Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to segment and merge handling
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/scatterlist.h>
 10
 11#include <trace/events/block.h>
 12
 13#include "blk.h"
 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15static struct bio *blk_bio_discard_split(struct request_queue *q,
 16					 struct bio *bio,
 17					 struct bio_set *bs,
 18					 unsigned *nsegs)
 19{
 20	unsigned int max_discard_sectors, granularity;
 21	int alignment;
 22	sector_t tmp;
 23	unsigned split_sectors;
 24
 25	*nsegs = 1;
 26
 27	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 28	granularity = max(q->limits.discard_granularity >> 9, 1U);
 29
 30	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
 
 31	max_discard_sectors -= max_discard_sectors % granularity;
 32
 33	if (unlikely(!max_discard_sectors)) {
 34		/* XXX: warn */
 35		return NULL;
 36	}
 37
 38	if (bio_sectors(bio) <= max_discard_sectors)
 39		return NULL;
 40
 41	split_sectors = max_discard_sectors;
 42
 43	/*
 44	 * If the next starting sector would be misaligned, stop the discard at
 45	 * the previous aligned sector.
 46	 */
 47	alignment = (q->limits.discard_alignment >> 9) % granularity;
 48
 49	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
 50	tmp = sector_div(tmp, granularity);
 51
 52	if (split_sectors > tmp)
 53		split_sectors -= tmp;
 54
 55	return bio_split(bio, split_sectors, GFP_NOIO, bs);
 56}
 57
 58static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
 59		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
 60{
 61	*nsegs = 1;
 62
 63	if (!q->limits.max_write_zeroes_sectors)
 64		return NULL;
 65
 66	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
 67		return NULL;
 68
 69	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
 70}
 71
 72static struct bio *blk_bio_write_same_split(struct request_queue *q,
 73					    struct bio *bio,
 74					    struct bio_set *bs,
 75					    unsigned *nsegs)
 76{
 77	*nsegs = 1;
 78
 79	if (!q->limits.max_write_same_sectors)
 80		return NULL;
 81
 82	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
 83		return NULL;
 84
 85	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
 86}
 87
 
 
 
 
 
 
 
 
 88static inline unsigned get_max_io_size(struct request_queue *q,
 89				       struct bio *bio)
 90{
 91	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
 92	unsigned mask = queue_logical_block_size(q) - 1;
 
 
 
 93
 94	/* aligned to logical block size */
 95	sectors &= ~(mask >> 9);
 
 
 96
 97	return sectors;
 98}
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100static struct bio *blk_bio_segment_split(struct request_queue *q,
101					 struct bio *bio,
102					 struct bio_set *bs,
103					 unsigned *segs)
104{
105	struct bio_vec bv, bvprv, *bvprvp = NULL;
106	struct bvec_iter iter;
107	unsigned seg_size = 0, nsegs = 0, sectors = 0;
108	unsigned front_seg_size = bio->bi_seg_front_size;
109	bool do_split = true;
110	struct bio *new = NULL;
111	const unsigned max_sectors = get_max_io_size(q, bio);
 
112
113	bio_for_each_segment(bv, bio, iter) {
114		/*
115		 * If the queue doesn't support SG gaps and adding this
116		 * offset would create a gap, disallow it.
117		 */
118		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
119			goto split;
120
121		if (sectors + (bv.bv_len >> 9) > max_sectors) {
122			/*
123			 * Consider this a new segment if we're splitting in
124			 * the middle of this vector.
125			 */
126			if (nsegs < queue_max_segments(q) &&
127			    sectors < max_sectors) {
128				nsegs++;
129				sectors = max_sectors;
130			}
131			goto split;
132		}
133
134		if (bvprvp && blk_queue_cluster(q)) {
135			if (seg_size + bv.bv_len > queue_max_segment_size(q))
136				goto new_segment;
137			if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
138				goto new_segment;
139			if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
140				goto new_segment;
141
142			seg_size += bv.bv_len;
143			bvprv = bv;
144			bvprvp = &bvprv;
145			sectors += bv.bv_len >> 9;
146
147			continue;
148		}
149new_segment:
150		if (nsegs == queue_max_segments(q))
151			goto split;
 
152
153		if (nsegs == 1 && seg_size > front_seg_size)
154			front_seg_size = seg_size;
155
156		nsegs++;
157		bvprv = bv;
158		bvprvp = &bvprv;
159		seg_size = bv.bv_len;
160		sectors += bv.bv_len >> 9;
161
162	}
163
164	do_split = false;
 
165split:
166	*segs = nsegs;
167
168	if (do_split) {
169		new = bio_split(bio, sectors, GFP_NOIO, bs);
170		if (new)
171			bio = new;
172	}
173
174	if (nsegs == 1 && seg_size > front_seg_size)
175		front_seg_size = seg_size;
176	bio->bi_seg_front_size = front_seg_size;
177	if (seg_size > bio->bi_seg_back_size)
178		bio->bi_seg_back_size = seg_size;
179
180	return do_split ? new : NULL;
181}
182
183void blk_queue_split(struct request_queue *q, struct bio **bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184{
185	struct bio *split, *res;
186	unsigned nsegs;
187
188	switch (bio_op(*bio)) {
189	case REQ_OP_DISCARD:
190	case REQ_OP_SECURE_ERASE:
191		split = blk_bio_discard_split(q, *bio, q->bio_split, &nsegs);
192		break;
193	case REQ_OP_WRITE_ZEROES:
194		split = blk_bio_write_zeroes_split(q, *bio, q->bio_split, &nsegs);
 
195		break;
196	case REQ_OP_WRITE_SAME:
197		split = blk_bio_write_same_split(q, *bio, q->bio_split, &nsegs);
 
198		break;
199	default:
200		split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs);
201		break;
202	}
203
204	/* physical segments can be figured out during splitting */
205	res = split ? split : *bio;
206	res->bi_phys_segments = nsegs;
207	bio_set_flag(res, BIO_SEG_VALID);
208
209	if (split) {
210		/* there isn't chance to merge the splitted bio */
211		split->bi_opf |= REQ_NOMERGE;
212
 
 
 
 
 
 
 
 
 
 
213		bio_chain(split, *bio);
214		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
215		generic_make_request(*bio);
216		*bio = split;
217	}
218}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219EXPORT_SYMBOL(blk_queue_split);
220
221static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
222					     struct bio *bio,
223					     bool no_sg_merge)
224{
225	struct bio_vec bv, bvprv = { NULL };
226	int cluster, prev = 0;
227	unsigned int seg_size, nr_phys_segs;
228	struct bio *fbio, *bbio;
229	struct bvec_iter iter;
230
231	if (!bio)
232		return 0;
233
234	switch (bio_op(bio)) {
235	case REQ_OP_DISCARD:
236	case REQ_OP_SECURE_ERASE:
237	case REQ_OP_WRITE_ZEROES:
238		return 0;
239	case REQ_OP_WRITE_SAME:
240		return 1;
241	}
242
243	fbio = bio;
244	cluster = blk_queue_cluster(q);
245	seg_size = 0;
246	nr_phys_segs = 0;
247	for_each_bio(bio) {
248		bio_for_each_segment(bv, bio, iter) {
249			/*
250			 * If SG merging is disabled, each bio vector is
251			 * a segment
252			 */
253			if (no_sg_merge)
254				goto new_segment;
255
256			if (prev && cluster) {
257				if (seg_size + bv.bv_len
258				    > queue_max_segment_size(q))
259					goto new_segment;
260				if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
261					goto new_segment;
262				if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
263					goto new_segment;
264
265				seg_size += bv.bv_len;
266				bvprv = bv;
267				continue;
268			}
269new_segment:
270			if (nr_phys_segs == 1 && seg_size >
271			    fbio->bi_seg_front_size)
272				fbio->bi_seg_front_size = seg_size;
273
274			nr_phys_segs++;
275			bvprv = bv;
276			prev = 1;
277			seg_size = bv.bv_len;
278		}
279		bbio = bio;
280	}
281
282	if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
283		fbio->bi_seg_front_size = seg_size;
284	if (seg_size > bbio->bi_seg_back_size)
285		bbio->bi_seg_back_size = seg_size;
286
287	return nr_phys_segs;
288}
289
290void blk_recalc_rq_segments(struct request *rq)
 
291{
292	bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
293			&rq->q->queue_flags);
294
295	rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
296			no_sg_merge);
 
 
 
 
 
 
 
297}
298
299void blk_recount_segments(struct request_queue *q, struct bio *bio)
 
 
300{
301	unsigned short seg_cnt;
 
302
303	/* estimate segment number by bi_vcnt for non-cloned bio */
304	if (bio_flagged(bio, BIO_CLONED))
305		seg_cnt = bio_segments(bio);
306	else
307		seg_cnt = bio->bi_vcnt;
 
 
 
 
 
 
 
 
 
 
308
309	if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
310			(seg_cnt < queue_max_segments(q)))
311		bio->bi_phys_segments = seg_cnt;
312	else {
313		struct bio *nxt = bio->bi_next;
314
315		bio->bi_next = NULL;
316		bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
317		bio->bi_next = nxt;
318	}
319
320	bio_set_flag(bio, BIO_SEG_VALID);
321}
322EXPORT_SYMBOL(blk_recount_segments);
323
324static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
325				   struct bio *nxt)
326{
327	struct bio_vec end_bv = { NULL }, nxt_bv;
328
329	if (!blk_queue_cluster(q))
330		return 0;
331
332	if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
333	    queue_max_segment_size(q))
334		return 0;
335
336	if (!bio_has_data(bio))
337		return 1;
338
339	bio_get_last_bvec(bio, &end_bv);
340	bio_get_first_bvec(nxt, &nxt_bv);
341
342	if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
343		return 0;
344
345	/*
346	 * bio and nxt are contiguous in memory; check if the queue allows
347	 * these two to be merged into one
348	 */
349	if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
350		return 1;
351
352	return 0;
353}
354
355static inline void
356__blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
357		     struct scatterlist *sglist, struct bio_vec *bvprv,
358		     struct scatterlist **sg, int *nsegs, int *cluster)
359{
360
361	int nbytes = bvec->bv_len;
362
363	if (*sg && *cluster) {
364		if ((*sg)->length + nbytes > queue_max_segment_size(q))
365			goto new_segment;
366
367		if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
368			goto new_segment;
369		if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
370			goto new_segment;
371
372		(*sg)->length += nbytes;
373	} else {
374new_segment:
375		if (!*sg)
376			*sg = sglist;
377		else {
378			/*
379			 * If the driver previously mapped a shorter
380			 * list, we could see a termination bit
381			 * prematurely unless it fully inits the sg
382			 * table on each mapping. We KNOW that there
383			 * must be more entries here or the driver
384			 * would be buggy, so force clear the
385			 * termination bit to avoid doing a full
386			 * sg_init_table() in drivers for each command.
387			 */
388			sg_unmark_end(*sg);
389			*sg = sg_next(*sg);
390		}
391
392		sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
393		(*nsegs)++;
394	}
395	*bvprv = *bvec;
396}
397
398static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
399		struct scatterlist *sglist, struct scatterlist **sg)
400{
401	*sg = sglist;
402	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
403	return 1;
404}
405
406static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
407			     struct scatterlist *sglist,
408			     struct scatterlist **sg)
409{
410	struct bio_vec bvec, bvprv = { NULL };
411	struct bvec_iter iter;
412	int cluster = blk_queue_cluster(q), nsegs = 0;
 
413
414	for_each_bio(bio)
415		bio_for_each_segment(bvec, bio, iter)
416			__blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
417					     &nsegs, &cluster);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
419	return nsegs;
420}
421
422/*
423 * map a request to scatterlist, return number of sg entries setup. Caller
424 * must make sure sg can hold rq->nr_phys_segments entries
425 */
426int blk_rq_map_sg(struct request_queue *q, struct request *rq,
427		  struct scatterlist *sglist)
428{
429	struct scatterlist *sg = NULL;
430	int nsegs = 0;
431
432	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
433		nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
434	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
435		nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
436	else if (rq->bio)
437		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
438
439	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
440	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
441		unsigned int pad_len =
442			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
443
444		sg->length += pad_len;
445		rq->extra_len += pad_len;
446	}
447
448	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
449		if (op_is_write(req_op(rq)))
450			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
451
452		sg_unmark_end(sg);
453		sg = sg_next(sg);
454		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
455			    q->dma_drain_size,
456			    ((unsigned long)q->dma_drain_buffer) &
457			    (PAGE_SIZE - 1));
458		nsegs++;
459		rq->extra_len += q->dma_drain_size;
460	}
461
462	if (sg)
463		sg_mark_end(sg);
464
465	/*
466	 * Something must have been wrong if the figured number of
467	 * segment is bigger than number of req's physical segments
468	 */
469	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
470
471	return nsegs;
472}
473EXPORT_SYMBOL(blk_rq_map_sg);
474
475static inline int ll_new_hw_segment(struct request_queue *q,
476				    struct request *req,
477				    struct bio *bio)
478{
479	int nr_phys_segs = bio_phys_segments(q, bio);
480
481	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
482		goto no_merge;
483
484	if (blk_integrity_merge_bio(q, req, bio) == false)
485		goto no_merge;
486
487	/*
488	 * This will form the start of a new hw segment.  Bump both
489	 * counters.
490	 */
491	req->nr_phys_segments += nr_phys_segs;
492	return 1;
493
494no_merge:
495	req_set_nomerge(q, req);
496	return 0;
497}
498
499int ll_back_merge_fn(struct request_queue *q, struct request *req,
500		     struct bio *bio)
501{
502	if (req_gap_back_merge(req, bio))
503		return 0;
504	if (blk_integrity_rq(req) &&
505	    integrity_req_gap_back_merge(req, bio))
506		return 0;
507	if (blk_rq_sectors(req) + bio_sectors(bio) >
508	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
509		req_set_nomerge(q, req);
510		return 0;
511	}
512	if (!bio_flagged(req->biotail, BIO_SEG_VALID))
513		blk_recount_segments(q, req->biotail);
514	if (!bio_flagged(bio, BIO_SEG_VALID))
515		blk_recount_segments(q, bio);
516
517	return ll_new_hw_segment(q, req, bio);
518}
519
520int ll_front_merge_fn(struct request_queue *q, struct request *req,
521		      struct bio *bio)
522{
523
524	if (req_gap_front_merge(req, bio))
525		return 0;
526	if (blk_integrity_rq(req) &&
527	    integrity_req_gap_front_merge(req, bio))
528		return 0;
529	if (blk_rq_sectors(req) + bio_sectors(bio) >
530	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
531		req_set_nomerge(q, req);
532		return 0;
533	}
534	if (!bio_flagged(bio, BIO_SEG_VALID))
535		blk_recount_segments(q, bio);
536	if (!bio_flagged(req->bio, BIO_SEG_VALID))
537		blk_recount_segments(q, req->bio);
538
539	return ll_new_hw_segment(q, req, bio);
540}
541
542/*
543 * blk-mq uses req->special to carry normal driver per-request payload, it
544 * does not indicate a prepared command that we cannot merge with.
545 */
546static bool req_no_special_merge(struct request *req)
547{
548	struct request_queue *q = req->q;
549
550	return !q->mq_ops && req->special;
551}
552
553static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
554		struct request *next)
555{
556	unsigned short segments = blk_rq_nr_discard_segments(req);
557
558	if (segments >= queue_max_discard_segments(q))
559		goto no_merge;
560	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
561	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
562		goto no_merge;
563
564	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
565	return true;
566no_merge:
567	req_set_nomerge(q, req);
568	return false;
569}
570
571static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
572				struct request *next)
573{
574	int total_phys_segments;
575	unsigned int seg_size =
576		req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
577
578	/*
579	 * First check if the either of the requests are re-queued
580	 * requests.  Can't merge them if they are.
581	 */
582	if (req_no_special_merge(req) || req_no_special_merge(next))
583		return 0;
584
585	if (req_gap_back_merge(req, next->bio))
586		return 0;
587
588	/*
589	 * Will it become too large?
590	 */
591	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
592	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
593		return 0;
594
595	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
596	if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
597		if (req->nr_phys_segments == 1)
598			req->bio->bi_seg_front_size = seg_size;
599		if (next->nr_phys_segments == 1)
600			next->biotail->bi_seg_back_size = seg_size;
601		total_phys_segments--;
602	}
603
604	if (total_phys_segments > queue_max_segments(q))
605		return 0;
606
607	if (blk_integrity_merge_rq(q, req, next) == false)
608		return 0;
609
610	/* Merge is OK... */
611	req->nr_phys_segments = total_phys_segments;
612	return 1;
613}
614
615/**
616 * blk_rq_set_mixed_merge - mark a request as mixed merge
617 * @rq: request to mark as mixed merge
618 *
619 * Description:
620 *     @rq is about to be mixed merged.  Make sure the attributes
621 *     which can be mixed are set in each bio and mark @rq as mixed
622 *     merged.
623 */
624void blk_rq_set_mixed_merge(struct request *rq)
625{
626	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
627	struct bio *bio;
628
629	if (rq->rq_flags & RQF_MIXED_MERGE)
630		return;
631
632	/*
633	 * @rq will no longer represent mixable attributes for all the
634	 * contained bios.  It will just track those of the first one.
635	 * Distributes the attributs to each bio.
636	 */
637	for (bio = rq->bio; bio; bio = bio->bi_next) {
638		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
639			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
640		bio->bi_opf |= ff;
641	}
642	rq->rq_flags |= RQF_MIXED_MERGE;
643}
644
645static void blk_account_io_merge(struct request *req)
646{
647	if (blk_do_io_stat(req)) {
648		struct hd_struct *part;
649		int cpu;
650
651		cpu = part_stat_lock();
652		part = req->part;
653
654		part_round_stats(req->q, cpu, part);
655		part_dec_in_flight(req->q, part, rq_data_dir(req));
656
657		hd_struct_put(part);
658		part_stat_unlock();
659	}
660}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661
662/*
663 * For non-mq, this has to be called with the request spinlock acquired.
664 * For mq with scheduling, the appropriate queue wide lock should be held.
665 */
666static struct request *attempt_merge(struct request_queue *q,
667				     struct request *req, struct request *next)
668{
669	if (!q->mq_ops)
670		lockdep_assert_held(q->queue_lock);
671
672	if (!rq_mergeable(req) || !rq_mergeable(next))
673		return NULL;
674
675	if (req_op(req) != req_op(next))
676		return NULL;
677
678	/*
679	 * not contiguous
680	 */
681	if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next))
682		return NULL;
683
684	if (rq_data_dir(req) != rq_data_dir(next)
685	    || req->rq_disk != next->rq_disk
686	    || req_no_special_merge(next))
687		return NULL;
688
689	if (req_op(req) == REQ_OP_WRITE_SAME &&
690	    !blk_write_same_mergeable(req->bio, next->bio))
691		return NULL;
692
693	/*
694	 * Don't allow merge of different write hints, or for a hint with
695	 * non-hint IO.
696	 */
697	if (req->write_hint != next->write_hint)
698		return NULL;
699
 
 
 
700	/*
701	 * If we are allowed to merge, then append bio list
702	 * from next to rq and release next. merge_requests_fn
703	 * will have updated segment counts, update sector
704	 * counts here. Handle DISCARDs separately, as they
705	 * have separate settings.
706	 */
707	if (req_op(req) == REQ_OP_DISCARD) {
 
 
708		if (!req_attempt_discard_merge(q, req, next))
709			return NULL;
710	} else if (!ll_merge_requests_fn(q, req, next))
 
 
 
 
 
711		return NULL;
 
712
713	/*
714	 * If failfast settings disagree or any of the two is already
715	 * a mixed merge, mark both as mixed before proceeding.  This
716	 * makes sure that all involved bios have mixable attributes
717	 * set properly.
718	 */
719	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
720	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
721	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
722		blk_rq_set_mixed_merge(req);
723		blk_rq_set_mixed_merge(next);
724	}
725
726	/*
727	 * At this point we have either done a back merge
728	 * or front merge. We need the smaller start_time of
729	 * the merged requests to be the current request
730	 * for accounting purposes.
731	 */
732	if (time_after(req->start_time, next->start_time))
733		req->start_time = next->start_time;
734
735	req->biotail->bi_next = next->bio;
736	req->biotail = next->biotail;
737
738	req->__data_len += blk_rq_bytes(next);
739
740	if (req_op(req) != REQ_OP_DISCARD)
741		elv_merge_requests(q, req, next);
742
743	/*
744	 * 'next' is going away, so update stats accordingly
745	 */
746	blk_account_io_merge(next);
747
748	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
749	if (blk_rq_cpu_valid(next))
750		req->cpu = next->cpu;
751
752	/*
753	 * ownership of bio passed from next to req, return 'next' for
754	 * the caller to free
755	 */
756	next->bio = NULL;
757	return next;
758}
759
760struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
761{
762	struct request *next = elv_latter_request(q, rq);
763
764	if (next)
765		return attempt_merge(q, rq, next);
766
767	return NULL;
768}
769
770struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
771{
772	struct request *prev = elv_former_request(q, rq);
773
774	if (prev)
775		return attempt_merge(q, prev, rq);
776
777	return NULL;
778}
779
780int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
781			  struct request *next)
782{
783	struct elevator_queue *e = q->elevator;
784	struct request *free;
785
786	if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
787		if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
788			return 0;
789
790	free = attempt_merge(q, rq, next);
791	if (free) {
792		__blk_put_request(q, free);
793		return 1;
794	}
795
796	return 0;
797}
798
799bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
800{
801	if (!rq_mergeable(rq) || !bio_mergeable(bio))
802		return false;
803
804	if (req_op(rq) != bio_op(bio))
805		return false;
806
807	/* different data direction or already started, don't merge */
808	if (bio_data_dir(bio) != rq_data_dir(rq))
809		return false;
810
811	/* must be same device and not a special request */
812	if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq))
813		return false;
814
815	/* only merge integrity protected bio into ditto rq */
816	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
817		return false;
818
819	/* must be using the same buffer */
820	if (req_op(rq) == REQ_OP_WRITE_SAME &&
821	    !blk_write_same_mergeable(rq->bio, bio))
822		return false;
823
824	/*
825	 * Don't allow merge of different write hints, or for a hint with
826	 * non-hint IO.
827	 */
828	if (rq->write_hint != bio->bi_write_hint)
829		return false;
830
 
 
 
831	return true;
832}
833
834enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
835{
836	if (req_op(rq) == REQ_OP_DISCARD &&
837	    queue_max_discard_segments(rq->q) > 1)
838		return ELEVATOR_DISCARD_MERGE;
839	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
840		return ELEVATOR_BACK_MERGE;
841	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
842		return ELEVATOR_FRONT_MERGE;
843	return ELEVATOR_NO_MERGE;
844}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to segment and merge handling
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/scatterlist.h>
 10
 11#include <trace/events/block.h>
 12
 13#include "blk.h"
 14
 15static inline bool bio_will_gap(struct request_queue *q,
 16		struct request *prev_rq, struct bio *prev, struct bio *next)
 17{
 18	struct bio_vec pb, nb;
 19
 20	if (!bio_has_data(prev) || !queue_virt_boundary(q))
 21		return false;
 22
 23	/*
 24	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
 25	 * is quite difficult to respect the sg gap limit.  We work hard to
 26	 * merge a huge number of small single bios in case of mkfs.
 27	 */
 28	if (prev_rq)
 29		bio_get_first_bvec(prev_rq->bio, &pb);
 30	else
 31		bio_get_first_bvec(prev, &pb);
 32	if (pb.bv_offset & queue_virt_boundary(q))
 33		return true;
 34
 35	/*
 36	 * We don't need to worry about the situation that the merged segment
 37	 * ends in unaligned virt boundary:
 38	 *
 39	 * - if 'pb' ends aligned, the merged segment ends aligned
 40	 * - if 'pb' ends unaligned, the next bio must include
 41	 *   one single bvec of 'nb', otherwise the 'nb' can't
 42	 *   merge with 'pb'
 43	 */
 44	bio_get_last_bvec(prev, &pb);
 45	bio_get_first_bvec(next, &nb);
 46	if (biovec_phys_mergeable(q, &pb, &nb))
 47		return false;
 48	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
 49}
 50
 51static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
 52{
 53	return bio_will_gap(req->q, req, req->biotail, bio);
 54}
 55
 56static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
 57{
 58	return bio_will_gap(req->q, NULL, bio, req->bio);
 59}
 60
 61static struct bio *blk_bio_discard_split(struct request_queue *q,
 62					 struct bio *bio,
 63					 struct bio_set *bs,
 64					 unsigned *nsegs)
 65{
 66	unsigned int max_discard_sectors, granularity;
 67	int alignment;
 68	sector_t tmp;
 69	unsigned split_sectors;
 70
 71	*nsegs = 1;
 72
 73	/* Zero-sector (unknown) and one-sector granularities are the same.  */
 74	granularity = max(q->limits.discard_granularity >> 9, 1U);
 75
 76	max_discard_sectors = min(q->limits.max_discard_sectors,
 77			bio_allowed_max_sectors(q));
 78	max_discard_sectors -= max_discard_sectors % granularity;
 79
 80	if (unlikely(!max_discard_sectors)) {
 81		/* XXX: warn */
 82		return NULL;
 83	}
 84
 85	if (bio_sectors(bio) <= max_discard_sectors)
 86		return NULL;
 87
 88	split_sectors = max_discard_sectors;
 89
 90	/*
 91	 * If the next starting sector would be misaligned, stop the discard at
 92	 * the previous aligned sector.
 93	 */
 94	alignment = (q->limits.discard_alignment >> 9) % granularity;
 95
 96	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
 97	tmp = sector_div(tmp, granularity);
 98
 99	if (split_sectors > tmp)
100		split_sectors -= tmp;
101
102	return bio_split(bio, split_sectors, GFP_NOIO, bs);
103}
104
105static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
106		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
107{
108	*nsegs = 0;
109
110	if (!q->limits.max_write_zeroes_sectors)
111		return NULL;
112
113	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
114		return NULL;
115
116	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
117}
118
119static struct bio *blk_bio_write_same_split(struct request_queue *q,
120					    struct bio *bio,
121					    struct bio_set *bs,
122					    unsigned *nsegs)
123{
124	*nsegs = 1;
125
126	if (!q->limits.max_write_same_sectors)
127		return NULL;
128
129	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
130		return NULL;
131
132	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
133}
134
135/*
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
142 */
143static inline unsigned get_max_io_size(struct request_queue *q,
144				       struct bio *bio)
145{
146	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147	unsigned max_sectors = sectors;
148	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
149	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
150	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151
152	max_sectors += start_offset;
153	max_sectors &= ~(pbs - 1);
154	if (max_sectors > start_offset)
155		return max_sectors - start_offset;
156
157	return sectors & (lbs - 1);
158}
159
160static unsigned get_max_segment_size(const struct request_queue *q,
161				     unsigned offset)
162{
163	unsigned long mask = queue_segment_boundary(q);
164
165	/* default segment boundary mask means no boundary limit */
166	if (mask == BLK_SEG_BOUNDARY_MASK)
167		return queue_max_segment_size(q);
168
169	return min_t(unsigned long, mask - (mask & offset) + 1,
170		     queue_max_segment_size(q));
171}
172
173/**
174 * bvec_split_segs - verify whether or not a bvec should be split in the middle
175 * @q:        [in] request queue associated with the bio associated with @bv
176 * @bv:       [in] bvec to examine
177 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
178 *            by the number of segments from @bv that may be appended to that
179 *            bio without exceeding @max_segs
180 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
181 *            by the number of sectors from @bv that may be appended to that
182 *            bio without exceeding @max_sectors
183 * @max_segs: [in] upper bound for *@nsegs
184 * @max_sectors: [in] upper bound for *@sectors
185 *
186 * When splitting a bio, it can happen that a bvec is encountered that is too
187 * big to fit in a single segment and hence that it has to be split in the
188 * middle. This function verifies whether or not that should happen. The value
189 * %true is returned if and only if appending the entire @bv to a bio with
190 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
191 * the block driver.
192 */
193static bool bvec_split_segs(const struct request_queue *q,
194			    const struct bio_vec *bv, unsigned *nsegs,
195			    unsigned *sectors, unsigned max_segs,
196			    unsigned max_sectors)
197{
198	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
199	unsigned len = min(bv->bv_len, max_len);
200	unsigned total_len = 0;
201	unsigned seg_size = 0;
202
203	while (len && *nsegs < max_segs) {
204		seg_size = get_max_segment_size(q, bv->bv_offset + total_len);
205		seg_size = min(seg_size, len);
206
207		(*nsegs)++;
208		total_len += seg_size;
209		len -= seg_size;
210
211		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
212			break;
213	}
214
215	*sectors += total_len >> 9;
216
217	/* tell the caller to split the bvec if it is too big to fit */
218	return len > 0 || bv->bv_len > max_len;
219}
220
221/**
222 * blk_bio_segment_split - split a bio in two bios
223 * @q:    [in] request queue pointer
224 * @bio:  [in] bio to be split
225 * @bs:	  [in] bio set to allocate the clone from
226 * @segs: [out] number of segments in the bio with the first half of the sectors
227 *
228 * Clone @bio, update the bi_iter of the clone to represent the first sectors
229 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
230 * following is guaranteed for the cloned bio:
231 * - That it has at most get_max_io_size(@q, @bio) sectors.
232 * - That it has at most queue_max_segments(@q) segments.
233 *
234 * Except for discard requests the cloned bio will point at the bi_io_vec of
235 * the original bio. It is the responsibility of the caller to ensure that the
236 * original bio is not freed before the cloned bio. The caller is also
237 * responsible for ensuring that @bs is only destroyed after processing of the
238 * split bio has finished.
239 */
240static struct bio *blk_bio_segment_split(struct request_queue *q,
241					 struct bio *bio,
242					 struct bio_set *bs,
243					 unsigned *segs)
244{
245	struct bio_vec bv, bvprv, *bvprvp = NULL;
246	struct bvec_iter iter;
247	unsigned nsegs = 0, sectors = 0;
 
 
 
248	const unsigned max_sectors = get_max_io_size(q, bio);
249	const unsigned max_segs = queue_max_segments(q);
250
251	bio_for_each_bvec(bv, bio, iter) {
252		/*
253		 * If the queue doesn't support SG gaps and adding this
254		 * offset would create a gap, disallow it.
255		 */
256		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
257			goto split;
258
259		if (nsegs < max_segs &&
260		    sectors + (bv.bv_len >> 9) <= max_sectors &&
261		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
262			nsegs++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263			sectors += bv.bv_len >> 9;
264		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
265					 max_sectors)) {
 
 
 
266			goto split;
267		}
268
 
 
 
 
269		bvprv = bv;
270		bvprvp = &bvprv;
 
 
 
271	}
272
273	*segs = nsegs;
274	return NULL;
275split:
276	*segs = nsegs;
277	return bio_split(bio, sectors, GFP_NOIO, bs);
 
 
 
 
 
 
 
 
 
 
 
 
 
278}
279
280/**
281 * __blk_queue_split - split a bio and submit the second half
282 * @q:       [in] request queue pointer
283 * @bio:     [in, out] bio to be split
284 * @nr_segs: [out] number of segments in the first bio
285 *
286 * Split a bio into two bios, chain the two bios, submit the second half and
287 * store a pointer to the first half in *@bio. If the second bio is still too
288 * big it will be split by a recursive call to this function. Since this
289 * function may allocate a new bio from @q->bio_split, it is the responsibility
290 * of the caller to ensure that @q is only released after processing of the
291 * split bio has finished.
292 */
293void __blk_queue_split(struct request_queue *q, struct bio **bio,
294		unsigned int *nr_segs)
295{
296	struct bio *split;
 
297
298	switch (bio_op(*bio)) {
299	case REQ_OP_DISCARD:
300	case REQ_OP_SECURE_ERASE:
301		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
302		break;
303	case REQ_OP_WRITE_ZEROES:
304		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
305				nr_segs);
306		break;
307	case REQ_OP_WRITE_SAME:
308		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
309				nr_segs);
310		break;
311	default:
312		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
313		break;
314	}
315
 
 
 
 
 
316	if (split) {
317		/* there isn't chance to merge the splitted bio */
318		split->bi_opf |= REQ_NOMERGE;
319
320		/*
321		 * Since we're recursing into make_request here, ensure
322		 * that we mark this bio as already having entered the queue.
323		 * If not, and the queue is going away, we can get stuck
324		 * forever on waiting for the queue reference to drop. But
325		 * that will never happen, as we're already holding a
326		 * reference to it.
327		 */
328		bio_set_flag(*bio, BIO_QUEUE_ENTERED);
329
330		bio_chain(split, *bio);
331		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
332		generic_make_request(*bio);
333		*bio = split;
334	}
335}
336
337/**
338 * blk_queue_split - split a bio and submit the second half
339 * @q:   [in] request queue pointer
340 * @bio: [in, out] bio to be split
341 *
342 * Split a bio into two bios, chains the two bios, submit the second half and
343 * store a pointer to the first half in *@bio. Since this function may allocate
344 * a new bio from @q->bio_split, it is the responsibility of the caller to
345 * ensure that @q is only released after processing of the split bio has
346 * finished.
347 */
348void blk_queue_split(struct request_queue *q, struct bio **bio)
349{
350	unsigned int nr_segs;
351
352	__blk_queue_split(q, bio, &nr_segs);
353}
354EXPORT_SYMBOL(blk_queue_split);
355
356unsigned int blk_recalc_rq_segments(struct request *rq)
357{
358	unsigned int nr_phys_segs = 0;
359	unsigned int nr_sectors = 0;
360	struct req_iterator iter;
361	struct bio_vec bv;
 
 
 
362
363	if (!rq->bio)
364		return 0;
365
366	switch (bio_op(rq->bio)) {
367	case REQ_OP_DISCARD:
368	case REQ_OP_SECURE_ERASE:
369	case REQ_OP_WRITE_ZEROES:
370		return 0;
371	case REQ_OP_WRITE_SAME:
372		return 1;
373	}
374
375	rq_for_each_bvec(bv, rq, iter)
376		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
377				UINT_MAX, UINT_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378	return nr_phys_segs;
379}
380
381static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
382		struct scatterlist *sglist)
383{
384	if (!*sg)
385		return sglist;
386
387	/*
388	 * If the driver previously mapped a shorter list, we could see a
389	 * termination bit prematurely unless it fully inits the sg table
390	 * on each mapping. We KNOW that there must be more entries here
391	 * or the driver would be buggy, so force clear the termination bit
392	 * to avoid doing a full sg_init_table() in drivers for each command.
393	 */
394	sg_unmark_end(*sg);
395	return sg_next(*sg);
396}
397
398static unsigned blk_bvec_map_sg(struct request_queue *q,
399		struct bio_vec *bvec, struct scatterlist *sglist,
400		struct scatterlist **sg)
401{
402	unsigned nbytes = bvec->bv_len;
403	unsigned nsegs = 0, total = 0;
404
405	while (nbytes > 0) {
406		unsigned offset = bvec->bv_offset + total;
407		unsigned len = min(get_max_segment_size(q, offset), nbytes);
408		struct page *page = bvec->bv_page;
409
410		/*
411		 * Unfortunately a fair number of drivers barf on scatterlists
412		 * that have an offset larger than PAGE_SIZE, despite other
413		 * subsystems dealing with that invariant just fine.  For now
414		 * stick to the legacy format where we never present those from
415		 * the block layer, but the code below should be removed once
416		 * these offenders (mostly MMC/SD drivers) are fixed.
417		 */
418		page += (offset >> PAGE_SHIFT);
419		offset &= ~PAGE_MASK;
420
421		*sg = blk_next_sg(sg, sglist);
422		sg_set_page(*sg, page, len, offset);
 
 
 
423
424		total += len;
425		nbytes -= len;
426		nsegs++;
427	}
428
429	return nsegs;
430}
 
431
432static inline int __blk_bvec_map_sg(struct bio_vec bv,
433		struct scatterlist *sglist, struct scatterlist **sg)
434{
435	*sg = blk_next_sg(sg, sglist);
436	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
437	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438}
439
440/* only try to merge bvecs into one sg if they are from two bios */
441static inline bool
442__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
443			   struct bio_vec *bvprv, struct scatterlist **sg)
444{
445
446	int nbytes = bvec->bv_len;
447
448	if (!*sg)
449		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450
451	if ((*sg)->length + nbytes > queue_max_segment_size(q))
452		return false;
 
 
 
453
454	if (!biovec_phys_mergeable(q, bvprv, bvec))
455		return false;
456
457	(*sg)->length += nbytes;
458
459	return true;
460}
461
462static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
463			     struct scatterlist *sglist,
464			     struct scatterlist **sg)
465{
466	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
467	struct bvec_iter iter;
468	int nsegs = 0;
469	bool new_bio = false;
470
471	for_each_bio(bio) {
472		bio_for_each_bvec(bvec, bio, iter) {
473			/*
474			 * Only try to merge bvecs from two bios given we
475			 * have done bio internal merge when adding pages
476			 * to bio
477			 */
478			if (new_bio &&
479			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
480				goto next_bvec;
481
482			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
483				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
484			else
485				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
486 next_bvec:
487			new_bio = false;
488		}
489		if (likely(bio->bi_iter.bi_size)) {
490			bvprv = bvec;
491			new_bio = true;
492		}
493	}
494
495	return nsegs;
496}
497
498/*
499 * map a request to scatterlist, return number of sg entries setup. Caller
500 * must make sure sg can hold rq->nr_phys_segments entries
501 */
502int blk_rq_map_sg(struct request_queue *q, struct request *rq,
503		  struct scatterlist *sglist)
504{
505	struct scatterlist *sg = NULL;
506	int nsegs = 0;
507
508	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
509		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, &sg);
510	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
511		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, &sg);
512	else if (rq->bio)
513		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
514
515	if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
516	    (blk_rq_bytes(rq) & q->dma_pad_mask)) {
517		unsigned int pad_len =
518			(q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
519
520		sg->length += pad_len;
521		rq->extra_len += pad_len;
522	}
523
524	if (q->dma_drain_size && q->dma_drain_needed(rq)) {
525		if (op_is_write(req_op(rq)))
526			memset(q->dma_drain_buffer, 0, q->dma_drain_size);
527
528		sg_unmark_end(sg);
529		sg = sg_next(sg);
530		sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
531			    q->dma_drain_size,
532			    ((unsigned long)q->dma_drain_buffer) &
533			    (PAGE_SIZE - 1));
534		nsegs++;
535		rq->extra_len += q->dma_drain_size;
536	}
537
538	if (sg)
539		sg_mark_end(sg);
540
541	/*
542	 * Something must have been wrong if the figured number of
543	 * segment is bigger than number of req's physical segments
544	 */
545	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
546
547	return nsegs;
548}
549EXPORT_SYMBOL(blk_rq_map_sg);
550
551static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
552		unsigned int nr_phys_segs)
 
553{
554	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
 
 
555		goto no_merge;
556
557	if (blk_integrity_merge_bio(req->q, req, bio) == false)
558		goto no_merge;
559
560	/*
561	 * This will form the start of a new hw segment.  Bump both
562	 * counters.
563	 */
564	req->nr_phys_segments += nr_phys_segs;
565	return 1;
566
567no_merge:
568	req_set_nomerge(req->q, req);
569	return 0;
570}
571
572int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
573{
574	if (req_gap_back_merge(req, bio))
575		return 0;
576	if (blk_integrity_rq(req) &&
577	    integrity_req_gap_back_merge(req, bio))
578		return 0;
579	if (blk_rq_sectors(req) + bio_sectors(bio) >
580	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
581		req_set_nomerge(req->q, req);
582		return 0;
583	}
 
 
 
 
584
585	return ll_new_hw_segment(req, bio, nr_segs);
586}
587
588int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 
589{
 
590	if (req_gap_front_merge(req, bio))
591		return 0;
592	if (blk_integrity_rq(req) &&
593	    integrity_req_gap_front_merge(req, bio))
594		return 0;
595	if (blk_rq_sectors(req) + bio_sectors(bio) >
596	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
597		req_set_nomerge(req->q, req);
598		return 0;
599	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
601	return ll_new_hw_segment(req, bio, nr_segs);
602}
603
604static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
605		struct request *next)
606{
607	unsigned short segments = blk_rq_nr_discard_segments(req);
608
609	if (segments >= queue_max_discard_segments(q))
610		goto no_merge;
611	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
612	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
613		goto no_merge;
614
615	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
616	return true;
617no_merge:
618	req_set_nomerge(q, req);
619	return false;
620}
621
622static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
623				struct request *next)
624{
625	int total_phys_segments;
 
 
 
 
 
 
 
 
 
626
627	if (req_gap_back_merge(req, next->bio))
628		return 0;
629
630	/*
631	 * Will it become too large?
632	 */
633	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
634	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
635		return 0;
636
637	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 
 
 
 
 
 
 
 
638	if (total_phys_segments > queue_max_segments(q))
639		return 0;
640
641	if (blk_integrity_merge_rq(q, req, next) == false)
642		return 0;
643
644	/* Merge is OK... */
645	req->nr_phys_segments = total_phys_segments;
646	return 1;
647}
648
649/**
650 * blk_rq_set_mixed_merge - mark a request as mixed merge
651 * @rq: request to mark as mixed merge
652 *
653 * Description:
654 *     @rq is about to be mixed merged.  Make sure the attributes
655 *     which can be mixed are set in each bio and mark @rq as mixed
656 *     merged.
657 */
658void blk_rq_set_mixed_merge(struct request *rq)
659{
660	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
661	struct bio *bio;
662
663	if (rq->rq_flags & RQF_MIXED_MERGE)
664		return;
665
666	/*
667	 * @rq will no longer represent mixable attributes for all the
668	 * contained bios.  It will just track those of the first one.
669	 * Distributes the attributs to each bio.
670	 */
671	for (bio = rq->bio; bio; bio = bio->bi_next) {
672		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
673			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
674		bio->bi_opf |= ff;
675	}
676	rq->rq_flags |= RQF_MIXED_MERGE;
677}
678
679static void blk_account_io_merge(struct request *req)
680{
681	if (blk_do_io_stat(req)) {
682		struct hd_struct *part;
 
683
684		part_stat_lock();
685		part = req->part;
686
 
687		part_dec_in_flight(req->q, part, rq_data_dir(req));
688
689		hd_struct_put(part);
690		part_stat_unlock();
691	}
692}
693/*
694 * Two cases of handling DISCARD merge:
695 * If max_discard_segments > 1, the driver takes every bio
696 * as a range and send them to controller together. The ranges
697 * needn't to be contiguous.
698 * Otherwise, the bios/requests will be handled as same as
699 * others which should be contiguous.
700 */
701static inline bool blk_discard_mergable(struct request *req)
702{
703	if (req_op(req) == REQ_OP_DISCARD &&
704	    queue_max_discard_segments(req->q) > 1)
705		return true;
706	return false;
707}
708
709static enum elv_merge blk_try_req_merge(struct request *req,
710					struct request *next)
711{
712	if (blk_discard_mergable(req))
713		return ELEVATOR_DISCARD_MERGE;
714	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
715		return ELEVATOR_BACK_MERGE;
716
717	return ELEVATOR_NO_MERGE;
718}
719
720/*
721 * For non-mq, this has to be called with the request spinlock acquired.
722 * For mq with scheduling, the appropriate queue wide lock should be held.
723 */
724static struct request *attempt_merge(struct request_queue *q,
725				     struct request *req, struct request *next)
726{
 
 
 
727	if (!rq_mergeable(req) || !rq_mergeable(next))
728		return NULL;
729
730	if (req_op(req) != req_op(next))
731		return NULL;
732
 
 
 
 
 
 
733	if (rq_data_dir(req) != rq_data_dir(next)
734	    || req->rq_disk != next->rq_disk)
 
735		return NULL;
736
737	if (req_op(req) == REQ_OP_WRITE_SAME &&
738	    !blk_write_same_mergeable(req->bio, next->bio))
739		return NULL;
740
741	/*
742	 * Don't allow merge of different write hints, or for a hint with
743	 * non-hint IO.
744	 */
745	if (req->write_hint != next->write_hint)
746		return NULL;
747
748	if (req->ioprio != next->ioprio)
749		return NULL;
750
751	/*
752	 * If we are allowed to merge, then append bio list
753	 * from next to rq and release next. merge_requests_fn
754	 * will have updated segment counts, update sector
755	 * counts here. Handle DISCARDs separately, as they
756	 * have separate settings.
757	 */
758
759	switch (blk_try_req_merge(req, next)) {
760	case ELEVATOR_DISCARD_MERGE:
761		if (!req_attempt_discard_merge(q, req, next))
762			return NULL;
763		break;
764	case ELEVATOR_BACK_MERGE:
765		if (!ll_merge_requests_fn(q, req, next))
766			return NULL;
767		break;
768	default:
769		return NULL;
770	}
771
772	/*
773	 * If failfast settings disagree or any of the two is already
774	 * a mixed merge, mark both as mixed before proceeding.  This
775	 * makes sure that all involved bios have mixable attributes
776	 * set properly.
777	 */
778	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
779	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
780	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
781		blk_rq_set_mixed_merge(req);
782		blk_rq_set_mixed_merge(next);
783	}
784
785	/*
786	 * At this point we have either done a back merge or front merge. We
787	 * need the smaller start_time_ns of the merged requests to be the
788	 * current request for accounting purposes.
 
789	 */
790	if (next->start_time_ns < req->start_time_ns)
791		req->start_time_ns = next->start_time_ns;
792
793	req->biotail->bi_next = next->bio;
794	req->biotail = next->biotail;
795
796	req->__data_len += blk_rq_bytes(next);
797
798	if (!blk_discard_mergable(req))
799		elv_merge_requests(q, req, next);
800
801	/*
802	 * 'next' is going away, so update stats accordingly
803	 */
804	blk_account_io_merge(next);
805
 
 
 
 
806	/*
807	 * ownership of bio passed from next to req, return 'next' for
808	 * the caller to free
809	 */
810	next->bio = NULL;
811	return next;
812}
813
814struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
815{
816	struct request *next = elv_latter_request(q, rq);
817
818	if (next)
819		return attempt_merge(q, rq, next);
820
821	return NULL;
822}
823
824struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
825{
826	struct request *prev = elv_former_request(q, rq);
827
828	if (prev)
829		return attempt_merge(q, prev, rq);
830
831	return NULL;
832}
833
834int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
835			  struct request *next)
836{
 
837	struct request *free;
838
 
 
 
 
839	free = attempt_merge(q, rq, next);
840	if (free) {
841		blk_put_request(free);
842		return 1;
843	}
844
845	return 0;
846}
847
848bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
849{
850	if (!rq_mergeable(rq) || !bio_mergeable(bio))
851		return false;
852
853	if (req_op(rq) != bio_op(bio))
854		return false;
855
856	/* different data direction or already started, don't merge */
857	if (bio_data_dir(bio) != rq_data_dir(rq))
858		return false;
859
860	/* must be same device */
861	if (rq->rq_disk != bio->bi_disk)
862		return false;
863
864	/* only merge integrity protected bio into ditto rq */
865	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
866		return false;
867
868	/* must be using the same buffer */
869	if (req_op(rq) == REQ_OP_WRITE_SAME &&
870	    !blk_write_same_mergeable(rq->bio, bio))
871		return false;
872
873	/*
874	 * Don't allow merge of different write hints, or for a hint with
875	 * non-hint IO.
876	 */
877	if (rq->write_hint != bio->bi_write_hint)
878		return false;
879
880	if (rq->ioprio != bio_prio(bio))
881		return false;
882
883	return true;
884}
885
886enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
887{
888	if (blk_discard_mergable(rq))
 
889		return ELEVATOR_DISCARD_MERGE;
890	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
891		return ELEVATOR_BACK_MERGE;
892	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
893		return ELEVATOR_FRONT_MERGE;
894	return ELEVATOR_NO_MERGE;
895}