Loading...
1/*
2 * Copyright (C) STMicroelectronics SA 2017
3 * Author: Fabien Dessenne <fabien.dessenne@st.com>
4 * License terms: GNU General Public License (GPL), version 2
5 */
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/iopoll.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/reset.h>
15
16#include <crypto/aes.h>
17#include <crypto/des.h>
18#include <crypto/engine.h>
19#include <crypto/scatterwalk.h>
20#include <crypto/internal/aead.h>
21
22#define DRIVER_NAME "stm32-cryp"
23
24/* Bit [0] encrypt / decrypt */
25#define FLG_ENCRYPT BIT(0)
26/* Bit [8..1] algo & operation mode */
27#define FLG_AES BIT(1)
28#define FLG_DES BIT(2)
29#define FLG_TDES BIT(3)
30#define FLG_ECB BIT(4)
31#define FLG_CBC BIT(5)
32#define FLG_CTR BIT(6)
33#define FLG_GCM BIT(7)
34#define FLG_CCM BIT(8)
35/* Mode mask = bits [15..0] */
36#define FLG_MODE_MASK GENMASK(15, 0)
37/* Bit [31..16] status */
38#define FLG_CCM_PADDED_WA BIT(16)
39
40/* Registers */
41#define CRYP_CR 0x00000000
42#define CRYP_SR 0x00000004
43#define CRYP_DIN 0x00000008
44#define CRYP_DOUT 0x0000000C
45#define CRYP_DMACR 0x00000010
46#define CRYP_IMSCR 0x00000014
47#define CRYP_RISR 0x00000018
48#define CRYP_MISR 0x0000001C
49#define CRYP_K0LR 0x00000020
50#define CRYP_K0RR 0x00000024
51#define CRYP_K1LR 0x00000028
52#define CRYP_K1RR 0x0000002C
53#define CRYP_K2LR 0x00000030
54#define CRYP_K2RR 0x00000034
55#define CRYP_K3LR 0x00000038
56#define CRYP_K3RR 0x0000003C
57#define CRYP_IV0LR 0x00000040
58#define CRYP_IV0RR 0x00000044
59#define CRYP_IV1LR 0x00000048
60#define CRYP_IV1RR 0x0000004C
61#define CRYP_CSGCMCCM0R 0x00000050
62#define CRYP_CSGCM0R 0x00000070
63
64/* Registers values */
65#define CR_DEC_NOT_ENC 0x00000004
66#define CR_TDES_ECB 0x00000000
67#define CR_TDES_CBC 0x00000008
68#define CR_DES_ECB 0x00000010
69#define CR_DES_CBC 0x00000018
70#define CR_AES_ECB 0x00000020
71#define CR_AES_CBC 0x00000028
72#define CR_AES_CTR 0x00000030
73#define CR_AES_KP 0x00000038
74#define CR_AES_GCM 0x00080000
75#define CR_AES_CCM 0x00080008
76#define CR_AES_UNKNOWN 0xFFFFFFFF
77#define CR_ALGO_MASK 0x00080038
78#define CR_DATA32 0x00000000
79#define CR_DATA16 0x00000040
80#define CR_DATA8 0x00000080
81#define CR_DATA1 0x000000C0
82#define CR_KEY128 0x00000000
83#define CR_KEY192 0x00000100
84#define CR_KEY256 0x00000200
85#define CR_FFLUSH 0x00004000
86#define CR_CRYPEN 0x00008000
87#define CR_PH_INIT 0x00000000
88#define CR_PH_HEADER 0x00010000
89#define CR_PH_PAYLOAD 0x00020000
90#define CR_PH_FINAL 0x00030000
91#define CR_PH_MASK 0x00030000
92#define CR_NBPBL_SHIFT 20
93
94#define SR_BUSY 0x00000010
95#define SR_OFNE 0x00000004
96
97#define IMSCR_IN BIT(0)
98#define IMSCR_OUT BIT(1)
99
100#define MISR_IN BIT(0)
101#define MISR_OUT BIT(1)
102
103/* Misc */
104#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
105#define GCM_CTR_INIT 2
106#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
107#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
108
109struct stm32_cryp_caps {
110 bool swap_final;
111 bool padding_wa;
112};
113
114struct stm32_cryp_ctx {
115 struct crypto_engine_ctx enginectx;
116 struct stm32_cryp *cryp;
117 int keylen;
118 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
119 unsigned long flags;
120};
121
122struct stm32_cryp_reqctx {
123 unsigned long mode;
124};
125
126struct stm32_cryp {
127 struct list_head list;
128 struct device *dev;
129 void __iomem *regs;
130 struct clk *clk;
131 unsigned long flags;
132 u32 irq_status;
133 const struct stm32_cryp_caps *caps;
134 struct stm32_cryp_ctx *ctx;
135
136 struct crypto_engine *engine;
137
138 struct mutex lock; /* protects req / areq */
139 struct ablkcipher_request *req;
140 struct aead_request *areq;
141
142 size_t authsize;
143 size_t hw_blocksize;
144
145 size_t total_in;
146 size_t total_in_save;
147 size_t total_out;
148 size_t total_out_save;
149
150 struct scatterlist *in_sg;
151 struct scatterlist *out_sg;
152 struct scatterlist *out_sg_save;
153
154 struct scatterlist in_sgl;
155 struct scatterlist out_sgl;
156 bool sgs_copied;
157
158 int in_sg_len;
159 int out_sg_len;
160
161 struct scatter_walk in_walk;
162 struct scatter_walk out_walk;
163
164 u32 last_ctr[4];
165 u32 gcm_ctr;
166};
167
168struct stm32_cryp_list {
169 struct list_head dev_list;
170 spinlock_t lock; /* protect dev_list */
171};
172
173static struct stm32_cryp_list cryp_list = {
174 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
175 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
176};
177
178static inline bool is_aes(struct stm32_cryp *cryp)
179{
180 return cryp->flags & FLG_AES;
181}
182
183static inline bool is_des(struct stm32_cryp *cryp)
184{
185 return cryp->flags & FLG_DES;
186}
187
188static inline bool is_tdes(struct stm32_cryp *cryp)
189{
190 return cryp->flags & FLG_TDES;
191}
192
193static inline bool is_ecb(struct stm32_cryp *cryp)
194{
195 return cryp->flags & FLG_ECB;
196}
197
198static inline bool is_cbc(struct stm32_cryp *cryp)
199{
200 return cryp->flags & FLG_CBC;
201}
202
203static inline bool is_ctr(struct stm32_cryp *cryp)
204{
205 return cryp->flags & FLG_CTR;
206}
207
208static inline bool is_gcm(struct stm32_cryp *cryp)
209{
210 return cryp->flags & FLG_GCM;
211}
212
213static inline bool is_ccm(struct stm32_cryp *cryp)
214{
215 return cryp->flags & FLG_CCM;
216}
217
218static inline bool is_encrypt(struct stm32_cryp *cryp)
219{
220 return cryp->flags & FLG_ENCRYPT;
221}
222
223static inline bool is_decrypt(struct stm32_cryp *cryp)
224{
225 return !is_encrypt(cryp);
226}
227
228static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
229{
230 return readl_relaxed(cryp->regs + ofst);
231}
232
233static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
234{
235 writel_relaxed(val, cryp->regs + ofst);
236}
237
238static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
239{
240 u32 status;
241
242 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
243 !(status & SR_BUSY), 10, 100000);
244}
245
246static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
247{
248 u32 status;
249
250 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
251 !(status & CR_CRYPEN), 10, 100000);
252}
253
254static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
255{
256 u32 status;
257
258 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
259 status & SR_OFNE, 10, 100000);
260}
261
262static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
263
264static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
265{
266 struct stm32_cryp *tmp, *cryp = NULL;
267
268 spin_lock_bh(&cryp_list.lock);
269 if (!ctx->cryp) {
270 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
271 cryp = tmp;
272 break;
273 }
274 ctx->cryp = cryp;
275 } else {
276 cryp = ctx->cryp;
277 }
278
279 spin_unlock_bh(&cryp_list.lock);
280
281 return cryp;
282}
283
284static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
285 size_t align)
286{
287 int len = 0;
288
289 if (!total)
290 return 0;
291
292 if (!IS_ALIGNED(total, align))
293 return -EINVAL;
294
295 while (sg) {
296 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
297 return -EINVAL;
298
299 if (!IS_ALIGNED(sg->length, align))
300 return -EINVAL;
301
302 len += sg->length;
303 sg = sg_next(sg);
304 }
305
306 if (len != total)
307 return -EINVAL;
308
309 return 0;
310}
311
312static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
313{
314 int ret;
315
316 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
317 cryp->hw_blocksize);
318 if (ret)
319 return ret;
320
321 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
322 cryp->hw_blocksize);
323
324 return ret;
325}
326
327static void sg_copy_buf(void *buf, struct scatterlist *sg,
328 unsigned int start, unsigned int nbytes, int out)
329{
330 struct scatter_walk walk;
331
332 if (!nbytes)
333 return;
334
335 scatterwalk_start(&walk, sg);
336 scatterwalk_advance(&walk, start);
337 scatterwalk_copychunks(buf, &walk, nbytes, out);
338 scatterwalk_done(&walk, out, 0);
339}
340
341static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
342{
343 void *buf_in, *buf_out;
344 int pages, total_in, total_out;
345
346 if (!stm32_cryp_check_io_aligned(cryp)) {
347 cryp->sgs_copied = 0;
348 return 0;
349 }
350
351 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
352 pages = total_in ? get_order(total_in) : 1;
353 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
354
355 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
356 pages = total_out ? get_order(total_out) : 1;
357 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
358
359 if (!buf_in || !buf_out) {
360 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
361 cryp->sgs_copied = 0;
362 return -EFAULT;
363 }
364
365 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
366
367 sg_init_one(&cryp->in_sgl, buf_in, total_in);
368 cryp->in_sg = &cryp->in_sgl;
369 cryp->in_sg_len = 1;
370
371 sg_init_one(&cryp->out_sgl, buf_out, total_out);
372 cryp->out_sg_save = cryp->out_sg;
373 cryp->out_sg = &cryp->out_sgl;
374 cryp->out_sg_len = 1;
375
376 cryp->sgs_copied = 1;
377
378 return 0;
379}
380
381static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
382{
383 if (!iv)
384 return;
385
386 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
387 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
388
389 if (is_aes(cryp)) {
390 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
391 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
392 }
393}
394
395static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
396{
397 unsigned int i;
398 int r_id;
399
400 if (is_des(c)) {
401 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
402 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
403 } else {
404 r_id = CRYP_K3RR;
405 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
406 stm32_cryp_write(c, r_id,
407 cpu_to_be32(c->ctx->key[i - 1]));
408 }
409}
410
411static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
412{
413 if (is_aes(cryp) && is_ecb(cryp))
414 return CR_AES_ECB;
415
416 if (is_aes(cryp) && is_cbc(cryp))
417 return CR_AES_CBC;
418
419 if (is_aes(cryp) && is_ctr(cryp))
420 return CR_AES_CTR;
421
422 if (is_aes(cryp) && is_gcm(cryp))
423 return CR_AES_GCM;
424
425 if (is_aes(cryp) && is_ccm(cryp))
426 return CR_AES_CCM;
427
428 if (is_des(cryp) && is_ecb(cryp))
429 return CR_DES_ECB;
430
431 if (is_des(cryp) && is_cbc(cryp))
432 return CR_DES_CBC;
433
434 if (is_tdes(cryp) && is_ecb(cryp))
435 return CR_TDES_ECB;
436
437 if (is_tdes(cryp) && is_cbc(cryp))
438 return CR_TDES_CBC;
439
440 dev_err(cryp->dev, "Unknown mode\n");
441 return CR_AES_UNKNOWN;
442}
443
444static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
445{
446 return is_encrypt(cryp) ? cryp->areq->cryptlen :
447 cryp->areq->cryptlen - cryp->authsize;
448}
449
450static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
451{
452 int ret;
453 u32 iv[4];
454
455 /* Phase 1 : init */
456 memcpy(iv, cryp->areq->iv, 12);
457 iv[3] = cpu_to_be32(GCM_CTR_INIT);
458 cryp->gcm_ctr = GCM_CTR_INIT;
459 stm32_cryp_hw_write_iv(cryp, iv);
460
461 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
462
463 /* Wait for end of processing */
464 ret = stm32_cryp_wait_enable(cryp);
465 if (ret)
466 dev_err(cryp->dev, "Timeout (gcm init)\n");
467
468 return ret;
469}
470
471static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
472{
473 int ret;
474 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
475 u32 *d;
476 unsigned int i, textlen;
477
478 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
479 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
480 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
481 iv[AES_BLOCK_SIZE - 1] = 1;
482 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
483
484 /* Build B0 */
485 memcpy(b0, iv, AES_BLOCK_SIZE);
486
487 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
488
489 if (cryp->areq->assoclen)
490 b0[0] |= 0x40;
491
492 textlen = stm32_cryp_get_input_text_len(cryp);
493
494 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
495 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
496
497 /* Enable HW */
498 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
499
500 /* Write B0 */
501 d = (u32 *)b0;
502
503 for (i = 0; i < AES_BLOCK_32; i++) {
504 if (!cryp->caps->padding_wa)
505 *d = cpu_to_be32(*d);
506 stm32_cryp_write(cryp, CRYP_DIN, *d++);
507 }
508
509 /* Wait for end of processing */
510 ret = stm32_cryp_wait_enable(cryp);
511 if (ret)
512 dev_err(cryp->dev, "Timeout (ccm init)\n");
513
514 return ret;
515}
516
517static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
518{
519 int ret;
520 u32 cfg, hw_mode;
521
522 /* Disable interrupt */
523 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
524
525 /* Set key */
526 stm32_cryp_hw_write_key(cryp);
527
528 /* Set configuration */
529 cfg = CR_DATA8 | CR_FFLUSH;
530
531 switch (cryp->ctx->keylen) {
532 case AES_KEYSIZE_128:
533 cfg |= CR_KEY128;
534 break;
535
536 case AES_KEYSIZE_192:
537 cfg |= CR_KEY192;
538 break;
539
540 default:
541 case AES_KEYSIZE_256:
542 cfg |= CR_KEY256;
543 break;
544 }
545
546 hw_mode = stm32_cryp_get_hw_mode(cryp);
547 if (hw_mode == CR_AES_UNKNOWN)
548 return -EINVAL;
549
550 /* AES ECB/CBC decrypt: run key preparation first */
551 if (is_decrypt(cryp) &&
552 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
553 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
554
555 /* Wait for end of processing */
556 ret = stm32_cryp_wait_busy(cryp);
557 if (ret) {
558 dev_err(cryp->dev, "Timeout (key preparation)\n");
559 return ret;
560 }
561 }
562
563 cfg |= hw_mode;
564
565 if (is_decrypt(cryp))
566 cfg |= CR_DEC_NOT_ENC;
567
568 /* Apply config and flush (valid when CRYPEN = 0) */
569 stm32_cryp_write(cryp, CRYP_CR, cfg);
570
571 switch (hw_mode) {
572 case CR_AES_GCM:
573 case CR_AES_CCM:
574 /* Phase 1 : init */
575 if (hw_mode == CR_AES_CCM)
576 ret = stm32_cryp_ccm_init(cryp, cfg);
577 else
578 ret = stm32_cryp_gcm_init(cryp, cfg);
579
580 if (ret)
581 return ret;
582
583 /* Phase 2 : header (authenticated data) */
584 if (cryp->areq->assoclen) {
585 cfg |= CR_PH_HEADER;
586 } else if (stm32_cryp_get_input_text_len(cryp)) {
587 cfg |= CR_PH_PAYLOAD;
588 stm32_cryp_write(cryp, CRYP_CR, cfg);
589 } else {
590 cfg |= CR_PH_INIT;
591 }
592
593 break;
594
595 case CR_DES_CBC:
596 case CR_TDES_CBC:
597 case CR_AES_CBC:
598 case CR_AES_CTR:
599 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
600 break;
601
602 default:
603 break;
604 }
605
606 /* Enable now */
607 cfg |= CR_CRYPEN;
608
609 stm32_cryp_write(cryp, CRYP_CR, cfg);
610
611 cryp->flags &= ~FLG_CCM_PADDED_WA;
612
613 return 0;
614}
615
616static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
617{
618 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
619 /* Phase 4 : output tag */
620 err = stm32_cryp_read_auth_tag(cryp);
621
622 if (cryp->sgs_copied) {
623 void *buf_in, *buf_out;
624 int pages, len;
625
626 buf_in = sg_virt(&cryp->in_sgl);
627 buf_out = sg_virt(&cryp->out_sgl);
628
629 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
630 cryp->total_out_save, 1);
631
632 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
633 pages = len ? get_order(len) : 1;
634 free_pages((unsigned long)buf_in, pages);
635
636 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
637 pages = len ? get_order(len) : 1;
638 free_pages((unsigned long)buf_out, pages);
639 }
640
641 if (is_gcm(cryp) || is_ccm(cryp)) {
642 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
643 cryp->areq = NULL;
644 } else {
645 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
646 err);
647 cryp->req = NULL;
648 }
649
650 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
651
652 mutex_unlock(&cryp->lock);
653}
654
655static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
656{
657 /* Enable interrupt and let the IRQ handler do everything */
658 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
659
660 return 0;
661}
662
663static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
664static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
665 void *areq);
666
667static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
668{
669 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
670
671 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
672
673 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
674 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
675 ctx->enginectx.op.unprepare_request = NULL;
676 return 0;
677}
678
679static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
680static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
681 void *areq);
682
683static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
684{
685 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
686
687 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
688
689 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
690 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
691 ctx->enginectx.op.unprepare_request = NULL;
692
693 return 0;
694}
695
696static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
697{
698 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
699 crypto_ablkcipher_reqtfm(req));
700 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
701 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
702
703 if (!cryp)
704 return -ENODEV;
705
706 rctx->mode = mode;
707
708 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
709}
710
711static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
712{
713 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
714 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
715 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
716
717 if (!cryp)
718 return -ENODEV;
719
720 rctx->mode = mode;
721
722 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
723}
724
725static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
726 unsigned int keylen)
727{
728 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
729
730 memcpy(ctx->key, key, keylen);
731 ctx->keylen = keylen;
732
733 return 0;
734}
735
736static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
737 unsigned int keylen)
738{
739 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
740 keylen != AES_KEYSIZE_256)
741 return -EINVAL;
742 else
743 return stm32_cryp_setkey(tfm, key, keylen);
744}
745
746static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 unsigned int keylen)
748{
749 if (keylen != DES_KEY_SIZE)
750 return -EINVAL;
751 else
752 return stm32_cryp_setkey(tfm, key, keylen);
753}
754
755static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
756 unsigned int keylen)
757{
758 if (keylen != (3 * DES_KEY_SIZE))
759 return -EINVAL;
760 else
761 return stm32_cryp_setkey(tfm, key, keylen);
762}
763
764static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
765 unsigned int keylen)
766{
767 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
768
769 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
770 keylen != AES_KEYSIZE_256)
771 return -EINVAL;
772
773 memcpy(ctx->key, key, keylen);
774 ctx->keylen = keylen;
775
776 return 0;
777}
778
779static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
780 unsigned int authsize)
781{
782 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
783}
784
785static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
786 unsigned int authsize)
787{
788 switch (authsize) {
789 case 4:
790 case 6:
791 case 8:
792 case 10:
793 case 12:
794 case 14:
795 case 16:
796 break;
797 default:
798 return -EINVAL;
799 }
800
801 return 0;
802}
803
804static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
805{
806 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
807}
808
809static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
810{
811 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
812}
813
814static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
815{
816 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
817}
818
819static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
820{
821 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
822}
823
824static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
825{
826 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
827}
828
829static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
830{
831 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
832}
833
834static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
835{
836 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
837}
838
839static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
840{
841 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
842}
843
844static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
845{
846 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
847}
848
849static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
850{
851 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
852}
853
854static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
855{
856 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
857}
858
859static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
860{
861 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
862}
863
864static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
865{
866 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
867}
868
869static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
870{
871 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
872}
873
874static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
875{
876 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
877}
878
879static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
880{
881 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
882}
883
884static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
885{
886 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
887}
888
889static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
890{
891 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
892}
893
894static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
895 struct aead_request *areq)
896{
897 struct stm32_cryp_ctx *ctx;
898 struct stm32_cryp *cryp;
899 struct stm32_cryp_reqctx *rctx;
900 int ret;
901
902 if (!req && !areq)
903 return -EINVAL;
904
905 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
906 crypto_aead_ctx(crypto_aead_reqtfm(areq));
907
908 cryp = ctx->cryp;
909
910 if (!cryp)
911 return -ENODEV;
912
913 mutex_lock(&cryp->lock);
914
915 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
916 rctx->mode &= FLG_MODE_MASK;
917
918 ctx->cryp = cryp;
919
920 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
921 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
922 cryp->ctx = ctx;
923
924 if (req) {
925 cryp->req = req;
926 cryp->total_in = req->nbytes;
927 cryp->total_out = cryp->total_in;
928 } else {
929 /*
930 * Length of input and output data:
931 * Encryption case:
932 * INPUT = AssocData || PlainText
933 * <- assoclen -> <- cryptlen ->
934 * <------- total_in ----------->
935 *
936 * OUTPUT = AssocData || CipherText || AuthTag
937 * <- assoclen -> <- cryptlen -> <- authsize ->
938 * <---------------- total_out ----------------->
939 *
940 * Decryption case:
941 * INPUT = AssocData || CipherText || AuthTag
942 * <- assoclen -> <--------- cryptlen --------->
943 * <- authsize ->
944 * <---------------- total_in ------------------>
945 *
946 * OUTPUT = AssocData || PlainText
947 * <- assoclen -> <- crypten - authsize ->
948 * <---------- total_out ----------------->
949 */
950 cryp->areq = areq;
951 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
952 cryp->total_in = areq->assoclen + areq->cryptlen;
953 if (is_encrypt(cryp))
954 /* Append auth tag to output */
955 cryp->total_out = cryp->total_in + cryp->authsize;
956 else
957 /* No auth tag in output */
958 cryp->total_out = cryp->total_in - cryp->authsize;
959 }
960
961 cryp->total_in_save = cryp->total_in;
962 cryp->total_out_save = cryp->total_out;
963
964 cryp->in_sg = req ? req->src : areq->src;
965 cryp->out_sg = req ? req->dst : areq->dst;
966 cryp->out_sg_save = cryp->out_sg;
967
968 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
969 if (cryp->in_sg_len < 0) {
970 dev_err(cryp->dev, "Cannot get in_sg_len\n");
971 ret = cryp->in_sg_len;
972 goto out;
973 }
974
975 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
976 if (cryp->out_sg_len < 0) {
977 dev_err(cryp->dev, "Cannot get out_sg_len\n");
978 ret = cryp->out_sg_len;
979 goto out;
980 }
981
982 ret = stm32_cryp_copy_sgs(cryp);
983 if (ret)
984 goto out;
985
986 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
987 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
988
989 if (is_gcm(cryp) || is_ccm(cryp)) {
990 /* In output, jump after assoc data */
991 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
992 cryp->total_out -= cryp->areq->assoclen;
993 }
994
995 ret = stm32_cryp_hw_init(cryp);
996out:
997 if (ret)
998 mutex_unlock(&cryp->lock);
999
1000 return ret;
1001}
1002
1003static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1004 void *areq)
1005{
1006 struct ablkcipher_request *req = container_of(areq,
1007 struct ablkcipher_request,
1008 base);
1009
1010 return stm32_cryp_prepare_req(req, NULL);
1011}
1012
1013static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1014{
1015 struct ablkcipher_request *req = container_of(areq,
1016 struct ablkcipher_request,
1017 base);
1018 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1019 crypto_ablkcipher_reqtfm(req));
1020 struct stm32_cryp *cryp = ctx->cryp;
1021
1022 if (!cryp)
1023 return -ENODEV;
1024
1025 return stm32_cryp_cpu_start(cryp);
1026}
1027
1028static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1029{
1030 struct aead_request *req = container_of(areq, struct aead_request,
1031 base);
1032
1033 return stm32_cryp_prepare_req(NULL, req);
1034}
1035
1036static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1037{
1038 struct aead_request *req = container_of(areq, struct aead_request,
1039 base);
1040 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1041 struct stm32_cryp *cryp = ctx->cryp;
1042
1043 if (!cryp)
1044 return -ENODEV;
1045
1046 if (unlikely(!cryp->areq->assoclen &&
1047 !stm32_cryp_get_input_text_len(cryp))) {
1048 /* No input data to process: get tag and finish */
1049 stm32_cryp_finish_req(cryp, 0);
1050 return 0;
1051 }
1052
1053 return stm32_cryp_cpu_start(cryp);
1054}
1055
1056static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1057 unsigned int n)
1058{
1059 scatterwalk_advance(&cryp->out_walk, n);
1060
1061 if (unlikely(cryp->out_sg->length == _walked_out)) {
1062 cryp->out_sg = sg_next(cryp->out_sg);
1063 if (cryp->out_sg) {
1064 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1065 return (sg_virt(cryp->out_sg) + _walked_out);
1066 }
1067 }
1068
1069 return (u32 *)((u8 *)dst + n);
1070}
1071
1072static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1073 unsigned int n)
1074{
1075 scatterwalk_advance(&cryp->in_walk, n);
1076
1077 if (unlikely(cryp->in_sg->length == _walked_in)) {
1078 cryp->in_sg = sg_next(cryp->in_sg);
1079 if (cryp->in_sg) {
1080 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1081 return (sg_virt(cryp->in_sg) + _walked_in);
1082 }
1083 }
1084
1085 return (u32 *)((u8 *)src + n);
1086}
1087
1088static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1089{
1090 u32 cfg, size_bit, *dst, d32;
1091 u8 *d8;
1092 unsigned int i, j;
1093 int ret = 0;
1094
1095 /* Update Config */
1096 cfg = stm32_cryp_read(cryp, CRYP_CR);
1097
1098 cfg &= ~CR_PH_MASK;
1099 cfg |= CR_PH_FINAL;
1100 cfg &= ~CR_DEC_NOT_ENC;
1101 cfg |= CR_CRYPEN;
1102
1103 stm32_cryp_write(cryp, CRYP_CR, cfg);
1104
1105 if (is_gcm(cryp)) {
1106 /* GCM: write aad and payload size (in bits) */
1107 size_bit = cryp->areq->assoclen * 8;
1108 if (cryp->caps->swap_final)
1109 size_bit = cpu_to_be32(size_bit);
1110
1111 stm32_cryp_write(cryp, CRYP_DIN, 0);
1112 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1113
1114 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1115 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1116 size_bit *= 8;
1117 if (cryp->caps->swap_final)
1118 size_bit = cpu_to_be32(size_bit);
1119
1120 stm32_cryp_write(cryp, CRYP_DIN, 0);
1121 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1122 } else {
1123 /* CCM: write CTR0 */
1124 u8 iv[AES_BLOCK_SIZE];
1125 u32 *iv32 = (u32 *)iv;
1126
1127 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1128 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1129
1130 for (i = 0; i < AES_BLOCK_32; i++) {
1131 if (!cryp->caps->padding_wa)
1132 *iv32 = cpu_to_be32(*iv32);
1133 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1134 }
1135 }
1136
1137 /* Wait for output data */
1138 ret = stm32_cryp_wait_output(cryp);
1139 if (ret) {
1140 dev_err(cryp->dev, "Timeout (read tag)\n");
1141 return ret;
1142 }
1143
1144 if (is_encrypt(cryp)) {
1145 /* Get and write tag */
1146 dst = sg_virt(cryp->out_sg) + _walked_out;
1147
1148 for (i = 0; i < AES_BLOCK_32; i++) {
1149 if (cryp->total_out >= sizeof(u32)) {
1150 /* Read a full u32 */
1151 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1152
1153 dst = stm32_cryp_next_out(cryp, dst,
1154 sizeof(u32));
1155 cryp->total_out -= sizeof(u32);
1156 } else if (!cryp->total_out) {
1157 /* Empty fifo out (data from input padding) */
1158 stm32_cryp_read(cryp, CRYP_DOUT);
1159 } else {
1160 /* Read less than an u32 */
1161 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1162 d8 = (u8 *)&d32;
1163
1164 for (j = 0; j < cryp->total_out; j++) {
1165 *((u8 *)dst) = *(d8++);
1166 dst = stm32_cryp_next_out(cryp, dst, 1);
1167 }
1168 cryp->total_out = 0;
1169 }
1170 }
1171 } else {
1172 /* Get and check tag */
1173 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1174
1175 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1176 cryp->total_in_save - cryp->authsize,
1177 cryp->authsize, 0);
1178
1179 for (i = 0; i < AES_BLOCK_32; i++)
1180 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1181
1182 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1183 ret = -EBADMSG;
1184 }
1185
1186 /* Disable cryp */
1187 cfg &= ~CR_CRYPEN;
1188 stm32_cryp_write(cryp, CRYP_CR, cfg);
1189
1190 return ret;
1191}
1192
1193static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1194{
1195 u32 cr;
1196
1197 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1198 cryp->last_ctr[3] = 0;
1199 cryp->last_ctr[2]++;
1200 if (!cryp->last_ctr[2]) {
1201 cryp->last_ctr[1]++;
1202 if (!cryp->last_ctr[1])
1203 cryp->last_ctr[0]++;
1204 }
1205
1206 cr = stm32_cryp_read(cryp, CRYP_CR);
1207 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1208
1209 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1210
1211 stm32_cryp_write(cryp, CRYP_CR, cr);
1212 }
1213
1214 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1215 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1216 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1217 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1218}
1219
1220static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1221{
1222 unsigned int i, j;
1223 u32 d32, *dst;
1224 u8 *d8;
1225 size_t tag_size;
1226
1227 /* Do no read tag now (if any) */
1228 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1229 tag_size = cryp->authsize;
1230 else
1231 tag_size = 0;
1232
1233 dst = sg_virt(cryp->out_sg) + _walked_out;
1234
1235 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1236 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1237 /* Read a full u32 */
1238 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1239
1240 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1241 cryp->total_out -= sizeof(u32);
1242 } else if (cryp->total_out == tag_size) {
1243 /* Empty fifo out (data from input padding) */
1244 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1245 } else {
1246 /* Read less than an u32 */
1247 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1248 d8 = (u8 *)&d32;
1249
1250 for (j = 0; j < cryp->total_out - tag_size; j++) {
1251 *((u8 *)dst) = *(d8++);
1252 dst = stm32_cryp_next_out(cryp, dst, 1);
1253 }
1254 cryp->total_out = tag_size;
1255 }
1256 }
1257
1258 return !(cryp->total_out - tag_size) || !cryp->total_in;
1259}
1260
1261static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1262{
1263 unsigned int i, j;
1264 u32 *src;
1265 u8 d8[4];
1266 size_t tag_size;
1267
1268 /* Do no write tag (if any) */
1269 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1270 tag_size = cryp->authsize;
1271 else
1272 tag_size = 0;
1273
1274 src = sg_virt(cryp->in_sg) + _walked_in;
1275
1276 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1277 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1278 /* Write a full u32 */
1279 stm32_cryp_write(cryp, CRYP_DIN, *src);
1280
1281 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1282 cryp->total_in -= sizeof(u32);
1283 } else if (cryp->total_in == tag_size) {
1284 /* Write padding data */
1285 stm32_cryp_write(cryp, CRYP_DIN, 0);
1286 } else {
1287 /* Write less than an u32 */
1288 memset(d8, 0, sizeof(u32));
1289 for (j = 0; j < cryp->total_in - tag_size; j++) {
1290 d8[j] = *((u8 *)src);
1291 src = stm32_cryp_next_in(cryp, src, 1);
1292 }
1293
1294 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1295 cryp->total_in = tag_size;
1296 }
1297 }
1298}
1299
1300static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1301{
1302 int err;
1303 u32 cfg, tmp[AES_BLOCK_32];
1304 size_t total_in_ori = cryp->total_in;
1305 struct scatterlist *out_sg_ori = cryp->out_sg;
1306 unsigned int i;
1307
1308 /* 'Special workaround' procedure described in the datasheet */
1309
1310 /* a) disable ip */
1311 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1312 cfg = stm32_cryp_read(cryp, CRYP_CR);
1313 cfg &= ~CR_CRYPEN;
1314 stm32_cryp_write(cryp, CRYP_CR, cfg);
1315
1316 /* b) Update IV1R */
1317 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1318
1319 /* c) change mode to CTR */
1320 cfg &= ~CR_ALGO_MASK;
1321 cfg |= CR_AES_CTR;
1322 stm32_cryp_write(cryp, CRYP_CR, cfg);
1323
1324 /* a) enable IP */
1325 cfg |= CR_CRYPEN;
1326 stm32_cryp_write(cryp, CRYP_CR, cfg);
1327
1328 /* b) pad and write the last block */
1329 stm32_cryp_irq_write_block(cryp);
1330 cryp->total_in = total_in_ori;
1331 err = stm32_cryp_wait_output(cryp);
1332 if (err) {
1333 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1334 return stm32_cryp_finish_req(cryp, err);
1335 }
1336
1337 /* c) get and store encrypted data */
1338 stm32_cryp_irq_read_data(cryp);
1339 scatterwalk_map_and_copy(tmp, out_sg_ori,
1340 cryp->total_in_save - total_in_ori,
1341 total_in_ori, 0);
1342
1343 /* d) change mode back to AES GCM */
1344 cfg &= ~CR_ALGO_MASK;
1345 cfg |= CR_AES_GCM;
1346 stm32_cryp_write(cryp, CRYP_CR, cfg);
1347
1348 /* e) change phase to Final */
1349 cfg &= ~CR_PH_MASK;
1350 cfg |= CR_PH_FINAL;
1351 stm32_cryp_write(cryp, CRYP_CR, cfg);
1352
1353 /* f) write padded data */
1354 for (i = 0; i < AES_BLOCK_32; i++) {
1355 if (cryp->total_in)
1356 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1357 else
1358 stm32_cryp_write(cryp, CRYP_DIN, 0);
1359
1360 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1361 }
1362
1363 /* g) Empty fifo out */
1364 err = stm32_cryp_wait_output(cryp);
1365 if (err) {
1366 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1367 return stm32_cryp_finish_req(cryp, err);
1368 }
1369
1370 for (i = 0; i < AES_BLOCK_32; i++)
1371 stm32_cryp_read(cryp, CRYP_DOUT);
1372
1373 /* h) run the he normal Final phase */
1374 stm32_cryp_finish_req(cryp, 0);
1375}
1376
1377static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1378{
1379 u32 cfg, payload_bytes;
1380
1381 /* disable ip, set NPBLB and reneable ip */
1382 cfg = stm32_cryp_read(cryp, CRYP_CR);
1383 cfg &= ~CR_CRYPEN;
1384 stm32_cryp_write(cryp, CRYP_CR, cfg);
1385
1386 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1387 cryp->total_in;
1388 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1389 cfg |= CR_CRYPEN;
1390 stm32_cryp_write(cryp, CRYP_CR, cfg);
1391}
1392
1393static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1394{
1395 int err = 0;
1396 u32 cfg, iv1tmp;
1397 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1398 size_t last_total_out, total_in_ori = cryp->total_in;
1399 struct scatterlist *out_sg_ori = cryp->out_sg;
1400 unsigned int i;
1401
1402 /* 'Special workaround' procedure described in the datasheet */
1403 cryp->flags |= FLG_CCM_PADDED_WA;
1404
1405 /* a) disable ip */
1406 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1407
1408 cfg = stm32_cryp_read(cryp, CRYP_CR);
1409 cfg &= ~CR_CRYPEN;
1410 stm32_cryp_write(cryp, CRYP_CR, cfg);
1411
1412 /* b) get IV1 from CRYP_CSGCMCCM7 */
1413 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1414
1415 /* c) Load CRYP_CSGCMCCMxR */
1416 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1417 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1418
1419 /* d) Write IV1R */
1420 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1421
1422 /* e) change mode to CTR */
1423 cfg &= ~CR_ALGO_MASK;
1424 cfg |= CR_AES_CTR;
1425 stm32_cryp_write(cryp, CRYP_CR, cfg);
1426
1427 /* a) enable IP */
1428 cfg |= CR_CRYPEN;
1429 stm32_cryp_write(cryp, CRYP_CR, cfg);
1430
1431 /* b) pad and write the last block */
1432 stm32_cryp_irq_write_block(cryp);
1433 cryp->total_in = total_in_ori;
1434 err = stm32_cryp_wait_output(cryp);
1435 if (err) {
1436 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1437 return stm32_cryp_finish_req(cryp, err);
1438 }
1439
1440 /* c) get and store decrypted data */
1441 last_total_out = cryp->total_out;
1442 stm32_cryp_irq_read_data(cryp);
1443
1444 memset(tmp, 0, sizeof(tmp));
1445 scatterwalk_map_and_copy(tmp, out_sg_ori,
1446 cryp->total_out_save - last_total_out,
1447 last_total_out, 0);
1448
1449 /* d) Load again CRYP_CSGCMCCMxR */
1450 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1451 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1452
1453 /* e) change mode back to AES CCM */
1454 cfg &= ~CR_ALGO_MASK;
1455 cfg |= CR_AES_CCM;
1456 stm32_cryp_write(cryp, CRYP_CR, cfg);
1457
1458 /* f) change phase to header */
1459 cfg &= ~CR_PH_MASK;
1460 cfg |= CR_PH_HEADER;
1461 stm32_cryp_write(cryp, CRYP_CR, cfg);
1462
1463 /* g) XOR and write padded data */
1464 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1465 tmp[i] ^= cstmp1[i];
1466 tmp[i] ^= cstmp2[i];
1467 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1468 }
1469
1470 /* h) wait for completion */
1471 err = stm32_cryp_wait_busy(cryp);
1472 if (err)
1473 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1474
1475 /* i) run the he normal Final phase */
1476 stm32_cryp_finish_req(cryp, err);
1477}
1478
1479static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1480{
1481 if (unlikely(!cryp->total_in)) {
1482 dev_warn(cryp->dev, "No more data to process\n");
1483 return;
1484 }
1485
1486 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1487 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1488 is_encrypt(cryp))) {
1489 /* Padding for AES GCM encryption */
1490 if (cryp->caps->padding_wa)
1491 /* Special case 1 */
1492 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1493
1494 /* Setting padding bytes (NBBLB) */
1495 stm32_cryp_irq_set_npblb(cryp);
1496 }
1497
1498 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1499 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1500 is_decrypt(cryp))) {
1501 /* Padding for AES CCM decryption */
1502 if (cryp->caps->padding_wa)
1503 /* Special case 2 */
1504 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1505
1506 /* Setting padding bytes (NBBLB) */
1507 stm32_cryp_irq_set_npblb(cryp);
1508 }
1509
1510 if (is_aes(cryp) && is_ctr(cryp))
1511 stm32_cryp_check_ctr_counter(cryp);
1512
1513 stm32_cryp_irq_write_block(cryp);
1514}
1515
1516static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1517{
1518 int err;
1519 unsigned int i, j;
1520 u32 cfg, *src;
1521
1522 src = sg_virt(cryp->in_sg) + _walked_in;
1523
1524 for (i = 0; i < AES_BLOCK_32; i++) {
1525 stm32_cryp_write(cryp, CRYP_DIN, *src);
1526
1527 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1528 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1529
1530 /* Check if whole header written */
1531 if ((cryp->total_in_save - cryp->total_in) ==
1532 cryp->areq->assoclen) {
1533 /* Write padding if needed */
1534 for (j = i + 1; j < AES_BLOCK_32; j++)
1535 stm32_cryp_write(cryp, CRYP_DIN, 0);
1536
1537 /* Wait for completion */
1538 err = stm32_cryp_wait_busy(cryp);
1539 if (err) {
1540 dev_err(cryp->dev, "Timeout (gcm header)\n");
1541 return stm32_cryp_finish_req(cryp, err);
1542 }
1543
1544 if (stm32_cryp_get_input_text_len(cryp)) {
1545 /* Phase 3 : payload */
1546 cfg = stm32_cryp_read(cryp, CRYP_CR);
1547 cfg &= ~CR_CRYPEN;
1548 stm32_cryp_write(cryp, CRYP_CR, cfg);
1549
1550 cfg &= ~CR_PH_MASK;
1551 cfg |= CR_PH_PAYLOAD;
1552 cfg |= CR_CRYPEN;
1553 stm32_cryp_write(cryp, CRYP_CR, cfg);
1554 } else {
1555 /* Phase 4 : tag */
1556 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1557 stm32_cryp_finish_req(cryp, 0);
1558 }
1559
1560 break;
1561 }
1562
1563 if (!cryp->total_in)
1564 break;
1565 }
1566}
1567
1568static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1569{
1570 int err;
1571 unsigned int i = 0, j, k;
1572 u32 alen, cfg, *src;
1573 u8 d8[4];
1574
1575 src = sg_virt(cryp->in_sg) + _walked_in;
1576 alen = cryp->areq->assoclen;
1577
1578 if (!_walked_in) {
1579 if (cryp->areq->assoclen <= 65280) {
1580 /* Write first u32 of B1 */
1581 d8[0] = (alen >> 8) & 0xFF;
1582 d8[1] = alen & 0xFF;
1583 d8[2] = *((u8 *)src);
1584 src = stm32_cryp_next_in(cryp, src, 1);
1585 d8[3] = *((u8 *)src);
1586 src = stm32_cryp_next_in(cryp, src, 1);
1587
1588 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1589 i++;
1590
1591 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1592 } else {
1593 /* Build the two first u32 of B1 */
1594 d8[0] = 0xFF;
1595 d8[1] = 0xFE;
1596 d8[2] = alen & 0xFF000000;
1597 d8[3] = alen & 0x00FF0000;
1598
1599 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1600 i++;
1601
1602 d8[0] = alen & 0x0000FF00;
1603 d8[1] = alen & 0x000000FF;
1604 d8[2] = *((u8 *)src);
1605 src = stm32_cryp_next_in(cryp, src, 1);
1606 d8[3] = *((u8 *)src);
1607 src = stm32_cryp_next_in(cryp, src, 1);
1608
1609 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1610 i++;
1611
1612 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1613 }
1614 }
1615
1616 /* Write next u32 */
1617 for (; i < AES_BLOCK_32; i++) {
1618 /* Build an u32 */
1619 memset(d8, 0, sizeof(u32));
1620 for (k = 0; k < sizeof(u32); k++) {
1621 d8[k] = *((u8 *)src);
1622 src = stm32_cryp_next_in(cryp, src, 1);
1623
1624 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1625 if ((cryp->total_in_save - cryp->total_in) == alen)
1626 break;
1627 }
1628
1629 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1630
1631 if ((cryp->total_in_save - cryp->total_in) == alen) {
1632 /* Write padding if needed */
1633 for (j = i + 1; j < AES_BLOCK_32; j++)
1634 stm32_cryp_write(cryp, CRYP_DIN, 0);
1635
1636 /* Wait for completion */
1637 err = stm32_cryp_wait_busy(cryp);
1638 if (err) {
1639 dev_err(cryp->dev, "Timeout (ccm header)\n");
1640 return stm32_cryp_finish_req(cryp, err);
1641 }
1642
1643 if (stm32_cryp_get_input_text_len(cryp)) {
1644 /* Phase 3 : payload */
1645 cfg = stm32_cryp_read(cryp, CRYP_CR);
1646 cfg &= ~CR_CRYPEN;
1647 stm32_cryp_write(cryp, CRYP_CR, cfg);
1648
1649 cfg &= ~CR_PH_MASK;
1650 cfg |= CR_PH_PAYLOAD;
1651 cfg |= CR_CRYPEN;
1652 stm32_cryp_write(cryp, CRYP_CR, cfg);
1653 } else {
1654 /* Phase 4 : tag */
1655 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1656 stm32_cryp_finish_req(cryp, 0);
1657 }
1658
1659 break;
1660 }
1661 }
1662}
1663
1664static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1665{
1666 struct stm32_cryp *cryp = arg;
1667 u32 ph;
1668
1669 if (cryp->irq_status & MISR_OUT)
1670 /* Output FIFO IRQ: read data */
1671 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1672 /* All bytes processed, finish */
1673 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1674 stm32_cryp_finish_req(cryp, 0);
1675 return IRQ_HANDLED;
1676 }
1677
1678 if (cryp->irq_status & MISR_IN) {
1679 if (is_gcm(cryp)) {
1680 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1681 if (unlikely(ph == CR_PH_HEADER))
1682 /* Write Header */
1683 stm32_cryp_irq_write_gcm_header(cryp);
1684 else
1685 /* Input FIFO IRQ: write data */
1686 stm32_cryp_irq_write_data(cryp);
1687 cryp->gcm_ctr++;
1688 } else if (is_ccm(cryp)) {
1689 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1690 if (unlikely(ph == CR_PH_HEADER))
1691 /* Write Header */
1692 stm32_cryp_irq_write_ccm_header(cryp);
1693 else
1694 /* Input FIFO IRQ: write data */
1695 stm32_cryp_irq_write_data(cryp);
1696 } else {
1697 /* Input FIFO IRQ: write data */
1698 stm32_cryp_irq_write_data(cryp);
1699 }
1700 }
1701
1702 return IRQ_HANDLED;
1703}
1704
1705static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1706{
1707 struct stm32_cryp *cryp = arg;
1708
1709 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1710
1711 return IRQ_WAKE_THREAD;
1712}
1713
1714static struct crypto_alg crypto_algs[] = {
1715{
1716 .cra_name = "ecb(aes)",
1717 .cra_driver_name = "stm32-ecb-aes",
1718 .cra_priority = 200,
1719 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1720 CRYPTO_ALG_ASYNC,
1721 .cra_blocksize = AES_BLOCK_SIZE,
1722 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1723 .cra_alignmask = 0xf,
1724 .cra_type = &crypto_ablkcipher_type,
1725 .cra_module = THIS_MODULE,
1726 .cra_init = stm32_cryp_cra_init,
1727 .cra_ablkcipher = {
1728 .min_keysize = AES_MIN_KEY_SIZE,
1729 .max_keysize = AES_MAX_KEY_SIZE,
1730 .setkey = stm32_cryp_aes_setkey,
1731 .encrypt = stm32_cryp_aes_ecb_encrypt,
1732 .decrypt = stm32_cryp_aes_ecb_decrypt,
1733 }
1734},
1735{
1736 .cra_name = "cbc(aes)",
1737 .cra_driver_name = "stm32-cbc-aes",
1738 .cra_priority = 200,
1739 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1740 CRYPTO_ALG_ASYNC,
1741 .cra_blocksize = AES_BLOCK_SIZE,
1742 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1743 .cra_alignmask = 0xf,
1744 .cra_type = &crypto_ablkcipher_type,
1745 .cra_module = THIS_MODULE,
1746 .cra_init = stm32_cryp_cra_init,
1747 .cra_ablkcipher = {
1748 .min_keysize = AES_MIN_KEY_SIZE,
1749 .max_keysize = AES_MAX_KEY_SIZE,
1750 .ivsize = AES_BLOCK_SIZE,
1751 .setkey = stm32_cryp_aes_setkey,
1752 .encrypt = stm32_cryp_aes_cbc_encrypt,
1753 .decrypt = stm32_cryp_aes_cbc_decrypt,
1754 }
1755},
1756{
1757 .cra_name = "ctr(aes)",
1758 .cra_driver_name = "stm32-ctr-aes",
1759 .cra_priority = 200,
1760 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1761 CRYPTO_ALG_ASYNC,
1762 .cra_blocksize = 1,
1763 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1764 .cra_alignmask = 0xf,
1765 .cra_type = &crypto_ablkcipher_type,
1766 .cra_module = THIS_MODULE,
1767 .cra_init = stm32_cryp_cra_init,
1768 .cra_ablkcipher = {
1769 .min_keysize = AES_MIN_KEY_SIZE,
1770 .max_keysize = AES_MAX_KEY_SIZE,
1771 .ivsize = AES_BLOCK_SIZE,
1772 .setkey = stm32_cryp_aes_setkey,
1773 .encrypt = stm32_cryp_aes_ctr_encrypt,
1774 .decrypt = stm32_cryp_aes_ctr_decrypt,
1775 }
1776},
1777{
1778 .cra_name = "ecb(des)",
1779 .cra_driver_name = "stm32-ecb-des",
1780 .cra_priority = 200,
1781 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1782 CRYPTO_ALG_ASYNC,
1783 .cra_blocksize = DES_BLOCK_SIZE,
1784 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1785 .cra_alignmask = 0xf,
1786 .cra_type = &crypto_ablkcipher_type,
1787 .cra_module = THIS_MODULE,
1788 .cra_init = stm32_cryp_cra_init,
1789 .cra_ablkcipher = {
1790 .min_keysize = DES_BLOCK_SIZE,
1791 .max_keysize = DES_BLOCK_SIZE,
1792 .setkey = stm32_cryp_des_setkey,
1793 .encrypt = stm32_cryp_des_ecb_encrypt,
1794 .decrypt = stm32_cryp_des_ecb_decrypt,
1795 }
1796},
1797{
1798 .cra_name = "cbc(des)",
1799 .cra_driver_name = "stm32-cbc-des",
1800 .cra_priority = 200,
1801 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1802 CRYPTO_ALG_ASYNC,
1803 .cra_blocksize = DES_BLOCK_SIZE,
1804 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1805 .cra_alignmask = 0xf,
1806 .cra_type = &crypto_ablkcipher_type,
1807 .cra_module = THIS_MODULE,
1808 .cra_init = stm32_cryp_cra_init,
1809 .cra_ablkcipher = {
1810 .min_keysize = DES_BLOCK_SIZE,
1811 .max_keysize = DES_BLOCK_SIZE,
1812 .ivsize = DES_BLOCK_SIZE,
1813 .setkey = stm32_cryp_des_setkey,
1814 .encrypt = stm32_cryp_des_cbc_encrypt,
1815 .decrypt = stm32_cryp_des_cbc_decrypt,
1816 }
1817},
1818{
1819 .cra_name = "ecb(des3_ede)",
1820 .cra_driver_name = "stm32-ecb-des3",
1821 .cra_priority = 200,
1822 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1823 CRYPTO_ALG_ASYNC,
1824 .cra_blocksize = DES_BLOCK_SIZE,
1825 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1826 .cra_alignmask = 0xf,
1827 .cra_type = &crypto_ablkcipher_type,
1828 .cra_module = THIS_MODULE,
1829 .cra_init = stm32_cryp_cra_init,
1830 .cra_ablkcipher = {
1831 .min_keysize = 3 * DES_BLOCK_SIZE,
1832 .max_keysize = 3 * DES_BLOCK_SIZE,
1833 .setkey = stm32_cryp_tdes_setkey,
1834 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1835 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1836 }
1837},
1838{
1839 .cra_name = "cbc(des3_ede)",
1840 .cra_driver_name = "stm32-cbc-des3",
1841 .cra_priority = 200,
1842 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1843 CRYPTO_ALG_ASYNC,
1844 .cra_blocksize = DES_BLOCK_SIZE,
1845 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1846 .cra_alignmask = 0xf,
1847 .cra_type = &crypto_ablkcipher_type,
1848 .cra_module = THIS_MODULE,
1849 .cra_init = stm32_cryp_cra_init,
1850 .cra_ablkcipher = {
1851 .min_keysize = 3 * DES_BLOCK_SIZE,
1852 .max_keysize = 3 * DES_BLOCK_SIZE,
1853 .ivsize = DES_BLOCK_SIZE,
1854 .setkey = stm32_cryp_tdes_setkey,
1855 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1856 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1857 }
1858},
1859};
1860
1861static struct aead_alg aead_algs[] = {
1862{
1863 .setkey = stm32_cryp_aes_aead_setkey,
1864 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1865 .encrypt = stm32_cryp_aes_gcm_encrypt,
1866 .decrypt = stm32_cryp_aes_gcm_decrypt,
1867 .init = stm32_cryp_aes_aead_init,
1868 .ivsize = 12,
1869 .maxauthsize = AES_BLOCK_SIZE,
1870
1871 .base = {
1872 .cra_name = "gcm(aes)",
1873 .cra_driver_name = "stm32-gcm-aes",
1874 .cra_priority = 200,
1875 .cra_flags = CRYPTO_ALG_ASYNC,
1876 .cra_blocksize = 1,
1877 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1878 .cra_alignmask = 0xf,
1879 .cra_module = THIS_MODULE,
1880 },
1881},
1882{
1883 .setkey = stm32_cryp_aes_aead_setkey,
1884 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1885 .encrypt = stm32_cryp_aes_ccm_encrypt,
1886 .decrypt = stm32_cryp_aes_ccm_decrypt,
1887 .init = stm32_cryp_aes_aead_init,
1888 .ivsize = AES_BLOCK_SIZE,
1889 .maxauthsize = AES_BLOCK_SIZE,
1890
1891 .base = {
1892 .cra_name = "ccm(aes)",
1893 .cra_driver_name = "stm32-ccm-aes",
1894 .cra_priority = 200,
1895 .cra_flags = CRYPTO_ALG_ASYNC,
1896 .cra_blocksize = 1,
1897 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1898 .cra_alignmask = 0xf,
1899 .cra_module = THIS_MODULE,
1900 },
1901},
1902};
1903
1904static const struct stm32_cryp_caps f7_data = {
1905 .swap_final = true,
1906 .padding_wa = true,
1907};
1908
1909static const struct stm32_cryp_caps mp1_data = {
1910 .swap_final = false,
1911 .padding_wa = false,
1912};
1913
1914static const struct of_device_id stm32_dt_ids[] = {
1915 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1916 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1917 {},
1918};
1919MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1920
1921static int stm32_cryp_probe(struct platform_device *pdev)
1922{
1923 struct device *dev = &pdev->dev;
1924 struct stm32_cryp *cryp;
1925 struct resource *res;
1926 struct reset_control *rst;
1927 int irq, ret;
1928
1929 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1930 if (!cryp)
1931 return -ENOMEM;
1932
1933 cryp->caps = of_device_get_match_data(dev);
1934 if (!cryp->caps)
1935 return -ENODEV;
1936
1937 cryp->dev = dev;
1938
1939 mutex_init(&cryp->lock);
1940
1941 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1942 cryp->regs = devm_ioremap_resource(dev, res);
1943 if (IS_ERR(cryp->regs))
1944 return PTR_ERR(cryp->regs);
1945
1946 irq = platform_get_irq(pdev, 0);
1947 if (irq < 0) {
1948 dev_err(dev, "Cannot get IRQ resource\n");
1949 return irq;
1950 }
1951
1952 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1953 stm32_cryp_irq_thread, IRQF_ONESHOT,
1954 dev_name(dev), cryp);
1955 if (ret) {
1956 dev_err(dev, "Cannot grab IRQ\n");
1957 return ret;
1958 }
1959
1960 cryp->clk = devm_clk_get(dev, NULL);
1961 if (IS_ERR(cryp->clk)) {
1962 dev_err(dev, "Could not get clock\n");
1963 return PTR_ERR(cryp->clk);
1964 }
1965
1966 ret = clk_prepare_enable(cryp->clk);
1967 if (ret) {
1968 dev_err(cryp->dev, "Failed to enable clock\n");
1969 return ret;
1970 }
1971
1972 rst = devm_reset_control_get(dev, NULL);
1973 if (!IS_ERR(rst)) {
1974 reset_control_assert(rst);
1975 udelay(2);
1976 reset_control_deassert(rst);
1977 }
1978
1979 platform_set_drvdata(pdev, cryp);
1980
1981 spin_lock(&cryp_list.lock);
1982 list_add(&cryp->list, &cryp_list.dev_list);
1983 spin_unlock(&cryp_list.lock);
1984
1985 /* Initialize crypto engine */
1986 cryp->engine = crypto_engine_alloc_init(dev, 1);
1987 if (!cryp->engine) {
1988 dev_err(dev, "Could not init crypto engine\n");
1989 ret = -ENOMEM;
1990 goto err_engine1;
1991 }
1992
1993 ret = crypto_engine_start(cryp->engine);
1994 if (ret) {
1995 dev_err(dev, "Could not start crypto engine\n");
1996 goto err_engine2;
1997 }
1998
1999 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2000 if (ret) {
2001 dev_err(dev, "Could not register algs\n");
2002 goto err_algs;
2003 }
2004
2005 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2006 if (ret)
2007 goto err_aead_algs;
2008
2009 dev_info(dev, "Initialized\n");
2010
2011 return 0;
2012
2013err_aead_algs:
2014 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2015err_algs:
2016err_engine2:
2017 crypto_engine_exit(cryp->engine);
2018err_engine1:
2019 spin_lock(&cryp_list.lock);
2020 list_del(&cryp->list);
2021 spin_unlock(&cryp_list.lock);
2022
2023 clk_disable_unprepare(cryp->clk);
2024
2025 return ret;
2026}
2027
2028static int stm32_cryp_remove(struct platform_device *pdev)
2029{
2030 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2031
2032 if (!cryp)
2033 return -ENODEV;
2034
2035 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2036 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2037
2038 crypto_engine_exit(cryp->engine);
2039
2040 spin_lock(&cryp_list.lock);
2041 list_del(&cryp->list);
2042 spin_unlock(&cryp_list.lock);
2043
2044 clk_disable_unprepare(cryp->clk);
2045
2046 return 0;
2047}
2048
2049static struct platform_driver stm32_cryp_driver = {
2050 .probe = stm32_cryp_probe,
2051 .remove = stm32_cryp_remove,
2052 .driver = {
2053 .name = DRIVER_NAME,
2054 .of_match_table = stm32_dt_ids,
2055 },
2056};
2057
2058module_platform_driver(stm32_cryp_driver);
2059
2060MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2061MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2062MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/iopoll.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/pm_runtime.h>
15#include <linux/reset.h>
16
17#include <crypto/aes.h>
18#include <crypto/internal/des.h>
19#include <crypto/engine.h>
20#include <crypto/scatterwalk.h>
21#include <crypto/internal/aead.h>
22
23#define DRIVER_NAME "stm32-cryp"
24
25/* Bit [0] encrypt / decrypt */
26#define FLG_ENCRYPT BIT(0)
27/* Bit [8..1] algo & operation mode */
28#define FLG_AES BIT(1)
29#define FLG_DES BIT(2)
30#define FLG_TDES BIT(3)
31#define FLG_ECB BIT(4)
32#define FLG_CBC BIT(5)
33#define FLG_CTR BIT(6)
34#define FLG_GCM BIT(7)
35#define FLG_CCM BIT(8)
36/* Mode mask = bits [15..0] */
37#define FLG_MODE_MASK GENMASK(15, 0)
38/* Bit [31..16] status */
39#define FLG_CCM_PADDED_WA BIT(16)
40
41/* Registers */
42#define CRYP_CR 0x00000000
43#define CRYP_SR 0x00000004
44#define CRYP_DIN 0x00000008
45#define CRYP_DOUT 0x0000000C
46#define CRYP_DMACR 0x00000010
47#define CRYP_IMSCR 0x00000014
48#define CRYP_RISR 0x00000018
49#define CRYP_MISR 0x0000001C
50#define CRYP_K0LR 0x00000020
51#define CRYP_K0RR 0x00000024
52#define CRYP_K1LR 0x00000028
53#define CRYP_K1RR 0x0000002C
54#define CRYP_K2LR 0x00000030
55#define CRYP_K2RR 0x00000034
56#define CRYP_K3LR 0x00000038
57#define CRYP_K3RR 0x0000003C
58#define CRYP_IV0LR 0x00000040
59#define CRYP_IV0RR 0x00000044
60#define CRYP_IV1LR 0x00000048
61#define CRYP_IV1RR 0x0000004C
62#define CRYP_CSGCMCCM0R 0x00000050
63#define CRYP_CSGCM0R 0x00000070
64
65/* Registers values */
66#define CR_DEC_NOT_ENC 0x00000004
67#define CR_TDES_ECB 0x00000000
68#define CR_TDES_CBC 0x00000008
69#define CR_DES_ECB 0x00000010
70#define CR_DES_CBC 0x00000018
71#define CR_AES_ECB 0x00000020
72#define CR_AES_CBC 0x00000028
73#define CR_AES_CTR 0x00000030
74#define CR_AES_KP 0x00000038
75#define CR_AES_GCM 0x00080000
76#define CR_AES_CCM 0x00080008
77#define CR_AES_UNKNOWN 0xFFFFFFFF
78#define CR_ALGO_MASK 0x00080038
79#define CR_DATA32 0x00000000
80#define CR_DATA16 0x00000040
81#define CR_DATA8 0x00000080
82#define CR_DATA1 0x000000C0
83#define CR_KEY128 0x00000000
84#define CR_KEY192 0x00000100
85#define CR_KEY256 0x00000200
86#define CR_FFLUSH 0x00004000
87#define CR_CRYPEN 0x00008000
88#define CR_PH_INIT 0x00000000
89#define CR_PH_HEADER 0x00010000
90#define CR_PH_PAYLOAD 0x00020000
91#define CR_PH_FINAL 0x00030000
92#define CR_PH_MASK 0x00030000
93#define CR_NBPBL_SHIFT 20
94
95#define SR_BUSY 0x00000010
96#define SR_OFNE 0x00000004
97
98#define IMSCR_IN BIT(0)
99#define IMSCR_OUT BIT(1)
100
101#define MISR_IN BIT(0)
102#define MISR_OUT BIT(1)
103
104/* Misc */
105#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
106#define GCM_CTR_INIT 2
107#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
108#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
109#define CRYP_AUTOSUSPEND_DELAY 50
110
111struct stm32_cryp_caps {
112 bool swap_final;
113 bool padding_wa;
114};
115
116struct stm32_cryp_ctx {
117 struct crypto_engine_ctx enginectx;
118 struct stm32_cryp *cryp;
119 int keylen;
120 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
121 unsigned long flags;
122};
123
124struct stm32_cryp_reqctx {
125 unsigned long mode;
126};
127
128struct stm32_cryp {
129 struct list_head list;
130 struct device *dev;
131 void __iomem *regs;
132 struct clk *clk;
133 unsigned long flags;
134 u32 irq_status;
135 const struct stm32_cryp_caps *caps;
136 struct stm32_cryp_ctx *ctx;
137
138 struct crypto_engine *engine;
139
140 struct ablkcipher_request *req;
141 struct aead_request *areq;
142
143 size_t authsize;
144 size_t hw_blocksize;
145
146 size_t total_in;
147 size_t total_in_save;
148 size_t total_out;
149 size_t total_out_save;
150
151 struct scatterlist *in_sg;
152 struct scatterlist *out_sg;
153 struct scatterlist *out_sg_save;
154
155 struct scatterlist in_sgl;
156 struct scatterlist out_sgl;
157 bool sgs_copied;
158
159 int in_sg_len;
160 int out_sg_len;
161
162 struct scatter_walk in_walk;
163 struct scatter_walk out_walk;
164
165 u32 last_ctr[4];
166 u32 gcm_ctr;
167};
168
169struct stm32_cryp_list {
170 struct list_head dev_list;
171 spinlock_t lock; /* protect dev_list */
172};
173
174static struct stm32_cryp_list cryp_list = {
175 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
176 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
177};
178
179static inline bool is_aes(struct stm32_cryp *cryp)
180{
181 return cryp->flags & FLG_AES;
182}
183
184static inline bool is_des(struct stm32_cryp *cryp)
185{
186 return cryp->flags & FLG_DES;
187}
188
189static inline bool is_tdes(struct stm32_cryp *cryp)
190{
191 return cryp->flags & FLG_TDES;
192}
193
194static inline bool is_ecb(struct stm32_cryp *cryp)
195{
196 return cryp->flags & FLG_ECB;
197}
198
199static inline bool is_cbc(struct stm32_cryp *cryp)
200{
201 return cryp->flags & FLG_CBC;
202}
203
204static inline bool is_ctr(struct stm32_cryp *cryp)
205{
206 return cryp->flags & FLG_CTR;
207}
208
209static inline bool is_gcm(struct stm32_cryp *cryp)
210{
211 return cryp->flags & FLG_GCM;
212}
213
214static inline bool is_ccm(struct stm32_cryp *cryp)
215{
216 return cryp->flags & FLG_CCM;
217}
218
219static inline bool is_encrypt(struct stm32_cryp *cryp)
220{
221 return cryp->flags & FLG_ENCRYPT;
222}
223
224static inline bool is_decrypt(struct stm32_cryp *cryp)
225{
226 return !is_encrypt(cryp);
227}
228
229static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
230{
231 return readl_relaxed(cryp->regs + ofst);
232}
233
234static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
235{
236 writel_relaxed(val, cryp->regs + ofst);
237}
238
239static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
240{
241 u32 status;
242
243 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
244 !(status & SR_BUSY), 10, 100000);
245}
246
247static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
248{
249 u32 status;
250
251 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
252 !(status & CR_CRYPEN), 10, 100000);
253}
254
255static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
256{
257 u32 status;
258
259 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
260 status & SR_OFNE, 10, 100000);
261}
262
263static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
264
265static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
266{
267 struct stm32_cryp *tmp, *cryp = NULL;
268
269 spin_lock_bh(&cryp_list.lock);
270 if (!ctx->cryp) {
271 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
272 cryp = tmp;
273 break;
274 }
275 ctx->cryp = cryp;
276 } else {
277 cryp = ctx->cryp;
278 }
279
280 spin_unlock_bh(&cryp_list.lock);
281
282 return cryp;
283}
284
285static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
286 size_t align)
287{
288 int len = 0;
289
290 if (!total)
291 return 0;
292
293 if (!IS_ALIGNED(total, align))
294 return -EINVAL;
295
296 while (sg) {
297 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
298 return -EINVAL;
299
300 if (!IS_ALIGNED(sg->length, align))
301 return -EINVAL;
302
303 len += sg->length;
304 sg = sg_next(sg);
305 }
306
307 if (len != total)
308 return -EINVAL;
309
310 return 0;
311}
312
313static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
314{
315 int ret;
316
317 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
318 cryp->hw_blocksize);
319 if (ret)
320 return ret;
321
322 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
323 cryp->hw_blocksize);
324
325 return ret;
326}
327
328static void sg_copy_buf(void *buf, struct scatterlist *sg,
329 unsigned int start, unsigned int nbytes, int out)
330{
331 struct scatter_walk walk;
332
333 if (!nbytes)
334 return;
335
336 scatterwalk_start(&walk, sg);
337 scatterwalk_advance(&walk, start);
338 scatterwalk_copychunks(buf, &walk, nbytes, out);
339 scatterwalk_done(&walk, out, 0);
340}
341
342static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
343{
344 void *buf_in, *buf_out;
345 int pages, total_in, total_out;
346
347 if (!stm32_cryp_check_io_aligned(cryp)) {
348 cryp->sgs_copied = 0;
349 return 0;
350 }
351
352 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
353 pages = total_in ? get_order(total_in) : 1;
354 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
355
356 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
357 pages = total_out ? get_order(total_out) : 1;
358 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
359
360 if (!buf_in || !buf_out) {
361 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
362 cryp->sgs_copied = 0;
363 return -EFAULT;
364 }
365
366 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
367
368 sg_init_one(&cryp->in_sgl, buf_in, total_in);
369 cryp->in_sg = &cryp->in_sgl;
370 cryp->in_sg_len = 1;
371
372 sg_init_one(&cryp->out_sgl, buf_out, total_out);
373 cryp->out_sg_save = cryp->out_sg;
374 cryp->out_sg = &cryp->out_sgl;
375 cryp->out_sg_len = 1;
376
377 cryp->sgs_copied = 1;
378
379 return 0;
380}
381
382static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
383{
384 if (!iv)
385 return;
386
387 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
388 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
389
390 if (is_aes(cryp)) {
391 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
392 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
393 }
394}
395
396static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
397{
398 struct ablkcipher_request *req = cryp->req;
399 u32 *tmp = req->info;
400
401 if (!tmp)
402 return;
403
404 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
406
407 if (is_aes(cryp)) {
408 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
410 }
411}
412
413static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
414{
415 unsigned int i;
416 int r_id;
417
418 if (is_des(c)) {
419 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
420 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
421 } else {
422 r_id = CRYP_K3RR;
423 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
424 stm32_cryp_write(c, r_id,
425 cpu_to_be32(c->ctx->key[i - 1]));
426 }
427}
428
429static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
430{
431 if (is_aes(cryp) && is_ecb(cryp))
432 return CR_AES_ECB;
433
434 if (is_aes(cryp) && is_cbc(cryp))
435 return CR_AES_CBC;
436
437 if (is_aes(cryp) && is_ctr(cryp))
438 return CR_AES_CTR;
439
440 if (is_aes(cryp) && is_gcm(cryp))
441 return CR_AES_GCM;
442
443 if (is_aes(cryp) && is_ccm(cryp))
444 return CR_AES_CCM;
445
446 if (is_des(cryp) && is_ecb(cryp))
447 return CR_DES_ECB;
448
449 if (is_des(cryp) && is_cbc(cryp))
450 return CR_DES_CBC;
451
452 if (is_tdes(cryp) && is_ecb(cryp))
453 return CR_TDES_ECB;
454
455 if (is_tdes(cryp) && is_cbc(cryp))
456 return CR_TDES_CBC;
457
458 dev_err(cryp->dev, "Unknown mode\n");
459 return CR_AES_UNKNOWN;
460}
461
462static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
463{
464 return is_encrypt(cryp) ? cryp->areq->cryptlen :
465 cryp->areq->cryptlen - cryp->authsize;
466}
467
468static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
469{
470 int ret;
471 u32 iv[4];
472
473 /* Phase 1 : init */
474 memcpy(iv, cryp->areq->iv, 12);
475 iv[3] = cpu_to_be32(GCM_CTR_INIT);
476 cryp->gcm_ctr = GCM_CTR_INIT;
477 stm32_cryp_hw_write_iv(cryp, iv);
478
479 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
480
481 /* Wait for end of processing */
482 ret = stm32_cryp_wait_enable(cryp);
483 if (ret)
484 dev_err(cryp->dev, "Timeout (gcm init)\n");
485
486 return ret;
487}
488
489static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
490{
491 int ret;
492 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
493 u32 *d;
494 unsigned int i, textlen;
495
496 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
497 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
498 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
499 iv[AES_BLOCK_SIZE - 1] = 1;
500 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
501
502 /* Build B0 */
503 memcpy(b0, iv, AES_BLOCK_SIZE);
504
505 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
506
507 if (cryp->areq->assoclen)
508 b0[0] |= 0x40;
509
510 textlen = stm32_cryp_get_input_text_len(cryp);
511
512 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
513 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
514
515 /* Enable HW */
516 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
517
518 /* Write B0 */
519 d = (u32 *)b0;
520
521 for (i = 0; i < AES_BLOCK_32; i++) {
522 if (!cryp->caps->padding_wa)
523 *d = cpu_to_be32(*d);
524 stm32_cryp_write(cryp, CRYP_DIN, *d++);
525 }
526
527 /* Wait for end of processing */
528 ret = stm32_cryp_wait_enable(cryp);
529 if (ret)
530 dev_err(cryp->dev, "Timeout (ccm init)\n");
531
532 return ret;
533}
534
535static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
536{
537 int ret;
538 u32 cfg, hw_mode;
539
540 pm_runtime_get_sync(cryp->dev);
541
542 /* Disable interrupt */
543 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
544
545 /* Set key */
546 stm32_cryp_hw_write_key(cryp);
547
548 /* Set configuration */
549 cfg = CR_DATA8 | CR_FFLUSH;
550
551 switch (cryp->ctx->keylen) {
552 case AES_KEYSIZE_128:
553 cfg |= CR_KEY128;
554 break;
555
556 case AES_KEYSIZE_192:
557 cfg |= CR_KEY192;
558 break;
559
560 default:
561 case AES_KEYSIZE_256:
562 cfg |= CR_KEY256;
563 break;
564 }
565
566 hw_mode = stm32_cryp_get_hw_mode(cryp);
567 if (hw_mode == CR_AES_UNKNOWN)
568 return -EINVAL;
569
570 /* AES ECB/CBC decrypt: run key preparation first */
571 if (is_decrypt(cryp) &&
572 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
573 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
574
575 /* Wait for end of processing */
576 ret = stm32_cryp_wait_busy(cryp);
577 if (ret) {
578 dev_err(cryp->dev, "Timeout (key preparation)\n");
579 return ret;
580 }
581 }
582
583 cfg |= hw_mode;
584
585 if (is_decrypt(cryp))
586 cfg |= CR_DEC_NOT_ENC;
587
588 /* Apply config and flush (valid when CRYPEN = 0) */
589 stm32_cryp_write(cryp, CRYP_CR, cfg);
590
591 switch (hw_mode) {
592 case CR_AES_GCM:
593 case CR_AES_CCM:
594 /* Phase 1 : init */
595 if (hw_mode == CR_AES_CCM)
596 ret = stm32_cryp_ccm_init(cryp, cfg);
597 else
598 ret = stm32_cryp_gcm_init(cryp, cfg);
599
600 if (ret)
601 return ret;
602
603 /* Phase 2 : header (authenticated data) */
604 if (cryp->areq->assoclen) {
605 cfg |= CR_PH_HEADER;
606 } else if (stm32_cryp_get_input_text_len(cryp)) {
607 cfg |= CR_PH_PAYLOAD;
608 stm32_cryp_write(cryp, CRYP_CR, cfg);
609 } else {
610 cfg |= CR_PH_INIT;
611 }
612
613 break;
614
615 case CR_DES_CBC:
616 case CR_TDES_CBC:
617 case CR_AES_CBC:
618 case CR_AES_CTR:
619 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
620 break;
621
622 default:
623 break;
624 }
625
626 /* Enable now */
627 cfg |= CR_CRYPEN;
628
629 stm32_cryp_write(cryp, CRYP_CR, cfg);
630
631 cryp->flags &= ~FLG_CCM_PADDED_WA;
632
633 return 0;
634}
635
636static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
637{
638 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
639 /* Phase 4 : output tag */
640 err = stm32_cryp_read_auth_tag(cryp);
641
642 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
643 stm32_cryp_get_iv(cryp);
644
645 if (cryp->sgs_copied) {
646 void *buf_in, *buf_out;
647 int pages, len;
648
649 buf_in = sg_virt(&cryp->in_sgl);
650 buf_out = sg_virt(&cryp->out_sgl);
651
652 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
653 cryp->total_out_save, 1);
654
655 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
656 pages = len ? get_order(len) : 1;
657 free_pages((unsigned long)buf_in, pages);
658
659 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
660 pages = len ? get_order(len) : 1;
661 free_pages((unsigned long)buf_out, pages);
662 }
663
664 pm_runtime_mark_last_busy(cryp->dev);
665 pm_runtime_put_autosuspend(cryp->dev);
666
667 if (is_gcm(cryp) || is_ccm(cryp))
668 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
669 else
670 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
671 err);
672
673 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
674}
675
676static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
677{
678 /* Enable interrupt and let the IRQ handler do everything */
679 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
680
681 return 0;
682}
683
684static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
685static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
686 void *areq);
687
688static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
689{
690 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
691
692 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
693
694 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
695 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
696 ctx->enginectx.op.unprepare_request = NULL;
697 return 0;
698}
699
700static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
701static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
702 void *areq);
703
704static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
705{
706 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
707
708 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
709
710 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
711 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
712 ctx->enginectx.op.unprepare_request = NULL;
713
714 return 0;
715}
716
717static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
718{
719 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
720 crypto_ablkcipher_reqtfm(req));
721 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
722 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
723
724 if (!cryp)
725 return -ENODEV;
726
727 rctx->mode = mode;
728
729 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
730}
731
732static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
733{
734 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
735 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
736 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
737
738 if (!cryp)
739 return -ENODEV;
740
741 rctx->mode = mode;
742
743 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
744}
745
746static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 unsigned int keylen)
748{
749 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
750
751 memcpy(ctx->key, key, keylen);
752 ctx->keylen = keylen;
753
754 return 0;
755}
756
757static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
758 unsigned int keylen)
759{
760 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
761 keylen != AES_KEYSIZE_256)
762 return -EINVAL;
763 else
764 return stm32_cryp_setkey(tfm, key, keylen);
765}
766
767static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
768 unsigned int keylen)
769{
770 return verify_ablkcipher_des_key(tfm, key) ?:
771 stm32_cryp_setkey(tfm, key, keylen);
772}
773
774static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
775 unsigned int keylen)
776{
777 return verify_ablkcipher_des3_key(tfm, key) ?:
778 stm32_cryp_setkey(tfm, key, keylen);
779}
780
781static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
782 unsigned int keylen)
783{
784 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
785
786 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
787 keylen != AES_KEYSIZE_256)
788 return -EINVAL;
789
790 memcpy(ctx->key, key, keylen);
791 ctx->keylen = keylen;
792
793 return 0;
794}
795
796static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
797 unsigned int authsize)
798{
799 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
800}
801
802static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
803 unsigned int authsize)
804{
805 switch (authsize) {
806 case 4:
807 case 6:
808 case 8:
809 case 10:
810 case 12:
811 case 14:
812 case 16:
813 break;
814 default:
815 return -EINVAL;
816 }
817
818 return 0;
819}
820
821static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
822{
823 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
824}
825
826static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
827{
828 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
829}
830
831static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
832{
833 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
834}
835
836static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
837{
838 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
839}
840
841static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
842{
843 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
844}
845
846static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
847{
848 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
849}
850
851static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
852{
853 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
854}
855
856static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
857{
858 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
859}
860
861static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
862{
863 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
864}
865
866static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
867{
868 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
869}
870
871static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
872{
873 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
874}
875
876static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
877{
878 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
879}
880
881static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
882{
883 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
884}
885
886static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
887{
888 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
889}
890
891static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
892{
893 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
894}
895
896static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
897{
898 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
899}
900
901static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
902{
903 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
904}
905
906static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
907{
908 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
909}
910
911static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
912 struct aead_request *areq)
913{
914 struct stm32_cryp_ctx *ctx;
915 struct stm32_cryp *cryp;
916 struct stm32_cryp_reqctx *rctx;
917 int ret;
918
919 if (!req && !areq)
920 return -EINVAL;
921
922 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
923 crypto_aead_ctx(crypto_aead_reqtfm(areq));
924
925 cryp = ctx->cryp;
926
927 if (!cryp)
928 return -ENODEV;
929
930 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
931 rctx->mode &= FLG_MODE_MASK;
932
933 ctx->cryp = cryp;
934
935 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
936 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
937 cryp->ctx = ctx;
938
939 if (req) {
940 cryp->req = req;
941 cryp->areq = NULL;
942 cryp->total_in = req->nbytes;
943 cryp->total_out = cryp->total_in;
944 } else {
945 /*
946 * Length of input and output data:
947 * Encryption case:
948 * INPUT = AssocData || PlainText
949 * <- assoclen -> <- cryptlen ->
950 * <------- total_in ----------->
951 *
952 * OUTPUT = AssocData || CipherText || AuthTag
953 * <- assoclen -> <- cryptlen -> <- authsize ->
954 * <---------------- total_out ----------------->
955 *
956 * Decryption case:
957 * INPUT = AssocData || CipherText || AuthTag
958 * <- assoclen -> <--------- cryptlen --------->
959 * <- authsize ->
960 * <---------------- total_in ------------------>
961 *
962 * OUTPUT = AssocData || PlainText
963 * <- assoclen -> <- crypten - authsize ->
964 * <---------- total_out ----------------->
965 */
966 cryp->areq = areq;
967 cryp->req = NULL;
968 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
969 cryp->total_in = areq->assoclen + areq->cryptlen;
970 if (is_encrypt(cryp))
971 /* Append auth tag to output */
972 cryp->total_out = cryp->total_in + cryp->authsize;
973 else
974 /* No auth tag in output */
975 cryp->total_out = cryp->total_in - cryp->authsize;
976 }
977
978 cryp->total_in_save = cryp->total_in;
979 cryp->total_out_save = cryp->total_out;
980
981 cryp->in_sg = req ? req->src : areq->src;
982 cryp->out_sg = req ? req->dst : areq->dst;
983 cryp->out_sg_save = cryp->out_sg;
984
985 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
986 if (cryp->in_sg_len < 0) {
987 dev_err(cryp->dev, "Cannot get in_sg_len\n");
988 ret = cryp->in_sg_len;
989 return ret;
990 }
991
992 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
993 if (cryp->out_sg_len < 0) {
994 dev_err(cryp->dev, "Cannot get out_sg_len\n");
995 ret = cryp->out_sg_len;
996 return ret;
997 }
998
999 ret = stm32_cryp_copy_sgs(cryp);
1000 if (ret)
1001 return ret;
1002
1003 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1004 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1005
1006 if (is_gcm(cryp) || is_ccm(cryp)) {
1007 /* In output, jump after assoc data */
1008 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1009 cryp->total_out -= cryp->areq->assoclen;
1010 }
1011
1012 ret = stm32_cryp_hw_init(cryp);
1013 return ret;
1014}
1015
1016static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1017 void *areq)
1018{
1019 struct ablkcipher_request *req = container_of(areq,
1020 struct ablkcipher_request,
1021 base);
1022
1023 return stm32_cryp_prepare_req(req, NULL);
1024}
1025
1026static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1027{
1028 struct ablkcipher_request *req = container_of(areq,
1029 struct ablkcipher_request,
1030 base);
1031 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1032 crypto_ablkcipher_reqtfm(req));
1033 struct stm32_cryp *cryp = ctx->cryp;
1034
1035 if (!cryp)
1036 return -ENODEV;
1037
1038 return stm32_cryp_cpu_start(cryp);
1039}
1040
1041static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1042{
1043 struct aead_request *req = container_of(areq, struct aead_request,
1044 base);
1045
1046 return stm32_cryp_prepare_req(NULL, req);
1047}
1048
1049static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1050{
1051 struct aead_request *req = container_of(areq, struct aead_request,
1052 base);
1053 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1054 struct stm32_cryp *cryp = ctx->cryp;
1055
1056 if (!cryp)
1057 return -ENODEV;
1058
1059 if (unlikely(!cryp->areq->assoclen &&
1060 !stm32_cryp_get_input_text_len(cryp))) {
1061 /* No input data to process: get tag and finish */
1062 stm32_cryp_finish_req(cryp, 0);
1063 return 0;
1064 }
1065
1066 return stm32_cryp_cpu_start(cryp);
1067}
1068
1069static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1070 unsigned int n)
1071{
1072 scatterwalk_advance(&cryp->out_walk, n);
1073
1074 if (unlikely(cryp->out_sg->length == _walked_out)) {
1075 cryp->out_sg = sg_next(cryp->out_sg);
1076 if (cryp->out_sg) {
1077 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1078 return (sg_virt(cryp->out_sg) + _walked_out);
1079 }
1080 }
1081
1082 return (u32 *)((u8 *)dst + n);
1083}
1084
1085static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1086 unsigned int n)
1087{
1088 scatterwalk_advance(&cryp->in_walk, n);
1089
1090 if (unlikely(cryp->in_sg->length == _walked_in)) {
1091 cryp->in_sg = sg_next(cryp->in_sg);
1092 if (cryp->in_sg) {
1093 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1094 return (sg_virt(cryp->in_sg) + _walked_in);
1095 }
1096 }
1097
1098 return (u32 *)((u8 *)src + n);
1099}
1100
1101static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1102{
1103 u32 cfg, size_bit, *dst, d32;
1104 u8 *d8;
1105 unsigned int i, j;
1106 int ret = 0;
1107
1108 /* Update Config */
1109 cfg = stm32_cryp_read(cryp, CRYP_CR);
1110
1111 cfg &= ~CR_PH_MASK;
1112 cfg |= CR_PH_FINAL;
1113 cfg &= ~CR_DEC_NOT_ENC;
1114 cfg |= CR_CRYPEN;
1115
1116 stm32_cryp_write(cryp, CRYP_CR, cfg);
1117
1118 if (is_gcm(cryp)) {
1119 /* GCM: write aad and payload size (in bits) */
1120 size_bit = cryp->areq->assoclen * 8;
1121 if (cryp->caps->swap_final)
1122 size_bit = cpu_to_be32(size_bit);
1123
1124 stm32_cryp_write(cryp, CRYP_DIN, 0);
1125 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1126
1127 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1128 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1129 size_bit *= 8;
1130 if (cryp->caps->swap_final)
1131 size_bit = cpu_to_be32(size_bit);
1132
1133 stm32_cryp_write(cryp, CRYP_DIN, 0);
1134 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1135 } else {
1136 /* CCM: write CTR0 */
1137 u8 iv[AES_BLOCK_SIZE];
1138 u32 *iv32 = (u32 *)iv;
1139
1140 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1141 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1142
1143 for (i = 0; i < AES_BLOCK_32; i++) {
1144 if (!cryp->caps->padding_wa)
1145 *iv32 = cpu_to_be32(*iv32);
1146 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1147 }
1148 }
1149
1150 /* Wait for output data */
1151 ret = stm32_cryp_wait_output(cryp);
1152 if (ret) {
1153 dev_err(cryp->dev, "Timeout (read tag)\n");
1154 return ret;
1155 }
1156
1157 if (is_encrypt(cryp)) {
1158 /* Get and write tag */
1159 dst = sg_virt(cryp->out_sg) + _walked_out;
1160
1161 for (i = 0; i < AES_BLOCK_32; i++) {
1162 if (cryp->total_out >= sizeof(u32)) {
1163 /* Read a full u32 */
1164 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1165
1166 dst = stm32_cryp_next_out(cryp, dst,
1167 sizeof(u32));
1168 cryp->total_out -= sizeof(u32);
1169 } else if (!cryp->total_out) {
1170 /* Empty fifo out (data from input padding) */
1171 stm32_cryp_read(cryp, CRYP_DOUT);
1172 } else {
1173 /* Read less than an u32 */
1174 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1175 d8 = (u8 *)&d32;
1176
1177 for (j = 0; j < cryp->total_out; j++) {
1178 *((u8 *)dst) = *(d8++);
1179 dst = stm32_cryp_next_out(cryp, dst, 1);
1180 }
1181 cryp->total_out = 0;
1182 }
1183 }
1184 } else {
1185 /* Get and check tag */
1186 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1187
1188 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1189 cryp->total_in_save - cryp->authsize,
1190 cryp->authsize, 0);
1191
1192 for (i = 0; i < AES_BLOCK_32; i++)
1193 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1194
1195 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1196 ret = -EBADMSG;
1197 }
1198
1199 /* Disable cryp */
1200 cfg &= ~CR_CRYPEN;
1201 stm32_cryp_write(cryp, CRYP_CR, cfg);
1202
1203 return ret;
1204}
1205
1206static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1207{
1208 u32 cr;
1209
1210 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1211 cryp->last_ctr[3] = 0;
1212 cryp->last_ctr[2]++;
1213 if (!cryp->last_ctr[2]) {
1214 cryp->last_ctr[1]++;
1215 if (!cryp->last_ctr[1])
1216 cryp->last_ctr[0]++;
1217 }
1218
1219 cr = stm32_cryp_read(cryp, CRYP_CR);
1220 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1221
1222 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1223
1224 stm32_cryp_write(cryp, CRYP_CR, cr);
1225 }
1226
1227 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1228 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1229 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1230 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1231}
1232
1233static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1234{
1235 unsigned int i, j;
1236 u32 d32, *dst;
1237 u8 *d8;
1238 size_t tag_size;
1239
1240 /* Do no read tag now (if any) */
1241 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1242 tag_size = cryp->authsize;
1243 else
1244 tag_size = 0;
1245
1246 dst = sg_virt(cryp->out_sg) + _walked_out;
1247
1248 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1249 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1250 /* Read a full u32 */
1251 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1252
1253 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1254 cryp->total_out -= sizeof(u32);
1255 } else if (cryp->total_out == tag_size) {
1256 /* Empty fifo out (data from input padding) */
1257 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1258 } else {
1259 /* Read less than an u32 */
1260 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1261 d8 = (u8 *)&d32;
1262
1263 for (j = 0; j < cryp->total_out - tag_size; j++) {
1264 *((u8 *)dst) = *(d8++);
1265 dst = stm32_cryp_next_out(cryp, dst, 1);
1266 }
1267 cryp->total_out = tag_size;
1268 }
1269 }
1270
1271 return !(cryp->total_out - tag_size) || !cryp->total_in;
1272}
1273
1274static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1275{
1276 unsigned int i, j;
1277 u32 *src;
1278 u8 d8[4];
1279 size_t tag_size;
1280
1281 /* Do no write tag (if any) */
1282 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1283 tag_size = cryp->authsize;
1284 else
1285 tag_size = 0;
1286
1287 src = sg_virt(cryp->in_sg) + _walked_in;
1288
1289 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1290 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1291 /* Write a full u32 */
1292 stm32_cryp_write(cryp, CRYP_DIN, *src);
1293
1294 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1295 cryp->total_in -= sizeof(u32);
1296 } else if (cryp->total_in == tag_size) {
1297 /* Write padding data */
1298 stm32_cryp_write(cryp, CRYP_DIN, 0);
1299 } else {
1300 /* Write less than an u32 */
1301 memset(d8, 0, sizeof(u32));
1302 for (j = 0; j < cryp->total_in - tag_size; j++) {
1303 d8[j] = *((u8 *)src);
1304 src = stm32_cryp_next_in(cryp, src, 1);
1305 }
1306
1307 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1308 cryp->total_in = tag_size;
1309 }
1310 }
1311}
1312
1313static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1314{
1315 int err;
1316 u32 cfg, tmp[AES_BLOCK_32];
1317 size_t total_in_ori = cryp->total_in;
1318 struct scatterlist *out_sg_ori = cryp->out_sg;
1319 unsigned int i;
1320
1321 /* 'Special workaround' procedure described in the datasheet */
1322
1323 /* a) disable ip */
1324 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1325 cfg = stm32_cryp_read(cryp, CRYP_CR);
1326 cfg &= ~CR_CRYPEN;
1327 stm32_cryp_write(cryp, CRYP_CR, cfg);
1328
1329 /* b) Update IV1R */
1330 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1331
1332 /* c) change mode to CTR */
1333 cfg &= ~CR_ALGO_MASK;
1334 cfg |= CR_AES_CTR;
1335 stm32_cryp_write(cryp, CRYP_CR, cfg);
1336
1337 /* a) enable IP */
1338 cfg |= CR_CRYPEN;
1339 stm32_cryp_write(cryp, CRYP_CR, cfg);
1340
1341 /* b) pad and write the last block */
1342 stm32_cryp_irq_write_block(cryp);
1343 cryp->total_in = total_in_ori;
1344 err = stm32_cryp_wait_output(cryp);
1345 if (err) {
1346 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1347 return stm32_cryp_finish_req(cryp, err);
1348 }
1349
1350 /* c) get and store encrypted data */
1351 stm32_cryp_irq_read_data(cryp);
1352 scatterwalk_map_and_copy(tmp, out_sg_ori,
1353 cryp->total_in_save - total_in_ori,
1354 total_in_ori, 0);
1355
1356 /* d) change mode back to AES GCM */
1357 cfg &= ~CR_ALGO_MASK;
1358 cfg |= CR_AES_GCM;
1359 stm32_cryp_write(cryp, CRYP_CR, cfg);
1360
1361 /* e) change phase to Final */
1362 cfg &= ~CR_PH_MASK;
1363 cfg |= CR_PH_FINAL;
1364 stm32_cryp_write(cryp, CRYP_CR, cfg);
1365
1366 /* f) write padded data */
1367 for (i = 0; i < AES_BLOCK_32; i++) {
1368 if (cryp->total_in)
1369 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1370 else
1371 stm32_cryp_write(cryp, CRYP_DIN, 0);
1372
1373 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1374 }
1375
1376 /* g) Empty fifo out */
1377 err = stm32_cryp_wait_output(cryp);
1378 if (err) {
1379 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1380 return stm32_cryp_finish_req(cryp, err);
1381 }
1382
1383 for (i = 0; i < AES_BLOCK_32; i++)
1384 stm32_cryp_read(cryp, CRYP_DOUT);
1385
1386 /* h) run the he normal Final phase */
1387 stm32_cryp_finish_req(cryp, 0);
1388}
1389
1390static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1391{
1392 u32 cfg, payload_bytes;
1393
1394 /* disable ip, set NPBLB and reneable ip */
1395 cfg = stm32_cryp_read(cryp, CRYP_CR);
1396 cfg &= ~CR_CRYPEN;
1397 stm32_cryp_write(cryp, CRYP_CR, cfg);
1398
1399 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1400 cryp->total_in;
1401 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1402 cfg |= CR_CRYPEN;
1403 stm32_cryp_write(cryp, CRYP_CR, cfg);
1404}
1405
1406static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1407{
1408 int err = 0;
1409 u32 cfg, iv1tmp;
1410 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1411 size_t last_total_out, total_in_ori = cryp->total_in;
1412 struct scatterlist *out_sg_ori = cryp->out_sg;
1413 unsigned int i;
1414
1415 /* 'Special workaround' procedure described in the datasheet */
1416 cryp->flags |= FLG_CCM_PADDED_WA;
1417
1418 /* a) disable ip */
1419 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1420
1421 cfg = stm32_cryp_read(cryp, CRYP_CR);
1422 cfg &= ~CR_CRYPEN;
1423 stm32_cryp_write(cryp, CRYP_CR, cfg);
1424
1425 /* b) get IV1 from CRYP_CSGCMCCM7 */
1426 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1427
1428 /* c) Load CRYP_CSGCMCCMxR */
1429 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1430 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1431
1432 /* d) Write IV1R */
1433 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1434
1435 /* e) change mode to CTR */
1436 cfg &= ~CR_ALGO_MASK;
1437 cfg |= CR_AES_CTR;
1438 stm32_cryp_write(cryp, CRYP_CR, cfg);
1439
1440 /* a) enable IP */
1441 cfg |= CR_CRYPEN;
1442 stm32_cryp_write(cryp, CRYP_CR, cfg);
1443
1444 /* b) pad and write the last block */
1445 stm32_cryp_irq_write_block(cryp);
1446 cryp->total_in = total_in_ori;
1447 err = stm32_cryp_wait_output(cryp);
1448 if (err) {
1449 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1450 return stm32_cryp_finish_req(cryp, err);
1451 }
1452
1453 /* c) get and store decrypted data */
1454 last_total_out = cryp->total_out;
1455 stm32_cryp_irq_read_data(cryp);
1456
1457 memset(tmp, 0, sizeof(tmp));
1458 scatterwalk_map_and_copy(tmp, out_sg_ori,
1459 cryp->total_out_save - last_total_out,
1460 last_total_out, 0);
1461
1462 /* d) Load again CRYP_CSGCMCCMxR */
1463 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1464 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1465
1466 /* e) change mode back to AES CCM */
1467 cfg &= ~CR_ALGO_MASK;
1468 cfg |= CR_AES_CCM;
1469 stm32_cryp_write(cryp, CRYP_CR, cfg);
1470
1471 /* f) change phase to header */
1472 cfg &= ~CR_PH_MASK;
1473 cfg |= CR_PH_HEADER;
1474 stm32_cryp_write(cryp, CRYP_CR, cfg);
1475
1476 /* g) XOR and write padded data */
1477 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1478 tmp[i] ^= cstmp1[i];
1479 tmp[i] ^= cstmp2[i];
1480 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1481 }
1482
1483 /* h) wait for completion */
1484 err = stm32_cryp_wait_busy(cryp);
1485 if (err)
1486 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1487
1488 /* i) run the he normal Final phase */
1489 stm32_cryp_finish_req(cryp, err);
1490}
1491
1492static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1493{
1494 if (unlikely(!cryp->total_in)) {
1495 dev_warn(cryp->dev, "No more data to process\n");
1496 return;
1497 }
1498
1499 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1500 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1501 is_encrypt(cryp))) {
1502 /* Padding for AES GCM encryption */
1503 if (cryp->caps->padding_wa)
1504 /* Special case 1 */
1505 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1506
1507 /* Setting padding bytes (NBBLB) */
1508 stm32_cryp_irq_set_npblb(cryp);
1509 }
1510
1511 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1512 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1513 is_decrypt(cryp))) {
1514 /* Padding for AES CCM decryption */
1515 if (cryp->caps->padding_wa)
1516 /* Special case 2 */
1517 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1518
1519 /* Setting padding bytes (NBBLB) */
1520 stm32_cryp_irq_set_npblb(cryp);
1521 }
1522
1523 if (is_aes(cryp) && is_ctr(cryp))
1524 stm32_cryp_check_ctr_counter(cryp);
1525
1526 stm32_cryp_irq_write_block(cryp);
1527}
1528
1529static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1530{
1531 int err;
1532 unsigned int i, j;
1533 u32 cfg, *src;
1534
1535 src = sg_virt(cryp->in_sg) + _walked_in;
1536
1537 for (i = 0; i < AES_BLOCK_32; i++) {
1538 stm32_cryp_write(cryp, CRYP_DIN, *src);
1539
1540 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1541 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1542
1543 /* Check if whole header written */
1544 if ((cryp->total_in_save - cryp->total_in) ==
1545 cryp->areq->assoclen) {
1546 /* Write padding if needed */
1547 for (j = i + 1; j < AES_BLOCK_32; j++)
1548 stm32_cryp_write(cryp, CRYP_DIN, 0);
1549
1550 /* Wait for completion */
1551 err = stm32_cryp_wait_busy(cryp);
1552 if (err) {
1553 dev_err(cryp->dev, "Timeout (gcm header)\n");
1554 return stm32_cryp_finish_req(cryp, err);
1555 }
1556
1557 if (stm32_cryp_get_input_text_len(cryp)) {
1558 /* Phase 3 : payload */
1559 cfg = stm32_cryp_read(cryp, CRYP_CR);
1560 cfg &= ~CR_CRYPEN;
1561 stm32_cryp_write(cryp, CRYP_CR, cfg);
1562
1563 cfg &= ~CR_PH_MASK;
1564 cfg |= CR_PH_PAYLOAD;
1565 cfg |= CR_CRYPEN;
1566 stm32_cryp_write(cryp, CRYP_CR, cfg);
1567 } else {
1568 /* Phase 4 : tag */
1569 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1570 stm32_cryp_finish_req(cryp, 0);
1571 }
1572
1573 break;
1574 }
1575
1576 if (!cryp->total_in)
1577 break;
1578 }
1579}
1580
1581static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1582{
1583 int err;
1584 unsigned int i = 0, j, k;
1585 u32 alen, cfg, *src;
1586 u8 d8[4];
1587
1588 src = sg_virt(cryp->in_sg) + _walked_in;
1589 alen = cryp->areq->assoclen;
1590
1591 if (!_walked_in) {
1592 if (cryp->areq->assoclen <= 65280) {
1593 /* Write first u32 of B1 */
1594 d8[0] = (alen >> 8) & 0xFF;
1595 d8[1] = alen & 0xFF;
1596 d8[2] = *((u8 *)src);
1597 src = stm32_cryp_next_in(cryp, src, 1);
1598 d8[3] = *((u8 *)src);
1599 src = stm32_cryp_next_in(cryp, src, 1);
1600
1601 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1602 i++;
1603
1604 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1605 } else {
1606 /* Build the two first u32 of B1 */
1607 d8[0] = 0xFF;
1608 d8[1] = 0xFE;
1609 d8[2] = alen & 0xFF000000;
1610 d8[3] = alen & 0x00FF0000;
1611
1612 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1613 i++;
1614
1615 d8[0] = alen & 0x0000FF00;
1616 d8[1] = alen & 0x000000FF;
1617 d8[2] = *((u8 *)src);
1618 src = stm32_cryp_next_in(cryp, src, 1);
1619 d8[3] = *((u8 *)src);
1620 src = stm32_cryp_next_in(cryp, src, 1);
1621
1622 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623 i++;
1624
1625 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1626 }
1627 }
1628
1629 /* Write next u32 */
1630 for (; i < AES_BLOCK_32; i++) {
1631 /* Build an u32 */
1632 memset(d8, 0, sizeof(u32));
1633 for (k = 0; k < sizeof(u32); k++) {
1634 d8[k] = *((u8 *)src);
1635 src = stm32_cryp_next_in(cryp, src, 1);
1636
1637 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1638 if ((cryp->total_in_save - cryp->total_in) == alen)
1639 break;
1640 }
1641
1642 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643
1644 if ((cryp->total_in_save - cryp->total_in) == alen) {
1645 /* Write padding if needed */
1646 for (j = i + 1; j < AES_BLOCK_32; j++)
1647 stm32_cryp_write(cryp, CRYP_DIN, 0);
1648
1649 /* Wait for completion */
1650 err = stm32_cryp_wait_busy(cryp);
1651 if (err) {
1652 dev_err(cryp->dev, "Timeout (ccm header)\n");
1653 return stm32_cryp_finish_req(cryp, err);
1654 }
1655
1656 if (stm32_cryp_get_input_text_len(cryp)) {
1657 /* Phase 3 : payload */
1658 cfg = stm32_cryp_read(cryp, CRYP_CR);
1659 cfg &= ~CR_CRYPEN;
1660 stm32_cryp_write(cryp, CRYP_CR, cfg);
1661
1662 cfg &= ~CR_PH_MASK;
1663 cfg |= CR_PH_PAYLOAD;
1664 cfg |= CR_CRYPEN;
1665 stm32_cryp_write(cryp, CRYP_CR, cfg);
1666 } else {
1667 /* Phase 4 : tag */
1668 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1669 stm32_cryp_finish_req(cryp, 0);
1670 }
1671
1672 break;
1673 }
1674 }
1675}
1676
1677static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1678{
1679 struct stm32_cryp *cryp = arg;
1680 u32 ph;
1681
1682 if (cryp->irq_status & MISR_OUT)
1683 /* Output FIFO IRQ: read data */
1684 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1685 /* All bytes processed, finish */
1686 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1687 stm32_cryp_finish_req(cryp, 0);
1688 return IRQ_HANDLED;
1689 }
1690
1691 if (cryp->irq_status & MISR_IN) {
1692 if (is_gcm(cryp)) {
1693 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1694 if (unlikely(ph == CR_PH_HEADER))
1695 /* Write Header */
1696 stm32_cryp_irq_write_gcm_header(cryp);
1697 else
1698 /* Input FIFO IRQ: write data */
1699 stm32_cryp_irq_write_data(cryp);
1700 cryp->gcm_ctr++;
1701 } else if (is_ccm(cryp)) {
1702 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1703 if (unlikely(ph == CR_PH_HEADER))
1704 /* Write Header */
1705 stm32_cryp_irq_write_ccm_header(cryp);
1706 else
1707 /* Input FIFO IRQ: write data */
1708 stm32_cryp_irq_write_data(cryp);
1709 } else {
1710 /* Input FIFO IRQ: write data */
1711 stm32_cryp_irq_write_data(cryp);
1712 }
1713 }
1714
1715 return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720 struct stm32_cryp *cryp = arg;
1721
1722 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1723
1724 return IRQ_WAKE_THREAD;
1725}
1726
1727static struct crypto_alg crypto_algs[] = {
1728{
1729 .cra_name = "ecb(aes)",
1730 .cra_driver_name = "stm32-ecb-aes",
1731 .cra_priority = 200,
1732 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1733 CRYPTO_ALG_ASYNC,
1734 .cra_blocksize = AES_BLOCK_SIZE,
1735 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1736 .cra_alignmask = 0xf,
1737 .cra_type = &crypto_ablkcipher_type,
1738 .cra_module = THIS_MODULE,
1739 .cra_init = stm32_cryp_cra_init,
1740 .cra_ablkcipher = {
1741 .min_keysize = AES_MIN_KEY_SIZE,
1742 .max_keysize = AES_MAX_KEY_SIZE,
1743 .setkey = stm32_cryp_aes_setkey,
1744 .encrypt = stm32_cryp_aes_ecb_encrypt,
1745 .decrypt = stm32_cryp_aes_ecb_decrypt,
1746 }
1747},
1748{
1749 .cra_name = "cbc(aes)",
1750 .cra_driver_name = "stm32-cbc-aes",
1751 .cra_priority = 200,
1752 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1753 CRYPTO_ALG_ASYNC,
1754 .cra_blocksize = AES_BLOCK_SIZE,
1755 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1756 .cra_alignmask = 0xf,
1757 .cra_type = &crypto_ablkcipher_type,
1758 .cra_module = THIS_MODULE,
1759 .cra_init = stm32_cryp_cra_init,
1760 .cra_ablkcipher = {
1761 .min_keysize = AES_MIN_KEY_SIZE,
1762 .max_keysize = AES_MAX_KEY_SIZE,
1763 .ivsize = AES_BLOCK_SIZE,
1764 .setkey = stm32_cryp_aes_setkey,
1765 .encrypt = stm32_cryp_aes_cbc_encrypt,
1766 .decrypt = stm32_cryp_aes_cbc_decrypt,
1767 }
1768},
1769{
1770 .cra_name = "ctr(aes)",
1771 .cra_driver_name = "stm32-ctr-aes",
1772 .cra_priority = 200,
1773 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1774 CRYPTO_ALG_ASYNC,
1775 .cra_blocksize = 1,
1776 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1777 .cra_alignmask = 0xf,
1778 .cra_type = &crypto_ablkcipher_type,
1779 .cra_module = THIS_MODULE,
1780 .cra_init = stm32_cryp_cra_init,
1781 .cra_ablkcipher = {
1782 .min_keysize = AES_MIN_KEY_SIZE,
1783 .max_keysize = AES_MAX_KEY_SIZE,
1784 .ivsize = AES_BLOCK_SIZE,
1785 .setkey = stm32_cryp_aes_setkey,
1786 .encrypt = stm32_cryp_aes_ctr_encrypt,
1787 .decrypt = stm32_cryp_aes_ctr_decrypt,
1788 }
1789},
1790{
1791 .cra_name = "ecb(des)",
1792 .cra_driver_name = "stm32-ecb-des",
1793 .cra_priority = 200,
1794 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1795 CRYPTO_ALG_ASYNC,
1796 .cra_blocksize = DES_BLOCK_SIZE,
1797 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1798 .cra_alignmask = 0xf,
1799 .cra_type = &crypto_ablkcipher_type,
1800 .cra_module = THIS_MODULE,
1801 .cra_init = stm32_cryp_cra_init,
1802 .cra_ablkcipher = {
1803 .min_keysize = DES_BLOCK_SIZE,
1804 .max_keysize = DES_BLOCK_SIZE,
1805 .setkey = stm32_cryp_des_setkey,
1806 .encrypt = stm32_cryp_des_ecb_encrypt,
1807 .decrypt = stm32_cryp_des_ecb_decrypt,
1808 }
1809},
1810{
1811 .cra_name = "cbc(des)",
1812 .cra_driver_name = "stm32-cbc-des",
1813 .cra_priority = 200,
1814 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1815 CRYPTO_ALG_ASYNC,
1816 .cra_blocksize = DES_BLOCK_SIZE,
1817 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1818 .cra_alignmask = 0xf,
1819 .cra_type = &crypto_ablkcipher_type,
1820 .cra_module = THIS_MODULE,
1821 .cra_init = stm32_cryp_cra_init,
1822 .cra_ablkcipher = {
1823 .min_keysize = DES_BLOCK_SIZE,
1824 .max_keysize = DES_BLOCK_SIZE,
1825 .ivsize = DES_BLOCK_SIZE,
1826 .setkey = stm32_cryp_des_setkey,
1827 .encrypt = stm32_cryp_des_cbc_encrypt,
1828 .decrypt = stm32_cryp_des_cbc_decrypt,
1829 }
1830},
1831{
1832 .cra_name = "ecb(des3_ede)",
1833 .cra_driver_name = "stm32-ecb-des3",
1834 .cra_priority = 200,
1835 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1836 CRYPTO_ALG_ASYNC,
1837 .cra_blocksize = DES_BLOCK_SIZE,
1838 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1839 .cra_alignmask = 0xf,
1840 .cra_type = &crypto_ablkcipher_type,
1841 .cra_module = THIS_MODULE,
1842 .cra_init = stm32_cryp_cra_init,
1843 .cra_ablkcipher = {
1844 .min_keysize = 3 * DES_BLOCK_SIZE,
1845 .max_keysize = 3 * DES_BLOCK_SIZE,
1846 .setkey = stm32_cryp_tdes_setkey,
1847 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1848 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1849 }
1850},
1851{
1852 .cra_name = "cbc(des3_ede)",
1853 .cra_driver_name = "stm32-cbc-des3",
1854 .cra_priority = 200,
1855 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1856 CRYPTO_ALG_ASYNC,
1857 .cra_blocksize = DES_BLOCK_SIZE,
1858 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1859 .cra_alignmask = 0xf,
1860 .cra_type = &crypto_ablkcipher_type,
1861 .cra_module = THIS_MODULE,
1862 .cra_init = stm32_cryp_cra_init,
1863 .cra_ablkcipher = {
1864 .min_keysize = 3 * DES_BLOCK_SIZE,
1865 .max_keysize = 3 * DES_BLOCK_SIZE,
1866 .ivsize = DES_BLOCK_SIZE,
1867 .setkey = stm32_cryp_tdes_setkey,
1868 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1869 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1870 }
1871},
1872};
1873
1874static struct aead_alg aead_algs[] = {
1875{
1876 .setkey = stm32_cryp_aes_aead_setkey,
1877 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1878 .encrypt = stm32_cryp_aes_gcm_encrypt,
1879 .decrypt = stm32_cryp_aes_gcm_decrypt,
1880 .init = stm32_cryp_aes_aead_init,
1881 .ivsize = 12,
1882 .maxauthsize = AES_BLOCK_SIZE,
1883
1884 .base = {
1885 .cra_name = "gcm(aes)",
1886 .cra_driver_name = "stm32-gcm-aes",
1887 .cra_priority = 200,
1888 .cra_flags = CRYPTO_ALG_ASYNC,
1889 .cra_blocksize = 1,
1890 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1891 .cra_alignmask = 0xf,
1892 .cra_module = THIS_MODULE,
1893 },
1894},
1895{
1896 .setkey = stm32_cryp_aes_aead_setkey,
1897 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1898 .encrypt = stm32_cryp_aes_ccm_encrypt,
1899 .decrypt = stm32_cryp_aes_ccm_decrypt,
1900 .init = stm32_cryp_aes_aead_init,
1901 .ivsize = AES_BLOCK_SIZE,
1902 .maxauthsize = AES_BLOCK_SIZE,
1903
1904 .base = {
1905 .cra_name = "ccm(aes)",
1906 .cra_driver_name = "stm32-ccm-aes",
1907 .cra_priority = 200,
1908 .cra_flags = CRYPTO_ALG_ASYNC,
1909 .cra_blocksize = 1,
1910 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1911 .cra_alignmask = 0xf,
1912 .cra_module = THIS_MODULE,
1913 },
1914},
1915};
1916
1917static const struct stm32_cryp_caps f7_data = {
1918 .swap_final = true,
1919 .padding_wa = true,
1920};
1921
1922static const struct stm32_cryp_caps mp1_data = {
1923 .swap_final = false,
1924 .padding_wa = false,
1925};
1926
1927static const struct of_device_id stm32_dt_ids[] = {
1928 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1929 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1930 {},
1931};
1932MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1933
1934static int stm32_cryp_probe(struct platform_device *pdev)
1935{
1936 struct device *dev = &pdev->dev;
1937 struct stm32_cryp *cryp;
1938 struct reset_control *rst;
1939 int irq, ret;
1940
1941 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1942 if (!cryp)
1943 return -ENOMEM;
1944
1945 cryp->caps = of_device_get_match_data(dev);
1946 if (!cryp->caps)
1947 return -ENODEV;
1948
1949 cryp->dev = dev;
1950
1951 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1952 if (IS_ERR(cryp->regs))
1953 return PTR_ERR(cryp->regs);
1954
1955 irq = platform_get_irq(pdev, 0);
1956 if (irq < 0)
1957 return irq;
1958
1959 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960 stm32_cryp_irq_thread, IRQF_ONESHOT,
1961 dev_name(dev), cryp);
1962 if (ret) {
1963 dev_err(dev, "Cannot grab IRQ\n");
1964 return ret;
1965 }
1966
1967 cryp->clk = devm_clk_get(dev, NULL);
1968 if (IS_ERR(cryp->clk)) {
1969 dev_err(dev, "Could not get clock\n");
1970 return PTR_ERR(cryp->clk);
1971 }
1972
1973 ret = clk_prepare_enable(cryp->clk);
1974 if (ret) {
1975 dev_err(cryp->dev, "Failed to enable clock\n");
1976 return ret;
1977 }
1978
1979 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980 pm_runtime_use_autosuspend(dev);
1981
1982 pm_runtime_get_noresume(dev);
1983 pm_runtime_set_active(dev);
1984 pm_runtime_enable(dev);
1985
1986 rst = devm_reset_control_get(dev, NULL);
1987 if (!IS_ERR(rst)) {
1988 reset_control_assert(rst);
1989 udelay(2);
1990 reset_control_deassert(rst);
1991 }
1992
1993 platform_set_drvdata(pdev, cryp);
1994
1995 spin_lock(&cryp_list.lock);
1996 list_add(&cryp->list, &cryp_list.dev_list);
1997 spin_unlock(&cryp_list.lock);
1998
1999 /* Initialize crypto engine */
2000 cryp->engine = crypto_engine_alloc_init(dev, 1);
2001 if (!cryp->engine) {
2002 dev_err(dev, "Could not init crypto engine\n");
2003 ret = -ENOMEM;
2004 goto err_engine1;
2005 }
2006
2007 ret = crypto_engine_start(cryp->engine);
2008 if (ret) {
2009 dev_err(dev, "Could not start crypto engine\n");
2010 goto err_engine2;
2011 }
2012
2013 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014 if (ret) {
2015 dev_err(dev, "Could not register algs\n");
2016 goto err_algs;
2017 }
2018
2019 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020 if (ret)
2021 goto err_aead_algs;
2022
2023 dev_info(dev, "Initialized\n");
2024
2025 pm_runtime_put_sync(dev);
2026
2027 return 0;
2028
2029err_aead_algs:
2030 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031err_algs:
2032err_engine2:
2033 crypto_engine_exit(cryp->engine);
2034err_engine1:
2035 spin_lock(&cryp_list.lock);
2036 list_del(&cryp->list);
2037 spin_unlock(&cryp_list.lock);
2038
2039 pm_runtime_disable(dev);
2040 pm_runtime_put_noidle(dev);
2041 pm_runtime_disable(dev);
2042 pm_runtime_put_noidle(dev);
2043
2044 clk_disable_unprepare(cryp->clk);
2045
2046 return ret;
2047}
2048
2049static int stm32_cryp_remove(struct platform_device *pdev)
2050{
2051 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052 int ret;
2053
2054 if (!cryp)
2055 return -ENODEV;
2056
2057 ret = pm_runtime_get_sync(cryp->dev);
2058 if (ret < 0)
2059 return ret;
2060
2061 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2063
2064 crypto_engine_exit(cryp->engine);
2065
2066 spin_lock(&cryp_list.lock);
2067 list_del(&cryp->list);
2068 spin_unlock(&cryp_list.lock);
2069
2070 pm_runtime_disable(cryp->dev);
2071 pm_runtime_put_noidle(cryp->dev);
2072
2073 clk_disable_unprepare(cryp->clk);
2074
2075 return 0;
2076}
2077
2078#ifdef CONFIG_PM
2079static int stm32_cryp_runtime_suspend(struct device *dev)
2080{
2081 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083 clk_disable_unprepare(cryp->clk);
2084
2085 return 0;
2086}
2087
2088static int stm32_cryp_runtime_resume(struct device *dev)
2089{
2090 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091 int ret;
2092
2093 ret = clk_prepare_enable(cryp->clk);
2094 if (ret) {
2095 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096 return ret;
2097 }
2098
2099 return 0;
2100}
2101#endif
2102
2103static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105 pm_runtime_force_resume)
2106 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107 stm32_cryp_runtime_resume, NULL)
2108};
2109
2110static struct platform_driver stm32_cryp_driver = {
2111 .probe = stm32_cryp_probe,
2112 .remove = stm32_cryp_remove,
2113 .driver = {
2114 .name = DRIVER_NAME,
2115 .pm = &stm32_cryp_pm_ops,
2116 .of_match_table = stm32_dt_ids,
2117 },
2118};
2119
2120module_platform_driver(stm32_cryp_driver);
2121
2122MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124MODULE_LICENSE("GPL");