Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90#include <linux/__KEEPIDENTS__B.h>
91#include <linux/__KEEPIDENTS__C.h>
92#include <linux/__KEEPIDENTS__D.h>
93#include <linux/__KEEPIDENTS__E.h>
94#include <linux/__KEEPIDENTS__F.h>
95#include <linux/__KEEPIDENTS__G.h>
96#include <linux/__KEEPIDENTS__H.h>
97#include <linux/__KEEPIDENTS__I.h>
98#include <linux/__KEEPIDENTS__J.h>
99#include <linux/proc_fs.h>
100#include <linux/__KEEPIDENTS__BA.h>
101#include <linux/__KEEPIDENTS__BB.h>
102#include <linux/__KEEPIDENTS__BC.h>
103#include <linux/cpu.h>
104#include <linux/__KEEPIDENTS__BD.h>
105#include <linux/__KEEPIDENTS__BE.h>
106#include <linux/rcupdate.h>
107#include <linux/__KEEPIDENTS__BF.h>
108#include <linux/__KEEPIDENTS__BG.h>
109#include <linux/__KEEPIDENTS__BH.h>
110#include <linux/kmemleak.h>
111#include <linux/__KEEPIDENTS__BI.h>
112#include <linux/__KEEPIDENTS__BJ.h>
113#include <linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
114#include <linux/__KEEPIDENTS__CC.h>
115#include <linux/reciprocal_div.h>
116#include <linux/debugobjects.h>
117#include <linux/__KEEPIDENTS__CD.h>
118#include <linux/__KEEPIDENTS__CE.h>
119#include <linux/__KEEPIDENTS__CF/task_stack.h>
120
121#include <net/__KEEPIDENTS__CG.h>
122
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
127#include <trace/events/kmem.h>
128
129#include "internal.h"
130
131#include "slab.h"
132
133/*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172/*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194};
195
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206#define CACHE_CACHE 0
207#define SIZE_NODE (MAX_NUMNODES)
208
209static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215static void cache_reap(struct work_struct *unused);
216
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222static int slab_early_init = 1;
223
224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226static void kmem_cache_node_init(struct kmem_cache_node *parent)
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
303#define STATS_INC_NODEFREES(x) do { } while (0)
304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
305#define STATS_SET_FREEABLE(x, i) do { } while (0)
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
313
314/*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327static int obj_offset(struct kmem_cache *cachep)
328{
329 return cachep->obj_offset;
330}
331
332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337}
338
339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348}
349
350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354}
355
356#else
357
358#define obj_offset(x) 0
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
367static inline bool is_store_user_clean(struct kmem_cache *cachep)
368{
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
371
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
376
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381}
382
383#else
384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386#endif
387
388/*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
395static bool slab_max_order_set __initdata;
396
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401}
402
403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405{
406 return page->s_mem + cache->size * idx;
407}
408
409/*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417{
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420}
421
422#define BOOT_CPUCACHE_ENTRIES 1
423/* internal cache of cache description objs */
424static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430};
431
432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435{
436 return this_cpu_ptr(cachep->cpu_cache);
437}
438
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444{
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475}
476
477#if DEBUG
478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482{
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487}
488#endif
489
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526static void init_reap_node(int cpu)
527{
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530}
531
532static void next_reap_node(void)
533{
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552static void start_cpu_timer(int cpu)
553{
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562}
563
564static void init_arraycache(struct array_cache *ac, int limit, int batch)
565{
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591}
592
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595{
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608}
609
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631}
632
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
636#define reap_alien(cachep, n) do { } while (0)
637
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640{
641 return NULL;
642}
643
644static inline void free_alien_cache(struct alien_cache **ac_ptr)
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
667 return flags & ~__GFP_NOFAIL;
668}
669
670#else /* CONFIG_NUMA */
671
672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688{
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711}
712
713static void free_alien_cache(struct alien_cache **alc_ptr)
714{
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722}
723
724static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727{
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744}
745
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750{
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768}
769
770static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772{
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790}
791
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794{
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821}
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
836
837/*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844}
845#endif
846
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888/*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897static int init_cache_node_node(int node)
898{
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909}
910#endif
911
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
978#ifdef CONFIG_SMP
979
980static void cpuup_canceled(long cpu)
981{
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
1081{
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137static int __meminit drain_cache_node_node(int node)
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
1189 return notifier_from_errno(ret);
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193/*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198{
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212}
1213
1214/*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228}
1229
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234void __init kmem_cache_init(void)
1235{
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN, 0, 0);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 memcg_link_cache(kmem_cache);
1287 slab_state = PARTIAL;
1288
1289 /*
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
1292 */
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1296 0, kmalloc_size(INDEX_NODE));
1297 slab_state = PARTIAL_NODE;
1298 setup_kmalloc_cache_index_table();
1299
1300 slab_early_init = 0;
1301
1302 /* 5) Replace the bootstrap kmem_cache_node */
1303 {
1304 int nid;
1305
1306 for_each_online_node(nid) {
1307 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1308
1309 init_list(kmalloc_caches[INDEX_NODE],
1310 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1311 }
1312 }
1313
1314 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1315}
1316
1317void __init kmem_cache_init_late(void)
1318{
1319 struct kmem_cache *cachep;
1320
1321 /* 6) resize the head arrays to their final sizes */
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
1326 mutex_unlock(&slab_mutex);
1327
1328 /* Done! */
1329 slab_state = FULL;
1330
1331#ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
1334 * node.
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1342 */
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347 int ret;
1348
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1351 */
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
1355
1356 return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364 struct kmem_cache_node *n;
1365 unsigned long flags;
1366 int node;
1367 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368 DEFAULT_RATELIMIT_BURST);
1369
1370 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371 return;
1372
1373 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374 nodeid, gfpflags, &gfpflags);
1375 pr_warn(" cache: %s, object size: %d, order: %d\n",
1376 cachep->name, cachep->size, cachep->gfporder);
1377
1378 for_each_kmem_cache_node(cachep, node, n) {
1379 unsigned long total_slabs, free_slabs, free_objs;
1380
1381 spin_lock_irqsave(&n->list_lock, flags);
1382 total_slabs = n->total_slabs;
1383 free_slabs = n->free_slabs;
1384 free_objs = n->free_objects;
1385 spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388 node, total_slabs - free_slabs, total_slabs,
1389 (total_slabs * cachep->num) - free_objs,
1390 total_slabs * cachep->num);
1391 }
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404 int nodeid)
1405{
1406 struct page *page;
1407 int nr_pages;
1408
1409 flags |= cachep->allocflags;
1410
1411 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1412 if (!page) {
1413 slab_out_of_memory(cachep, flags, nodeid);
1414 return NULL;
1415 }
1416
1417 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1418 __free_pages(page, cachep->gfporder);
1419 return NULL;
1420 }
1421
1422 nr_pages = (1 << cachep->gfporder);
1423 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1424 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1425 else
1426 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1427
1428 __SetPageSlab(page);
1429 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1430 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1431 SetPageSlabPfmemalloc(page);
1432
1433 return page;
1434}
1435
1436/*
1437 * Interface to system's page release.
1438 */
1439static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1440{
1441 int order = cachep->gfporder;
1442 unsigned long nr_freed = (1 << order);
1443
1444 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1445 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1446 else
1447 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1448
1449 BUG_ON(!PageSlab(page));
1450 __ClearPageSlabPfmemalloc(page);
1451 __ClearPageSlab(page);
1452 page_mapcount_reset(page);
1453 page->mapping = NULL;
1454
1455 if (current->reclaim_state)
1456 current->reclaim_state->reclaimed_slab += nr_freed;
1457 memcg_uncharge_slab(page, order, cachep);
1458 __free_pages(page, order);
1459}
1460
1461static void kmem_rcu_free(struct rcu_head *head)
1462{
1463 struct kmem_cache *cachep;
1464 struct page *page;
1465
1466 page = container_of(head, struct page, rcu_head);
1467 cachep = page->slab_cache;
1468
1469 kmem_freepages(cachep, page);
1470}
1471
1472#if DEBUG
1473static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1474{
1475 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1476 (cachep->size % PAGE_SIZE) == 0)
1477 return true;
1478
1479 return false;
1480}
1481
1482#ifdef CONFIG_DEBUG_PAGEALLOC
1483static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1484 unsigned long caller)
1485{
1486 int size = cachep->object_size;
1487
1488 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1489
1490 if (size < 5 * sizeof(unsigned long))
1491 return;
1492
1493 *addr++ = 0x12345678;
1494 *addr++ = caller;
1495 *addr++ = smp_processor_id();
1496 size -= 3 * sizeof(unsigned long);
1497 {
1498 unsigned long *sptr = &caller;
1499 unsigned long svalue;
1500
1501 while (!kstack_end(sptr)) {
1502 svalue = *sptr++;
1503 if (kernel_text_address(svalue)) {
1504 *addr++ = svalue;
1505 size -= sizeof(unsigned long);
1506 if (size <= sizeof(unsigned long))
1507 break;
1508 }
1509 }
1510
1511 }
1512 *addr++ = 0x87654321;
1513}
1514
1515static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1516 int map, unsigned long caller)
1517{
1518 if (!is_debug_pagealloc_cache(cachep))
1519 return;
1520
1521 if (caller)
1522 store_stackinfo(cachep, objp, caller);
1523
1524 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1525}
1526
1527#else
1528static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1529 int map, unsigned long caller) {}
1530
1531#endif
1532
1533static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1534{
1535 int size = cachep->object_size;
1536 addr = &((char *)addr)[obj_offset(cachep)];
1537
1538 memset(addr, val, size);
1539 *(unsigned char *)(addr + size - 1) = POISON_END;
1540}
1541
1542static void dump_line(char *data, int offset, int limit)
1543{
1544 int i;
1545 unsigned char error = 0;
1546 int bad_count = 0;
1547
1548 pr_err("%03x: ", offset);
1549 for (i = 0; i < limit; i++) {
1550 if (data[offset + i] != POISON_FREE) {
1551 error = data[offset + i];
1552 bad_count++;
1553 }
1554 }
1555 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1556 &data[offset], limit, 1);
1557
1558 if (bad_count == 1) {
1559 error ^= POISON_FREE;
1560 if (!(error & (error - 1))) {
1561 pr_err("Single bit error detected. Probably bad RAM.\n");
1562#ifdef CONFIG_X86
1563 pr_err("Run memtest86+ or a similar memory test tool.\n");
1564#else
1565 pr_err("Run a memory test tool.\n");
1566#endif
1567 }
1568 }
1569}
1570#endif
1571
1572#if DEBUG
1573
1574static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1575{
1576 int i, size;
1577 char *realobj;
1578
1579 if (cachep->flags & SLAB_RED_ZONE) {
1580 pr_err("Redzone: 0x%llx/0x%llx\n",
1581 *dbg_redzone1(cachep, objp),
1582 *dbg_redzone2(cachep, objp));
1583 }
1584
1585 if (cachep->flags & SLAB_STORE_USER)
1586 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1587 realobj = (char *)objp + obj_offset(cachep);
1588 size = cachep->object_size;
1589 for (i = 0; i < size && lines; i += 16, lines--) {
1590 int limit;
1591 limit = 16;
1592 if (i + limit > size)
1593 limit = size - i;
1594 dump_line(realobj, i, limit);
1595 }
1596}
1597
1598static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1599{
1600 char *realobj;
1601 int size, i;
1602 int lines = 0;
1603
1604 if (is_debug_pagealloc_cache(cachep))
1605 return;
1606
1607 realobj = (char *)objp + obj_offset(cachep);
1608 size = cachep->object_size;
1609
1610 for (i = 0; i < size; i++) {
1611 char exp = POISON_FREE;
1612 if (i == size - 1)
1613 exp = POISON_END;
1614 if (realobj[i] != exp) {
1615 int limit;
1616 /* Mismatch ! */
1617 /* Print header */
1618 if (lines == 0) {
1619 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1620 print_tainted(), cachep->name,
1621 realobj, size);
1622 print_objinfo(cachep, objp, 0);
1623 }
1624 /* Hexdump the affected line */
1625 i = (i / 16) * 16;
1626 limit = 16;
1627 if (i + limit > size)
1628 limit = size - i;
1629 dump_line(realobj, i, limit);
1630 i += 16;
1631 lines++;
1632 /* Limit to 5 lines */
1633 if (lines > 5)
1634 break;
1635 }
1636 }
1637 if (lines != 0) {
1638 /* Print some data about the neighboring objects, if they
1639 * exist:
1640 */
1641 struct page *page = virt_to_head_page(objp);
1642 unsigned int objnr;
1643
1644 objnr = obj_to_index(cachep, page, objp);
1645 if (objnr) {
1646 objp = index_to_obj(cachep, page, objnr - 1);
1647 realobj = (char *)objp + obj_offset(cachep);
1648 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1649 print_objinfo(cachep, objp, 2);
1650 }
1651 if (objnr + 1 < cachep->num) {
1652 objp = index_to_obj(cachep, page, objnr + 1);
1653 realobj = (char *)objp + obj_offset(cachep);
1654 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1655 print_objinfo(cachep, objp, 2);
1656 }
1657 }
1658}
1659#endif
1660
1661#if DEBUG
1662static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1663 struct page *page)
1664{
1665 int i;
1666
1667 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1668 poison_obj(cachep, page->freelist - obj_offset(cachep),
1669 POISON_FREE);
1670 }
1671
1672 for (i = 0; i < cachep->num; i++) {
1673 void *objp = index_to_obj(cachep, page, i);
1674
1675 if (cachep->flags & SLAB_POISON) {
1676 check_poison_obj(cachep, objp);
1677 slab_kernel_map(cachep, objp, 1, 0);
1678 }
1679 if (cachep->flags & SLAB_RED_ZONE) {
1680 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1681 slab_error(cachep, "start of a freed object was overwritten");
1682 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1683 slab_error(cachep, "end of a freed object was overwritten");
1684 }
1685 }
1686}
1687#else
1688static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1689 struct page *page)
1690{
1691}
1692#endif
1693
1694/**
1695 * slab_destroy - destroy and release all objects in a slab
1696 * @cachep: cache pointer being destroyed
1697 * @page: page pointer being destroyed
1698 *
1699 * Destroy all the objs in a slab page, and release the mem back to the system.
1700 * Before calling the slab page must have been unlinked from the cache. The
1701 * kmem_cache_node ->list_lock is not held/needed.
1702 */
1703static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1704{
1705 void *freelist;
1706
1707 freelist = page->freelist;
1708 slab_destroy_debugcheck(cachep, page);
1709 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1710 call_rcu(&page->rcu_head, kmem_rcu_free);
1711 else
1712 kmem_freepages(cachep, page);
1713
1714 /*
1715 * From now on, we don't use freelist
1716 * although actual page can be freed in rcu context
1717 */
1718 if (OFF_SLAB(cachep))
1719 kmem_cache_free(cachep->freelist_cache, freelist);
1720}
1721
1722static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1723{
1724 struct page *page, *n;
1725
1726 list_for_each_entry_safe(page, n, list, lru) {
1727 list_del(&page->lru);
1728 slab_destroy(cachep, page);
1729 }
1730}
1731
1732/**
1733 * calculate_slab_order - calculate size (page order) of slabs
1734 * @cachep: pointer to the cache that is being created
1735 * @size: size of objects to be created in this cache.
1736 * @flags: slab allocation flags
1737 *
1738 * Also calculates the number of objects per slab.
1739 *
1740 * This could be made much more intelligent. For now, try to avoid using
1741 * high order pages for slabs. When the gfp() functions are more friendly
1742 * towards high-order requests, this should be changed.
1743 */
1744static size_t calculate_slab_order(struct kmem_cache *cachep,
1745 size_t size, slab_flags_t flags)
1746{
1747 size_t left_over = 0;
1748 int gfporder;
1749
1750 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1751 unsigned int num;
1752 size_t remainder;
1753
1754 num = cache_estimate(gfporder, size, flags, &remainder);
1755 if (!num)
1756 continue;
1757
1758 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1759 if (num > SLAB_OBJ_MAX_NUM)
1760 break;
1761
1762 if (flags & CFLGS_OFF_SLAB) {
1763 struct kmem_cache *freelist_cache;
1764 size_t freelist_size;
1765
1766 freelist_size = num * sizeof(freelist_idx_t);
1767 freelist_cache = kmalloc_slab(freelist_size, 0u);
1768 if (!freelist_cache)
1769 continue;
1770
1771 /*
1772 * Needed to avoid possible looping condition
1773 * in cache_grow_begin()
1774 */
1775 if (OFF_SLAB(freelist_cache))
1776 continue;
1777
1778 /* check if off slab has enough benefit */
1779 if (freelist_cache->size > cachep->size / 2)
1780 continue;
1781 }
1782
1783 /* Found something acceptable - save it away */
1784 cachep->num = num;
1785 cachep->gfporder = gfporder;
1786 left_over = remainder;
1787
1788 /*
1789 * A VFS-reclaimable slab tends to have most allocations
1790 * as GFP_NOFS and we really don't want to have to be allocating
1791 * higher-order pages when we are unable to shrink dcache.
1792 */
1793 if (flags & SLAB_RECLAIM_ACCOUNT)
1794 break;
1795
1796 /*
1797 * Large number of objects is good, but very large slabs are
1798 * currently bad for the gfp()s.
1799 */
1800 if (gfporder >= slab_max_order)
1801 break;
1802
1803 /*
1804 * Acceptable internal fragmentation?
1805 */
1806 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1807 break;
1808 }
1809 return left_over;
1810}
1811
1812static struct array_cache __percpu *alloc_kmem_cache_cpus(
1813 struct kmem_cache *cachep, int entries, int batchcount)
1814{
1815 int cpu;
1816 size_t size;
1817 struct array_cache __percpu *cpu_cache;
1818
1819 size = sizeof(void *) * entries + sizeof(struct array_cache);
1820 cpu_cache = __alloc_percpu(size, sizeof(void *));
1821
1822 if (!cpu_cache)
1823 return NULL;
1824
1825 for_each_possible_cpu(cpu) {
1826 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1827 entries, batchcount);
1828 }
1829
1830 return cpu_cache;
1831}
1832
1833static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1834{
1835 if (slab_state >= FULL)
1836 return enable_cpucache(cachep, gfp);
1837
1838 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1839 if (!cachep->cpu_cache)
1840 return 1;
1841
1842 if (slab_state == DOWN) {
1843 /* Creation of first cache (kmem_cache). */
1844 set_up_node(kmem_cache, CACHE_CACHE);
1845 } else if (slab_state == PARTIAL) {
1846 /* For kmem_cache_node */
1847 set_up_node(cachep, SIZE_NODE);
1848 } else {
1849 int node;
1850
1851 for_each_online_node(node) {
1852 cachep->node[node] = kmalloc_node(
1853 sizeof(struct kmem_cache_node), gfp, node);
1854 BUG_ON(!cachep->node[node]);
1855 kmem_cache_node_init(cachep->node[node]);
1856 }
1857 }
1858
1859 cachep->node[numa_mem_id()]->next_reap =
1860 jiffies + REAPTIMEOUT_NODE +
1861 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1862
1863 cpu_cache_get(cachep)->avail = 0;
1864 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1865 cpu_cache_get(cachep)->batchcount = 1;
1866 cpu_cache_get(cachep)->touched = 0;
1867 cachep->batchcount = 1;
1868 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1869 return 0;
1870}
1871
1872slab_flags_t kmem_cache_flags(unsigned int object_size,
1873 slab_flags_t flags, const char *name,
1874 void (*ctor)(void *))
1875{
1876 return flags;
1877}
1878
1879struct kmem_cache *
1880__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1881 slab_flags_t flags, void (*ctor)(void *))
1882{
1883 struct kmem_cache *cachep;
1884
1885 cachep = find_mergeable(size, align, flags, name, ctor);
1886 if (cachep) {
1887 cachep->refcount++;
1888
1889 /*
1890 * Adjust the object sizes so that we clear
1891 * the complete object on kzalloc.
1892 */
1893 cachep->object_size = max_t(int, cachep->object_size, size);
1894 }
1895 return cachep;
1896}
1897
1898static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1899 size_t size, slab_flags_t flags)
1900{
1901 size_t left;
1902
1903 cachep->num = 0;
1904
1905 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1906 return false;
1907
1908 left = calculate_slab_order(cachep, size,
1909 flags | CFLGS_OBJFREELIST_SLAB);
1910 if (!cachep->num)
1911 return false;
1912
1913 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1914 return false;
1915
1916 cachep->colour = left / cachep->colour_off;
1917
1918 return true;
1919}
1920
1921static bool set_off_slab_cache(struct kmem_cache *cachep,
1922 size_t size, slab_flags_t flags)
1923{
1924 size_t left;
1925
1926 cachep->num = 0;
1927
1928 /*
1929 * Always use on-slab management when SLAB_NOLEAKTRACE
1930 * to avoid recursive calls into kmemleak.
1931 */
1932 if (flags & SLAB_NOLEAKTRACE)
1933 return false;
1934
1935 /*
1936 * Size is large, assume best to place the slab management obj
1937 * off-slab (should allow better packing of objs).
1938 */
1939 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1940 if (!cachep->num)
1941 return false;
1942
1943 /*
1944 * If the slab has been placed off-slab, and we have enough space then
1945 * move it on-slab. This is at the expense of any extra colouring.
1946 */
1947 if (left >= cachep->num * sizeof(freelist_idx_t))
1948 return false;
1949
1950 cachep->colour = left / cachep->colour_off;
1951
1952 return true;
1953}
1954
1955static bool set_on_slab_cache(struct kmem_cache *cachep,
1956 size_t size, slab_flags_t flags)
1957{
1958 size_t left;
1959
1960 cachep->num = 0;
1961
1962 left = calculate_slab_order(cachep, size, flags);
1963 if (!cachep->num)
1964 return false;
1965
1966 cachep->colour = left / cachep->colour_off;
1967
1968 return true;
1969}
1970
1971/**
1972 * __kmem_cache_create - Create a cache.
1973 * @cachep: cache management descriptor
1974 * @flags: SLAB flags
1975 *
1976 * Returns a ptr to the cache on success, NULL on failure.
1977 * Cannot be called within a int, but can be interrupted.
1978 * The @ctor is run when new pages are allocated by the cache.
1979 *
1980 * The flags are
1981 *
1982 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1983 * to catch references to uninitialised memory.
1984 *
1985 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1986 * for buffer overruns.
1987 *
1988 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1989 * cacheline. This can be beneficial if you're counting cycles as closely
1990 * as davem.
1991 */
1992int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1993{
1994 size_t ralign = BYTES_PER_WORD;
1995 gfp_t gfp;
1996 int err;
1997 unsigned int size = cachep->size;
1998
1999#if DEBUG
2000#if FORCED_DEBUG
2001 /*
2002 * Enable redzoning and last user accounting, except for caches with
2003 * large objects, if the increased size would increase the object size
2004 * above the next power of two: caches with object sizes just above a
2005 * power of two have a significant amount of internal fragmentation.
2006 */
2007 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2008 2 * sizeof(unsigned long long)))
2009 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2010 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2011 flags |= SLAB_POISON;
2012#endif
2013#endif
2014
2015 /*
2016 * Check that size is in terms of words. This is needed to avoid
2017 * unaligned accesses for some archs when redzoning is used, and makes
2018 * sure any on-slab bufctl's are also correctly aligned.
2019 */
2020 size = ALIGN(size, BYTES_PER_WORD);
2021
2022 if (flags & SLAB_RED_ZONE) {
2023 ralign = REDZONE_ALIGN;
2024 /* If redzoning, ensure that the second redzone is suitably
2025 * aligned, by adjusting the object size accordingly. */
2026 size = ALIGN(size, REDZONE_ALIGN);
2027 }
2028
2029 /* 3) caller mandated alignment */
2030 if (ralign < cachep->align) {
2031 ralign = cachep->align;
2032 }
2033 /* disable debug if necessary */
2034 if (ralign > __alignof__(unsigned long long))
2035 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2036 /*
2037 * 4) Store it.
2038 */
2039 cachep->align = ralign;
2040 cachep->colour_off = cache_line_size();
2041 /* Offset must be a multiple of the alignment. */
2042 if (cachep->colour_off < cachep->align)
2043 cachep->colour_off = cachep->align;
2044
2045 if (slab_is_available())
2046 gfp = GFP_KERNEL;
2047 else
2048 gfp = GFP_NOWAIT;
2049
2050#if DEBUG
2051
2052 /*
2053 * Both debugging options require word-alignment which is calculated
2054 * into align above.
2055 */
2056 if (flags & SLAB_RED_ZONE) {
2057 /* add space for red zone words */
2058 cachep->obj_offset += sizeof(unsigned long long);
2059 size += 2 * sizeof(unsigned long long);
2060 }
2061 if (flags & SLAB_STORE_USER) {
2062 /* user store requires one word storage behind the end of
2063 * the real object. But if the second red zone needs to be
2064 * aligned to 64 bits, we must allow that much space.
2065 */
2066 if (flags & SLAB_RED_ZONE)
2067 size += REDZONE_ALIGN;
2068 else
2069 size += BYTES_PER_WORD;
2070 }
2071#endif
2072
2073 kasan_cache_create(cachep, &size, &flags);
2074
2075 size = ALIGN(size, cachep->align);
2076 /*
2077 * We should restrict the number of objects in a slab to implement
2078 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2079 */
2080 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2081 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2082
2083#if DEBUG
2084 /*
2085 * To activate debug pagealloc, off-slab management is necessary
2086 * requirement. In early phase of initialization, small sized slab
2087 * doesn't get initialized so it would not be possible. So, we need
2088 * to check size >= 256. It guarantees that all necessary small
2089 * sized slab is initialized in current slab initialization sequence.
2090 */
2091 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2092 size >= 256 && cachep->object_size > cache_line_size()) {
2093 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2094 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2095
2096 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2097 flags |= CFLGS_OFF_SLAB;
2098 cachep->obj_offset += tmp_size - size;
2099 size = tmp_size;
2100 goto done;
2101 }
2102 }
2103 }
2104#endif
2105
2106 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2107 flags |= CFLGS_OBJFREELIST_SLAB;
2108 goto done;
2109 }
2110
2111 if (set_off_slab_cache(cachep, size, flags)) {
2112 flags |= CFLGS_OFF_SLAB;
2113 goto done;
2114 }
2115
2116 if (set_on_slab_cache(cachep, size, flags))
2117 goto done;
2118
2119 return -E2BIG;
2120
2121done:
2122 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2123 cachep->flags = flags;
2124 cachep->allocflags = __GFP_COMP;
2125 if (flags & SLAB_CACHE_DMA)
2126 cachep->allocflags |= GFP_DMA;
2127 if (flags & SLAB_RECLAIM_ACCOUNT)
2128 cachep->allocflags |= __GFP_RECLAIMABLE;
2129 cachep->size = size;
2130 cachep->reciprocal_buffer_size = reciprocal_value(size);
2131
2132#if DEBUG
2133 /*
2134 * If we're going to use the generic kernel_map_pages()
2135 * poisoning, then it's going to smash the contents of
2136 * the redzone and userword anyhow, so switch them off.
2137 */
2138 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2139 (cachep->flags & SLAB_POISON) &&
2140 is_debug_pagealloc_cache(cachep))
2141 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2142#endif
2143
2144 if (OFF_SLAB(cachep)) {
2145 cachep->freelist_cache =
2146 kmalloc_slab(cachep->freelist_size, 0u);
2147 }
2148
2149 err = setup_cpu_cache(cachep, gfp);
2150 if (err) {
2151 __kmem_cache_release(cachep);
2152 return err;
2153 }
2154
2155 return 0;
2156}
2157
2158#if DEBUG
2159static void check_irq_off(void)
2160{
2161 BUG_ON(!irqs_disabled());
2162}
2163
2164static void check_irq_on(void)
2165{
2166 BUG_ON(irqs_disabled());
2167}
2168
2169static void check_mutex_acquired(void)
2170{
2171 BUG_ON(!mutex_is_locked(&slab_mutex));
2172}
2173
2174static void check_spinlock_acquired(struct kmem_cache *cachep)
2175{
2176#ifdef CONFIG_SMP
2177 check_irq_off();
2178 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2179#endif
2180}
2181
2182static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2183{
2184#ifdef CONFIG_SMP
2185 check_irq_off();
2186 assert_spin_locked(&get_node(cachep, node)->list_lock);
2187#endif
2188}
2189
2190#else
2191#define check_irq_off() do { } while(0)
2192#define check_irq_on() do { } while(0)
2193#define check_mutex_acquired() do { } while(0)
2194#define check_spinlock_acquired(x) do { } while(0)
2195#define check_spinlock_acquired_node(x, y) do { } while(0)
2196#endif
2197
2198static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2199 int node, bool free_all, struct list_head *list)
2200{
2201 int tofree;
2202
2203 if (!ac || !ac->avail)
2204 return;
2205
2206 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2207 if (tofree > ac->avail)
2208 tofree = (ac->avail + 1) / 2;
2209
2210 free_block(cachep, ac->entry, tofree, node, list);
2211 ac->avail -= tofree;
2212 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2213}
2214
2215static void do_drain(void *arg)
2216{
2217 struct kmem_cache *cachep = arg;
2218 struct array_cache *ac;
2219 int node = numa_mem_id();
2220 struct kmem_cache_node *n;
2221 LIST_HEAD(list);
2222
2223 check_irq_off();
2224 ac = cpu_cache_get(cachep);
2225 n = get_node(cachep, node);
2226 spin_lock(&n->list_lock);
2227 free_block(cachep, ac->entry, ac->avail, node, &list);
2228 spin_unlock(&n->list_lock);
2229 slabs_destroy(cachep, &list);
2230 ac->avail = 0;
2231}
2232
2233static void drain_cpu_caches(struct kmem_cache *cachep)
2234{
2235 struct kmem_cache_node *n;
2236 int node;
2237 LIST_HEAD(list);
2238
2239 on_each_cpu(do_drain, cachep, 1);
2240 check_irq_on();
2241 for_each_kmem_cache_node(cachep, node, n)
2242 if (n->alien)
2243 drain_alien_cache(cachep, n->alien);
2244
2245 for_each_kmem_cache_node(cachep, node, n) {
2246 spin_lock_irq(&n->list_lock);
2247 drain_array_locked(cachep, n->shared, node, true, &list);
2248 spin_unlock_irq(&n->list_lock);
2249
2250 slabs_destroy(cachep, &list);
2251 }
2252}
2253
2254/*
2255 * Remove slabs from the list of free slabs.
2256 * Specify the number of slabs to drain in tofree.
2257 *
2258 * Returns the actual number of slabs released.
2259 */
2260static int drain_freelist(struct kmem_cache *cache,
2261 struct kmem_cache_node *n, int tofree)
2262{
2263 struct list_head *p;
2264 int nr_freed;
2265 struct page *page;
2266
2267 nr_freed = 0;
2268 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2269
2270 spin_lock_irq(&n->list_lock);
2271 p = n->slabs_free.prev;
2272 if (p == &n->slabs_free) {
2273 spin_unlock_irq(&n->list_lock);
2274 goto out;
2275 }
2276
2277 page = list_entry(p, struct page, lru);
2278 list_del(&page->lru);
2279 n->free_slabs--;
2280 n->total_slabs--;
2281 /*
2282 * Safe to drop the lock. The slab is no longer linked
2283 * to the cache.
2284 */
2285 n->free_objects -= cache->num;
2286 spin_unlock_irq(&n->list_lock);
2287 slab_destroy(cache, page);
2288 nr_freed++;
2289 }
2290out:
2291 return nr_freed;
2292}
2293
2294bool __kmem_cache_empty(struct kmem_cache *s)
2295{
2296 int node;
2297 struct kmem_cache_node *n;
2298
2299 for_each_kmem_cache_node(s, node, n)
2300 if (!list_empty(&n->slabs_full) ||
2301 !list_empty(&n->slabs_partial))
2302 return false;
2303 return true;
2304}
2305
2306int __kmem_cache_shrink(struct kmem_cache *cachep)
2307{
2308 int ret = 0;
2309 int node;
2310 struct kmem_cache_node *n;
2311
2312 drain_cpu_caches(cachep);
2313
2314 check_irq_on();
2315 for_each_kmem_cache_node(cachep, node, n) {
2316 drain_freelist(cachep, n, INT_MAX);
2317
2318 ret += !list_empty(&n->slabs_full) ||
2319 !list_empty(&n->slabs_partial);
2320 }
2321 return (ret ? 1 : 0);
2322}
2323
2324#ifdef CONFIG_MEMCG
2325void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2326{
2327 __kmem_cache_shrink(cachep);
2328}
2329#endif
2330
2331int __kmem_cache_shutdown(struct kmem_cache *cachep)
2332{
2333 return __kmem_cache_shrink(cachep);
2334}
2335
2336void __kmem_cache_release(struct kmem_cache *cachep)
2337{
2338 int i;
2339 struct kmem_cache_node *n;
2340
2341 cache_random_seq_destroy(cachep);
2342
2343 free_percpu(cachep->cpu_cache);
2344
2345 /* NUMA: free the node structures */
2346 for_each_kmem_cache_node(cachep, i, n) {
2347 kfree(n->shared);
2348 free_alien_cache(n->alien);
2349 kfree(n);
2350 cachep->node[i] = NULL;
2351 }
2352}
2353
2354/*
2355 * Get the memory for a slab management obj.
2356 *
2357 * For a slab cache when the slab descriptor is off-slab, the
2358 * slab descriptor can't come from the same cache which is being created,
2359 * Because if it is the case, that means we defer the creation of
2360 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2361 * And we eventually call down to __kmem_cache_create(), which
2362 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2363 * This is a "chicken-and-egg" problem.
2364 *
2365 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2366 * which are all initialized during kmem_cache_init().
2367 */
2368static void *alloc_slabmgmt(struct kmem_cache *cachep,
2369 struct page *page, int colour_off,
2370 gfp_t local_flags, int nodeid)
2371{
2372 void *freelist;
2373 void *addr = page_address(page);
2374
2375 page->s_mem = addr + colour_off;
2376 page->active = 0;
2377
2378 if (OBJFREELIST_SLAB(cachep))
2379 freelist = NULL;
2380 else if (OFF_SLAB(cachep)) {
2381 /* Slab management obj is off-slab. */
2382 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2383 local_flags, nodeid);
2384 if (!freelist)
2385 return NULL;
2386 } else {
2387 /* We will use last bytes at the slab for freelist */
2388 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2389 cachep->freelist_size;
2390 }
2391
2392 return freelist;
2393}
2394
2395static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2396{
2397 return ((freelist_idx_t *)page->freelist)[idx];
2398}
2399
2400static inline void set_free_obj(struct page *page,
2401 unsigned int idx, freelist_idx_t val)
2402{
2403 ((freelist_idx_t *)(page->freelist))[idx] = val;
2404}
2405
2406static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2407{
2408#if DEBUG
2409 int i;
2410
2411 for (i = 0; i < cachep->num; i++) {
2412 void *objp = index_to_obj(cachep, page, i);
2413
2414 if (cachep->flags & SLAB_STORE_USER)
2415 *dbg_userword(cachep, objp) = NULL;
2416
2417 if (cachep->flags & SLAB_RED_ZONE) {
2418 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2419 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2420 }
2421 /*
2422 * Constructors are not allowed to allocate memory from the same
2423 * cache which they are a constructor for. Otherwise, deadlock.
2424 * They must also be threaded.
2425 */
2426 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2427 kasan_unpoison_object_data(cachep,
2428 objp + obj_offset(cachep));
2429 cachep->ctor(objp + obj_offset(cachep));
2430 kasan_poison_object_data(
2431 cachep, objp + obj_offset(cachep));
2432 }
2433
2434 if (cachep->flags & SLAB_RED_ZONE) {
2435 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2436 slab_error(cachep, "constructor overwrote the end of an object");
2437 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2438 slab_error(cachep, "constructor overwrote the start of an object");
2439 }
2440 /* need to poison the objs? */
2441 if (cachep->flags & SLAB_POISON) {
2442 poison_obj(cachep, objp, POISON_FREE);
2443 slab_kernel_map(cachep, objp, 0, 0);
2444 }
2445 }
2446#endif
2447}
2448
2449#ifdef CONFIG_SLAB_FREELIST_RANDOM
2450/* Hold information during a freelist initialization */
2451union freelist_init_state {
2452 struct {
2453 unsigned int pos;
2454 unsigned int *list;
2455 unsigned int count;
2456 };
2457 struct rnd_state rnd_state;
2458};
2459
2460/*
2461 * Initialize the state based on the randomization methode available.
2462 * return true if the pre-computed list is available, false otherwize.
2463 */
2464static bool freelist_state_initialize(union freelist_init_state *state,
2465 struct kmem_cache *cachep,
2466 unsigned int count)
2467{
2468 bool ret;
2469 unsigned int rand;
2470
2471 /* Use best entropy available to define a random shift */
2472 rand = get_random_int();
2473
2474 /* Use a random state if the pre-computed list is not available */
2475 if (!cachep->random_seq) {
2476 prandom_seed_state(&state->rnd_state, rand);
2477 ret = false;
2478 } else {
2479 state->list = cachep->random_seq;
2480 state->count = count;
2481 state->pos = rand % count;
2482 ret = true;
2483 }
2484 return ret;
2485}
2486
2487/* Get the next entry on the list and randomize it using a random shift */
2488static freelist_idx_t next_random_slot(union freelist_init_state *state)
2489{
2490 if (state->pos >= state->count)
2491 state->pos = 0;
2492 return state->list[state->pos++];
2493}
2494
2495/* Swap two freelist entries */
2496static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2497{
2498 swap(((freelist_idx_t *)page->freelist)[a],
2499 ((freelist_idx_t *)page->freelist)[b]);
2500}
2501
2502/*
2503 * Shuffle the freelist initialization state based on pre-computed lists.
2504 * return true if the list was successfully shuffled, false otherwise.
2505 */
2506static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2507{
2508 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2509 union freelist_init_state state;
2510 bool precomputed;
2511
2512 if (count < 2)
2513 return false;
2514
2515 precomputed = freelist_state_initialize(&state, cachep, count);
2516
2517 /* Take a random entry as the objfreelist */
2518 if (OBJFREELIST_SLAB(cachep)) {
2519 if (!precomputed)
2520 objfreelist = count - 1;
2521 else
2522 objfreelist = next_random_slot(&state);
2523 page->freelist = index_to_obj(cachep, page, objfreelist) +
2524 obj_offset(cachep);
2525 count--;
2526 }
2527
2528 /*
2529 * On early boot, generate the list dynamically.
2530 * Later use a pre-computed list for speed.
2531 */
2532 if (!precomputed) {
2533 for (i = 0; i < count; i++)
2534 set_free_obj(page, i, i);
2535
2536 /* Fisher-Yates shuffle */
2537 for (i = count - 1; i > 0; i--) {
2538 rand = prandom_u32_state(&state.rnd_state);
2539 rand %= (i + 1);
2540 swap_free_obj(page, i, rand);
2541 }
2542 } else {
2543 for (i = 0; i < count; i++)
2544 set_free_obj(page, i, next_random_slot(&state));
2545 }
2546
2547 if (OBJFREELIST_SLAB(cachep))
2548 set_free_obj(page, cachep->num - 1, objfreelist);
2549
2550 return true;
2551}
2552#else
2553static inline bool shuffle_freelist(struct kmem_cache *cachep,
2554 struct page *page)
2555{
2556 return false;
2557}
2558#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2559
2560static void cache_init_objs(struct kmem_cache *cachep,
2561 struct page *page)
2562{
2563 int i;
2564 void *objp;
2565 bool shuffled;
2566
2567 cache_init_objs_debug(cachep, page);
2568
2569 /* Try to randomize the freelist if enabled */
2570 shuffled = shuffle_freelist(cachep, page);
2571
2572 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2573 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2574 obj_offset(cachep);
2575 }
2576
2577 for (i = 0; i < cachep->num; i++) {
2578 objp = index_to_obj(cachep, page, i);
2579 kasan_init_slab_obj(cachep, objp);
2580
2581 /* constructor could break poison info */
2582 if (DEBUG == 0 && cachep->ctor) {
2583 kasan_unpoison_object_data(cachep, objp);
2584 cachep->ctor(objp);
2585 kasan_poison_object_data(cachep, objp);
2586 }
2587
2588 if (!shuffled)
2589 set_free_obj(page, i, i);
2590 }
2591}
2592
2593static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2594{
2595 void *objp;
2596
2597 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2598 page->active++;
2599
2600#if DEBUG
2601 if (cachep->flags & SLAB_STORE_USER)
2602 set_store_user_dirty(cachep);
2603#endif
2604
2605 return objp;
2606}
2607
2608static void slab_put_obj(struct kmem_cache *cachep,
2609 struct page *page, void *objp)
2610{
2611 unsigned int objnr = obj_to_index(cachep, page, objp);
2612#if DEBUG
2613 unsigned int i;
2614
2615 /* Verify double free bug */
2616 for (i = page->active; i < cachep->num; i++) {
2617 if (get_free_obj(page, i) == objnr) {
2618 pr_err("slab: double free detected in cache '%s', objp %px\n",
2619 cachep->name, objp);
2620 BUG();
2621 }
2622 }
2623#endif
2624 page->active--;
2625 if (!page->freelist)
2626 page->freelist = objp + obj_offset(cachep);
2627
2628 set_free_obj(page, page->active, objnr);
2629}
2630
2631/*
2632 * Map pages beginning at addr to the given cache and slab. This is required
2633 * for the slab allocator to be able to lookup the cache and slab of a
2634 * virtual address for kfree, ksize, and slab debugging.
2635 */
2636static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2637 void *freelist)
2638{
2639 page->slab_cache = cache;
2640 page->freelist = freelist;
2641}
2642
2643/*
2644 * Grow (by 1) the number of slabs within a cache. This is called by
2645 * kmem_cache_alloc() when there are no active objs left in a cache.
2646 */
2647static struct page *cache_grow_begin(struct kmem_cache *cachep,
2648 gfp_t flags, int nodeid)
2649{
2650 void *freelist;
2651 size_t offset;
2652 gfp_t local_flags;
2653 int page_node;
2654 struct kmem_cache_node *n;
2655 struct page *page;
2656
2657 /*
2658 * Be lazy and only check for valid flags here, keeping it out of the
2659 * critical path in kmem_cache_alloc().
2660 */
2661 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2662 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2663 flags &= ~GFP_SLAB_BUG_MASK;
2664 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2665 invalid_mask, &invalid_mask, flags, &flags);
2666 dump_stack();
2667 }
2668 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2669
2670 check_irq_off();
2671 if (gfpflags_allow_blocking(local_flags))
2672 local_irq_enable();
2673
2674 /*
2675 * Get mem for the objs. Attempt to allocate a physical page from
2676 * 'nodeid'.
2677 */
2678 page = kmem_getpages(cachep, local_flags, nodeid);
2679 if (!page)
2680 goto failed;
2681
2682 page_node = page_to_nid(page);
2683 n = get_node(cachep, page_node);
2684
2685 /* Get colour for the slab, and cal the next value. */
2686 n->colour_next++;
2687 if (n->colour_next >= cachep->colour)
2688 n->colour_next = 0;
2689
2690 offset = n->colour_next;
2691 if (offset >= cachep->colour)
2692 offset = 0;
2693
2694 offset *= cachep->colour_off;
2695
2696 /* Get slab management. */
2697 freelist = alloc_slabmgmt(cachep, page, offset,
2698 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2699 if (OFF_SLAB(cachep) && !freelist)
2700 goto opps1;
2701
2702 slab_map_pages(cachep, page, freelist);
2703
2704 kasan_poison_slab(page);
2705 cache_init_objs(cachep, page);
2706
2707 if (gfpflags_allow_blocking(local_flags))
2708 local_irq_disable();
2709
2710 return page;
2711
2712opps1:
2713 kmem_freepages(cachep, page);
2714failed:
2715 if (gfpflags_allow_blocking(local_flags))
2716 local_irq_disable();
2717 return NULL;
2718}
2719
2720static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2721{
2722 struct kmem_cache_node *n;
2723 void *list = NULL;
2724
2725 check_irq_off();
2726
2727 if (!page)
2728 return;
2729
2730 INIT_LIST_HEAD(&page->lru);
2731 n = get_node(cachep, page_to_nid(page));
2732
2733 spin_lock(&n->list_lock);
2734 n->total_slabs++;
2735 if (!page->active) {
2736 list_add_tail(&page->lru, &(n->slabs_free));
2737 n->free_slabs++;
2738 } else
2739 fixup_slab_list(cachep, n, page, &list);
2740
2741 STATS_INC_GROWN(cachep);
2742 n->free_objects += cachep->num - page->active;
2743 spin_unlock(&n->list_lock);
2744
2745 fixup_objfreelist_debug(cachep, &list);
2746}
2747
2748#if DEBUG
2749
2750/*
2751 * Perform extra freeing checks:
2752 * - detect bad pointers.
2753 * - POISON/RED_ZONE checking
2754 */
2755static void kfree_debugcheck(const void *objp)
2756{
2757 if (!virt_addr_valid(objp)) {
2758 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2759 (unsigned long)objp);
2760 BUG();
2761 }
2762}
2763
2764static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2765{
2766 unsigned long long redzone1, redzone2;
2767
2768 redzone1 = *dbg_redzone1(cache, obj);
2769 redzone2 = *dbg_redzone2(cache, obj);
2770
2771 /*
2772 * Redzone is ok.
2773 */
2774 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2775 return;
2776
2777 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2778 slab_error(cache, "double free detected");
2779 else
2780 slab_error(cache, "memory outside object was overwritten");
2781
2782 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2783 obj, redzone1, redzone2);
2784}
2785
2786static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2787 unsigned long caller)
2788{
2789 unsigned int objnr;
2790 struct page *page;
2791
2792 BUG_ON(virt_to_cache(objp) != cachep);
2793
2794 objp -= obj_offset(cachep);
2795 kfree_debugcheck(objp);
2796 page = virt_to_head_page(objp);
2797
2798 if (cachep->flags & SLAB_RED_ZONE) {
2799 verify_redzone_free(cachep, objp);
2800 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2801 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2802 }
2803 if (cachep->flags & SLAB_STORE_USER) {
2804 set_store_user_dirty(cachep);
2805 *dbg_userword(cachep, objp) = (void *)caller;
2806 }
2807
2808 objnr = obj_to_index(cachep, page, objp);
2809
2810 BUG_ON(objnr >= cachep->num);
2811 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2812
2813 if (cachep->flags & SLAB_POISON) {
2814 poison_obj(cachep, objp, POISON_FREE);
2815 slab_kernel_map(cachep, objp, 0, caller);
2816 }
2817 return objp;
2818}
2819
2820#else
2821#define kfree_debugcheck(x) do { } while(0)
2822#define cache_free_debugcheck(x,objp,z) (objp)
2823#endif
2824
2825static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2826 void **list)
2827{
2828#if DEBUG
2829 void *next = *list;
2830 void *objp;
2831
2832 while (next) {
2833 objp = next - obj_offset(cachep);
2834 next = *(void **)next;
2835 poison_obj(cachep, objp, POISON_FREE);
2836 }
2837#endif
2838}
2839
2840static inline void fixup_slab_list(struct kmem_cache *cachep,
2841 struct kmem_cache_node *n, struct page *page,
2842 void **list)
2843{
2844 /* move slabp to correct slabp list: */
2845 list_del(&page->lru);
2846 if (page->active == cachep->num) {
2847 list_add(&page->lru, &n->slabs_full);
2848 if (OBJFREELIST_SLAB(cachep)) {
2849#if DEBUG
2850 /* Poisoning will be done without holding the lock */
2851 if (cachep->flags & SLAB_POISON) {
2852 void **objp = page->freelist;
2853
2854 *objp = *list;
2855 *list = objp;
2856 }
2857#endif
2858 page->freelist = NULL;
2859 }
2860 } else
2861 list_add(&page->lru, &n->slabs_partial);
2862}
2863
2864/* Try to find non-pfmemalloc slab if needed */
2865static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2866 struct page *page, bool pfmemalloc)
2867{
2868 if (!page)
2869 return NULL;
2870
2871 if (pfmemalloc)
2872 return page;
2873
2874 if (!PageSlabPfmemalloc(page))
2875 return page;
2876
2877 /* No need to keep pfmemalloc slab if we have enough free objects */
2878 if (n->free_objects > n->free_limit) {
2879 ClearPageSlabPfmemalloc(page);
2880 return page;
2881 }
2882
2883 /* Move pfmemalloc slab to the end of list to speed up next search */
2884 list_del(&page->lru);
2885 if (!page->active) {
2886 list_add_tail(&page->lru, &n->slabs_free);
2887 n->free_slabs++;
2888 } else
2889 list_add_tail(&page->lru, &n->slabs_partial);
2890
2891 list_for_each_entry(page, &n->slabs_partial, lru) {
2892 if (!PageSlabPfmemalloc(page))
2893 return page;
2894 }
2895
2896 n->free_touched = 1;
2897 list_for_each_entry(page, &n->slabs_free, lru) {
2898 if (!PageSlabPfmemalloc(page)) {
2899 n->free_slabs--;
2900 return page;
2901 }
2902 }
2903
2904 return NULL;
2905}
2906
2907static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2908{
2909 struct page *page;
2910
2911 assert_spin_locked(&n->list_lock);
2912 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2913 if (!page) {
2914 n->free_touched = 1;
2915 page = list_first_entry_or_null(&n->slabs_free, struct page,
2916 lru);
2917 if (page)
2918 n->free_slabs--;
2919 }
2920
2921 if (sk_memalloc_socks())
2922 page = get_valid_first_slab(n, page, pfmemalloc);
2923
2924 return page;
2925}
2926
2927static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2928 struct kmem_cache_node *n, gfp_t flags)
2929{
2930 struct page *page;
2931 void *obj;
2932 void *list = NULL;
2933
2934 if (!gfp_pfmemalloc_allowed(flags))
2935 return NULL;
2936
2937 spin_lock(&n->list_lock);
2938 page = get_first_slab(n, true);
2939 if (!page) {
2940 spin_unlock(&n->list_lock);
2941 return NULL;
2942 }
2943
2944 obj = slab_get_obj(cachep, page);
2945 n->free_objects--;
2946
2947 fixup_slab_list(cachep, n, page, &list);
2948
2949 spin_unlock(&n->list_lock);
2950 fixup_objfreelist_debug(cachep, &list);
2951
2952 return obj;
2953}
2954
2955/*
2956 * Slab list should be fixed up by fixup_slab_list() for existing slab
2957 * or cache_grow_end() for new slab
2958 */
2959static __always_inline int alloc_block(struct kmem_cache *cachep,
2960 struct array_cache *ac, struct page *page, int batchcount)
2961{
2962 /*
2963 * There must be at least one object available for
2964 * allocation.
2965 */
2966 BUG_ON(page->active >= cachep->num);
2967
2968 while (page->active < cachep->num && batchcount--) {
2969 STATS_INC_ALLOCED(cachep);
2970 STATS_INC_ACTIVE(cachep);
2971 STATS_SET_HIGH(cachep);
2972
2973 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2974 }
2975
2976 return batchcount;
2977}
2978
2979static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2980{
2981 int batchcount;
2982 struct kmem_cache_node *n;
2983 struct array_cache *ac, *shared;
2984 int node;
2985 void *list = NULL;
2986 struct page *page;
2987
2988 check_irq_off();
2989 node = numa_mem_id();
2990
2991 ac = cpu_cache_get(cachep);
2992 batchcount = ac->batchcount;
2993 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2994 /*
2995 * If there was little recent activity on this cache, then
2996 * perform only a partial refill. Otherwise we could generate
2997 * refill bouncing.
2998 */
2999 batchcount = BATCHREFILL_LIMIT;
3000 }
3001 n = get_node(cachep, node);
3002
3003 BUG_ON(ac->avail > 0 || !n);
3004 shared = READ_ONCE(n->shared);
3005 if (!n->free_objects && (!shared || !shared->avail))
3006 goto direct_grow;
3007
3008 spin_lock(&n->list_lock);
3009 shared = READ_ONCE(n->shared);
3010
3011 /* See if we can refill from the shared array */
3012 if (shared && transfer_objects(ac, shared, batchcount)) {
3013 shared->touched = 1;
3014 goto alloc_done;
3015 }
3016
3017 while (batchcount > 0) {
3018 /* Get slab alloc is to come from. */
3019 page = get_first_slab(n, false);
3020 if (!page)
3021 goto must_grow;
3022
3023 check_spinlock_acquired(cachep);
3024
3025 batchcount = alloc_block(cachep, ac, page, batchcount);
3026 fixup_slab_list(cachep, n, page, &list);
3027 }
3028
3029must_grow:
3030 n->free_objects -= ac->avail;
3031alloc_done:
3032 spin_unlock(&n->list_lock);
3033 fixup_objfreelist_debug(cachep, &list);
3034
3035direct_grow:
3036 if (unlikely(!ac->avail)) {
3037 /* Check if we can use obj in pfmemalloc slab */
3038 if (sk_memalloc_socks()) {
3039 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3040
3041 if (obj)
3042 return obj;
3043 }
3044
3045 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3046
3047 /*
3048 * cache_grow_begin() can reenable interrupts,
3049 * then ac could change.
3050 */
3051 ac = cpu_cache_get(cachep);
3052 if (!ac->avail && page)
3053 alloc_block(cachep, ac, page, batchcount);
3054 cache_grow_end(cachep, page);
3055
3056 if (!ac->avail)
3057 return NULL;
3058 }
3059 ac->touched = 1;
3060
3061 return ac->entry[--ac->avail];
3062}
3063
3064static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3065 gfp_t flags)
3066{
3067 might_sleep_if(gfpflags_allow_blocking(flags));
3068}
3069
3070#if DEBUG
3071static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3072 gfp_t flags, void *objp, unsigned long caller)
3073{
3074 if (!objp)
3075 return objp;
3076 if (cachep->flags & SLAB_POISON) {
3077 check_poison_obj(cachep, objp);
3078 slab_kernel_map(cachep, objp, 1, 0);
3079 poison_obj(cachep, objp, POISON_INUSE);
3080 }
3081 if (cachep->flags & SLAB_STORE_USER)
3082 *dbg_userword(cachep, objp) = (void *)caller;
3083
3084 if (cachep->flags & SLAB_RED_ZONE) {
3085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087 slab_error(cachep, "double free, or memory outside object was overwritten");
3088 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089 objp, *dbg_redzone1(cachep, objp),
3090 *dbg_redzone2(cachep, objp));
3091 }
3092 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094 }
3095
3096 objp += obj_offset(cachep);
3097 if (cachep->ctor && cachep->flags & SLAB_POISON)
3098 cachep->ctor(objp);
3099 if (ARCH_SLAB_MINALIGN &&
3100 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3101 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102 objp, (int)ARCH_SLAB_MINALIGN);
3103 }
3104 return objp;
3105}
3106#else
3107#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108#endif
3109
3110static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3111{
3112 void *objp;
3113 struct array_cache *ac;
3114
3115 check_irq_off();
3116
3117 ac = cpu_cache_get(cachep);
3118 if (likely(ac->avail)) {
3119 ac->touched = 1;
3120 objp = ac->entry[--ac->avail];
3121
3122 STATS_INC_ALLOCHIT(cachep);
3123 goto out;
3124 }
3125
3126 STATS_INC_ALLOCMISS(cachep);
3127 objp = cache_alloc_refill(cachep, flags);
3128 /*
3129 * the 'ac' may be updated by cache_alloc_refill(),
3130 * and kmemleak_erase() requires its correct value.
3131 */
3132 ac = cpu_cache_get(cachep);
3133
3134out:
3135 /*
3136 * To avoid a false negative, if an object that is in one of the
3137 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3138 * treat the array pointers as a reference to the object.
3139 */
3140 if (objp)
3141 kmemleak_erase(&ac->entry[ac->avail]);
3142 return objp;
3143}
3144
3145#ifdef CONFIG_NUMA
3146/*
3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3148 *
3149 * If we are in_interrupt, then process context, including cpusets and
3150 * mempolicy, may not apply and should not be used for allocation policy.
3151 */
3152static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3153{
3154 int nid_alloc, nid_here;
3155
3156 if (in_interrupt() || (flags & __GFP_THISNODE))
3157 return NULL;
3158 nid_alloc = nid_here = numa_mem_id();
3159 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3160 nid_alloc = cpuset_slab_spread_node();
3161 else if (current->mempolicy)
3162 nid_alloc = mempolicy_slab_node();
3163 if (nid_alloc != nid_here)
3164 return ____cache_alloc_node(cachep, flags, nid_alloc);
3165 return NULL;
3166}
3167
3168/*
3169 * Fallback function if there was no memory available and no objects on a
3170 * certain node and fall back is permitted. First we scan all the
3171 * available node for available objects. If that fails then we
3172 * perform an allocation without specifying a node. This allows the page
3173 * allocator to do its reclaim / fallback magic. We then insert the
3174 * slab into the proper nodelist and then allocate from it.
3175 */
3176static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3177{
3178 struct zonelist *zonelist;
3179 struct zoneref *z;
3180 struct zone *zone;
3181 enum zone_type high_zoneidx = gfp_zone(flags);
3182 void *obj = NULL;
3183 struct page *page;
3184 int nid;
3185 unsigned int cpuset_mems_cookie;
3186
3187 if (flags & __GFP_THISNODE)
3188 return NULL;
3189
3190retry_cpuset:
3191 cpuset_mems_cookie = read_mems_allowed_begin();
3192 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3193
3194retry:
3195 /*
3196 * Look through allowed nodes for objects available
3197 * from existing per node queues.
3198 */
3199 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200 nid = zone_to_nid(zone);
3201
3202 if (cpuset_zone_allowed(zone, flags) &&
3203 get_node(cache, nid) &&
3204 get_node(cache, nid)->free_objects) {
3205 obj = ____cache_alloc_node(cache,
3206 gfp_exact_node(flags), nid);
3207 if (obj)
3208 break;
3209 }
3210 }
3211
3212 if (!obj) {
3213 /*
3214 * This allocation will be performed within the constraints
3215 * of the current cpuset / memory policy requirements.
3216 * We may trigger various forms of reclaim on the allowed
3217 * set and go into memory reserves if necessary.
3218 */
3219 page = cache_grow_begin(cache, flags, numa_mem_id());
3220 cache_grow_end(cache, page);
3221 if (page) {
3222 nid = page_to_nid(page);
3223 obj = ____cache_alloc_node(cache,
3224 gfp_exact_node(flags), nid);
3225
3226 /*
3227 * Another processor may allocate the objects in
3228 * the slab since we are not holding any locks.
3229 */
3230 if (!obj)
3231 goto retry;
3232 }
3233 }
3234
3235 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3236 goto retry_cpuset;
3237 return obj;
3238}
3239
3240/*
3241 * A interface to enable slab creation on nodeid
3242 */
3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244 int nodeid)
3245{
3246 struct page *page;
3247 struct kmem_cache_node *n;
3248 void *obj = NULL;
3249 void *list = NULL;
3250
3251 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3252 n = get_node(cachep, nodeid);
3253 BUG_ON(!n);
3254
3255 check_irq_off();
3256 spin_lock(&n->list_lock);
3257 page = get_first_slab(n, false);
3258 if (!page)
3259 goto must_grow;
3260
3261 check_spinlock_acquired_node(cachep, nodeid);
3262
3263 STATS_INC_NODEALLOCS(cachep);
3264 STATS_INC_ACTIVE(cachep);
3265 STATS_SET_HIGH(cachep);
3266
3267 BUG_ON(page->active == cachep->num);
3268
3269 obj = slab_get_obj(cachep, page);
3270 n->free_objects--;
3271
3272 fixup_slab_list(cachep, n, page, &list);
3273
3274 spin_unlock(&n->list_lock);
3275 fixup_objfreelist_debug(cachep, &list);
3276 return obj;
3277
3278must_grow:
3279 spin_unlock(&n->list_lock);
3280 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3281 if (page) {
3282 /* This slab isn't counted yet so don't update free_objects */
3283 obj = slab_get_obj(cachep, page);
3284 }
3285 cache_grow_end(cachep, page);
3286
3287 return obj ? obj : fallback_alloc(cachep, flags);
3288}
3289
3290static __always_inline void *
3291slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292 unsigned long caller)
3293{
3294 unsigned long save_flags;
3295 void *ptr;
3296 int slab_node = numa_mem_id();
3297
3298 flags &= gfp_allowed_mask;
3299 cachep = slab_pre_alloc_hook(cachep, flags);
3300 if (unlikely(!cachep))
3301 return NULL;
3302
3303 cache_alloc_debugcheck_before(cachep, flags);
3304 local_irq_save(save_flags);
3305
3306 if (nodeid == NUMA_NO_NODE)
3307 nodeid = slab_node;
3308
3309 if (unlikely(!get_node(cachep, nodeid))) {
3310 /* Node not bootstrapped yet */
3311 ptr = fallback_alloc(cachep, flags);
3312 goto out;
3313 }
3314
3315 if (nodeid == slab_node) {
3316 /*
3317 * Use the locally cached objects if possible.
3318 * However ____cache_alloc does not allow fallback
3319 * to other nodes. It may fail while we still have
3320 * objects on other nodes available.
3321 */
3322 ptr = ____cache_alloc(cachep, flags);
3323 if (ptr)
3324 goto out;
3325 }
3326 /* ___cache_alloc_node can fall back to other nodes */
3327 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3328 out:
3329 local_irq_restore(save_flags);
3330 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3331
3332 if (unlikely(flags & __GFP_ZERO) && ptr)
3333 memset(ptr, 0, cachep->object_size);
3334
3335 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3336 return ptr;
3337}
3338
3339static __always_inline void *
3340__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3341{
3342 void *objp;
3343
3344 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3345 objp = alternate_node_alloc(cache, flags);
3346 if (objp)
3347 goto out;
3348 }
3349 objp = ____cache_alloc(cache, flags);
3350
3351 /*
3352 * We may just have run out of memory on the local node.
3353 * ____cache_alloc_node() knows how to locate memory on other nodes
3354 */
3355 if (!objp)
3356 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3357
3358 out:
3359 return objp;
3360}
3361#else
3362
3363static __always_inline void *
3364__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3365{
3366 return ____cache_alloc(cachep, flags);
3367}
3368
3369#endif /* CONFIG_NUMA */
3370
3371static __always_inline void *
3372slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3373{
3374 unsigned long save_flags;
3375 void *objp;
3376
3377 flags &= gfp_allowed_mask;
3378 cachep = slab_pre_alloc_hook(cachep, flags);
3379 if (unlikely(!cachep))
3380 return NULL;
3381
3382 cache_alloc_debugcheck_before(cachep, flags);
3383 local_irq_save(save_flags);
3384 objp = __do_cache_alloc(cachep, flags);
3385 local_irq_restore(save_flags);
3386 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3387 prefetchw(objp);
3388
3389 if (unlikely(flags & __GFP_ZERO) && objp)
3390 memset(objp, 0, cachep->object_size);
3391
3392 slab_post_alloc_hook(cachep, flags, 1, &objp);
3393 return objp;
3394}
3395
3396/*
3397 * Caller needs to acquire correct kmem_cache_node's list_lock
3398 * @list: List of detached free slabs should be freed by caller
3399 */
3400static void free_block(struct kmem_cache *cachep, void **objpp,
3401 int nr_objects, int node, struct list_head *list)
3402{
3403 int i;
3404 struct kmem_cache_node *n = get_node(cachep, node);
3405 struct page *page;
3406
3407 n->free_objects += nr_objects;
3408
3409 for (i = 0; i < nr_objects; i++) {
3410 void *objp;
3411 struct page *page;
3412
3413 objp = objpp[i];
3414
3415 page = virt_to_head_page(objp);
3416 list_del(&page->lru);
3417 check_spinlock_acquired_node(cachep, node);
3418 slab_put_obj(cachep, page, objp);
3419 STATS_DEC_ACTIVE(cachep);
3420
3421 /* fixup slab chains */
3422 if (page->active == 0) {
3423 list_add(&page->lru, &n->slabs_free);
3424 n->free_slabs++;
3425 } else {
3426 /* Unconditionally move a slab to the end of the
3427 * partial list on free - maximum time for the
3428 * other objects to be freed, too.
3429 */
3430 list_add_tail(&page->lru, &n->slabs_partial);
3431 }
3432 }
3433
3434 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3435 n->free_objects -= cachep->num;
3436
3437 page = list_last_entry(&n->slabs_free, struct page, lru);
3438 list_move(&page->lru, list);
3439 n->free_slabs--;
3440 n->total_slabs--;
3441 }
3442}
3443
3444static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3445{
3446 int batchcount;
3447 struct kmem_cache_node *n;
3448 int node = numa_mem_id();
3449 LIST_HEAD(list);
3450
3451 batchcount = ac->batchcount;
3452
3453 check_irq_off();
3454 n = get_node(cachep, node);
3455 spin_lock(&n->list_lock);
3456 if (n->shared) {
3457 struct array_cache *shared_array = n->shared;
3458 int max = shared_array->limit - shared_array->avail;
3459 if (max) {
3460 if (batchcount > max)
3461 batchcount = max;
3462 memcpy(&(shared_array->entry[shared_array->avail]),
3463 ac->entry, sizeof(void *) * batchcount);
3464 shared_array->avail += batchcount;
3465 goto free_done;
3466 }
3467 }
3468
3469 free_block(cachep, ac->entry, batchcount, node, &list);
3470free_done:
3471#if STATS
3472 {
3473 int i = 0;
3474 struct page *page;
3475
3476 list_for_each_entry(page, &n->slabs_free, lru) {
3477 BUG_ON(page->active);
3478
3479 i++;
3480 }
3481 STATS_SET_FREEABLE(cachep, i);
3482 }
3483#endif
3484 spin_unlock(&n->list_lock);
3485 slabs_destroy(cachep, &list);
3486 ac->avail -= batchcount;
3487 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3488}
3489
3490/*
3491 * Release an obj back to its cache. If the obj has a constructed state, it must
3492 * be in this state _before_ it is released. Called with disabled ints.
3493 */
3494static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3495 unsigned long caller)
3496{
3497 /* Put the object into the quarantine, don't touch it for now. */
3498 if (kasan_slab_free(cachep, objp, _RET_IP_))
3499 return;
3500
3501 ___cache_free(cachep, objp, caller);
3502}
3503
3504void ___cache_free(struct kmem_cache *cachep, void *objp,
3505 unsigned long caller)
3506{
3507 struct array_cache *ac = cpu_cache_get(cachep);
3508
3509 check_irq_off();
3510 kmemleak_free_recursive(objp, cachep->flags);
3511 objp = cache_free_debugcheck(cachep, objp, caller);
3512
3513 /*
3514 * Skip calling cache_free_alien() when the platform is not numa.
3515 * This will avoid cache misses that happen while accessing slabp (which
3516 * is per page memory reference) to get nodeid. Instead use a global
3517 * variable to skip the call, which is mostly likely to be present in
3518 * the cache.
3519 */
3520 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3521 return;
3522
3523 if (ac->avail < ac->limit) {
3524 STATS_INC_FREEHIT(cachep);
3525 } else {
3526 STATS_INC_FREEMISS(cachep);
3527 cache_flusharray(cachep, ac);
3528 }
3529
3530 if (sk_memalloc_socks()) {
3531 struct page *page = virt_to_head_page(objp);
3532
3533 if (unlikely(PageSlabPfmemalloc(page))) {
3534 cache_free_pfmemalloc(cachep, page, objp);
3535 return;
3536 }
3537 }
3538
3539 ac->entry[ac->avail++] = objp;
3540}
3541
3542/**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache. The flags are only relevant
3548 * if the cache has no available objects.
3549 */
3550void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3551{
3552 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3553
3554 kasan_slab_alloc(cachep, ret, flags);
3555 trace_kmem_cache_alloc(_RET_IP_, ret,
3556 cachep->object_size, cachep->size, flags);
3557
3558 return ret;
3559}
3560EXPORT_SYMBOL(kmem_cache_alloc);
3561
3562static __always_inline void
3563cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3564 size_t size, void **p, unsigned long caller)
3565{
3566 size_t i;
3567
3568 for (i = 0; i < size; i++)
3569 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3570}
3571
3572int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3573 void **p)
3574{
3575 size_t i;
3576
3577 s = slab_pre_alloc_hook(s, flags);
3578 if (!s)
3579 return 0;
3580
3581 cache_alloc_debugcheck_before(s, flags);
3582
3583 local_irq_disable();
3584 for (i = 0; i < size; i++) {
3585 void *objp = __do_cache_alloc(s, flags);
3586
3587 if (unlikely(!objp))
3588 goto error;
3589 p[i] = objp;
3590 }
3591 local_irq_enable();
3592
3593 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3594
3595 /* Clear memory outside IRQ disabled section */
3596 if (unlikely(flags & __GFP_ZERO))
3597 for (i = 0; i < size; i++)
3598 memset(p[i], 0, s->object_size);
3599
3600 slab_post_alloc_hook(s, flags, size, p);
3601 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3602 return size;
3603error:
3604 local_irq_enable();
3605 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3606 slab_post_alloc_hook(s, flags, i, p);
3607 __kmem_cache_free_bulk(s, i, p);
3608 return 0;
3609}
3610EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3611
3612#ifdef CONFIG_TRACING
3613void *
3614kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3615{
3616 void *ret;
3617
3618 ret = slab_alloc(cachep, flags, _RET_IP_);
3619
3620 kasan_kmalloc(cachep, ret, size, flags);
3621 trace_kmalloc(_RET_IP_, ret,
3622 size, cachep->size, flags);
3623 return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_trace);
3626#endif
3627
3628#ifdef CONFIG_NUMA
3629/**
3630 * kmem_cache_alloc_node - Allocate an object on the specified node
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3633 * @nodeid: node number of the target node.
3634 *
3635 * Identical to kmem_cache_alloc but it will allocate memory on the given
3636 * node, which can improve the performance for cpu bound structures.
3637 *
3638 * Fallback to other node is possible if __GFP_THISNODE is not set.
3639 */
3640void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3641{
3642 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3643
3644 kasan_slab_alloc(cachep, ret, flags);
3645 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3646 cachep->object_size, cachep->size,
3647 flags, nodeid);
3648
3649 return ret;
3650}
3651EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
3653#ifdef CONFIG_TRACING
3654void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3655 gfp_t flags,
3656 int nodeid,
3657 size_t size)
3658{
3659 void *ret;
3660
3661 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663 kasan_kmalloc(cachep, ret, size, flags);
3664 trace_kmalloc_node(_RET_IP_, ret,
3665 size, cachep->size,
3666 flags, nodeid);
3667 return ret;
3668}
3669EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3670#endif
3671
3672static __always_inline void *
3673__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3674{
3675 struct kmem_cache *cachep;
3676 void *ret;
3677
3678 cachep = kmalloc_slab(size, flags);
3679 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680 return cachep;
3681 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682 kasan_kmalloc(cachep, ret, size, flags);
3683
3684 return ret;
3685}
3686
3687void *__kmalloc_node(size_t size, gfp_t flags, int node)
3688{
3689 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3690}
3691EXPORT_SYMBOL(__kmalloc_node);
3692
3693void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694 int node, unsigned long caller)
3695{
3696 return __do_kmalloc_node(size, flags, node, caller);
3697}
3698EXPORT_SYMBOL(__kmalloc_node_track_caller);
3699#endif /* CONFIG_NUMA */
3700
3701/**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
3707static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708 unsigned long caller)
3709{
3710 struct kmem_cache *cachep;
3711 void *ret;
3712
3713 cachep = kmalloc_slab(size, flags);
3714 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715 return cachep;
3716 ret = slab_alloc(cachep, flags, caller);
3717
3718 kasan_kmalloc(cachep, ret, size, flags);
3719 trace_kmalloc(caller, ret,
3720 size, cachep->size, flags);
3721
3722 return ret;
3723}
3724
3725void *__kmalloc(size_t size, gfp_t flags)
3726{
3727 return __do_kmalloc(size, flags, _RET_IP_);
3728}
3729EXPORT_SYMBOL(__kmalloc);
3730
3731void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732{
3733 return __do_kmalloc(size, flags, caller);
3734}
3735EXPORT_SYMBOL(__kmalloc_track_caller);
3736
3737/**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
3745void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746{
3747 unsigned long flags;
3748 cachep = cache_from_obj(cachep, objp);
3749 if (!cachep)
3750 return;
3751
3752 local_irq_save(flags);
3753 debug_check_no_locks_freed(objp, cachep->object_size);
3754 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755 debug_check_no_obj_freed(objp, cachep->object_size);
3756 __cache_free(cachep, objp, _RET_IP_);
3757 local_irq_restore(flags);
3758
3759 trace_kmem_cache_free(_RET_IP_, objp);
3760}
3761EXPORT_SYMBOL(kmem_cache_free);
3762
3763void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764{
3765 struct kmem_cache *s;
3766 size_t i;
3767
3768 local_irq_disable();
3769 for (i = 0; i < size; i++) {
3770 void *objp = p[i];
3771
3772 if (!orig_s) /* called via kfree_bulk */
3773 s = virt_to_cache(objp);
3774 else
3775 s = cache_from_obj(orig_s, objp);
3776
3777 debug_check_no_locks_freed(objp, s->object_size);
3778 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779 debug_check_no_obj_freed(objp, s->object_size);
3780
3781 __cache_free(s, objp, _RET_IP_);
3782 }
3783 local_irq_enable();
3784
3785 /* FIXME: add tracing */
3786}
3787EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
3789/**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
3793 * If @objp is NULL, no operation is performed.
3794 *
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
3798void kfree(const void *objp)
3799{
3800 struct kmem_cache *c;
3801 unsigned long flags;
3802
3803 trace_kfree(_RET_IP_, objp);
3804
3805 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3806 return;
3807 local_irq_save(flags);
3808 kfree_debugcheck(objp);
3809 c = virt_to_cache(objp);
3810 debug_check_no_locks_freed(objp, c->object_size);
3811
3812 debug_check_no_obj_freed(objp, c->object_size);
3813 __cache_free(c, (void *)objp, _RET_IP_);
3814 local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kfree);
3817
3818/*
3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820 */
3821static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822{
3823 int ret;
3824 int node;
3825 struct kmem_cache_node *n;
3826
3827 for_each_online_node(node) {
3828 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829 if (ret)
3830 goto fail;
3831
3832 }
3833
3834 return 0;
3835
3836fail:
3837 if (!cachep->list.next) {
3838 /* Cache is not active yet. Roll back what we did */
3839 node--;
3840 while (node >= 0) {
3841 n = get_node(cachep, node);
3842 if (n) {
3843 kfree(n->shared);
3844 free_alien_cache(n->alien);
3845 kfree(n);
3846 cachep->node[node] = NULL;
3847 }
3848 node--;
3849 }
3850 }
3851 return -ENOMEM;
3852}
3853
3854/* Always called with the slab_mutex held */
3855static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856 int batchcount, int shared, gfp_t gfp)
3857{
3858 struct array_cache __percpu *cpu_cache, *prev;
3859 int cpu;
3860
3861 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862 if (!cpu_cache)
3863 return -ENOMEM;
3864
3865 prev = cachep->cpu_cache;
3866 cachep->cpu_cache = cpu_cache;
3867 /*
3868 * Without a previous cpu_cache there's no need to synchronize remote
3869 * cpus, so skip the IPIs.
3870 */
3871 if (prev)
3872 kick_all_cpus_sync();
3873
3874 check_irq_on();
3875 cachep->batchcount = batchcount;
3876 cachep->limit = limit;
3877 cachep->shared = shared;
3878
3879 if (!prev)
3880 goto setup_node;
3881
3882 for_each_online_cpu(cpu) {
3883 LIST_HEAD(list);
3884 int node;
3885 struct kmem_cache_node *n;
3886 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887
3888 node = cpu_to_mem(cpu);
3889 n = get_node(cachep, node);
3890 spin_lock_irq(&n->list_lock);
3891 free_block(cachep, ac->entry, ac->avail, node, &list);
3892 spin_unlock_irq(&n->list_lock);
3893 slabs_destroy(cachep, &list);
3894 }
3895 free_percpu(prev);
3896
3897setup_node:
3898 return setup_kmem_cache_nodes(cachep, gfp);
3899}
3900
3901static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902 int batchcount, int shared, gfp_t gfp)
3903{
3904 int ret;
3905 struct kmem_cache *c;
3906
3907 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3908
3909 if (slab_state < FULL)
3910 return ret;
3911
3912 if ((ret < 0) || !is_root_cache(cachep))
3913 return ret;
3914
3915 lockdep_assert_held(&slab_mutex);
3916 for_each_memcg_cache(c, cachep) {
3917 /* return value determined by the root cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919 }
3920
3921 return ret;
3922}
3923
3924/* Called with slab_mutex held always */
3925static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926{
3927 int err;
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3931
3932 err = cache_random_seq_create(cachep, cachep->num, gfp);
3933 if (err)
3934 goto end;
3935
3936 if (!is_root_cache(cachep)) {
3937 struct kmem_cache *root = memcg_root_cache(cachep);
3938 limit = root->limit;
3939 shared = root->shared;
3940 batchcount = root->batchcount;
3941 }
3942
3943 if (limit && shared && batchcount)
3944 goto skip_setup;
3945 /*
3946 * The head array serves three purposes:
3947 * - create a LIFO ordering, i.e. return objects that are cache-warm
3948 * - reduce the number of spinlock operations.
3949 * - reduce the number of linked list operations on the slab and
3950 * bufctl chains: array operations are cheaper.
3951 * The numbers are guessed, we should auto-tune as described by
3952 * Bonwick.
3953 */
3954 if (cachep->size > 131072)
3955 limit = 1;
3956 else if (cachep->size > PAGE_SIZE)
3957 limit = 8;
3958 else if (cachep->size > 1024)
3959 limit = 24;
3960 else if (cachep->size > 256)
3961 limit = 54;
3962 else
3963 limit = 120;
3964
3965 /*
3966 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3967 * allocation behaviour: Most allocs on one cpu, most free operations
3968 * on another cpu. For these cases, an efficient object passing between
3969 * cpus is necessary. This is provided by a shared array. The array
3970 * replaces Bonwick's magazine layer.
3971 * On uniprocessor, it's functionally equivalent (but less efficient)
3972 * to a larger limit. Thus disabled by default.
3973 */
3974 shared = 0;
3975 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3976 shared = 8;
3977
3978#if DEBUG
3979 /*
3980 * With debugging enabled, large batchcount lead to excessively long
3981 * periods with disabled local interrupts. Limit the batchcount
3982 */
3983 if (limit > 32)
3984 limit = 32;
3985#endif
3986 batchcount = (limit + 1) / 2;
3987skip_setup:
3988 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3989end:
3990 if (err)
3991 pr_err("enable_cpucache failed for %s, error %d\n",
3992 cachep->name, -err);
3993 return err;
3994}
3995
3996/*
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
3999 * if drain_array() is used on the shared array.
4000 */
4001static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002 struct array_cache *ac, int node)
4003{
4004 LIST_HEAD(list);
4005
4006 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007 check_mutex_acquired();
4008
4009 if (!ac || !ac->avail)
4010 return;
4011
4012 if (ac->touched) {
4013 ac->touched = 0;
4014 return;
4015 }
4016
4017 spin_lock_irq(&n->list_lock);
4018 drain_array_locked(cachep, ac, node, false, &list);
4019 spin_unlock_irq(&n->list_lock);
4020
4021 slabs_destroy(cachep, &list);
4022}
4023
4024/**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
4036static void cache_reap(struct work_struct *w)
4037{
4038 struct kmem_cache *searchp;
4039 struct kmem_cache_node *n;
4040 int node = numa_mem_id();
4041 struct delayed_work *work = to_delayed_work(w);
4042
4043 if (!mutex_trylock(&slab_mutex))
4044 /* Give up. Setup the next iteration. */
4045 goto out;
4046
4047 list_for_each_entry(searchp, &slab_caches, list) {
4048 check_irq_on();
4049
4050 /*
4051 * We only take the node lock if absolutely necessary and we
4052 * have established with reasonable certainty that
4053 * we can do some work if the lock was obtained.
4054 */
4055 n = get_node(searchp, node);
4056
4057 reap_alien(searchp, n);
4058
4059 drain_array(searchp, n, cpu_cache_get(searchp), node);
4060
4061 /*
4062 * These are racy checks but it does not matter
4063 * if we skip one check or scan twice.
4064 */
4065 if (time_after(n->next_reap, jiffies))
4066 goto next;
4067
4068 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4069
4070 drain_array(searchp, n, n->shared, node);
4071
4072 if (n->free_touched)
4073 n->free_touched = 0;
4074 else {
4075 int freed;
4076
4077 freed = drain_freelist(searchp, n, (n->free_limit +
4078 5 * searchp->num - 1) / (5 * searchp->num));
4079 STATS_ADD_REAPED(searchp, freed);
4080 }
4081next:
4082 cond_resched();
4083 }
4084 check_irq_on();
4085 mutex_unlock(&slab_mutex);
4086 next_reap_node();
4087out:
4088 /* Set up the next iteration */
4089 schedule_delayed_work_on(smp_processor_id(), work,
4090 round_jiffies_relative(REAPTIMEOUT_AC));
4091}
4092
4093void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4094{
4095 unsigned long active_objs, num_objs, active_slabs;
4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097 unsigned long free_slabs = 0;
4098 int node;
4099 struct kmem_cache_node *n;
4100
4101 for_each_kmem_cache_node(cachep, node, n) {
4102 check_irq_on();
4103 spin_lock_irq(&n->list_lock);
4104
4105 total_slabs += n->total_slabs;
4106 free_slabs += n->free_slabs;
4107 free_objs += n->free_objects;
4108
4109 if (n->shared)
4110 shared_avail += n->shared->avail;
4111
4112 spin_unlock_irq(&n->list_lock);
4113 }
4114 num_objs = total_slabs * cachep->num;
4115 active_slabs = total_slabs - free_slabs;
4116 active_objs = num_objs - free_objs;
4117
4118 sinfo->active_objs = active_objs;
4119 sinfo->num_objs = num_objs;
4120 sinfo->active_slabs = active_slabs;
4121 sinfo->num_slabs = total_slabs;
4122 sinfo->shared_avail = shared_avail;
4123 sinfo->limit = cachep->limit;
4124 sinfo->batchcount = cachep->batchcount;
4125 sinfo->shared = cachep->shared;
4126 sinfo->objects_per_slab = cachep->num;
4127 sinfo->cache_order = cachep->gfporder;
4128}
4129
4130void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131{
4132#if STATS
4133 { /* node stats */
4134 unsigned long high = cachep->high_mark;
4135 unsigned long allocs = cachep->num_allocations;
4136 unsigned long grown = cachep->grown;
4137 unsigned long reaped = cachep->reaped;
4138 unsigned long errors = cachep->errors;
4139 unsigned long max_freeable = cachep->max_freeable;
4140 unsigned long node_allocs = cachep->node_allocs;
4141 unsigned long node_frees = cachep->node_frees;
4142 unsigned long overflows = cachep->node_overflow;
4143
4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4145 allocs, high, grown,
4146 reaped, errors, max_freeable, node_allocs,
4147 node_frees, overflows);
4148 }
4149 /* cpu stats */
4150 {
4151 unsigned long allochit = atomic_read(&cachep->allochit);
4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153 unsigned long freehit = atomic_read(&cachep->freehit);
4154 unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157 allochit, allocmiss, freehit, freemiss);
4158 }
4159#endif
4160}
4161
4162#define MAX_SLABINFO_WRITE 128
4163/**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
4170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171 size_t count, loff_t *ppos)
4172{
4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174 int limit, batchcount, shared, res;
4175 struct kmem_cache *cachep;
4176
4177 if (count > MAX_SLABINFO_WRITE)
4178 return -EINVAL;
4179 if (copy_from_user(&kbuf, buffer, count))
4180 return -EFAULT;
4181 kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183 tmp = strchr(kbuf, ' ');
4184 if (!tmp)
4185 return -EINVAL;
4186 *tmp = '\0';
4187 tmp++;
4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189 return -EINVAL;
4190
4191 /* Find the cache in the chain of caches. */
4192 mutex_lock(&slab_mutex);
4193 res = -EINVAL;
4194 list_for_each_entry(cachep, &slab_caches, list) {
4195 if (!strcmp(cachep->name, kbuf)) {
4196 if (limit < 1 || batchcount < 1 ||
4197 batchcount > limit || shared < 0) {
4198 res = 0;
4199 } else {
4200 res = do_tune_cpucache(cachep, limit,
4201 batchcount, shared,
4202 GFP_KERNEL);
4203 }
4204 break;
4205 }
4206 }
4207 mutex_unlock(&slab_mutex);
4208 if (res >= 0)
4209 res = count;
4210 return res;
4211}
4212
4213#ifdef CONFIG_DEBUG_SLAB_LEAK
4214
4215static inline int add_caller(unsigned long *n, unsigned long v)
4216{
4217 unsigned long *p;
4218 int l;
4219 if (!v)
4220 return 1;
4221 l = n[1];
4222 p = n + 2;
4223 while (l) {
4224 int i = l/2;
4225 unsigned long *q = p + 2 * i;
4226 if (*q == v) {
4227 q[1]++;
4228 return 1;
4229 }
4230 if (*q > v) {
4231 l = i;
4232 } else {
4233 p = q + 2;
4234 l -= i + 1;
4235 }
4236 }
4237 if (++n[1] == n[0])
4238 return 0;
4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240 p[0] = v;
4241 p[1] = 1;
4242 return 1;
4243}
4244
4245static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246 struct page *page)
4247{
4248 void *p;
4249 int i, j;
4250 unsigned long v;
4251
4252 if (n[0] == n[1])
4253 return;
4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255 bool active = true;
4256
4257 for (j = page->active; j < c->num; j++) {
4258 if (get_free_obj(page, j) == i) {
4259 active = false;
4260 break;
4261 }
4262 }
4263
4264 if (!active)
4265 continue;
4266
4267 /*
4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269 * mapping is established when actual object allocation and
4270 * we could mistakenly access the unmapped object in the cpu
4271 * cache.
4272 */
4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274 continue;
4275
4276 if (!add_caller(n, v))
4277 return;
4278 }
4279}
4280
4281static void show_symbol(struct seq_file *m, unsigned long address)
4282{
4283#ifdef CONFIG_KALLSYMS
4284 unsigned long offset, size;
4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289 if (modname[0])
4290 seq_printf(m, " [%s]", modname);
4291 return;
4292 }
4293#endif
4294 seq_printf(m, "%px", (void *)address);
4295}
4296
4297static int leaks_show(struct seq_file *m, void *p)
4298{
4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300 struct page *page;
4301 struct kmem_cache_node *n;
4302 const char *name;
4303 unsigned long *x = m->private;
4304 int node;
4305 int i;
4306
4307 if (!(cachep->flags & SLAB_STORE_USER))
4308 return 0;
4309 if (!(cachep->flags & SLAB_RED_ZONE))
4310 return 0;
4311
4312 /*
4313 * Set store_user_clean and start to grab stored user information
4314 * for all objects on this cache. If some alloc/free requests comes
4315 * during the processing, information would be wrong so restart
4316 * whole processing.
4317 */
4318 do {
4319 set_store_user_clean(cachep);
4320 drain_cpu_caches(cachep);
4321
4322 x[1] = 0;
4323
4324 for_each_kmem_cache_node(cachep, node, n) {
4325
4326 check_irq_on();
4327 spin_lock_irq(&n->list_lock);
4328
4329 list_for_each_entry(page, &n->slabs_full, lru)
4330 handle_slab(x, cachep, page);
4331 list_for_each_entry(page, &n->slabs_partial, lru)
4332 handle_slab(x, cachep, page);
4333 spin_unlock_irq(&n->list_lock);
4334 }
4335 } while (!is_store_user_clean(cachep));
4336
4337 name = cachep->name;
4338 if (x[0] == x[1]) {
4339 /* Increase the buffer size */
4340 mutex_unlock(&slab_mutex);
4341 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342 if (!m->private) {
4343 /* Too bad, we are really out */
4344 m->private = x;
4345 mutex_lock(&slab_mutex);
4346 return -ENOMEM;
4347 }
4348 *(unsigned long *)m->private = x[0] * 2;
4349 kfree(x);
4350 mutex_lock(&slab_mutex);
4351 /* Now make sure this entry will be retried */
4352 m->count = m->size;
4353 return 0;
4354 }
4355 for (i = 0; i < x[1]; i++) {
4356 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4357 show_symbol(m, x[2*i+2]);
4358 seq_putc(m, '\n');
4359 }
4360
4361 return 0;
4362}
4363
4364static const struct seq_operations slabstats_op = {
4365 .start = slab_start,
4366 .next = slab_next,
4367 .stop = slab_stop,
4368 .show = leaks_show,
4369};
4370
4371static int slabstats_open(struct inode *inode, struct file *file)
4372{
4373 unsigned long *n;
4374
4375 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4376 if (!n)
4377 return -ENOMEM;
4378
4379 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4380
4381 return 0;
4382}
4383
4384static const struct file_operations proc_slabstats_operations = {
4385 .open = slabstats_open,
4386 .read = seq_read,
4387 .llseek = seq_lseek,
4388 .release = seq_release_private,
4389};
4390#endif
4391
4392static int __init slab_proc_init(void)
4393{
4394#ifdef CONFIG_DEBUG_SLAB_LEAK
4395 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4396#endif
4397 return 0;
4398}
4399module_init(slab_proc_init);
4400
4401#ifdef CONFIG_HARDENED_USERCOPY
4402/*
4403 * Rejects incorrectly sized objects and objects that are to be copied
4404 * to/from userspace but do not fall entirely within the containing slab
4405 * cache's usercopy region.
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4411 bool to_user)
4412{
4413 struct kmem_cache *cachep;
4414 unsigned int objnr;
4415 unsigned long offset;
4416
4417 /* Find and validate object. */
4418 cachep = page->slab_cache;
4419 objnr = obj_to_index(cachep, page, (void *)ptr);
4420 BUG_ON(objnr >= cachep->num);
4421
4422 /* Find offset within object. */
4423 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424
4425 /* Allow address range falling entirely within usercopy region. */
4426 if (offset >= cachep->useroffset &&
4427 offset - cachep->useroffset <= cachep->usersize &&
4428 n <= cachep->useroffset - offset + cachep->usersize)
4429 return;
4430
4431 /*
4432 * If the copy is still within the allocated object, produce
4433 * a warning instead of rejecting the copy. This is intended
4434 * to be a temporary method to find any missing usercopy
4435 * whitelists.
4436 */
4437 if (usercopy_fallback &&
4438 offset <= cachep->object_size &&
4439 n <= cachep->object_size - offset) {
4440 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4441 return;
4442 }
4443
4444 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4445}
4446#endif /* CONFIG_HARDENED_USERCOPY */
4447
4448/**
4449 * ksize - get the actual amount of memory allocated for a given object
4450 * @objp: Pointer to the object
4451 *
4452 * kmalloc may internally round up allocations and return more memory
4453 * than requested. ksize() can be used to determine the actual amount of
4454 * memory allocated. The caller may use this additional memory, even though
4455 * a smaller amount of memory was initially specified with the kmalloc call.
4456 * The caller must guarantee that objp points to a valid object previously
4457 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4458 * must not be freed during the duration of the call.
4459 */
4460size_t ksize(const void *objp)
4461{
4462 size_t size;
4463
4464 BUG_ON(!objp);
4465 if (unlikely(objp == ZERO_SIZE_PTR))
4466 return 0;
4467
4468 size = virt_to_cache(objp)->object_size;
4469 /* We assume that ksize callers could use the whole allocated area,
4470 * so we need to unpoison this area.
4471 */
4472 kasan_unpoison_shadow(objp, size);
4473
4474 return size;
4475}
4476EXPORT_SYMBOL(ksize);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90#include <linux/__KEEPIDENTS__B.h>
91#include <linux/__KEEPIDENTS__C.h>
92#include <linux/__KEEPIDENTS__D.h>
93#include <linux/__KEEPIDENTS__E.h>
94#include <linux/__KEEPIDENTS__F.h>
95#include <linux/__KEEPIDENTS__G.h>
96#include <linux/__KEEPIDENTS__H.h>
97#include <linux/__KEEPIDENTS__I.h>
98#include <linux/__KEEPIDENTS__J.h>
99#include <linux/proc_fs.h>
100#include <linux/__KEEPIDENTS__BA.h>
101#include <linux/__KEEPIDENTS__BB.h>
102#include <linux/__KEEPIDENTS__BC.h>
103#include <linux/kfence.h>
104#include <linux/cpu.h>
105#include <linux/__KEEPIDENTS__BD.h>
106#include <linux/__KEEPIDENTS__BE.h>
107#include <linux/rcupdate.h>
108#include <linux/__KEEPIDENTS__BF.h>
109#include <linux/__KEEPIDENTS__BG.h>
110#include <linux/__KEEPIDENTS__BH.h>
111#include <linux/kmemleak.h>
112#include <linux/__KEEPIDENTS__BI.h>
113#include <linux/__KEEPIDENTS__BJ.h>
114#include <linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
115#include <linux/__KEEPIDENTS__CC.h>
116#include <linux/reciprocal_div.h>
117#include <linux/debugobjects.h>
118#include <linux/__KEEPIDENTS__CD.h>
119#include <linux/__KEEPIDENTS__CE.h>
120#include <linux/__KEEPIDENTS__CF/task_stack.h>
121
122#include <net/__KEEPIDENTS__CG.h>
123
124#include <asm/cacheflush.h>
125#include <asm/tlbflush.h>
126#include <asm/page.h>
127
128#include <trace/events/kmem.h>
129
130#include "internal.h"
131
132#include "slab.h"
133
134/*
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
140 *
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 */
143
144#ifdef CONFIG_DEBUG_SLAB
145#define DEBUG 1
146#define STATS 1
147#define FORCED_DEBUG 1
148#else
149#define DEBUG 0
150#define STATS 0
151#define FORCED_DEBUG 0
152#endif
153
154/* Shouldn't this be in a header file somewhere? */
155#define BYTES_PER_WORD sizeof(void *)
156#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157
158#ifndef ARCH_KMALLOC_FLAGS
159#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160#endif
161
162#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164
165#if FREELIST_BYTE_INDEX
166typedef unsigned char freelist_idx_t;
167#else
168typedef unsigned short freelist_idx_t;
169#endif
170
171#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172
173/*
174 * struct array_cache
175 *
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
180 *
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
183 *
184 */
185struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
194 */
195};
196
197struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
200};
201
202/*
203 * Need this for bootstrapping a per node allocator.
204 */
205#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207#define CACHE_CACHE 0
208#define SIZE_NODE (MAX_NUMNODES)
209
210static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216static void cache_reap(struct work_struct *unused);
217
218static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
223static int slab_early_init = 1;
224
225#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226
227static void kmem_cache_node_init(struct kmem_cache_node *parent)
228{
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
240}
241
242#define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
247
248#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
254
255#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
256#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
257#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259
260#define BATCHREFILL_LIMIT 16
261/*
262 * Optimization question: fewer reaps means less probability for unnecessary
263 * cpucache drain/refill cycles.
264 *
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
267 */
268#define REAPTIMEOUT_AC (2*HZ)
269#define REAPTIMEOUT_NODE (4*HZ)
270
271#if STATS
272#define STATS_INC_ACTIVE(x) ((x)->num_active++)
273#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275#define STATS_INC_GROWN(x) ((x)->grown++)
276#define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
277#define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282#define STATS_INC_ERR(x) ((x)->errors++)
283#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286#define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295#else
296#define STATS_INC_ACTIVE(x) do { } while (0)
297#define STATS_DEC_ACTIVE(x) do { } while (0)
298#define STATS_INC_ALLOCED(x) do { } while (0)
299#define STATS_INC_GROWN(x) do { } while (0)
300#define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
301#define STATS_SET_HIGH(x) do { } while (0)
302#define STATS_INC_ERR(x) do { } while (0)
303#define STATS_INC_NODEALLOCS(x) do { } while (0)
304#define STATS_INC_NODEFREES(x) do { } while (0)
305#define STATS_INC_ACOVERFLOW(x) do { } while (0)
306#define STATS_SET_FREEABLE(x, i) do { } while (0)
307#define STATS_INC_ALLOCHIT(x) do { } while (0)
308#define STATS_INC_ALLOCMISS(x) do { } while (0)
309#define STATS_INC_FREEHIT(x) do { } while (0)
310#define STATS_INC_FREEMISS(x) do { } while (0)
311#endif
312
313#if DEBUG
314
315/*
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
327 */
328static int obj_offset(struct kmem_cache *cachep)
329{
330 return cachep->obj_offset;
331}
332
333static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334{
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long *) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
338}
339
340static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341{
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
349}
350
351static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352{
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
355}
356
357#else
358
359#define obj_offset(x) 0
360#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363
364#endif
365
366/*
367 * Do not go above this order unless 0 objects fit into the slab or
368 * overridden on the command line.
369 */
370#define SLAB_MAX_ORDER_HI 1
371#define SLAB_MAX_ORDER_LO 0
372static int slab_max_order = SLAB_MAX_ORDER_LO;
373static bool slab_max_order_set __initdata;
374
375static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
376 unsigned int idx)
377{
378 return page->s_mem + cache->size * idx;
379}
380
381#define BOOT_CPUCACHE_ENTRIES 1
382/* internal cache of cache description objs */
383static struct kmem_cache kmem_cache_boot = {
384 .batchcount = 1,
385 .limit = BOOT_CPUCACHE_ENTRIES,
386 .shared = 1,
387 .size = sizeof(struct kmem_cache),
388 .name = "kmem_cache",
389};
390
391static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392
393static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394{
395 return this_cpu_ptr(cachep->cpu_cache);
396}
397
398/*
399 * Calculate the number of objects and left-over bytes for a given buffer size.
400 */
401static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
402 slab_flags_t flags, size_t *left_over)
403{
404 unsigned int num;
405 size_t slab_size = PAGE_SIZE << gfporder;
406
407 /*
408 * The slab management structure can be either off the slab or
409 * on it. For the latter case, the memory allocated for a
410 * slab is used for:
411 *
412 * - @buffer_size bytes for each object
413 * - One freelist_idx_t for each object
414 *
415 * We don't need to consider alignment of freelist because
416 * freelist will be at the end of slab page. The objects will be
417 * at the correct alignment.
418 *
419 * If the slab management structure is off the slab, then the
420 * alignment will already be calculated into the size. Because
421 * the slabs are all pages aligned, the objects will be at the
422 * correct alignment when allocated.
423 */
424 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
425 num = slab_size / buffer_size;
426 *left_over = slab_size % buffer_size;
427 } else {
428 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
429 *left_over = slab_size %
430 (buffer_size + sizeof(freelist_idx_t));
431 }
432
433 return num;
434}
435
436#if DEBUG
437#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438
439static void __slab_error(const char *function, struct kmem_cache *cachep,
440 char *msg)
441{
442 pr_err("slab error in %s(): cache `%s': %s\n",
443 function, cachep->name, msg);
444 dump_stack();
445 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446}
447#endif
448
449/*
450 * By default on NUMA we use alien caches to stage the freeing of
451 * objects allocated from other nodes. This causes massive memory
452 * inefficiencies when using fake NUMA setup to split memory into a
453 * large number of small nodes, so it can be disabled on the command
454 * line
455 */
456
457static int use_alien_caches __read_mostly = 1;
458static int __init noaliencache_setup(char *s)
459{
460 use_alien_caches = 0;
461 return 1;
462}
463__setup("noaliencache", noaliencache_setup);
464
465static int __init slab_max_order_setup(char *str)
466{
467 get_option(&str, &slab_max_order);
468 slab_max_order = slab_max_order < 0 ? 0 :
469 min(slab_max_order, MAX_ORDER - 1);
470 slab_max_order_set = true;
471
472 return 1;
473}
474__setup("slab_max_order=", slab_max_order_setup);
475
476#ifdef CONFIG_NUMA
477/*
478 * Special reaping functions for NUMA systems called from cache_reap().
479 * These take care of doing round robin flushing of alien caches (containing
480 * objects freed on different nodes from which they were allocated) and the
481 * flushing of remote pcps by calling drain_node_pages.
482 */
483static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484
485static void init_reap_node(int cpu)
486{
487 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
488 node_online_map);
489}
490
491static void next_reap_node(void)
492{
493 int node = __this_cpu_read(slab_reap_node);
494
495 node = next_node_in(node, node_online_map);
496 __this_cpu_write(slab_reap_node, node);
497}
498
499#else
500#define init_reap_node(cpu) do { } while (0)
501#define next_reap_node(void) do { } while (0)
502#endif
503
504/*
505 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
506 * via the workqueue/eventd.
507 * Add the CPU number into the expiration time to minimize the possibility of
508 * the CPUs getting into lockstep and contending for the global cache chain
509 * lock.
510 */
511static void start_cpu_timer(int cpu)
512{
513 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514
515 if (reap_work->work.func == NULL) {
516 init_reap_node(cpu);
517 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
518 schedule_delayed_work_on(cpu, reap_work,
519 __round_jiffies_relative(HZ, cpu));
520 }
521}
522
523static void init_arraycache(struct array_cache *ac, int limit, int batch)
524{
525 if (ac) {
526 ac->avail = 0;
527 ac->limit = limit;
528 ac->batchcount = batch;
529 ac->touched = 0;
530 }
531}
532
533static struct array_cache *alloc_arraycache(int node, int entries,
534 int batchcount, gfp_t gfp)
535{
536 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
537 struct array_cache *ac = NULL;
538
539 ac = kmalloc_node(memsize, gfp, node);
540 /*
541 * The array_cache structures contain pointers to free object.
542 * However, when such objects are allocated or transferred to another
543 * cache the pointers are not cleared and they could be counted as
544 * valid references during a kmemleak scan. Therefore, kmemleak must
545 * not scan such objects.
546 */
547 kmemleak_no_scan(ac);
548 init_arraycache(ac, entries, batchcount);
549 return ac;
550}
551
552static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
553 struct page *page, void *objp)
554{
555 struct kmem_cache_node *n;
556 int page_node;
557 LIST_HEAD(list);
558
559 page_node = page_to_nid(page);
560 n = get_node(cachep, page_node);
561
562 spin_lock(&n->list_lock);
563 free_block(cachep, &objp, 1, page_node, &list);
564 spin_unlock(&n->list_lock);
565
566 slabs_destroy(cachep, &list);
567}
568
569/*
570 * Transfer objects in one arraycache to another.
571 * Locking must be handled by the caller.
572 *
573 * Return the number of entries transferred.
574 */
575static int transfer_objects(struct array_cache *to,
576 struct array_cache *from, unsigned int max)
577{
578 /* Figure out how many entries to transfer */
579 int nr = min3(from->avail, max, to->limit - to->avail);
580
581 if (!nr)
582 return 0;
583
584 memcpy(to->entry + to->avail, from->entry + from->avail - nr,
585 sizeof(void *) *nr);
586
587 from->avail -= nr;
588 to->avail += nr;
589 return nr;
590}
591
592/* &alien->lock must be held by alien callers. */
593static __always_inline void __free_one(struct array_cache *ac, void *objp)
594{
595 /* Avoid trivial double-free. */
596 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
597 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
598 return;
599 ac->entry[ac->avail++] = objp;
600}
601
602#ifndef CONFIG_NUMA
603
604#define drain_alien_cache(cachep, alien) do { } while (0)
605#define reap_alien(cachep, n) do { } while (0)
606
607static inline struct alien_cache **alloc_alien_cache(int node,
608 int limit, gfp_t gfp)
609{
610 return NULL;
611}
612
613static inline void free_alien_cache(struct alien_cache **ac_ptr)
614{
615}
616
617static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618{
619 return 0;
620}
621
622static inline void *alternate_node_alloc(struct kmem_cache *cachep,
623 gfp_t flags)
624{
625 return NULL;
626}
627
628static inline void *____cache_alloc_node(struct kmem_cache *cachep,
629 gfp_t flags, int nodeid)
630{
631 return NULL;
632}
633
634static inline gfp_t gfp_exact_node(gfp_t flags)
635{
636 return flags & ~__GFP_NOFAIL;
637}
638
639#else /* CONFIG_NUMA */
640
641static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
642static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
643
644static struct alien_cache *__alloc_alien_cache(int node, int entries,
645 int batch, gfp_t gfp)
646{
647 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
648 struct alien_cache *alc = NULL;
649
650 alc = kmalloc_node(memsize, gfp, node);
651 if (alc) {
652 kmemleak_no_scan(alc);
653 init_arraycache(&alc->ac, entries, batch);
654 spin_lock_init(&alc->lock);
655 }
656 return alc;
657}
658
659static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
660{
661 struct alien_cache **alc_ptr;
662 int i;
663
664 if (limit > 1)
665 limit = 12;
666 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
667 if (!alc_ptr)
668 return NULL;
669
670 for_each_node(i) {
671 if (i == node || !node_online(i))
672 continue;
673 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
674 if (!alc_ptr[i]) {
675 for (i--; i >= 0; i--)
676 kfree(alc_ptr[i]);
677 kfree(alc_ptr);
678 return NULL;
679 }
680 }
681 return alc_ptr;
682}
683
684static void free_alien_cache(struct alien_cache **alc_ptr)
685{
686 int i;
687
688 if (!alc_ptr)
689 return;
690 for_each_node(i)
691 kfree(alc_ptr[i]);
692 kfree(alc_ptr);
693}
694
695static void __drain_alien_cache(struct kmem_cache *cachep,
696 struct array_cache *ac, int node,
697 struct list_head *list)
698{
699 struct kmem_cache_node *n = get_node(cachep, node);
700
701 if (ac->avail) {
702 spin_lock(&n->list_lock);
703 /*
704 * Stuff objects into the remote nodes shared array first.
705 * That way we could avoid the overhead of putting the objects
706 * into the free lists and getting them back later.
707 */
708 if (n->shared)
709 transfer_objects(n->shared, ac, ac->limit);
710
711 free_block(cachep, ac->entry, ac->avail, node, list);
712 ac->avail = 0;
713 spin_unlock(&n->list_lock);
714 }
715}
716
717/*
718 * Called from cache_reap() to regularly drain alien caches round robin.
719 */
720static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
721{
722 int node = __this_cpu_read(slab_reap_node);
723
724 if (n->alien) {
725 struct alien_cache *alc = n->alien[node];
726 struct array_cache *ac;
727
728 if (alc) {
729 ac = &alc->ac;
730 if (ac->avail && spin_trylock_irq(&alc->lock)) {
731 LIST_HEAD(list);
732
733 __drain_alien_cache(cachep, ac, node, &list);
734 spin_unlock_irq(&alc->lock);
735 slabs_destroy(cachep, &list);
736 }
737 }
738 }
739}
740
741static void drain_alien_cache(struct kmem_cache *cachep,
742 struct alien_cache **alien)
743{
744 int i = 0;
745 struct alien_cache *alc;
746 struct array_cache *ac;
747 unsigned long flags;
748
749 for_each_online_node(i) {
750 alc = alien[i];
751 if (alc) {
752 LIST_HEAD(list);
753
754 ac = &alc->ac;
755 spin_lock_irqsave(&alc->lock, flags);
756 __drain_alien_cache(cachep, ac, i, &list);
757 spin_unlock_irqrestore(&alc->lock, flags);
758 slabs_destroy(cachep, &list);
759 }
760 }
761}
762
763static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
764 int node, int page_node)
765{
766 struct kmem_cache_node *n;
767 struct alien_cache *alien = NULL;
768 struct array_cache *ac;
769 LIST_HEAD(list);
770
771 n = get_node(cachep, node);
772 STATS_INC_NODEFREES(cachep);
773 if (n->alien && n->alien[page_node]) {
774 alien = n->alien[page_node];
775 ac = &alien->ac;
776 spin_lock(&alien->lock);
777 if (unlikely(ac->avail == ac->limit)) {
778 STATS_INC_ACOVERFLOW(cachep);
779 __drain_alien_cache(cachep, ac, page_node, &list);
780 }
781 __free_one(ac, objp);
782 spin_unlock(&alien->lock);
783 slabs_destroy(cachep, &list);
784 } else {
785 n = get_node(cachep, page_node);
786 spin_lock(&n->list_lock);
787 free_block(cachep, &objp, 1, page_node, &list);
788 spin_unlock(&n->list_lock);
789 slabs_destroy(cachep, &list);
790 }
791 return 1;
792}
793
794static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
795{
796 int page_node = page_to_nid(virt_to_page(objp));
797 int node = numa_mem_id();
798 /*
799 * Make sure we are not freeing a object from another node to the array
800 * cache on this cpu.
801 */
802 if (likely(node == page_node))
803 return 0;
804
805 return __cache_free_alien(cachep, objp, node, page_node);
806}
807
808/*
809 * Construct gfp mask to allocate from a specific node but do not reclaim or
810 * warn about failures.
811 */
812static inline gfp_t gfp_exact_node(gfp_t flags)
813{
814 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
815}
816#endif
817
818static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
819{
820 struct kmem_cache_node *n;
821
822 /*
823 * Set up the kmem_cache_node for cpu before we can
824 * begin anything. Make sure some other cpu on this
825 * node has not already allocated this
826 */
827 n = get_node(cachep, node);
828 if (n) {
829 spin_lock_irq(&n->list_lock);
830 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
831 cachep->num;
832 spin_unlock_irq(&n->list_lock);
833
834 return 0;
835 }
836
837 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
838 if (!n)
839 return -ENOMEM;
840
841 kmem_cache_node_init(n);
842 n->next_reap = jiffies + REAPTIMEOUT_NODE +
843 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
844
845 n->free_limit =
846 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
847
848 /*
849 * The kmem_cache_nodes don't come and go as CPUs
850 * come and go. slab_mutex is sufficient
851 * protection here.
852 */
853 cachep->node[node] = n;
854
855 return 0;
856}
857
858#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
859/*
860 * Allocates and initializes node for a node on each slab cache, used for
861 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
862 * will be allocated off-node since memory is not yet online for the new node.
863 * When hotplugging memory or a cpu, existing node are not replaced if
864 * already in use.
865 *
866 * Must hold slab_mutex.
867 */
868static int init_cache_node_node(int node)
869{
870 int ret;
871 struct kmem_cache *cachep;
872
873 list_for_each_entry(cachep, &slab_caches, list) {
874 ret = init_cache_node(cachep, node, GFP_KERNEL);
875 if (ret)
876 return ret;
877 }
878
879 return 0;
880}
881#endif
882
883static int setup_kmem_cache_node(struct kmem_cache *cachep,
884 int node, gfp_t gfp, bool force_change)
885{
886 int ret = -ENOMEM;
887 struct kmem_cache_node *n;
888 struct array_cache *old_shared = NULL;
889 struct array_cache *new_shared = NULL;
890 struct alien_cache **new_alien = NULL;
891 LIST_HEAD(list);
892
893 if (use_alien_caches) {
894 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
895 if (!new_alien)
896 goto fail;
897 }
898
899 if (cachep->shared) {
900 new_shared = alloc_arraycache(node,
901 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
902 if (!new_shared)
903 goto fail;
904 }
905
906 ret = init_cache_node(cachep, node, gfp);
907 if (ret)
908 goto fail;
909
910 n = get_node(cachep, node);
911 spin_lock_irq(&n->list_lock);
912 if (n->shared && force_change) {
913 free_block(cachep, n->shared->entry,
914 n->shared->avail, node, &list);
915 n->shared->avail = 0;
916 }
917
918 if (!n->shared || force_change) {
919 old_shared = n->shared;
920 n->shared = new_shared;
921 new_shared = NULL;
922 }
923
924 if (!n->alien) {
925 n->alien = new_alien;
926 new_alien = NULL;
927 }
928
929 spin_unlock_irq(&n->list_lock);
930 slabs_destroy(cachep, &list);
931
932 /*
933 * To protect lockless access to n->shared during irq disabled context.
934 * If n->shared isn't NULL in irq disabled context, accessing to it is
935 * guaranteed to be valid until irq is re-enabled, because it will be
936 * freed after synchronize_rcu().
937 */
938 if (old_shared && force_change)
939 synchronize_rcu();
940
941fail:
942 kfree(old_shared);
943 kfree(new_shared);
944 free_alien_cache(new_alien);
945
946 return ret;
947}
948
949#ifdef CONFIG_SMP
950
951static void cpuup_canceled(long cpu)
952{
953 struct kmem_cache *cachep;
954 struct kmem_cache_node *n = NULL;
955 int node = cpu_to_mem(cpu);
956 const struct cpumask *mask = cpumask_of_node(node);
957
958 list_for_each_entry(cachep, &slab_caches, list) {
959 struct array_cache *nc;
960 struct array_cache *shared;
961 struct alien_cache **alien;
962 LIST_HEAD(list);
963
964 n = get_node(cachep, node);
965 if (!n)
966 continue;
967
968 spin_lock_irq(&n->list_lock);
969
970 /* Free limit for this kmem_cache_node */
971 n->free_limit -= cachep->batchcount;
972
973 /* cpu is dead; no one can alloc from it. */
974 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
975 free_block(cachep, nc->entry, nc->avail, node, &list);
976 nc->avail = 0;
977
978 if (!cpumask_empty(mask)) {
979 spin_unlock_irq(&n->list_lock);
980 goto free_slab;
981 }
982
983 shared = n->shared;
984 if (shared) {
985 free_block(cachep, shared->entry,
986 shared->avail, node, &list);
987 n->shared = NULL;
988 }
989
990 alien = n->alien;
991 n->alien = NULL;
992
993 spin_unlock_irq(&n->list_lock);
994
995 kfree(shared);
996 if (alien) {
997 drain_alien_cache(cachep, alien);
998 free_alien_cache(alien);
999 }
1000
1001free_slab:
1002 slabs_destroy(cachep, &list);
1003 }
1004 /*
1005 * In the previous loop, all the objects were freed to
1006 * the respective cache's slabs, now we can go ahead and
1007 * shrink each nodelist to its limit.
1008 */
1009 list_for_each_entry(cachep, &slab_caches, list) {
1010 n = get_node(cachep, node);
1011 if (!n)
1012 continue;
1013 drain_freelist(cachep, n, INT_MAX);
1014 }
1015}
1016
1017static int cpuup_prepare(long cpu)
1018{
1019 struct kmem_cache *cachep;
1020 int node = cpu_to_mem(cpu);
1021 int err;
1022
1023 /*
1024 * We need to do this right in the beginning since
1025 * alloc_arraycache's are going to use this list.
1026 * kmalloc_node allows us to add the slab to the right
1027 * kmem_cache_node and not this cpu's kmem_cache_node
1028 */
1029 err = init_cache_node_node(node);
1030 if (err < 0)
1031 goto bad;
1032
1033 /*
1034 * Now we can go ahead with allocating the shared arrays and
1035 * array caches
1036 */
1037 list_for_each_entry(cachep, &slab_caches, list) {
1038 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1039 if (err)
1040 goto bad;
1041 }
1042
1043 return 0;
1044bad:
1045 cpuup_canceled(cpu);
1046 return -ENOMEM;
1047}
1048
1049int slab_prepare_cpu(unsigned int cpu)
1050{
1051 int err;
1052
1053 mutex_lock(&slab_mutex);
1054 err = cpuup_prepare(cpu);
1055 mutex_unlock(&slab_mutex);
1056 return err;
1057}
1058
1059/*
1060 * This is called for a failed online attempt and for a successful
1061 * offline.
1062 *
1063 * Even if all the cpus of a node are down, we don't free the
1064 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1065 * a kmalloc allocation from another cpu for memory from the node of
1066 * the cpu going down. The kmem_cache_node structure is usually allocated from
1067 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 */
1069int slab_dead_cpu(unsigned int cpu)
1070{
1071 mutex_lock(&slab_mutex);
1072 cpuup_canceled(cpu);
1073 mutex_unlock(&slab_mutex);
1074 return 0;
1075}
1076#endif
1077
1078static int slab_online_cpu(unsigned int cpu)
1079{
1080 start_cpu_timer(cpu);
1081 return 0;
1082}
1083
1084static int slab_offline_cpu(unsigned int cpu)
1085{
1086 /*
1087 * Shutdown cache reaper. Note that the slab_mutex is held so
1088 * that if cache_reap() is invoked it cannot do anything
1089 * expensive but will only modify reap_work and reschedule the
1090 * timer.
1091 */
1092 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1093 /* Now the cache_reaper is guaranteed to be not running. */
1094 per_cpu(slab_reap_work, cpu).work.func = NULL;
1095 return 0;
1096}
1097
1098#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1099/*
1100 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1101 * Returns -EBUSY if all objects cannot be drained so that the node is not
1102 * removed.
1103 *
1104 * Must hold slab_mutex.
1105 */
1106static int __meminit drain_cache_node_node(int node)
1107{
1108 struct kmem_cache *cachep;
1109 int ret = 0;
1110
1111 list_for_each_entry(cachep, &slab_caches, list) {
1112 struct kmem_cache_node *n;
1113
1114 n = get_node(cachep, node);
1115 if (!n)
1116 continue;
1117
1118 drain_freelist(cachep, n, INT_MAX);
1119
1120 if (!list_empty(&n->slabs_full) ||
1121 !list_empty(&n->slabs_partial)) {
1122 ret = -EBUSY;
1123 break;
1124 }
1125 }
1126 return ret;
1127}
1128
1129static int __meminit slab_memory_callback(struct notifier_block *self,
1130 unsigned long action, void *arg)
1131{
1132 struct memory_notify *mnb = arg;
1133 int ret = 0;
1134 int nid;
1135
1136 nid = mnb->status_change_nid;
1137 if (nid < 0)
1138 goto out;
1139
1140 switch (action) {
1141 case MEM_GOING_ONLINE:
1142 mutex_lock(&slab_mutex);
1143 ret = init_cache_node_node(nid);
1144 mutex_unlock(&slab_mutex);
1145 break;
1146 case MEM_GOING_OFFLINE:
1147 mutex_lock(&slab_mutex);
1148 ret = drain_cache_node_node(nid);
1149 mutex_unlock(&slab_mutex);
1150 break;
1151 case MEM_ONLINE:
1152 case MEM_OFFLINE:
1153 case MEM_CANCEL_ONLINE:
1154 case MEM_CANCEL_OFFLINE:
1155 break;
1156 }
1157out:
1158 return notifier_from_errno(ret);
1159}
1160#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1161
1162/*
1163 * swap the static kmem_cache_node with kmalloced memory
1164 */
1165static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1166 int nodeid)
1167{
1168 struct kmem_cache_node *ptr;
1169
1170 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1171 BUG_ON(!ptr);
1172
1173 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174 /*
1175 * Do not assume that spinlocks can be initialized via memcpy:
1176 */
1177 spin_lock_init(&ptr->list_lock);
1178
1179 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1180 cachep->node[nodeid] = ptr;
1181}
1182
1183/*
1184 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1185 * size of kmem_cache_node.
1186 */
1187static void __init set_up_node(struct kmem_cache *cachep, int index)
1188{
1189 int node;
1190
1191 for_each_online_node(node) {
1192 cachep->node[node] = &init_kmem_cache_node[index + node];
1193 cachep->node[node]->next_reap = jiffies +
1194 REAPTIMEOUT_NODE +
1195 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1196 }
1197}
1198
1199/*
1200 * Initialisation. Called after the page allocator have been initialised and
1201 * before smp_init().
1202 */
1203void __init kmem_cache_init(void)
1204{
1205 int i;
1206
1207 kmem_cache = &kmem_cache_boot;
1208
1209 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1210 use_alien_caches = 0;
1211
1212 for (i = 0; i < NUM_INIT_LISTS; i++)
1213 kmem_cache_node_init(&init_kmem_cache_node[i]);
1214
1215 /*
1216 * Fragmentation resistance on low memory - only use bigger
1217 * page orders on machines with more than 32MB of memory if
1218 * not overridden on the command line.
1219 */
1220 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1221 slab_max_order = SLAB_MAX_ORDER_HI;
1222
1223 /* Bootstrap is tricky, because several objects are allocated
1224 * from caches that do not exist yet:
1225 * 1) initialize the kmem_cache cache: it contains the struct
1226 * kmem_cache structures of all caches, except kmem_cache itself:
1227 * kmem_cache is statically allocated.
1228 * Initially an __init data area is used for the head array and the
1229 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1230 * array at the end of the bootstrap.
1231 * 2) Create the first kmalloc cache.
1232 * The struct kmem_cache for the new cache is allocated normally.
1233 * An __init data area is used for the head array.
1234 * 3) Create the remaining kmalloc caches, with minimally sized
1235 * head arrays.
1236 * 4) Replace the __init data head arrays for kmem_cache and the first
1237 * kmalloc cache with kmalloc allocated arrays.
1238 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1239 * the other cache's with kmalloc allocated memory.
1240 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1241 */
1242
1243 /* 1) create the kmem_cache */
1244
1245 /*
1246 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247 */
1248 create_boot_cache(kmem_cache, "kmem_cache",
1249 offsetof(struct kmem_cache, node) +
1250 nr_node_ids * sizeof(struct kmem_cache_node *),
1251 SLAB_HWCACHE_ALIGN, 0, 0);
1252 list_add(&kmem_cache->list, &slab_caches);
1253 slab_state = PARTIAL;
1254
1255 /*
1256 * Initialize the caches that provide memory for the kmem_cache_node
1257 * structures first. Without this, further allocations will bug.
1258 */
1259 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1260 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1261 kmalloc_info[INDEX_NODE].size,
1262 ARCH_KMALLOC_FLAGS, 0,
1263 kmalloc_info[INDEX_NODE].size);
1264 slab_state = PARTIAL_NODE;
1265 setup_kmalloc_cache_index_table();
1266
1267 slab_early_init = 0;
1268
1269 /* 5) Replace the bootstrap kmem_cache_node */
1270 {
1271 int nid;
1272
1273 for_each_online_node(nid) {
1274 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275
1276 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1277 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1278 }
1279 }
1280
1281 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1282}
1283
1284void __init kmem_cache_init_late(void)
1285{
1286 struct kmem_cache *cachep;
1287
1288 /* 6) resize the head arrays to their final sizes */
1289 mutex_lock(&slab_mutex);
1290 list_for_each_entry(cachep, &slab_caches, list)
1291 if (enable_cpucache(cachep, GFP_NOWAIT))
1292 BUG();
1293 mutex_unlock(&slab_mutex);
1294
1295 /* Done! */
1296 slab_state = FULL;
1297
1298#ifdef CONFIG_NUMA
1299 /*
1300 * Register a memory hotplug callback that initializes and frees
1301 * node.
1302 */
1303 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1304#endif
1305
1306 /*
1307 * The reap timers are started later, with a module init call: That part
1308 * of the kernel is not yet operational.
1309 */
1310}
1311
1312static int __init cpucache_init(void)
1313{
1314 int ret;
1315
1316 /*
1317 * Register the timers that return unneeded pages to the page allocator
1318 */
1319 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1320 slab_online_cpu, slab_offline_cpu);
1321 WARN_ON(ret < 0);
1322
1323 return 0;
1324}
1325__initcall(cpucache_init);
1326
1327static noinline void
1328slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329{
1330#if DEBUG
1331 struct kmem_cache_node *n;
1332 unsigned long flags;
1333 int node;
1334 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1335 DEFAULT_RATELIMIT_BURST);
1336
1337 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1338 return;
1339
1340 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1341 nodeid, gfpflags, &gfpflags);
1342 pr_warn(" cache: %s, object size: %d, order: %d\n",
1343 cachep->name, cachep->size, cachep->gfporder);
1344
1345 for_each_kmem_cache_node(cachep, node, n) {
1346 unsigned long total_slabs, free_slabs, free_objs;
1347
1348 spin_lock_irqsave(&n->list_lock, flags);
1349 total_slabs = n->total_slabs;
1350 free_slabs = n->free_slabs;
1351 free_objs = n->free_objects;
1352 spin_unlock_irqrestore(&n->list_lock, flags);
1353
1354 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1355 node, total_slabs - free_slabs, total_slabs,
1356 (total_slabs * cachep->num) - free_objs,
1357 total_slabs * cachep->num);
1358 }
1359#endif
1360}
1361
1362/*
1363 * Interface to system's page allocator. No need to hold the
1364 * kmem_cache_node ->list_lock.
1365 *
1366 * If we requested dmaable memory, we will get it. Even if we
1367 * did not request dmaable memory, we might get it, but that
1368 * would be relatively rare and ignorable.
1369 */
1370static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1371 int nodeid)
1372{
1373 struct page *page;
1374
1375 flags |= cachep->allocflags;
1376
1377 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1378 if (!page) {
1379 slab_out_of_memory(cachep, flags, nodeid);
1380 return NULL;
1381 }
1382
1383 account_slab_page(page, cachep->gfporder, cachep, flags);
1384 __SetPageSlab(page);
1385 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1386 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1387 SetPageSlabPfmemalloc(page);
1388
1389 return page;
1390}
1391
1392/*
1393 * Interface to system's page release.
1394 */
1395static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396{
1397 int order = cachep->gfporder;
1398
1399 BUG_ON(!PageSlab(page));
1400 __ClearPageSlabPfmemalloc(page);
1401 __ClearPageSlab(page);
1402 page_mapcount_reset(page);
1403 /* In union with page->mapping where page allocator expects NULL */
1404 page->slab_cache = NULL;
1405
1406 if (current->reclaim_state)
1407 current->reclaim_state->reclaimed_slab += 1 << order;
1408 unaccount_slab_page(page, order, cachep);
1409 __free_pages(page, order);
1410}
1411
1412static void kmem_rcu_free(struct rcu_head *head)
1413{
1414 struct kmem_cache *cachep;
1415 struct page *page;
1416
1417 page = container_of(head, struct page, rcu_head);
1418 cachep = page->slab_cache;
1419
1420 kmem_freepages(cachep, page);
1421}
1422
1423#if DEBUG
1424static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425{
1426 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1427 (cachep->size % PAGE_SIZE) == 0)
1428 return true;
1429
1430 return false;
1431}
1432
1433#ifdef CONFIG_DEBUG_PAGEALLOC
1434static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1435{
1436 if (!is_debug_pagealloc_cache(cachep))
1437 return;
1438
1439 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1440}
1441
1442#else
1443static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1444 int map) {}
1445
1446#endif
1447
1448static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449{
1450 int size = cachep->object_size;
1451 addr = &((char *)addr)[obj_offset(cachep)];
1452
1453 memset(addr, val, size);
1454 *(unsigned char *)(addr + size - 1) = POISON_END;
1455}
1456
1457static void dump_line(char *data, int offset, int limit)
1458{
1459 int i;
1460 unsigned char error = 0;
1461 int bad_count = 0;
1462
1463 pr_err("%03x: ", offset);
1464 for (i = 0; i < limit; i++) {
1465 if (data[offset + i] != POISON_FREE) {
1466 error = data[offset + i];
1467 bad_count++;
1468 }
1469 }
1470 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1471 &data[offset], limit, 1);
1472
1473 if (bad_count == 1) {
1474 error ^= POISON_FREE;
1475 if (!(error & (error - 1))) {
1476 pr_err("Single bit error detected. Probably bad RAM.\n");
1477#ifdef CONFIG_X86
1478 pr_err("Run memtest86+ or a similar memory test tool.\n");
1479#else
1480 pr_err("Run a memory test tool.\n");
1481#endif
1482 }
1483 }
1484}
1485#endif
1486
1487#if DEBUG
1488
1489static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490{
1491 int i, size;
1492 char *realobj;
1493
1494 if (cachep->flags & SLAB_RED_ZONE) {
1495 pr_err("Redzone: 0x%llx/0x%llx\n",
1496 *dbg_redzone1(cachep, objp),
1497 *dbg_redzone2(cachep, objp));
1498 }
1499
1500 if (cachep->flags & SLAB_STORE_USER)
1501 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1502 realobj = (char *)objp + obj_offset(cachep);
1503 size = cachep->object_size;
1504 for (i = 0; i < size && lines; i += 16, lines--) {
1505 int limit;
1506 limit = 16;
1507 if (i + limit > size)
1508 limit = size - i;
1509 dump_line(realobj, i, limit);
1510 }
1511}
1512
1513static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514{
1515 char *realobj;
1516 int size, i;
1517 int lines = 0;
1518
1519 if (is_debug_pagealloc_cache(cachep))
1520 return;
1521
1522 realobj = (char *)objp + obj_offset(cachep);
1523 size = cachep->object_size;
1524
1525 for (i = 0; i < size; i++) {
1526 char exp = POISON_FREE;
1527 if (i == size - 1)
1528 exp = POISON_END;
1529 if (realobj[i] != exp) {
1530 int limit;
1531 /* Mismatch ! */
1532 /* Print header */
1533 if (lines == 0) {
1534 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1535 print_tainted(), cachep->name,
1536 realobj, size);
1537 print_objinfo(cachep, objp, 0);
1538 }
1539 /* Hexdump the affected line */
1540 i = (i / 16) * 16;
1541 limit = 16;
1542 if (i + limit > size)
1543 limit = size - i;
1544 dump_line(realobj, i, limit);
1545 i += 16;
1546 lines++;
1547 /* Limit to 5 lines */
1548 if (lines > 5)
1549 break;
1550 }
1551 }
1552 if (lines != 0) {
1553 /* Print some data about the neighboring objects, if they
1554 * exist:
1555 */
1556 struct page *page = virt_to_head_page(objp);
1557 unsigned int objnr;
1558
1559 objnr = obj_to_index(cachep, page, objp);
1560 if (objnr) {
1561 objp = index_to_obj(cachep, page, objnr - 1);
1562 realobj = (char *)objp + obj_offset(cachep);
1563 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1564 print_objinfo(cachep, objp, 2);
1565 }
1566 if (objnr + 1 < cachep->num) {
1567 objp = index_to_obj(cachep, page, objnr + 1);
1568 realobj = (char *)objp + obj_offset(cachep);
1569 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1570 print_objinfo(cachep, objp, 2);
1571 }
1572 }
1573}
1574#endif
1575
1576#if DEBUG
1577static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1578 struct page *page)
1579{
1580 int i;
1581
1582 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1583 poison_obj(cachep, page->freelist - obj_offset(cachep),
1584 POISON_FREE);
1585 }
1586
1587 for (i = 0; i < cachep->num; i++) {
1588 void *objp = index_to_obj(cachep, page, i);
1589
1590 if (cachep->flags & SLAB_POISON) {
1591 check_poison_obj(cachep, objp);
1592 slab_kernel_map(cachep, objp, 1);
1593 }
1594 if (cachep->flags & SLAB_RED_ZONE) {
1595 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1596 slab_error(cachep, "start of a freed object was overwritten");
1597 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1598 slab_error(cachep, "end of a freed object was overwritten");
1599 }
1600 }
1601}
1602#else
1603static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1604 struct page *page)
1605{
1606}
1607#endif
1608
1609/**
1610 * slab_destroy - destroy and release all objects in a slab
1611 * @cachep: cache pointer being destroyed
1612 * @page: page pointer being destroyed
1613 *
1614 * Destroy all the objs in a slab page, and release the mem back to the system.
1615 * Before calling the slab page must have been unlinked from the cache. The
1616 * kmem_cache_node ->list_lock is not held/needed.
1617 */
1618static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619{
1620 void *freelist;
1621
1622 freelist = page->freelist;
1623 slab_destroy_debugcheck(cachep, page);
1624 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1625 call_rcu(&page->rcu_head, kmem_rcu_free);
1626 else
1627 kmem_freepages(cachep, page);
1628
1629 /*
1630 * From now on, we don't use freelist
1631 * although actual page can be freed in rcu context
1632 */
1633 if (OFF_SLAB(cachep))
1634 kmem_cache_free(cachep->freelist_cache, freelist);
1635}
1636
1637/*
1638 * Update the size of the caches before calling slabs_destroy as it may
1639 * recursively call kfree.
1640 */
1641static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642{
1643 struct page *page, *n;
1644
1645 list_for_each_entry_safe(page, n, list, slab_list) {
1646 list_del(&page->slab_list);
1647 slab_destroy(cachep, page);
1648 }
1649}
1650
1651/**
1652 * calculate_slab_order - calculate size (page order) of slabs
1653 * @cachep: pointer to the cache that is being created
1654 * @size: size of objects to be created in this cache.
1655 * @flags: slab allocation flags
1656 *
1657 * Also calculates the number of objects per slab.
1658 *
1659 * This could be made much more intelligent. For now, try to avoid using
1660 * high order pages for slabs. When the gfp() functions are more friendly
1661 * towards high-order requests, this should be changed.
1662 *
1663 * Return: number of left-over bytes in a slab
1664 */
1665static size_t calculate_slab_order(struct kmem_cache *cachep,
1666 size_t size, slab_flags_t flags)
1667{
1668 size_t left_over = 0;
1669 int gfporder;
1670
1671 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1672 unsigned int num;
1673 size_t remainder;
1674
1675 num = cache_estimate(gfporder, size, flags, &remainder);
1676 if (!num)
1677 continue;
1678
1679 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1680 if (num > SLAB_OBJ_MAX_NUM)
1681 break;
1682
1683 if (flags & CFLGS_OFF_SLAB) {
1684 struct kmem_cache *freelist_cache;
1685 size_t freelist_size;
1686
1687 freelist_size = num * sizeof(freelist_idx_t);
1688 freelist_cache = kmalloc_slab(freelist_size, 0u);
1689 if (!freelist_cache)
1690 continue;
1691
1692 /*
1693 * Needed to avoid possible looping condition
1694 * in cache_grow_begin()
1695 */
1696 if (OFF_SLAB(freelist_cache))
1697 continue;
1698
1699 /* check if off slab has enough benefit */
1700 if (freelist_cache->size > cachep->size / 2)
1701 continue;
1702 }
1703
1704 /* Found something acceptable - save it away */
1705 cachep->num = num;
1706 cachep->gfporder = gfporder;
1707 left_over = remainder;
1708
1709 /*
1710 * A VFS-reclaimable slab tends to have most allocations
1711 * as GFP_NOFS and we really don't want to have to be allocating
1712 * higher-order pages when we are unable to shrink dcache.
1713 */
1714 if (flags & SLAB_RECLAIM_ACCOUNT)
1715 break;
1716
1717 /*
1718 * Large number of objects is good, but very large slabs are
1719 * currently bad for the gfp()s.
1720 */
1721 if (gfporder >= slab_max_order)
1722 break;
1723
1724 /*
1725 * Acceptable internal fragmentation?
1726 */
1727 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1728 break;
1729 }
1730 return left_over;
1731}
1732
1733static struct array_cache __percpu *alloc_kmem_cache_cpus(
1734 struct kmem_cache *cachep, int entries, int batchcount)
1735{
1736 int cpu;
1737 size_t size;
1738 struct array_cache __percpu *cpu_cache;
1739
1740 size = sizeof(void *) * entries + sizeof(struct array_cache);
1741 cpu_cache = __alloc_percpu(size, sizeof(void *));
1742
1743 if (!cpu_cache)
1744 return NULL;
1745
1746 for_each_possible_cpu(cpu) {
1747 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1748 entries, batchcount);
1749 }
1750
1751 return cpu_cache;
1752}
1753
1754static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755{
1756 if (slab_state >= FULL)
1757 return enable_cpucache(cachep, gfp);
1758
1759 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1760 if (!cachep->cpu_cache)
1761 return 1;
1762
1763 if (slab_state == DOWN) {
1764 /* Creation of first cache (kmem_cache). */
1765 set_up_node(kmem_cache, CACHE_CACHE);
1766 } else if (slab_state == PARTIAL) {
1767 /* For kmem_cache_node */
1768 set_up_node(cachep, SIZE_NODE);
1769 } else {
1770 int node;
1771
1772 for_each_online_node(node) {
1773 cachep->node[node] = kmalloc_node(
1774 sizeof(struct kmem_cache_node), gfp, node);
1775 BUG_ON(!cachep->node[node]);
1776 kmem_cache_node_init(cachep->node[node]);
1777 }
1778 }
1779
1780 cachep->node[numa_mem_id()]->next_reap =
1781 jiffies + REAPTIMEOUT_NODE +
1782 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783
1784 cpu_cache_get(cachep)->avail = 0;
1785 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1786 cpu_cache_get(cachep)->batchcount = 1;
1787 cpu_cache_get(cachep)->touched = 0;
1788 cachep->batchcount = 1;
1789 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1790 return 0;
1791}
1792
1793slab_flags_t kmem_cache_flags(unsigned int object_size,
1794 slab_flags_t flags, const char *name)
1795{
1796 return flags;
1797}
1798
1799struct kmem_cache *
1800__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801 slab_flags_t flags, void (*ctor)(void *))
1802{
1803 struct kmem_cache *cachep;
1804
1805 cachep = find_mergeable(size, align, flags, name, ctor);
1806 if (cachep) {
1807 cachep->refcount++;
1808
1809 /*
1810 * Adjust the object sizes so that we clear
1811 * the complete object on kzalloc.
1812 */
1813 cachep->object_size = max_t(int, cachep->object_size, size);
1814 }
1815 return cachep;
1816}
1817
1818static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819 size_t size, slab_flags_t flags)
1820{
1821 size_t left;
1822
1823 cachep->num = 0;
1824
1825 /*
1826 * If slab auto-initialization on free is enabled, store the freelist
1827 * off-slab, so that its contents don't end up in one of the allocated
1828 * objects.
1829 */
1830 if (unlikely(slab_want_init_on_free(cachep)))
1831 return false;
1832
1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 return false;
1835
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1840
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1843
1844 cachep->colour = left / cachep->colour_off;
1845
1846 return true;
1847}
1848
1849static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 size_t size, slab_flags_t flags)
1851{
1852 size_t left;
1853
1854 cachep->num = 0;
1855
1856 /*
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
1859 */
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1862
1863 /*
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1866 */
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1870
1871 /*
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1874 */
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1877
1878 cachep->colour = left / cachep->colour_off;
1879
1880 return true;
1881}
1882
1883static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 size_t size, slab_flags_t flags)
1885{
1886 size_t left;
1887
1888 cachep->num = 0;
1889
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1893
1894 cachep->colour = left / cachep->colour_off;
1895
1896 return true;
1897}
1898
1899/**
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1903 *
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1907 *
1908 * The flags are
1909 *
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1912 *
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1915 *
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
1919 *
1920 * Return: a pointer to the created cache or %NULL in case of error
1921 */
1922int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1923{
1924 size_t ralign = BYTES_PER_WORD;
1925 gfp_t gfp;
1926 int err;
1927 unsigned int size = cachep->size;
1928
1929#if DEBUG
1930#if FORCED_DEBUG
1931 /*
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1936 */
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 flags |= SLAB_POISON;
1942#endif
1943#endif
1944
1945 /*
1946 * Check that size is in terms of words. This is needed to avoid
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1949 */
1950 size = ALIGN(size, BYTES_PER_WORD);
1951
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
1956 size = ALIGN(size, REDZONE_ALIGN);
1957 }
1958
1959 /* 3) caller mandated alignment */
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1962 }
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1966 /*
1967 * 4) Store it.
1968 */
1969 cachep->align = ralign;
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1974
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1979
1980#if DEBUG
1981
1982 /*
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1985 */
1986 if (flags & SLAB_RED_ZONE) {
1987 /* add space for red zone words */
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1990 }
1991 if (flags & SLAB_STORE_USER) {
1992 /* user store requires one word storage behind the end of
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1995 */
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
2000 }
2001#endif
2002
2003 kasan_cache_create(cachep, &size, &flags);
2004
2005 size = ALIGN(size, cachep->align);
2006 /*
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2009 */
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2012
2013#if DEBUG
2014 /*
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2020 */
2021 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2025
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2031 }
2032 }
2033 }
2034#endif
2035
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2039 }
2040
2041 if (set_off_slab_cache(cachep, size, flags)) {
2042 flags |= CFLGS_OFF_SLAB;
2043 goto done;
2044 }
2045
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
2048
2049 return -E2BIG;
2050
2051done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 cachep->flags = flags;
2054 cachep->allocflags = __GFP_COMP;
2055 if (flags & SLAB_CACHE_DMA)
2056 cachep->allocflags |= GFP_DMA;
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
2061 cachep->size = size;
2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
2063
2064#if DEBUG
2065 /*
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2069 */
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074#endif
2075
2076 if (OFF_SLAB(cachep)) {
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
2079 }
2080
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
2083 __kmem_cache_release(cachep);
2084 return err;
2085 }
2086
2087 return 0;
2088}
2089
2090#if DEBUG
2091static void check_irq_off(void)
2092{
2093 BUG_ON(!irqs_disabled());
2094}
2095
2096static void check_irq_on(void)
2097{
2098 BUG_ON(irqs_disabled());
2099}
2100
2101static void check_mutex_acquired(void)
2102{
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2104}
2105
2106static void check_spinlock_acquired(struct kmem_cache *cachep)
2107{
2108#ifdef CONFIG_SMP
2109 check_irq_off();
2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111#endif
2112}
2113
2114static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115{
2116#ifdef CONFIG_SMP
2117 check_irq_off();
2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
2119#endif
2120}
2121
2122#else
2123#define check_irq_off() do { } while(0)
2124#define check_irq_on() do { } while(0)
2125#define check_mutex_acquired() do { } while(0)
2126#define check_spinlock_acquired(x) do { } while(0)
2127#define check_spinlock_acquired_node(x, y) do { } while(0)
2128#endif
2129
2130static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2132{
2133 int tofree;
2134
2135 if (!ac || !ac->avail)
2136 return;
2137
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2141
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2145}
2146
2147static void do_drain(void *arg)
2148{
2149 struct kmem_cache *cachep = arg;
2150 struct array_cache *ac;
2151 int node = numa_mem_id();
2152 struct kmem_cache_node *n;
2153 LIST_HEAD(list);
2154
2155 check_irq_off();
2156 ac = cpu_cache_get(cachep);
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
2159 free_block(cachep, ac->entry, ac->avail, node, &list);
2160 spin_unlock(&n->list_lock);
2161 ac->avail = 0;
2162 slabs_destroy(cachep, &list);
2163}
2164
2165static void drain_cpu_caches(struct kmem_cache *cachep)
2166{
2167 struct kmem_cache_node *n;
2168 int node;
2169 LIST_HEAD(list);
2170
2171 on_each_cpu(do_drain, cachep, 1);
2172 check_irq_on();
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
2175 drain_alien_cache(cachep, n->alien);
2176
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2181
2182 slabs_destroy(cachep, &list);
2183 }
2184}
2185
2186/*
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2189 *
2190 * Returns the actual number of slabs released.
2191 */
2192static int drain_freelist(struct kmem_cache *cache,
2193 struct kmem_cache_node *n, int tofree)
2194{
2195 struct list_head *p;
2196 int nr_freed;
2197 struct page *page;
2198
2199 nr_freed = 0;
2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2201
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
2206 goto out;
2207 }
2208
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
2211 n->free_slabs--;
2212 n->total_slabs--;
2213 /*
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2216 */
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
2219 slab_destroy(cache, page);
2220 nr_freed++;
2221 }
2222out:
2223 return nr_freed;
2224}
2225
2226bool __kmem_cache_empty(struct kmem_cache *s)
2227{
2228 int node;
2229 struct kmem_cache_node *n;
2230
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2236}
2237
2238int __kmem_cache_shrink(struct kmem_cache *cachep)
2239{
2240 int ret = 0;
2241 int node;
2242 struct kmem_cache_node *n;
2243
2244 drain_cpu_caches(cachep);
2245
2246 check_irq_on();
2247 for_each_kmem_cache_node(cachep, node, n) {
2248 drain_freelist(cachep, n, INT_MAX);
2249
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
2252 }
2253 return (ret ? 1 : 0);
2254}
2255
2256int __kmem_cache_shutdown(struct kmem_cache *cachep)
2257{
2258 return __kmem_cache_shrink(cachep);
2259}
2260
2261void __kmem_cache_release(struct kmem_cache *cachep)
2262{
2263 int i;
2264 struct kmem_cache_node *n;
2265
2266 cache_random_seq_destroy(cachep);
2267
2268 free_percpu(cachep->cpu_cache);
2269
2270 /* NUMA: free the node structures */
2271 for_each_kmem_cache_node(cachep, i, n) {
2272 kfree(n->shared);
2273 free_alien_cache(n->alien);
2274 kfree(n);
2275 cachep->node[i] = NULL;
2276 }
2277}
2278
2279/*
2280 * Get the memory for a slab management obj.
2281 *
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
2288 * This is a "chicken-and-egg" problem.
2289 *
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2292 */
2293static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294 struct page *page, int colour_off,
2295 gfp_t local_flags, int nodeid)
2296{
2297 void *freelist;
2298 void *addr = page_address(page);
2299
2300 page->s_mem = addr + colour_off;
2301 page->active = 0;
2302
2303 if (OBJFREELIST_SLAB(cachep))
2304 freelist = NULL;
2305 else if (OFF_SLAB(cachep)) {
2306 /* Slab management obj is off-slab. */
2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308 local_flags, nodeid);
2309 } else {
2310 /* We will use last bytes at the slab for freelist */
2311 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312 cachep->freelist_size;
2313 }
2314
2315 return freelist;
2316}
2317
2318static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2319{
2320 return ((freelist_idx_t *)page->freelist)[idx];
2321}
2322
2323static inline void set_free_obj(struct page *page,
2324 unsigned int idx, freelist_idx_t val)
2325{
2326 ((freelist_idx_t *)(page->freelist))[idx] = val;
2327}
2328
2329static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2330{
2331#if DEBUG
2332 int i;
2333
2334 for (i = 0; i < cachep->num; i++) {
2335 void *objp = index_to_obj(cachep, page, i);
2336
2337 if (cachep->flags & SLAB_STORE_USER)
2338 *dbg_userword(cachep, objp) = NULL;
2339
2340 if (cachep->flags & SLAB_RED_ZONE) {
2341 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2343 }
2344 /*
2345 * Constructors are not allowed to allocate memory from the same
2346 * cache which they are a constructor for. Otherwise, deadlock.
2347 * They must also be threaded.
2348 */
2349 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350 kasan_unpoison_object_data(cachep,
2351 objp + obj_offset(cachep));
2352 cachep->ctor(objp + obj_offset(cachep));
2353 kasan_poison_object_data(
2354 cachep, objp + obj_offset(cachep));
2355 }
2356
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359 slab_error(cachep, "constructor overwrote the end of an object");
2360 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361 slab_error(cachep, "constructor overwrote the start of an object");
2362 }
2363 /* need to poison the objs? */
2364 if (cachep->flags & SLAB_POISON) {
2365 poison_obj(cachep, objp, POISON_FREE);
2366 slab_kernel_map(cachep, objp, 0);
2367 }
2368 }
2369#endif
2370}
2371
2372#ifdef CONFIG_SLAB_FREELIST_RANDOM
2373/* Hold information during a freelist initialization */
2374union freelist_init_state {
2375 struct {
2376 unsigned int pos;
2377 unsigned int *list;
2378 unsigned int count;
2379 };
2380 struct rnd_state rnd_state;
2381};
2382
2383/*
2384 * Initialize the state based on the randomization method available.
2385 * return true if the pre-computed list is available, false otherwise.
2386 */
2387static bool freelist_state_initialize(union freelist_init_state *state,
2388 struct kmem_cache *cachep,
2389 unsigned int count)
2390{
2391 bool ret;
2392 unsigned int rand;
2393
2394 /* Use best entropy available to define a random shift */
2395 rand = get_random_int();
2396
2397 /* Use a random state if the pre-computed list is not available */
2398 if (!cachep->random_seq) {
2399 prandom_seed_state(&state->rnd_state, rand);
2400 ret = false;
2401 } else {
2402 state->list = cachep->random_seq;
2403 state->count = count;
2404 state->pos = rand % count;
2405 ret = true;
2406 }
2407 return ret;
2408}
2409
2410/* Get the next entry on the list and randomize it using a random shift */
2411static freelist_idx_t next_random_slot(union freelist_init_state *state)
2412{
2413 if (state->pos >= state->count)
2414 state->pos = 0;
2415 return state->list[state->pos++];
2416}
2417
2418/* Swap two freelist entries */
2419static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2420{
2421 swap(((freelist_idx_t *)page->freelist)[a],
2422 ((freelist_idx_t *)page->freelist)[b]);
2423}
2424
2425/*
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2428 */
2429static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2430{
2431 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432 union freelist_init_state state;
2433 bool precomputed;
2434
2435 if (count < 2)
2436 return false;
2437
2438 precomputed = freelist_state_initialize(&state, cachep, count);
2439
2440 /* Take a random entry as the objfreelist */
2441 if (OBJFREELIST_SLAB(cachep)) {
2442 if (!precomputed)
2443 objfreelist = count - 1;
2444 else
2445 objfreelist = next_random_slot(&state);
2446 page->freelist = index_to_obj(cachep, page, objfreelist) +
2447 obj_offset(cachep);
2448 count--;
2449 }
2450
2451 /*
2452 * On early boot, generate the list dynamically.
2453 * Later use a pre-computed list for speed.
2454 */
2455 if (!precomputed) {
2456 for (i = 0; i < count; i++)
2457 set_free_obj(page, i, i);
2458
2459 /* Fisher-Yates shuffle */
2460 for (i = count - 1; i > 0; i--) {
2461 rand = prandom_u32_state(&state.rnd_state);
2462 rand %= (i + 1);
2463 swap_free_obj(page, i, rand);
2464 }
2465 } else {
2466 for (i = 0; i < count; i++)
2467 set_free_obj(page, i, next_random_slot(&state));
2468 }
2469
2470 if (OBJFREELIST_SLAB(cachep))
2471 set_free_obj(page, cachep->num - 1, objfreelist);
2472
2473 return true;
2474}
2475#else
2476static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477 struct page *page)
2478{
2479 return false;
2480}
2481#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2482
2483static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2485{
2486 int i;
2487 void *objp;
2488 bool shuffled;
2489
2490 cache_init_objs_debug(cachep, page);
2491
2492 /* Try to randomize the freelist if enabled */
2493 shuffled = shuffle_freelist(cachep, page);
2494
2495 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497 obj_offset(cachep);
2498 }
2499
2500 for (i = 0; i < cachep->num; i++) {
2501 objp = index_to_obj(cachep, page, i);
2502 objp = kasan_init_slab_obj(cachep, objp);
2503
2504 /* constructor could break poison info */
2505 if (DEBUG == 0 && cachep->ctor) {
2506 kasan_unpoison_object_data(cachep, objp);
2507 cachep->ctor(objp);
2508 kasan_poison_object_data(cachep, objp);
2509 }
2510
2511 if (!shuffled)
2512 set_free_obj(page, i, i);
2513 }
2514}
2515
2516static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2517{
2518 void *objp;
2519
2520 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521 page->active++;
2522
2523 return objp;
2524}
2525
2526static void slab_put_obj(struct kmem_cache *cachep,
2527 struct page *page, void *objp)
2528{
2529 unsigned int objnr = obj_to_index(cachep, page, objp);
2530#if DEBUG
2531 unsigned int i;
2532
2533 /* Verify double free bug */
2534 for (i = page->active; i < cachep->num; i++) {
2535 if (get_free_obj(page, i) == objnr) {
2536 pr_err("slab: double free detected in cache '%s', objp %px\n",
2537 cachep->name, objp);
2538 BUG();
2539 }
2540 }
2541#endif
2542 page->active--;
2543 if (!page->freelist)
2544 page->freelist = objp + obj_offset(cachep);
2545
2546 set_free_obj(page, page->active, objnr);
2547}
2548
2549/*
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2553 */
2554static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555 void *freelist)
2556{
2557 page->slab_cache = cache;
2558 page->freelist = freelist;
2559}
2560
2561/*
2562 * Grow (by 1) the number of slabs within a cache. This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2564 */
2565static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566 gfp_t flags, int nodeid)
2567{
2568 void *freelist;
2569 size_t offset;
2570 gfp_t local_flags;
2571 int page_node;
2572 struct kmem_cache_node *n;
2573 struct page *page;
2574
2575 /*
2576 * Be lazy and only check for valid flags here, keeping it out of the
2577 * critical path in kmem_cache_alloc().
2578 */
2579 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580 flags = kmalloc_fix_flags(flags);
2581
2582 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2584
2585 check_irq_off();
2586 if (gfpflags_allow_blocking(local_flags))
2587 local_irq_enable();
2588
2589 /*
2590 * Get mem for the objs. Attempt to allocate a physical page from
2591 * 'nodeid'.
2592 */
2593 page = kmem_getpages(cachep, local_flags, nodeid);
2594 if (!page)
2595 goto failed;
2596
2597 page_node = page_to_nid(page);
2598 n = get_node(cachep, page_node);
2599
2600 /* Get colour for the slab, and cal the next value. */
2601 n->colour_next++;
2602 if (n->colour_next >= cachep->colour)
2603 n->colour_next = 0;
2604
2605 offset = n->colour_next;
2606 if (offset >= cachep->colour)
2607 offset = 0;
2608
2609 offset *= cachep->colour_off;
2610
2611 /*
2612 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613 * page_address() in the latter returns a non-tagged pointer,
2614 * as it should be for slab pages.
2615 */
2616 kasan_poison_slab(page);
2617
2618 /* Get slab management. */
2619 freelist = alloc_slabmgmt(cachep, page, offset,
2620 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621 if (OFF_SLAB(cachep) && !freelist)
2622 goto opps1;
2623
2624 slab_map_pages(cachep, page, freelist);
2625
2626 cache_init_objs(cachep, page);
2627
2628 if (gfpflags_allow_blocking(local_flags))
2629 local_irq_disable();
2630
2631 return page;
2632
2633opps1:
2634 kmem_freepages(cachep, page);
2635failed:
2636 if (gfpflags_allow_blocking(local_flags))
2637 local_irq_disable();
2638 return NULL;
2639}
2640
2641static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2642{
2643 struct kmem_cache_node *n;
2644 void *list = NULL;
2645
2646 check_irq_off();
2647
2648 if (!page)
2649 return;
2650
2651 INIT_LIST_HEAD(&page->slab_list);
2652 n = get_node(cachep, page_to_nid(page));
2653
2654 spin_lock(&n->list_lock);
2655 n->total_slabs++;
2656 if (!page->active) {
2657 list_add_tail(&page->slab_list, &n->slabs_free);
2658 n->free_slabs++;
2659 } else
2660 fixup_slab_list(cachep, n, page, &list);
2661
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num - page->active;
2664 spin_unlock(&n->list_lock);
2665
2666 fixup_objfreelist_debug(cachep, &list);
2667}
2668
2669#if DEBUG
2670
2671/*
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2675 */
2676static void kfree_debugcheck(const void *objp)
2677{
2678 if (!virt_addr_valid(objp)) {
2679 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680 (unsigned long)objp);
2681 BUG();
2682 }
2683}
2684
2685static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2686{
2687 unsigned long long redzone1, redzone2;
2688
2689 redzone1 = *dbg_redzone1(cache, obj);
2690 redzone2 = *dbg_redzone2(cache, obj);
2691
2692 /*
2693 * Redzone is ok.
2694 */
2695 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696 return;
2697
2698 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699 slab_error(cache, "double free detected");
2700 else
2701 slab_error(cache, "memory outside object was overwritten");
2702
2703 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704 obj, redzone1, redzone2);
2705}
2706
2707static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708 unsigned long caller)
2709{
2710 unsigned int objnr;
2711 struct page *page;
2712
2713 BUG_ON(virt_to_cache(objp) != cachep);
2714
2715 objp -= obj_offset(cachep);
2716 kfree_debugcheck(objp);
2717 page = virt_to_head_page(objp);
2718
2719 if (cachep->flags & SLAB_RED_ZONE) {
2720 verify_redzone_free(cachep, objp);
2721 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2723 }
2724 if (cachep->flags & SLAB_STORE_USER)
2725 *dbg_userword(cachep, objp) = (void *)caller;
2726
2727 objnr = obj_to_index(cachep, page, objp);
2728
2729 BUG_ON(objnr >= cachep->num);
2730 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2731
2732 if (cachep->flags & SLAB_POISON) {
2733 poison_obj(cachep, objp, POISON_FREE);
2734 slab_kernel_map(cachep, objp, 0);
2735 }
2736 return objp;
2737}
2738
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x, objp, z) (objp)
2742#endif
2743
2744static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 void **list)
2746{
2747#if DEBUG
2748 void *next = *list;
2749 void *objp;
2750
2751 while (next) {
2752 objp = next - obj_offset(cachep);
2753 next = *(void **)next;
2754 poison_obj(cachep, objp, POISON_FREE);
2755 }
2756#endif
2757}
2758
2759static inline void fixup_slab_list(struct kmem_cache *cachep,
2760 struct kmem_cache_node *n, struct page *page,
2761 void **list)
2762{
2763 /* move slabp to correct slabp list: */
2764 list_del(&page->slab_list);
2765 if (page->active == cachep->num) {
2766 list_add(&page->slab_list, &n->slabs_full);
2767 if (OBJFREELIST_SLAB(cachep)) {
2768#if DEBUG
2769 /* Poisoning will be done without holding the lock */
2770 if (cachep->flags & SLAB_POISON) {
2771 void **objp = page->freelist;
2772
2773 *objp = *list;
2774 *list = objp;
2775 }
2776#endif
2777 page->freelist = NULL;
2778 }
2779 } else
2780 list_add(&page->slab_list, &n->slabs_partial);
2781}
2782
2783/* Try to find non-pfmemalloc slab if needed */
2784static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785 struct page *page, bool pfmemalloc)
2786{
2787 if (!page)
2788 return NULL;
2789
2790 if (pfmemalloc)
2791 return page;
2792
2793 if (!PageSlabPfmemalloc(page))
2794 return page;
2795
2796 /* No need to keep pfmemalloc slab if we have enough free objects */
2797 if (n->free_objects > n->free_limit) {
2798 ClearPageSlabPfmemalloc(page);
2799 return page;
2800 }
2801
2802 /* Move pfmemalloc slab to the end of list to speed up next search */
2803 list_del(&page->slab_list);
2804 if (!page->active) {
2805 list_add_tail(&page->slab_list, &n->slabs_free);
2806 n->free_slabs++;
2807 } else
2808 list_add_tail(&page->slab_list, &n->slabs_partial);
2809
2810 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811 if (!PageSlabPfmemalloc(page))
2812 return page;
2813 }
2814
2815 n->free_touched = 1;
2816 list_for_each_entry(page, &n->slabs_free, slab_list) {
2817 if (!PageSlabPfmemalloc(page)) {
2818 n->free_slabs--;
2819 return page;
2820 }
2821 }
2822
2823 return NULL;
2824}
2825
2826static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2827{
2828 struct page *page;
2829
2830 assert_spin_locked(&n->list_lock);
2831 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832 slab_list);
2833 if (!page) {
2834 n->free_touched = 1;
2835 page = list_first_entry_or_null(&n->slabs_free, struct page,
2836 slab_list);
2837 if (page)
2838 n->free_slabs--;
2839 }
2840
2841 if (sk_memalloc_socks())
2842 page = get_valid_first_slab(n, page, pfmemalloc);
2843
2844 return page;
2845}
2846
2847static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848 struct kmem_cache_node *n, gfp_t flags)
2849{
2850 struct page *page;
2851 void *obj;
2852 void *list = NULL;
2853
2854 if (!gfp_pfmemalloc_allowed(flags))
2855 return NULL;
2856
2857 spin_lock(&n->list_lock);
2858 page = get_first_slab(n, true);
2859 if (!page) {
2860 spin_unlock(&n->list_lock);
2861 return NULL;
2862 }
2863
2864 obj = slab_get_obj(cachep, page);
2865 n->free_objects--;
2866
2867 fixup_slab_list(cachep, n, page, &list);
2868
2869 spin_unlock(&n->list_lock);
2870 fixup_objfreelist_debug(cachep, &list);
2871
2872 return obj;
2873}
2874
2875/*
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2878 */
2879static __always_inline int alloc_block(struct kmem_cache *cachep,
2880 struct array_cache *ac, struct page *page, int batchcount)
2881{
2882 /*
2883 * There must be at least one object available for
2884 * allocation.
2885 */
2886 BUG_ON(page->active >= cachep->num);
2887
2888 while (page->active < cachep->num && batchcount--) {
2889 STATS_INC_ALLOCED(cachep);
2890 STATS_INC_ACTIVE(cachep);
2891 STATS_SET_HIGH(cachep);
2892
2893 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2894 }
2895
2896 return batchcount;
2897}
2898
2899static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2900{
2901 int batchcount;
2902 struct kmem_cache_node *n;
2903 struct array_cache *ac, *shared;
2904 int node;
2905 void *list = NULL;
2906 struct page *page;
2907
2908 check_irq_off();
2909 node = numa_mem_id();
2910
2911 ac = cpu_cache_get(cachep);
2912 batchcount = ac->batchcount;
2913 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2914 /*
2915 * If there was little recent activity on this cache, then
2916 * perform only a partial refill. Otherwise we could generate
2917 * refill bouncing.
2918 */
2919 batchcount = BATCHREFILL_LIMIT;
2920 }
2921 n = get_node(cachep, node);
2922
2923 BUG_ON(ac->avail > 0 || !n);
2924 shared = READ_ONCE(n->shared);
2925 if (!n->free_objects && (!shared || !shared->avail))
2926 goto direct_grow;
2927
2928 spin_lock(&n->list_lock);
2929 shared = READ_ONCE(n->shared);
2930
2931 /* See if we can refill from the shared array */
2932 if (shared && transfer_objects(ac, shared, batchcount)) {
2933 shared->touched = 1;
2934 goto alloc_done;
2935 }
2936
2937 while (batchcount > 0) {
2938 /* Get slab alloc is to come from. */
2939 page = get_first_slab(n, false);
2940 if (!page)
2941 goto must_grow;
2942
2943 check_spinlock_acquired(cachep);
2944
2945 batchcount = alloc_block(cachep, ac, page, batchcount);
2946 fixup_slab_list(cachep, n, page, &list);
2947 }
2948
2949must_grow:
2950 n->free_objects -= ac->avail;
2951alloc_done:
2952 spin_unlock(&n->list_lock);
2953 fixup_objfreelist_debug(cachep, &list);
2954
2955direct_grow:
2956 if (unlikely(!ac->avail)) {
2957 /* Check if we can use obj in pfmemalloc slab */
2958 if (sk_memalloc_socks()) {
2959 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2960
2961 if (obj)
2962 return obj;
2963 }
2964
2965 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2966
2967 /*
2968 * cache_grow_begin() can reenable interrupts,
2969 * then ac could change.
2970 */
2971 ac = cpu_cache_get(cachep);
2972 if (!ac->avail && page)
2973 alloc_block(cachep, ac, page, batchcount);
2974 cache_grow_end(cachep, page);
2975
2976 if (!ac->avail)
2977 return NULL;
2978 }
2979 ac->touched = 1;
2980
2981 return ac->entry[--ac->avail];
2982}
2983
2984static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985 gfp_t flags)
2986{
2987 might_sleep_if(gfpflags_allow_blocking(flags));
2988}
2989
2990#if DEBUG
2991static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992 gfp_t flags, void *objp, unsigned long caller)
2993{
2994 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995 if (!objp || is_kfence_address(objp))
2996 return objp;
2997 if (cachep->flags & SLAB_POISON) {
2998 check_poison_obj(cachep, objp);
2999 slab_kernel_map(cachep, objp, 1);
3000 poison_obj(cachep, objp, POISON_INUSE);
3001 }
3002 if (cachep->flags & SLAB_STORE_USER)
3003 *dbg_userword(cachep, objp) = (void *)caller;
3004
3005 if (cachep->flags & SLAB_RED_ZONE) {
3006 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008 slab_error(cachep, "double free, or memory outside object was overwritten");
3009 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010 objp, *dbg_redzone1(cachep, objp),
3011 *dbg_redzone2(cachep, objp));
3012 }
3013 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3015 }
3016
3017 objp += obj_offset(cachep);
3018 if (cachep->ctor && cachep->flags & SLAB_POISON)
3019 cachep->ctor(objp);
3020 if (ARCH_SLAB_MINALIGN &&
3021 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023 objp, (int)ARCH_SLAB_MINALIGN);
3024 }
3025 return objp;
3026}
3027#else
3028#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
3029#endif
3030
3031static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3032{
3033 void *objp;
3034 struct array_cache *ac;
3035
3036 check_irq_off();
3037
3038 ac = cpu_cache_get(cachep);
3039 if (likely(ac->avail)) {
3040 ac->touched = 1;
3041 objp = ac->entry[--ac->avail];
3042
3043 STATS_INC_ALLOCHIT(cachep);
3044 goto out;
3045 }
3046
3047 STATS_INC_ALLOCMISS(cachep);
3048 objp = cache_alloc_refill(cachep, flags);
3049 /*
3050 * the 'ac' may be updated by cache_alloc_refill(),
3051 * and kmemleak_erase() requires its correct value.
3052 */
3053 ac = cpu_cache_get(cachep);
3054
3055out:
3056 /*
3057 * To avoid a false negative, if an object that is in one of the
3058 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059 * treat the array pointers as a reference to the object.
3060 */
3061 if (objp)
3062 kmemleak_erase(&ac->entry[ac->avail]);
3063 return objp;
3064}
3065
3066#ifdef CONFIG_NUMA
3067/*
3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3069 *
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3072 */
3073static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3074{
3075 int nid_alloc, nid_here;
3076
3077 if (in_interrupt() || (flags & __GFP_THISNODE))
3078 return NULL;
3079 nid_alloc = nid_here = numa_mem_id();
3080 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081 nid_alloc = cpuset_slab_spread_node();
3082 else if (current->mempolicy)
3083 nid_alloc = mempolicy_slab_node();
3084 if (nid_alloc != nid_here)
3085 return ____cache_alloc_node(cachep, flags, nid_alloc);
3086 return NULL;
3087}
3088
3089/*
3090 * Fallback function if there was no memory available and no objects on a
3091 * certain node and fall back is permitted. First we scan all the
3092 * available node for available objects. If that fails then we
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
3096 */
3097static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3098{
3099 struct zonelist *zonelist;
3100 struct zoneref *z;
3101 struct zone *zone;
3102 enum zone_type highest_zoneidx = gfp_zone(flags);
3103 void *obj = NULL;
3104 struct page *page;
3105 int nid;
3106 unsigned int cpuset_mems_cookie;
3107
3108 if (flags & __GFP_THISNODE)
3109 return NULL;
3110
3111retry_cpuset:
3112 cpuset_mems_cookie = read_mems_allowed_begin();
3113 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3114
3115retry:
3116 /*
3117 * Look through allowed nodes for objects available
3118 * from existing per node queues.
3119 */
3120 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121 nid = zone_to_nid(zone);
3122
3123 if (cpuset_zone_allowed(zone, flags) &&
3124 get_node(cache, nid) &&
3125 get_node(cache, nid)->free_objects) {
3126 obj = ____cache_alloc_node(cache,
3127 gfp_exact_node(flags), nid);
3128 if (obj)
3129 break;
3130 }
3131 }
3132
3133 if (!obj) {
3134 /*
3135 * This allocation will be performed within the constraints
3136 * of the current cpuset / memory policy requirements.
3137 * We may trigger various forms of reclaim on the allowed
3138 * set and go into memory reserves if necessary.
3139 */
3140 page = cache_grow_begin(cache, flags, numa_mem_id());
3141 cache_grow_end(cache, page);
3142 if (page) {
3143 nid = page_to_nid(page);
3144 obj = ____cache_alloc_node(cache,
3145 gfp_exact_node(flags), nid);
3146
3147 /*
3148 * Another processor may allocate the objects in
3149 * the slab since we are not holding any locks.
3150 */
3151 if (!obj)
3152 goto retry;
3153 }
3154 }
3155
3156 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157 goto retry_cpuset;
3158 return obj;
3159}
3160
3161/*
3162 * A interface to enable slab creation on nodeid
3163 */
3164static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165 int nodeid)
3166{
3167 struct page *page;
3168 struct kmem_cache_node *n;
3169 void *obj = NULL;
3170 void *list = NULL;
3171
3172 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173 n = get_node(cachep, nodeid);
3174 BUG_ON(!n);
3175
3176 check_irq_off();
3177 spin_lock(&n->list_lock);
3178 page = get_first_slab(n, false);
3179 if (!page)
3180 goto must_grow;
3181
3182 check_spinlock_acquired_node(cachep, nodeid);
3183
3184 STATS_INC_NODEALLOCS(cachep);
3185 STATS_INC_ACTIVE(cachep);
3186 STATS_SET_HIGH(cachep);
3187
3188 BUG_ON(page->active == cachep->num);
3189
3190 obj = slab_get_obj(cachep, page);
3191 n->free_objects--;
3192
3193 fixup_slab_list(cachep, n, page, &list);
3194
3195 spin_unlock(&n->list_lock);
3196 fixup_objfreelist_debug(cachep, &list);
3197 return obj;
3198
3199must_grow:
3200 spin_unlock(&n->list_lock);
3201 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202 if (page) {
3203 /* This slab isn't counted yet so don't update free_objects */
3204 obj = slab_get_obj(cachep, page);
3205 }
3206 cache_grow_end(cachep, page);
3207
3208 return obj ? obj : fallback_alloc(cachep, flags);
3209}
3210
3211static __always_inline void *
3212slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
3213 unsigned long caller)
3214{
3215 unsigned long save_flags;
3216 void *ptr;
3217 int slab_node = numa_mem_id();
3218 struct obj_cgroup *objcg = NULL;
3219 bool init = false;
3220
3221 flags &= gfp_allowed_mask;
3222 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3223 if (unlikely(!cachep))
3224 return NULL;
3225
3226 ptr = kfence_alloc(cachep, orig_size, flags);
3227 if (unlikely(ptr))
3228 goto out_hooks;
3229
3230 cache_alloc_debugcheck_before(cachep, flags);
3231 local_irq_save(save_flags);
3232
3233 if (nodeid == NUMA_NO_NODE)
3234 nodeid = slab_node;
3235
3236 if (unlikely(!get_node(cachep, nodeid))) {
3237 /* Node not bootstrapped yet */
3238 ptr = fallback_alloc(cachep, flags);
3239 goto out;
3240 }
3241
3242 if (nodeid == slab_node) {
3243 /*
3244 * Use the locally cached objects if possible.
3245 * However ____cache_alloc does not allow fallback
3246 * to other nodes. It may fail while we still have
3247 * objects on other nodes available.
3248 */
3249 ptr = ____cache_alloc(cachep, flags);
3250 if (ptr)
3251 goto out;
3252 }
3253 /* ___cache_alloc_node can fall back to other nodes */
3254 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3255 out:
3256 local_irq_restore(save_flags);
3257 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3258 init = slab_want_init_on_alloc(flags, cachep);
3259
3260out_hooks:
3261 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
3262 return ptr;
3263}
3264
3265static __always_inline void *
3266__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3267{
3268 void *objp;
3269
3270 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3271 objp = alternate_node_alloc(cache, flags);
3272 if (objp)
3273 goto out;
3274 }
3275 objp = ____cache_alloc(cache, flags);
3276
3277 /*
3278 * We may just have run out of memory on the local node.
3279 * ____cache_alloc_node() knows how to locate memory on other nodes
3280 */
3281 if (!objp)
3282 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3283
3284 out:
3285 return objp;
3286}
3287#else
3288
3289static __always_inline void *
3290__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3291{
3292 return ____cache_alloc(cachep, flags);
3293}
3294
3295#endif /* CONFIG_NUMA */
3296
3297static __always_inline void *
3298slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
3299{
3300 unsigned long save_flags;
3301 void *objp;
3302 struct obj_cgroup *objcg = NULL;
3303 bool init = false;
3304
3305 flags &= gfp_allowed_mask;
3306 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3307 if (unlikely(!cachep))
3308 return NULL;
3309
3310 objp = kfence_alloc(cachep, orig_size, flags);
3311 if (unlikely(objp))
3312 goto out;
3313
3314 cache_alloc_debugcheck_before(cachep, flags);
3315 local_irq_save(save_flags);
3316 objp = __do_cache_alloc(cachep, flags);
3317 local_irq_restore(save_flags);
3318 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3319 prefetchw(objp);
3320 init = slab_want_init_on_alloc(flags, cachep);
3321
3322out:
3323 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
3324 return objp;
3325}
3326
3327/*
3328 * Caller needs to acquire correct kmem_cache_node's list_lock
3329 * @list: List of detached free slabs should be freed by caller
3330 */
3331static void free_block(struct kmem_cache *cachep, void **objpp,
3332 int nr_objects, int node, struct list_head *list)
3333{
3334 int i;
3335 struct kmem_cache_node *n = get_node(cachep, node);
3336 struct page *page;
3337
3338 n->free_objects += nr_objects;
3339
3340 for (i = 0; i < nr_objects; i++) {
3341 void *objp;
3342 struct page *page;
3343
3344 objp = objpp[i];
3345
3346 page = virt_to_head_page(objp);
3347 list_del(&page->slab_list);
3348 check_spinlock_acquired_node(cachep, node);
3349 slab_put_obj(cachep, page, objp);
3350 STATS_DEC_ACTIVE(cachep);
3351
3352 /* fixup slab chains */
3353 if (page->active == 0) {
3354 list_add(&page->slab_list, &n->slabs_free);
3355 n->free_slabs++;
3356 } else {
3357 /* Unconditionally move a slab to the end of the
3358 * partial list on free - maximum time for the
3359 * other objects to be freed, too.
3360 */
3361 list_add_tail(&page->slab_list, &n->slabs_partial);
3362 }
3363 }
3364
3365 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3366 n->free_objects -= cachep->num;
3367
3368 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3369 list_move(&page->slab_list, list);
3370 n->free_slabs--;
3371 n->total_slabs--;
3372 }
3373}
3374
3375static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3376{
3377 int batchcount;
3378 struct kmem_cache_node *n;
3379 int node = numa_mem_id();
3380 LIST_HEAD(list);
3381
3382 batchcount = ac->batchcount;
3383
3384 check_irq_off();
3385 n = get_node(cachep, node);
3386 spin_lock(&n->list_lock);
3387 if (n->shared) {
3388 struct array_cache *shared_array = n->shared;
3389 int max = shared_array->limit - shared_array->avail;
3390 if (max) {
3391 if (batchcount > max)
3392 batchcount = max;
3393 memcpy(&(shared_array->entry[shared_array->avail]),
3394 ac->entry, sizeof(void *) * batchcount);
3395 shared_array->avail += batchcount;
3396 goto free_done;
3397 }
3398 }
3399
3400 free_block(cachep, ac->entry, batchcount, node, &list);
3401free_done:
3402#if STATS
3403 {
3404 int i = 0;
3405 struct page *page;
3406
3407 list_for_each_entry(page, &n->slabs_free, slab_list) {
3408 BUG_ON(page->active);
3409
3410 i++;
3411 }
3412 STATS_SET_FREEABLE(cachep, i);
3413 }
3414#endif
3415 spin_unlock(&n->list_lock);
3416 ac->avail -= batchcount;
3417 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3418 slabs_destroy(cachep, &list);
3419}
3420
3421/*
3422 * Release an obj back to its cache. If the obj has a constructed state, it must
3423 * be in this state _before_ it is released. Called with disabled ints.
3424 */
3425static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3426 unsigned long caller)
3427{
3428 bool init;
3429
3430 if (is_kfence_address(objp)) {
3431 kmemleak_free_recursive(objp, cachep->flags);
3432 __kfence_free(objp);
3433 return;
3434 }
3435
3436 /*
3437 * As memory initialization might be integrated into KASAN,
3438 * kasan_slab_free and initialization memset must be
3439 * kept together to avoid discrepancies in behavior.
3440 */
3441 init = slab_want_init_on_free(cachep);
3442 if (init && !kasan_has_integrated_init())
3443 memset(objp, 0, cachep->object_size);
3444 /* KASAN might put objp into memory quarantine, delaying its reuse. */
3445 if (kasan_slab_free(cachep, objp, init))
3446 return;
3447
3448 /* Use KCSAN to help debug racy use-after-free. */
3449 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3450 __kcsan_check_access(objp, cachep->object_size,
3451 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3452
3453 ___cache_free(cachep, objp, caller);
3454}
3455
3456void ___cache_free(struct kmem_cache *cachep, void *objp,
3457 unsigned long caller)
3458{
3459 struct array_cache *ac = cpu_cache_get(cachep);
3460
3461 check_irq_off();
3462 kmemleak_free_recursive(objp, cachep->flags);
3463 objp = cache_free_debugcheck(cachep, objp, caller);
3464 memcg_slab_free_hook(cachep, &objp, 1);
3465
3466 /*
3467 * Skip calling cache_free_alien() when the platform is not numa.
3468 * This will avoid cache misses that happen while accessing slabp (which
3469 * is per page memory reference) to get nodeid. Instead use a global
3470 * variable to skip the call, which is mostly likely to be present in
3471 * the cache.
3472 */
3473 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3474 return;
3475
3476 if (ac->avail < ac->limit) {
3477 STATS_INC_FREEHIT(cachep);
3478 } else {
3479 STATS_INC_FREEMISS(cachep);
3480 cache_flusharray(cachep, ac);
3481 }
3482
3483 if (sk_memalloc_socks()) {
3484 struct page *page = virt_to_head_page(objp);
3485
3486 if (unlikely(PageSlabPfmemalloc(page))) {
3487 cache_free_pfmemalloc(cachep, page, objp);
3488 return;
3489 }
3490 }
3491
3492 __free_one(ac, objp);
3493}
3494
3495/**
3496 * kmem_cache_alloc - Allocate an object
3497 * @cachep: The cache to allocate from.
3498 * @flags: See kmalloc().
3499 *
3500 * Allocate an object from this cache. The flags are only relevant
3501 * if the cache has no available objects.
3502 *
3503 * Return: pointer to the new object or %NULL in case of error
3504 */
3505void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3506{
3507 void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
3508
3509 trace_kmem_cache_alloc(_RET_IP_, ret,
3510 cachep->object_size, cachep->size, flags);
3511
3512 return ret;
3513}
3514EXPORT_SYMBOL(kmem_cache_alloc);
3515
3516static __always_inline void
3517cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3518 size_t size, void **p, unsigned long caller)
3519{
3520 size_t i;
3521
3522 for (i = 0; i < size; i++)
3523 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3524}
3525
3526int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3527 void **p)
3528{
3529 size_t i;
3530 struct obj_cgroup *objcg = NULL;
3531
3532 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3533 if (!s)
3534 return 0;
3535
3536 cache_alloc_debugcheck_before(s, flags);
3537
3538 local_irq_disable();
3539 for (i = 0; i < size; i++) {
3540 void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
3541
3542 if (unlikely(!objp))
3543 goto error;
3544 p[i] = objp;
3545 }
3546 local_irq_enable();
3547
3548 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3549
3550 /*
3551 * memcg and kmem_cache debug support and memory initialization.
3552 * Done outside of the IRQ disabled section.
3553 */
3554 slab_post_alloc_hook(s, objcg, flags, size, p,
3555 slab_want_init_on_alloc(flags, s));
3556 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3557 return size;
3558error:
3559 local_irq_enable();
3560 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3561 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3562 __kmem_cache_free_bulk(s, i, p);
3563 return 0;
3564}
3565EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3566
3567#ifdef CONFIG_TRACING
3568void *
3569kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3570{
3571 void *ret;
3572
3573 ret = slab_alloc(cachep, flags, size, _RET_IP_);
3574
3575 ret = kasan_kmalloc(cachep, ret, size, flags);
3576 trace_kmalloc(_RET_IP_, ret,
3577 size, cachep->size, flags);
3578 return ret;
3579}
3580EXPORT_SYMBOL(kmem_cache_alloc_trace);
3581#endif
3582
3583#ifdef CONFIG_NUMA
3584/**
3585 * kmem_cache_alloc_node - Allocate an object on the specified node
3586 * @cachep: The cache to allocate from.
3587 * @flags: See kmalloc().
3588 * @nodeid: node number of the target node.
3589 *
3590 * Identical to kmem_cache_alloc but it will allocate memory on the given
3591 * node, which can improve the performance for cpu bound structures.
3592 *
3593 * Fallback to other node is possible if __GFP_THISNODE is not set.
3594 *
3595 * Return: pointer to the new object or %NULL in case of error
3596 */
3597void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3598{
3599 void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
3600
3601 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3602 cachep->object_size, cachep->size,
3603 flags, nodeid);
3604
3605 return ret;
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc_node);
3608
3609#ifdef CONFIG_TRACING
3610void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3611 gfp_t flags,
3612 int nodeid,
3613 size_t size)
3614{
3615 void *ret;
3616
3617 ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
3618
3619 ret = kasan_kmalloc(cachep, ret, size, flags);
3620 trace_kmalloc_node(_RET_IP_, ret,
3621 size, cachep->size,
3622 flags, nodeid);
3623 return ret;
3624}
3625EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3626#endif
3627
3628static __always_inline void *
3629__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3630{
3631 struct kmem_cache *cachep;
3632 void *ret;
3633
3634 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3635 return NULL;
3636 cachep = kmalloc_slab(size, flags);
3637 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3638 return cachep;
3639 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3640 ret = kasan_kmalloc(cachep, ret, size, flags);
3641
3642 return ret;
3643}
3644
3645void *__kmalloc_node(size_t size, gfp_t flags, int node)
3646{
3647 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3648}
3649EXPORT_SYMBOL(__kmalloc_node);
3650
3651void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3652 int node, unsigned long caller)
3653{
3654 return __do_kmalloc_node(size, flags, node, caller);
3655}
3656EXPORT_SYMBOL(__kmalloc_node_track_caller);
3657#endif /* CONFIG_NUMA */
3658
3659#ifdef CONFIG_PRINTK
3660void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3661{
3662 struct kmem_cache *cachep;
3663 unsigned int objnr;
3664 void *objp;
3665
3666 kpp->kp_ptr = object;
3667 kpp->kp_page = page;
3668 cachep = page->slab_cache;
3669 kpp->kp_slab_cache = cachep;
3670 objp = object - obj_offset(cachep);
3671 kpp->kp_data_offset = obj_offset(cachep);
3672 page = virt_to_head_page(objp);
3673 objnr = obj_to_index(cachep, page, objp);
3674 objp = index_to_obj(cachep, page, objnr);
3675 kpp->kp_objp = objp;
3676 if (DEBUG && cachep->flags & SLAB_STORE_USER)
3677 kpp->kp_ret = *dbg_userword(cachep, objp);
3678}
3679#endif
3680
3681/**
3682 * __do_kmalloc - allocate memory
3683 * @size: how many bytes of memory are required.
3684 * @flags: the type of memory to allocate (see kmalloc).
3685 * @caller: function caller for debug tracking of the caller
3686 *
3687 * Return: pointer to the allocated memory or %NULL in case of error
3688 */
3689static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690 unsigned long caller)
3691{
3692 struct kmem_cache *cachep;
3693 void *ret;
3694
3695 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3696 return NULL;
3697 cachep = kmalloc_slab(size, flags);
3698 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699 return cachep;
3700 ret = slab_alloc(cachep, flags, size, caller);
3701
3702 ret = kasan_kmalloc(cachep, ret, size, flags);
3703 trace_kmalloc(caller, ret,
3704 size, cachep->size, flags);
3705
3706 return ret;
3707}
3708
3709void *__kmalloc(size_t size, gfp_t flags)
3710{
3711 return __do_kmalloc(size, flags, _RET_IP_);
3712}
3713EXPORT_SYMBOL(__kmalloc);
3714
3715void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3716{
3717 return __do_kmalloc(size, flags, caller);
3718}
3719EXPORT_SYMBOL(__kmalloc_track_caller);
3720
3721/**
3722 * kmem_cache_free - Deallocate an object
3723 * @cachep: The cache the allocation was from.
3724 * @objp: The previously allocated object.
3725 *
3726 * Free an object which was previously allocated from this
3727 * cache.
3728 */
3729void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3730{
3731 unsigned long flags;
3732 cachep = cache_from_obj(cachep, objp);
3733 if (!cachep)
3734 return;
3735
3736 local_irq_save(flags);
3737 debug_check_no_locks_freed(objp, cachep->object_size);
3738 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3739 debug_check_no_obj_freed(objp, cachep->object_size);
3740 __cache_free(cachep, objp, _RET_IP_);
3741 local_irq_restore(flags);
3742
3743 trace_kmem_cache_free(_RET_IP_, objp, cachep->name);
3744}
3745EXPORT_SYMBOL(kmem_cache_free);
3746
3747void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3748{
3749 struct kmem_cache *s;
3750 size_t i;
3751
3752 local_irq_disable();
3753 for (i = 0; i < size; i++) {
3754 void *objp = p[i];
3755
3756 if (!orig_s) /* called via kfree_bulk */
3757 s = virt_to_cache(objp);
3758 else
3759 s = cache_from_obj(orig_s, objp);
3760 if (!s)
3761 continue;
3762
3763 debug_check_no_locks_freed(objp, s->object_size);
3764 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3765 debug_check_no_obj_freed(objp, s->object_size);
3766
3767 __cache_free(s, objp, _RET_IP_);
3768 }
3769 local_irq_enable();
3770
3771 /* FIXME: add tracing */
3772}
3773EXPORT_SYMBOL(kmem_cache_free_bulk);
3774
3775/**
3776 * kfree - free previously allocated memory
3777 * @objp: pointer returned by kmalloc.
3778 *
3779 * If @objp is NULL, no operation is performed.
3780 *
3781 * Don't free memory not originally allocated by kmalloc()
3782 * or you will run into trouble.
3783 */
3784void kfree(const void *objp)
3785{
3786 struct kmem_cache *c;
3787 unsigned long flags;
3788
3789 trace_kfree(_RET_IP_, objp);
3790
3791 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3792 return;
3793 local_irq_save(flags);
3794 kfree_debugcheck(objp);
3795 c = virt_to_cache(objp);
3796 if (!c) {
3797 local_irq_restore(flags);
3798 return;
3799 }
3800 debug_check_no_locks_freed(objp, c->object_size);
3801
3802 debug_check_no_obj_freed(objp, c->object_size);
3803 __cache_free(c, (void *)objp, _RET_IP_);
3804 local_irq_restore(flags);
3805}
3806EXPORT_SYMBOL(kfree);
3807
3808/*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
3811static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812{
3813 int ret;
3814 int node;
3815 struct kmem_cache_node *n;
3816
3817 for_each_online_node(node) {
3818 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819 if (ret)
3820 goto fail;
3821
3822 }
3823
3824 return 0;
3825
3826fail:
3827 if (!cachep->list.next) {
3828 /* Cache is not active yet. Roll back what we did */
3829 node--;
3830 while (node >= 0) {
3831 n = get_node(cachep, node);
3832 if (n) {
3833 kfree(n->shared);
3834 free_alien_cache(n->alien);
3835 kfree(n);
3836 cachep->node[node] = NULL;
3837 }
3838 node--;
3839 }
3840 }
3841 return -ENOMEM;
3842}
3843
3844/* Always called with the slab_mutex held */
3845static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 int batchcount, int shared, gfp_t gfp)
3847{
3848 struct array_cache __percpu *cpu_cache, *prev;
3849 int cpu;
3850
3851 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852 if (!cpu_cache)
3853 return -ENOMEM;
3854
3855 prev = cachep->cpu_cache;
3856 cachep->cpu_cache = cpu_cache;
3857 /*
3858 * Without a previous cpu_cache there's no need to synchronize remote
3859 * cpus, so skip the IPIs.
3860 */
3861 if (prev)
3862 kick_all_cpus_sync();
3863
3864 check_irq_on();
3865 cachep->batchcount = batchcount;
3866 cachep->limit = limit;
3867 cachep->shared = shared;
3868
3869 if (!prev)
3870 goto setup_node;
3871
3872 for_each_online_cpu(cpu) {
3873 LIST_HEAD(list);
3874 int node;
3875 struct kmem_cache_node *n;
3876 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878 node = cpu_to_mem(cpu);
3879 n = get_node(cachep, node);
3880 spin_lock_irq(&n->list_lock);
3881 free_block(cachep, ac->entry, ac->avail, node, &list);
3882 spin_unlock_irq(&n->list_lock);
3883 slabs_destroy(cachep, &list);
3884 }
3885 free_percpu(prev);
3886
3887setup_node:
3888 return setup_kmem_cache_nodes(cachep, gfp);
3889}
3890
3891/* Called with slab_mutex held always */
3892static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3893{
3894 int err;
3895 int limit = 0;
3896 int shared = 0;
3897 int batchcount = 0;
3898
3899 err = cache_random_seq_create(cachep, cachep->num, gfp);
3900 if (err)
3901 goto end;
3902
3903 if (limit && shared && batchcount)
3904 goto skip_setup;
3905 /*
3906 * The head array serves three purposes:
3907 * - create a LIFO ordering, i.e. return objects that are cache-warm
3908 * - reduce the number of spinlock operations.
3909 * - reduce the number of linked list operations on the slab and
3910 * bufctl chains: array operations are cheaper.
3911 * The numbers are guessed, we should auto-tune as described by
3912 * Bonwick.
3913 */
3914 if (cachep->size > 131072)
3915 limit = 1;
3916 else if (cachep->size > PAGE_SIZE)
3917 limit = 8;
3918 else if (cachep->size > 1024)
3919 limit = 24;
3920 else if (cachep->size > 256)
3921 limit = 54;
3922 else
3923 limit = 120;
3924
3925 /*
3926 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3927 * allocation behaviour: Most allocs on one cpu, most free operations
3928 * on another cpu. For these cases, an efficient object passing between
3929 * cpus is necessary. This is provided by a shared array. The array
3930 * replaces Bonwick's magazine layer.
3931 * On uniprocessor, it's functionally equivalent (but less efficient)
3932 * to a larger limit. Thus disabled by default.
3933 */
3934 shared = 0;
3935 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3936 shared = 8;
3937
3938#if DEBUG
3939 /*
3940 * With debugging enabled, large batchcount lead to excessively long
3941 * periods with disabled local interrupts. Limit the batchcount
3942 */
3943 if (limit > 32)
3944 limit = 32;
3945#endif
3946 batchcount = (limit + 1) / 2;
3947skip_setup:
3948 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3949end:
3950 if (err)
3951 pr_err("enable_cpucache failed for %s, error %d\n",
3952 cachep->name, -err);
3953 return err;
3954}
3955
3956/*
3957 * Drain an array if it contains any elements taking the node lock only if
3958 * necessary. Note that the node listlock also protects the array_cache
3959 * if drain_array() is used on the shared array.
3960 */
3961static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3962 struct array_cache *ac, int node)
3963{
3964 LIST_HEAD(list);
3965
3966 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3967 check_mutex_acquired();
3968
3969 if (!ac || !ac->avail)
3970 return;
3971
3972 if (ac->touched) {
3973 ac->touched = 0;
3974 return;
3975 }
3976
3977 spin_lock_irq(&n->list_lock);
3978 drain_array_locked(cachep, ac, node, false, &list);
3979 spin_unlock_irq(&n->list_lock);
3980
3981 slabs_destroy(cachep, &list);
3982}
3983
3984/**
3985 * cache_reap - Reclaim memory from caches.
3986 * @w: work descriptor
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
3995 */
3996static void cache_reap(struct work_struct *w)
3997{
3998 struct kmem_cache *searchp;
3999 struct kmem_cache_node *n;
4000 int node = numa_mem_id();
4001 struct delayed_work *work = to_delayed_work(w);
4002
4003 if (!mutex_trylock(&slab_mutex))
4004 /* Give up. Setup the next iteration. */
4005 goto out;
4006
4007 list_for_each_entry(searchp, &slab_caches, list) {
4008 check_irq_on();
4009
4010 /*
4011 * We only take the node lock if absolutely necessary and we
4012 * have established with reasonable certainty that
4013 * we can do some work if the lock was obtained.
4014 */
4015 n = get_node(searchp, node);
4016
4017 reap_alien(searchp, n);
4018
4019 drain_array(searchp, n, cpu_cache_get(searchp), node);
4020
4021 /*
4022 * These are racy checks but it does not matter
4023 * if we skip one check or scan twice.
4024 */
4025 if (time_after(n->next_reap, jiffies))
4026 goto next;
4027
4028 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4029
4030 drain_array(searchp, n, n->shared, node);
4031
4032 if (n->free_touched)
4033 n->free_touched = 0;
4034 else {
4035 int freed;
4036
4037 freed = drain_freelist(searchp, n, (n->free_limit +
4038 5 * searchp->num - 1) / (5 * searchp->num));
4039 STATS_ADD_REAPED(searchp, freed);
4040 }
4041next:
4042 cond_resched();
4043 }
4044 check_irq_on();
4045 mutex_unlock(&slab_mutex);
4046 next_reap_node();
4047out:
4048 /* Set up the next iteration */
4049 schedule_delayed_work_on(smp_processor_id(), work,
4050 round_jiffies_relative(REAPTIMEOUT_AC));
4051}
4052
4053void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4054{
4055 unsigned long active_objs, num_objs, active_slabs;
4056 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4057 unsigned long free_slabs = 0;
4058 int node;
4059 struct kmem_cache_node *n;
4060
4061 for_each_kmem_cache_node(cachep, node, n) {
4062 check_irq_on();
4063 spin_lock_irq(&n->list_lock);
4064
4065 total_slabs += n->total_slabs;
4066 free_slabs += n->free_slabs;
4067 free_objs += n->free_objects;
4068
4069 if (n->shared)
4070 shared_avail += n->shared->avail;
4071
4072 spin_unlock_irq(&n->list_lock);
4073 }
4074 num_objs = total_slabs * cachep->num;
4075 active_slabs = total_slabs - free_slabs;
4076 active_objs = num_objs - free_objs;
4077
4078 sinfo->active_objs = active_objs;
4079 sinfo->num_objs = num_objs;
4080 sinfo->active_slabs = active_slabs;
4081 sinfo->num_slabs = total_slabs;
4082 sinfo->shared_avail = shared_avail;
4083 sinfo->limit = cachep->limit;
4084 sinfo->batchcount = cachep->batchcount;
4085 sinfo->shared = cachep->shared;
4086 sinfo->objects_per_slab = cachep->num;
4087 sinfo->cache_order = cachep->gfporder;
4088}
4089
4090void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4091{
4092#if STATS
4093 { /* node stats */
4094 unsigned long high = cachep->high_mark;
4095 unsigned long allocs = cachep->num_allocations;
4096 unsigned long grown = cachep->grown;
4097 unsigned long reaped = cachep->reaped;
4098 unsigned long errors = cachep->errors;
4099 unsigned long max_freeable = cachep->max_freeable;
4100 unsigned long node_allocs = cachep->node_allocs;
4101 unsigned long node_frees = cachep->node_frees;
4102 unsigned long overflows = cachep->node_overflow;
4103
4104 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4105 allocs, high, grown,
4106 reaped, errors, max_freeable, node_allocs,
4107 node_frees, overflows);
4108 }
4109 /* cpu stats */
4110 {
4111 unsigned long allochit = atomic_read(&cachep->allochit);
4112 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4113 unsigned long freehit = atomic_read(&cachep->freehit);
4114 unsigned long freemiss = atomic_read(&cachep->freemiss);
4115
4116 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4117 allochit, allocmiss, freehit, freemiss);
4118 }
4119#endif
4120}
4121
4122#define MAX_SLABINFO_WRITE 128
4123/**
4124 * slabinfo_write - Tuning for the slab allocator
4125 * @file: unused
4126 * @buffer: user buffer
4127 * @count: data length
4128 * @ppos: unused
4129 *
4130 * Return: %0 on success, negative error code otherwise.
4131 */
4132ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4133 size_t count, loff_t *ppos)
4134{
4135 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4136 int limit, batchcount, shared, res;
4137 struct kmem_cache *cachep;
4138
4139 if (count > MAX_SLABINFO_WRITE)
4140 return -EINVAL;
4141 if (copy_from_user(&kbuf, buffer, count))
4142 return -EFAULT;
4143 kbuf[MAX_SLABINFO_WRITE] = '\0';
4144
4145 tmp = strchr(kbuf, ' ');
4146 if (!tmp)
4147 return -EINVAL;
4148 *tmp = '\0';
4149 tmp++;
4150 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4151 return -EINVAL;
4152
4153 /* Find the cache in the chain of caches. */
4154 mutex_lock(&slab_mutex);
4155 res = -EINVAL;
4156 list_for_each_entry(cachep, &slab_caches, list) {
4157 if (!strcmp(cachep->name, kbuf)) {
4158 if (limit < 1 || batchcount < 1 ||
4159 batchcount > limit || shared < 0) {
4160 res = 0;
4161 } else {
4162 res = do_tune_cpucache(cachep, limit,
4163 batchcount, shared,
4164 GFP_KERNEL);
4165 }
4166 break;
4167 }
4168 }
4169 mutex_unlock(&slab_mutex);
4170 if (res >= 0)
4171 res = count;
4172 return res;
4173}
4174
4175#ifdef CONFIG_HARDENED_USERCOPY
4176/*
4177 * Rejects incorrectly sized objects and objects that are to be copied
4178 * to/from userspace but do not fall entirely within the containing slab
4179 * cache's usercopy region.
4180 *
4181 * Returns NULL if check passes, otherwise const char * to name of cache
4182 * to indicate an error.
4183 */
4184void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4185 bool to_user)
4186{
4187 struct kmem_cache *cachep;
4188 unsigned int objnr;
4189 unsigned long offset;
4190
4191 ptr = kasan_reset_tag(ptr);
4192
4193 /* Find and validate object. */
4194 cachep = page->slab_cache;
4195 objnr = obj_to_index(cachep, page, (void *)ptr);
4196 BUG_ON(objnr >= cachep->num);
4197
4198 /* Find offset within object. */
4199 if (is_kfence_address(ptr))
4200 offset = ptr - kfence_object_start(ptr);
4201 else
4202 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4203
4204 /* Allow address range falling entirely within usercopy region. */
4205 if (offset >= cachep->useroffset &&
4206 offset - cachep->useroffset <= cachep->usersize &&
4207 n <= cachep->useroffset - offset + cachep->usersize)
4208 return;
4209
4210 /*
4211 * If the copy is still within the allocated object, produce
4212 * a warning instead of rejecting the copy. This is intended
4213 * to be a temporary method to find any missing usercopy
4214 * whitelists.
4215 */
4216 if (usercopy_fallback &&
4217 offset <= cachep->object_size &&
4218 n <= cachep->object_size - offset) {
4219 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4220 return;
4221 }
4222
4223 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4224}
4225#endif /* CONFIG_HARDENED_USERCOPY */
4226
4227/**
4228 * __ksize -- Uninstrumented ksize.
4229 * @objp: pointer to the object
4230 *
4231 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4232 * safety checks as ksize() with KASAN instrumentation enabled.
4233 *
4234 * Return: size of the actual memory used by @objp in bytes
4235 */
4236size_t __ksize(const void *objp)
4237{
4238 struct kmem_cache *c;
4239 size_t size;
4240
4241 BUG_ON(!objp);
4242 if (unlikely(objp == ZERO_SIZE_PTR))
4243 return 0;
4244
4245 c = virt_to_cache(objp);
4246 size = c ? c->object_size : 0;
4247
4248 return size;
4249}
4250EXPORT_SYMBOL(__ksize);