Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.17
 
  1/*
  2 * zbud.c
  3 *
  4 * Copyright (C) 2013, Seth Jennings, IBM
  5 *
  6 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
  7 *
  8 * zbud is an special purpose allocator for storing compressed pages.  Contrary
  9 * to what its name may suggest, zbud is not a buddy allocator, but rather an
 10 * allocator that "buddies" two compressed pages together in a single memory
 11 * page.
 12 *
 13 * While this design limits storage density, it has simple and deterministic
 14 * reclaim properties that make it preferable to a higher density approach when
 15 * reclaim will be used.
 16 *
 17 * zbud works by storing compressed pages, or "zpages", together in pairs in a
 18 * single memory page called a "zbud page".  The first buddy is "left
 19 * justified" at the beginning of the zbud page, and the last buddy is "right
 20 * justified" at the end of the zbud page.  The benefit is that if either
 21 * buddy is freed, the freed buddy space, coalesced with whatever slack space
 22 * that existed between the buddies, results in the largest possible free region
 23 * within the zbud page.
 24 *
 25 * zbud also provides an attractive lower bound on density. The ratio of zpages
 26 * to zbud pages can not be less than 1.  This ensures that zbud can never "do
 27 * harm" by using more pages to store zpages than the uncompressed zpages would
 28 * have used on their own.
 29 *
 30 * zbud pages are divided into "chunks".  The size of the chunks is fixed at
 31 * compile time and determined by NCHUNKS_ORDER below.  Dividing zbud pages
 32 * into chunks allows organizing unbuddied zbud pages into a manageable number
 33 * of unbuddied lists according to the number of free chunks available in the
 34 * zbud page.
 35 *
 36 * The zbud API differs from that of conventional allocators in that the
 37 * allocation function, zbud_alloc(), returns an opaque handle to the user,
 38 * not a dereferenceable pointer.  The user must map the handle using
 39 * zbud_map() in order to get a usable pointer by which to access the
 40 * allocation data and unmap the handle with zbud_unmap() when operations
 41 * on the allocation data are complete.
 42 */
 43
 44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 45
 46#include <linux/atomic.h>
 47#include <linux/list.h>
 48#include <linux/mm.h>
 49#include <linux/module.h>
 50#include <linux/preempt.h>
 51#include <linux/slab.h>
 52#include <linux/spinlock.h>
 53#include <linux/zbud.h>
 54#include <linux/zpool.h>
 55
 56/*****************
 57 * Structures
 58*****************/
 59/*
 60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
 61 * adjusting internal fragmentation.  It also determines the number of
 62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
 63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk
 64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to
 65 * 63 which shows the max number of free chunks in zbud page, also there will be
 66 * 63 freelists per pool.
 67 */
 68#define NCHUNKS_ORDER	6
 69
 70#define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
 71#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
 72#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
 73#define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
 74
 
 
 
 
 
 
 75/**
 76 * struct zbud_pool - stores metadata for each zbud pool
 77 * @lock:	protects all pool fields and first|last_chunk fields of any
 78 *		zbud page in the pool
 79 * @unbuddied:	array of lists tracking zbud pages that only contain one buddy;
 80 *		the lists each zbud page is added to depends on the size of
 81 *		its free region.
 82 * @buddied:	list tracking the zbud pages that contain two buddies;
 83 *		these zbud pages are full
 84 * @lru:	list tracking the zbud pages in LRU order by most recently
 85 *		added buddy.
 86 * @pages_nr:	number of zbud pages in the pool.
 87 * @ops:	pointer to a structure of user defined operations specified at
 88 *		pool creation time.
 
 
 89 *
 90 * This structure is allocated at pool creation time and maintains metadata
 91 * pertaining to a particular zbud pool.
 92 */
 93struct zbud_pool {
 94	spinlock_t lock;
 95	struct list_head unbuddied[NCHUNKS];
 96	struct list_head buddied;
 
 
 
 
 
 
 97	struct list_head lru;
 98	u64 pages_nr;
 99	const struct zbud_ops *ops;
100#ifdef CONFIG_ZPOOL
101	struct zpool *zpool;
102	const struct zpool_ops *zpool_ops;
103#endif
104};
105
106/*
107 * struct zbud_header - zbud page metadata occupying the first chunk of each
108 *			zbud page.
109 * @buddy:	links the zbud page into the unbuddied/buddied lists in the pool
110 * @lru:	links the zbud page into the lru list in the pool
111 * @first_chunks:	the size of the first buddy in chunks, 0 if free
112 * @last_chunks:	the size of the last buddy in chunks, 0 if free
113 */
114struct zbud_header {
115	struct list_head buddy;
116	struct list_head lru;
117	unsigned int first_chunks;
118	unsigned int last_chunks;
119	bool under_reclaim;
120};
121
122/*****************
123 * zpool
124 ****************/
125
126#ifdef CONFIG_ZPOOL
127
128static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle)
129{
130	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
131		return pool->zpool_ops->evict(pool->zpool, handle);
132	else
133		return -ENOENT;
134}
135
136static const struct zbud_ops zbud_zpool_ops = {
137	.evict =	zbud_zpool_evict
138};
139
140static void *zbud_zpool_create(const char *name, gfp_t gfp,
141			       const struct zpool_ops *zpool_ops,
142			       struct zpool *zpool)
143{
144	struct zbud_pool *pool;
145
146	pool = zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL);
147	if (pool) {
148		pool->zpool = zpool;
149		pool->zpool_ops = zpool_ops;
150	}
151	return pool;
152}
153
154static void zbud_zpool_destroy(void *pool)
155{
156	zbud_destroy_pool(pool);
157}
158
159static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp,
160			unsigned long *handle)
161{
162	return zbud_alloc(pool, size, gfp, handle);
163}
164static void zbud_zpool_free(void *pool, unsigned long handle)
165{
166	zbud_free(pool, handle);
167}
168
169static int zbud_zpool_shrink(void *pool, unsigned int pages,
170			unsigned int *reclaimed)
171{
172	unsigned int total = 0;
173	int ret = -EINVAL;
174
175	while (total < pages) {
176		ret = zbud_reclaim_page(pool, 8);
177		if (ret < 0)
178			break;
179		total++;
180	}
181
182	if (reclaimed)
183		*reclaimed = total;
184
185	return ret;
186}
187
188static void *zbud_zpool_map(void *pool, unsigned long handle,
189			enum zpool_mapmode mm)
190{
191	return zbud_map(pool, handle);
192}
193static void zbud_zpool_unmap(void *pool, unsigned long handle)
194{
195	zbud_unmap(pool, handle);
196}
197
198static u64 zbud_zpool_total_size(void *pool)
199{
200	return zbud_get_pool_size(pool) * PAGE_SIZE;
201}
202
203static struct zpool_driver zbud_zpool_driver = {
204	.type =		"zbud",
205	.owner =	THIS_MODULE,
206	.create =	zbud_zpool_create,
207	.destroy =	zbud_zpool_destroy,
208	.malloc =	zbud_zpool_malloc,
209	.free =		zbud_zpool_free,
210	.shrink =	zbud_zpool_shrink,
211	.map =		zbud_zpool_map,
212	.unmap =	zbud_zpool_unmap,
213	.total_size =	zbud_zpool_total_size,
214};
215
216MODULE_ALIAS("zpool-zbud");
217#endif /* CONFIG_ZPOOL */
218
219/*****************
220 * Helpers
221*****************/
222/* Just to make the code easier to read */
223enum buddy {
224	FIRST,
225	LAST
226};
227
228/* Converts an allocation size in bytes to size in zbud chunks */
229static int size_to_chunks(size_t size)
230{
231	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
232}
233
234#define for_each_unbuddied_list(_iter, _begin) \
235	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
236
237/* Initializes the zbud header of a newly allocated zbud page */
238static struct zbud_header *init_zbud_page(struct page *page)
239{
240	struct zbud_header *zhdr = page_address(page);
241	zhdr->first_chunks = 0;
242	zhdr->last_chunks = 0;
243	INIT_LIST_HEAD(&zhdr->buddy);
244	INIT_LIST_HEAD(&zhdr->lru);
245	zhdr->under_reclaim = 0;
246	return zhdr;
247}
248
249/* Resets the struct page fields and frees the page */
250static void free_zbud_page(struct zbud_header *zhdr)
251{
252	__free_page(virt_to_page(zhdr));
253}
254
255/*
256 * Encodes the handle of a particular buddy within a zbud page
257 * Pool lock should be held as this function accesses first|last_chunks
258 */
259static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
260{
261	unsigned long handle;
262
263	/*
264	 * For now, the encoded handle is actually just the pointer to the data
265	 * but this might not always be the case.  A little information hiding.
266	 * Add CHUNK_SIZE to the handle if it is the first allocation to jump
267	 * over the zbud header in the first chunk.
268	 */
269	handle = (unsigned long)zhdr;
270	if (bud == FIRST)
271		/* skip over zbud header */
272		handle += ZHDR_SIZE_ALIGNED;
273	else /* bud == LAST */
274		handle += PAGE_SIZE - (zhdr->last_chunks  << CHUNK_SHIFT);
275	return handle;
276}
277
278/* Returns the zbud page where a given handle is stored */
279static struct zbud_header *handle_to_zbud_header(unsigned long handle)
280{
281	return (struct zbud_header *)(handle & PAGE_MASK);
282}
283
284/* Returns the number of free chunks in a zbud page */
285static int num_free_chunks(struct zbud_header *zhdr)
286{
287	/*
288	 * Rather than branch for different situations, just use the fact that
289	 * free buddies have a length of zero to simplify everything.
290	 */
291	return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
292}
293
294/*****************
295 * API Functions
296*****************/
297/**
298 * zbud_create_pool() - create a new zbud pool
299 * @gfp:	gfp flags when allocating the zbud pool structure
300 * @ops:	user-defined operations for the zbud pool
301 *
302 * Return: pointer to the new zbud pool or NULL if the metadata allocation
303 * failed.
304 */
305struct zbud_pool *zbud_create_pool(gfp_t gfp, const struct zbud_ops *ops)
306{
307	struct zbud_pool *pool;
308	int i;
309
310	pool = kzalloc(sizeof(struct zbud_pool), gfp);
311	if (!pool)
312		return NULL;
313	spin_lock_init(&pool->lock);
314	for_each_unbuddied_list(i, 0)
315		INIT_LIST_HEAD(&pool->unbuddied[i]);
316	INIT_LIST_HEAD(&pool->buddied);
317	INIT_LIST_HEAD(&pool->lru);
318	pool->pages_nr = 0;
319	pool->ops = ops;
320	return pool;
321}
322
323/**
324 * zbud_destroy_pool() - destroys an existing zbud pool
325 * @pool:	the zbud pool to be destroyed
326 *
327 * The pool should be emptied before this function is called.
328 */
329void zbud_destroy_pool(struct zbud_pool *pool)
330{
331	kfree(pool);
332}
333
334/**
335 * zbud_alloc() - allocates a region of a given size
336 * @pool:	zbud pool from which to allocate
337 * @size:	size in bytes of the desired allocation
338 * @gfp:	gfp flags used if the pool needs to grow
339 * @handle:	handle of the new allocation
340 *
341 * This function will attempt to find a free region in the pool large enough to
342 * satisfy the allocation request.  A search of the unbuddied lists is
343 * performed first. If no suitable free region is found, then a new page is
344 * allocated and added to the pool to satisfy the request.
345 *
346 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
347 * as zbud pool pages.
348 *
349 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
350 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
351 * a new page.
352 */
353int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp,
354			unsigned long *handle)
355{
356	int chunks, i, freechunks;
357	struct zbud_header *zhdr = NULL;
358	enum buddy bud;
359	struct page *page;
360
361	if (!size || (gfp & __GFP_HIGHMEM))
362		return -EINVAL;
363	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
364		return -ENOSPC;
365	chunks = size_to_chunks(size);
366	spin_lock(&pool->lock);
367
368	/* First, try to find an unbuddied zbud page. */
369	zhdr = NULL;
370	for_each_unbuddied_list(i, chunks) {
371		if (!list_empty(&pool->unbuddied[i])) {
372			zhdr = list_first_entry(&pool->unbuddied[i],
373					struct zbud_header, buddy);
374			list_del(&zhdr->buddy);
375			if (zhdr->first_chunks == 0)
376				bud = FIRST;
377			else
378				bud = LAST;
379			goto found;
380		}
381	}
382
383	/* Couldn't find unbuddied zbud page, create new one */
384	spin_unlock(&pool->lock);
385	page = alloc_page(gfp);
386	if (!page)
387		return -ENOMEM;
388	spin_lock(&pool->lock);
389	pool->pages_nr++;
390	zhdr = init_zbud_page(page);
391	bud = FIRST;
392
393found:
394	if (bud == FIRST)
395		zhdr->first_chunks = chunks;
396	else
397		zhdr->last_chunks = chunks;
398
399	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
400		/* Add to unbuddied list */
401		freechunks = num_free_chunks(zhdr);
402		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
403	} else {
404		/* Add to buddied list */
405		list_add(&zhdr->buddy, &pool->buddied);
406	}
407
408	/* Add/move zbud page to beginning of LRU */
409	if (!list_empty(&zhdr->lru))
410		list_del(&zhdr->lru);
411	list_add(&zhdr->lru, &pool->lru);
412
413	*handle = encode_handle(zhdr, bud);
414	spin_unlock(&pool->lock);
415
416	return 0;
417}
418
419/**
420 * zbud_free() - frees the allocation associated with the given handle
421 * @pool:	pool in which the allocation resided
422 * @handle:	handle associated with the allocation returned by zbud_alloc()
423 *
424 * In the case that the zbud page in which the allocation resides is under
425 * reclaim, as indicated by the PG_reclaim flag being set, this function
426 * only sets the first|last_chunks to 0.  The page is actually freed
427 * once both buddies are evicted (see zbud_reclaim_page() below).
428 */
429void zbud_free(struct zbud_pool *pool, unsigned long handle)
430{
431	struct zbud_header *zhdr;
432	int freechunks;
433
434	spin_lock(&pool->lock);
435	zhdr = handle_to_zbud_header(handle);
436
437	/* If first buddy, handle will be page aligned */
438	if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
439		zhdr->last_chunks = 0;
440	else
441		zhdr->first_chunks = 0;
442
443	if (zhdr->under_reclaim) {
444		/* zbud page is under reclaim, reclaim will free */
445		spin_unlock(&pool->lock);
446		return;
447	}
448
449	/* Remove from existing buddy list */
450	list_del(&zhdr->buddy);
451
452	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
453		/* zbud page is empty, free */
454		list_del(&zhdr->lru);
455		free_zbud_page(zhdr);
456		pool->pages_nr--;
457	} else {
458		/* Add to unbuddied list */
459		freechunks = num_free_chunks(zhdr);
460		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
461	}
462
463	spin_unlock(&pool->lock);
464}
465
466/**
467 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
468 * @pool:	pool from which a page will attempt to be evicted
469 * @retries:	number of pages on the LRU list for which eviction will
470 *		be attempted before failing
471 *
472 * zbud reclaim is different from normal system reclaim in that the reclaim is
473 * done from the bottom, up.  This is because only the bottom layer, zbud, has
474 * information on how the allocations are organized within each zbud page. This
475 * has the potential to create interesting locking situations between zbud and
476 * the user, however.
477 *
478 * To avoid these, this is how zbud_reclaim_page() should be called:
479 *
480 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
481 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
482 * the user-defined eviction handler with the pool and handle as arguments.
483 *
484 * If the handle can not be evicted, the eviction handler should return
485 * non-zero. zbud_reclaim_page() will add the zbud page back to the
486 * appropriate list and try the next zbud page on the LRU up to
487 * a user defined number of retries.
488 *
489 * If the handle is successfully evicted, the eviction handler should
490 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
491 * contains logic to delay freeing the page if the page is under reclaim,
492 * as indicated by the setting of the PG_reclaim flag on the underlying page.
493 *
494 * If all buddies in the zbud page are successfully evicted, then the
495 * zbud page can be freed.
496 *
497 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
498 * no pages to evict or an eviction handler is not registered, -EAGAIN if
499 * the retry limit was hit.
500 */
501int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
502{
503	int i, ret, freechunks;
504	struct zbud_header *zhdr;
505	unsigned long first_handle = 0, last_handle = 0;
506
507	spin_lock(&pool->lock);
508	if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
509			retries == 0) {
510		spin_unlock(&pool->lock);
511		return -EINVAL;
512	}
513	for (i = 0; i < retries; i++) {
514		zhdr = list_last_entry(&pool->lru, struct zbud_header, lru);
515		list_del(&zhdr->lru);
516		list_del(&zhdr->buddy);
517		/* Protect zbud page against free */
518		zhdr->under_reclaim = true;
519		/*
520		 * We need encode the handles before unlocking, since we can
521		 * race with free that will set (first|last)_chunks to 0
522		 */
523		first_handle = 0;
524		last_handle = 0;
525		if (zhdr->first_chunks)
526			first_handle = encode_handle(zhdr, FIRST);
527		if (zhdr->last_chunks)
528			last_handle = encode_handle(zhdr, LAST);
529		spin_unlock(&pool->lock);
530
531		/* Issue the eviction callback(s) */
532		if (first_handle) {
533			ret = pool->ops->evict(pool, first_handle);
534			if (ret)
535				goto next;
536		}
537		if (last_handle) {
538			ret = pool->ops->evict(pool, last_handle);
539			if (ret)
540				goto next;
541		}
542next:
543		spin_lock(&pool->lock);
544		zhdr->under_reclaim = false;
545		if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
546			/*
547			 * Both buddies are now free, free the zbud page and
548			 * return success.
549			 */
550			free_zbud_page(zhdr);
551			pool->pages_nr--;
552			spin_unlock(&pool->lock);
553			return 0;
554		} else if (zhdr->first_chunks == 0 ||
555				zhdr->last_chunks == 0) {
556			/* add to unbuddied list */
557			freechunks = num_free_chunks(zhdr);
558			list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
559		} else {
560			/* add to buddied list */
561			list_add(&zhdr->buddy, &pool->buddied);
562		}
563
564		/* add to beginning of LRU */
565		list_add(&zhdr->lru, &pool->lru);
566	}
567	spin_unlock(&pool->lock);
568	return -EAGAIN;
569}
570
571/**
572 * zbud_map() - maps the allocation associated with the given handle
573 * @pool:	pool in which the allocation resides
574 * @handle:	handle associated with the allocation to be mapped
575 *
576 * While trivial for zbud, the mapping functions for others allocators
577 * implementing this allocation API could have more complex information encoded
578 * in the handle and could create temporary mappings to make the data
579 * accessible to the user.
580 *
581 * Returns: a pointer to the mapped allocation
582 */
583void *zbud_map(struct zbud_pool *pool, unsigned long handle)
584{
585	return (void *)(handle);
586}
587
588/**
589 * zbud_unmap() - maps the allocation associated with the given handle
590 * @pool:	pool in which the allocation resides
591 * @handle:	handle associated with the allocation to be unmapped
592 */
593void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
594{
595}
596
597/**
598 * zbud_get_pool_size() - gets the zbud pool size in pages
599 * @pool:	pool whose size is being queried
600 *
601 * Returns: size in pages of the given pool.  The pool lock need not be
602 * taken to access pages_nr.
603 */
604u64 zbud_get_pool_size(struct zbud_pool *pool)
605{
606	return pool->pages_nr;
607}
608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609static int __init init_zbud(void)
610{
611	/* Make sure the zbud header will fit in one chunk */
612	BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
613	pr_info("loaded\n");
614
615#ifdef CONFIG_ZPOOL
616	zpool_register_driver(&zbud_zpool_driver);
617#endif
618
619	return 0;
620}
621
622static void __exit exit_zbud(void)
623{
624#ifdef CONFIG_ZPOOL
625	zpool_unregister_driver(&zbud_zpool_driver);
626#endif
627
628	pr_info("unloaded\n");
629}
630
631module_init(init_zbud);
632module_exit(exit_zbud);
633
634MODULE_LICENSE("GPL");
635MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
636MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * zbud.c
  4 *
  5 * Copyright (C) 2013, Seth Jennings, IBM
  6 *
  7 * Concepts based on zcache internal zbud allocator by Dan Magenheimer.
  8 *
  9 * zbud is an special purpose allocator for storing compressed pages.  Contrary
 10 * to what its name may suggest, zbud is not a buddy allocator, but rather an
 11 * allocator that "buddies" two compressed pages together in a single memory
 12 * page.
 13 *
 14 * While this design limits storage density, it has simple and deterministic
 15 * reclaim properties that make it preferable to a higher density approach when
 16 * reclaim will be used.
 17 *
 18 * zbud works by storing compressed pages, or "zpages", together in pairs in a
 19 * single memory page called a "zbud page".  The first buddy is "left
 20 * justified" at the beginning of the zbud page, and the last buddy is "right
 21 * justified" at the end of the zbud page.  The benefit is that if either
 22 * buddy is freed, the freed buddy space, coalesced with whatever slack space
 23 * that existed between the buddies, results in the largest possible free region
 24 * within the zbud page.
 25 *
 26 * zbud also provides an attractive lower bound on density. The ratio of zpages
 27 * to zbud pages can not be less than 1.  This ensures that zbud can never "do
 28 * harm" by using more pages to store zpages than the uncompressed zpages would
 29 * have used on their own.
 30 *
 31 * zbud pages are divided into "chunks".  The size of the chunks is fixed at
 32 * compile time and determined by NCHUNKS_ORDER below.  Dividing zbud pages
 33 * into chunks allows organizing unbuddied zbud pages into a manageable number
 34 * of unbuddied lists according to the number of free chunks available in the
 35 * zbud page.
 36 *
 37 * The zbud API differs from that of conventional allocators in that the
 38 * allocation function, zbud_alloc(), returns an opaque handle to the user,
 39 * not a dereferenceable pointer.  The user must map the handle using
 40 * zbud_map() in order to get a usable pointer by which to access the
 41 * allocation data and unmap the handle with zbud_unmap() when operations
 42 * on the allocation data are complete.
 43 */
 44
 45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 46
 47#include <linux/atomic.h>
 48#include <linux/list.h>
 49#include <linux/mm.h>
 50#include <linux/module.h>
 51#include <linux/preempt.h>
 52#include <linux/slab.h>
 53#include <linux/spinlock.h>
 
 54#include <linux/zpool.h>
 55
 56/*****************
 57 * Structures
 58*****************/
 59/*
 60 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
 61 * adjusting internal fragmentation.  It also determines the number of
 62 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
 63 * allocation granularity will be in chunks of size PAGE_SIZE/64. As one chunk
 64 * in allocated page is occupied by zbud header, NCHUNKS will be calculated to
 65 * 63 which shows the max number of free chunks in zbud page, also there will be
 66 * 63 freelists per pool.
 67 */
 68#define NCHUNKS_ORDER	6
 69
 70#define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
 71#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
 72#define ZHDR_SIZE_ALIGNED CHUNK_SIZE
 73#define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
 74
 75struct zbud_pool;
 76
 77struct zbud_ops {
 78	int (*evict)(struct zbud_pool *pool, unsigned long handle);
 79};
 80
 81/**
 82 * struct zbud_pool - stores metadata for each zbud pool
 83 * @lock:	protects all pool fields and first|last_chunk fields of any
 84 *		zbud page in the pool
 85 * @unbuddied:	array of lists tracking zbud pages that only contain one buddy;
 86 *		the lists each zbud page is added to depends on the size of
 87 *		its free region.
 88 * @buddied:	list tracking the zbud pages that contain two buddies;
 89 *		these zbud pages are full
 90 * @lru:	list tracking the zbud pages in LRU order by most recently
 91 *		added buddy.
 92 * @pages_nr:	number of zbud pages in the pool.
 93 * @ops:	pointer to a structure of user defined operations specified at
 94 *		pool creation time.
 95 * @zpool:	zpool driver
 96 * @zpool_ops:	zpool operations structure with an evict callback
 97 *
 98 * This structure is allocated at pool creation time and maintains metadata
 99 * pertaining to a particular zbud pool.
100 */
101struct zbud_pool {
102	spinlock_t lock;
103	union {
104		/*
105		 * Reuse unbuddied[0] as buddied on the ground that
106		 * unbuddied[0] is unused.
107		 */
108		struct list_head buddied;
109		struct list_head unbuddied[NCHUNKS];
110	};
111	struct list_head lru;
112	u64 pages_nr;
113	const struct zbud_ops *ops;
 
114	struct zpool *zpool;
115	const struct zpool_ops *zpool_ops;
 
116};
117
118/*
119 * struct zbud_header - zbud page metadata occupying the first chunk of each
120 *			zbud page.
121 * @buddy:	links the zbud page into the unbuddied/buddied lists in the pool
122 * @lru:	links the zbud page into the lru list in the pool
123 * @first_chunks:	the size of the first buddy in chunks, 0 if free
124 * @last_chunks:	the size of the last buddy in chunks, 0 if free
125 */
126struct zbud_header {
127	struct list_head buddy;
128	struct list_head lru;
129	unsigned int first_chunks;
130	unsigned int last_chunks;
131	bool under_reclaim;
132};
133
134/*****************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135 * Helpers
136*****************/
137/* Just to make the code easier to read */
138enum buddy {
139	FIRST,
140	LAST
141};
142
143/* Converts an allocation size in bytes to size in zbud chunks */
144static int size_to_chunks(size_t size)
145{
146	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
147}
148
149#define for_each_unbuddied_list(_iter, _begin) \
150	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
151
152/* Initializes the zbud header of a newly allocated zbud page */
153static struct zbud_header *init_zbud_page(struct page *page)
154{
155	struct zbud_header *zhdr = page_address(page);
156	zhdr->first_chunks = 0;
157	zhdr->last_chunks = 0;
158	INIT_LIST_HEAD(&zhdr->buddy);
159	INIT_LIST_HEAD(&zhdr->lru);
160	zhdr->under_reclaim = false;
161	return zhdr;
162}
163
164/* Resets the struct page fields and frees the page */
165static void free_zbud_page(struct zbud_header *zhdr)
166{
167	__free_page(virt_to_page(zhdr));
168}
169
170/*
171 * Encodes the handle of a particular buddy within a zbud page
172 * Pool lock should be held as this function accesses first|last_chunks
173 */
174static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud)
175{
176	unsigned long handle;
177
178	/*
179	 * For now, the encoded handle is actually just the pointer to the data
180	 * but this might not always be the case.  A little information hiding.
181	 * Add CHUNK_SIZE to the handle if it is the first allocation to jump
182	 * over the zbud header in the first chunk.
183	 */
184	handle = (unsigned long)zhdr;
185	if (bud == FIRST)
186		/* skip over zbud header */
187		handle += ZHDR_SIZE_ALIGNED;
188	else /* bud == LAST */
189		handle += PAGE_SIZE - (zhdr->last_chunks  << CHUNK_SHIFT);
190	return handle;
191}
192
193/* Returns the zbud page where a given handle is stored */
194static struct zbud_header *handle_to_zbud_header(unsigned long handle)
195{
196	return (struct zbud_header *)(handle & PAGE_MASK);
197}
198
199/* Returns the number of free chunks in a zbud page */
200static int num_free_chunks(struct zbud_header *zhdr)
201{
202	/*
203	 * Rather than branch for different situations, just use the fact that
204	 * free buddies have a length of zero to simplify everything.
205	 */
206	return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
207}
208
209/*****************
210 * API Functions
211*****************/
212/**
213 * zbud_create_pool() - create a new zbud pool
214 * @gfp:	gfp flags when allocating the zbud pool structure
215 * @ops:	user-defined operations for the zbud pool
216 *
217 * Return: pointer to the new zbud pool or NULL if the metadata allocation
218 * failed.
219 */
220static struct zbud_pool *zbud_create_pool(gfp_t gfp, const struct zbud_ops *ops)
221{
222	struct zbud_pool *pool;
223	int i;
224
225	pool = kzalloc(sizeof(struct zbud_pool), gfp);
226	if (!pool)
227		return NULL;
228	spin_lock_init(&pool->lock);
229	for_each_unbuddied_list(i, 0)
230		INIT_LIST_HEAD(&pool->unbuddied[i]);
231	INIT_LIST_HEAD(&pool->buddied);
232	INIT_LIST_HEAD(&pool->lru);
233	pool->pages_nr = 0;
234	pool->ops = ops;
235	return pool;
236}
237
238/**
239 * zbud_destroy_pool() - destroys an existing zbud pool
240 * @pool:	the zbud pool to be destroyed
241 *
242 * The pool should be emptied before this function is called.
243 */
244static void zbud_destroy_pool(struct zbud_pool *pool)
245{
246	kfree(pool);
247}
248
249/**
250 * zbud_alloc() - allocates a region of a given size
251 * @pool:	zbud pool from which to allocate
252 * @size:	size in bytes of the desired allocation
253 * @gfp:	gfp flags used if the pool needs to grow
254 * @handle:	handle of the new allocation
255 *
256 * This function will attempt to find a free region in the pool large enough to
257 * satisfy the allocation request.  A search of the unbuddied lists is
258 * performed first. If no suitable free region is found, then a new page is
259 * allocated and added to the pool to satisfy the request.
260 *
261 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
262 * as zbud pool pages.
263 *
264 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
265 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
266 * a new page.
267 */
268static int zbud_alloc(struct zbud_pool *pool, size_t size, gfp_t gfp,
269			unsigned long *handle)
270{
271	int chunks, i, freechunks;
272	struct zbud_header *zhdr = NULL;
273	enum buddy bud;
274	struct page *page;
275
276	if (!size || (gfp & __GFP_HIGHMEM))
277		return -EINVAL;
278	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
279		return -ENOSPC;
280	chunks = size_to_chunks(size);
281	spin_lock(&pool->lock);
282
283	/* First, try to find an unbuddied zbud page. */
 
284	for_each_unbuddied_list(i, chunks) {
285		if (!list_empty(&pool->unbuddied[i])) {
286			zhdr = list_first_entry(&pool->unbuddied[i],
287					struct zbud_header, buddy);
288			list_del(&zhdr->buddy);
289			if (zhdr->first_chunks == 0)
290				bud = FIRST;
291			else
292				bud = LAST;
293			goto found;
294		}
295	}
296
297	/* Couldn't find unbuddied zbud page, create new one */
298	spin_unlock(&pool->lock);
299	page = alloc_page(gfp);
300	if (!page)
301		return -ENOMEM;
302	spin_lock(&pool->lock);
303	pool->pages_nr++;
304	zhdr = init_zbud_page(page);
305	bud = FIRST;
306
307found:
308	if (bud == FIRST)
309		zhdr->first_chunks = chunks;
310	else
311		zhdr->last_chunks = chunks;
312
313	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) {
314		/* Add to unbuddied list */
315		freechunks = num_free_chunks(zhdr);
316		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
317	} else {
318		/* Add to buddied list */
319		list_add(&zhdr->buddy, &pool->buddied);
320	}
321
322	/* Add/move zbud page to beginning of LRU */
323	if (!list_empty(&zhdr->lru))
324		list_del(&zhdr->lru);
325	list_add(&zhdr->lru, &pool->lru);
326
327	*handle = encode_handle(zhdr, bud);
328	spin_unlock(&pool->lock);
329
330	return 0;
331}
332
333/**
334 * zbud_free() - frees the allocation associated with the given handle
335 * @pool:	pool in which the allocation resided
336 * @handle:	handle associated with the allocation returned by zbud_alloc()
337 *
338 * In the case that the zbud page in which the allocation resides is under
339 * reclaim, as indicated by the PG_reclaim flag being set, this function
340 * only sets the first|last_chunks to 0.  The page is actually freed
341 * once both buddies are evicted (see zbud_reclaim_page() below).
342 */
343static void zbud_free(struct zbud_pool *pool, unsigned long handle)
344{
345	struct zbud_header *zhdr;
346	int freechunks;
347
348	spin_lock(&pool->lock);
349	zhdr = handle_to_zbud_header(handle);
350
351	/* If first buddy, handle will be page aligned */
352	if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK)
353		zhdr->last_chunks = 0;
354	else
355		zhdr->first_chunks = 0;
356
357	if (zhdr->under_reclaim) {
358		/* zbud page is under reclaim, reclaim will free */
359		spin_unlock(&pool->lock);
360		return;
361	}
362
363	/* Remove from existing buddy list */
364	list_del(&zhdr->buddy);
365
366	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
367		/* zbud page is empty, free */
368		list_del(&zhdr->lru);
369		free_zbud_page(zhdr);
370		pool->pages_nr--;
371	} else {
372		/* Add to unbuddied list */
373		freechunks = num_free_chunks(zhdr);
374		list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
375	}
376
377	spin_unlock(&pool->lock);
378}
379
380/**
381 * zbud_reclaim_page() - evicts allocations from a pool page and frees it
382 * @pool:	pool from which a page will attempt to be evicted
383 * @retries:	number of pages on the LRU list for which eviction will
384 *		be attempted before failing
385 *
386 * zbud reclaim is different from normal system reclaim in that the reclaim is
387 * done from the bottom, up.  This is because only the bottom layer, zbud, has
388 * information on how the allocations are organized within each zbud page. This
389 * has the potential to create interesting locking situations between zbud and
390 * the user, however.
391 *
392 * To avoid these, this is how zbud_reclaim_page() should be called:
393 *
394 * The user detects a page should be reclaimed and calls zbud_reclaim_page().
395 * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call
396 * the user-defined eviction handler with the pool and handle as arguments.
397 *
398 * If the handle can not be evicted, the eviction handler should return
399 * non-zero. zbud_reclaim_page() will add the zbud page back to the
400 * appropriate list and try the next zbud page on the LRU up to
401 * a user defined number of retries.
402 *
403 * If the handle is successfully evicted, the eviction handler should
404 * return 0 _and_ should have called zbud_free() on the handle. zbud_free()
405 * contains logic to delay freeing the page if the page is under reclaim,
406 * as indicated by the setting of the PG_reclaim flag on the underlying page.
407 *
408 * If all buddies in the zbud page are successfully evicted, then the
409 * zbud page can be freed.
410 *
411 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
412 * no pages to evict or an eviction handler is not registered, -EAGAIN if
413 * the retry limit was hit.
414 */
415static int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries)
416{
417	int i, ret, freechunks;
418	struct zbud_header *zhdr;
419	unsigned long first_handle = 0, last_handle = 0;
420
421	spin_lock(&pool->lock);
422	if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) ||
423			retries == 0) {
424		spin_unlock(&pool->lock);
425		return -EINVAL;
426	}
427	for (i = 0; i < retries; i++) {
428		zhdr = list_last_entry(&pool->lru, struct zbud_header, lru);
429		list_del(&zhdr->lru);
430		list_del(&zhdr->buddy);
431		/* Protect zbud page against free */
432		zhdr->under_reclaim = true;
433		/*
434		 * We need encode the handles before unlocking, since we can
435		 * race with free that will set (first|last)_chunks to 0
436		 */
437		first_handle = 0;
438		last_handle = 0;
439		if (zhdr->first_chunks)
440			first_handle = encode_handle(zhdr, FIRST);
441		if (zhdr->last_chunks)
442			last_handle = encode_handle(zhdr, LAST);
443		spin_unlock(&pool->lock);
444
445		/* Issue the eviction callback(s) */
446		if (first_handle) {
447			ret = pool->ops->evict(pool, first_handle);
448			if (ret)
449				goto next;
450		}
451		if (last_handle) {
452			ret = pool->ops->evict(pool, last_handle);
453			if (ret)
454				goto next;
455		}
456next:
457		spin_lock(&pool->lock);
458		zhdr->under_reclaim = false;
459		if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
460			/*
461			 * Both buddies are now free, free the zbud page and
462			 * return success.
463			 */
464			free_zbud_page(zhdr);
465			pool->pages_nr--;
466			spin_unlock(&pool->lock);
467			return 0;
468		} else if (zhdr->first_chunks == 0 ||
469				zhdr->last_chunks == 0) {
470			/* add to unbuddied list */
471			freechunks = num_free_chunks(zhdr);
472			list_add(&zhdr->buddy, &pool->unbuddied[freechunks]);
473		} else {
474			/* add to buddied list */
475			list_add(&zhdr->buddy, &pool->buddied);
476		}
477
478		/* add to beginning of LRU */
479		list_add(&zhdr->lru, &pool->lru);
480	}
481	spin_unlock(&pool->lock);
482	return -EAGAIN;
483}
484
485/**
486 * zbud_map() - maps the allocation associated with the given handle
487 * @pool:	pool in which the allocation resides
488 * @handle:	handle associated with the allocation to be mapped
489 *
490 * While trivial for zbud, the mapping functions for others allocators
491 * implementing this allocation API could have more complex information encoded
492 * in the handle and could create temporary mappings to make the data
493 * accessible to the user.
494 *
495 * Returns: a pointer to the mapped allocation
496 */
497static void *zbud_map(struct zbud_pool *pool, unsigned long handle)
498{
499	return (void *)(handle);
500}
501
502/**
503 * zbud_unmap() - maps the allocation associated with the given handle
504 * @pool:	pool in which the allocation resides
505 * @handle:	handle associated with the allocation to be unmapped
506 */
507static void zbud_unmap(struct zbud_pool *pool, unsigned long handle)
508{
509}
510
511/**
512 * zbud_get_pool_size() - gets the zbud pool size in pages
513 * @pool:	pool whose size is being queried
514 *
515 * Returns: size in pages of the given pool.  The pool lock need not be
516 * taken to access pages_nr.
517 */
518static u64 zbud_get_pool_size(struct zbud_pool *pool)
519{
520	return pool->pages_nr;
521}
522
523/*****************
524 * zpool
525 ****************/
526
527static int zbud_zpool_evict(struct zbud_pool *pool, unsigned long handle)
528{
529	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
530		return pool->zpool_ops->evict(pool->zpool, handle);
531	else
532		return -ENOENT;
533}
534
535static const struct zbud_ops zbud_zpool_ops = {
536	.evict =	zbud_zpool_evict
537};
538
539static void *zbud_zpool_create(const char *name, gfp_t gfp,
540			       const struct zpool_ops *zpool_ops,
541			       struct zpool *zpool)
542{
543	struct zbud_pool *pool;
544
545	pool = zbud_create_pool(gfp, zpool_ops ? &zbud_zpool_ops : NULL);
546	if (pool) {
547		pool->zpool = zpool;
548		pool->zpool_ops = zpool_ops;
549	}
550	return pool;
551}
552
553static void zbud_zpool_destroy(void *pool)
554{
555	zbud_destroy_pool(pool);
556}
557
558static int zbud_zpool_malloc(void *pool, size_t size, gfp_t gfp,
559			unsigned long *handle)
560{
561	return zbud_alloc(pool, size, gfp, handle);
562}
563static void zbud_zpool_free(void *pool, unsigned long handle)
564{
565	zbud_free(pool, handle);
566}
567
568static int zbud_zpool_shrink(void *pool, unsigned int pages,
569			unsigned int *reclaimed)
570{
571	unsigned int total = 0;
572	int ret = -EINVAL;
573
574	while (total < pages) {
575		ret = zbud_reclaim_page(pool, 8);
576		if (ret < 0)
577			break;
578		total++;
579	}
580
581	if (reclaimed)
582		*reclaimed = total;
583
584	return ret;
585}
586
587static void *zbud_zpool_map(void *pool, unsigned long handle,
588			enum zpool_mapmode mm)
589{
590	return zbud_map(pool, handle);
591}
592static void zbud_zpool_unmap(void *pool, unsigned long handle)
593{
594	zbud_unmap(pool, handle);
595}
596
597static u64 zbud_zpool_total_size(void *pool)
598{
599	return zbud_get_pool_size(pool) * PAGE_SIZE;
600}
601
602static struct zpool_driver zbud_zpool_driver = {
603	.type =		"zbud",
604	.sleep_mapped = true,
605	.owner =	THIS_MODULE,
606	.create =	zbud_zpool_create,
607	.destroy =	zbud_zpool_destroy,
608	.malloc =	zbud_zpool_malloc,
609	.free =		zbud_zpool_free,
610	.shrink =	zbud_zpool_shrink,
611	.map =		zbud_zpool_map,
612	.unmap =	zbud_zpool_unmap,
613	.total_size =	zbud_zpool_total_size,
614};
615
616MODULE_ALIAS("zpool-zbud");
617
618static int __init init_zbud(void)
619{
620	/* Make sure the zbud header will fit in one chunk */
621	BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED);
622	pr_info("loaded\n");
623
 
624	zpool_register_driver(&zbud_zpool_driver);
 
625
626	return 0;
627}
628
629static void __exit exit_zbud(void)
630{
 
631	zpool_unregister_driver(&zbud_zpool_driver);
 
 
632	pr_info("unloaded\n");
633}
634
635module_init(init_zbud);
636module_exit(exit_zbud);
637
638MODULE_LICENSE("GPL");
639MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
640MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages");