES_BLOCK_SIZE,
1826		.setkey		= stm32_cryp_des_setkey,
1827		.encrypt	= stm32_cryp_des_cbc_encrypt,
1828		.decrypt	= stm32_cryp_des_cbc_decrypt,
1829	}
1830},
1831{
1832	.cra_name		= "ecb(des3_ede)",
1833	.cra_driver_name	= "stm32-ecb-des3",
1834	.cra_priority		= 200,
1835	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1836				  CRYPTO_ALG_ASYNC,
1837	.cra_blocksize		= DES_BLOCK_SIZE,
1838	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1839	.cra_alignmask		= 0xf,
1840	.cra_type		= &crypto_ablkcipher_type,
1841	.cra_module		= THIS_MODULE,
1842	.cra_init		= stm32_cryp_cra_init,
1843	.cra_ablkcipher = {
1844		.min_keysize	= 3 * DES_BLOCK_SIZE,
1845		.max_keysize	= 3 * DES_BLOCK_SIZE,
1846		.setkey		= stm32_cryp_tdes_setkey,
1847		.encrypt	= stm32_cryp_tdes_ecb_encrypt,
1848		.decrypt	= stm32_cryp_tdes_ecb_decrypt,
1849	}
1850},
1851{
1852	.cra_name		= "cbc(des3_ede)",
1853	.cra_driver_name	= "stm32-cbc-des3",
1854	.cra_priority		= 200,
1855	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1856				  CRYPTO_ALG_ASYNC,
1857	.cra_blocksize		= DES_BLOCK_SIZE,
1858	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1859	.cra_alignmask		= 0xf,
1860	.cra_type		= &crypto_ablkcipher_type,
1861	.cra_module		= THIS_MODULE,
1862	.cra_init		= stm32_cryp_cra_init,
1863	.cra_ablkcipher = {
1864		.min_keysize	= 3 * DES_BLOCK_SIZE,
1865		.max_keysize	= 3 * DES_BLOCK_SIZE,
1866		.ivsize		= DES_BLOCK_SIZE,
1867		.setkey		= stm32_cryp_tdes_setkey,
1868		.encrypt	= stm32_cryp_tdes_cbc_encrypt,
1869		.decrypt	= stm32_cryp_tdes_cbc_decrypt,
1870	}
1871},
1872};
1873
1874static struct aead_alg aead_algs[] = {
1875{
1876	.setkey		= stm32_cryp_aes_aead_setkey,
1877	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1878	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1879	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1880	.init		= stm32_cryp_aes_aead_init,
1881	.ivsize		= 12,
1882	.maxauthsize	= AES_BLOCK_SIZE,
1883
1884	.base = {
1885		.cra_name		= "gcm(aes)",
1886		.cra_driver_name	= "stm32-gcm-aes",
1887		.cra_priority		= 200,
1888		.cra_flags		= CRYPTO_ALG_ASYNC,
1889		.cra_blocksize		= 1,
1890		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1891		.cra_alignmask		= 0xf,
1892		.cra_module		= THIS_MODULE,
1893	},
1894},
1895{
1896	.setkey		= stm32_cryp_aes_aead_setkey,
1897	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1898	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1899	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1900	.init		= stm32_cryp_aes_aead_init,
1901	.ivsize		= AES_BLOCK_SIZE,
1902	.maxauthsize	= AES_BLOCK_SIZE,
1903
1904	.base = {
1905		.cra_name		= "ccm(aes)",
1906		.cra_driver_name	= "stm32-ccm-aes",
1907		.cra_priority		= 200,
1908		.cra_flags		= CRYPTO_ALG_ASYNC,
1909		.cra_blocksize		= 1,
1910		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1911		.cra_alignmask		= 0xf,
1912		.cra_module		= THIS_MODULE,
1913	},
1914},
1915};
1916
1917static const struct stm32_cryp_caps f7_data = {
1918	.swap_final = true,
1919	.padding_wa = true,
1920};
1921
1922static const struct stm32_cryp_caps mp1_data = {
1923	.swap_final = false,
1924	.padding_wa = false,
1925};
1926
1927static const struct of_device_id stm32_dt_ids[] = {
1928	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1929	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1930	{},
1931};
1932MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1933
1934static int stm32_cryp_probe(struct platform_device *pdev)
1935{
1936	struct device *dev = &pdev->dev;
1937	struct stm32_cryp *cryp;
 
1938	struct reset_control *rst;
1939	int irq, ret;
1940
1941	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1942	if (!cryp)
1943		return -ENOMEM;
1944
1945	cryp->caps = of_device_get_match_data(dev);
1946	if (!cryp->caps)
1947		return -ENODEV;
1948
1949	cryp->dev = dev;
1950
1951	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
 
 
 
1952	if (IS_ERR(cryp->regs))
1953		return PTR_ERR(cryp->regs);
1954
1955	irq = platform_get_irq(pdev, 0);
1956	if (irq < 0)
 
1957		return irq;
 
1958
1959	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960					stm32_cryp_irq_thread, IRQF_ONESHOT,
1961					dev_name(dev), cryp);
1962	if (ret) {
1963		dev_err(dev, "Cannot grab IRQ\n");
1964		return ret;
1965	}
1966
1967	cryp->clk = devm_clk_get(dev, NULL);
1968	if (IS_ERR(cryp->clk)) {
1969		dev_err(dev, "Could not get clock\n");
1970		return PTR_ERR(cryp->clk);
1971	}
1972
1973	ret = clk_prepare_enable(cryp->clk);
1974	if (ret) {
1975		dev_err(cryp->dev, "Failed to enable clock\n");
1976		return ret;
1977	}
1978
1979	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980	pm_runtime_use_autosuspend(dev);
1981
1982	pm_runtime_get_noresume(dev);
1983	pm_runtime_set_active(dev);
1984	pm_runtime_enable(dev);
1985
1986	rst = devm_reset_control_get(dev, NULL);
1987	if (!IS_ERR(rst)) {
1988		reset_control_assert(rst);
1989		udelay(2);
1990		reset_control_deassert(rst);
1991	}
1992
1993	platform_set_drvdata(pdev, cryp);
1994
1995	spin_lock(&cryp_list.lock);
1996	list_add(&cryp->list, &cryp_list.dev_list);
1997	spin_unlock(&cryp_list.lock);
1998
1999	/* Initialize crypto engine */
2000	cryp->engine = crypto_engine_alloc_init(dev, 1);
2001	if (!cryp->engine) {
2002		dev_err(dev, "Could not init crypto engine\n");
2003		ret = -ENOMEM;
2004		goto err_engine1;
2005	}
2006
2007	ret = crypto_engine_start(cryp->engine);
2008	if (ret) {
2009		dev_err(dev, "Could not start crypto engine\n");
2010		goto err_engine2;
2011	}
2012
2013	ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014	if (ret) {
2015		dev_err(dev, "Could not register algs\n");
2016		goto err_algs;
2017	}
2018
2019	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020	if (ret)
2021		goto err_aead_algs;
2022
2023	dev_info(dev, "Initialized\n");
2024
2025	pm_runtime_put_sync(dev);
2026
2027	return 0;
2028
2029err_aead_algs:
2030	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031err_algs:
2032err_engine2:
2033	crypto_engine_exit(cryp->engine);
2034err_engine1:
2035	spin_lock(&cryp_list.lock);
2036	list_del(&cryp->list);
2037	spin_unlock(&cryp_list.lock);
2038
2039	pm_runtime_disable(dev);
2040	pm_runtime_put_noidle(dev);
2041	pm_runtime_disable(dev);
2042	pm_runtime_put_noidle(dev);
2043
2044	clk_disable_unprepare(cryp->clk);
2045
2046	return ret;
2047}
2048
2049static int stm32_cryp_remove(struct platform_device *pdev)
2050{
2051	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052	int ret;
2053
2054	if (!cryp)
2055		return -ENODEV;
2056
2057	ret = pm_runtime_get_sync(cryp->dev);
2058	if (ret < 0)
2059		return ret;
2060
2061	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063
2064	crypto_engine_exit(cryp->engine);
2065
2066	spin_lock(&cryp_list.lock);
2067	list_del(&cryp->list);
2068	spin_unlock(&cryp_list.lock);
2069
2070	pm_runtime_disable(cryp->dev);
2071	pm_runtime_put_noidle(cryp->dev);
2072
2073	clk_disable_unprepare(cryp->clk);
2074
2075	return 0;
2076}
2077
2078#ifdef CONFIG_PM
2079static int stm32_cryp_runtime_suspend(struct device *dev)
2080{
2081	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083	clk_disable_unprepare(cryp->clk);
2084
2085	return 0;
2086}
2087
2088static int stm32_cryp_runtime_resume(struct device *dev)
2089{
2090	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091	int ret;
2092
2093	ret = clk_prepare_enable(cryp->clk);
2094	if (ret) {
2095		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096		return ret;
2097	}
2098
2099	return 0;
2100}
2101#endif
2102
2103static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105				pm_runtime_force_resume)
2106	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107			   stm32_cryp_runtime_resume, NULL)
2108};
2109
2110static struct platform_driver stm32_cryp_driver = {
2111	.probe  = stm32_cryp_probe,
2112	.remove = stm32_cryp_remove,
2113	.driver = {
2114		.name           = DRIVER_NAME,
2115		.pm		= &stm32_cryp_pm_ops,
2116		.of_match_table = stm32_dt_ids,
2117	},
2118};
2119
2120module_platform_driver(stm32_cryp_driver);
2121
2122MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124MODULE_LICENSE("GPL");