Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
20#include "slab.h"
21#include <linux/proc_fs.h>
22#include <linux/notifier.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
29#include <linux/debugobjects.h>
30#include <linux/kallsyms.h>
31#include <linux/memory.h>
32#include <linux/math64.h>
33#include <linux/fault-inject.h>
34#include <linux/stacktrace.h>
35#include <linux/prefetch.h>
36#include <linux/memcontrol.h>
37#include <linux/random.h>
38
39#include <trace/events/kmem.h>
40
41#include "internal.h"
42
43/*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
121#ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123#else
124 return 0;
125#endif
126}
127
128void *fixup_red_left(struct kmem_cache *s, void *p)
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
145/*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163#define MIN_PARTIAL 5
164
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170#define MAX_PARTIAL 10
171
172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183/*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194/* Internal SLUB flags */
195/* Poison object */
196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197/* Use cmpxchg_double */
198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200/*
201 * Tracking user of a slab.
202 */
203#define TRACK_ADDRS_COUNT 16
204struct track {
205 unsigned long addr; /* Called from address */
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216#ifdef CONFIG_SYSFS
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220static void sysfs_slab_remove(struct kmem_cache *s);
221#else
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227#endif
228
229static inline void stat(const struct kmem_cache *s, enum stat_item si)
230{
231#ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237#endif
238}
239
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254#else
255 return ptr;
256#endif
257}
258
259/* Returns the freelist pointer recorded at location ptr_addr. */
260static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262{
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265}
266
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return freelist_dereference(s, object + s->offset);
270}
271
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
276}
277
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 unsigned long freepointer_addr;
281 void *p;
282
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
289}
290
291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292{
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
295#ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297#endif
298
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300}
301
302/* Loop over all objects in a slab */
303#define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
307
308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
312
313/* Determine object index from a given position */
314static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
315{
316 return (p - addr) / s->size;
317}
318
319static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
320{
321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
322}
323
324static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size, unsigned int reserved)
326{
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332}
333
334static inline unsigned int oo_order(struct kmem_cache_order_objects x)
335{
336 return x.x >> OO_SHIFT;
337}
338
339static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
340{
341 return x.x & OO_MASK;
342}
343
344/*
345 * Per slab locking using the pagelock
346 */
347static __always_inline void slab_lock(struct page *page)
348{
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389#endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407#endif
408
409 return false;
410}
411
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425#endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448#endif
449
450 return false;
451}
452
453#ifdef CONFIG_SLUB_DEBUG
454/*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
469static inline unsigned int size_from_object(struct kmem_cache *s)
470{
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475}
476
477static inline void *restore_red_left(struct kmem_cache *s, void *p)
478{
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483}
484
485/*
486 * Debug settings:
487 */
488#if defined(CONFIG_SLUB_DEBUG_ON)
489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490#else
491static slab_flags_t slub_debug;
492#endif
493
494static char *slub_debug_slabs;
495static int disable_higher_order_debug;
496
497/*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503static inline void metadata_access_enable(void)
504{
505 kasan_disable_current();
506}
507
508static inline void metadata_access_disable(void)
509{
510 kasan_enable_current();
511}
512
513/*
514 * Object debugging
515 */
516
517/* Verify that a pointer has an address that is valid within a slab page */
518static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520{
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534}
535
536static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
538{
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
543}
544
545static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547{
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556}
557
558static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
560{
561 struct track *p = get_track(s, object, alloc);
562
563 if (addr) {
564#ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583#endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590}
591
592static void init_tracking(struct kmem_cache *s, void *object)
593{
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
599}
600
601static void print_track(const char *s, struct track *t, unsigned long pr_time)
602{
603 if (!t->addr)
604 return;
605
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608#ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
616 }
617#endif
618}
619
620static void print_tracking(struct kmem_cache *s, void *object)
621{
622 unsigned long pr_time = jiffies;
623 if (!(s->flags & SLAB_STORE_USER))
624 return;
625
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
628}
629
630static void print_page_info(struct page *page)
631{
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page, page->objects, page->inuse, page->freelist, page->flags);
634
635}
636
637static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638{
639 struct va_format vaf;
640 va_list args;
641
642 va_start(args, fmt);
643 vaf.fmt = fmt;
644 vaf.va = &args;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 pr_err("-----------------------------------------------------------------------------\n\n");
648
649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 va_end(args);
651}
652
653static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654{
655 struct va_format vaf;
656 va_list args;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
662 va_end(args);
663}
664
665static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
666{
667 unsigned int off; /* Offset of last byte */
668 u8 *addr = page_address(page);
669
670 print_tracking(s, p);
671
672 print_page_info(page);
673
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
676
677 if (s->flags & SLAB_RED_ZONE)
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
679 s->red_left_pad);
680 else if (p > addr + 16)
681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
682
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned int, s->object_size, PAGE_SIZE));
685 if (s->flags & SLAB_RED_ZONE)
686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 s->inuse - s->object_size);
688
689 if (s->offset)
690 off = s->offset + sizeof(void *);
691 else
692 off = s->inuse;
693
694 if (s->flags & SLAB_STORE_USER)
695 off += 2 * sizeof(struct track);
696
697 off += kasan_metadata_size(s);
698
699 if (off != size_from_object(s))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
703
704 dump_stack();
705}
706
707void object_err(struct kmem_cache *s, struct page *page,
708 u8 *object, char *reason)
709{
710 slab_bug(s, "%s", reason);
711 print_trailer(s, page, object);
712}
713
714static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
716{
717 va_list args;
718 char buf[100];
719
720 va_start(args, fmt);
721 vsnprintf(buf, sizeof(buf), fmt, args);
722 va_end(args);
723 slab_bug(s, "%s", buf);
724 print_page_info(page);
725 dump_stack();
726}
727
728static void init_object(struct kmem_cache *s, void *object, u8 val)
729{
730 u8 *p = object;
731
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
734
735 if (s->flags & __OBJECT_POISON) {
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
738 }
739
740 if (s->flags & SLAB_RED_ZONE)
741 memset(p + s->object_size, val, s->inuse - s->object_size);
742}
743
744static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
746{
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
749}
750
751static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
753 u8 *start, unsigned int value, unsigned int bytes)
754{
755 u8 *fault;
756 u8 *end;
757
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
761 if (!fault)
762 return 1;
763
764 end = start + bytes;
765 while (end > fault && end[-1] == value)
766 end--;
767
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
772
773 restore_bytes(s, what, value, fault, end);
774 return 0;
775}
776
777/*
778 * Object layout:
779 *
780 * object address
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
784 *
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * 0xa5 (POISON_END)
787 *
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
792 *
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
795 *
796 * object + s->inuse
797 * Meta data starts here.
798 *
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
804 *
805 * Padding is done using 0x5a (POISON_INUSE)
806 *
807 * object + s->size
808 * Nothing is used beyond s->size.
809 *
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
813 */
814
815static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816{
817 unsigned long off = s->inuse; /* The end of info */
818
819 if (s->offset)
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
822
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
826
827 off += kasan_metadata_size(s);
828
829 if (size_from_object(s) == off)
830 return 1;
831
832 return check_bytes_and_report(s, page, p, "Object padding",
833 p + off, POISON_INUSE, size_from_object(s) - off);
834}
835
836/* Check the pad bytes at the end of a slab page */
837static int slab_pad_check(struct kmem_cache *s, struct page *page)
838{
839 u8 *start;
840 u8 *fault;
841 u8 *end;
842 u8 *pad;
843 int length;
844 int remainder;
845
846 if (!(s->flags & SLAB_POISON))
847 return 1;
848
849 start = page_address(page);
850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
851 end = start + length;
852 remainder = length % s->size;
853 if (!remainder)
854 return 1;
855
856 pad = end - remainder;
857 metadata_access_enable();
858 fault = memchr_inv(pad, POISON_INUSE, remainder);
859 metadata_access_disable();
860 if (!fault)
861 return 1;
862 while (end > fault && end[-1] == POISON_INUSE)
863 end--;
864
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
866 print_section(KERN_ERR, "Padding ", pad, remainder);
867
868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
869 return 0;
870}
871
872static int check_object(struct kmem_cache *s, struct page *page,
873 void *object, u8 val)
874{
875 u8 *p = object;
876 u8 *endobject = object + s->object_size;
877
878 if (s->flags & SLAB_RED_ZONE) {
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
881 return 0;
882
883 if (!check_bytes_and_report(s, page, object, "Redzone",
884 endobject, val, s->inuse - s->object_size))
885 return 0;
886 } else {
887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
888 check_bytes_and_report(s, page, p, "Alignment padding",
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
891 }
892 }
893
894 if (s->flags & SLAB_POISON) {
895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
896 (!check_bytes_and_report(s, page, p, "Poison", p,
897 POISON_FREE, s->object_size - 1) ||
898 !check_bytes_and_report(s, page, p, "Poison",
899 p + s->object_size - 1, POISON_END, 1)))
900 return 0;
901 /*
902 * check_pad_bytes cleans up on its own.
903 */
904 check_pad_bytes(s, page, p);
905 }
906
907 if (!s->offset && val == SLUB_RED_ACTIVE)
908 /*
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
911 */
912 return 1;
913
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
917 /*
918 * No choice but to zap it and thus lose the remainder
919 * of the free objects in this slab. May cause
920 * another error because the object count is now wrong.
921 */
922 set_freepointer(s, p, NULL);
923 return 0;
924 }
925 return 1;
926}
927
928static int check_slab(struct kmem_cache *s, struct page *page)
929{
930 int maxobj;
931
932 VM_BUG_ON(!irqs_disabled());
933
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Not a valid slab page");
936 return 0;
937 }
938
939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
942 page->objects, maxobj);
943 return 0;
944 }
945 if (page->inuse > page->objects) {
946 slab_err(s, page, "inuse %u > max %u",
947 page->inuse, page->objects);
948 return 0;
949 }
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
952 return 1;
953}
954
955/*
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
958 */
959static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960{
961 int nr = 0;
962 void *fp;
963 void *object = NULL;
964 int max_objects;
965
966 fp = page->freelist;
967 while (fp && nr <= page->objects) {
968 if (fp == search)
969 return 1;
970 if (!check_valid_pointer(s, page, fp)) {
971 if (object) {
972 object_err(s, page, object,
973 "Freechain corrupt");
974 set_freepointer(s, object, NULL);
975 } else {
976 slab_err(s, page, "Freepointer corrupt");
977 page->freelist = NULL;
978 page->inuse = page->objects;
979 slab_fix(s, "Freelist cleared");
980 return 0;
981 }
982 break;
983 }
984 object = fp;
985 fp = get_freepointer(s, object);
986 nr++;
987 }
988
989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
992
993 if (page->objects != max_objects) {
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
998 }
999 if (page->inuse != page->objects - nr) {
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
1002 page->inuse = page->objects - nr;
1003 slab_fix(s, "Object count adjusted.");
1004 }
1005 return search == NULL;
1006}
1007
1008static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 int alloc)
1010{
1011 if (s->flags & SLAB_TRACE) {
1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013 s->name,
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1016 page->freelist);
1017
1018 if (!alloc)
1019 print_section(KERN_INFO, "Object ", (void *)object,
1020 s->object_size);
1021
1022 dump_stack();
1023 }
1024}
1025
1026/*
1027 * Tracking of fully allocated slabs for debugging purposes.
1028 */
1029static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
1031{
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
1035 lockdep_assert_held(&n->list_lock);
1036 list_add(&page->lru, &n->full);
1037}
1038
1039static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040{
1041 if (!(s->flags & SLAB_STORE_USER))
1042 return;
1043
1044 lockdep_assert_held(&n->list_lock);
1045 list_del(&page->lru);
1046}
1047
1048/* Tracking of the number of slabs for debugging purposes */
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050{
1051 struct kmem_cache_node *n = get_node(s, node);
1052
1053 return atomic_long_read(&n->nr_slabs);
1054}
1055
1056static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057{
1058 return atomic_long_read(&n->nr_slabs);
1059}
1060
1061static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062{
1063 struct kmem_cache_node *n = get_node(s, node);
1064
1065 /*
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1070 */
1071 if (likely(n)) {
1072 atomic_long_inc(&n->nr_slabs);
1073 atomic_long_add(objects, &n->total_objects);
1074 }
1075}
1076static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077{
1078 struct kmem_cache_node *n = get_node(s, node);
1079
1080 atomic_long_dec(&n->nr_slabs);
1081 atomic_long_sub(objects, &n->total_objects);
1082}
1083
1084/* Object debug checks for alloc/free paths */
1085static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 void *object)
1087{
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 return;
1090
1091 init_object(s, object, SLUB_RED_INACTIVE);
1092 init_tracking(s, object);
1093}
1094
1095static inline int alloc_consistency_checks(struct kmem_cache *s,
1096 struct page *page,
1097 void *object, unsigned long addr)
1098{
1099 if (!check_slab(s, page))
1100 return 0;
1101
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1104 return 0;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1108 return 0;
1109
1110 return 1;
1111}
1112
1113static noinline int alloc_debug_processing(struct kmem_cache *s,
1114 struct page *page,
1115 void *object, unsigned long addr)
1116{
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1119 goto bad;
1120 }
1121
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1127 return 1;
1128
1129bad:
1130 if (PageSlab(page)) {
1131 /*
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1135 */
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1139 }
1140 return 0;
1141}
1142
1143static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1145{
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1148 return 0;
1149 }
1150
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1153 return 0;
1154 }
1155
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 return 0;
1158
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1162 object);
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1165 object);
1166 dump_stack();
1167 } else
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1170 return 0;
1171 }
1172 return 1;
1173}
1174
1175/* Supports checking bulk free of a constructed freelist */
1176static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1179 unsigned long addr)
1180{
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1183 int cnt = 0;
1184 unsigned long uninitialized_var(flags);
1185 int ret = 0;
1186
1187 spin_lock_irqsave(&n->list_lock, flags);
1188 slab_lock(page);
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1192 goto out;
1193 }
1194
1195next_object:
1196 cnt++;
1197
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1200 goto out;
1201 }
1202
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1208
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1212 goto next_object;
1213 }
1214 ret = 1;
1215
1216out:
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1219 bulk_cnt, cnt);
1220
1221 slab_unlock(page);
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1223 if (!ret)
1224 slab_fix(s, "Object at 0x%p not freed", object);
1225 return ret;
1226}
1227
1228static int __init setup_slub_debug(char *str)
1229{
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1232 /*
1233 * No options specified. Switch on full debugging.
1234 */
1235 goto out;
1236
1237 if (*str == ',')
1238 /*
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1241 */
1242 goto check_slabs;
1243
1244 slub_debug = 0;
1245 if (*str == '-')
1246 /*
1247 * Switch off all debugging measures.
1248 */
1249 goto out;
1250
1251 /*
1252 * Determine which debug features should be switched on
1253 */
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1256 case 'f':
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 break;
1259 case 'z':
1260 slub_debug |= SLAB_RED_ZONE;
1261 break;
1262 case 'p':
1263 slub_debug |= SLAB_POISON;
1264 break;
1265 case 'u':
1266 slub_debug |= SLAB_STORE_USER;
1267 break;
1268 case 't':
1269 slub_debug |= SLAB_TRACE;
1270 break;
1271 case 'a':
1272 slub_debug |= SLAB_FAILSLAB;
1273 break;
1274 case 'o':
1275 /*
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1278 */
1279 disable_higher_order_debug = 1;
1280 break;
1281 default:
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1283 *str);
1284 }
1285 }
1286
1287check_slabs:
1288 if (*str == ',')
1289 slub_debug_slabs = str + 1;
1290out:
1291 return 1;
1292}
1293
1294__setup("slub_debug", setup_slub_debug);
1295
1296slab_flags_t kmem_cache_flags(unsigned int object_size,
1297 slab_flags_t flags, const char *name,
1298 void (*ctor)(void *))
1299{
1300 /*
1301 * Enable debugging if selected on the kernel commandline.
1302 */
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305 flags |= slub_debug;
1306
1307 return flags;
1308}
1309#else /* !CONFIG_SLUB_DEBUG */
1310static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
1312
1313static inline int alloc_debug_processing(struct kmem_cache *s,
1314 struct page *page, void *object, unsigned long addr) { return 0; }
1315
1316static inline int free_debug_processing(
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
1319 unsigned long addr) { return 0; }
1320
1321static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1322 { return 1; }
1323static inline int check_object(struct kmem_cache *s, struct page *page,
1324 void *object, u8 val) { return 1; }
1325static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
1327static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
1329slab_flags_t kmem_cache_flags(unsigned int object_size,
1330 slab_flags_t flags, const char *name,
1331 void (*ctor)(void *))
1332{
1333 return flags;
1334}
1335#define slub_debug 0
1336
1337#define disable_higher_order_debug 0
1338
1339static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1340 { return 0; }
1341static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1342 { return 0; }
1343static inline void inc_slabs_node(struct kmem_cache *s, int node,
1344 int objects) {}
1345static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 int objects) {}
1347
1348#endif /* CONFIG_SLUB_DEBUG */
1349
1350/*
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1353 */
1354static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355{
1356 kmemleak_alloc(ptr, size, 1, flags);
1357 kasan_kmalloc_large(ptr, size, flags);
1358}
1359
1360static __always_inline void kfree_hook(void *x)
1361{
1362 kmemleak_free(x);
1363 kasan_kfree_large(x, _RET_IP_);
1364}
1365
1366static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1367{
1368 kmemleak_free_recursive(x, s->flags);
1369
1370 /*
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1374 */
1375#ifdef CONFIG_LOCKDEP
1376 {
1377 unsigned long flags;
1378
1379 local_irq_save(flags);
1380 debug_check_no_locks_freed(x, s->object_size);
1381 local_irq_restore(flags);
1382 }
1383#endif
1384 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1385 debug_check_no_obj_freed(x, s->object_size);
1386
1387 /* KASAN might put x into memory quarantine, delaying its reuse */
1388 return kasan_slab_free(s, x, _RET_IP_);
1389}
1390
1391static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1392 void **head, void **tail)
1393{
1394/*
1395 * Compiler cannot detect this function can be removed if slab_free_hook()
1396 * evaluates to nothing. Thus, catch all relevant config debug options here.
1397 */
1398#if defined(CONFIG_LOCKDEP) || \
1399 defined(CONFIG_DEBUG_KMEMLEAK) || \
1400 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1401 defined(CONFIG_KASAN)
1402
1403 void *object;
1404 void *next = *head;
1405 void *old_tail = *tail ? *tail : *head;
1406
1407 /* Head and tail of the reconstructed freelist */
1408 *head = NULL;
1409 *tail = NULL;
1410
1411 do {
1412 object = next;
1413 next = get_freepointer(s, object);
1414 /* If object's reuse doesn't have to be delayed */
1415 if (!slab_free_hook(s, object)) {
1416 /* Move object to the new freelist */
1417 set_freepointer(s, object, *head);
1418 *head = object;
1419 if (!*tail)
1420 *tail = object;
1421 }
1422 } while (object != old_tail);
1423
1424 if (*head == *tail)
1425 *tail = NULL;
1426
1427 return *head != NULL;
1428#else
1429 return true;
1430#endif
1431}
1432
1433static void setup_object(struct kmem_cache *s, struct page *page,
1434 void *object)
1435{
1436 setup_object_debug(s, page, object);
1437 kasan_init_slab_obj(s, object);
1438 if (unlikely(s->ctor)) {
1439 kasan_unpoison_object_data(s, object);
1440 s->ctor(object);
1441 kasan_poison_object_data(s, object);
1442 }
1443}
1444
1445/*
1446 * Slab allocation and freeing
1447 */
1448static inline struct page *alloc_slab_page(struct kmem_cache *s,
1449 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1450{
1451 struct page *page;
1452 unsigned int order = oo_order(oo);
1453
1454 if (node == NUMA_NO_NODE)
1455 page = alloc_pages(flags, order);
1456 else
1457 page = __alloc_pages_node(node, flags, order);
1458
1459 if (page && memcg_charge_slab(page, flags, order, s)) {
1460 __free_pages(page, order);
1461 page = NULL;
1462 }
1463
1464 return page;
1465}
1466
1467#ifdef CONFIG_SLAB_FREELIST_RANDOM
1468/* Pre-initialize the random sequence cache */
1469static int init_cache_random_seq(struct kmem_cache *s)
1470{
1471 unsigned int count = oo_objects(s->oo);
1472 int err;
1473
1474 /* Bailout if already initialised */
1475 if (s->random_seq)
1476 return 0;
1477
1478 err = cache_random_seq_create(s, count, GFP_KERNEL);
1479 if (err) {
1480 pr_err("SLUB: Unable to initialize free list for %s\n",
1481 s->name);
1482 return err;
1483 }
1484
1485 /* Transform to an offset on the set of pages */
1486 if (s->random_seq) {
1487 unsigned int i;
1488
1489 for (i = 0; i < count; i++)
1490 s->random_seq[i] *= s->size;
1491 }
1492 return 0;
1493}
1494
1495/* Initialize each random sequence freelist per cache */
1496static void __init init_freelist_randomization(void)
1497{
1498 struct kmem_cache *s;
1499
1500 mutex_lock(&slab_mutex);
1501
1502 list_for_each_entry(s, &slab_caches, list)
1503 init_cache_random_seq(s);
1504
1505 mutex_unlock(&slab_mutex);
1506}
1507
1508/* Get the next entry on the pre-computed freelist randomized */
1509static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1510 unsigned long *pos, void *start,
1511 unsigned long page_limit,
1512 unsigned long freelist_count)
1513{
1514 unsigned int idx;
1515
1516 /*
1517 * If the target page allocation failed, the number of objects on the
1518 * page might be smaller than the usual size defined by the cache.
1519 */
1520 do {
1521 idx = s->random_seq[*pos];
1522 *pos += 1;
1523 if (*pos >= freelist_count)
1524 *pos = 0;
1525 } while (unlikely(idx >= page_limit));
1526
1527 return (char *)start + idx;
1528}
1529
1530/* Shuffle the single linked freelist based on a random pre-computed sequence */
1531static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1532{
1533 void *start;
1534 void *cur;
1535 void *next;
1536 unsigned long idx, pos, page_limit, freelist_count;
1537
1538 if (page->objects < 2 || !s->random_seq)
1539 return false;
1540
1541 freelist_count = oo_objects(s->oo);
1542 pos = get_random_int() % freelist_count;
1543
1544 page_limit = page->objects * s->size;
1545 start = fixup_red_left(s, page_address(page));
1546
1547 /* First entry is used as the base of the freelist */
1548 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1549 freelist_count);
1550 page->freelist = cur;
1551
1552 for (idx = 1; idx < page->objects; idx++) {
1553 setup_object(s, page, cur);
1554 next = next_freelist_entry(s, page, &pos, start, page_limit,
1555 freelist_count);
1556 set_freepointer(s, cur, next);
1557 cur = next;
1558 }
1559 setup_object(s, page, cur);
1560 set_freepointer(s, cur, NULL);
1561
1562 return true;
1563}
1564#else
1565static inline int init_cache_random_seq(struct kmem_cache *s)
1566{
1567 return 0;
1568}
1569static inline void init_freelist_randomization(void) { }
1570static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1571{
1572 return false;
1573}
1574#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1575
1576static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1577{
1578 struct page *page;
1579 struct kmem_cache_order_objects oo = s->oo;
1580 gfp_t alloc_gfp;
1581 void *start, *p;
1582 int idx, order;
1583 bool shuffle;
1584
1585 flags &= gfp_allowed_mask;
1586
1587 if (gfpflags_allow_blocking(flags))
1588 local_irq_enable();
1589
1590 flags |= s->allocflags;
1591
1592 /*
1593 * Let the initial higher-order allocation fail under memory pressure
1594 * so we fall-back to the minimum order allocation.
1595 */
1596 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1597 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1598 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1599
1600 page = alloc_slab_page(s, alloc_gfp, node, oo);
1601 if (unlikely(!page)) {
1602 oo = s->min;
1603 alloc_gfp = flags;
1604 /*
1605 * Allocation may have failed due to fragmentation.
1606 * Try a lower order alloc if possible
1607 */
1608 page = alloc_slab_page(s, alloc_gfp, node, oo);
1609 if (unlikely(!page))
1610 goto out;
1611 stat(s, ORDER_FALLBACK);
1612 }
1613
1614 page->objects = oo_objects(oo);
1615
1616 order = compound_order(page);
1617 page->slab_cache = s;
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1621
1622 start = page_address(page);
1623
1624 if (unlikely(s->flags & SLAB_POISON))
1625 memset(start, POISON_INUSE, PAGE_SIZE << order);
1626
1627 kasan_poison_slab(page);
1628
1629 shuffle = shuffle_freelist(s, page);
1630
1631 if (!shuffle) {
1632 for_each_object_idx(p, idx, s, start, page->objects) {
1633 setup_object(s, page, p);
1634 if (likely(idx < page->objects))
1635 set_freepointer(s, p, p + s->size);
1636 else
1637 set_freepointer(s, p, NULL);
1638 }
1639 page->freelist = fixup_red_left(s, start);
1640 }
1641
1642 page->inuse = page->objects;
1643 page->frozen = 1;
1644
1645out:
1646 if (gfpflags_allow_blocking(flags))
1647 local_irq_disable();
1648 if (!page)
1649 return NULL;
1650
1651 mod_lruvec_page_state(page,
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 1 << oo_order(oo));
1655
1656 inc_slabs_node(s, page_to_nid(page), page->objects);
1657
1658 return page;
1659}
1660
1661static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662{
1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665 flags &= ~GFP_SLAB_BUG_MASK;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask, &invalid_mask, flags, &flags);
1668 dump_stack();
1669 }
1670
1671 return allocate_slab(s,
1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673}
1674
1675static void __free_slab(struct kmem_cache *s, struct page *page)
1676{
1677 int order = compound_order(page);
1678 int pages = 1 << order;
1679
1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681 void *p;
1682
1683 slab_pad_check(s, page);
1684 for_each_object(p, s, page_address(page),
1685 page->objects)
1686 check_object(s, page, p, SLUB_RED_INACTIVE);
1687 }
1688
1689 mod_lruvec_page_state(page,
1690 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1691 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1692 -pages);
1693
1694 __ClearPageSlabPfmemalloc(page);
1695 __ClearPageSlab(page);
1696
1697 page_mapcount_reset(page);
1698 if (current->reclaim_state)
1699 current->reclaim_state->reclaimed_slab += pages;
1700 memcg_uncharge_slab(page, order, s);
1701 __free_pages(page, order);
1702}
1703
1704#define need_reserve_slab_rcu \
1705 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1706
1707static void rcu_free_slab(struct rcu_head *h)
1708{
1709 struct page *page;
1710
1711 if (need_reserve_slab_rcu)
1712 page = virt_to_head_page(h);
1713 else
1714 page = container_of((struct list_head *)h, struct page, lru);
1715
1716 __free_slab(page->slab_cache, page);
1717}
1718
1719static void free_slab(struct kmem_cache *s, struct page *page)
1720{
1721 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1722 struct rcu_head *head;
1723
1724 if (need_reserve_slab_rcu) {
1725 int order = compound_order(page);
1726 int offset = (PAGE_SIZE << order) - s->reserved;
1727
1728 VM_BUG_ON(s->reserved != sizeof(*head));
1729 head = page_address(page) + offset;
1730 } else {
1731 head = &page->rcu_head;
1732 }
1733
1734 call_rcu(head, rcu_free_slab);
1735 } else
1736 __free_slab(s, page);
1737}
1738
1739static void discard_slab(struct kmem_cache *s, struct page *page)
1740{
1741 dec_slabs_node(s, page_to_nid(page), page->objects);
1742 free_slab(s, page);
1743}
1744
1745/*
1746 * Management of partially allocated slabs.
1747 */
1748static inline void
1749__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1750{
1751 n->nr_partial++;
1752 if (tail == DEACTIVATE_TO_TAIL)
1753 list_add_tail(&page->lru, &n->partial);
1754 else
1755 list_add(&page->lru, &n->partial);
1756}
1757
1758static inline void add_partial(struct kmem_cache_node *n,
1759 struct page *page, int tail)
1760{
1761 lockdep_assert_held(&n->list_lock);
1762 __add_partial(n, page, tail);
1763}
1764
1765static inline void remove_partial(struct kmem_cache_node *n,
1766 struct page *page)
1767{
1768 lockdep_assert_held(&n->list_lock);
1769 list_del(&page->lru);
1770 n->nr_partial--;
1771}
1772
1773/*
1774 * Remove slab from the partial list, freeze it and
1775 * return the pointer to the freelist.
1776 *
1777 * Returns a list of objects or NULL if it fails.
1778 */
1779static inline void *acquire_slab(struct kmem_cache *s,
1780 struct kmem_cache_node *n, struct page *page,
1781 int mode, int *objects)
1782{
1783 void *freelist;
1784 unsigned long counters;
1785 struct page new;
1786
1787 lockdep_assert_held(&n->list_lock);
1788
1789 /*
1790 * Zap the freelist and set the frozen bit.
1791 * The old freelist is the list of objects for the
1792 * per cpu allocation list.
1793 */
1794 freelist = page->freelist;
1795 counters = page->counters;
1796 new.counters = counters;
1797 *objects = new.objects - new.inuse;
1798 if (mode) {
1799 new.inuse = page->objects;
1800 new.freelist = NULL;
1801 } else {
1802 new.freelist = freelist;
1803 }
1804
1805 VM_BUG_ON(new.frozen);
1806 new.frozen = 1;
1807
1808 if (!__cmpxchg_double_slab(s, page,
1809 freelist, counters,
1810 new.freelist, new.counters,
1811 "acquire_slab"))
1812 return NULL;
1813
1814 remove_partial(n, page);
1815 WARN_ON(!freelist);
1816 return freelist;
1817}
1818
1819static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1820static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1821
1822/*
1823 * Try to allocate a partial slab from a specific node.
1824 */
1825static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1826 struct kmem_cache_cpu *c, gfp_t flags)
1827{
1828 struct page *page, *page2;
1829 void *object = NULL;
1830 unsigned int available = 0;
1831 int objects;
1832
1833 /*
1834 * Racy check. If we mistakenly see no partial slabs then we
1835 * just allocate an empty slab. If we mistakenly try to get a
1836 * partial slab and there is none available then get_partials()
1837 * will return NULL.
1838 */
1839 if (!n || !n->nr_partial)
1840 return NULL;
1841
1842 spin_lock(&n->list_lock);
1843 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1844 void *t;
1845
1846 if (!pfmemalloc_match(page, flags))
1847 continue;
1848
1849 t = acquire_slab(s, n, page, object == NULL, &objects);
1850 if (!t)
1851 break;
1852
1853 available += objects;
1854 if (!object) {
1855 c->page = page;
1856 stat(s, ALLOC_FROM_PARTIAL);
1857 object = t;
1858 } else {
1859 put_cpu_partial(s, page, 0);
1860 stat(s, CPU_PARTIAL_NODE);
1861 }
1862 if (!kmem_cache_has_cpu_partial(s)
1863 || available > slub_cpu_partial(s) / 2)
1864 break;
1865
1866 }
1867 spin_unlock(&n->list_lock);
1868 return object;
1869}
1870
1871/*
1872 * Get a page from somewhere. Search in increasing NUMA distances.
1873 */
1874static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1875 struct kmem_cache_cpu *c)
1876{
1877#ifdef CONFIG_NUMA
1878 struct zonelist *zonelist;
1879 struct zoneref *z;
1880 struct zone *zone;
1881 enum zone_type high_zoneidx = gfp_zone(flags);
1882 void *object;
1883 unsigned int cpuset_mems_cookie;
1884
1885 /*
1886 * The defrag ratio allows a configuration of the tradeoffs between
1887 * inter node defragmentation and node local allocations. A lower
1888 * defrag_ratio increases the tendency to do local allocations
1889 * instead of attempting to obtain partial slabs from other nodes.
1890 *
1891 * If the defrag_ratio is set to 0 then kmalloc() always
1892 * returns node local objects. If the ratio is higher then kmalloc()
1893 * may return off node objects because partial slabs are obtained
1894 * from other nodes and filled up.
1895 *
1896 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1897 * (which makes defrag_ratio = 1000) then every (well almost)
1898 * allocation will first attempt to defrag slab caches on other nodes.
1899 * This means scanning over all nodes to look for partial slabs which
1900 * may be expensive if we do it every time we are trying to find a slab
1901 * with available objects.
1902 */
1903 if (!s->remote_node_defrag_ratio ||
1904 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1905 return NULL;
1906
1907 do {
1908 cpuset_mems_cookie = read_mems_allowed_begin();
1909 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1911 struct kmem_cache_node *n;
1912
1913 n = get_node(s, zone_to_nid(zone));
1914
1915 if (n && cpuset_zone_allowed(zone, flags) &&
1916 n->nr_partial > s->min_partial) {
1917 object = get_partial_node(s, n, c, flags);
1918 if (object) {
1919 /*
1920 * Don't check read_mems_allowed_retry()
1921 * here - if mems_allowed was updated in
1922 * parallel, that was a harmless race
1923 * between allocation and the cpuset
1924 * update
1925 */
1926 return object;
1927 }
1928 }
1929 }
1930 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1931#endif
1932 return NULL;
1933}
1934
1935/*
1936 * Get a partial page, lock it and return it.
1937 */
1938static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1939 struct kmem_cache_cpu *c)
1940{
1941 void *object;
1942 int searchnode = node;
1943
1944 if (node == NUMA_NO_NODE)
1945 searchnode = numa_mem_id();
1946 else if (!node_present_pages(node))
1947 searchnode = node_to_mem_node(node);
1948
1949 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1950 if (object || node != NUMA_NO_NODE)
1951 return object;
1952
1953 return get_any_partial(s, flags, c);
1954}
1955
1956#ifdef CONFIG_PREEMPT
1957/*
1958 * Calculate the next globally unique transaction for disambiguiation
1959 * during cmpxchg. The transactions start with the cpu number and are then
1960 * incremented by CONFIG_NR_CPUS.
1961 */
1962#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1963#else
1964/*
1965 * No preemption supported therefore also no need to check for
1966 * different cpus.
1967 */
1968#define TID_STEP 1
1969#endif
1970
1971static inline unsigned long next_tid(unsigned long tid)
1972{
1973 return tid + TID_STEP;
1974}
1975
1976static inline unsigned int tid_to_cpu(unsigned long tid)
1977{
1978 return tid % TID_STEP;
1979}
1980
1981static inline unsigned long tid_to_event(unsigned long tid)
1982{
1983 return tid / TID_STEP;
1984}
1985
1986static inline unsigned int init_tid(int cpu)
1987{
1988 return cpu;
1989}
1990
1991static inline void note_cmpxchg_failure(const char *n,
1992 const struct kmem_cache *s, unsigned long tid)
1993{
1994#ifdef SLUB_DEBUG_CMPXCHG
1995 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1996
1997 pr_info("%s %s: cmpxchg redo ", n, s->name);
1998
1999#ifdef CONFIG_PREEMPT
2000 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2001 pr_warn("due to cpu change %d -> %d\n",
2002 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2003 else
2004#endif
2005 if (tid_to_event(tid) != tid_to_event(actual_tid))
2006 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2007 tid_to_event(tid), tid_to_event(actual_tid));
2008 else
2009 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2010 actual_tid, tid, next_tid(tid));
2011#endif
2012 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2013}
2014
2015static void init_kmem_cache_cpus(struct kmem_cache *s)
2016{
2017 int cpu;
2018
2019 for_each_possible_cpu(cpu)
2020 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2021}
2022
2023/*
2024 * Remove the cpu slab
2025 */
2026static void deactivate_slab(struct kmem_cache *s, struct page *page,
2027 void *freelist, struct kmem_cache_cpu *c)
2028{
2029 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2030 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2031 int lock = 0;
2032 enum slab_modes l = M_NONE, m = M_NONE;
2033 void *nextfree;
2034 int tail = DEACTIVATE_TO_HEAD;
2035 struct page new;
2036 struct page old;
2037
2038 if (page->freelist) {
2039 stat(s, DEACTIVATE_REMOTE_FREES);
2040 tail = DEACTIVATE_TO_TAIL;
2041 }
2042
2043 /*
2044 * Stage one: Free all available per cpu objects back
2045 * to the page freelist while it is still frozen. Leave the
2046 * last one.
2047 *
2048 * There is no need to take the list->lock because the page
2049 * is still frozen.
2050 */
2051 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2052 void *prior;
2053 unsigned long counters;
2054
2055 do {
2056 prior = page->freelist;
2057 counters = page->counters;
2058 set_freepointer(s, freelist, prior);
2059 new.counters = counters;
2060 new.inuse--;
2061 VM_BUG_ON(!new.frozen);
2062
2063 } while (!__cmpxchg_double_slab(s, page,
2064 prior, counters,
2065 freelist, new.counters,
2066 "drain percpu freelist"));
2067
2068 freelist = nextfree;
2069 }
2070
2071 /*
2072 * Stage two: Ensure that the page is unfrozen while the
2073 * list presence reflects the actual number of objects
2074 * during unfreeze.
2075 *
2076 * We setup the list membership and then perform a cmpxchg
2077 * with the count. If there is a mismatch then the page
2078 * is not unfrozen but the page is on the wrong list.
2079 *
2080 * Then we restart the process which may have to remove
2081 * the page from the list that we just put it on again
2082 * because the number of objects in the slab may have
2083 * changed.
2084 */
2085redo:
2086
2087 old.freelist = page->freelist;
2088 old.counters = page->counters;
2089 VM_BUG_ON(!old.frozen);
2090
2091 /* Determine target state of the slab */
2092 new.counters = old.counters;
2093 if (freelist) {
2094 new.inuse--;
2095 set_freepointer(s, freelist, old.freelist);
2096 new.freelist = freelist;
2097 } else
2098 new.freelist = old.freelist;
2099
2100 new.frozen = 0;
2101
2102 if (!new.inuse && n->nr_partial >= s->min_partial)
2103 m = M_FREE;
2104 else if (new.freelist) {
2105 m = M_PARTIAL;
2106 if (!lock) {
2107 lock = 1;
2108 /*
2109 * Taking the spinlock removes the possiblity
2110 * that acquire_slab() will see a slab page that
2111 * is frozen
2112 */
2113 spin_lock(&n->list_lock);
2114 }
2115 } else {
2116 m = M_FULL;
2117 if (kmem_cache_debug(s) && !lock) {
2118 lock = 1;
2119 /*
2120 * This also ensures that the scanning of full
2121 * slabs from diagnostic functions will not see
2122 * any frozen slabs.
2123 */
2124 spin_lock(&n->list_lock);
2125 }
2126 }
2127
2128 if (l != m) {
2129
2130 if (l == M_PARTIAL)
2131
2132 remove_partial(n, page);
2133
2134 else if (l == M_FULL)
2135
2136 remove_full(s, n, page);
2137
2138 if (m == M_PARTIAL) {
2139
2140 add_partial(n, page, tail);
2141 stat(s, tail);
2142
2143 } else if (m == M_FULL) {
2144
2145 stat(s, DEACTIVATE_FULL);
2146 add_full(s, n, page);
2147
2148 }
2149 }
2150
2151 l = m;
2152 if (!__cmpxchg_double_slab(s, page,
2153 old.freelist, old.counters,
2154 new.freelist, new.counters,
2155 "unfreezing slab"))
2156 goto redo;
2157
2158 if (lock)
2159 spin_unlock(&n->list_lock);
2160
2161 if (m == M_FREE) {
2162 stat(s, DEACTIVATE_EMPTY);
2163 discard_slab(s, page);
2164 stat(s, FREE_SLAB);
2165 }
2166
2167 c->page = NULL;
2168 c->freelist = NULL;
2169}
2170
2171/*
2172 * Unfreeze all the cpu partial slabs.
2173 *
2174 * This function must be called with interrupts disabled
2175 * for the cpu using c (or some other guarantee must be there
2176 * to guarantee no concurrent accesses).
2177 */
2178static void unfreeze_partials(struct kmem_cache *s,
2179 struct kmem_cache_cpu *c)
2180{
2181#ifdef CONFIG_SLUB_CPU_PARTIAL
2182 struct kmem_cache_node *n = NULL, *n2 = NULL;
2183 struct page *page, *discard_page = NULL;
2184
2185 while ((page = c->partial)) {
2186 struct page new;
2187 struct page old;
2188
2189 c->partial = page->next;
2190
2191 n2 = get_node(s, page_to_nid(page));
2192 if (n != n2) {
2193 if (n)
2194 spin_unlock(&n->list_lock);
2195
2196 n = n2;
2197 spin_lock(&n->list_lock);
2198 }
2199
2200 do {
2201
2202 old.freelist = page->freelist;
2203 old.counters = page->counters;
2204 VM_BUG_ON(!old.frozen);
2205
2206 new.counters = old.counters;
2207 new.freelist = old.freelist;
2208
2209 new.frozen = 0;
2210
2211 } while (!__cmpxchg_double_slab(s, page,
2212 old.freelist, old.counters,
2213 new.freelist, new.counters,
2214 "unfreezing slab"));
2215
2216 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2217 page->next = discard_page;
2218 discard_page = page;
2219 } else {
2220 add_partial(n, page, DEACTIVATE_TO_TAIL);
2221 stat(s, FREE_ADD_PARTIAL);
2222 }
2223 }
2224
2225 if (n)
2226 spin_unlock(&n->list_lock);
2227
2228 while (discard_page) {
2229 page = discard_page;
2230 discard_page = discard_page->next;
2231
2232 stat(s, DEACTIVATE_EMPTY);
2233 discard_slab(s, page);
2234 stat(s, FREE_SLAB);
2235 }
2236#endif
2237}
2238
2239/*
2240 * Put a page that was just frozen (in __slab_free) into a partial page
2241 * slot if available.
2242 *
2243 * If we did not find a slot then simply move all the partials to the
2244 * per node partial list.
2245 */
2246static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2247{
2248#ifdef CONFIG_SLUB_CPU_PARTIAL
2249 struct page *oldpage;
2250 int pages;
2251 int pobjects;
2252
2253 preempt_disable();
2254 do {
2255 pages = 0;
2256 pobjects = 0;
2257 oldpage = this_cpu_read(s->cpu_slab->partial);
2258
2259 if (oldpage) {
2260 pobjects = oldpage->pobjects;
2261 pages = oldpage->pages;
2262 if (drain && pobjects > s->cpu_partial) {
2263 unsigned long flags;
2264 /*
2265 * partial array is full. Move the existing
2266 * set to the per node partial list.
2267 */
2268 local_irq_save(flags);
2269 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270 local_irq_restore(flags);
2271 oldpage = NULL;
2272 pobjects = 0;
2273 pages = 0;
2274 stat(s, CPU_PARTIAL_DRAIN);
2275 }
2276 }
2277
2278 pages++;
2279 pobjects += page->objects - page->inuse;
2280
2281 page->pages = pages;
2282 page->pobjects = pobjects;
2283 page->next = oldpage;
2284
2285 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2286 != oldpage);
2287 if (unlikely(!s->cpu_partial)) {
2288 unsigned long flags;
2289
2290 local_irq_save(flags);
2291 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2292 local_irq_restore(flags);
2293 }
2294 preempt_enable();
2295#endif
2296}
2297
2298static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2299{
2300 stat(s, CPUSLAB_FLUSH);
2301 deactivate_slab(s, c->page, c->freelist, c);
2302
2303 c->tid = next_tid(c->tid);
2304}
2305
2306/*
2307 * Flush cpu slab.
2308 *
2309 * Called from IPI handler with interrupts disabled.
2310 */
2311static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2312{
2313 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2314
2315 if (likely(c)) {
2316 if (c->page)
2317 flush_slab(s, c);
2318
2319 unfreeze_partials(s, c);
2320 }
2321}
2322
2323static void flush_cpu_slab(void *d)
2324{
2325 struct kmem_cache *s = d;
2326
2327 __flush_cpu_slab(s, smp_processor_id());
2328}
2329
2330static bool has_cpu_slab(int cpu, void *info)
2331{
2332 struct kmem_cache *s = info;
2333 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2334
2335 return c->page || slub_percpu_partial(c);
2336}
2337
2338static void flush_all(struct kmem_cache *s)
2339{
2340 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2341}
2342
2343/*
2344 * Use the cpu notifier to insure that the cpu slabs are flushed when
2345 * necessary.
2346 */
2347static int slub_cpu_dead(unsigned int cpu)
2348{
2349 struct kmem_cache *s;
2350 unsigned long flags;
2351
2352 mutex_lock(&slab_mutex);
2353 list_for_each_entry(s, &slab_caches, list) {
2354 local_irq_save(flags);
2355 __flush_cpu_slab(s, cpu);
2356 local_irq_restore(flags);
2357 }
2358 mutex_unlock(&slab_mutex);
2359 return 0;
2360}
2361
2362/*
2363 * Check if the objects in a per cpu structure fit numa
2364 * locality expectations.
2365 */
2366static inline int node_match(struct page *page, int node)
2367{
2368#ifdef CONFIG_NUMA
2369 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370 return 0;
2371#endif
2372 return 1;
2373}
2374
2375#ifdef CONFIG_SLUB_DEBUG
2376static int count_free(struct page *page)
2377{
2378 return page->objects - page->inuse;
2379}
2380
2381static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2382{
2383 return atomic_long_read(&n->total_objects);
2384}
2385#endif /* CONFIG_SLUB_DEBUG */
2386
2387#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2388static unsigned long count_partial(struct kmem_cache_node *n,
2389 int (*get_count)(struct page *))
2390{
2391 unsigned long flags;
2392 unsigned long x = 0;
2393 struct page *page;
2394
2395 spin_lock_irqsave(&n->list_lock, flags);
2396 list_for_each_entry(page, &n->partial, lru)
2397 x += get_count(page);
2398 spin_unlock_irqrestore(&n->list_lock, flags);
2399 return x;
2400}
2401#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402
2403static noinline void
2404slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2405{
2406#ifdef CONFIG_SLUB_DEBUG
2407 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2408 DEFAULT_RATELIMIT_BURST);
2409 int node;
2410 struct kmem_cache_node *n;
2411
2412 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2413 return;
2414
2415 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2416 nid, gfpflags, &gfpflags);
2417 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2418 s->name, s->object_size, s->size, oo_order(s->oo),
2419 oo_order(s->min));
2420
2421 if (oo_order(s->min) > get_order(s->object_size))
2422 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2423 s->name);
2424
2425 for_each_kmem_cache_node(s, node, n) {
2426 unsigned long nr_slabs;
2427 unsigned long nr_objs;
2428 unsigned long nr_free;
2429
2430 nr_free = count_partial(n, count_free);
2431 nr_slabs = node_nr_slabs(n);
2432 nr_objs = node_nr_objs(n);
2433
2434 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2435 node, nr_slabs, nr_objs, nr_free);
2436 }
2437#endif
2438}
2439
2440static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2441 int node, struct kmem_cache_cpu **pc)
2442{
2443 void *freelist;
2444 struct kmem_cache_cpu *c = *pc;
2445 struct page *page;
2446
2447 freelist = get_partial(s, flags, node, c);
2448
2449 if (freelist)
2450 return freelist;
2451
2452 page = new_slab(s, flags, node);
2453 if (page) {
2454 c = raw_cpu_ptr(s->cpu_slab);
2455 if (c->page)
2456 flush_slab(s, c);
2457
2458 /*
2459 * No other reference to the page yet so we can
2460 * muck around with it freely without cmpxchg
2461 */
2462 freelist = page->freelist;
2463 page->freelist = NULL;
2464
2465 stat(s, ALLOC_SLAB);
2466 c->page = page;
2467 *pc = c;
2468 } else
2469 freelist = NULL;
2470
2471 return freelist;
2472}
2473
2474static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2475{
2476 if (unlikely(PageSlabPfmemalloc(page)))
2477 return gfp_pfmemalloc_allowed(gfpflags);
2478
2479 return true;
2480}
2481
2482/*
2483 * Check the page->freelist of a page and either transfer the freelist to the
2484 * per cpu freelist or deactivate the page.
2485 *
2486 * The page is still frozen if the return value is not NULL.
2487 *
2488 * If this function returns NULL then the page has been unfrozen.
2489 *
2490 * This function must be called with interrupt disabled.
2491 */
2492static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2493{
2494 struct page new;
2495 unsigned long counters;
2496 void *freelist;
2497
2498 do {
2499 freelist = page->freelist;
2500 counters = page->counters;
2501
2502 new.counters = counters;
2503 VM_BUG_ON(!new.frozen);
2504
2505 new.inuse = page->objects;
2506 new.frozen = freelist != NULL;
2507
2508 } while (!__cmpxchg_double_slab(s, page,
2509 freelist, counters,
2510 NULL, new.counters,
2511 "get_freelist"));
2512
2513 return freelist;
2514}
2515
2516/*
2517 * Slow path. The lockless freelist is empty or we need to perform
2518 * debugging duties.
2519 *
2520 * Processing is still very fast if new objects have been freed to the
2521 * regular freelist. In that case we simply take over the regular freelist
2522 * as the lockless freelist and zap the regular freelist.
2523 *
2524 * If that is not working then we fall back to the partial lists. We take the
2525 * first element of the freelist as the object to allocate now and move the
2526 * rest of the freelist to the lockless freelist.
2527 *
2528 * And if we were unable to get a new slab from the partial slab lists then
2529 * we need to allocate a new slab. This is the slowest path since it involves
2530 * a call to the page allocator and the setup of a new slab.
2531 *
2532 * Version of __slab_alloc to use when we know that interrupts are
2533 * already disabled (which is the case for bulk allocation).
2534 */
2535static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536 unsigned long addr, struct kmem_cache_cpu *c)
2537{
2538 void *freelist;
2539 struct page *page;
2540
2541 page = c->page;
2542 if (!page)
2543 goto new_slab;
2544redo:
2545
2546 if (unlikely(!node_match(page, node))) {
2547 int searchnode = node;
2548
2549 if (node != NUMA_NO_NODE && !node_present_pages(node))
2550 searchnode = node_to_mem_node(node);
2551
2552 if (unlikely(!node_match(page, searchnode))) {
2553 stat(s, ALLOC_NODE_MISMATCH);
2554 deactivate_slab(s, page, c->freelist, c);
2555 goto new_slab;
2556 }
2557 }
2558
2559 /*
2560 * By rights, we should be searching for a slab page that was
2561 * PFMEMALLOC but right now, we are losing the pfmemalloc
2562 * information when the page leaves the per-cpu allocator
2563 */
2564 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565 deactivate_slab(s, page, c->freelist, c);
2566 goto new_slab;
2567 }
2568
2569 /* must check again c->freelist in case of cpu migration or IRQ */
2570 freelist = c->freelist;
2571 if (freelist)
2572 goto load_freelist;
2573
2574 freelist = get_freelist(s, page);
2575
2576 if (!freelist) {
2577 c->page = NULL;
2578 stat(s, DEACTIVATE_BYPASS);
2579 goto new_slab;
2580 }
2581
2582 stat(s, ALLOC_REFILL);
2583
2584load_freelist:
2585 /*
2586 * freelist is pointing to the list of objects to be used.
2587 * page is pointing to the page from which the objects are obtained.
2588 * That page must be frozen for per cpu allocations to work.
2589 */
2590 VM_BUG_ON(!c->page->frozen);
2591 c->freelist = get_freepointer(s, freelist);
2592 c->tid = next_tid(c->tid);
2593 return freelist;
2594
2595new_slab:
2596
2597 if (slub_percpu_partial(c)) {
2598 page = c->page = slub_percpu_partial(c);
2599 slub_set_percpu_partial(c, page);
2600 stat(s, CPU_PARTIAL_ALLOC);
2601 goto redo;
2602 }
2603
2604 freelist = new_slab_objects(s, gfpflags, node, &c);
2605
2606 if (unlikely(!freelist)) {
2607 slab_out_of_memory(s, gfpflags, node);
2608 return NULL;
2609 }
2610
2611 page = c->page;
2612 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613 goto load_freelist;
2614
2615 /* Only entered in the debug case */
2616 if (kmem_cache_debug(s) &&
2617 !alloc_debug_processing(s, page, freelist, addr))
2618 goto new_slab; /* Slab failed checks. Next slab needed */
2619
2620 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621 return freelist;
2622}
2623
2624/*
2625 * Another one that disabled interrupt and compensates for possible
2626 * cpu changes by refetching the per cpu area pointer.
2627 */
2628static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2629 unsigned long addr, struct kmem_cache_cpu *c)
2630{
2631 void *p;
2632 unsigned long flags;
2633
2634 local_irq_save(flags);
2635#ifdef CONFIG_PREEMPT
2636 /*
2637 * We may have been preempted and rescheduled on a different
2638 * cpu before disabling interrupts. Need to reload cpu area
2639 * pointer.
2640 */
2641 c = this_cpu_ptr(s->cpu_slab);
2642#endif
2643
2644 p = ___slab_alloc(s, gfpflags, node, addr, c);
2645 local_irq_restore(flags);
2646 return p;
2647}
2648
2649/*
2650 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2651 * have the fastpath folded into their functions. So no function call
2652 * overhead for requests that can be satisfied on the fastpath.
2653 *
2654 * The fastpath works by first checking if the lockless freelist can be used.
2655 * If not then __slab_alloc is called for slow processing.
2656 *
2657 * Otherwise we can simply pick the next object from the lockless free list.
2658 */
2659static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660 gfp_t gfpflags, int node, unsigned long addr)
2661{
2662 void *object;
2663 struct kmem_cache_cpu *c;
2664 struct page *page;
2665 unsigned long tid;
2666
2667 s = slab_pre_alloc_hook(s, gfpflags);
2668 if (!s)
2669 return NULL;
2670redo:
2671 /*
2672 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2673 * enabled. We may switch back and forth between cpus while
2674 * reading from one cpu area. That does not matter as long
2675 * as we end up on the original cpu again when doing the cmpxchg.
2676 *
2677 * We should guarantee that tid and kmem_cache are retrieved on
2678 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2679 * to check if it is matched or not.
2680 */
2681 do {
2682 tid = this_cpu_read(s->cpu_slab->tid);
2683 c = raw_cpu_ptr(s->cpu_slab);
2684 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2685 unlikely(tid != READ_ONCE(c->tid)));
2686
2687 /*
2688 * Irqless object alloc/free algorithm used here depends on sequence
2689 * of fetching cpu_slab's data. tid should be fetched before anything
2690 * on c to guarantee that object and page associated with previous tid
2691 * won't be used with current tid. If we fetch tid first, object and
2692 * page could be one associated with next tid and our alloc/free
2693 * request will be failed. In this case, we will retry. So, no problem.
2694 */
2695 barrier();
2696
2697 /*
2698 * The transaction ids are globally unique per cpu and per operation on
2699 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2700 * occurs on the right processor and that there was no operation on the
2701 * linked list in between.
2702 */
2703
2704 object = c->freelist;
2705 page = c->page;
2706 if (unlikely(!object || !node_match(page, node))) {
2707 object = __slab_alloc(s, gfpflags, node, addr, c);
2708 stat(s, ALLOC_SLOWPATH);
2709 } else {
2710 void *next_object = get_freepointer_safe(s, object);
2711
2712 /*
2713 * The cmpxchg will only match if there was no additional
2714 * operation and if we are on the right processor.
2715 *
2716 * The cmpxchg does the following atomically (without lock
2717 * semantics!)
2718 * 1. Relocate first pointer to the current per cpu area.
2719 * 2. Verify that tid and freelist have not been changed
2720 * 3. If they were not changed replace tid and freelist
2721 *
2722 * Since this is without lock semantics the protection is only
2723 * against code executing on this cpu *not* from access by
2724 * other cpus.
2725 */
2726 if (unlikely(!this_cpu_cmpxchg_double(
2727 s->cpu_slab->freelist, s->cpu_slab->tid,
2728 object, tid,
2729 next_object, next_tid(tid)))) {
2730
2731 note_cmpxchg_failure("slab_alloc", s, tid);
2732 goto redo;
2733 }
2734 prefetch_freepointer(s, next_object);
2735 stat(s, ALLOC_FASTPATH);
2736 }
2737
2738 if (unlikely(gfpflags & __GFP_ZERO) && object)
2739 memset(object, 0, s->object_size);
2740
2741 slab_post_alloc_hook(s, gfpflags, 1, &object);
2742
2743 return object;
2744}
2745
2746static __always_inline void *slab_alloc(struct kmem_cache *s,
2747 gfp_t gfpflags, unsigned long addr)
2748{
2749 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2750}
2751
2752void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2753{
2754 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2755
2756 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2757 s->size, gfpflags);
2758
2759 return ret;
2760}
2761EXPORT_SYMBOL(kmem_cache_alloc);
2762
2763#ifdef CONFIG_TRACING
2764void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2765{
2766 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768 kasan_kmalloc(s, ret, size, gfpflags);
2769 return ret;
2770}
2771EXPORT_SYMBOL(kmem_cache_alloc_trace);
2772#endif
2773
2774#ifdef CONFIG_NUMA
2775void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2776{
2777 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2778
2779 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780 s->object_size, s->size, gfpflags, node);
2781
2782 return ret;
2783}
2784EXPORT_SYMBOL(kmem_cache_alloc_node);
2785
2786#ifdef CONFIG_TRACING
2787void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2788 gfp_t gfpflags,
2789 int node, size_t size)
2790{
2791 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2792
2793 trace_kmalloc_node(_RET_IP_, ret,
2794 size, s->size, gfpflags, node);
2795
2796 kasan_kmalloc(s, ret, size, gfpflags);
2797 return ret;
2798}
2799EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2800#endif
2801#endif
2802
2803/*
2804 * Slow path handling. This may still be called frequently since objects
2805 * have a longer lifetime than the cpu slabs in most processing loads.
2806 *
2807 * So we still attempt to reduce cache line usage. Just take the slab
2808 * lock and free the item. If there is no additional partial page
2809 * handling required then we can return immediately.
2810 */
2811static void __slab_free(struct kmem_cache *s, struct page *page,
2812 void *head, void *tail, int cnt,
2813 unsigned long addr)
2814
2815{
2816 void *prior;
2817 int was_frozen;
2818 struct page new;
2819 unsigned long counters;
2820 struct kmem_cache_node *n = NULL;
2821 unsigned long uninitialized_var(flags);
2822
2823 stat(s, FREE_SLOWPATH);
2824
2825 if (kmem_cache_debug(s) &&
2826 !free_debug_processing(s, page, head, tail, cnt, addr))
2827 return;
2828
2829 do {
2830 if (unlikely(n)) {
2831 spin_unlock_irqrestore(&n->list_lock, flags);
2832 n = NULL;
2833 }
2834 prior = page->freelist;
2835 counters = page->counters;
2836 set_freepointer(s, tail, prior);
2837 new.counters = counters;
2838 was_frozen = new.frozen;
2839 new.inuse -= cnt;
2840 if ((!new.inuse || !prior) && !was_frozen) {
2841
2842 if (kmem_cache_has_cpu_partial(s) && !prior) {
2843
2844 /*
2845 * Slab was on no list before and will be
2846 * partially empty
2847 * We can defer the list move and instead
2848 * freeze it.
2849 */
2850 new.frozen = 1;
2851
2852 } else { /* Needs to be taken off a list */
2853
2854 n = get_node(s, page_to_nid(page));
2855 /*
2856 * Speculatively acquire the list_lock.
2857 * If the cmpxchg does not succeed then we may
2858 * drop the list_lock without any processing.
2859 *
2860 * Otherwise the list_lock will synchronize with
2861 * other processors updating the list of slabs.
2862 */
2863 spin_lock_irqsave(&n->list_lock, flags);
2864
2865 }
2866 }
2867
2868 } while (!cmpxchg_double_slab(s, page,
2869 prior, counters,
2870 head, new.counters,
2871 "__slab_free"));
2872
2873 if (likely(!n)) {
2874
2875 /*
2876 * If we just froze the page then put it onto the
2877 * per cpu partial list.
2878 */
2879 if (new.frozen && !was_frozen) {
2880 put_cpu_partial(s, page, 1);
2881 stat(s, CPU_PARTIAL_FREE);
2882 }
2883 /*
2884 * The list lock was not taken therefore no list
2885 * activity can be necessary.
2886 */
2887 if (was_frozen)
2888 stat(s, FREE_FROZEN);
2889 return;
2890 }
2891
2892 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893 goto slab_empty;
2894
2895 /*
2896 * Objects left in the slab. If it was not on the partial list before
2897 * then add it.
2898 */
2899 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2900 if (kmem_cache_debug(s))
2901 remove_full(s, n, page);
2902 add_partial(n, page, DEACTIVATE_TO_TAIL);
2903 stat(s, FREE_ADD_PARTIAL);
2904 }
2905 spin_unlock_irqrestore(&n->list_lock, flags);
2906 return;
2907
2908slab_empty:
2909 if (prior) {
2910 /*
2911 * Slab on the partial list.
2912 */
2913 remove_partial(n, page);
2914 stat(s, FREE_REMOVE_PARTIAL);
2915 } else {
2916 /* Slab must be on the full list */
2917 remove_full(s, n, page);
2918 }
2919
2920 spin_unlock_irqrestore(&n->list_lock, flags);
2921 stat(s, FREE_SLAB);
2922 discard_slab(s, page);
2923}
2924
2925/*
2926 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2927 * can perform fastpath freeing without additional function calls.
2928 *
2929 * The fastpath is only possible if we are freeing to the current cpu slab
2930 * of this processor. This typically the case if we have just allocated
2931 * the item before.
2932 *
2933 * If fastpath is not possible then fall back to __slab_free where we deal
2934 * with all sorts of special processing.
2935 *
2936 * Bulk free of a freelist with several objects (all pointing to the
2937 * same page) possible by specifying head and tail ptr, plus objects
2938 * count (cnt). Bulk free indicated by tail pointer being set.
2939 */
2940static __always_inline void do_slab_free(struct kmem_cache *s,
2941 struct page *page, void *head, void *tail,
2942 int cnt, unsigned long addr)
2943{
2944 void *tail_obj = tail ? : head;
2945 struct kmem_cache_cpu *c;
2946 unsigned long tid;
2947redo:
2948 /*
2949 * Determine the currently cpus per cpu slab.
2950 * The cpu may change afterward. However that does not matter since
2951 * data is retrieved via this pointer. If we are on the same cpu
2952 * during the cmpxchg then the free will succeed.
2953 */
2954 do {
2955 tid = this_cpu_read(s->cpu_slab->tid);
2956 c = raw_cpu_ptr(s->cpu_slab);
2957 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2958 unlikely(tid != READ_ONCE(c->tid)));
2959
2960 /* Same with comment on barrier() in slab_alloc_node() */
2961 barrier();
2962
2963 if (likely(page == c->page)) {
2964 set_freepointer(s, tail_obj, c->freelist);
2965
2966 if (unlikely(!this_cpu_cmpxchg_double(
2967 s->cpu_slab->freelist, s->cpu_slab->tid,
2968 c->freelist, tid,
2969 head, next_tid(tid)))) {
2970
2971 note_cmpxchg_failure("slab_free", s, tid);
2972 goto redo;
2973 }
2974 stat(s, FREE_FASTPATH);
2975 } else
2976 __slab_free(s, page, head, tail_obj, cnt, addr);
2977
2978}
2979
2980static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2981 void *head, void *tail, int cnt,
2982 unsigned long addr)
2983{
2984 /*
2985 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2986 * to remove objects, whose reuse must be delayed.
2987 */
2988 if (slab_free_freelist_hook(s, &head, &tail))
2989 do_slab_free(s, page, head, tail, cnt, addr);
2990}
2991
2992#ifdef CONFIG_KASAN
2993void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2994{
2995 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2996}
2997#endif
2998
2999void kmem_cache_free(struct kmem_cache *s, void *x)
3000{
3001 s = cache_from_obj(s, x);
3002 if (!s)
3003 return;
3004 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3005 trace_kmem_cache_free(_RET_IP_, x);
3006}
3007EXPORT_SYMBOL(kmem_cache_free);
3008
3009struct detached_freelist {
3010 struct page *page;
3011 void *tail;
3012 void *freelist;
3013 int cnt;
3014 struct kmem_cache *s;
3015};
3016
3017/*
3018 * This function progressively scans the array with free objects (with
3019 * a limited look ahead) and extract objects belonging to the same
3020 * page. It builds a detached freelist directly within the given
3021 * page/objects. This can happen without any need for
3022 * synchronization, because the objects are owned by running process.
3023 * The freelist is build up as a single linked list in the objects.
3024 * The idea is, that this detached freelist can then be bulk
3025 * transferred to the real freelist(s), but only requiring a single
3026 * synchronization primitive. Look ahead in the array is limited due
3027 * to performance reasons.
3028 */
3029static inline
3030int build_detached_freelist(struct kmem_cache *s, size_t size,
3031 void **p, struct detached_freelist *df)
3032{
3033 size_t first_skipped_index = 0;
3034 int lookahead = 3;
3035 void *object;
3036 struct page *page;
3037
3038 /* Always re-init detached_freelist */
3039 df->page = NULL;
3040
3041 do {
3042 object = p[--size];
3043 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3044 } while (!object && size);
3045
3046 if (!object)
3047 return 0;
3048
3049 page = virt_to_head_page(object);
3050 if (!s) {
3051 /* Handle kalloc'ed objects */
3052 if (unlikely(!PageSlab(page))) {
3053 BUG_ON(!PageCompound(page));
3054 kfree_hook(object);
3055 __free_pages(page, compound_order(page));
3056 p[size] = NULL; /* mark object processed */
3057 return size;
3058 }
3059 /* Derive kmem_cache from object */
3060 df->s = page->slab_cache;
3061 } else {
3062 df->s = cache_from_obj(s, object); /* Support for memcg */
3063 }
3064
3065 /* Start new detached freelist */
3066 df->page = page;
3067 set_freepointer(df->s, object, NULL);
3068 df->tail = object;
3069 df->freelist = object;
3070 p[size] = NULL; /* mark object processed */
3071 df->cnt = 1;
3072
3073 while (size) {
3074 object = p[--size];
3075 if (!object)
3076 continue; /* Skip processed objects */
3077
3078 /* df->page is always set at this point */
3079 if (df->page == virt_to_head_page(object)) {
3080 /* Opportunity build freelist */
3081 set_freepointer(df->s, object, df->freelist);
3082 df->freelist = object;
3083 df->cnt++;
3084 p[size] = NULL; /* mark object processed */
3085
3086 continue;
3087 }
3088
3089 /* Limit look ahead search */
3090 if (!--lookahead)
3091 break;
3092
3093 if (!first_skipped_index)
3094 first_skipped_index = size + 1;
3095 }
3096
3097 return first_skipped_index;
3098}
3099
3100/* Note that interrupts must be enabled when calling this function. */
3101void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3102{
3103 if (WARN_ON(!size))
3104 return;
3105
3106 do {
3107 struct detached_freelist df;
3108
3109 size = build_detached_freelist(s, size, p, &df);
3110 if (!df.page)
3111 continue;
3112
3113 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3114 } while (likely(size));
3115}
3116EXPORT_SYMBOL(kmem_cache_free_bulk);
3117
3118/* Note that interrupts must be enabled when calling this function. */
3119int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3120 void **p)
3121{
3122 struct kmem_cache_cpu *c;
3123 int i;
3124
3125 /* memcg and kmem_cache debug support */
3126 s = slab_pre_alloc_hook(s, flags);
3127 if (unlikely(!s))
3128 return false;
3129 /*
3130 * Drain objects in the per cpu slab, while disabling local
3131 * IRQs, which protects against PREEMPT and interrupts
3132 * handlers invoking normal fastpath.
3133 */
3134 local_irq_disable();
3135 c = this_cpu_ptr(s->cpu_slab);
3136
3137 for (i = 0; i < size; i++) {
3138 void *object = c->freelist;
3139
3140 if (unlikely(!object)) {
3141 /*
3142 * Invoking slow path likely have side-effect
3143 * of re-populating per CPU c->freelist
3144 */
3145 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3146 _RET_IP_, c);
3147 if (unlikely(!p[i]))
3148 goto error;
3149
3150 c = this_cpu_ptr(s->cpu_slab);
3151 continue; /* goto for-loop */
3152 }
3153 c->freelist = get_freepointer(s, object);
3154 p[i] = object;
3155 }
3156 c->tid = next_tid(c->tid);
3157 local_irq_enable();
3158
3159 /* Clear memory outside IRQ disabled fastpath loop */
3160 if (unlikely(flags & __GFP_ZERO)) {
3161 int j;
3162
3163 for (j = 0; j < i; j++)
3164 memset(p[j], 0, s->object_size);
3165 }
3166
3167 /* memcg and kmem_cache debug support */
3168 slab_post_alloc_hook(s, flags, size, p);
3169 return i;
3170error:
3171 local_irq_enable();
3172 slab_post_alloc_hook(s, flags, i, p);
3173 __kmem_cache_free_bulk(s, i, p);
3174 return 0;
3175}
3176EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3177
3178
3179/*
3180 * Object placement in a slab is made very easy because we always start at
3181 * offset 0. If we tune the size of the object to the alignment then we can
3182 * get the required alignment by putting one properly sized object after
3183 * another.
3184 *
3185 * Notice that the allocation order determines the sizes of the per cpu
3186 * caches. Each processor has always one slab available for allocations.
3187 * Increasing the allocation order reduces the number of times that slabs
3188 * must be moved on and off the partial lists and is therefore a factor in
3189 * locking overhead.
3190 */
3191
3192/*
3193 * Mininum / Maximum order of slab pages. This influences locking overhead
3194 * and slab fragmentation. A higher order reduces the number of partial slabs
3195 * and increases the number of allocations possible without having to
3196 * take the list_lock.
3197 */
3198static unsigned int slub_min_order;
3199static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3200static unsigned int slub_min_objects;
3201
3202/*
3203 * Calculate the order of allocation given an slab object size.
3204 *
3205 * The order of allocation has significant impact on performance and other
3206 * system components. Generally order 0 allocations should be preferred since
3207 * order 0 does not cause fragmentation in the page allocator. Larger objects
3208 * be problematic to put into order 0 slabs because there may be too much
3209 * unused space left. We go to a higher order if more than 1/16th of the slab
3210 * would be wasted.
3211 *
3212 * In order to reach satisfactory performance we must ensure that a minimum
3213 * number of objects is in one slab. Otherwise we may generate too much
3214 * activity on the partial lists which requires taking the list_lock. This is
3215 * less a concern for large slabs though which are rarely used.
3216 *
3217 * slub_max_order specifies the order where we begin to stop considering the
3218 * number of objects in a slab as critical. If we reach slub_max_order then
3219 * we try to keep the page order as low as possible. So we accept more waste
3220 * of space in favor of a small page order.
3221 *
3222 * Higher order allocations also allow the placement of more objects in a
3223 * slab and thereby reduce object handling overhead. If the user has
3224 * requested a higher mininum order then we start with that one instead of
3225 * the smallest order which will fit the object.
3226 */
3227static inline unsigned int slab_order(unsigned int size,
3228 unsigned int min_objects, unsigned int max_order,
3229 unsigned int fract_leftover, unsigned int reserved)
3230{
3231 unsigned int min_order = slub_min_order;
3232 unsigned int order;
3233
3234 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3235 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3236
3237 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3238 order <= max_order; order++) {
3239
3240 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3241 unsigned int rem;
3242
3243 rem = (slab_size - reserved) % size;
3244
3245 if (rem <= slab_size / fract_leftover)
3246 break;
3247 }
3248
3249 return order;
3250}
3251
3252static inline int calculate_order(unsigned int size, unsigned int reserved)
3253{
3254 unsigned int order;
3255 unsigned int min_objects;
3256 unsigned int max_objects;
3257
3258 /*
3259 * Attempt to find best configuration for a slab. This
3260 * works by first attempting to generate a layout with
3261 * the best configuration and backing off gradually.
3262 *
3263 * First we increase the acceptable waste in a slab. Then
3264 * we reduce the minimum objects required in a slab.
3265 */
3266 min_objects = slub_min_objects;
3267 if (!min_objects)
3268 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3269 max_objects = order_objects(slub_max_order, size, reserved);
3270 min_objects = min(min_objects, max_objects);
3271
3272 while (min_objects > 1) {
3273 unsigned int fraction;
3274
3275 fraction = 16;
3276 while (fraction >= 4) {
3277 order = slab_order(size, min_objects,
3278 slub_max_order, fraction, reserved);
3279 if (order <= slub_max_order)
3280 return order;
3281 fraction /= 2;
3282 }
3283 min_objects--;
3284 }
3285
3286 /*
3287 * We were unable to place multiple objects in a slab. Now
3288 * lets see if we can place a single object there.
3289 */
3290 order = slab_order(size, 1, slub_max_order, 1, reserved);
3291 if (order <= slub_max_order)
3292 return order;
3293
3294 /*
3295 * Doh this slab cannot be placed using slub_max_order.
3296 */
3297 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3298 if (order < MAX_ORDER)
3299 return order;
3300 return -ENOSYS;
3301}
3302
3303static void
3304init_kmem_cache_node(struct kmem_cache_node *n)
3305{
3306 n->nr_partial = 0;
3307 spin_lock_init(&n->list_lock);
3308 INIT_LIST_HEAD(&n->partial);
3309#ifdef CONFIG_SLUB_DEBUG
3310 atomic_long_set(&n->nr_slabs, 0);
3311 atomic_long_set(&n->total_objects, 0);
3312 INIT_LIST_HEAD(&n->full);
3313#endif
3314}
3315
3316static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317{
3318 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3320
3321 /*
3322 * Must align to double word boundary for the double cmpxchg
3323 * instructions to work; see __pcpu_double_call_return_bool().
3324 */
3325 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3326 2 * sizeof(void *));
3327
3328 if (!s->cpu_slab)
3329 return 0;
3330
3331 init_kmem_cache_cpus(s);
3332
3333 return 1;
3334}
3335
3336static struct kmem_cache *kmem_cache_node;
3337
3338/*
3339 * No kmalloc_node yet so do it by hand. We know that this is the first
3340 * slab on the node for this slabcache. There are no concurrent accesses
3341 * possible.
3342 *
3343 * Note that this function only works on the kmem_cache_node
3344 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345 * memory on a fresh node that has no slab structures yet.
3346 */
3347static void early_kmem_cache_node_alloc(int node)
3348{
3349 struct page *page;
3350 struct kmem_cache_node *n;
3351
3352 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3353
3354 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3355
3356 BUG_ON(!page);
3357 if (page_to_nid(page) != node) {
3358 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3359 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360 }
3361
3362 n = page->freelist;
3363 BUG_ON(!n);
3364 page->freelist = get_freepointer(kmem_cache_node, n);
3365 page->inuse = 1;
3366 page->frozen = 0;
3367 kmem_cache_node->node[node] = n;
3368#ifdef CONFIG_SLUB_DEBUG
3369 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370 init_tracking(kmem_cache_node, n);
3371#endif
3372 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3373 GFP_KERNEL);
3374 init_kmem_cache_node(n);
3375 inc_slabs_node(kmem_cache_node, node, page->objects);
3376
3377 /*
3378 * No locks need to be taken here as it has just been
3379 * initialized and there is no concurrent access.
3380 */
3381 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3382}
3383
3384static void free_kmem_cache_nodes(struct kmem_cache *s)
3385{
3386 int node;
3387 struct kmem_cache_node *n;
3388
3389 for_each_kmem_cache_node(s, node, n) {
3390 s->node[node] = NULL;
3391 kmem_cache_free(kmem_cache_node, n);
3392 }
3393}
3394
3395void __kmem_cache_release(struct kmem_cache *s)
3396{
3397 cache_random_seq_destroy(s);
3398 free_percpu(s->cpu_slab);
3399 free_kmem_cache_nodes(s);
3400}
3401
3402static int init_kmem_cache_nodes(struct kmem_cache *s)
3403{
3404 int node;
3405
3406 for_each_node_state(node, N_NORMAL_MEMORY) {
3407 struct kmem_cache_node *n;
3408
3409 if (slab_state == DOWN) {
3410 early_kmem_cache_node_alloc(node);
3411 continue;
3412 }
3413 n = kmem_cache_alloc_node(kmem_cache_node,
3414 GFP_KERNEL, node);
3415
3416 if (!n) {
3417 free_kmem_cache_nodes(s);
3418 return 0;
3419 }
3420
3421 init_kmem_cache_node(n);
3422 s->node[node] = n;
3423 }
3424 return 1;
3425}
3426
3427static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428{
3429 if (min < MIN_PARTIAL)
3430 min = MIN_PARTIAL;
3431 else if (min > MAX_PARTIAL)
3432 min = MAX_PARTIAL;
3433 s->min_partial = min;
3434}
3435
3436static void set_cpu_partial(struct kmem_cache *s)
3437{
3438#ifdef CONFIG_SLUB_CPU_PARTIAL
3439 /*
3440 * cpu_partial determined the maximum number of objects kept in the
3441 * per cpu partial lists of a processor.
3442 *
3443 * Per cpu partial lists mainly contain slabs that just have one
3444 * object freed. If they are used for allocation then they can be
3445 * filled up again with minimal effort. The slab will never hit the
3446 * per node partial lists and therefore no locking will be required.
3447 *
3448 * This setting also determines
3449 *
3450 * A) The number of objects from per cpu partial slabs dumped to the
3451 * per node list when we reach the limit.
3452 * B) The number of objects in cpu partial slabs to extract from the
3453 * per node list when we run out of per cpu objects. We only fetch
3454 * 50% to keep some capacity around for frees.
3455 */
3456 if (!kmem_cache_has_cpu_partial(s))
3457 s->cpu_partial = 0;
3458 else if (s->size >= PAGE_SIZE)
3459 s->cpu_partial = 2;
3460 else if (s->size >= 1024)
3461 s->cpu_partial = 6;
3462 else if (s->size >= 256)
3463 s->cpu_partial = 13;
3464 else
3465 s->cpu_partial = 30;
3466#endif
3467}
3468
3469/*
3470 * calculate_sizes() determines the order and the distribution of data within
3471 * a slab object.
3472 */
3473static int calculate_sizes(struct kmem_cache *s, int forced_order)
3474{
3475 slab_flags_t flags = s->flags;
3476 unsigned int size = s->object_size;
3477 unsigned int order;
3478
3479 /*
3480 * Round up object size to the next word boundary. We can only
3481 * place the free pointer at word boundaries and this determines
3482 * the possible location of the free pointer.
3483 */
3484 size = ALIGN(size, sizeof(void *));
3485
3486#ifdef CONFIG_SLUB_DEBUG
3487 /*
3488 * Determine if we can poison the object itself. If the user of
3489 * the slab may touch the object after free or before allocation
3490 * then we should never poison the object itself.
3491 */
3492 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493 !s->ctor)
3494 s->flags |= __OBJECT_POISON;
3495 else
3496 s->flags &= ~__OBJECT_POISON;
3497
3498
3499 /*
3500 * If we are Redzoning then check if there is some space between the
3501 * end of the object and the free pointer. If not then add an
3502 * additional word to have some bytes to store Redzone information.
3503 */
3504 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3505 size += sizeof(void *);
3506#endif
3507
3508 /*
3509 * With that we have determined the number of bytes in actual use
3510 * by the object. This is the potential offset to the free pointer.
3511 */
3512 s->inuse = size;
3513
3514 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515 s->ctor)) {
3516 /*
3517 * Relocate free pointer after the object if it is not
3518 * permitted to overwrite the first word of the object on
3519 * kmem_cache_free.
3520 *
3521 * This is the case if we do RCU, have a constructor or
3522 * destructor or are poisoning the objects.
3523 */
3524 s->offset = size;
3525 size += sizeof(void *);
3526 }
3527
3528#ifdef CONFIG_SLUB_DEBUG
3529 if (flags & SLAB_STORE_USER)
3530 /*
3531 * Need to store information about allocs and frees after
3532 * the object.
3533 */
3534 size += 2 * sizeof(struct track);
3535#endif
3536
3537 kasan_cache_create(s, &size, &s->flags);
3538#ifdef CONFIG_SLUB_DEBUG
3539 if (flags & SLAB_RED_ZONE) {
3540 /*
3541 * Add some empty padding so that we can catch
3542 * overwrites from earlier objects rather than let
3543 * tracking information or the free pointer be
3544 * corrupted if a user writes before the start
3545 * of the object.
3546 */
3547 size += sizeof(void *);
3548
3549 s->red_left_pad = sizeof(void *);
3550 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3551 size += s->red_left_pad;
3552 }
3553#endif
3554
3555 /*
3556 * SLUB stores one object immediately after another beginning from
3557 * offset 0. In order to align the objects we have to simply size
3558 * each object to conform to the alignment.
3559 */
3560 size = ALIGN(size, s->align);
3561 s->size = size;
3562 if (forced_order >= 0)
3563 order = forced_order;
3564 else
3565 order = calculate_order(size, s->reserved);
3566
3567 if ((int)order < 0)
3568 return 0;
3569
3570 s->allocflags = 0;
3571 if (order)
3572 s->allocflags |= __GFP_COMP;
3573
3574 if (s->flags & SLAB_CACHE_DMA)
3575 s->allocflags |= GFP_DMA;
3576
3577 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3578 s->allocflags |= __GFP_RECLAIMABLE;
3579
3580 /*
3581 * Determine the number of objects per slab
3582 */
3583 s->oo = oo_make(order, size, s->reserved);
3584 s->min = oo_make(get_order(size), size, s->reserved);
3585 if (oo_objects(s->oo) > oo_objects(s->max))
3586 s->max = s->oo;
3587
3588 return !!oo_objects(s->oo);
3589}
3590
3591static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3592{
3593 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594 s->reserved = 0;
3595#ifdef CONFIG_SLAB_FREELIST_HARDENED
3596 s->random = get_random_long();
3597#endif
3598
3599 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600 s->reserved = sizeof(struct rcu_head);
3601
3602 if (!calculate_sizes(s, -1))
3603 goto error;
3604 if (disable_higher_order_debug) {
3605 /*
3606 * Disable debugging flags that store metadata if the min slab
3607 * order increased.
3608 */
3609 if (get_order(s->size) > get_order(s->object_size)) {
3610 s->flags &= ~DEBUG_METADATA_FLAGS;
3611 s->offset = 0;
3612 if (!calculate_sizes(s, -1))
3613 goto error;
3614 }
3615 }
3616
3617#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3618 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620 /* Enable fast mode */
3621 s->flags |= __CMPXCHG_DOUBLE;
3622#endif
3623
3624 /*
3625 * The larger the object size is, the more pages we want on the partial
3626 * list to avoid pounding the page allocator excessively.
3627 */
3628 set_min_partial(s, ilog2(s->size) / 2);
3629
3630 set_cpu_partial(s);
3631
3632#ifdef CONFIG_NUMA
3633 s->remote_node_defrag_ratio = 1000;
3634#endif
3635
3636 /* Initialize the pre-computed randomized freelist if slab is up */
3637 if (slab_state >= UP) {
3638 if (init_cache_random_seq(s))
3639 goto error;
3640 }
3641
3642 if (!init_kmem_cache_nodes(s))
3643 goto error;
3644
3645 if (alloc_kmem_cache_cpus(s))
3646 return 0;
3647
3648 free_kmem_cache_nodes(s);
3649error:
3650 if (flags & SLAB_PANIC)
3651 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3652 s->name, s->size, s->size,
3653 oo_order(s->oo), s->offset, (unsigned long)flags);
3654 return -EINVAL;
3655}
3656
3657static void list_slab_objects(struct kmem_cache *s, struct page *page,
3658 const char *text)
3659{
3660#ifdef CONFIG_SLUB_DEBUG
3661 void *addr = page_address(page);
3662 void *p;
3663 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3664 sizeof(long), GFP_ATOMIC);
3665 if (!map)
3666 return;
3667 slab_err(s, page, text, s->name);
3668 slab_lock(page);
3669
3670 get_map(s, page, map);
3671 for_each_object(p, s, addr, page->objects) {
3672
3673 if (!test_bit(slab_index(p, s, addr), map)) {
3674 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675 print_tracking(s, p);
3676 }
3677 }
3678 slab_unlock(page);
3679 kfree(map);
3680#endif
3681}
3682
3683/*
3684 * Attempt to free all partial slabs on a node.
3685 * This is called from __kmem_cache_shutdown(). We must take list_lock
3686 * because sysfs file might still access partial list after the shutdowning.
3687 */
3688static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3689{
3690 LIST_HEAD(discard);
3691 struct page *page, *h;
3692
3693 BUG_ON(irqs_disabled());
3694 spin_lock_irq(&n->list_lock);
3695 list_for_each_entry_safe(page, h, &n->partial, lru) {
3696 if (!page->inuse) {
3697 remove_partial(n, page);
3698 list_add(&page->lru, &discard);
3699 } else {
3700 list_slab_objects(s, page,
3701 "Objects remaining in %s on __kmem_cache_shutdown()");
3702 }
3703 }
3704 spin_unlock_irq(&n->list_lock);
3705
3706 list_for_each_entry_safe(page, h, &discard, lru)
3707 discard_slab(s, page);
3708}
3709
3710bool __kmem_cache_empty(struct kmem_cache *s)
3711{
3712 int node;
3713 struct kmem_cache_node *n;
3714
3715 for_each_kmem_cache_node(s, node, n)
3716 if (n->nr_partial || slabs_node(s, node))
3717 return false;
3718 return true;
3719}
3720
3721/*
3722 * Release all resources used by a slab cache.
3723 */
3724int __kmem_cache_shutdown(struct kmem_cache *s)
3725{
3726 int node;
3727 struct kmem_cache_node *n;
3728
3729 flush_all(s);
3730 /* Attempt to free all objects */
3731 for_each_kmem_cache_node(s, node, n) {
3732 free_partial(s, n);
3733 if (n->nr_partial || slabs_node(s, node))
3734 return 1;
3735 }
3736 sysfs_slab_remove(s);
3737 return 0;
3738}
3739
3740/********************************************************************
3741 * Kmalloc subsystem
3742 *******************************************************************/
3743
3744static int __init setup_slub_min_order(char *str)
3745{
3746 get_option(&str, (int *)&slub_min_order);
3747
3748 return 1;
3749}
3750
3751__setup("slub_min_order=", setup_slub_min_order);
3752
3753static int __init setup_slub_max_order(char *str)
3754{
3755 get_option(&str, (int *)&slub_max_order);
3756 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3757
3758 return 1;
3759}
3760
3761__setup("slub_max_order=", setup_slub_max_order);
3762
3763static int __init setup_slub_min_objects(char *str)
3764{
3765 get_option(&str, (int *)&slub_min_objects);
3766
3767 return 1;
3768}
3769
3770__setup("slub_min_objects=", setup_slub_min_objects);
3771
3772void *__kmalloc(size_t size, gfp_t flags)
3773{
3774 struct kmem_cache *s;
3775 void *ret;
3776
3777 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3778 return kmalloc_large(size, flags);
3779
3780 s = kmalloc_slab(size, flags);
3781
3782 if (unlikely(ZERO_OR_NULL_PTR(s)))
3783 return s;
3784
3785 ret = slab_alloc(s, flags, _RET_IP_);
3786
3787 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3788
3789 kasan_kmalloc(s, ret, size, flags);
3790
3791 return ret;
3792}
3793EXPORT_SYMBOL(__kmalloc);
3794
3795#ifdef CONFIG_NUMA
3796static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3797{
3798 struct page *page;
3799 void *ptr = NULL;
3800
3801 flags |= __GFP_COMP;
3802 page = alloc_pages_node(node, flags, get_order(size));
3803 if (page)
3804 ptr = page_address(page);
3805
3806 kmalloc_large_node_hook(ptr, size, flags);
3807 return ptr;
3808}
3809
3810void *__kmalloc_node(size_t size, gfp_t flags, int node)
3811{
3812 struct kmem_cache *s;
3813 void *ret;
3814
3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3816 ret = kmalloc_large_node(size, flags, node);
3817
3818 trace_kmalloc_node(_RET_IP_, ret,
3819 size, PAGE_SIZE << get_order(size),
3820 flags, node);
3821
3822 return ret;
3823 }
3824
3825 s = kmalloc_slab(size, flags);
3826
3827 if (unlikely(ZERO_OR_NULL_PTR(s)))
3828 return s;
3829
3830 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3831
3832 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3833
3834 kasan_kmalloc(s, ret, size, flags);
3835
3836 return ret;
3837}
3838EXPORT_SYMBOL(__kmalloc_node);
3839#endif
3840
3841#ifdef CONFIG_HARDENED_USERCOPY
3842/*
3843 * Rejects incorrectly sized objects and objects that are to be copied
3844 * to/from userspace but do not fall entirely within the containing slab
3845 * cache's usercopy region.
3846 *
3847 * Returns NULL if check passes, otherwise const char * to name of cache
3848 * to indicate an error.
3849 */
3850void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3851 bool to_user)
3852{
3853 struct kmem_cache *s;
3854 unsigned int offset;
3855 size_t object_size;
3856
3857 /* Find object and usable object size. */
3858 s = page->slab_cache;
3859
3860 /* Reject impossible pointers. */
3861 if (ptr < page_address(page))
3862 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3863 to_user, 0, n);
3864
3865 /* Find offset within object. */
3866 offset = (ptr - page_address(page)) % s->size;
3867
3868 /* Adjust for redzone and reject if within the redzone. */
3869 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3870 if (offset < s->red_left_pad)
3871 usercopy_abort("SLUB object in left red zone",
3872 s->name, to_user, offset, n);
3873 offset -= s->red_left_pad;
3874 }
3875
3876 /* Allow address range falling entirely within usercopy region. */
3877 if (offset >= s->useroffset &&
3878 offset - s->useroffset <= s->usersize &&
3879 n <= s->useroffset - offset + s->usersize)
3880 return;
3881
3882 /*
3883 * If the copy is still within the allocated object, produce
3884 * a warning instead of rejecting the copy. This is intended
3885 * to be a temporary method to find any missing usercopy
3886 * whitelists.
3887 */
3888 object_size = slab_ksize(s);
3889 if (usercopy_fallback &&
3890 offset <= object_size && n <= object_size - offset) {
3891 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3892 return;
3893 }
3894
3895 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3896}
3897#endif /* CONFIG_HARDENED_USERCOPY */
3898
3899static size_t __ksize(const void *object)
3900{
3901 struct page *page;
3902
3903 if (unlikely(object == ZERO_SIZE_PTR))
3904 return 0;
3905
3906 page = virt_to_head_page(object);
3907
3908 if (unlikely(!PageSlab(page))) {
3909 WARN_ON(!PageCompound(page));
3910 return PAGE_SIZE << compound_order(page);
3911 }
3912
3913 return slab_ksize(page->slab_cache);
3914}
3915
3916size_t ksize(const void *object)
3917{
3918 size_t size = __ksize(object);
3919 /* We assume that ksize callers could use whole allocated area,
3920 * so we need to unpoison this area.
3921 */
3922 kasan_unpoison_shadow(object, size);
3923 return size;
3924}
3925EXPORT_SYMBOL(ksize);
3926
3927void kfree(const void *x)
3928{
3929 struct page *page;
3930 void *object = (void *)x;
3931
3932 trace_kfree(_RET_IP_, x);
3933
3934 if (unlikely(ZERO_OR_NULL_PTR(x)))
3935 return;
3936
3937 page = virt_to_head_page(x);
3938 if (unlikely(!PageSlab(page))) {
3939 BUG_ON(!PageCompound(page));
3940 kfree_hook(object);
3941 __free_pages(page, compound_order(page));
3942 return;
3943 }
3944 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3945}
3946EXPORT_SYMBOL(kfree);
3947
3948#define SHRINK_PROMOTE_MAX 32
3949
3950/*
3951 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3952 * up most to the head of the partial lists. New allocations will then
3953 * fill those up and thus they can be removed from the partial lists.
3954 *
3955 * The slabs with the least items are placed last. This results in them
3956 * being allocated from last increasing the chance that the last objects
3957 * are freed in them.
3958 */
3959int __kmem_cache_shrink(struct kmem_cache *s)
3960{
3961 int node;
3962 int i;
3963 struct kmem_cache_node *n;
3964 struct page *page;
3965 struct page *t;
3966 struct list_head discard;
3967 struct list_head promote[SHRINK_PROMOTE_MAX];
3968 unsigned long flags;
3969 int ret = 0;
3970
3971 flush_all(s);
3972 for_each_kmem_cache_node(s, node, n) {
3973 INIT_LIST_HEAD(&discard);
3974 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3975 INIT_LIST_HEAD(promote + i);
3976
3977 spin_lock_irqsave(&n->list_lock, flags);
3978
3979 /*
3980 * Build lists of slabs to discard or promote.
3981 *
3982 * Note that concurrent frees may occur while we hold the
3983 * list_lock. page->inuse here is the upper limit.
3984 */
3985 list_for_each_entry_safe(page, t, &n->partial, lru) {
3986 int free = page->objects - page->inuse;
3987
3988 /* Do not reread page->inuse */
3989 barrier();
3990
3991 /* We do not keep full slabs on the list */
3992 BUG_ON(free <= 0);
3993
3994 if (free == page->objects) {
3995 list_move(&page->lru, &discard);
3996 n->nr_partial--;
3997 } else if (free <= SHRINK_PROMOTE_MAX)
3998 list_move(&page->lru, promote + free - 1);
3999 }
4000
4001 /*
4002 * Promote the slabs filled up most to the head of the
4003 * partial list.
4004 */
4005 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4006 list_splice(promote + i, &n->partial);
4007
4008 spin_unlock_irqrestore(&n->list_lock, flags);
4009
4010 /* Release empty slabs */
4011 list_for_each_entry_safe(page, t, &discard, lru)
4012 discard_slab(s, page);
4013
4014 if (slabs_node(s, node))
4015 ret = 1;
4016 }
4017
4018 return ret;
4019}
4020
4021#ifdef CONFIG_MEMCG
4022static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4023{
4024 /*
4025 * Called with all the locks held after a sched RCU grace period.
4026 * Even if @s becomes empty after shrinking, we can't know that @s
4027 * doesn't have allocations already in-flight and thus can't
4028 * destroy @s until the associated memcg is released.
4029 *
4030 * However, let's remove the sysfs files for empty caches here.
4031 * Each cache has a lot of interface files which aren't
4032 * particularly useful for empty draining caches; otherwise, we can
4033 * easily end up with millions of unnecessary sysfs files on
4034 * systems which have a lot of memory and transient cgroups.
4035 */
4036 if (!__kmem_cache_shrink(s))
4037 sysfs_slab_remove(s);
4038}
4039
4040void __kmemcg_cache_deactivate(struct kmem_cache *s)
4041{
4042 /*
4043 * Disable empty slabs caching. Used to avoid pinning offline
4044 * memory cgroups by kmem pages that can be freed.
4045 */
4046 slub_set_cpu_partial(s, 0);
4047 s->min_partial = 0;
4048
4049 /*
4050 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4051 * we have to make sure the change is visible before shrinking.
4052 */
4053 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4054}
4055#endif
4056
4057static int slab_mem_going_offline_callback(void *arg)
4058{
4059 struct kmem_cache *s;
4060
4061 mutex_lock(&slab_mutex);
4062 list_for_each_entry(s, &slab_caches, list)
4063 __kmem_cache_shrink(s);
4064 mutex_unlock(&slab_mutex);
4065
4066 return 0;
4067}
4068
4069static void slab_mem_offline_callback(void *arg)
4070{
4071 struct kmem_cache_node *n;
4072 struct kmem_cache *s;
4073 struct memory_notify *marg = arg;
4074 int offline_node;
4075
4076 offline_node = marg->status_change_nid_normal;
4077
4078 /*
4079 * If the node still has available memory. we need kmem_cache_node
4080 * for it yet.
4081 */
4082 if (offline_node < 0)
4083 return;
4084
4085 mutex_lock(&slab_mutex);
4086 list_for_each_entry(s, &slab_caches, list) {
4087 n = get_node(s, offline_node);
4088 if (n) {
4089 /*
4090 * if n->nr_slabs > 0, slabs still exist on the node
4091 * that is going down. We were unable to free them,
4092 * and offline_pages() function shouldn't call this
4093 * callback. So, we must fail.
4094 */
4095 BUG_ON(slabs_node(s, offline_node));
4096
4097 s->node[offline_node] = NULL;
4098 kmem_cache_free(kmem_cache_node, n);
4099 }
4100 }
4101 mutex_unlock(&slab_mutex);
4102}
4103
4104static int slab_mem_going_online_callback(void *arg)
4105{
4106 struct kmem_cache_node *n;
4107 struct kmem_cache *s;
4108 struct memory_notify *marg = arg;
4109 int nid = marg->status_change_nid_normal;
4110 int ret = 0;
4111
4112 /*
4113 * If the node's memory is already available, then kmem_cache_node is
4114 * already created. Nothing to do.
4115 */
4116 if (nid < 0)
4117 return 0;
4118
4119 /*
4120 * We are bringing a node online. No memory is available yet. We must
4121 * allocate a kmem_cache_node structure in order to bring the node
4122 * online.
4123 */
4124 mutex_lock(&slab_mutex);
4125 list_for_each_entry(s, &slab_caches, list) {
4126 /*
4127 * XXX: kmem_cache_alloc_node will fallback to other nodes
4128 * since memory is not yet available from the node that
4129 * is brought up.
4130 */
4131 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4132 if (!n) {
4133 ret = -ENOMEM;
4134 goto out;
4135 }
4136 init_kmem_cache_node(n);
4137 s->node[nid] = n;
4138 }
4139out:
4140 mutex_unlock(&slab_mutex);
4141 return ret;
4142}
4143
4144static int slab_memory_callback(struct notifier_block *self,
4145 unsigned long action, void *arg)
4146{
4147 int ret = 0;
4148
4149 switch (action) {
4150 case MEM_GOING_ONLINE:
4151 ret = slab_mem_going_online_callback(arg);
4152 break;
4153 case MEM_GOING_OFFLINE:
4154 ret = slab_mem_going_offline_callback(arg);
4155 break;
4156 case MEM_OFFLINE:
4157 case MEM_CANCEL_ONLINE:
4158 slab_mem_offline_callback(arg);
4159 break;
4160 case MEM_ONLINE:
4161 case MEM_CANCEL_OFFLINE:
4162 break;
4163 }
4164 if (ret)
4165 ret = notifier_from_errno(ret);
4166 else
4167 ret = NOTIFY_OK;
4168 return ret;
4169}
4170
4171static struct notifier_block slab_memory_callback_nb = {
4172 .notifier_call = slab_memory_callback,
4173 .priority = SLAB_CALLBACK_PRI,
4174};
4175
4176/********************************************************************
4177 * Basic setup of slabs
4178 *******************************************************************/
4179
4180/*
4181 * Used for early kmem_cache structures that were allocated using
4182 * the page allocator. Allocate them properly then fix up the pointers
4183 * that may be pointing to the wrong kmem_cache structure.
4184 */
4185
4186static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4187{
4188 int node;
4189 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4190 struct kmem_cache_node *n;
4191
4192 memcpy(s, static_cache, kmem_cache->object_size);
4193
4194 /*
4195 * This runs very early, and only the boot processor is supposed to be
4196 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4197 * IPIs around.
4198 */
4199 __flush_cpu_slab(s, smp_processor_id());
4200 for_each_kmem_cache_node(s, node, n) {
4201 struct page *p;
4202
4203 list_for_each_entry(p, &n->partial, lru)
4204 p->slab_cache = s;
4205
4206#ifdef CONFIG_SLUB_DEBUG
4207 list_for_each_entry(p, &n->full, lru)
4208 p->slab_cache = s;
4209#endif
4210 }
4211 slab_init_memcg_params(s);
4212 list_add(&s->list, &slab_caches);
4213 memcg_link_cache(s);
4214 return s;
4215}
4216
4217void __init kmem_cache_init(void)
4218{
4219 static __initdata struct kmem_cache boot_kmem_cache,
4220 boot_kmem_cache_node;
4221
4222 if (debug_guardpage_minorder())
4223 slub_max_order = 0;
4224
4225 kmem_cache_node = &boot_kmem_cache_node;
4226 kmem_cache = &boot_kmem_cache;
4227
4228 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4229 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4230
4231 register_hotmemory_notifier(&slab_memory_callback_nb);
4232
4233 /* Able to allocate the per node structures */
4234 slab_state = PARTIAL;
4235
4236 create_boot_cache(kmem_cache, "kmem_cache",
4237 offsetof(struct kmem_cache, node) +
4238 nr_node_ids * sizeof(struct kmem_cache_node *),
4239 SLAB_HWCACHE_ALIGN, 0, 0);
4240
4241 kmem_cache = bootstrap(&boot_kmem_cache);
4242
4243 /*
4244 * Allocate kmem_cache_node properly from the kmem_cache slab.
4245 * kmem_cache_node is separately allocated so no need to
4246 * update any list pointers.
4247 */
4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249
4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 setup_kmalloc_cache_index_table();
4252 create_kmalloc_caches(0);
4253
4254 /* Setup random freelists for each cache */
4255 init_freelist_randomization();
4256
4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 slub_cpu_dead);
4259
4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4261 cache_line_size(),
4262 slub_min_order, slub_max_order, slub_min_objects,
4263 nr_cpu_ids, nr_node_ids);
4264}
4265
4266void __init kmem_cache_init_late(void)
4267{
4268}
4269
4270struct kmem_cache *
4271__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 slab_flags_t flags, void (*ctor)(void *))
4273{
4274 struct kmem_cache *s, *c;
4275
4276 s = find_mergeable(size, align, flags, name, ctor);
4277 if (s) {
4278 s->refcount++;
4279
4280 /*
4281 * Adjust the object sizes so that we clear
4282 * the complete object on kzalloc.
4283 */
4284 s->object_size = max(s->object_size, size);
4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286
4287 for_each_memcg_cache(c, s) {
4288 c->object_size = s->object_size;
4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290 }
4291
4292 if (sysfs_slab_alias(s, name)) {
4293 s->refcount--;
4294 s = NULL;
4295 }
4296 }
4297
4298 return s;
4299}
4300
4301int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302{
4303 int err;
4304
4305 err = kmem_cache_open(s, flags);
4306 if (err)
4307 return err;
4308
4309 /* Mutex is not taken during early boot */
4310 if (slab_state <= UP)
4311 return 0;
4312
4313 memcg_propagate_slab_attrs(s);
4314 err = sysfs_slab_add(s);
4315 if (err)
4316 __kmem_cache_release(s);
4317
4318 return err;
4319}
4320
4321void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322{
4323 struct kmem_cache *s;
4324 void *ret;
4325
4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 return kmalloc_large(size, gfpflags);
4328
4329 s = kmalloc_slab(size, gfpflags);
4330
4331 if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 return s;
4333
4334 ret = slab_alloc(s, gfpflags, caller);
4335
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338
4339 return ret;
4340}
4341
4342#ifdef CONFIG_NUMA
4343void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 int node, unsigned long caller)
4345{
4346 struct kmem_cache *s;
4347 void *ret;
4348
4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 ret = kmalloc_large_node(size, gfpflags, node);
4351
4352 trace_kmalloc_node(caller, ret,
4353 size, PAGE_SIZE << get_order(size),
4354 gfpflags, node);
4355
4356 return ret;
4357 }
4358
4359 s = kmalloc_slab(size, gfpflags);
4360
4361 if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 return s;
4363
4364 ret = slab_alloc_node(s, gfpflags, node, caller);
4365
4366 /* Honor the call site pointer we received. */
4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368
4369 return ret;
4370}
4371#endif
4372
4373#ifdef CONFIG_SYSFS
4374static int count_inuse(struct page *page)
4375{
4376 return page->inuse;
4377}
4378
4379static int count_total(struct page *page)
4380{
4381 return page->objects;
4382}
4383#endif
4384
4385#ifdef CONFIG_SLUB_DEBUG
4386static int validate_slab(struct kmem_cache *s, struct page *page,
4387 unsigned long *map)
4388{
4389 void *p;
4390 void *addr = page_address(page);
4391
4392 if (!check_slab(s, page) ||
4393 !on_freelist(s, page, NULL))
4394 return 0;
4395
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map, page->objects);
4398
4399 get_map(s, page, map);
4400 for_each_object(p, s, addr, page->objects) {
4401 if (test_bit(slab_index(p, s, addr), map))
4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 return 0;
4404 }
4405
4406 for_each_object(p, s, addr, page->objects)
4407 if (!test_bit(slab_index(p, s, addr), map))
4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 return 0;
4410 return 1;
4411}
4412
4413static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 unsigned long *map)
4415{
4416 slab_lock(page);
4417 validate_slab(s, page, map);
4418 slab_unlock(page);
4419}
4420
4421static int validate_slab_node(struct kmem_cache *s,
4422 struct kmem_cache_node *n, unsigned long *map)
4423{
4424 unsigned long count = 0;
4425 struct page *page;
4426 unsigned long flags;
4427
4428 spin_lock_irqsave(&n->list_lock, flags);
4429
4430 list_for_each_entry(page, &n->partial, lru) {
4431 validate_slab_slab(s, page, map);
4432 count++;
4433 }
4434 if (count != n->nr_partial)
4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 s->name, count, n->nr_partial);
4437
4438 if (!(s->flags & SLAB_STORE_USER))
4439 goto out;
4440
4441 list_for_each_entry(page, &n->full, lru) {
4442 validate_slab_slab(s, page, map);
4443 count++;
4444 }
4445 if (count != atomic_long_read(&n->nr_slabs))
4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 s->name, count, atomic_long_read(&n->nr_slabs));
4448
4449out:
4450 spin_unlock_irqrestore(&n->list_lock, flags);
4451 return count;
4452}
4453
4454static long validate_slab_cache(struct kmem_cache *s)
4455{
4456 int node;
4457 unsigned long count = 0;
4458 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4459 sizeof(unsigned long), GFP_KERNEL);
4460 struct kmem_cache_node *n;
4461
4462 if (!map)
4463 return -ENOMEM;
4464
4465 flush_all(s);
4466 for_each_kmem_cache_node(s, node, n)
4467 count += validate_slab_node(s, n, map);
4468 kfree(map);
4469 return count;
4470}
4471/*
4472 * Generate lists of code addresses where slabcache objects are allocated
4473 * and freed.
4474 */
4475
4476struct location {
4477 unsigned long count;
4478 unsigned long addr;
4479 long long sum_time;
4480 long min_time;
4481 long max_time;
4482 long min_pid;
4483 long max_pid;
4484 DECLARE_BITMAP(cpus, NR_CPUS);
4485 nodemask_t nodes;
4486};
4487
4488struct loc_track {
4489 unsigned long max;
4490 unsigned long count;
4491 struct location *loc;
4492};
4493
4494static void free_loc_track(struct loc_track *t)
4495{
4496 if (t->max)
4497 free_pages((unsigned long)t->loc,
4498 get_order(sizeof(struct location) * t->max));
4499}
4500
4501static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4502{
4503 struct location *l;
4504 int order;
4505
4506 order = get_order(sizeof(struct location) * max);
4507
4508 l = (void *)__get_free_pages(flags, order);
4509 if (!l)
4510 return 0;
4511
4512 if (t->count) {
4513 memcpy(l, t->loc, sizeof(struct location) * t->count);
4514 free_loc_track(t);
4515 }
4516 t->max = max;
4517 t->loc = l;
4518 return 1;
4519}
4520
4521static int add_location(struct loc_track *t, struct kmem_cache *s,
4522 const struct track *track)
4523{
4524 long start, end, pos;
4525 struct location *l;
4526 unsigned long caddr;
4527 unsigned long age = jiffies - track->when;
4528
4529 start = -1;
4530 end = t->count;
4531
4532 for ( ; ; ) {
4533 pos = start + (end - start + 1) / 2;
4534
4535 /*
4536 * There is nothing at "end". If we end up there
4537 * we need to add something to before end.
4538 */
4539 if (pos == end)
4540 break;
4541
4542 caddr = t->loc[pos].addr;
4543 if (track->addr == caddr) {
4544
4545 l = &t->loc[pos];
4546 l->count++;
4547 if (track->when) {
4548 l->sum_time += age;
4549 if (age < l->min_time)
4550 l->min_time = age;
4551 if (age > l->max_time)
4552 l->max_time = age;
4553
4554 if (track->pid < l->min_pid)
4555 l->min_pid = track->pid;
4556 if (track->pid > l->max_pid)
4557 l->max_pid = track->pid;
4558
4559 cpumask_set_cpu(track->cpu,
4560 to_cpumask(l->cpus));
4561 }
4562 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4563 return 1;
4564 }
4565
4566 if (track->addr < caddr)
4567 end = pos;
4568 else
4569 start = pos;
4570 }
4571
4572 /*
4573 * Not found. Insert new tracking element.
4574 */
4575 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4576 return 0;
4577
4578 l = t->loc + pos;
4579 if (pos < t->count)
4580 memmove(l + 1, l,
4581 (t->count - pos) * sizeof(struct location));
4582 t->count++;
4583 l->count = 1;
4584 l->addr = track->addr;
4585 l->sum_time = age;
4586 l->min_time = age;
4587 l->max_time = age;
4588 l->min_pid = track->pid;
4589 l->max_pid = track->pid;
4590 cpumask_clear(to_cpumask(l->cpus));
4591 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4592 nodes_clear(l->nodes);
4593 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4594 return 1;
4595}
4596
4597static void process_slab(struct loc_track *t, struct kmem_cache *s,
4598 struct page *page, enum track_item alloc,
4599 unsigned long *map)
4600{
4601 void *addr = page_address(page);
4602 void *p;
4603
4604 bitmap_zero(map, page->objects);
4605 get_map(s, page, map);
4606
4607 for_each_object(p, s, addr, page->objects)
4608 if (!test_bit(slab_index(p, s, addr), map))
4609 add_location(t, s, get_track(s, p, alloc));
4610}
4611
4612static int list_locations(struct kmem_cache *s, char *buf,
4613 enum track_item alloc)
4614{
4615 int len = 0;
4616 unsigned long i;
4617 struct loc_track t = { 0, 0, NULL };
4618 int node;
4619 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4620 sizeof(unsigned long), GFP_KERNEL);
4621 struct kmem_cache_node *n;
4622
4623 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4624 GFP_KERNEL)) {
4625 kfree(map);
4626 return sprintf(buf, "Out of memory\n");
4627 }
4628 /* Push back cpu slabs */
4629 flush_all(s);
4630
4631 for_each_kmem_cache_node(s, node, n) {
4632 unsigned long flags;
4633 struct page *page;
4634
4635 if (!atomic_long_read(&n->nr_slabs))
4636 continue;
4637
4638 spin_lock_irqsave(&n->list_lock, flags);
4639 list_for_each_entry(page, &n->partial, lru)
4640 process_slab(&t, s, page, alloc, map);
4641 list_for_each_entry(page, &n->full, lru)
4642 process_slab(&t, s, page, alloc, map);
4643 spin_unlock_irqrestore(&n->list_lock, flags);
4644 }
4645
4646 for (i = 0; i < t.count; i++) {
4647 struct location *l = &t.loc[i];
4648
4649 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4650 break;
4651 len += sprintf(buf + len, "%7ld ", l->count);
4652
4653 if (l->addr)
4654 len += sprintf(buf + len, "%pS", (void *)l->addr);
4655 else
4656 len += sprintf(buf + len, "<not-available>");
4657
4658 if (l->sum_time != l->min_time) {
4659 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4660 l->min_time,
4661 (long)div_u64(l->sum_time, l->count),
4662 l->max_time);
4663 } else
4664 len += sprintf(buf + len, " age=%ld",
4665 l->min_time);
4666
4667 if (l->min_pid != l->max_pid)
4668 len += sprintf(buf + len, " pid=%ld-%ld",
4669 l->min_pid, l->max_pid);
4670 else
4671 len += sprintf(buf + len, " pid=%ld",
4672 l->min_pid);
4673
4674 if (num_online_cpus() > 1 &&
4675 !cpumask_empty(to_cpumask(l->cpus)) &&
4676 len < PAGE_SIZE - 60)
4677 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4678 " cpus=%*pbl",
4679 cpumask_pr_args(to_cpumask(l->cpus)));
4680
4681 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4682 len < PAGE_SIZE - 60)
4683 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4684 " nodes=%*pbl",
4685 nodemask_pr_args(&l->nodes));
4686
4687 len += sprintf(buf + len, "\n");
4688 }
4689
4690 free_loc_track(&t);
4691 kfree(map);
4692 if (!t.count)
4693 len += sprintf(buf, "No data\n");
4694 return len;
4695}
4696#endif
4697
4698#ifdef SLUB_RESILIENCY_TEST
4699static void __init resiliency_test(void)
4700{
4701 u8 *p;
4702
4703 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4704
4705 pr_err("SLUB resiliency testing\n");
4706 pr_err("-----------------------\n");
4707 pr_err("A. Corruption after allocation\n");
4708
4709 p = kzalloc(16, GFP_KERNEL);
4710 p[16] = 0x12;
4711 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4712 p + 16);
4713
4714 validate_slab_cache(kmalloc_caches[4]);
4715
4716 /* Hmmm... The next two are dangerous */
4717 p = kzalloc(32, GFP_KERNEL);
4718 p[32 + sizeof(void *)] = 0x34;
4719 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4720 p);
4721 pr_err("If allocated object is overwritten then not detectable\n\n");
4722
4723 validate_slab_cache(kmalloc_caches[5]);
4724 p = kzalloc(64, GFP_KERNEL);
4725 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4726 *p = 0x56;
4727 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4728 p);
4729 pr_err("If allocated object is overwritten then not detectable\n\n");
4730 validate_slab_cache(kmalloc_caches[6]);
4731
4732 pr_err("\nB. Corruption after free\n");
4733 p = kzalloc(128, GFP_KERNEL);
4734 kfree(p);
4735 *p = 0x78;
4736 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4737 validate_slab_cache(kmalloc_caches[7]);
4738
4739 p = kzalloc(256, GFP_KERNEL);
4740 kfree(p);
4741 p[50] = 0x9a;
4742 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4743 validate_slab_cache(kmalloc_caches[8]);
4744
4745 p = kzalloc(512, GFP_KERNEL);
4746 kfree(p);
4747 p[512] = 0xab;
4748 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4749 validate_slab_cache(kmalloc_caches[9]);
4750}
4751#else
4752#ifdef CONFIG_SYSFS
4753static void resiliency_test(void) {};
4754#endif
4755#endif
4756
4757#ifdef CONFIG_SYSFS
4758enum slab_stat_type {
4759 SL_ALL, /* All slabs */
4760 SL_PARTIAL, /* Only partially allocated slabs */
4761 SL_CPU, /* Only slabs used for cpu caches */
4762 SL_OBJECTS, /* Determine allocated objects not slabs */
4763 SL_TOTAL /* Determine object capacity not slabs */
4764};
4765
4766#define SO_ALL (1 << SL_ALL)
4767#define SO_PARTIAL (1 << SL_PARTIAL)
4768#define SO_CPU (1 << SL_CPU)
4769#define SO_OBJECTS (1 << SL_OBJECTS)
4770#define SO_TOTAL (1 << SL_TOTAL)
4771
4772#ifdef CONFIG_MEMCG
4773static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4774
4775static int __init setup_slub_memcg_sysfs(char *str)
4776{
4777 int v;
4778
4779 if (get_option(&str, &v) > 0)
4780 memcg_sysfs_enabled = v;
4781
4782 return 1;
4783}
4784
4785__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4786#endif
4787
4788static ssize_t show_slab_objects(struct kmem_cache *s,
4789 char *buf, unsigned long flags)
4790{
4791 unsigned long total = 0;
4792 int node;
4793 int x;
4794 unsigned long *nodes;
4795
4796 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4797 if (!nodes)
4798 return -ENOMEM;
4799
4800 if (flags & SO_CPU) {
4801 int cpu;
4802
4803 for_each_possible_cpu(cpu) {
4804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4805 cpu);
4806 int node;
4807 struct page *page;
4808
4809 page = READ_ONCE(c->page);
4810 if (!page)
4811 continue;
4812
4813 node = page_to_nid(page);
4814 if (flags & SO_TOTAL)
4815 x = page->objects;
4816 else if (flags & SO_OBJECTS)
4817 x = page->inuse;
4818 else
4819 x = 1;
4820
4821 total += x;
4822 nodes[node] += x;
4823
4824 page = slub_percpu_partial_read_once(c);
4825 if (page) {
4826 node = page_to_nid(page);
4827 if (flags & SO_TOTAL)
4828 WARN_ON_ONCE(1);
4829 else if (flags & SO_OBJECTS)
4830 WARN_ON_ONCE(1);
4831 else
4832 x = page->pages;
4833 total += x;
4834 nodes[node] += x;
4835 }
4836 }
4837 }
4838
4839 get_online_mems();
4840#ifdef CONFIG_SLUB_DEBUG
4841 if (flags & SO_ALL) {
4842 struct kmem_cache_node *n;
4843
4844 for_each_kmem_cache_node(s, node, n) {
4845
4846 if (flags & SO_TOTAL)
4847 x = atomic_long_read(&n->total_objects);
4848 else if (flags & SO_OBJECTS)
4849 x = atomic_long_read(&n->total_objects) -
4850 count_partial(n, count_free);
4851 else
4852 x = atomic_long_read(&n->nr_slabs);
4853 total += x;
4854 nodes[node] += x;
4855 }
4856
4857 } else
4858#endif
4859 if (flags & SO_PARTIAL) {
4860 struct kmem_cache_node *n;
4861
4862 for_each_kmem_cache_node(s, node, n) {
4863 if (flags & SO_TOTAL)
4864 x = count_partial(n, count_total);
4865 else if (flags & SO_OBJECTS)
4866 x = count_partial(n, count_inuse);
4867 else
4868 x = n->nr_partial;
4869 total += x;
4870 nodes[node] += x;
4871 }
4872 }
4873 x = sprintf(buf, "%lu", total);
4874#ifdef CONFIG_NUMA
4875 for (node = 0; node < nr_node_ids; node++)
4876 if (nodes[node])
4877 x += sprintf(buf + x, " N%d=%lu",
4878 node, nodes[node]);
4879#endif
4880 put_online_mems();
4881 kfree(nodes);
4882 return x + sprintf(buf + x, "\n");
4883}
4884
4885#ifdef CONFIG_SLUB_DEBUG
4886static int any_slab_objects(struct kmem_cache *s)
4887{
4888 int node;
4889 struct kmem_cache_node *n;
4890
4891 for_each_kmem_cache_node(s, node, n)
4892 if (atomic_long_read(&n->total_objects))
4893 return 1;
4894
4895 return 0;
4896}
4897#endif
4898
4899#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4900#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4901
4902struct slab_attribute {
4903 struct attribute attr;
4904 ssize_t (*show)(struct kmem_cache *s, char *buf);
4905 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4906};
4907
4908#define SLAB_ATTR_RO(_name) \
4909 static struct slab_attribute _name##_attr = \
4910 __ATTR(_name, 0400, _name##_show, NULL)
4911
4912#define SLAB_ATTR(_name) \
4913 static struct slab_attribute _name##_attr = \
4914 __ATTR(_name, 0600, _name##_show, _name##_store)
4915
4916static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4917{
4918 return sprintf(buf, "%u\n", s->size);
4919}
4920SLAB_ATTR_RO(slab_size);
4921
4922static ssize_t align_show(struct kmem_cache *s, char *buf)
4923{
4924 return sprintf(buf, "%u\n", s->align);
4925}
4926SLAB_ATTR_RO(align);
4927
4928static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4929{
4930 return sprintf(buf, "%u\n", s->object_size);
4931}
4932SLAB_ATTR_RO(object_size);
4933
4934static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4935{
4936 return sprintf(buf, "%u\n", oo_objects(s->oo));
4937}
4938SLAB_ATTR_RO(objs_per_slab);
4939
4940static ssize_t order_store(struct kmem_cache *s,
4941 const char *buf, size_t length)
4942{
4943 unsigned int order;
4944 int err;
4945
4946 err = kstrtouint(buf, 10, &order);
4947 if (err)
4948 return err;
4949
4950 if (order > slub_max_order || order < slub_min_order)
4951 return -EINVAL;
4952
4953 calculate_sizes(s, order);
4954 return length;
4955}
4956
4957static ssize_t order_show(struct kmem_cache *s, char *buf)
4958{
4959 return sprintf(buf, "%u\n", oo_order(s->oo));
4960}
4961SLAB_ATTR(order);
4962
4963static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4964{
4965 return sprintf(buf, "%lu\n", s->min_partial);
4966}
4967
4968static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4969 size_t length)
4970{
4971 unsigned long min;
4972 int err;
4973
4974 err = kstrtoul(buf, 10, &min);
4975 if (err)
4976 return err;
4977
4978 set_min_partial(s, min);
4979 return length;
4980}
4981SLAB_ATTR(min_partial);
4982
4983static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4984{
4985 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4986}
4987
4988static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4989 size_t length)
4990{
4991 unsigned int objects;
4992 int err;
4993
4994 err = kstrtouint(buf, 10, &objects);
4995 if (err)
4996 return err;
4997 if (objects && !kmem_cache_has_cpu_partial(s))
4998 return -EINVAL;
4999
5000 slub_set_cpu_partial(s, objects);
5001 flush_all(s);
5002 return length;
5003}
5004SLAB_ATTR(cpu_partial);
5005
5006static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5007{
5008 if (!s->ctor)
5009 return 0;
5010 return sprintf(buf, "%pS\n", s->ctor);
5011}
5012SLAB_ATTR_RO(ctor);
5013
5014static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5015{
5016 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5017}
5018SLAB_ATTR_RO(aliases);
5019
5020static ssize_t partial_show(struct kmem_cache *s, char *buf)
5021{
5022 return show_slab_objects(s, buf, SO_PARTIAL);
5023}
5024SLAB_ATTR_RO(partial);
5025
5026static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5027{
5028 return show_slab_objects(s, buf, SO_CPU);
5029}
5030SLAB_ATTR_RO(cpu_slabs);
5031
5032static ssize_t objects_show(struct kmem_cache *s, char *buf)
5033{
5034 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5035}
5036SLAB_ATTR_RO(objects);
5037
5038static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5039{
5040 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5041}
5042SLAB_ATTR_RO(objects_partial);
5043
5044static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5045{
5046 int objects = 0;
5047 int pages = 0;
5048 int cpu;
5049 int len;
5050
5051 for_each_online_cpu(cpu) {
5052 struct page *page;
5053
5054 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5055
5056 if (page) {
5057 pages += page->pages;
5058 objects += page->pobjects;
5059 }
5060 }
5061
5062 len = sprintf(buf, "%d(%d)", objects, pages);
5063
5064#ifdef CONFIG_SMP
5065 for_each_online_cpu(cpu) {
5066 struct page *page;
5067
5068 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5069
5070 if (page && len < PAGE_SIZE - 20)
5071 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5072 page->pobjects, page->pages);
5073 }
5074#endif
5075 return len + sprintf(buf + len, "\n");
5076}
5077SLAB_ATTR_RO(slabs_cpu_partial);
5078
5079static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5080{
5081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5082}
5083
5084static ssize_t reclaim_account_store(struct kmem_cache *s,
5085 const char *buf, size_t length)
5086{
5087 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5088 if (buf[0] == '1')
5089 s->flags |= SLAB_RECLAIM_ACCOUNT;
5090 return length;
5091}
5092SLAB_ATTR(reclaim_account);
5093
5094static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5095{
5096 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5097}
5098SLAB_ATTR_RO(hwcache_align);
5099
5100#ifdef CONFIG_ZONE_DMA
5101static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5102{
5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5104}
5105SLAB_ATTR_RO(cache_dma);
5106#endif
5107
5108static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5109{
5110 return sprintf(buf, "%u\n", s->usersize);
5111}
5112SLAB_ATTR_RO(usersize);
5113
5114static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5115{
5116 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5117}
5118SLAB_ATTR_RO(destroy_by_rcu);
5119
5120static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5121{
5122 return sprintf(buf, "%u\n", s->reserved);
5123}
5124SLAB_ATTR_RO(reserved);
5125
5126#ifdef CONFIG_SLUB_DEBUG
5127static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5128{
5129 return show_slab_objects(s, buf, SO_ALL);
5130}
5131SLAB_ATTR_RO(slabs);
5132
5133static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5134{
5135 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5136}
5137SLAB_ATTR_RO(total_objects);
5138
5139static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5140{
5141 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5142}
5143
5144static ssize_t sanity_checks_store(struct kmem_cache *s,
5145 const char *buf, size_t length)
5146{
5147 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5148 if (buf[0] == '1') {
5149 s->flags &= ~__CMPXCHG_DOUBLE;
5150 s->flags |= SLAB_CONSISTENCY_CHECKS;
5151 }
5152 return length;
5153}
5154SLAB_ATTR(sanity_checks);
5155
5156static ssize_t trace_show(struct kmem_cache *s, char *buf)
5157{
5158 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5159}
5160
5161static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5162 size_t length)
5163{
5164 /*
5165 * Tracing a merged cache is going to give confusing results
5166 * as well as cause other issues like converting a mergeable
5167 * cache into an umergeable one.
5168 */
5169 if (s->refcount > 1)
5170 return -EINVAL;
5171
5172 s->flags &= ~SLAB_TRACE;
5173 if (buf[0] == '1') {
5174 s->flags &= ~__CMPXCHG_DOUBLE;
5175 s->flags |= SLAB_TRACE;
5176 }
5177 return length;
5178}
5179SLAB_ATTR(trace);
5180
5181static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5182{
5183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5184}
5185
5186static ssize_t red_zone_store(struct kmem_cache *s,
5187 const char *buf, size_t length)
5188{
5189 if (any_slab_objects(s))
5190 return -EBUSY;
5191
5192 s->flags &= ~SLAB_RED_ZONE;
5193 if (buf[0] == '1') {
5194 s->flags |= SLAB_RED_ZONE;
5195 }
5196 calculate_sizes(s, -1);
5197 return length;
5198}
5199SLAB_ATTR(red_zone);
5200
5201static ssize_t poison_show(struct kmem_cache *s, char *buf)
5202{
5203 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5204}
5205
5206static ssize_t poison_store(struct kmem_cache *s,
5207 const char *buf, size_t length)
5208{
5209 if (any_slab_objects(s))
5210 return -EBUSY;
5211
5212 s->flags &= ~SLAB_POISON;
5213 if (buf[0] == '1') {
5214 s->flags |= SLAB_POISON;
5215 }
5216 calculate_sizes(s, -1);
5217 return length;
5218}
5219SLAB_ATTR(poison);
5220
5221static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5222{
5223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5224}
5225
5226static ssize_t store_user_store(struct kmem_cache *s,
5227 const char *buf, size_t length)
5228{
5229 if (any_slab_objects(s))
5230 return -EBUSY;
5231
5232 s->flags &= ~SLAB_STORE_USER;
5233 if (buf[0] == '1') {
5234 s->flags &= ~__CMPXCHG_DOUBLE;
5235 s->flags |= SLAB_STORE_USER;
5236 }
5237 calculate_sizes(s, -1);
5238 return length;
5239}
5240SLAB_ATTR(store_user);
5241
5242static ssize_t validate_show(struct kmem_cache *s, char *buf)
5243{
5244 return 0;
5245}
5246
5247static ssize_t validate_store(struct kmem_cache *s,
5248 const char *buf, size_t length)
5249{
5250 int ret = -EINVAL;
5251
5252 if (buf[0] == '1') {
5253 ret = validate_slab_cache(s);
5254 if (ret >= 0)
5255 ret = length;
5256 }
5257 return ret;
5258}
5259SLAB_ATTR(validate);
5260
5261static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5262{
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_ALLOC);
5266}
5267SLAB_ATTR_RO(alloc_calls);
5268
5269static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5270{
5271 if (!(s->flags & SLAB_STORE_USER))
5272 return -ENOSYS;
5273 return list_locations(s, buf, TRACK_FREE);
5274}
5275SLAB_ATTR_RO(free_calls);
5276#endif /* CONFIG_SLUB_DEBUG */
5277
5278#ifdef CONFIG_FAILSLAB
5279static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5280{
5281 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5282}
5283
5284static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5285 size_t length)
5286{
5287 if (s->refcount > 1)
5288 return -EINVAL;
5289
5290 s->flags &= ~SLAB_FAILSLAB;
5291 if (buf[0] == '1')
5292 s->flags |= SLAB_FAILSLAB;
5293 return length;
5294}
5295SLAB_ATTR(failslab);
5296#endif
5297
5298static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5299{
5300 return 0;
5301}
5302
5303static ssize_t shrink_store(struct kmem_cache *s,
5304 const char *buf, size_t length)
5305{
5306 if (buf[0] == '1')
5307 kmem_cache_shrink(s);
5308 else
5309 return -EINVAL;
5310 return length;
5311}
5312SLAB_ATTR(shrink);
5313
5314#ifdef CONFIG_NUMA
5315static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5316{
5317 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5318}
5319
5320static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5321 const char *buf, size_t length)
5322{
5323 unsigned int ratio;
5324 int err;
5325
5326 err = kstrtouint(buf, 10, &ratio);
5327 if (err)
5328 return err;
5329 if (ratio > 100)
5330 return -ERANGE;
5331
5332 s->remote_node_defrag_ratio = ratio * 10;
5333
5334 return length;
5335}
5336SLAB_ATTR(remote_node_defrag_ratio);
5337#endif
5338
5339#ifdef CONFIG_SLUB_STATS
5340static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5341{
5342 unsigned long sum = 0;
5343 int cpu;
5344 int len;
5345 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5346
5347 if (!data)
5348 return -ENOMEM;
5349
5350 for_each_online_cpu(cpu) {
5351 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5352
5353 data[cpu] = x;
5354 sum += x;
5355 }
5356
5357 len = sprintf(buf, "%lu", sum);
5358
5359#ifdef CONFIG_SMP
5360 for_each_online_cpu(cpu) {
5361 if (data[cpu] && len < PAGE_SIZE - 20)
5362 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5363 }
5364#endif
5365 kfree(data);
5366 return len + sprintf(buf + len, "\n");
5367}
5368
5369static void clear_stat(struct kmem_cache *s, enum stat_item si)
5370{
5371 int cpu;
5372
5373 for_each_online_cpu(cpu)
5374 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5375}
5376
5377#define STAT_ATTR(si, text) \
5378static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5379{ \
5380 return show_stat(s, buf, si); \
5381} \
5382static ssize_t text##_store(struct kmem_cache *s, \
5383 const char *buf, size_t length) \
5384{ \
5385 if (buf[0] != '0') \
5386 return -EINVAL; \
5387 clear_stat(s, si); \
5388 return length; \
5389} \
5390SLAB_ATTR(text); \
5391
5392STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5393STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5394STAT_ATTR(FREE_FASTPATH, free_fastpath);
5395STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5396STAT_ATTR(FREE_FROZEN, free_frozen);
5397STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5398STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5399STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5400STAT_ATTR(ALLOC_SLAB, alloc_slab);
5401STAT_ATTR(ALLOC_REFILL, alloc_refill);
5402STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5403STAT_ATTR(FREE_SLAB, free_slab);
5404STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5405STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5406STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5407STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5408STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5409STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5410STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5411STAT_ATTR(ORDER_FALLBACK, order_fallback);
5412STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5413STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5414STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5415STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5416STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5417STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5418#endif
5419
5420static struct attribute *slab_attrs[] = {
5421 &slab_size_attr.attr,
5422 &object_size_attr.attr,
5423 &objs_per_slab_attr.attr,
5424 &order_attr.attr,
5425 &min_partial_attr.attr,
5426 &cpu_partial_attr.attr,
5427 &objects_attr.attr,
5428 &objects_partial_attr.attr,
5429 &partial_attr.attr,
5430 &cpu_slabs_attr.attr,
5431 &ctor_attr.attr,
5432 &aliases_attr.attr,
5433 &align_attr.attr,
5434 &hwcache_align_attr.attr,
5435 &reclaim_account_attr.attr,
5436 &destroy_by_rcu_attr.attr,
5437 &shrink_attr.attr,
5438 &reserved_attr.attr,
5439 &slabs_cpu_partial_attr.attr,
5440#ifdef CONFIG_SLUB_DEBUG
5441 &total_objects_attr.attr,
5442 &slabs_attr.attr,
5443 &sanity_checks_attr.attr,
5444 &trace_attr.attr,
5445 &red_zone_attr.attr,
5446 &poison_attr.attr,
5447 &store_user_attr.attr,
5448 &validate_attr.attr,
5449 &alloc_calls_attr.attr,
5450 &free_calls_attr.attr,
5451#endif
5452#ifdef CONFIG_ZONE_DMA
5453 &cache_dma_attr.attr,
5454#endif
5455#ifdef CONFIG_NUMA
5456 &remote_node_defrag_ratio_attr.attr,
5457#endif
5458#ifdef CONFIG_SLUB_STATS
5459 &alloc_fastpath_attr.attr,
5460 &alloc_slowpath_attr.attr,
5461 &free_fastpath_attr.attr,
5462 &free_slowpath_attr.attr,
5463 &free_frozen_attr.attr,
5464 &free_add_partial_attr.attr,
5465 &free_remove_partial_attr.attr,
5466 &alloc_from_partial_attr.attr,
5467 &alloc_slab_attr.attr,
5468 &alloc_refill_attr.attr,
5469 &alloc_node_mismatch_attr.attr,
5470 &free_slab_attr.attr,
5471 &cpuslab_flush_attr.attr,
5472 &deactivate_full_attr.attr,
5473 &deactivate_empty_attr.attr,
5474 &deactivate_to_head_attr.attr,
5475 &deactivate_to_tail_attr.attr,
5476 &deactivate_remote_frees_attr.attr,
5477 &deactivate_bypass_attr.attr,
5478 &order_fallback_attr.attr,
5479 &cmpxchg_double_fail_attr.attr,
5480 &cmpxchg_double_cpu_fail_attr.attr,
5481 &cpu_partial_alloc_attr.attr,
5482 &cpu_partial_free_attr.attr,
5483 &cpu_partial_node_attr.attr,
5484 &cpu_partial_drain_attr.attr,
5485#endif
5486#ifdef CONFIG_FAILSLAB
5487 &failslab_attr.attr,
5488#endif
5489 &usersize_attr.attr,
5490
5491 NULL
5492};
5493
5494static const struct attribute_group slab_attr_group = {
5495 .attrs = slab_attrs,
5496};
5497
5498static ssize_t slab_attr_show(struct kobject *kobj,
5499 struct attribute *attr,
5500 char *buf)
5501{
5502 struct slab_attribute *attribute;
5503 struct kmem_cache *s;
5504 int err;
5505
5506 attribute = to_slab_attr(attr);
5507 s = to_slab(kobj);
5508
5509 if (!attribute->show)
5510 return -EIO;
5511
5512 err = attribute->show(s, buf);
5513
5514 return err;
5515}
5516
5517static ssize_t slab_attr_store(struct kobject *kobj,
5518 struct attribute *attr,
5519 const char *buf, size_t len)
5520{
5521 struct slab_attribute *attribute;
5522 struct kmem_cache *s;
5523 int err;
5524
5525 attribute = to_slab_attr(attr);
5526 s = to_slab(kobj);
5527
5528 if (!attribute->store)
5529 return -EIO;
5530
5531 err = attribute->store(s, buf, len);
5532#ifdef CONFIG_MEMCG
5533 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5534 struct kmem_cache *c;
5535
5536 mutex_lock(&slab_mutex);
5537 if (s->max_attr_size < len)
5538 s->max_attr_size = len;
5539
5540 /*
5541 * This is a best effort propagation, so this function's return
5542 * value will be determined by the parent cache only. This is
5543 * basically because not all attributes will have a well
5544 * defined semantics for rollbacks - most of the actions will
5545 * have permanent effects.
5546 *
5547 * Returning the error value of any of the children that fail
5548 * is not 100 % defined, in the sense that users seeing the
5549 * error code won't be able to know anything about the state of
5550 * the cache.
5551 *
5552 * Only returning the error code for the parent cache at least
5553 * has well defined semantics. The cache being written to
5554 * directly either failed or succeeded, in which case we loop
5555 * through the descendants with best-effort propagation.
5556 */
5557 for_each_memcg_cache(c, s)
5558 attribute->store(c, buf, len);
5559 mutex_unlock(&slab_mutex);
5560 }
5561#endif
5562 return err;
5563}
5564
5565static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5566{
5567#ifdef CONFIG_MEMCG
5568 int i;
5569 char *buffer = NULL;
5570 struct kmem_cache *root_cache;
5571
5572 if (is_root_cache(s))
5573 return;
5574
5575 root_cache = s->memcg_params.root_cache;
5576
5577 /*
5578 * This mean this cache had no attribute written. Therefore, no point
5579 * in copying default values around
5580 */
5581 if (!root_cache->max_attr_size)
5582 return;
5583
5584 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5585 char mbuf[64];
5586 char *buf;
5587 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5588 ssize_t len;
5589
5590 if (!attr || !attr->store || !attr->show)
5591 continue;
5592
5593 /*
5594 * It is really bad that we have to allocate here, so we will
5595 * do it only as a fallback. If we actually allocate, though,
5596 * we can just use the allocated buffer until the end.
5597 *
5598 * Most of the slub attributes will tend to be very small in
5599 * size, but sysfs allows buffers up to a page, so they can
5600 * theoretically happen.
5601 */
5602 if (buffer)
5603 buf = buffer;
5604 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5605 buf = mbuf;
5606 else {
5607 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5608 if (WARN_ON(!buffer))
5609 continue;
5610 buf = buffer;
5611 }
5612
5613 len = attr->show(root_cache, buf);
5614 if (len > 0)
5615 attr->store(s, buf, len);
5616 }
5617
5618 if (buffer)
5619 free_page((unsigned long)buffer);
5620#endif
5621}
5622
5623static void kmem_cache_release(struct kobject *k)
5624{
5625 slab_kmem_cache_release(to_slab(k));
5626}
5627
5628static const struct sysfs_ops slab_sysfs_ops = {
5629 .show = slab_attr_show,
5630 .store = slab_attr_store,
5631};
5632
5633static struct kobj_type slab_ktype = {
5634 .sysfs_ops = &slab_sysfs_ops,
5635 .release = kmem_cache_release,
5636};
5637
5638static int uevent_filter(struct kset *kset, struct kobject *kobj)
5639{
5640 struct kobj_type *ktype = get_ktype(kobj);
5641
5642 if (ktype == &slab_ktype)
5643 return 1;
5644 return 0;
5645}
5646
5647static const struct kset_uevent_ops slab_uevent_ops = {
5648 .filter = uevent_filter,
5649};
5650
5651static struct kset *slab_kset;
5652
5653static inline struct kset *cache_kset(struct kmem_cache *s)
5654{
5655#ifdef CONFIG_MEMCG
5656 if (!is_root_cache(s))
5657 return s->memcg_params.root_cache->memcg_kset;
5658#endif
5659 return slab_kset;
5660}
5661
5662#define ID_STR_LENGTH 64
5663
5664/* Create a unique string id for a slab cache:
5665 *
5666 * Format :[flags-]size
5667 */
5668static char *create_unique_id(struct kmem_cache *s)
5669{
5670 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5671 char *p = name;
5672
5673 BUG_ON(!name);
5674
5675 *p++ = ':';
5676 /*
5677 * First flags affecting slabcache operations. We will only
5678 * get here for aliasable slabs so we do not need to support
5679 * too many flags. The flags here must cover all flags that
5680 * are matched during merging to guarantee that the id is
5681 * unique.
5682 */
5683 if (s->flags & SLAB_CACHE_DMA)
5684 *p++ = 'd';
5685 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5686 *p++ = 'a';
5687 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5688 *p++ = 'F';
5689 if (s->flags & SLAB_ACCOUNT)
5690 *p++ = 'A';
5691 if (p != name + 1)
5692 *p++ = '-';
5693 p += sprintf(p, "%07u", s->size);
5694
5695 BUG_ON(p > name + ID_STR_LENGTH - 1);
5696 return name;
5697}
5698
5699static void sysfs_slab_remove_workfn(struct work_struct *work)
5700{
5701 struct kmem_cache *s =
5702 container_of(work, struct kmem_cache, kobj_remove_work);
5703
5704 if (!s->kobj.state_in_sysfs)
5705 /*
5706 * For a memcg cache, this may be called during
5707 * deactivation and again on shutdown. Remove only once.
5708 * A cache is never shut down before deactivation is
5709 * complete, so no need to worry about synchronization.
5710 */
5711 goto out;
5712
5713#ifdef CONFIG_MEMCG
5714 kset_unregister(s->memcg_kset);
5715#endif
5716 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5717 kobject_del(&s->kobj);
5718out:
5719 kobject_put(&s->kobj);
5720}
5721
5722static int sysfs_slab_add(struct kmem_cache *s)
5723{
5724 int err;
5725 const char *name;
5726 struct kset *kset = cache_kset(s);
5727 int unmergeable = slab_unmergeable(s);
5728
5729 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5730
5731 if (!kset) {
5732 kobject_init(&s->kobj, &slab_ktype);
5733 return 0;
5734 }
5735
5736 if (!unmergeable && disable_higher_order_debug &&
5737 (slub_debug & DEBUG_METADATA_FLAGS))
5738 unmergeable = 1;
5739
5740 if (unmergeable) {
5741 /*
5742 * Slabcache can never be merged so we can use the name proper.
5743 * This is typically the case for debug situations. In that
5744 * case we can catch duplicate names easily.
5745 */
5746 sysfs_remove_link(&slab_kset->kobj, s->name);
5747 name = s->name;
5748 } else {
5749 /*
5750 * Create a unique name for the slab as a target
5751 * for the symlinks.
5752 */
5753 name = create_unique_id(s);
5754 }
5755
5756 s->kobj.kset = kset;
5757 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5758 if (err)
5759 goto out;
5760
5761 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5762 if (err)
5763 goto out_del_kobj;
5764
5765#ifdef CONFIG_MEMCG
5766 if (is_root_cache(s) && memcg_sysfs_enabled) {
5767 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5768 if (!s->memcg_kset) {
5769 err = -ENOMEM;
5770 goto out_del_kobj;
5771 }
5772 }
5773#endif
5774
5775 kobject_uevent(&s->kobj, KOBJ_ADD);
5776 if (!unmergeable) {
5777 /* Setup first alias */
5778 sysfs_slab_alias(s, s->name);
5779 }
5780out:
5781 if (!unmergeable)
5782 kfree(name);
5783 return err;
5784out_del_kobj:
5785 kobject_del(&s->kobj);
5786 goto out;
5787}
5788
5789static void sysfs_slab_remove(struct kmem_cache *s)
5790{
5791 if (slab_state < FULL)
5792 /*
5793 * Sysfs has not been setup yet so no need to remove the
5794 * cache from sysfs.
5795 */
5796 return;
5797
5798 kobject_get(&s->kobj);
5799 schedule_work(&s->kobj_remove_work);
5800}
5801
5802void sysfs_slab_release(struct kmem_cache *s)
5803{
5804 if (slab_state >= FULL)
5805 kobject_put(&s->kobj);
5806}
5807
5808/*
5809 * Need to buffer aliases during bootup until sysfs becomes
5810 * available lest we lose that information.
5811 */
5812struct saved_alias {
5813 struct kmem_cache *s;
5814 const char *name;
5815 struct saved_alias *next;
5816};
5817
5818static struct saved_alias *alias_list;
5819
5820static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5821{
5822 struct saved_alias *al;
5823
5824 if (slab_state == FULL) {
5825 /*
5826 * If we have a leftover link then remove it.
5827 */
5828 sysfs_remove_link(&slab_kset->kobj, name);
5829 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5830 }
5831
5832 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5833 if (!al)
5834 return -ENOMEM;
5835
5836 al->s = s;
5837 al->name = name;
5838 al->next = alias_list;
5839 alias_list = al;
5840 return 0;
5841}
5842
5843static int __init slab_sysfs_init(void)
5844{
5845 struct kmem_cache *s;
5846 int err;
5847
5848 mutex_lock(&slab_mutex);
5849
5850 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5851 if (!slab_kset) {
5852 mutex_unlock(&slab_mutex);
5853 pr_err("Cannot register slab subsystem.\n");
5854 return -ENOSYS;
5855 }
5856
5857 slab_state = FULL;
5858
5859 list_for_each_entry(s, &slab_caches, list) {
5860 err = sysfs_slab_add(s);
5861 if (err)
5862 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5863 s->name);
5864 }
5865
5866 while (alias_list) {
5867 struct saved_alias *al = alias_list;
5868
5869 alias_list = alias_list->next;
5870 err = sysfs_slab_alias(al->s, al->name);
5871 if (err)
5872 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5873 al->name);
5874 kfree(al);
5875 }
5876
5877 mutex_unlock(&slab_mutex);
5878 resiliency_test();
5879 return 0;
5880}
5881
5882__initcall(slab_sysfs_init);
5883#endif /* CONFIG_SYSFS */
5884
5885/*
5886 * The /proc/slabinfo ABI
5887 */
5888#ifdef CONFIG_SLUB_DEBUG
5889void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5890{
5891 unsigned long nr_slabs = 0;
5892 unsigned long nr_objs = 0;
5893 unsigned long nr_free = 0;
5894 int node;
5895 struct kmem_cache_node *n;
5896
5897 for_each_kmem_cache_node(s, node, n) {
5898 nr_slabs += node_nr_slabs(n);
5899 nr_objs += node_nr_objs(n);
5900 nr_free += count_partial(n, count_free);
5901 }
5902
5903 sinfo->active_objs = nr_objs - nr_free;
5904 sinfo->num_objs = nr_objs;
5905 sinfo->active_slabs = nr_slabs;
5906 sinfo->num_slabs = nr_slabs;
5907 sinfo->objects_per_slab = oo_objects(s->oo);
5908 sinfo->cache_order = oo_order(s->oo);
5909}
5910
5911void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5912{
5913}
5914
5915ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5916 size_t count, loff_t *ppos)
5917{
5918 return -EIO;
5919}
5920#endif /* CONFIG_SLUB_DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
29#include <linux/debugobjects.h>
30#include <linux/kallsyms.h>
31#include <linux/kfence.h>
32#include <linux/memory.h>
33#include <linux/math64.h>
34#include <linux/fault-inject.h>
35#include <linux/stacktrace.h>
36#include <linux/prefetch.h>
37#include <linux/memcontrol.h>
38#include <linux/random.h>
39#include <kunit/test.h>
40
41#include <linux/debugfs.h>
42#include <trace/events/kmem.h>
43
44#include "internal.h"
45
46/*
47 * Lock order:
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
51 *
52 * slab_mutex
53 *
54 * The role of the slab_mutex is to protect the list of all the slabs
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
58 * have the ability to do a cmpxchg_double. It only protects:
59 * A. page->freelist -> List of object free in a page
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
92 * freed then the slab will show up again on the partial lists.
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
100 * page->frozen The slab is frozen and exempt from list processing.
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
112 * freelist that allows lockless access to
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
115 *
116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
117 * options set. This moves slab handling out of
118 * the fast path and disables lockless freelists.
119 */
120
121#ifdef CONFIG_SLUB_DEBUG
122#ifdef CONFIG_SLUB_DEBUG_ON
123DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124#else
125DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126#endif
127#endif /* CONFIG_SLUB_DEBUG */
128
129static inline bool kmem_cache_debug(struct kmem_cache *s)
130{
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132}
133
134void *fixup_red_left(struct kmem_cache *s, void *p)
135{
136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 p += s->red_left_pad;
138
139 return p;
140}
141
142static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143{
144#ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146#else
147 return false;
148#endif
149}
150
151/*
152 * Issues still to be resolved:
153 *
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
156 * - Variable sizing of the per node arrays
157 */
158
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
162/*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166#define MIN_PARTIAL 5
167
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173#define MAX_PARTIAL 10
174
175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186/*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197/* Internal SLUB flags */
198/* Poison object */
199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200/* Use cmpxchg_double */
201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203/*
204 * Tracking user of a slab.
205 */
206#define TRACK_ADDRS_COUNT 16
207struct track {
208 unsigned long addr; /* Called from address */
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219#ifdef CONFIG_SYSFS
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
222#else
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226#endif
227
228#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229static void debugfs_slab_add(struct kmem_cache *);
230#else
231static inline void debugfs_slab_add(struct kmem_cache *s) { }
232#endif
233
234static inline void stat(const struct kmem_cache *s, enum stat_item si)
235{
236#ifdef CONFIG_SLUB_STATS
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
242#endif
243}
244
245/*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251static nodemask_t slab_nodes;
252
253/********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
257/*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264{
265#ifdef CONFIG_SLAB_FREELIST_HARDENED
266 /*
267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278#else
279 return ptr;
280#endif
281}
282
283/* Returns the freelist pointer recorded at location ptr_addr. */
284static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286{
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289}
290
291static inline void *get_freepointer(struct kmem_cache *s, void *object)
292{
293 object = kasan_reset_tag(object);
294 return freelist_dereference(s, object + s->offset);
295}
296
297static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298{
299 prefetch(object + s->offset);
300}
301
302static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303{
304 unsigned long freepointer_addr;
305 void *p;
306
307 if (!debug_pagealloc_enabled_static())
308 return get_freepointer(s, object);
309
310 object = kasan_reset_tag(object);
311 freepointer_addr = (unsigned long)object + s->offset;
312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 return freelist_ptr(s, p, freepointer_addr);
314}
315
316static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317{
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
320#ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322#endif
323
324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326}
327
328/* Loop over all objects in a slab */
329#define for_each_object(__p, __s, __addr, __objects) \
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
333
334static inline unsigned int order_objects(unsigned int order, unsigned int size)
335{
336 return ((unsigned int)PAGE_SIZE << order) / size;
337}
338
339static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 unsigned int size)
341{
342 struct kmem_cache_order_objects x = {
343 (order << OO_SHIFT) + order_objects(order, size)
344 };
345
346 return x;
347}
348
349static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350{
351 return x.x >> OO_SHIFT;
352}
353
354static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355{
356 return x.x & OO_MASK;
357}
358
359/*
360 * Per slab locking using the pagelock
361 */
362static __always_inline void slab_lock(struct page *page)
363{
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 bit_spin_lock(PG_locked, &page->flags);
366}
367
368static __always_inline void slab_unlock(struct page *page)
369{
370 VM_BUG_ON_PAGE(PageTail(page), page);
371 __bit_spin_unlock(PG_locked, &page->flags);
372}
373
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389#endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 page->counters = counters_new;
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407#endif
408
409 return false;
410}
411
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425#endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 page->counters = counters_new;
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448#endif
449
450 return false;
451}
452
453#ifdef CONFIG_SLUB_DEBUG
454static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455static DEFINE_SPINLOCK(object_map_lock);
456
457#if IS_ENABLED(CONFIG_KUNIT)
458static bool slab_add_kunit_errors(void)
459{
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472}
473#else
474static inline bool slab_add_kunit_errors(void) { return false; }
475#endif
476
477/*
478 * Determine a map of object in use on a page.
479 *
480 * Node listlock must be held to guarantee that the page does
481 * not vanish from under us.
482 */
483static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 __acquires(&object_map_lock)
485{
486 void *p;
487 void *addr = page_address(page);
488
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
495 for (p = page->freelist; p; p = get_freepointer(s, p))
496 set_bit(__obj_to_index(s, addr, p), object_map);
497
498 return object_map;
499}
500
501static void put_map(unsigned long *map) __releases(&object_map_lock)
502{
503 VM_BUG_ON(map != object_map);
504 spin_unlock(&object_map_lock);
505}
506
507static inline unsigned int size_from_object(struct kmem_cache *s)
508{
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513}
514
515static inline void *restore_red_left(struct kmem_cache *s, void *p)
516{
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521}
522
523/*
524 * Debug settings:
525 */
526#if defined(CONFIG_SLUB_DEBUG_ON)
527static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528#else
529static slab_flags_t slub_debug;
530#endif
531
532static char *slub_debug_string;
533static int disable_higher_order_debug;
534
535/*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541static inline void metadata_access_enable(void)
542{
543 kasan_disable_current();
544}
545
546static inline void metadata_access_disable(void)
547{
548 kasan_enable_current();
549}
550
551/*
552 * Object debugging
553 */
554
555/* Verify that a pointer has an address that is valid within a slab page */
556static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558{
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
565 object = kasan_reset_tag(object);
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573}
574
575static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
577{
578 metadata_access_enable();
579 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
580 16, 1, kasan_reset_tag((void *)addr), length, 1);
581 metadata_access_disable();
582}
583
584/*
585 * See comment in calculate_sizes().
586 */
587static inline bool freeptr_outside_object(struct kmem_cache *s)
588{
589 return s->offset >= s->inuse;
590}
591
592/*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596static inline unsigned int get_info_end(struct kmem_cache *s)
597{
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602}
603
604static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606{
607 struct track *p;
608
609 p = object + get_info_end(s);
610
611 return kasan_reset_tag(p + alloc);
612}
613
614static void set_track(struct kmem_cache *s, void *object,
615 enum track_item alloc, unsigned long addr)
616{
617 struct track *p = get_track(s, object, alloc);
618
619 if (addr) {
620#ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
630#endif
631 p->addr = addr;
632 p->cpu = smp_processor_id();
633 p->pid = current->pid;
634 p->when = jiffies;
635 } else {
636 memset(p, 0, sizeof(struct track));
637 }
638}
639
640static void init_tracking(struct kmem_cache *s, void *object)
641{
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
647}
648
649static void print_track(const char *s, struct track *t, unsigned long pr_time)
650{
651 if (!t->addr)
652 return;
653
654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656#ifdef CONFIG_STACKTRACE
657 {
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
664 }
665#endif
666}
667
668void print_tracking(struct kmem_cache *s, void *object)
669{
670 unsigned long pr_time = jiffies;
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676}
677
678static void print_page_info(struct page *page)
679{
680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
683
684}
685
686static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687{
688 struct va_format vaf;
689 va_list args;
690
691 va_start(args, fmt);
692 vaf.fmt = fmt;
693 vaf.va = &args;
694 pr_err("=============================================================================\n");
695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 pr_err("-----------------------------------------------------------------------------\n\n");
697 va_end(args);
698}
699
700__printf(2, 3)
701static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702{
703 struct va_format vaf;
704 va_list args;
705
706 if (slab_add_kunit_errors())
707 return;
708
709 va_start(args, fmt);
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
713 va_end(args);
714}
715
716static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 void **freelist, void *nextfree)
718{
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728}
729
730static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731{
732 unsigned int off; /* Offset of last byte */
733 u8 *addr = page_address(page);
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 p, p - addr, get_freepointer(s, p));
741
742 if (s->flags & SLAB_RED_ZONE)
743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
744 s->red_left_pad);
745 else if (p > addr + 16)
746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747
748 print_section(KERN_ERR, "Object ", p,
749 min_t(unsigned int, s->object_size, PAGE_SIZE));
750 if (s->flags & SLAB_RED_ZONE)
751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
752 s->inuse - s->object_size);
753
754 off = get_info_end(s);
755
756 if (s->flags & SLAB_STORE_USER)
757 off += 2 * sizeof(struct track);
758
759 off += kasan_metadata_size(s);
760
761 if (off != size_from_object(s))
762 /* Beginning of the filler is the free pointer */
763 print_section(KERN_ERR, "Padding ", p + off,
764 size_from_object(s) - off);
765
766 dump_stack();
767}
768
769void object_err(struct kmem_cache *s, struct page *page,
770 u8 *object, char *reason)
771{
772 if (slab_add_kunit_errors())
773 return;
774
775 slab_bug(s, "%s", reason);
776 print_trailer(s, page, object);
777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778}
779
780static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 const char *fmt, ...)
782{
783 va_list args;
784 char buf[100];
785
786 if (slab_add_kunit_errors())
787 return;
788
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
791 va_end(args);
792 slab_bug(s, "%s", buf);
793 print_page_info(page);
794 dump_stack();
795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796}
797
798static void init_object(struct kmem_cache *s, void *object, u8 val)
799{
800 u8 *p = kasan_reset_tag(object);
801
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
805 if (s->flags & __OBJECT_POISON) {
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
811 memset(p + s->object_size, val, s->inuse - s->object_size);
812}
813
814static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816{
817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 memset(from, data, to - from);
819}
820
821static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
823 u8 *start, unsigned int value, unsigned int bytes)
824{
825 u8 *fault;
826 u8 *end;
827 u8 *addr = page_address(page);
828
829 metadata_access_enable();
830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 metadata_access_disable();
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
842 slab_bug(s, "%s overwritten", what);
843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 fault, end - 1, fault - addr,
845 fault[0], value);
846 print_trailer(s, page, object);
847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848
849skip_bug_print:
850 restore_bytes(s, what, value, fault, end);
851 return 0;
852}
853
854/*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
860 * pointer is at the middle of the object.
861 *
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
865 * object + s->object_size
866 * Padding to reach word boundary. This is also used for Redzoning.
867 * Padding is extended by another word if Redzoning is enabled and
868 * object_size == inuse.
869 *
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
874 * Meta data starts here.
875 *
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
878 * C. Padding to reach required alignment boundary or at minimum
879 * one word if debugging is on to be able to detect writes
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
883 *
884 * object + s->size
885 * Nothing is used beyond s->size.
886 *
887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
888 * ignored. And therefore no slab options that rely on these boundaries
889 * may be used with merged slabcaches.
890 */
891
892static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893{
894 unsigned long off = get_info_end(s); /* The end of info */
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
900 off += kasan_metadata_size(s);
901
902 if (size_from_object(s) == off)
903 return 1;
904
905 return check_bytes_and_report(s, page, p, "Object padding",
906 p + off, POISON_INUSE, size_from_object(s) - off);
907}
908
909/* Check the pad bytes at the end of a slab page */
910static int slab_pad_check(struct kmem_cache *s, struct page *page)
911{
912 u8 *start;
913 u8 *fault;
914 u8 *end;
915 u8 *pad;
916 int length;
917 int remainder;
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
922 start = page_address(page);
923 length = page_size(page);
924 end = start + length;
925 remainder = length % s->size;
926 if (!remainder)
927 return 1;
928
929 pad = end - remainder;
930 metadata_access_enable();
931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 metadata_access_disable();
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
940 print_section(KERN_ERR, "Padding ", pad, remainder);
941
942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 return 0;
944}
945
946static int check_object(struct kmem_cache *s, struct page *page,
947 void *object, u8 val)
948{
949 u8 *p = object;
950 u8 *endobject = object + s->object_size;
951
952 if (s->flags & SLAB_RED_ZONE) {
953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 endobject, val, s->inuse - s->object_size))
959 return 0;
960 } else {
961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 check_bytes_and_report(s, page, p, "Alignment padding",
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
965 }
966 }
967
968 if (s->flags & SLAB_POISON) {
969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 (!check_bytes_and_report(s, page, p, "Poison", p,
971 POISON_FREE, s->object_size - 1) ||
972 !check_bytes_and_report(s, page, p, "End Poison",
973 p + s->object_size - 1, POISON_END, 1)))
974 return 0;
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
992 * No choice but to zap it and thus lose the remainder
993 * of the free objects in this slab. May cause
994 * another error because the object count is now wrong.
995 */
996 set_freepointer(s, p, NULL);
997 return 0;
998 }
999 return 1;
1000}
1001
1002static int check_slab(struct kmem_cache *s, struct page *page)
1003{
1004 int maxobj;
1005
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
1009 slab_err(s, page, "Not a valid slab page");
1010 return 0;
1011 }
1012
1013 maxobj = order_objects(compound_order(page), s->size);
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
1016 page->objects, maxobj);
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
1020 slab_err(s, page, "inuse %u > max %u",
1021 page->inuse, page->objects);
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027}
1028
1029/*
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
1032 */
1033static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034{
1035 int nr = 0;
1036 void *fp;
1037 void *object = NULL;
1038 int max_objects;
1039
1040 fp = page->freelist;
1041 while (fp && nr <= page->objects) {
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
1048 set_freepointer(s, object, NULL);
1049 } else {
1050 slab_err(s, page, "Freepointer corrupt");
1051 page->freelist = NULL;
1052 page->inuse = page->objects;
1053 slab_fix(s, "Freelist cleared");
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
1063 max_objects = order_objects(compound_order(page), s->size);
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
1066
1067 if (page->objects != max_objects) {
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
1070 page->objects = max_objects;
1071 slab_fix(s, "Number of objects adjusted");
1072 }
1073 if (page->inuse != page->objects - nr) {
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
1076 page->inuse = page->objects - nr;
1077 slab_fix(s, "Object count adjusted");
1078 }
1079 return search == NULL;
1080}
1081
1082static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
1084{
1085 if (s->flags & SLAB_TRACE) {
1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
1093 print_section(KERN_INFO, "Object ", (void *)object,
1094 s->object_size);
1095
1096 dump_stack();
1097 }
1098}
1099
1100/*
1101 * Tracking of fully allocated slabs for debugging purposes.
1102 */
1103static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
1105{
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
1109 lockdep_assert_held(&n->list_lock);
1110 list_add(&page->slab_list, &n->full);
1111}
1112
1113static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114{
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
1118 lockdep_assert_held(&n->list_lock);
1119 list_del(&page->slab_list);
1120}
1121
1122/* Tracking of the number of slabs for debugging purposes */
1123static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124{
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128}
1129
1130static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131{
1132 return atomic_long_read(&n->nr_slabs);
1133}
1134
1135static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136{
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
1145 if (likely(n)) {
1146 atomic_long_inc(&n->nr_slabs);
1147 atomic_long_add(objects, &n->total_objects);
1148 }
1149}
1150static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151{
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
1155 atomic_long_sub(objects, &n->total_objects);
1156}
1157
1158/* Object debug checks for alloc/free paths */
1159static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161{
1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 return;
1164
1165 init_object(s, object, SLUB_RED_INACTIVE);
1166 init_tracking(s, object);
1167}
1168
1169static
1170void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171{
1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 return;
1174
1175 metadata_access_enable();
1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 metadata_access_disable();
1178}
1179
1180static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object)
1182{
1183 if (!check_slab(s, page))
1184 return 0;
1185
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
1188 return 0;
1189 }
1190
1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 return 0;
1193
1194 return 1;
1195}
1196
1197static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200{
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 if (!alloc_consistency_checks(s, page, object))
1203 goto bad;
1204 }
1205
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
1210 init_object(s, object, SLUB_RED_ACTIVE);
1211 return 1;
1212
1213bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
1218 * as used avoids touching the remaining objects.
1219 */
1220 slab_fix(s, "Marking all objects used");
1221 page->inuse = page->objects;
1222 page->freelist = NULL;
1223 }
1224 return 0;
1225}
1226
1227static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
1229{
1230 if (!check_valid_pointer(s, page, object)) {
1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 return 0;
1233 }
1234
1235 if (on_freelist(s, page, object)) {
1236 object_err(s, page, object, "Object already free");
1237 return 0;
1238 }
1239
1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 return 0;
1242
1243 if (unlikely(s != page->slab_cache)) {
1244 if (!PageSlab(page)) {
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1247 } else if (!page->slab_cache) {
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
1250 dump_stack();
1251 } else
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
1254 return 0;
1255 }
1256 return 1;
1257}
1258
1259/* Supports checking bulk free of a constructed freelist */
1260static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264{
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
1268 unsigned long flags;
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
1285 }
1286
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 init_object(s, object, SLUB_RED_INACTIVE);
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
1298 ret = 1;
1299
1300out:
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
1305 slab_unlock(page);
1306 spin_unlock_irqrestore(&n->list_lock, flags);
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
1310}
1311
1312/*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322static char *
1323parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324{
1325 bool higher_order_disable = false;
1326
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
1336 *flags = DEBUG_DEFAULT_FLAGS;
1337 goto check_slabs;
1338 }
1339 *flags = 0;
1340
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
1343 switch (tolower(*str)) {
1344 case '-':
1345 *flags = 0;
1346 break;
1347 case 'f':
1348 *flags |= SLAB_CONSISTENCY_CHECKS;
1349 break;
1350 case 'z':
1351 *flags |= SLAB_RED_ZONE;
1352 break;
1353 case 'p':
1354 *flags |= SLAB_POISON;
1355 break;
1356 case 'u':
1357 *flags |= SLAB_STORE_USER;
1358 break;
1359 case 't':
1360 *flags |= SLAB_TRACE;
1361 break;
1362 case 'a':
1363 *flags |= SLAB_FAILSLAB;
1364 break;
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
1370 higher_order_disable = true;
1371 break;
1372 default:
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 }
1376 }
1377check_slabs:
1378 if (*str == ',')
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398}
1399
1400static int __init setup_slub_debug(char *str)
1401{
1402 slab_flags_t flags;
1403 slab_flags_t global_flags;
1404 char *saved_str;
1405 char *slab_list;
1406 bool global_slub_debug_changed = false;
1407 bool slab_list_specified = false;
1408
1409 global_flags = DEBUG_DEFAULT_FLAGS;
1410 if (*str++ != '=' || !*str)
1411 /*
1412 * No options specified. Switch on full debugging.
1413 */
1414 goto out;
1415
1416 saved_str = str;
1417 while (str) {
1418 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1419
1420 if (!slab_list) {
1421 global_flags = flags;
1422 global_slub_debug_changed = true;
1423 } else {
1424 slab_list_specified = true;
1425 }
1426 }
1427
1428 /*
1429 * For backwards compatibility, a single list of flags with list of
1430 * slabs means debugging is only changed for those slabs, so the global
1431 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1432 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1433 * long as there is no option specifying flags without a slab list.
1434 */
1435 if (slab_list_specified) {
1436 if (!global_slub_debug_changed)
1437 global_flags = slub_debug;
1438 slub_debug_string = saved_str;
1439 }
1440out:
1441 slub_debug = global_flags;
1442 if (slub_debug != 0 || slub_debug_string)
1443 static_branch_enable(&slub_debug_enabled);
1444 else
1445 static_branch_disable(&slub_debug_enabled);
1446 if ((static_branch_unlikely(&init_on_alloc) ||
1447 static_branch_unlikely(&init_on_free)) &&
1448 (slub_debug & SLAB_POISON))
1449 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1450 return 1;
1451}
1452
1453__setup("slub_debug", setup_slub_debug);
1454
1455/*
1456 * kmem_cache_flags - apply debugging options to the cache
1457 * @object_size: the size of an object without meta data
1458 * @flags: flags to set
1459 * @name: name of the cache
1460 *
1461 * Debug option(s) are applied to @flags. In addition to the debug
1462 * option(s), if a slab name (or multiple) is specified i.e.
1463 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1464 * then only the select slabs will receive the debug option(s).
1465 */
1466slab_flags_t kmem_cache_flags(unsigned int object_size,
1467 slab_flags_t flags, const char *name)
1468{
1469 char *iter;
1470 size_t len;
1471 char *next_block;
1472 slab_flags_t block_flags;
1473 slab_flags_t slub_debug_local = slub_debug;
1474
1475 /*
1476 * If the slab cache is for debugging (e.g. kmemleak) then
1477 * don't store user (stack trace) information by default,
1478 * but let the user enable it via the command line below.
1479 */
1480 if (flags & SLAB_NOLEAKTRACE)
1481 slub_debug_local &= ~SLAB_STORE_USER;
1482
1483 len = strlen(name);
1484 next_block = slub_debug_string;
1485 /* Go through all blocks of debug options, see if any matches our slab's name */
1486 while (next_block) {
1487 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1488 if (!iter)
1489 continue;
1490 /* Found a block that has a slab list, search it */
1491 while (*iter) {
1492 char *end, *glob;
1493 size_t cmplen;
1494
1495 end = strchrnul(iter, ',');
1496 if (next_block && next_block < end)
1497 end = next_block - 1;
1498
1499 glob = strnchr(iter, end - iter, '*');
1500 if (glob)
1501 cmplen = glob - iter;
1502 else
1503 cmplen = max_t(size_t, len, (end - iter));
1504
1505 if (!strncmp(name, iter, cmplen)) {
1506 flags |= block_flags;
1507 return flags;
1508 }
1509
1510 if (!*end || *end == ';')
1511 break;
1512 iter = end + 1;
1513 }
1514 }
1515
1516 return flags | slub_debug_local;
1517}
1518#else /* !CONFIG_SLUB_DEBUG */
1519static inline void setup_object_debug(struct kmem_cache *s,
1520 struct page *page, void *object) {}
1521static inline
1522void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1523
1524static inline int alloc_debug_processing(struct kmem_cache *s,
1525 struct page *page, void *object, unsigned long addr) { return 0; }
1526
1527static inline int free_debug_processing(
1528 struct kmem_cache *s, struct page *page,
1529 void *head, void *tail, int bulk_cnt,
1530 unsigned long addr) { return 0; }
1531
1532static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1533 { return 1; }
1534static inline int check_object(struct kmem_cache *s, struct page *page,
1535 void *object, u8 val) { return 1; }
1536static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1537 struct page *page) {}
1538static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct page *page) {}
1540slab_flags_t kmem_cache_flags(unsigned int object_size,
1541 slab_flags_t flags, const char *name)
1542{
1543 return flags;
1544}
1545#define slub_debug 0
1546
1547#define disable_higher_order_debug 0
1548
1549static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1550 { return 0; }
1551static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1552 { return 0; }
1553static inline void inc_slabs_node(struct kmem_cache *s, int node,
1554 int objects) {}
1555static inline void dec_slabs_node(struct kmem_cache *s, int node,
1556 int objects) {}
1557
1558static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1559 void **freelist, void *nextfree)
1560{
1561 return false;
1562}
1563#endif /* CONFIG_SLUB_DEBUG */
1564
1565/*
1566 * Hooks for other subsystems that check memory allocations. In a typical
1567 * production configuration these hooks all should produce no code at all.
1568 */
1569static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1570{
1571 ptr = kasan_kmalloc_large(ptr, size, flags);
1572 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1573 kmemleak_alloc(ptr, size, 1, flags);
1574 return ptr;
1575}
1576
1577static __always_inline void kfree_hook(void *x)
1578{
1579 kmemleak_free(x);
1580 kasan_kfree_large(x);
1581}
1582
1583static __always_inline bool slab_free_hook(struct kmem_cache *s,
1584 void *x, bool init)
1585{
1586 kmemleak_free_recursive(x, s->flags);
1587
1588 /*
1589 * Trouble is that we may no longer disable interrupts in the fast path
1590 * So in order to make the debug calls that expect irqs to be
1591 * disabled we need to disable interrupts temporarily.
1592 */
1593#ifdef CONFIG_LOCKDEP
1594 {
1595 unsigned long flags;
1596
1597 local_irq_save(flags);
1598 debug_check_no_locks_freed(x, s->object_size);
1599 local_irq_restore(flags);
1600 }
1601#endif
1602 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1603 debug_check_no_obj_freed(x, s->object_size);
1604
1605 /* Use KCSAN to help debug racy use-after-free. */
1606 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1607 __kcsan_check_access(x, s->object_size,
1608 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1609
1610 /*
1611 * As memory initialization might be integrated into KASAN,
1612 * kasan_slab_free and initialization memset's must be
1613 * kept together to avoid discrepancies in behavior.
1614 *
1615 * The initialization memset's clear the object and the metadata,
1616 * but don't touch the SLAB redzone.
1617 */
1618 if (init) {
1619 int rsize;
1620
1621 if (!kasan_has_integrated_init())
1622 memset(kasan_reset_tag(x), 0, s->object_size);
1623 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1624 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1625 s->size - s->inuse - rsize);
1626 }
1627 /* KASAN might put x into memory quarantine, delaying its reuse. */
1628 return kasan_slab_free(s, x, init);
1629}
1630
1631static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1632 void **head, void **tail,
1633 int *cnt)
1634{
1635
1636 void *object;
1637 void *next = *head;
1638 void *old_tail = *tail ? *tail : *head;
1639
1640 if (is_kfence_address(next)) {
1641 slab_free_hook(s, next, false);
1642 return true;
1643 }
1644
1645 /* Head and tail of the reconstructed freelist */
1646 *head = NULL;
1647 *tail = NULL;
1648
1649 do {
1650 object = next;
1651 next = get_freepointer(s, object);
1652
1653 /* If object's reuse doesn't have to be delayed */
1654 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1655 /* Move object to the new freelist */
1656 set_freepointer(s, object, *head);
1657 *head = object;
1658 if (!*tail)
1659 *tail = object;
1660 } else {
1661 /*
1662 * Adjust the reconstructed freelist depth
1663 * accordingly if object's reuse is delayed.
1664 */
1665 --(*cnt);
1666 }
1667 } while (object != old_tail);
1668
1669 if (*head == *tail)
1670 *tail = NULL;
1671
1672 return *head != NULL;
1673}
1674
1675static void *setup_object(struct kmem_cache *s, struct page *page,
1676 void *object)
1677{
1678 setup_object_debug(s, page, object);
1679 object = kasan_init_slab_obj(s, object);
1680 if (unlikely(s->ctor)) {
1681 kasan_unpoison_object_data(s, object);
1682 s->ctor(object);
1683 kasan_poison_object_data(s, object);
1684 }
1685 return object;
1686}
1687
1688/*
1689 * Slab allocation and freeing
1690 */
1691static inline struct page *alloc_slab_page(struct kmem_cache *s,
1692 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1693{
1694 struct page *page;
1695 unsigned int order = oo_order(oo);
1696
1697 if (node == NUMA_NO_NODE)
1698 page = alloc_pages(flags, order);
1699 else
1700 page = __alloc_pages_node(node, flags, order);
1701
1702 return page;
1703}
1704
1705#ifdef CONFIG_SLAB_FREELIST_RANDOM
1706/* Pre-initialize the random sequence cache */
1707static int init_cache_random_seq(struct kmem_cache *s)
1708{
1709 unsigned int count = oo_objects(s->oo);
1710 int err;
1711
1712 /* Bailout if already initialised */
1713 if (s->random_seq)
1714 return 0;
1715
1716 err = cache_random_seq_create(s, count, GFP_KERNEL);
1717 if (err) {
1718 pr_err("SLUB: Unable to initialize free list for %s\n",
1719 s->name);
1720 return err;
1721 }
1722
1723 /* Transform to an offset on the set of pages */
1724 if (s->random_seq) {
1725 unsigned int i;
1726
1727 for (i = 0; i < count; i++)
1728 s->random_seq[i] *= s->size;
1729 }
1730 return 0;
1731}
1732
1733/* Initialize each random sequence freelist per cache */
1734static void __init init_freelist_randomization(void)
1735{
1736 struct kmem_cache *s;
1737
1738 mutex_lock(&slab_mutex);
1739
1740 list_for_each_entry(s, &slab_caches, list)
1741 init_cache_random_seq(s);
1742
1743 mutex_unlock(&slab_mutex);
1744}
1745
1746/* Get the next entry on the pre-computed freelist randomized */
1747static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1748 unsigned long *pos, void *start,
1749 unsigned long page_limit,
1750 unsigned long freelist_count)
1751{
1752 unsigned int idx;
1753
1754 /*
1755 * If the target page allocation failed, the number of objects on the
1756 * page might be smaller than the usual size defined by the cache.
1757 */
1758 do {
1759 idx = s->random_seq[*pos];
1760 *pos += 1;
1761 if (*pos >= freelist_count)
1762 *pos = 0;
1763 } while (unlikely(idx >= page_limit));
1764
1765 return (char *)start + idx;
1766}
1767
1768/* Shuffle the single linked freelist based on a random pre-computed sequence */
1769static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1770{
1771 void *start;
1772 void *cur;
1773 void *next;
1774 unsigned long idx, pos, page_limit, freelist_count;
1775
1776 if (page->objects < 2 || !s->random_seq)
1777 return false;
1778
1779 freelist_count = oo_objects(s->oo);
1780 pos = get_random_int() % freelist_count;
1781
1782 page_limit = page->objects * s->size;
1783 start = fixup_red_left(s, page_address(page));
1784
1785 /* First entry is used as the base of the freelist */
1786 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1787 freelist_count);
1788 cur = setup_object(s, page, cur);
1789 page->freelist = cur;
1790
1791 for (idx = 1; idx < page->objects; idx++) {
1792 next = next_freelist_entry(s, page, &pos, start, page_limit,
1793 freelist_count);
1794 next = setup_object(s, page, next);
1795 set_freepointer(s, cur, next);
1796 cur = next;
1797 }
1798 set_freepointer(s, cur, NULL);
1799
1800 return true;
1801}
1802#else
1803static inline int init_cache_random_seq(struct kmem_cache *s)
1804{
1805 return 0;
1806}
1807static inline void init_freelist_randomization(void) { }
1808static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1809{
1810 return false;
1811}
1812#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1813
1814static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1815{
1816 struct page *page;
1817 struct kmem_cache_order_objects oo = s->oo;
1818 gfp_t alloc_gfp;
1819 void *start, *p, *next;
1820 int idx;
1821 bool shuffle;
1822
1823 flags &= gfp_allowed_mask;
1824
1825 if (gfpflags_allow_blocking(flags))
1826 local_irq_enable();
1827
1828 flags |= s->allocflags;
1829
1830 /*
1831 * Let the initial higher-order allocation fail under memory pressure
1832 * so we fall-back to the minimum order allocation.
1833 */
1834 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1835 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1836 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1837
1838 page = alloc_slab_page(s, alloc_gfp, node, oo);
1839 if (unlikely(!page)) {
1840 oo = s->min;
1841 alloc_gfp = flags;
1842 /*
1843 * Allocation may have failed due to fragmentation.
1844 * Try a lower order alloc if possible
1845 */
1846 page = alloc_slab_page(s, alloc_gfp, node, oo);
1847 if (unlikely(!page))
1848 goto out;
1849 stat(s, ORDER_FALLBACK);
1850 }
1851
1852 page->objects = oo_objects(oo);
1853
1854 account_slab_page(page, oo_order(oo), s, flags);
1855
1856 page->slab_cache = s;
1857 __SetPageSlab(page);
1858 if (page_is_pfmemalloc(page))
1859 SetPageSlabPfmemalloc(page);
1860
1861 kasan_poison_slab(page);
1862
1863 start = page_address(page);
1864
1865 setup_page_debug(s, page, start);
1866
1867 shuffle = shuffle_freelist(s, page);
1868
1869 if (!shuffle) {
1870 start = fixup_red_left(s, start);
1871 start = setup_object(s, page, start);
1872 page->freelist = start;
1873 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1874 next = p + s->size;
1875 next = setup_object(s, page, next);
1876 set_freepointer(s, p, next);
1877 p = next;
1878 }
1879 set_freepointer(s, p, NULL);
1880 }
1881
1882 page->inuse = page->objects;
1883 page->frozen = 1;
1884
1885out:
1886 if (gfpflags_allow_blocking(flags))
1887 local_irq_disable();
1888 if (!page)
1889 return NULL;
1890
1891 inc_slabs_node(s, page_to_nid(page), page->objects);
1892
1893 return page;
1894}
1895
1896static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1897{
1898 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1899 flags = kmalloc_fix_flags(flags);
1900
1901 return allocate_slab(s,
1902 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1903}
1904
1905static void __free_slab(struct kmem_cache *s, struct page *page)
1906{
1907 int order = compound_order(page);
1908 int pages = 1 << order;
1909
1910 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1911 void *p;
1912
1913 slab_pad_check(s, page);
1914 for_each_object(p, s, page_address(page),
1915 page->objects)
1916 check_object(s, page, p, SLUB_RED_INACTIVE);
1917 }
1918
1919 __ClearPageSlabPfmemalloc(page);
1920 __ClearPageSlab(page);
1921 /* In union with page->mapping where page allocator expects NULL */
1922 page->slab_cache = NULL;
1923 if (current->reclaim_state)
1924 current->reclaim_state->reclaimed_slab += pages;
1925 unaccount_slab_page(page, order, s);
1926 __free_pages(page, order);
1927}
1928
1929static void rcu_free_slab(struct rcu_head *h)
1930{
1931 struct page *page = container_of(h, struct page, rcu_head);
1932
1933 __free_slab(page->slab_cache, page);
1934}
1935
1936static void free_slab(struct kmem_cache *s, struct page *page)
1937{
1938 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1939 call_rcu(&page->rcu_head, rcu_free_slab);
1940 } else
1941 __free_slab(s, page);
1942}
1943
1944static void discard_slab(struct kmem_cache *s, struct page *page)
1945{
1946 dec_slabs_node(s, page_to_nid(page), page->objects);
1947 free_slab(s, page);
1948}
1949
1950/*
1951 * Management of partially allocated slabs.
1952 */
1953static inline void
1954__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1955{
1956 n->nr_partial++;
1957 if (tail == DEACTIVATE_TO_TAIL)
1958 list_add_tail(&page->slab_list, &n->partial);
1959 else
1960 list_add(&page->slab_list, &n->partial);
1961}
1962
1963static inline void add_partial(struct kmem_cache_node *n,
1964 struct page *page, int tail)
1965{
1966 lockdep_assert_held(&n->list_lock);
1967 __add_partial(n, page, tail);
1968}
1969
1970static inline void remove_partial(struct kmem_cache_node *n,
1971 struct page *page)
1972{
1973 lockdep_assert_held(&n->list_lock);
1974 list_del(&page->slab_list);
1975 n->nr_partial--;
1976}
1977
1978/*
1979 * Remove slab from the partial list, freeze it and
1980 * return the pointer to the freelist.
1981 *
1982 * Returns a list of objects or NULL if it fails.
1983 */
1984static inline void *acquire_slab(struct kmem_cache *s,
1985 struct kmem_cache_node *n, struct page *page,
1986 int mode, int *objects)
1987{
1988 void *freelist;
1989 unsigned long counters;
1990 struct page new;
1991
1992 lockdep_assert_held(&n->list_lock);
1993
1994 /*
1995 * Zap the freelist and set the frozen bit.
1996 * The old freelist is the list of objects for the
1997 * per cpu allocation list.
1998 */
1999 freelist = page->freelist;
2000 counters = page->counters;
2001 new.counters = counters;
2002 *objects = new.objects - new.inuse;
2003 if (mode) {
2004 new.inuse = page->objects;
2005 new.freelist = NULL;
2006 } else {
2007 new.freelist = freelist;
2008 }
2009
2010 VM_BUG_ON(new.frozen);
2011 new.frozen = 1;
2012
2013 if (!__cmpxchg_double_slab(s, page,
2014 freelist, counters,
2015 new.freelist, new.counters,
2016 "acquire_slab"))
2017 return NULL;
2018
2019 remove_partial(n, page);
2020 WARN_ON(!freelist);
2021 return freelist;
2022}
2023
2024static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2025static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2026
2027/*
2028 * Try to allocate a partial slab from a specific node.
2029 */
2030static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2031 struct kmem_cache_cpu *c, gfp_t flags)
2032{
2033 struct page *page, *page2;
2034 void *object = NULL;
2035 unsigned int available = 0;
2036 int objects;
2037
2038 /*
2039 * Racy check. If we mistakenly see no partial slabs then we
2040 * just allocate an empty slab. If we mistakenly try to get a
2041 * partial slab and there is none available then get_partial()
2042 * will return NULL.
2043 */
2044 if (!n || !n->nr_partial)
2045 return NULL;
2046
2047 spin_lock(&n->list_lock);
2048 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2049 void *t;
2050
2051 if (!pfmemalloc_match(page, flags))
2052 continue;
2053
2054 t = acquire_slab(s, n, page, object == NULL, &objects);
2055 if (!t)
2056 break;
2057
2058 available += objects;
2059 if (!object) {
2060 c->page = page;
2061 stat(s, ALLOC_FROM_PARTIAL);
2062 object = t;
2063 } else {
2064 put_cpu_partial(s, page, 0);
2065 stat(s, CPU_PARTIAL_NODE);
2066 }
2067 if (!kmem_cache_has_cpu_partial(s)
2068 || available > slub_cpu_partial(s) / 2)
2069 break;
2070
2071 }
2072 spin_unlock(&n->list_lock);
2073 return object;
2074}
2075
2076/*
2077 * Get a page from somewhere. Search in increasing NUMA distances.
2078 */
2079static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2080 struct kmem_cache_cpu *c)
2081{
2082#ifdef CONFIG_NUMA
2083 struct zonelist *zonelist;
2084 struct zoneref *z;
2085 struct zone *zone;
2086 enum zone_type highest_zoneidx = gfp_zone(flags);
2087 void *object;
2088 unsigned int cpuset_mems_cookie;
2089
2090 /*
2091 * The defrag ratio allows a configuration of the tradeoffs between
2092 * inter node defragmentation and node local allocations. A lower
2093 * defrag_ratio increases the tendency to do local allocations
2094 * instead of attempting to obtain partial slabs from other nodes.
2095 *
2096 * If the defrag_ratio is set to 0 then kmalloc() always
2097 * returns node local objects. If the ratio is higher then kmalloc()
2098 * may return off node objects because partial slabs are obtained
2099 * from other nodes and filled up.
2100 *
2101 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2102 * (which makes defrag_ratio = 1000) then every (well almost)
2103 * allocation will first attempt to defrag slab caches on other nodes.
2104 * This means scanning over all nodes to look for partial slabs which
2105 * may be expensive if we do it every time we are trying to find a slab
2106 * with available objects.
2107 */
2108 if (!s->remote_node_defrag_ratio ||
2109 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2110 return NULL;
2111
2112 do {
2113 cpuset_mems_cookie = read_mems_allowed_begin();
2114 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2115 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2116 struct kmem_cache_node *n;
2117
2118 n = get_node(s, zone_to_nid(zone));
2119
2120 if (n && cpuset_zone_allowed(zone, flags) &&
2121 n->nr_partial > s->min_partial) {
2122 object = get_partial_node(s, n, c, flags);
2123 if (object) {
2124 /*
2125 * Don't check read_mems_allowed_retry()
2126 * here - if mems_allowed was updated in
2127 * parallel, that was a harmless race
2128 * between allocation and the cpuset
2129 * update
2130 */
2131 return object;
2132 }
2133 }
2134 }
2135 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2136#endif /* CONFIG_NUMA */
2137 return NULL;
2138}
2139
2140/*
2141 * Get a partial page, lock it and return it.
2142 */
2143static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2144 struct kmem_cache_cpu *c)
2145{
2146 void *object;
2147 int searchnode = node;
2148
2149 if (node == NUMA_NO_NODE)
2150 searchnode = numa_mem_id();
2151
2152 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2153 if (object || node != NUMA_NO_NODE)
2154 return object;
2155
2156 return get_any_partial(s, flags, c);
2157}
2158
2159#ifdef CONFIG_PREEMPTION
2160/*
2161 * Calculate the next globally unique transaction for disambiguation
2162 * during cmpxchg. The transactions start with the cpu number and are then
2163 * incremented by CONFIG_NR_CPUS.
2164 */
2165#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2166#else
2167/*
2168 * No preemption supported therefore also no need to check for
2169 * different cpus.
2170 */
2171#define TID_STEP 1
2172#endif
2173
2174static inline unsigned long next_tid(unsigned long tid)
2175{
2176 return tid + TID_STEP;
2177}
2178
2179#ifdef SLUB_DEBUG_CMPXCHG
2180static inline unsigned int tid_to_cpu(unsigned long tid)
2181{
2182 return tid % TID_STEP;
2183}
2184
2185static inline unsigned long tid_to_event(unsigned long tid)
2186{
2187 return tid / TID_STEP;
2188}
2189#endif
2190
2191static inline unsigned int init_tid(int cpu)
2192{
2193 return cpu;
2194}
2195
2196static inline void note_cmpxchg_failure(const char *n,
2197 const struct kmem_cache *s, unsigned long tid)
2198{
2199#ifdef SLUB_DEBUG_CMPXCHG
2200 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2201
2202 pr_info("%s %s: cmpxchg redo ", n, s->name);
2203
2204#ifdef CONFIG_PREEMPTION
2205 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2206 pr_warn("due to cpu change %d -> %d\n",
2207 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2208 else
2209#endif
2210 if (tid_to_event(tid) != tid_to_event(actual_tid))
2211 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2212 tid_to_event(tid), tid_to_event(actual_tid));
2213 else
2214 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2215 actual_tid, tid, next_tid(tid));
2216#endif
2217 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2218}
2219
2220static void init_kmem_cache_cpus(struct kmem_cache *s)
2221{
2222 int cpu;
2223
2224 for_each_possible_cpu(cpu)
2225 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2226}
2227
2228/*
2229 * Remove the cpu slab
2230 */
2231static void deactivate_slab(struct kmem_cache *s, struct page *page,
2232 void *freelist, struct kmem_cache_cpu *c)
2233{
2234 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2235 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2236 int lock = 0, free_delta = 0;
2237 enum slab_modes l = M_NONE, m = M_NONE;
2238 void *nextfree, *freelist_iter, *freelist_tail;
2239 int tail = DEACTIVATE_TO_HEAD;
2240 struct page new;
2241 struct page old;
2242
2243 if (page->freelist) {
2244 stat(s, DEACTIVATE_REMOTE_FREES);
2245 tail = DEACTIVATE_TO_TAIL;
2246 }
2247
2248 /*
2249 * Stage one: Count the objects on cpu's freelist as free_delta and
2250 * remember the last object in freelist_tail for later splicing.
2251 */
2252 freelist_tail = NULL;
2253 freelist_iter = freelist;
2254 while (freelist_iter) {
2255 nextfree = get_freepointer(s, freelist_iter);
2256
2257 /*
2258 * If 'nextfree' is invalid, it is possible that the object at
2259 * 'freelist_iter' is already corrupted. So isolate all objects
2260 * starting at 'freelist_iter' by skipping them.
2261 */
2262 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2263 break;
2264
2265 freelist_tail = freelist_iter;
2266 free_delta++;
2267
2268 freelist_iter = nextfree;
2269 }
2270
2271 /*
2272 * Stage two: Unfreeze the page while splicing the per-cpu
2273 * freelist to the head of page's freelist.
2274 *
2275 * Ensure that the page is unfrozen while the list presence
2276 * reflects the actual number of objects during unfreeze.
2277 *
2278 * We setup the list membership and then perform a cmpxchg
2279 * with the count. If there is a mismatch then the page
2280 * is not unfrozen but the page is on the wrong list.
2281 *
2282 * Then we restart the process which may have to remove
2283 * the page from the list that we just put it on again
2284 * because the number of objects in the slab may have
2285 * changed.
2286 */
2287redo:
2288
2289 old.freelist = READ_ONCE(page->freelist);
2290 old.counters = READ_ONCE(page->counters);
2291 VM_BUG_ON(!old.frozen);
2292
2293 /* Determine target state of the slab */
2294 new.counters = old.counters;
2295 if (freelist_tail) {
2296 new.inuse -= free_delta;
2297 set_freepointer(s, freelist_tail, old.freelist);
2298 new.freelist = freelist;
2299 } else
2300 new.freelist = old.freelist;
2301
2302 new.frozen = 0;
2303
2304 if (!new.inuse && n->nr_partial >= s->min_partial)
2305 m = M_FREE;
2306 else if (new.freelist) {
2307 m = M_PARTIAL;
2308 if (!lock) {
2309 lock = 1;
2310 /*
2311 * Taking the spinlock removes the possibility
2312 * that acquire_slab() will see a slab page that
2313 * is frozen
2314 */
2315 spin_lock(&n->list_lock);
2316 }
2317 } else {
2318 m = M_FULL;
2319 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2320 lock = 1;
2321 /*
2322 * This also ensures that the scanning of full
2323 * slabs from diagnostic functions will not see
2324 * any frozen slabs.
2325 */
2326 spin_lock(&n->list_lock);
2327 }
2328 }
2329
2330 if (l != m) {
2331 if (l == M_PARTIAL)
2332 remove_partial(n, page);
2333 else if (l == M_FULL)
2334 remove_full(s, n, page);
2335
2336 if (m == M_PARTIAL)
2337 add_partial(n, page, tail);
2338 else if (m == M_FULL)
2339 add_full(s, n, page);
2340 }
2341
2342 l = m;
2343 if (!__cmpxchg_double_slab(s, page,
2344 old.freelist, old.counters,
2345 new.freelist, new.counters,
2346 "unfreezing slab"))
2347 goto redo;
2348
2349 if (lock)
2350 spin_unlock(&n->list_lock);
2351
2352 if (m == M_PARTIAL)
2353 stat(s, tail);
2354 else if (m == M_FULL)
2355 stat(s, DEACTIVATE_FULL);
2356 else if (m == M_FREE) {
2357 stat(s, DEACTIVATE_EMPTY);
2358 discard_slab(s, page);
2359 stat(s, FREE_SLAB);
2360 }
2361
2362 c->page = NULL;
2363 c->freelist = NULL;
2364}
2365
2366/*
2367 * Unfreeze all the cpu partial slabs.
2368 *
2369 * This function must be called with interrupts disabled
2370 * for the cpu using c (or some other guarantee must be there
2371 * to guarantee no concurrent accesses).
2372 */
2373static void unfreeze_partials(struct kmem_cache *s,
2374 struct kmem_cache_cpu *c)
2375{
2376#ifdef CONFIG_SLUB_CPU_PARTIAL
2377 struct kmem_cache_node *n = NULL, *n2 = NULL;
2378 struct page *page, *discard_page = NULL;
2379
2380 while ((page = slub_percpu_partial(c))) {
2381 struct page new;
2382 struct page old;
2383
2384 slub_set_percpu_partial(c, page);
2385
2386 n2 = get_node(s, page_to_nid(page));
2387 if (n != n2) {
2388 if (n)
2389 spin_unlock(&n->list_lock);
2390
2391 n = n2;
2392 spin_lock(&n->list_lock);
2393 }
2394
2395 do {
2396
2397 old.freelist = page->freelist;
2398 old.counters = page->counters;
2399 VM_BUG_ON(!old.frozen);
2400
2401 new.counters = old.counters;
2402 new.freelist = old.freelist;
2403
2404 new.frozen = 0;
2405
2406 } while (!__cmpxchg_double_slab(s, page,
2407 old.freelist, old.counters,
2408 new.freelist, new.counters,
2409 "unfreezing slab"));
2410
2411 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2412 page->next = discard_page;
2413 discard_page = page;
2414 } else {
2415 add_partial(n, page, DEACTIVATE_TO_TAIL);
2416 stat(s, FREE_ADD_PARTIAL);
2417 }
2418 }
2419
2420 if (n)
2421 spin_unlock(&n->list_lock);
2422
2423 while (discard_page) {
2424 page = discard_page;
2425 discard_page = discard_page->next;
2426
2427 stat(s, DEACTIVATE_EMPTY);
2428 discard_slab(s, page);
2429 stat(s, FREE_SLAB);
2430 }
2431#endif /* CONFIG_SLUB_CPU_PARTIAL */
2432}
2433
2434/*
2435 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2436 * partial page slot if available.
2437 *
2438 * If we did not find a slot then simply move all the partials to the
2439 * per node partial list.
2440 */
2441static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2442{
2443#ifdef CONFIG_SLUB_CPU_PARTIAL
2444 struct page *oldpage;
2445 int pages;
2446 int pobjects;
2447
2448 preempt_disable();
2449 do {
2450 pages = 0;
2451 pobjects = 0;
2452 oldpage = this_cpu_read(s->cpu_slab->partial);
2453
2454 if (oldpage) {
2455 pobjects = oldpage->pobjects;
2456 pages = oldpage->pages;
2457 if (drain && pobjects > slub_cpu_partial(s)) {
2458 unsigned long flags;
2459 /*
2460 * partial array is full. Move the existing
2461 * set to the per node partial list.
2462 */
2463 local_irq_save(flags);
2464 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2465 local_irq_restore(flags);
2466 oldpage = NULL;
2467 pobjects = 0;
2468 pages = 0;
2469 stat(s, CPU_PARTIAL_DRAIN);
2470 }
2471 }
2472
2473 pages++;
2474 pobjects += page->objects - page->inuse;
2475
2476 page->pages = pages;
2477 page->pobjects = pobjects;
2478 page->next = oldpage;
2479
2480 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2481 != oldpage);
2482 if (unlikely(!slub_cpu_partial(s))) {
2483 unsigned long flags;
2484
2485 local_irq_save(flags);
2486 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2487 local_irq_restore(flags);
2488 }
2489 preempt_enable();
2490#endif /* CONFIG_SLUB_CPU_PARTIAL */
2491}
2492
2493static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2494{
2495 stat(s, CPUSLAB_FLUSH);
2496 deactivate_slab(s, c->page, c->freelist, c);
2497
2498 c->tid = next_tid(c->tid);
2499}
2500
2501/*
2502 * Flush cpu slab.
2503 *
2504 * Called from IPI handler with interrupts disabled.
2505 */
2506static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2507{
2508 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2509
2510 if (c->page)
2511 flush_slab(s, c);
2512
2513 unfreeze_partials(s, c);
2514}
2515
2516static void flush_cpu_slab(void *d)
2517{
2518 struct kmem_cache *s = d;
2519
2520 __flush_cpu_slab(s, smp_processor_id());
2521}
2522
2523static bool has_cpu_slab(int cpu, void *info)
2524{
2525 struct kmem_cache *s = info;
2526 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2527
2528 return c->page || slub_percpu_partial(c);
2529}
2530
2531static void flush_all(struct kmem_cache *s)
2532{
2533 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2534}
2535
2536/*
2537 * Use the cpu notifier to insure that the cpu slabs are flushed when
2538 * necessary.
2539 */
2540static int slub_cpu_dead(unsigned int cpu)
2541{
2542 struct kmem_cache *s;
2543 unsigned long flags;
2544
2545 mutex_lock(&slab_mutex);
2546 list_for_each_entry(s, &slab_caches, list) {
2547 local_irq_save(flags);
2548 __flush_cpu_slab(s, cpu);
2549 local_irq_restore(flags);
2550 }
2551 mutex_unlock(&slab_mutex);
2552 return 0;
2553}
2554
2555/*
2556 * Check if the objects in a per cpu structure fit numa
2557 * locality expectations.
2558 */
2559static inline int node_match(struct page *page, int node)
2560{
2561#ifdef CONFIG_NUMA
2562 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2563 return 0;
2564#endif
2565 return 1;
2566}
2567
2568#ifdef CONFIG_SLUB_DEBUG
2569static int count_free(struct page *page)
2570{
2571 return page->objects - page->inuse;
2572}
2573
2574static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2575{
2576 return atomic_long_read(&n->total_objects);
2577}
2578#endif /* CONFIG_SLUB_DEBUG */
2579
2580#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2581static unsigned long count_partial(struct kmem_cache_node *n,
2582 int (*get_count)(struct page *))
2583{
2584 unsigned long flags;
2585 unsigned long x = 0;
2586 struct page *page;
2587
2588 spin_lock_irqsave(&n->list_lock, flags);
2589 list_for_each_entry(page, &n->partial, slab_list)
2590 x += get_count(page);
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 return x;
2593}
2594#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2595
2596static noinline void
2597slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2598{
2599#ifdef CONFIG_SLUB_DEBUG
2600 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2601 DEFAULT_RATELIMIT_BURST);
2602 int node;
2603 struct kmem_cache_node *n;
2604
2605 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2606 return;
2607
2608 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2609 nid, gfpflags, &gfpflags);
2610 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2611 s->name, s->object_size, s->size, oo_order(s->oo),
2612 oo_order(s->min));
2613
2614 if (oo_order(s->min) > get_order(s->object_size))
2615 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2616 s->name);
2617
2618 for_each_kmem_cache_node(s, node, n) {
2619 unsigned long nr_slabs;
2620 unsigned long nr_objs;
2621 unsigned long nr_free;
2622
2623 nr_free = count_partial(n, count_free);
2624 nr_slabs = node_nr_slabs(n);
2625 nr_objs = node_nr_objs(n);
2626
2627 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2628 node, nr_slabs, nr_objs, nr_free);
2629 }
2630#endif
2631}
2632
2633static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2634 int node, struct kmem_cache_cpu **pc)
2635{
2636 void *freelist;
2637 struct kmem_cache_cpu *c = *pc;
2638 struct page *page;
2639
2640 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2641
2642 freelist = get_partial(s, flags, node, c);
2643
2644 if (freelist)
2645 return freelist;
2646
2647 page = new_slab(s, flags, node);
2648 if (page) {
2649 c = raw_cpu_ptr(s->cpu_slab);
2650 if (c->page)
2651 flush_slab(s, c);
2652
2653 /*
2654 * No other reference to the page yet so we can
2655 * muck around with it freely without cmpxchg
2656 */
2657 freelist = page->freelist;
2658 page->freelist = NULL;
2659
2660 stat(s, ALLOC_SLAB);
2661 c->page = page;
2662 *pc = c;
2663 }
2664
2665 return freelist;
2666}
2667
2668static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2669{
2670 if (unlikely(PageSlabPfmemalloc(page)))
2671 return gfp_pfmemalloc_allowed(gfpflags);
2672
2673 return true;
2674}
2675
2676/*
2677 * Check the page->freelist of a page and either transfer the freelist to the
2678 * per cpu freelist or deactivate the page.
2679 *
2680 * The page is still frozen if the return value is not NULL.
2681 *
2682 * If this function returns NULL then the page has been unfrozen.
2683 *
2684 * This function must be called with interrupt disabled.
2685 */
2686static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2687{
2688 struct page new;
2689 unsigned long counters;
2690 void *freelist;
2691
2692 do {
2693 freelist = page->freelist;
2694 counters = page->counters;
2695
2696 new.counters = counters;
2697 VM_BUG_ON(!new.frozen);
2698
2699 new.inuse = page->objects;
2700 new.frozen = freelist != NULL;
2701
2702 } while (!__cmpxchg_double_slab(s, page,
2703 freelist, counters,
2704 NULL, new.counters,
2705 "get_freelist"));
2706
2707 return freelist;
2708}
2709
2710/*
2711 * Slow path. The lockless freelist is empty or we need to perform
2712 * debugging duties.
2713 *
2714 * Processing is still very fast if new objects have been freed to the
2715 * regular freelist. In that case we simply take over the regular freelist
2716 * as the lockless freelist and zap the regular freelist.
2717 *
2718 * If that is not working then we fall back to the partial lists. We take the
2719 * first element of the freelist as the object to allocate now and move the
2720 * rest of the freelist to the lockless freelist.
2721 *
2722 * And if we were unable to get a new slab from the partial slab lists then
2723 * we need to allocate a new slab. This is the slowest path since it involves
2724 * a call to the page allocator and the setup of a new slab.
2725 *
2726 * Version of __slab_alloc to use when we know that interrupts are
2727 * already disabled (which is the case for bulk allocation).
2728 */
2729static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2730 unsigned long addr, struct kmem_cache_cpu *c)
2731{
2732 void *freelist;
2733 struct page *page;
2734
2735 stat(s, ALLOC_SLOWPATH);
2736
2737 page = c->page;
2738 if (!page) {
2739 /*
2740 * if the node is not online or has no normal memory, just
2741 * ignore the node constraint
2742 */
2743 if (unlikely(node != NUMA_NO_NODE &&
2744 !node_isset(node, slab_nodes)))
2745 node = NUMA_NO_NODE;
2746 goto new_slab;
2747 }
2748redo:
2749
2750 if (unlikely(!node_match(page, node))) {
2751 /*
2752 * same as above but node_match() being false already
2753 * implies node != NUMA_NO_NODE
2754 */
2755 if (!node_isset(node, slab_nodes)) {
2756 node = NUMA_NO_NODE;
2757 goto redo;
2758 } else {
2759 stat(s, ALLOC_NODE_MISMATCH);
2760 deactivate_slab(s, page, c->freelist, c);
2761 goto new_slab;
2762 }
2763 }
2764
2765 /*
2766 * By rights, we should be searching for a slab page that was
2767 * PFMEMALLOC but right now, we are losing the pfmemalloc
2768 * information when the page leaves the per-cpu allocator
2769 */
2770 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2771 deactivate_slab(s, page, c->freelist, c);
2772 goto new_slab;
2773 }
2774
2775 /* must check again c->freelist in case of cpu migration or IRQ */
2776 freelist = c->freelist;
2777 if (freelist)
2778 goto load_freelist;
2779
2780 freelist = get_freelist(s, page);
2781
2782 if (!freelist) {
2783 c->page = NULL;
2784 stat(s, DEACTIVATE_BYPASS);
2785 goto new_slab;
2786 }
2787
2788 stat(s, ALLOC_REFILL);
2789
2790load_freelist:
2791 /*
2792 * freelist is pointing to the list of objects to be used.
2793 * page is pointing to the page from which the objects are obtained.
2794 * That page must be frozen for per cpu allocations to work.
2795 */
2796 VM_BUG_ON(!c->page->frozen);
2797 c->freelist = get_freepointer(s, freelist);
2798 c->tid = next_tid(c->tid);
2799 return freelist;
2800
2801new_slab:
2802
2803 if (slub_percpu_partial(c)) {
2804 page = c->page = slub_percpu_partial(c);
2805 slub_set_percpu_partial(c, page);
2806 stat(s, CPU_PARTIAL_ALLOC);
2807 goto redo;
2808 }
2809
2810 freelist = new_slab_objects(s, gfpflags, node, &c);
2811
2812 if (unlikely(!freelist)) {
2813 slab_out_of_memory(s, gfpflags, node);
2814 return NULL;
2815 }
2816
2817 page = c->page;
2818 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2819 goto load_freelist;
2820
2821 /* Only entered in the debug case */
2822 if (kmem_cache_debug(s) &&
2823 !alloc_debug_processing(s, page, freelist, addr))
2824 goto new_slab; /* Slab failed checks. Next slab needed */
2825
2826 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2827 return freelist;
2828}
2829
2830/*
2831 * Another one that disabled interrupt and compensates for possible
2832 * cpu changes by refetching the per cpu area pointer.
2833 */
2834static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2835 unsigned long addr, struct kmem_cache_cpu *c)
2836{
2837 void *p;
2838 unsigned long flags;
2839
2840 local_irq_save(flags);
2841#ifdef CONFIG_PREEMPTION
2842 /*
2843 * We may have been preempted and rescheduled on a different
2844 * cpu before disabling interrupts. Need to reload cpu area
2845 * pointer.
2846 */
2847 c = this_cpu_ptr(s->cpu_slab);
2848#endif
2849
2850 p = ___slab_alloc(s, gfpflags, node, addr, c);
2851 local_irq_restore(flags);
2852 return p;
2853}
2854
2855/*
2856 * If the object has been wiped upon free, make sure it's fully initialized by
2857 * zeroing out freelist pointer.
2858 */
2859static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2860 void *obj)
2861{
2862 if (unlikely(slab_want_init_on_free(s)) && obj)
2863 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2864 0, sizeof(void *));
2865}
2866
2867/*
2868 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2869 * have the fastpath folded into their functions. So no function call
2870 * overhead for requests that can be satisfied on the fastpath.
2871 *
2872 * The fastpath works by first checking if the lockless freelist can be used.
2873 * If not then __slab_alloc is called for slow processing.
2874 *
2875 * Otherwise we can simply pick the next object from the lockless free list.
2876 */
2877static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2878 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2879{
2880 void *object;
2881 struct kmem_cache_cpu *c;
2882 struct page *page;
2883 unsigned long tid;
2884 struct obj_cgroup *objcg = NULL;
2885 bool init = false;
2886
2887 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2888 if (!s)
2889 return NULL;
2890
2891 object = kfence_alloc(s, orig_size, gfpflags);
2892 if (unlikely(object))
2893 goto out;
2894
2895redo:
2896 /*
2897 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2898 * enabled. We may switch back and forth between cpus while
2899 * reading from one cpu area. That does not matter as long
2900 * as we end up on the original cpu again when doing the cmpxchg.
2901 *
2902 * We should guarantee that tid and kmem_cache are retrieved on
2903 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2904 * to check if it is matched or not.
2905 */
2906 do {
2907 tid = this_cpu_read(s->cpu_slab->tid);
2908 c = raw_cpu_ptr(s->cpu_slab);
2909 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2910 unlikely(tid != READ_ONCE(c->tid)));
2911
2912 /*
2913 * Irqless object alloc/free algorithm used here depends on sequence
2914 * of fetching cpu_slab's data. tid should be fetched before anything
2915 * on c to guarantee that object and page associated with previous tid
2916 * won't be used with current tid. If we fetch tid first, object and
2917 * page could be one associated with next tid and our alloc/free
2918 * request will be failed. In this case, we will retry. So, no problem.
2919 */
2920 barrier();
2921
2922 /*
2923 * The transaction ids are globally unique per cpu and per operation on
2924 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2925 * occurs on the right processor and that there was no operation on the
2926 * linked list in between.
2927 */
2928
2929 object = c->freelist;
2930 page = c->page;
2931 if (unlikely(!object || !page || !node_match(page, node))) {
2932 object = __slab_alloc(s, gfpflags, node, addr, c);
2933 } else {
2934 void *next_object = get_freepointer_safe(s, object);
2935
2936 /*
2937 * The cmpxchg will only match if there was no additional
2938 * operation and if we are on the right processor.
2939 *
2940 * The cmpxchg does the following atomically (without lock
2941 * semantics!)
2942 * 1. Relocate first pointer to the current per cpu area.
2943 * 2. Verify that tid and freelist have not been changed
2944 * 3. If they were not changed replace tid and freelist
2945 *
2946 * Since this is without lock semantics the protection is only
2947 * against code executing on this cpu *not* from access by
2948 * other cpus.
2949 */
2950 if (unlikely(!this_cpu_cmpxchg_double(
2951 s->cpu_slab->freelist, s->cpu_slab->tid,
2952 object, tid,
2953 next_object, next_tid(tid)))) {
2954
2955 note_cmpxchg_failure("slab_alloc", s, tid);
2956 goto redo;
2957 }
2958 prefetch_freepointer(s, next_object);
2959 stat(s, ALLOC_FASTPATH);
2960 }
2961
2962 maybe_wipe_obj_freeptr(s, object);
2963 init = slab_want_init_on_alloc(gfpflags, s);
2964
2965out:
2966 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2967
2968 return object;
2969}
2970
2971static __always_inline void *slab_alloc(struct kmem_cache *s,
2972 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2973{
2974 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2975}
2976
2977void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2978{
2979 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2980
2981 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2982 s->size, gfpflags);
2983
2984 return ret;
2985}
2986EXPORT_SYMBOL(kmem_cache_alloc);
2987
2988#ifdef CONFIG_TRACING
2989void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2990{
2991 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2992 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2993 ret = kasan_kmalloc(s, ret, size, gfpflags);
2994 return ret;
2995}
2996EXPORT_SYMBOL(kmem_cache_alloc_trace);
2997#endif
2998
2999#ifdef CONFIG_NUMA
3000void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3001{
3002 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3003
3004 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3005 s->object_size, s->size, gfpflags, node);
3006
3007 return ret;
3008}
3009EXPORT_SYMBOL(kmem_cache_alloc_node);
3010
3011#ifdef CONFIG_TRACING
3012void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3013 gfp_t gfpflags,
3014 int node, size_t size)
3015{
3016 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3017
3018 trace_kmalloc_node(_RET_IP_, ret,
3019 size, s->size, gfpflags, node);
3020
3021 ret = kasan_kmalloc(s, ret, size, gfpflags);
3022 return ret;
3023}
3024EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3025#endif
3026#endif /* CONFIG_NUMA */
3027
3028/*
3029 * Slow path handling. This may still be called frequently since objects
3030 * have a longer lifetime than the cpu slabs in most processing loads.
3031 *
3032 * So we still attempt to reduce cache line usage. Just take the slab
3033 * lock and free the item. If there is no additional partial page
3034 * handling required then we can return immediately.
3035 */
3036static void __slab_free(struct kmem_cache *s, struct page *page,
3037 void *head, void *tail, int cnt,
3038 unsigned long addr)
3039
3040{
3041 void *prior;
3042 int was_frozen;
3043 struct page new;
3044 unsigned long counters;
3045 struct kmem_cache_node *n = NULL;
3046 unsigned long flags;
3047
3048 stat(s, FREE_SLOWPATH);
3049
3050 if (kfence_free(head))
3051 return;
3052
3053 if (kmem_cache_debug(s) &&
3054 !free_debug_processing(s, page, head, tail, cnt, addr))
3055 return;
3056
3057 do {
3058 if (unlikely(n)) {
3059 spin_unlock_irqrestore(&n->list_lock, flags);
3060 n = NULL;
3061 }
3062 prior = page->freelist;
3063 counters = page->counters;
3064 set_freepointer(s, tail, prior);
3065 new.counters = counters;
3066 was_frozen = new.frozen;
3067 new.inuse -= cnt;
3068 if ((!new.inuse || !prior) && !was_frozen) {
3069
3070 if (kmem_cache_has_cpu_partial(s) && !prior) {
3071
3072 /*
3073 * Slab was on no list before and will be
3074 * partially empty
3075 * We can defer the list move and instead
3076 * freeze it.
3077 */
3078 new.frozen = 1;
3079
3080 } else { /* Needs to be taken off a list */
3081
3082 n = get_node(s, page_to_nid(page));
3083 /*
3084 * Speculatively acquire the list_lock.
3085 * If the cmpxchg does not succeed then we may
3086 * drop the list_lock without any processing.
3087 *
3088 * Otherwise the list_lock will synchronize with
3089 * other processors updating the list of slabs.
3090 */
3091 spin_lock_irqsave(&n->list_lock, flags);
3092
3093 }
3094 }
3095
3096 } while (!cmpxchg_double_slab(s, page,
3097 prior, counters,
3098 head, new.counters,
3099 "__slab_free"));
3100
3101 if (likely(!n)) {
3102
3103 if (likely(was_frozen)) {
3104 /*
3105 * The list lock was not taken therefore no list
3106 * activity can be necessary.
3107 */
3108 stat(s, FREE_FROZEN);
3109 } else if (new.frozen) {
3110 /*
3111 * If we just froze the page then put it onto the
3112 * per cpu partial list.
3113 */
3114 put_cpu_partial(s, page, 1);
3115 stat(s, CPU_PARTIAL_FREE);
3116 }
3117
3118 return;
3119 }
3120
3121 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3122 goto slab_empty;
3123
3124 /*
3125 * Objects left in the slab. If it was not on the partial list before
3126 * then add it.
3127 */
3128 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3129 remove_full(s, n, page);
3130 add_partial(n, page, DEACTIVATE_TO_TAIL);
3131 stat(s, FREE_ADD_PARTIAL);
3132 }
3133 spin_unlock_irqrestore(&n->list_lock, flags);
3134 return;
3135
3136slab_empty:
3137 if (prior) {
3138 /*
3139 * Slab on the partial list.
3140 */
3141 remove_partial(n, page);
3142 stat(s, FREE_REMOVE_PARTIAL);
3143 } else {
3144 /* Slab must be on the full list */
3145 remove_full(s, n, page);
3146 }
3147
3148 spin_unlock_irqrestore(&n->list_lock, flags);
3149 stat(s, FREE_SLAB);
3150 discard_slab(s, page);
3151}
3152
3153/*
3154 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3155 * can perform fastpath freeing without additional function calls.
3156 *
3157 * The fastpath is only possible if we are freeing to the current cpu slab
3158 * of this processor. This typically the case if we have just allocated
3159 * the item before.
3160 *
3161 * If fastpath is not possible then fall back to __slab_free where we deal
3162 * with all sorts of special processing.
3163 *
3164 * Bulk free of a freelist with several objects (all pointing to the
3165 * same page) possible by specifying head and tail ptr, plus objects
3166 * count (cnt). Bulk free indicated by tail pointer being set.
3167 */
3168static __always_inline void do_slab_free(struct kmem_cache *s,
3169 struct page *page, void *head, void *tail,
3170 int cnt, unsigned long addr)
3171{
3172 void *tail_obj = tail ? : head;
3173 struct kmem_cache_cpu *c;
3174 unsigned long tid;
3175
3176 /* memcg_slab_free_hook() is already called for bulk free. */
3177 if (!tail)
3178 memcg_slab_free_hook(s, &head, 1);
3179redo:
3180 /*
3181 * Determine the currently cpus per cpu slab.
3182 * The cpu may change afterward. However that does not matter since
3183 * data is retrieved via this pointer. If we are on the same cpu
3184 * during the cmpxchg then the free will succeed.
3185 */
3186 do {
3187 tid = this_cpu_read(s->cpu_slab->tid);
3188 c = raw_cpu_ptr(s->cpu_slab);
3189 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3190 unlikely(tid != READ_ONCE(c->tid)));
3191
3192 /* Same with comment on barrier() in slab_alloc_node() */
3193 barrier();
3194
3195 if (likely(page == c->page)) {
3196 void **freelist = READ_ONCE(c->freelist);
3197
3198 set_freepointer(s, tail_obj, freelist);
3199
3200 if (unlikely(!this_cpu_cmpxchg_double(
3201 s->cpu_slab->freelist, s->cpu_slab->tid,
3202 freelist, tid,
3203 head, next_tid(tid)))) {
3204
3205 note_cmpxchg_failure("slab_free", s, tid);
3206 goto redo;
3207 }
3208 stat(s, FREE_FASTPATH);
3209 } else
3210 __slab_free(s, page, head, tail_obj, cnt, addr);
3211
3212}
3213
3214static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3215 void *head, void *tail, int cnt,
3216 unsigned long addr)
3217{
3218 /*
3219 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3220 * to remove objects, whose reuse must be delayed.
3221 */
3222 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3223 do_slab_free(s, page, head, tail, cnt, addr);
3224}
3225
3226#ifdef CONFIG_KASAN_GENERIC
3227void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3228{
3229 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3230}
3231#endif
3232
3233void kmem_cache_free(struct kmem_cache *s, void *x)
3234{
3235 s = cache_from_obj(s, x);
3236 if (!s)
3237 return;
3238 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3239 trace_kmem_cache_free(_RET_IP_, x, s->name);
3240}
3241EXPORT_SYMBOL(kmem_cache_free);
3242
3243struct detached_freelist {
3244 struct page *page;
3245 void *tail;
3246 void *freelist;
3247 int cnt;
3248 struct kmem_cache *s;
3249};
3250
3251static inline void free_nonslab_page(struct page *page, void *object)
3252{
3253 unsigned int order = compound_order(page);
3254
3255 VM_BUG_ON_PAGE(!PageCompound(page), page);
3256 kfree_hook(object);
3257 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3258 __free_pages(page, order);
3259}
3260
3261/*
3262 * This function progressively scans the array with free objects (with
3263 * a limited look ahead) and extract objects belonging to the same
3264 * page. It builds a detached freelist directly within the given
3265 * page/objects. This can happen without any need for
3266 * synchronization, because the objects are owned by running process.
3267 * The freelist is build up as a single linked list in the objects.
3268 * The idea is, that this detached freelist can then be bulk
3269 * transferred to the real freelist(s), but only requiring a single
3270 * synchronization primitive. Look ahead in the array is limited due
3271 * to performance reasons.
3272 */
3273static inline
3274int build_detached_freelist(struct kmem_cache *s, size_t size,
3275 void **p, struct detached_freelist *df)
3276{
3277 size_t first_skipped_index = 0;
3278 int lookahead = 3;
3279 void *object;
3280 struct page *page;
3281
3282 /* Always re-init detached_freelist */
3283 df->page = NULL;
3284
3285 do {
3286 object = p[--size];
3287 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3288 } while (!object && size);
3289
3290 if (!object)
3291 return 0;
3292
3293 page = virt_to_head_page(object);
3294 if (!s) {
3295 /* Handle kalloc'ed objects */
3296 if (unlikely(!PageSlab(page))) {
3297 free_nonslab_page(page, object);
3298 p[size] = NULL; /* mark object processed */
3299 return size;
3300 }
3301 /* Derive kmem_cache from object */
3302 df->s = page->slab_cache;
3303 } else {
3304 df->s = cache_from_obj(s, object); /* Support for memcg */
3305 }
3306
3307 if (is_kfence_address(object)) {
3308 slab_free_hook(df->s, object, false);
3309 __kfence_free(object);
3310 p[size] = NULL; /* mark object processed */
3311 return size;
3312 }
3313
3314 /* Start new detached freelist */
3315 df->page = page;
3316 set_freepointer(df->s, object, NULL);
3317 df->tail = object;
3318 df->freelist = object;
3319 p[size] = NULL; /* mark object processed */
3320 df->cnt = 1;
3321
3322 while (size) {
3323 object = p[--size];
3324 if (!object)
3325 continue; /* Skip processed objects */
3326
3327 /* df->page is always set at this point */
3328 if (df->page == virt_to_head_page(object)) {
3329 /* Opportunity build freelist */
3330 set_freepointer(df->s, object, df->freelist);
3331 df->freelist = object;
3332 df->cnt++;
3333 p[size] = NULL; /* mark object processed */
3334
3335 continue;
3336 }
3337
3338 /* Limit look ahead search */
3339 if (!--lookahead)
3340 break;
3341
3342 if (!first_skipped_index)
3343 first_skipped_index = size + 1;
3344 }
3345
3346 return first_skipped_index;
3347}
3348
3349/* Note that interrupts must be enabled when calling this function. */
3350void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3351{
3352 if (WARN_ON(!size))
3353 return;
3354
3355 memcg_slab_free_hook(s, p, size);
3356 do {
3357 struct detached_freelist df;
3358
3359 size = build_detached_freelist(s, size, p, &df);
3360 if (!df.page)
3361 continue;
3362
3363 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3364 } while (likely(size));
3365}
3366EXPORT_SYMBOL(kmem_cache_free_bulk);
3367
3368/* Note that interrupts must be enabled when calling this function. */
3369int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3370 void **p)
3371{
3372 struct kmem_cache_cpu *c;
3373 int i;
3374 struct obj_cgroup *objcg = NULL;
3375
3376 /* memcg and kmem_cache debug support */
3377 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3378 if (unlikely(!s))
3379 return false;
3380 /*
3381 * Drain objects in the per cpu slab, while disabling local
3382 * IRQs, which protects against PREEMPT and interrupts
3383 * handlers invoking normal fastpath.
3384 */
3385 local_irq_disable();
3386 c = this_cpu_ptr(s->cpu_slab);
3387
3388 for (i = 0; i < size; i++) {
3389 void *object = kfence_alloc(s, s->object_size, flags);
3390
3391 if (unlikely(object)) {
3392 p[i] = object;
3393 continue;
3394 }
3395
3396 object = c->freelist;
3397 if (unlikely(!object)) {
3398 /*
3399 * We may have removed an object from c->freelist using
3400 * the fastpath in the previous iteration; in that case,
3401 * c->tid has not been bumped yet.
3402 * Since ___slab_alloc() may reenable interrupts while
3403 * allocating memory, we should bump c->tid now.
3404 */
3405 c->tid = next_tid(c->tid);
3406
3407 /*
3408 * Invoking slow path likely have side-effect
3409 * of re-populating per CPU c->freelist
3410 */
3411 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3412 _RET_IP_, c);
3413 if (unlikely(!p[i]))
3414 goto error;
3415
3416 c = this_cpu_ptr(s->cpu_slab);
3417 maybe_wipe_obj_freeptr(s, p[i]);
3418
3419 continue; /* goto for-loop */
3420 }
3421 c->freelist = get_freepointer(s, object);
3422 p[i] = object;
3423 maybe_wipe_obj_freeptr(s, p[i]);
3424 }
3425 c->tid = next_tid(c->tid);
3426 local_irq_enable();
3427
3428 /*
3429 * memcg and kmem_cache debug support and memory initialization.
3430 * Done outside of the IRQ disabled fastpath loop.
3431 */
3432 slab_post_alloc_hook(s, objcg, flags, size, p,
3433 slab_want_init_on_alloc(flags, s));
3434 return i;
3435error:
3436 local_irq_enable();
3437 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3438 __kmem_cache_free_bulk(s, i, p);
3439 return 0;
3440}
3441EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3442
3443
3444/*
3445 * Object placement in a slab is made very easy because we always start at
3446 * offset 0. If we tune the size of the object to the alignment then we can
3447 * get the required alignment by putting one properly sized object after
3448 * another.
3449 *
3450 * Notice that the allocation order determines the sizes of the per cpu
3451 * caches. Each processor has always one slab available for allocations.
3452 * Increasing the allocation order reduces the number of times that slabs
3453 * must be moved on and off the partial lists and is therefore a factor in
3454 * locking overhead.
3455 */
3456
3457/*
3458 * Minimum / Maximum order of slab pages. This influences locking overhead
3459 * and slab fragmentation. A higher order reduces the number of partial slabs
3460 * and increases the number of allocations possible without having to
3461 * take the list_lock.
3462 */
3463static unsigned int slub_min_order;
3464static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3465static unsigned int slub_min_objects;
3466
3467/*
3468 * Calculate the order of allocation given an slab object size.
3469 *
3470 * The order of allocation has significant impact on performance and other
3471 * system components. Generally order 0 allocations should be preferred since
3472 * order 0 does not cause fragmentation in the page allocator. Larger objects
3473 * be problematic to put into order 0 slabs because there may be too much
3474 * unused space left. We go to a higher order if more than 1/16th of the slab
3475 * would be wasted.
3476 *
3477 * In order to reach satisfactory performance we must ensure that a minimum
3478 * number of objects is in one slab. Otherwise we may generate too much
3479 * activity on the partial lists which requires taking the list_lock. This is
3480 * less a concern for large slabs though which are rarely used.
3481 *
3482 * slub_max_order specifies the order where we begin to stop considering the
3483 * number of objects in a slab as critical. If we reach slub_max_order then
3484 * we try to keep the page order as low as possible. So we accept more waste
3485 * of space in favor of a small page order.
3486 *
3487 * Higher order allocations also allow the placement of more objects in a
3488 * slab and thereby reduce object handling overhead. If the user has
3489 * requested a higher minimum order then we start with that one instead of
3490 * the smallest order which will fit the object.
3491 */
3492static inline unsigned int slab_order(unsigned int size,
3493 unsigned int min_objects, unsigned int max_order,
3494 unsigned int fract_leftover)
3495{
3496 unsigned int min_order = slub_min_order;
3497 unsigned int order;
3498
3499 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3500 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3501
3502 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3503 order <= max_order; order++) {
3504
3505 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3506 unsigned int rem;
3507
3508 rem = slab_size % size;
3509
3510 if (rem <= slab_size / fract_leftover)
3511 break;
3512 }
3513
3514 return order;
3515}
3516
3517static inline int calculate_order(unsigned int size)
3518{
3519 unsigned int order;
3520 unsigned int min_objects;
3521 unsigned int max_objects;
3522 unsigned int nr_cpus;
3523
3524 /*
3525 * Attempt to find best configuration for a slab. This
3526 * works by first attempting to generate a layout with
3527 * the best configuration and backing off gradually.
3528 *
3529 * First we increase the acceptable waste in a slab. Then
3530 * we reduce the minimum objects required in a slab.
3531 */
3532 min_objects = slub_min_objects;
3533 if (!min_objects) {
3534 /*
3535 * Some architectures will only update present cpus when
3536 * onlining them, so don't trust the number if it's just 1. But
3537 * we also don't want to use nr_cpu_ids always, as on some other
3538 * architectures, there can be many possible cpus, but never
3539 * onlined. Here we compromise between trying to avoid too high
3540 * order on systems that appear larger than they are, and too
3541 * low order on systems that appear smaller than they are.
3542 */
3543 nr_cpus = num_present_cpus();
3544 if (nr_cpus <= 1)
3545 nr_cpus = nr_cpu_ids;
3546 min_objects = 4 * (fls(nr_cpus) + 1);
3547 }
3548 max_objects = order_objects(slub_max_order, size);
3549 min_objects = min(min_objects, max_objects);
3550
3551 while (min_objects > 1) {
3552 unsigned int fraction;
3553
3554 fraction = 16;
3555 while (fraction >= 4) {
3556 order = slab_order(size, min_objects,
3557 slub_max_order, fraction);
3558 if (order <= slub_max_order)
3559 return order;
3560 fraction /= 2;
3561 }
3562 min_objects--;
3563 }
3564
3565 /*
3566 * We were unable to place multiple objects in a slab. Now
3567 * lets see if we can place a single object there.
3568 */
3569 order = slab_order(size, 1, slub_max_order, 1);
3570 if (order <= slub_max_order)
3571 return order;
3572
3573 /*
3574 * Doh this slab cannot be placed using slub_max_order.
3575 */
3576 order = slab_order(size, 1, MAX_ORDER, 1);
3577 if (order < MAX_ORDER)
3578 return order;
3579 return -ENOSYS;
3580}
3581
3582static void
3583init_kmem_cache_node(struct kmem_cache_node *n)
3584{
3585 n->nr_partial = 0;
3586 spin_lock_init(&n->list_lock);
3587 INIT_LIST_HEAD(&n->partial);
3588#ifdef CONFIG_SLUB_DEBUG
3589 atomic_long_set(&n->nr_slabs, 0);
3590 atomic_long_set(&n->total_objects, 0);
3591 INIT_LIST_HEAD(&n->full);
3592#endif
3593}
3594
3595static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3596{
3597 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3598 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3599
3600 /*
3601 * Must align to double word boundary for the double cmpxchg
3602 * instructions to work; see __pcpu_double_call_return_bool().
3603 */
3604 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3605 2 * sizeof(void *));
3606
3607 if (!s->cpu_slab)
3608 return 0;
3609
3610 init_kmem_cache_cpus(s);
3611
3612 return 1;
3613}
3614
3615static struct kmem_cache *kmem_cache_node;
3616
3617/*
3618 * No kmalloc_node yet so do it by hand. We know that this is the first
3619 * slab on the node for this slabcache. There are no concurrent accesses
3620 * possible.
3621 *
3622 * Note that this function only works on the kmem_cache_node
3623 * when allocating for the kmem_cache_node. This is used for bootstrapping
3624 * memory on a fresh node that has no slab structures yet.
3625 */
3626static void early_kmem_cache_node_alloc(int node)
3627{
3628 struct page *page;
3629 struct kmem_cache_node *n;
3630
3631 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3632
3633 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3634
3635 BUG_ON(!page);
3636 if (page_to_nid(page) != node) {
3637 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3638 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3639 }
3640
3641 n = page->freelist;
3642 BUG_ON(!n);
3643#ifdef CONFIG_SLUB_DEBUG
3644 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3645 init_tracking(kmem_cache_node, n);
3646#endif
3647 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3648 page->freelist = get_freepointer(kmem_cache_node, n);
3649 page->inuse = 1;
3650 page->frozen = 0;
3651 kmem_cache_node->node[node] = n;
3652 init_kmem_cache_node(n);
3653 inc_slabs_node(kmem_cache_node, node, page->objects);
3654
3655 /*
3656 * No locks need to be taken here as it has just been
3657 * initialized and there is no concurrent access.
3658 */
3659 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3660}
3661
3662static void free_kmem_cache_nodes(struct kmem_cache *s)
3663{
3664 int node;
3665 struct kmem_cache_node *n;
3666
3667 for_each_kmem_cache_node(s, node, n) {
3668 s->node[node] = NULL;
3669 kmem_cache_free(kmem_cache_node, n);
3670 }
3671}
3672
3673void __kmem_cache_release(struct kmem_cache *s)
3674{
3675 cache_random_seq_destroy(s);
3676 free_percpu(s->cpu_slab);
3677 free_kmem_cache_nodes(s);
3678}
3679
3680static int init_kmem_cache_nodes(struct kmem_cache *s)
3681{
3682 int node;
3683
3684 for_each_node_mask(node, slab_nodes) {
3685 struct kmem_cache_node *n;
3686
3687 if (slab_state == DOWN) {
3688 early_kmem_cache_node_alloc(node);
3689 continue;
3690 }
3691 n = kmem_cache_alloc_node(kmem_cache_node,
3692 GFP_KERNEL, node);
3693
3694 if (!n) {
3695 free_kmem_cache_nodes(s);
3696 return 0;
3697 }
3698
3699 init_kmem_cache_node(n);
3700 s->node[node] = n;
3701 }
3702 return 1;
3703}
3704
3705static void set_min_partial(struct kmem_cache *s, unsigned long min)
3706{
3707 if (min < MIN_PARTIAL)
3708 min = MIN_PARTIAL;
3709 else if (min > MAX_PARTIAL)
3710 min = MAX_PARTIAL;
3711 s->min_partial = min;
3712}
3713
3714static void set_cpu_partial(struct kmem_cache *s)
3715{
3716#ifdef CONFIG_SLUB_CPU_PARTIAL
3717 /*
3718 * cpu_partial determined the maximum number of objects kept in the
3719 * per cpu partial lists of a processor.
3720 *
3721 * Per cpu partial lists mainly contain slabs that just have one
3722 * object freed. If they are used for allocation then they can be
3723 * filled up again with minimal effort. The slab will never hit the
3724 * per node partial lists and therefore no locking will be required.
3725 *
3726 * This setting also determines
3727 *
3728 * A) The number of objects from per cpu partial slabs dumped to the
3729 * per node list when we reach the limit.
3730 * B) The number of objects in cpu partial slabs to extract from the
3731 * per node list when we run out of per cpu objects. We only fetch
3732 * 50% to keep some capacity around for frees.
3733 */
3734 if (!kmem_cache_has_cpu_partial(s))
3735 slub_set_cpu_partial(s, 0);
3736 else if (s->size >= PAGE_SIZE)
3737 slub_set_cpu_partial(s, 2);
3738 else if (s->size >= 1024)
3739 slub_set_cpu_partial(s, 6);
3740 else if (s->size >= 256)
3741 slub_set_cpu_partial(s, 13);
3742 else
3743 slub_set_cpu_partial(s, 30);
3744#endif
3745}
3746
3747/*
3748 * calculate_sizes() determines the order and the distribution of data within
3749 * a slab object.
3750 */
3751static int calculate_sizes(struct kmem_cache *s, int forced_order)
3752{
3753 slab_flags_t flags = s->flags;
3754 unsigned int size = s->object_size;
3755 unsigned int order;
3756
3757 /*
3758 * Round up object size to the next word boundary. We can only
3759 * place the free pointer at word boundaries and this determines
3760 * the possible location of the free pointer.
3761 */
3762 size = ALIGN(size, sizeof(void *));
3763
3764#ifdef CONFIG_SLUB_DEBUG
3765 /*
3766 * Determine if we can poison the object itself. If the user of
3767 * the slab may touch the object after free or before allocation
3768 * then we should never poison the object itself.
3769 */
3770 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3771 !s->ctor)
3772 s->flags |= __OBJECT_POISON;
3773 else
3774 s->flags &= ~__OBJECT_POISON;
3775
3776
3777 /*
3778 * If we are Redzoning then check if there is some space between the
3779 * end of the object and the free pointer. If not then add an
3780 * additional word to have some bytes to store Redzone information.
3781 */
3782 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3783 size += sizeof(void *);
3784#endif
3785
3786 /*
3787 * With that we have determined the number of bytes in actual use
3788 * by the object and redzoning.
3789 */
3790 s->inuse = size;
3791
3792 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3793 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3794 s->ctor) {
3795 /*
3796 * Relocate free pointer after the object if it is not
3797 * permitted to overwrite the first word of the object on
3798 * kmem_cache_free.
3799 *
3800 * This is the case if we do RCU, have a constructor or
3801 * destructor, are poisoning the objects, or are
3802 * redzoning an object smaller than sizeof(void *).
3803 *
3804 * The assumption that s->offset >= s->inuse means free
3805 * pointer is outside of the object is used in the
3806 * freeptr_outside_object() function. If that is no
3807 * longer true, the function needs to be modified.
3808 */
3809 s->offset = size;
3810 size += sizeof(void *);
3811 } else {
3812 /*
3813 * Store freelist pointer near middle of object to keep
3814 * it away from the edges of the object to avoid small
3815 * sized over/underflows from neighboring allocations.
3816 */
3817 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3818 }
3819
3820#ifdef CONFIG_SLUB_DEBUG
3821 if (flags & SLAB_STORE_USER)
3822 /*
3823 * Need to store information about allocs and frees after
3824 * the object.
3825 */
3826 size += 2 * sizeof(struct track);
3827#endif
3828
3829 kasan_cache_create(s, &size, &s->flags);
3830#ifdef CONFIG_SLUB_DEBUG
3831 if (flags & SLAB_RED_ZONE) {
3832 /*
3833 * Add some empty padding so that we can catch
3834 * overwrites from earlier objects rather than let
3835 * tracking information or the free pointer be
3836 * corrupted if a user writes before the start
3837 * of the object.
3838 */
3839 size += sizeof(void *);
3840
3841 s->red_left_pad = sizeof(void *);
3842 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3843 size += s->red_left_pad;
3844 }
3845#endif
3846
3847 /*
3848 * SLUB stores one object immediately after another beginning from
3849 * offset 0. In order to align the objects we have to simply size
3850 * each object to conform to the alignment.
3851 */
3852 size = ALIGN(size, s->align);
3853 s->size = size;
3854 s->reciprocal_size = reciprocal_value(size);
3855 if (forced_order >= 0)
3856 order = forced_order;
3857 else
3858 order = calculate_order(size);
3859
3860 if ((int)order < 0)
3861 return 0;
3862
3863 s->allocflags = 0;
3864 if (order)
3865 s->allocflags |= __GFP_COMP;
3866
3867 if (s->flags & SLAB_CACHE_DMA)
3868 s->allocflags |= GFP_DMA;
3869
3870 if (s->flags & SLAB_CACHE_DMA32)
3871 s->allocflags |= GFP_DMA32;
3872
3873 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3874 s->allocflags |= __GFP_RECLAIMABLE;
3875
3876 /*
3877 * Determine the number of objects per slab
3878 */
3879 s->oo = oo_make(order, size);
3880 s->min = oo_make(get_order(size), size);
3881 if (oo_objects(s->oo) > oo_objects(s->max))
3882 s->max = s->oo;
3883
3884 return !!oo_objects(s->oo);
3885}
3886
3887static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3888{
3889 s->flags = kmem_cache_flags(s->size, flags, s->name);
3890#ifdef CONFIG_SLAB_FREELIST_HARDENED
3891 s->random = get_random_long();
3892#endif
3893
3894 if (!calculate_sizes(s, -1))
3895 goto error;
3896 if (disable_higher_order_debug) {
3897 /*
3898 * Disable debugging flags that store metadata if the min slab
3899 * order increased.
3900 */
3901 if (get_order(s->size) > get_order(s->object_size)) {
3902 s->flags &= ~DEBUG_METADATA_FLAGS;
3903 s->offset = 0;
3904 if (!calculate_sizes(s, -1))
3905 goto error;
3906 }
3907 }
3908
3909#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3910 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3911 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3912 /* Enable fast mode */
3913 s->flags |= __CMPXCHG_DOUBLE;
3914#endif
3915
3916 /*
3917 * The larger the object size is, the more pages we want on the partial
3918 * list to avoid pounding the page allocator excessively.
3919 */
3920 set_min_partial(s, ilog2(s->size) / 2);
3921
3922 set_cpu_partial(s);
3923
3924#ifdef CONFIG_NUMA
3925 s->remote_node_defrag_ratio = 1000;
3926#endif
3927
3928 /* Initialize the pre-computed randomized freelist if slab is up */
3929 if (slab_state >= UP) {
3930 if (init_cache_random_seq(s))
3931 goto error;
3932 }
3933
3934 if (!init_kmem_cache_nodes(s))
3935 goto error;
3936
3937 if (alloc_kmem_cache_cpus(s))
3938 return 0;
3939
3940error:
3941 __kmem_cache_release(s);
3942 return -EINVAL;
3943}
3944
3945static void list_slab_objects(struct kmem_cache *s, struct page *page,
3946 const char *text)
3947{
3948#ifdef CONFIG_SLUB_DEBUG
3949 void *addr = page_address(page);
3950 unsigned long *map;
3951 void *p;
3952
3953 slab_err(s, page, text, s->name);
3954 slab_lock(page);
3955
3956 map = get_map(s, page);
3957 for_each_object(p, s, addr, page->objects) {
3958
3959 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3960 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3961 print_tracking(s, p);
3962 }
3963 }
3964 put_map(map);
3965 slab_unlock(page);
3966#endif
3967}
3968
3969/*
3970 * Attempt to free all partial slabs on a node.
3971 * This is called from __kmem_cache_shutdown(). We must take list_lock
3972 * because sysfs file might still access partial list after the shutdowning.
3973 */
3974static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3975{
3976 LIST_HEAD(discard);
3977 struct page *page, *h;
3978
3979 BUG_ON(irqs_disabled());
3980 spin_lock_irq(&n->list_lock);
3981 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3982 if (!page->inuse) {
3983 remove_partial(n, page);
3984 list_add(&page->slab_list, &discard);
3985 } else {
3986 list_slab_objects(s, page,
3987 "Objects remaining in %s on __kmem_cache_shutdown()");
3988 }
3989 }
3990 spin_unlock_irq(&n->list_lock);
3991
3992 list_for_each_entry_safe(page, h, &discard, slab_list)
3993 discard_slab(s, page);
3994}
3995
3996bool __kmem_cache_empty(struct kmem_cache *s)
3997{
3998 int node;
3999 struct kmem_cache_node *n;
4000
4001 for_each_kmem_cache_node(s, node, n)
4002 if (n->nr_partial || slabs_node(s, node))
4003 return false;
4004 return true;
4005}
4006
4007/*
4008 * Release all resources used by a slab cache.
4009 */
4010int __kmem_cache_shutdown(struct kmem_cache *s)
4011{
4012 int node;
4013 struct kmem_cache_node *n;
4014
4015 flush_all(s);
4016 /* Attempt to free all objects */
4017 for_each_kmem_cache_node(s, node, n) {
4018 free_partial(s, n);
4019 if (n->nr_partial || slabs_node(s, node))
4020 return 1;
4021 }
4022 return 0;
4023}
4024
4025#ifdef CONFIG_PRINTK
4026void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4027{
4028 void *base;
4029 int __maybe_unused i;
4030 unsigned int objnr;
4031 void *objp;
4032 void *objp0;
4033 struct kmem_cache *s = page->slab_cache;
4034 struct track __maybe_unused *trackp;
4035
4036 kpp->kp_ptr = object;
4037 kpp->kp_page = page;
4038 kpp->kp_slab_cache = s;
4039 base = page_address(page);
4040 objp0 = kasan_reset_tag(object);
4041#ifdef CONFIG_SLUB_DEBUG
4042 objp = restore_red_left(s, objp0);
4043#else
4044 objp = objp0;
4045#endif
4046 objnr = obj_to_index(s, page, objp);
4047 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4048 objp = base + s->size * objnr;
4049 kpp->kp_objp = objp;
4050 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4051 !(s->flags & SLAB_STORE_USER))
4052 return;
4053#ifdef CONFIG_SLUB_DEBUG
4054 objp = fixup_red_left(s, objp);
4055 trackp = get_track(s, objp, TRACK_ALLOC);
4056 kpp->kp_ret = (void *)trackp->addr;
4057#ifdef CONFIG_STACKTRACE
4058 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4059 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4060 if (!kpp->kp_stack[i])
4061 break;
4062 }
4063
4064 trackp = get_track(s, objp, TRACK_FREE);
4065 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4066 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4067 if (!kpp->kp_free_stack[i])
4068 break;
4069 }
4070#endif
4071#endif
4072}
4073#endif
4074
4075/********************************************************************
4076 * Kmalloc subsystem
4077 *******************************************************************/
4078
4079static int __init setup_slub_min_order(char *str)
4080{
4081 get_option(&str, (int *)&slub_min_order);
4082
4083 return 1;
4084}
4085
4086__setup("slub_min_order=", setup_slub_min_order);
4087
4088static int __init setup_slub_max_order(char *str)
4089{
4090 get_option(&str, (int *)&slub_max_order);
4091 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4092
4093 return 1;
4094}
4095
4096__setup("slub_max_order=", setup_slub_max_order);
4097
4098static int __init setup_slub_min_objects(char *str)
4099{
4100 get_option(&str, (int *)&slub_min_objects);
4101
4102 return 1;
4103}
4104
4105__setup("slub_min_objects=", setup_slub_min_objects);
4106
4107void *__kmalloc(size_t size, gfp_t flags)
4108{
4109 struct kmem_cache *s;
4110 void *ret;
4111
4112 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4113 return kmalloc_large(size, flags);
4114
4115 s = kmalloc_slab(size, flags);
4116
4117 if (unlikely(ZERO_OR_NULL_PTR(s)))
4118 return s;
4119
4120 ret = slab_alloc(s, flags, _RET_IP_, size);
4121
4122 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4123
4124 ret = kasan_kmalloc(s, ret, size, flags);
4125
4126 return ret;
4127}
4128EXPORT_SYMBOL(__kmalloc);
4129
4130#ifdef CONFIG_NUMA
4131static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4132{
4133 struct page *page;
4134 void *ptr = NULL;
4135 unsigned int order = get_order(size);
4136
4137 flags |= __GFP_COMP;
4138 page = alloc_pages_node(node, flags, order);
4139 if (page) {
4140 ptr = page_address(page);
4141 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4142 PAGE_SIZE << order);
4143 }
4144
4145 return kmalloc_large_node_hook(ptr, size, flags);
4146}
4147
4148void *__kmalloc_node(size_t size, gfp_t flags, int node)
4149{
4150 struct kmem_cache *s;
4151 void *ret;
4152
4153 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4154 ret = kmalloc_large_node(size, flags, node);
4155
4156 trace_kmalloc_node(_RET_IP_, ret,
4157 size, PAGE_SIZE << get_order(size),
4158 flags, node);
4159
4160 return ret;
4161 }
4162
4163 s = kmalloc_slab(size, flags);
4164
4165 if (unlikely(ZERO_OR_NULL_PTR(s)))
4166 return s;
4167
4168 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4169
4170 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4171
4172 ret = kasan_kmalloc(s, ret, size, flags);
4173
4174 return ret;
4175}
4176EXPORT_SYMBOL(__kmalloc_node);
4177#endif /* CONFIG_NUMA */
4178
4179#ifdef CONFIG_HARDENED_USERCOPY
4180/*
4181 * Rejects incorrectly sized objects and objects that are to be copied
4182 * to/from userspace but do not fall entirely within the containing slab
4183 * cache's usercopy region.
4184 *
4185 * Returns NULL if check passes, otherwise const char * to name of cache
4186 * to indicate an error.
4187 */
4188void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4189 bool to_user)
4190{
4191 struct kmem_cache *s;
4192 unsigned int offset;
4193 size_t object_size;
4194 bool is_kfence = is_kfence_address(ptr);
4195
4196 ptr = kasan_reset_tag(ptr);
4197
4198 /* Find object and usable object size. */
4199 s = page->slab_cache;
4200
4201 /* Reject impossible pointers. */
4202 if (ptr < page_address(page))
4203 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4204 to_user, 0, n);
4205
4206 /* Find offset within object. */
4207 if (is_kfence)
4208 offset = ptr - kfence_object_start(ptr);
4209 else
4210 offset = (ptr - page_address(page)) % s->size;
4211
4212 /* Adjust for redzone and reject if within the redzone. */
4213 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4214 if (offset < s->red_left_pad)
4215 usercopy_abort("SLUB object in left red zone",
4216 s->name, to_user, offset, n);
4217 offset -= s->red_left_pad;
4218 }
4219
4220 /* Allow address range falling entirely within usercopy region. */
4221 if (offset >= s->useroffset &&
4222 offset - s->useroffset <= s->usersize &&
4223 n <= s->useroffset - offset + s->usersize)
4224 return;
4225
4226 /*
4227 * If the copy is still within the allocated object, produce
4228 * a warning instead of rejecting the copy. This is intended
4229 * to be a temporary method to find any missing usercopy
4230 * whitelists.
4231 */
4232 object_size = slab_ksize(s);
4233 if (usercopy_fallback &&
4234 offset <= object_size && n <= object_size - offset) {
4235 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4236 return;
4237 }
4238
4239 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4240}
4241#endif /* CONFIG_HARDENED_USERCOPY */
4242
4243size_t __ksize(const void *object)
4244{
4245 struct page *page;
4246
4247 if (unlikely(object == ZERO_SIZE_PTR))
4248 return 0;
4249
4250 page = virt_to_head_page(object);
4251
4252 if (unlikely(!PageSlab(page))) {
4253 WARN_ON(!PageCompound(page));
4254 return page_size(page);
4255 }
4256
4257 return slab_ksize(page->slab_cache);
4258}
4259EXPORT_SYMBOL(__ksize);
4260
4261void kfree(const void *x)
4262{
4263 struct page *page;
4264 void *object = (void *)x;
4265
4266 trace_kfree(_RET_IP_, x);
4267
4268 if (unlikely(ZERO_OR_NULL_PTR(x)))
4269 return;
4270
4271 page = virt_to_head_page(x);
4272 if (unlikely(!PageSlab(page))) {
4273 free_nonslab_page(page, object);
4274 return;
4275 }
4276 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4277}
4278EXPORT_SYMBOL(kfree);
4279
4280#define SHRINK_PROMOTE_MAX 32
4281
4282/*
4283 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4284 * up most to the head of the partial lists. New allocations will then
4285 * fill those up and thus they can be removed from the partial lists.
4286 *
4287 * The slabs with the least items are placed last. This results in them
4288 * being allocated from last increasing the chance that the last objects
4289 * are freed in them.
4290 */
4291int __kmem_cache_shrink(struct kmem_cache *s)
4292{
4293 int node;
4294 int i;
4295 struct kmem_cache_node *n;
4296 struct page *page;
4297 struct page *t;
4298 struct list_head discard;
4299 struct list_head promote[SHRINK_PROMOTE_MAX];
4300 unsigned long flags;
4301 int ret = 0;
4302
4303 flush_all(s);
4304 for_each_kmem_cache_node(s, node, n) {
4305 INIT_LIST_HEAD(&discard);
4306 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4307 INIT_LIST_HEAD(promote + i);
4308
4309 spin_lock_irqsave(&n->list_lock, flags);
4310
4311 /*
4312 * Build lists of slabs to discard or promote.
4313 *
4314 * Note that concurrent frees may occur while we hold the
4315 * list_lock. page->inuse here is the upper limit.
4316 */
4317 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4318 int free = page->objects - page->inuse;
4319
4320 /* Do not reread page->inuse */
4321 barrier();
4322
4323 /* We do not keep full slabs on the list */
4324 BUG_ON(free <= 0);
4325
4326 if (free == page->objects) {
4327 list_move(&page->slab_list, &discard);
4328 n->nr_partial--;
4329 } else if (free <= SHRINK_PROMOTE_MAX)
4330 list_move(&page->slab_list, promote + free - 1);
4331 }
4332
4333 /*
4334 * Promote the slabs filled up most to the head of the
4335 * partial list.
4336 */
4337 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4338 list_splice(promote + i, &n->partial);
4339
4340 spin_unlock_irqrestore(&n->list_lock, flags);
4341
4342 /* Release empty slabs */
4343 list_for_each_entry_safe(page, t, &discard, slab_list)
4344 discard_slab(s, page);
4345
4346 if (slabs_node(s, node))
4347 ret = 1;
4348 }
4349
4350 return ret;
4351}
4352
4353static int slab_mem_going_offline_callback(void *arg)
4354{
4355 struct kmem_cache *s;
4356
4357 mutex_lock(&slab_mutex);
4358 list_for_each_entry(s, &slab_caches, list)
4359 __kmem_cache_shrink(s);
4360 mutex_unlock(&slab_mutex);
4361
4362 return 0;
4363}
4364
4365static void slab_mem_offline_callback(void *arg)
4366{
4367 struct memory_notify *marg = arg;
4368 int offline_node;
4369
4370 offline_node = marg->status_change_nid_normal;
4371
4372 /*
4373 * If the node still has available memory. we need kmem_cache_node
4374 * for it yet.
4375 */
4376 if (offline_node < 0)
4377 return;
4378
4379 mutex_lock(&slab_mutex);
4380 node_clear(offline_node, slab_nodes);
4381 /*
4382 * We no longer free kmem_cache_node structures here, as it would be
4383 * racy with all get_node() users, and infeasible to protect them with
4384 * slab_mutex.
4385 */
4386 mutex_unlock(&slab_mutex);
4387}
4388
4389static int slab_mem_going_online_callback(void *arg)
4390{
4391 struct kmem_cache_node *n;
4392 struct kmem_cache *s;
4393 struct memory_notify *marg = arg;
4394 int nid = marg->status_change_nid_normal;
4395 int ret = 0;
4396
4397 /*
4398 * If the node's memory is already available, then kmem_cache_node is
4399 * already created. Nothing to do.
4400 */
4401 if (nid < 0)
4402 return 0;
4403
4404 /*
4405 * We are bringing a node online. No memory is available yet. We must
4406 * allocate a kmem_cache_node structure in order to bring the node
4407 * online.
4408 */
4409 mutex_lock(&slab_mutex);
4410 list_for_each_entry(s, &slab_caches, list) {
4411 /*
4412 * The structure may already exist if the node was previously
4413 * onlined and offlined.
4414 */
4415 if (get_node(s, nid))
4416 continue;
4417 /*
4418 * XXX: kmem_cache_alloc_node will fallback to other nodes
4419 * since memory is not yet available from the node that
4420 * is brought up.
4421 */
4422 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4423 if (!n) {
4424 ret = -ENOMEM;
4425 goto out;
4426 }
4427 init_kmem_cache_node(n);
4428 s->node[nid] = n;
4429 }
4430 /*
4431 * Any cache created after this point will also have kmem_cache_node
4432 * initialized for the new node.
4433 */
4434 node_set(nid, slab_nodes);
4435out:
4436 mutex_unlock(&slab_mutex);
4437 return ret;
4438}
4439
4440static int slab_memory_callback(struct notifier_block *self,
4441 unsigned long action, void *arg)
4442{
4443 int ret = 0;
4444
4445 switch (action) {
4446 case MEM_GOING_ONLINE:
4447 ret = slab_mem_going_online_callback(arg);
4448 break;
4449 case MEM_GOING_OFFLINE:
4450 ret = slab_mem_going_offline_callback(arg);
4451 break;
4452 case MEM_OFFLINE:
4453 case MEM_CANCEL_ONLINE:
4454 slab_mem_offline_callback(arg);
4455 break;
4456 case MEM_ONLINE:
4457 case MEM_CANCEL_OFFLINE:
4458 break;
4459 }
4460 if (ret)
4461 ret = notifier_from_errno(ret);
4462 else
4463 ret = NOTIFY_OK;
4464 return ret;
4465}
4466
4467static struct notifier_block slab_memory_callback_nb = {
4468 .notifier_call = slab_memory_callback,
4469 .priority = SLAB_CALLBACK_PRI,
4470};
4471
4472/********************************************************************
4473 * Basic setup of slabs
4474 *******************************************************************/
4475
4476/*
4477 * Used for early kmem_cache structures that were allocated using
4478 * the page allocator. Allocate them properly then fix up the pointers
4479 * that may be pointing to the wrong kmem_cache structure.
4480 */
4481
4482static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4483{
4484 int node;
4485 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4486 struct kmem_cache_node *n;
4487
4488 memcpy(s, static_cache, kmem_cache->object_size);
4489
4490 /*
4491 * This runs very early, and only the boot processor is supposed to be
4492 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4493 * IPIs around.
4494 */
4495 __flush_cpu_slab(s, smp_processor_id());
4496 for_each_kmem_cache_node(s, node, n) {
4497 struct page *p;
4498
4499 list_for_each_entry(p, &n->partial, slab_list)
4500 p->slab_cache = s;
4501
4502#ifdef CONFIG_SLUB_DEBUG
4503 list_for_each_entry(p, &n->full, slab_list)
4504 p->slab_cache = s;
4505#endif
4506 }
4507 list_add(&s->list, &slab_caches);
4508 return s;
4509}
4510
4511void __init kmem_cache_init(void)
4512{
4513 static __initdata struct kmem_cache boot_kmem_cache,
4514 boot_kmem_cache_node;
4515 int node;
4516
4517 if (debug_guardpage_minorder())
4518 slub_max_order = 0;
4519
4520 /* Print slub debugging pointers without hashing */
4521 if (__slub_debug_enabled())
4522 no_hash_pointers_enable(NULL);
4523
4524 kmem_cache_node = &boot_kmem_cache_node;
4525 kmem_cache = &boot_kmem_cache;
4526
4527 /*
4528 * Initialize the nodemask for which we will allocate per node
4529 * structures. Here we don't need taking slab_mutex yet.
4530 */
4531 for_each_node_state(node, N_NORMAL_MEMORY)
4532 node_set(node, slab_nodes);
4533
4534 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4535 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4536
4537 register_hotmemory_notifier(&slab_memory_callback_nb);
4538
4539 /* Able to allocate the per node structures */
4540 slab_state = PARTIAL;
4541
4542 create_boot_cache(kmem_cache, "kmem_cache",
4543 offsetof(struct kmem_cache, node) +
4544 nr_node_ids * sizeof(struct kmem_cache_node *),
4545 SLAB_HWCACHE_ALIGN, 0, 0);
4546
4547 kmem_cache = bootstrap(&boot_kmem_cache);
4548 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4549
4550 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4551 setup_kmalloc_cache_index_table();
4552 create_kmalloc_caches(0);
4553
4554 /* Setup random freelists for each cache */
4555 init_freelist_randomization();
4556
4557 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4558 slub_cpu_dead);
4559
4560 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4561 cache_line_size(),
4562 slub_min_order, slub_max_order, slub_min_objects,
4563 nr_cpu_ids, nr_node_ids);
4564}
4565
4566void __init kmem_cache_init_late(void)
4567{
4568}
4569
4570struct kmem_cache *
4571__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4572 slab_flags_t flags, void (*ctor)(void *))
4573{
4574 struct kmem_cache *s;
4575
4576 s = find_mergeable(size, align, flags, name, ctor);
4577 if (s) {
4578 s->refcount++;
4579
4580 /*
4581 * Adjust the object sizes so that we clear
4582 * the complete object on kzalloc.
4583 */
4584 s->object_size = max(s->object_size, size);
4585 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4586
4587 if (sysfs_slab_alias(s, name)) {
4588 s->refcount--;
4589 s = NULL;
4590 }
4591 }
4592
4593 return s;
4594}
4595
4596int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4597{
4598 int err;
4599
4600 err = kmem_cache_open(s, flags);
4601 if (err)
4602 return err;
4603
4604 /* Mutex is not taken during early boot */
4605 if (slab_state <= UP)
4606 return 0;
4607
4608 err = sysfs_slab_add(s);
4609 if (err) {
4610 __kmem_cache_release(s);
4611 return err;
4612 }
4613
4614 if (s->flags & SLAB_STORE_USER)
4615 debugfs_slab_add(s);
4616
4617 return 0;
4618}
4619
4620void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4621{
4622 struct kmem_cache *s;
4623 void *ret;
4624
4625 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4626 return kmalloc_large(size, gfpflags);
4627
4628 s = kmalloc_slab(size, gfpflags);
4629
4630 if (unlikely(ZERO_OR_NULL_PTR(s)))
4631 return s;
4632
4633 ret = slab_alloc(s, gfpflags, caller, size);
4634
4635 /* Honor the call site pointer we received. */
4636 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4637
4638 return ret;
4639}
4640EXPORT_SYMBOL(__kmalloc_track_caller);
4641
4642#ifdef CONFIG_NUMA
4643void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4644 int node, unsigned long caller)
4645{
4646 struct kmem_cache *s;
4647 void *ret;
4648
4649 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4650 ret = kmalloc_large_node(size, gfpflags, node);
4651
4652 trace_kmalloc_node(caller, ret,
4653 size, PAGE_SIZE << get_order(size),
4654 gfpflags, node);
4655
4656 return ret;
4657 }
4658
4659 s = kmalloc_slab(size, gfpflags);
4660
4661 if (unlikely(ZERO_OR_NULL_PTR(s)))
4662 return s;
4663
4664 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4665
4666 /* Honor the call site pointer we received. */
4667 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4668
4669 return ret;
4670}
4671EXPORT_SYMBOL(__kmalloc_node_track_caller);
4672#endif
4673
4674#ifdef CONFIG_SYSFS
4675static int count_inuse(struct page *page)
4676{
4677 return page->inuse;
4678}
4679
4680static int count_total(struct page *page)
4681{
4682 return page->objects;
4683}
4684#endif
4685
4686#ifdef CONFIG_SLUB_DEBUG
4687static void validate_slab(struct kmem_cache *s, struct page *page)
4688{
4689 void *p;
4690 void *addr = page_address(page);
4691 unsigned long *map;
4692
4693 slab_lock(page);
4694
4695 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4696 goto unlock;
4697
4698 /* Now we know that a valid freelist exists */
4699 map = get_map(s, page);
4700 for_each_object(p, s, addr, page->objects) {
4701 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4702 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4703
4704 if (!check_object(s, page, p, val))
4705 break;
4706 }
4707 put_map(map);
4708unlock:
4709 slab_unlock(page);
4710}
4711
4712static int validate_slab_node(struct kmem_cache *s,
4713 struct kmem_cache_node *n)
4714{
4715 unsigned long count = 0;
4716 struct page *page;
4717 unsigned long flags;
4718
4719 spin_lock_irqsave(&n->list_lock, flags);
4720
4721 list_for_each_entry(page, &n->partial, slab_list) {
4722 validate_slab(s, page);
4723 count++;
4724 }
4725 if (count != n->nr_partial) {
4726 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4727 s->name, count, n->nr_partial);
4728 slab_add_kunit_errors();
4729 }
4730
4731 if (!(s->flags & SLAB_STORE_USER))
4732 goto out;
4733
4734 list_for_each_entry(page, &n->full, slab_list) {
4735 validate_slab(s, page);
4736 count++;
4737 }
4738 if (count != atomic_long_read(&n->nr_slabs)) {
4739 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4740 s->name, count, atomic_long_read(&n->nr_slabs));
4741 slab_add_kunit_errors();
4742 }
4743
4744out:
4745 spin_unlock_irqrestore(&n->list_lock, flags);
4746 return count;
4747}
4748
4749long validate_slab_cache(struct kmem_cache *s)
4750{
4751 int node;
4752 unsigned long count = 0;
4753 struct kmem_cache_node *n;
4754
4755 flush_all(s);
4756 for_each_kmem_cache_node(s, node, n)
4757 count += validate_slab_node(s, n);
4758
4759 return count;
4760}
4761EXPORT_SYMBOL(validate_slab_cache);
4762
4763#ifdef CONFIG_DEBUG_FS
4764/*
4765 * Generate lists of code addresses where slabcache objects are allocated
4766 * and freed.
4767 */
4768
4769struct location {
4770 unsigned long count;
4771 unsigned long addr;
4772 long long sum_time;
4773 long min_time;
4774 long max_time;
4775 long min_pid;
4776 long max_pid;
4777 DECLARE_BITMAP(cpus, NR_CPUS);
4778 nodemask_t nodes;
4779};
4780
4781struct loc_track {
4782 unsigned long max;
4783 unsigned long count;
4784 struct location *loc;
4785};
4786
4787static struct dentry *slab_debugfs_root;
4788
4789static void free_loc_track(struct loc_track *t)
4790{
4791 if (t->max)
4792 free_pages((unsigned long)t->loc,
4793 get_order(sizeof(struct location) * t->max));
4794}
4795
4796static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4797{
4798 struct location *l;
4799 int order;
4800
4801 order = get_order(sizeof(struct location) * max);
4802
4803 l = (void *)__get_free_pages(flags, order);
4804 if (!l)
4805 return 0;
4806
4807 if (t->count) {
4808 memcpy(l, t->loc, sizeof(struct location) * t->count);
4809 free_loc_track(t);
4810 }
4811 t->max = max;
4812 t->loc = l;
4813 return 1;
4814}
4815
4816static int add_location(struct loc_track *t, struct kmem_cache *s,
4817 const struct track *track)
4818{
4819 long start, end, pos;
4820 struct location *l;
4821 unsigned long caddr;
4822 unsigned long age = jiffies - track->when;
4823
4824 start = -1;
4825 end = t->count;
4826
4827 for ( ; ; ) {
4828 pos = start + (end - start + 1) / 2;
4829
4830 /*
4831 * There is nothing at "end". If we end up there
4832 * we need to add something to before end.
4833 */
4834 if (pos == end)
4835 break;
4836
4837 caddr = t->loc[pos].addr;
4838 if (track->addr == caddr) {
4839
4840 l = &t->loc[pos];
4841 l->count++;
4842 if (track->when) {
4843 l->sum_time += age;
4844 if (age < l->min_time)
4845 l->min_time = age;
4846 if (age > l->max_time)
4847 l->max_time = age;
4848
4849 if (track->pid < l->min_pid)
4850 l->min_pid = track->pid;
4851 if (track->pid > l->max_pid)
4852 l->max_pid = track->pid;
4853
4854 cpumask_set_cpu(track->cpu,
4855 to_cpumask(l->cpus));
4856 }
4857 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4858 return 1;
4859 }
4860
4861 if (track->addr < caddr)
4862 end = pos;
4863 else
4864 start = pos;
4865 }
4866
4867 /*
4868 * Not found. Insert new tracking element.
4869 */
4870 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4871 return 0;
4872
4873 l = t->loc + pos;
4874 if (pos < t->count)
4875 memmove(l + 1, l,
4876 (t->count - pos) * sizeof(struct location));
4877 t->count++;
4878 l->count = 1;
4879 l->addr = track->addr;
4880 l->sum_time = age;
4881 l->min_time = age;
4882 l->max_time = age;
4883 l->min_pid = track->pid;
4884 l->max_pid = track->pid;
4885 cpumask_clear(to_cpumask(l->cpus));
4886 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4887 nodes_clear(l->nodes);
4888 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4889 return 1;
4890}
4891
4892static void process_slab(struct loc_track *t, struct kmem_cache *s,
4893 struct page *page, enum track_item alloc)
4894{
4895 void *addr = page_address(page);
4896 void *p;
4897 unsigned long *map;
4898
4899 map = get_map(s, page);
4900 for_each_object(p, s, addr, page->objects)
4901 if (!test_bit(__obj_to_index(s, addr, p), map))
4902 add_location(t, s, get_track(s, p, alloc));
4903 put_map(map);
4904}
4905#endif /* CONFIG_DEBUG_FS */
4906#endif /* CONFIG_SLUB_DEBUG */
4907
4908#ifdef CONFIG_SYSFS
4909enum slab_stat_type {
4910 SL_ALL, /* All slabs */
4911 SL_PARTIAL, /* Only partially allocated slabs */
4912 SL_CPU, /* Only slabs used for cpu caches */
4913 SL_OBJECTS, /* Determine allocated objects not slabs */
4914 SL_TOTAL /* Determine object capacity not slabs */
4915};
4916
4917#define SO_ALL (1 << SL_ALL)
4918#define SO_PARTIAL (1 << SL_PARTIAL)
4919#define SO_CPU (1 << SL_CPU)
4920#define SO_OBJECTS (1 << SL_OBJECTS)
4921#define SO_TOTAL (1 << SL_TOTAL)
4922
4923static ssize_t show_slab_objects(struct kmem_cache *s,
4924 char *buf, unsigned long flags)
4925{
4926 unsigned long total = 0;
4927 int node;
4928 int x;
4929 unsigned long *nodes;
4930 int len = 0;
4931
4932 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4933 if (!nodes)
4934 return -ENOMEM;
4935
4936 if (flags & SO_CPU) {
4937 int cpu;
4938
4939 for_each_possible_cpu(cpu) {
4940 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4941 cpu);
4942 int node;
4943 struct page *page;
4944
4945 page = READ_ONCE(c->page);
4946 if (!page)
4947 continue;
4948
4949 node = page_to_nid(page);
4950 if (flags & SO_TOTAL)
4951 x = page->objects;
4952 else if (flags & SO_OBJECTS)
4953 x = page->inuse;
4954 else
4955 x = 1;
4956
4957 total += x;
4958 nodes[node] += x;
4959
4960 page = slub_percpu_partial_read_once(c);
4961 if (page) {
4962 node = page_to_nid(page);
4963 if (flags & SO_TOTAL)
4964 WARN_ON_ONCE(1);
4965 else if (flags & SO_OBJECTS)
4966 WARN_ON_ONCE(1);
4967 else
4968 x = page->pages;
4969 total += x;
4970 nodes[node] += x;
4971 }
4972 }
4973 }
4974
4975 /*
4976 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4977 * already held which will conflict with an existing lock order:
4978 *
4979 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4980 *
4981 * We don't really need mem_hotplug_lock (to hold off
4982 * slab_mem_going_offline_callback) here because slab's memory hot
4983 * unplug code doesn't destroy the kmem_cache->node[] data.
4984 */
4985
4986#ifdef CONFIG_SLUB_DEBUG
4987 if (flags & SO_ALL) {
4988 struct kmem_cache_node *n;
4989
4990 for_each_kmem_cache_node(s, node, n) {
4991
4992 if (flags & SO_TOTAL)
4993 x = atomic_long_read(&n->total_objects);
4994 else if (flags & SO_OBJECTS)
4995 x = atomic_long_read(&n->total_objects) -
4996 count_partial(n, count_free);
4997 else
4998 x = atomic_long_read(&n->nr_slabs);
4999 total += x;
5000 nodes[node] += x;
5001 }
5002
5003 } else
5004#endif
5005 if (flags & SO_PARTIAL) {
5006 struct kmem_cache_node *n;
5007
5008 for_each_kmem_cache_node(s, node, n) {
5009 if (flags & SO_TOTAL)
5010 x = count_partial(n, count_total);
5011 else if (flags & SO_OBJECTS)
5012 x = count_partial(n, count_inuse);
5013 else
5014 x = n->nr_partial;
5015 total += x;
5016 nodes[node] += x;
5017 }
5018 }
5019
5020 len += sysfs_emit_at(buf, len, "%lu", total);
5021#ifdef CONFIG_NUMA
5022 for (node = 0; node < nr_node_ids; node++) {
5023 if (nodes[node])
5024 len += sysfs_emit_at(buf, len, " N%d=%lu",
5025 node, nodes[node]);
5026 }
5027#endif
5028 len += sysfs_emit_at(buf, len, "\n");
5029 kfree(nodes);
5030
5031 return len;
5032}
5033
5034#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5035#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5036
5037struct slab_attribute {
5038 struct attribute attr;
5039 ssize_t (*show)(struct kmem_cache *s, char *buf);
5040 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5041};
5042
5043#define SLAB_ATTR_RO(_name) \
5044 static struct slab_attribute _name##_attr = \
5045 __ATTR(_name, 0400, _name##_show, NULL)
5046
5047#define SLAB_ATTR(_name) \
5048 static struct slab_attribute _name##_attr = \
5049 __ATTR(_name, 0600, _name##_show, _name##_store)
5050
5051static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5052{
5053 return sysfs_emit(buf, "%u\n", s->size);
5054}
5055SLAB_ATTR_RO(slab_size);
5056
5057static ssize_t align_show(struct kmem_cache *s, char *buf)
5058{
5059 return sysfs_emit(buf, "%u\n", s->align);
5060}
5061SLAB_ATTR_RO(align);
5062
5063static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5064{
5065 return sysfs_emit(buf, "%u\n", s->object_size);
5066}
5067SLAB_ATTR_RO(object_size);
5068
5069static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5070{
5071 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5072}
5073SLAB_ATTR_RO(objs_per_slab);
5074
5075static ssize_t order_show(struct kmem_cache *s, char *buf)
5076{
5077 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5078}
5079SLAB_ATTR_RO(order);
5080
5081static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5082{
5083 return sysfs_emit(buf, "%lu\n", s->min_partial);
5084}
5085
5086static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5087 size_t length)
5088{
5089 unsigned long min;
5090 int err;
5091
5092 err = kstrtoul(buf, 10, &min);
5093 if (err)
5094 return err;
5095
5096 set_min_partial(s, min);
5097 return length;
5098}
5099SLAB_ATTR(min_partial);
5100
5101static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5102{
5103 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5104}
5105
5106static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5107 size_t length)
5108{
5109 unsigned int objects;
5110 int err;
5111
5112 err = kstrtouint(buf, 10, &objects);
5113 if (err)
5114 return err;
5115 if (objects && !kmem_cache_has_cpu_partial(s))
5116 return -EINVAL;
5117
5118 slub_set_cpu_partial(s, objects);
5119 flush_all(s);
5120 return length;
5121}
5122SLAB_ATTR(cpu_partial);
5123
5124static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5125{
5126 if (!s->ctor)
5127 return 0;
5128 return sysfs_emit(buf, "%pS\n", s->ctor);
5129}
5130SLAB_ATTR_RO(ctor);
5131
5132static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5133{
5134 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5135}
5136SLAB_ATTR_RO(aliases);
5137
5138static ssize_t partial_show(struct kmem_cache *s, char *buf)
5139{
5140 return show_slab_objects(s, buf, SO_PARTIAL);
5141}
5142SLAB_ATTR_RO(partial);
5143
5144static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5145{
5146 return show_slab_objects(s, buf, SO_CPU);
5147}
5148SLAB_ATTR_RO(cpu_slabs);
5149
5150static ssize_t objects_show(struct kmem_cache *s, char *buf)
5151{
5152 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5153}
5154SLAB_ATTR_RO(objects);
5155
5156static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5157{
5158 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5159}
5160SLAB_ATTR_RO(objects_partial);
5161
5162static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5163{
5164 int objects = 0;
5165 int pages = 0;
5166 int cpu;
5167 int len = 0;
5168
5169 for_each_online_cpu(cpu) {
5170 struct page *page;
5171
5172 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5173
5174 if (page) {
5175 pages += page->pages;
5176 objects += page->pobjects;
5177 }
5178 }
5179
5180 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5181
5182#ifdef CONFIG_SMP
5183 for_each_online_cpu(cpu) {
5184 struct page *page;
5185
5186 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5187 if (page)
5188 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5189 cpu, page->pobjects, page->pages);
5190 }
5191#endif
5192 len += sysfs_emit_at(buf, len, "\n");
5193
5194 return len;
5195}
5196SLAB_ATTR_RO(slabs_cpu_partial);
5197
5198static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5199{
5200 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5201}
5202SLAB_ATTR_RO(reclaim_account);
5203
5204static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5205{
5206 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5207}
5208SLAB_ATTR_RO(hwcache_align);
5209
5210#ifdef CONFIG_ZONE_DMA
5211static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5212{
5213 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5214}
5215SLAB_ATTR_RO(cache_dma);
5216#endif
5217
5218static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5219{
5220 return sysfs_emit(buf, "%u\n", s->usersize);
5221}
5222SLAB_ATTR_RO(usersize);
5223
5224static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5225{
5226 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5227}
5228SLAB_ATTR_RO(destroy_by_rcu);
5229
5230#ifdef CONFIG_SLUB_DEBUG
5231static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5232{
5233 return show_slab_objects(s, buf, SO_ALL);
5234}
5235SLAB_ATTR_RO(slabs);
5236
5237static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5238{
5239 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5240}
5241SLAB_ATTR_RO(total_objects);
5242
5243static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5244{
5245 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5246}
5247SLAB_ATTR_RO(sanity_checks);
5248
5249static ssize_t trace_show(struct kmem_cache *s, char *buf)
5250{
5251 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5252}
5253SLAB_ATTR_RO(trace);
5254
5255static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5256{
5257 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5258}
5259
5260SLAB_ATTR_RO(red_zone);
5261
5262static ssize_t poison_show(struct kmem_cache *s, char *buf)
5263{
5264 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5265}
5266
5267SLAB_ATTR_RO(poison);
5268
5269static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5270{
5271 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5272}
5273
5274SLAB_ATTR_RO(store_user);
5275
5276static ssize_t validate_show(struct kmem_cache *s, char *buf)
5277{
5278 return 0;
5279}
5280
5281static ssize_t validate_store(struct kmem_cache *s,
5282 const char *buf, size_t length)
5283{
5284 int ret = -EINVAL;
5285
5286 if (buf[0] == '1') {
5287 ret = validate_slab_cache(s);
5288 if (ret >= 0)
5289 ret = length;
5290 }
5291 return ret;
5292}
5293SLAB_ATTR(validate);
5294
5295#endif /* CONFIG_SLUB_DEBUG */
5296
5297#ifdef CONFIG_FAILSLAB
5298static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5299{
5300 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5301}
5302SLAB_ATTR_RO(failslab);
5303#endif
5304
5305static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5306{
5307 return 0;
5308}
5309
5310static ssize_t shrink_store(struct kmem_cache *s,
5311 const char *buf, size_t length)
5312{
5313 if (buf[0] == '1')
5314 kmem_cache_shrink(s);
5315 else
5316 return -EINVAL;
5317 return length;
5318}
5319SLAB_ATTR(shrink);
5320
5321#ifdef CONFIG_NUMA
5322static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5323{
5324 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5325}
5326
5327static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5328 const char *buf, size_t length)
5329{
5330 unsigned int ratio;
5331 int err;
5332
5333 err = kstrtouint(buf, 10, &ratio);
5334 if (err)
5335 return err;
5336 if (ratio > 100)
5337 return -ERANGE;
5338
5339 s->remote_node_defrag_ratio = ratio * 10;
5340
5341 return length;
5342}
5343SLAB_ATTR(remote_node_defrag_ratio);
5344#endif
5345
5346#ifdef CONFIG_SLUB_STATS
5347static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5348{
5349 unsigned long sum = 0;
5350 int cpu;
5351 int len = 0;
5352 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5353
5354 if (!data)
5355 return -ENOMEM;
5356
5357 for_each_online_cpu(cpu) {
5358 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5359
5360 data[cpu] = x;
5361 sum += x;
5362 }
5363
5364 len += sysfs_emit_at(buf, len, "%lu", sum);
5365
5366#ifdef CONFIG_SMP
5367 for_each_online_cpu(cpu) {
5368 if (data[cpu])
5369 len += sysfs_emit_at(buf, len, " C%d=%u",
5370 cpu, data[cpu]);
5371 }
5372#endif
5373 kfree(data);
5374 len += sysfs_emit_at(buf, len, "\n");
5375
5376 return len;
5377}
5378
5379static void clear_stat(struct kmem_cache *s, enum stat_item si)
5380{
5381 int cpu;
5382
5383 for_each_online_cpu(cpu)
5384 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5385}
5386
5387#define STAT_ATTR(si, text) \
5388static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5389{ \
5390 return show_stat(s, buf, si); \
5391} \
5392static ssize_t text##_store(struct kmem_cache *s, \
5393 const char *buf, size_t length) \
5394{ \
5395 if (buf[0] != '0') \
5396 return -EINVAL; \
5397 clear_stat(s, si); \
5398 return length; \
5399} \
5400SLAB_ATTR(text); \
5401
5402STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5403STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5404STAT_ATTR(FREE_FASTPATH, free_fastpath);
5405STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5406STAT_ATTR(FREE_FROZEN, free_frozen);
5407STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5408STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5409STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5410STAT_ATTR(ALLOC_SLAB, alloc_slab);
5411STAT_ATTR(ALLOC_REFILL, alloc_refill);
5412STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5413STAT_ATTR(FREE_SLAB, free_slab);
5414STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5415STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5416STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5417STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5418STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5419STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5420STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5421STAT_ATTR(ORDER_FALLBACK, order_fallback);
5422STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5423STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5424STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5425STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5426STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5427STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5428#endif /* CONFIG_SLUB_STATS */
5429
5430static struct attribute *slab_attrs[] = {
5431 &slab_size_attr.attr,
5432 &object_size_attr.attr,
5433 &objs_per_slab_attr.attr,
5434 &order_attr.attr,
5435 &min_partial_attr.attr,
5436 &cpu_partial_attr.attr,
5437 &objects_attr.attr,
5438 &objects_partial_attr.attr,
5439 &partial_attr.attr,
5440 &cpu_slabs_attr.attr,
5441 &ctor_attr.attr,
5442 &aliases_attr.attr,
5443 &align_attr.attr,
5444 &hwcache_align_attr.attr,
5445 &reclaim_account_attr.attr,
5446 &destroy_by_rcu_attr.attr,
5447 &shrink_attr.attr,
5448 &slabs_cpu_partial_attr.attr,
5449#ifdef CONFIG_SLUB_DEBUG
5450 &total_objects_attr.attr,
5451 &slabs_attr.attr,
5452 &sanity_checks_attr.attr,
5453 &trace_attr.attr,
5454 &red_zone_attr.attr,
5455 &poison_attr.attr,
5456 &store_user_attr.attr,
5457 &validate_attr.attr,
5458#endif
5459#ifdef CONFIG_ZONE_DMA
5460 &cache_dma_attr.attr,
5461#endif
5462#ifdef CONFIG_NUMA
5463 &remote_node_defrag_ratio_attr.attr,
5464#endif
5465#ifdef CONFIG_SLUB_STATS
5466 &alloc_fastpath_attr.attr,
5467 &alloc_slowpath_attr.attr,
5468 &free_fastpath_attr.attr,
5469 &free_slowpath_attr.attr,
5470 &free_frozen_attr.attr,
5471 &free_add_partial_attr.attr,
5472 &free_remove_partial_attr.attr,
5473 &alloc_from_partial_attr.attr,
5474 &alloc_slab_attr.attr,
5475 &alloc_refill_attr.attr,
5476 &alloc_node_mismatch_attr.attr,
5477 &free_slab_attr.attr,
5478 &cpuslab_flush_attr.attr,
5479 &deactivate_full_attr.attr,
5480 &deactivate_empty_attr.attr,
5481 &deactivate_to_head_attr.attr,
5482 &deactivate_to_tail_attr.attr,
5483 &deactivate_remote_frees_attr.attr,
5484 &deactivate_bypass_attr.attr,
5485 &order_fallback_attr.attr,
5486 &cmpxchg_double_fail_attr.attr,
5487 &cmpxchg_double_cpu_fail_attr.attr,
5488 &cpu_partial_alloc_attr.attr,
5489 &cpu_partial_free_attr.attr,
5490 &cpu_partial_node_attr.attr,
5491 &cpu_partial_drain_attr.attr,
5492#endif
5493#ifdef CONFIG_FAILSLAB
5494 &failslab_attr.attr,
5495#endif
5496 &usersize_attr.attr,
5497
5498 NULL
5499};
5500
5501static const struct attribute_group slab_attr_group = {
5502 .attrs = slab_attrs,
5503};
5504
5505static ssize_t slab_attr_show(struct kobject *kobj,
5506 struct attribute *attr,
5507 char *buf)
5508{
5509 struct slab_attribute *attribute;
5510 struct kmem_cache *s;
5511 int err;
5512
5513 attribute = to_slab_attr(attr);
5514 s = to_slab(kobj);
5515
5516 if (!attribute->show)
5517 return -EIO;
5518
5519 err = attribute->show(s, buf);
5520
5521 return err;
5522}
5523
5524static ssize_t slab_attr_store(struct kobject *kobj,
5525 struct attribute *attr,
5526 const char *buf, size_t len)
5527{
5528 struct slab_attribute *attribute;
5529 struct kmem_cache *s;
5530 int err;
5531
5532 attribute = to_slab_attr(attr);
5533 s = to_slab(kobj);
5534
5535 if (!attribute->store)
5536 return -EIO;
5537
5538 err = attribute->store(s, buf, len);
5539 return err;
5540}
5541
5542static void kmem_cache_release(struct kobject *k)
5543{
5544 slab_kmem_cache_release(to_slab(k));
5545}
5546
5547static const struct sysfs_ops slab_sysfs_ops = {
5548 .show = slab_attr_show,
5549 .store = slab_attr_store,
5550};
5551
5552static struct kobj_type slab_ktype = {
5553 .sysfs_ops = &slab_sysfs_ops,
5554 .release = kmem_cache_release,
5555};
5556
5557static struct kset *slab_kset;
5558
5559static inline struct kset *cache_kset(struct kmem_cache *s)
5560{
5561 return slab_kset;
5562}
5563
5564#define ID_STR_LENGTH 64
5565
5566/* Create a unique string id for a slab cache:
5567 *
5568 * Format :[flags-]size
5569 */
5570static char *create_unique_id(struct kmem_cache *s)
5571{
5572 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5573 char *p = name;
5574
5575 BUG_ON(!name);
5576
5577 *p++ = ':';
5578 /*
5579 * First flags affecting slabcache operations. We will only
5580 * get here for aliasable slabs so we do not need to support
5581 * too many flags. The flags here must cover all flags that
5582 * are matched during merging to guarantee that the id is
5583 * unique.
5584 */
5585 if (s->flags & SLAB_CACHE_DMA)
5586 *p++ = 'd';
5587 if (s->flags & SLAB_CACHE_DMA32)
5588 *p++ = 'D';
5589 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5590 *p++ = 'a';
5591 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5592 *p++ = 'F';
5593 if (s->flags & SLAB_ACCOUNT)
5594 *p++ = 'A';
5595 if (p != name + 1)
5596 *p++ = '-';
5597 p += sprintf(p, "%07u", s->size);
5598
5599 BUG_ON(p > name + ID_STR_LENGTH - 1);
5600 return name;
5601}
5602
5603static int sysfs_slab_add(struct kmem_cache *s)
5604{
5605 int err;
5606 const char *name;
5607 struct kset *kset = cache_kset(s);
5608 int unmergeable = slab_unmergeable(s);
5609
5610 if (!kset) {
5611 kobject_init(&s->kobj, &slab_ktype);
5612 return 0;
5613 }
5614
5615 if (!unmergeable && disable_higher_order_debug &&
5616 (slub_debug & DEBUG_METADATA_FLAGS))
5617 unmergeable = 1;
5618
5619 if (unmergeable) {
5620 /*
5621 * Slabcache can never be merged so we can use the name proper.
5622 * This is typically the case for debug situations. In that
5623 * case we can catch duplicate names easily.
5624 */
5625 sysfs_remove_link(&slab_kset->kobj, s->name);
5626 name = s->name;
5627 } else {
5628 /*
5629 * Create a unique name for the slab as a target
5630 * for the symlinks.
5631 */
5632 name = create_unique_id(s);
5633 }
5634
5635 s->kobj.kset = kset;
5636 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5637 if (err)
5638 goto out;
5639
5640 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5641 if (err)
5642 goto out_del_kobj;
5643
5644 if (!unmergeable) {
5645 /* Setup first alias */
5646 sysfs_slab_alias(s, s->name);
5647 }
5648out:
5649 if (!unmergeable)
5650 kfree(name);
5651 return err;
5652out_del_kobj:
5653 kobject_del(&s->kobj);
5654 goto out;
5655}
5656
5657void sysfs_slab_unlink(struct kmem_cache *s)
5658{
5659 if (slab_state >= FULL)
5660 kobject_del(&s->kobj);
5661}
5662
5663void sysfs_slab_release(struct kmem_cache *s)
5664{
5665 if (slab_state >= FULL)
5666 kobject_put(&s->kobj);
5667}
5668
5669/*
5670 * Need to buffer aliases during bootup until sysfs becomes
5671 * available lest we lose that information.
5672 */
5673struct saved_alias {
5674 struct kmem_cache *s;
5675 const char *name;
5676 struct saved_alias *next;
5677};
5678
5679static struct saved_alias *alias_list;
5680
5681static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5682{
5683 struct saved_alias *al;
5684
5685 if (slab_state == FULL) {
5686 /*
5687 * If we have a leftover link then remove it.
5688 */
5689 sysfs_remove_link(&slab_kset->kobj, name);
5690 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5691 }
5692
5693 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5694 if (!al)
5695 return -ENOMEM;
5696
5697 al->s = s;
5698 al->name = name;
5699 al->next = alias_list;
5700 alias_list = al;
5701 return 0;
5702}
5703
5704static int __init slab_sysfs_init(void)
5705{
5706 struct kmem_cache *s;
5707 int err;
5708
5709 mutex_lock(&slab_mutex);
5710
5711 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5712 if (!slab_kset) {
5713 mutex_unlock(&slab_mutex);
5714 pr_err("Cannot register slab subsystem.\n");
5715 return -ENOSYS;
5716 }
5717
5718 slab_state = FULL;
5719
5720 list_for_each_entry(s, &slab_caches, list) {
5721 err = sysfs_slab_add(s);
5722 if (err)
5723 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5724 s->name);
5725 }
5726
5727 while (alias_list) {
5728 struct saved_alias *al = alias_list;
5729
5730 alias_list = alias_list->next;
5731 err = sysfs_slab_alias(al->s, al->name);
5732 if (err)
5733 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5734 al->name);
5735 kfree(al);
5736 }
5737
5738 mutex_unlock(&slab_mutex);
5739 return 0;
5740}
5741
5742__initcall(slab_sysfs_init);
5743#endif /* CONFIG_SYSFS */
5744
5745#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5746static int slab_debugfs_show(struct seq_file *seq, void *v)
5747{
5748
5749 struct location *l;
5750 unsigned int idx = *(unsigned int *)v;
5751 struct loc_track *t = seq->private;
5752
5753 if (idx < t->count) {
5754 l = &t->loc[idx];
5755
5756 seq_printf(seq, "%7ld ", l->count);
5757
5758 if (l->addr)
5759 seq_printf(seq, "%pS", (void *)l->addr);
5760 else
5761 seq_puts(seq, "<not-available>");
5762
5763 if (l->sum_time != l->min_time) {
5764 seq_printf(seq, " age=%ld/%llu/%ld",
5765 l->min_time, div_u64(l->sum_time, l->count),
5766 l->max_time);
5767 } else
5768 seq_printf(seq, " age=%ld", l->min_time);
5769
5770 if (l->min_pid != l->max_pid)
5771 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5772 else
5773 seq_printf(seq, " pid=%ld",
5774 l->min_pid);
5775
5776 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5777 seq_printf(seq, " cpus=%*pbl",
5778 cpumask_pr_args(to_cpumask(l->cpus)));
5779
5780 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5781 seq_printf(seq, " nodes=%*pbl",
5782 nodemask_pr_args(&l->nodes));
5783
5784 seq_puts(seq, "\n");
5785 }
5786
5787 if (!idx && !t->count)
5788 seq_puts(seq, "No data\n");
5789
5790 return 0;
5791}
5792
5793static void slab_debugfs_stop(struct seq_file *seq, void *v)
5794{
5795}
5796
5797static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5798{
5799 struct loc_track *t = seq->private;
5800
5801 v = ppos;
5802 ++*ppos;
5803 if (*ppos <= t->count)
5804 return v;
5805
5806 return NULL;
5807}
5808
5809static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5810{
5811 return ppos;
5812}
5813
5814static const struct seq_operations slab_debugfs_sops = {
5815 .start = slab_debugfs_start,
5816 .next = slab_debugfs_next,
5817 .stop = slab_debugfs_stop,
5818 .show = slab_debugfs_show,
5819};
5820
5821static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5822{
5823
5824 struct kmem_cache_node *n;
5825 enum track_item alloc;
5826 int node;
5827 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5828 sizeof(struct loc_track));
5829 struct kmem_cache *s = file_inode(filep)->i_private;
5830
5831 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5832 alloc = TRACK_ALLOC;
5833 else
5834 alloc = TRACK_FREE;
5835
5836 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5837 return -ENOMEM;
5838
5839 /* Push back cpu slabs */
5840 flush_all(s);
5841
5842 for_each_kmem_cache_node(s, node, n) {
5843 unsigned long flags;
5844 struct page *page;
5845
5846 if (!atomic_long_read(&n->nr_slabs))
5847 continue;
5848
5849 spin_lock_irqsave(&n->list_lock, flags);
5850 list_for_each_entry(page, &n->partial, slab_list)
5851 process_slab(t, s, page, alloc);
5852 list_for_each_entry(page, &n->full, slab_list)
5853 process_slab(t, s, page, alloc);
5854 spin_unlock_irqrestore(&n->list_lock, flags);
5855 }
5856
5857 return 0;
5858}
5859
5860static int slab_debug_trace_release(struct inode *inode, struct file *file)
5861{
5862 struct seq_file *seq = file->private_data;
5863 struct loc_track *t = seq->private;
5864
5865 free_loc_track(t);
5866 return seq_release_private(inode, file);
5867}
5868
5869static const struct file_operations slab_debugfs_fops = {
5870 .open = slab_debug_trace_open,
5871 .read = seq_read,
5872 .llseek = seq_lseek,
5873 .release = slab_debug_trace_release,
5874};
5875
5876static void debugfs_slab_add(struct kmem_cache *s)
5877{
5878 struct dentry *slab_cache_dir;
5879
5880 if (unlikely(!slab_debugfs_root))
5881 return;
5882
5883 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5884
5885 debugfs_create_file("alloc_traces", 0400,
5886 slab_cache_dir, s, &slab_debugfs_fops);
5887
5888 debugfs_create_file("free_traces", 0400,
5889 slab_cache_dir, s, &slab_debugfs_fops);
5890}
5891
5892void debugfs_slab_release(struct kmem_cache *s)
5893{
5894 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5895}
5896
5897static int __init slab_debugfs_init(void)
5898{
5899 struct kmem_cache *s;
5900
5901 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5902
5903 list_for_each_entry(s, &slab_caches, list)
5904 if (s->flags & SLAB_STORE_USER)
5905 debugfs_slab_add(s);
5906
5907 return 0;
5908
5909}
5910__initcall(slab_debugfs_init);
5911#endif
5912/*
5913 * The /proc/slabinfo ABI
5914 */
5915#ifdef CONFIG_SLUB_DEBUG
5916void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5917{
5918 unsigned long nr_slabs = 0;
5919 unsigned long nr_objs = 0;
5920 unsigned long nr_free = 0;
5921 int node;
5922 struct kmem_cache_node *n;
5923
5924 for_each_kmem_cache_node(s, node, n) {
5925 nr_slabs += node_nr_slabs(n);
5926 nr_objs += node_nr_objs(n);
5927 nr_free += count_partial(n, count_free);
5928 }
5929
5930 sinfo->active_objs = nr_objs - nr_free;
5931 sinfo->num_objs = nr_objs;
5932 sinfo->active_slabs = nr_slabs;
5933 sinfo->num_slabs = nr_slabs;
5934 sinfo->objects_per_slab = oo_objects(s->oo);
5935 sinfo->cache_order = oo_order(s->oo);
5936}
5937
5938void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5939{
5940}
5941
5942ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5943 size_t count, loff_t *ppos)
5944{
5945 return -EIO;
5946}
5947#endif /* CONFIG_SLUB_DEBUG */