Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.17
 
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * Copyright (C) 2017		Facebook Inc.
   8 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
   9 *
  10 * This file is released under the GPLv2 license.
  11 *
  12 * The percpu allocator handles both static and dynamic areas.  Percpu
  13 * areas are allocated in chunks which are divided into units.  There is
  14 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  15 * based on NUMA properties of the machine.
  16 *
  17 *  c0                           c1                         c2
  18 *  -------------------          -------------------        ------------
  19 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  20 *  -------------------  ......  -------------------  ....  ------------
  21 *
  22 * Allocation is done by offsets into a unit's address space.  Ie., an
  23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  24 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  25 * and even sparse.  Access is handled by configuring percpu base
  26 * registers according to the cpu to unit mappings and offsetting the
  27 * base address using pcpu_unit_size.
  28 *
  29 * There is special consideration for the first chunk which must handle
  30 * the static percpu variables in the kernel image as allocation services
  31 * are not online yet.  In short, the first chunk is structured like so:
  32 *
  33 *                  <Static | [Reserved] | Dynamic>
  34 *
  35 * The static data is copied from the original section managed by the
  36 * linker.  The reserved section, if non-zero, primarily manages static
  37 * percpu variables from kernel modules.  Finally, the dynamic section
  38 * takes care of normal allocations.
  39 *
  40 * The allocator organizes chunks into lists according to free size and
  41 * tries to allocate from the fullest chunk first.  Each chunk is managed
  42 * by a bitmap with metadata blocks.  The allocation map is updated on
  43 * every allocation and free to reflect the current state while the boundary
 
 
 
 
 
  44 * map is only updated on allocation.  Each metadata block contains
  45 * information to help mitigate the need to iterate over large portions
  46 * of the bitmap.  The reverse mapping from page to chunk is stored in
  47 * the page's index.  Lastly, units are lazily backed and grow in unison.
  48 *
  49 * There is a unique conversion that goes on here between bytes and bits.
  50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  51 * tracks the number of pages it is responsible for in nr_pages.  Helper
  52 * functions are used to convert from between the bytes, bits, and blocks.
  53 * All hints are managed in bits unless explicitly stated.
  54 *
  55 * To use this allocator, arch code should do the following:
  56 *
  57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  58 *   regular address to percpu pointer and back if they need to be
  59 *   different from the default
  60 *
  61 * - use pcpu_setup_first_chunk() during percpu area initialization to
  62 *   setup the first chunk containing the kernel static percpu area
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include <linux/bitmap.h>
  68#include <linux/bootmem.h>
 
  69#include <linux/err.h>
  70#include <linux/lcm.h>
  71#include <linux/list.h>
  72#include <linux/log2.h>
  73#include <linux/mm.h>
  74#include <linux/module.h>
  75#include <linux/mutex.h>
  76#include <linux/percpu.h>
  77#include <linux/pfn.h>
  78#include <linux/slab.h>
  79#include <linux/spinlock.h>
  80#include <linux/vmalloc.h>
  81#include <linux/workqueue.h>
  82#include <linux/kmemleak.h>
  83#include <linux/sched.h>
 
 
  84
  85#include <asm/cacheflush.h>
  86#include <asm/sections.h>
  87#include <asm/tlbflush.h>
  88#include <asm/io.h>
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/percpu.h>
  92
  93#include "percpu-internal.h"
  94
  95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
 
 
 
  96#define PCPU_SLOT_BASE_SHIFT		5
 
 
  97
  98#define PCPU_EMPTY_POP_PAGES_LOW	2
  99#define PCPU_EMPTY_POP_PAGES_HIGH	4
 100
 101#ifdef CONFIG_SMP
 102/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 103#ifndef __addr_to_pcpu_ptr
 104#define __addr_to_pcpu_ptr(addr)					\
 105	(void __percpu *)((unsigned long)(addr) -			\
 106			  (unsigned long)pcpu_base_addr	+		\
 107			  (unsigned long)__per_cpu_start)
 108#endif
 109#ifndef __pcpu_ptr_to_addr
 110#define __pcpu_ptr_to_addr(ptr)						\
 111	(void __force *)((unsigned long)(ptr) +				\
 112			 (unsigned long)pcpu_base_addr -		\
 113			 (unsigned long)__per_cpu_start)
 114#endif
 115#else	/* CONFIG_SMP */
 116/* on UP, it's always identity mapped */
 117#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 118#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 119#endif	/* CONFIG_SMP */
 120
 121static int pcpu_unit_pages __ro_after_init;
 122static int pcpu_unit_size __ro_after_init;
 123static int pcpu_nr_units __ro_after_init;
 124static int pcpu_atom_size __ro_after_init;
 125int pcpu_nr_slots __ro_after_init;
 
 
 
 126static size_t pcpu_chunk_struct_size __ro_after_init;
 127
 128/* cpus with the lowest and highest unit addresses */
 129static unsigned int pcpu_low_unit_cpu __ro_after_init;
 130static unsigned int pcpu_high_unit_cpu __ro_after_init;
 131
 132/* the address of the first chunk which starts with the kernel static area */
 133void *pcpu_base_addr __ro_after_init;
 134EXPORT_SYMBOL_GPL(pcpu_base_addr);
 135
 136static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
 137const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
 138
 139/* group information, used for vm allocation */
 140static int pcpu_nr_groups __ro_after_init;
 141static const unsigned long *pcpu_group_offsets __ro_after_init;
 142static const size_t *pcpu_group_sizes __ro_after_init;
 143
 144/*
 145 * The first chunk which always exists.  Note that unlike other
 146 * chunks, this one can be allocated and mapped in several different
 147 * ways and thus often doesn't live in the vmalloc area.
 148 */
 149struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 150
 151/*
 152 * Optional reserved chunk.  This chunk reserves part of the first
 153 * chunk and serves it for reserved allocations.  When the reserved
 154 * region doesn't exist, the following variable is NULL.
 155 */
 156struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 157
 158DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 159static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 160
 161struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
 162
 163/* chunks which need their map areas extended, protected by pcpu_lock */
 164static LIST_HEAD(pcpu_map_extend_chunks);
 165
 166/*
 167 * The number of empty populated pages, protected by pcpu_lock.  The
 168 * reserved chunk doesn't contribute to the count.
 169 */
 170int pcpu_nr_empty_pop_pages;
 171
 172/*
 
 
 
 
 
 
 
 
 173 * Balance work is used to populate or destroy chunks asynchronously.  We
 174 * try to keep the number of populated free pages between
 175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 176 * empty chunk.
 177 */
 178static void pcpu_balance_workfn(struct work_struct *work);
 179static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 180static bool pcpu_async_enabled __read_mostly;
 181static bool pcpu_atomic_alloc_failed;
 182
 183static void pcpu_schedule_balance_work(void)
 184{
 185	if (pcpu_async_enabled)
 186		schedule_work(&pcpu_balance_work);
 187}
 188
 189/**
 190 * pcpu_addr_in_chunk - check if the address is served from this chunk
 191 * @chunk: chunk of interest
 192 * @addr: percpu address
 193 *
 194 * RETURNS:
 195 * True if the address is served from this chunk.
 196 */
 197static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 198{
 199	void *start_addr, *end_addr;
 200
 201	if (!chunk)
 202		return false;
 203
 204	start_addr = chunk->base_addr + chunk->start_offset;
 205	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 206		   chunk->end_offset;
 207
 208	return addr >= start_addr && addr < end_addr;
 209}
 210
 211static int __pcpu_size_to_slot(int size)
 212{
 213	int highbit = fls(size);	/* size is in bytes */
 214	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 215}
 216
 217static int pcpu_size_to_slot(int size)
 218{
 219	if (size == pcpu_unit_size)
 220		return pcpu_nr_slots - 1;
 221	return __pcpu_size_to_slot(size);
 222}
 223
 224static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 225{
 226	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
 
 
 
 227		return 0;
 228
 229	return pcpu_size_to_slot(chunk->free_bytes);
 230}
 231
 232/* set the pointer to a chunk in a page struct */
 233static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 234{
 235	page->index = (unsigned long)pcpu;
 236}
 237
 238/* obtain pointer to a chunk from a page struct */
 239static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 240{
 241	return (struct pcpu_chunk *)page->index;
 242}
 243
 244static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 245{
 246	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 247}
 248
 249static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 250{
 251	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 252}
 253
 254static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 255				     unsigned int cpu, int page_idx)
 256{
 257	return (unsigned long)chunk->base_addr +
 258	       pcpu_unit_page_offset(cpu, page_idx);
 259}
 260
 261static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
 262{
 263	*rs = find_next_zero_bit(bitmap, end, *rs);
 264	*re = find_next_bit(bitmap, end, *rs + 1);
 265}
 266
 267static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
 268{
 269	*rs = find_next_bit(bitmap, end, *rs);
 270	*re = find_next_zero_bit(bitmap, end, *rs + 1);
 271}
 272
 273/*
 274 * Bitmap region iterators.  Iterates over the bitmap between
 275 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 276 * and will be set to start and end index of the current free region.
 277 */
 278#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
 279	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
 280	     (rs) < (re);						     \
 281	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
 282
 283#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
 284	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
 285	     (rs) < (re);						     \
 286	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
 287
 288/*
 289 * The following are helper functions to help access bitmaps and convert
 290 * between bitmap offsets to address offsets.
 291 */
 292static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 293{
 294	return chunk->alloc_map +
 295	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 296}
 297
 298static unsigned long pcpu_off_to_block_index(int off)
 299{
 300	return off / PCPU_BITMAP_BLOCK_BITS;
 301}
 302
 303static unsigned long pcpu_off_to_block_off(int off)
 304{
 305	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 306}
 307
 308static unsigned long pcpu_block_off_to_off(int index, int off)
 309{
 310	return index * PCPU_BITMAP_BLOCK_BITS + off;
 311}
 312
 313/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314 * pcpu_next_md_free_region - finds the next hint free area
 315 * @chunk: chunk of interest
 316 * @bit_off: chunk offset
 317 * @bits: size of free area
 318 *
 319 * Helper function for pcpu_for_each_md_free_region.  It checks
 320 * block->contig_hint and performs aggregation across blocks to find the
 321 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 322 * loop.
 323 */
 324static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 325				     int *bits)
 326{
 327	int i = pcpu_off_to_block_index(*bit_off);
 328	int block_off = pcpu_off_to_block_off(*bit_off);
 329	struct pcpu_block_md *block;
 330
 331	*bits = 0;
 332	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 333	     block++, i++) {
 334		/* handles contig area across blocks */
 335		if (*bits) {
 336			*bits += block->left_free;
 337			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 338				continue;
 339			return;
 340		}
 341
 342		/*
 343		 * This checks three things.  First is there a contig_hint to
 344		 * check.  Second, have we checked this hint before by
 345		 * comparing the block_off.  Third, is this the same as the
 346		 * right contig hint.  In the last case, it spills over into
 347		 * the next block and should be handled by the contig area
 348		 * across blocks code.
 349		 */
 350		*bits = block->contig_hint;
 351		if (*bits && block->contig_hint_start >= block_off &&
 352		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 353			*bit_off = pcpu_block_off_to_off(i,
 354					block->contig_hint_start);
 355			return;
 356		}
 357		/* reset to satisfy the second predicate above */
 358		block_off = 0;
 359
 360		*bits = block->right_free;
 361		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 362	}
 363}
 364
 365/**
 366 * pcpu_next_fit_region - finds fit areas for a given allocation request
 367 * @chunk: chunk of interest
 368 * @alloc_bits: size of allocation
 369 * @align: alignment of area (max PAGE_SIZE)
 370 * @bit_off: chunk offset
 371 * @bits: size of free area
 372 *
 373 * Finds the next free region that is viable for use with a given size and
 374 * alignment.  This only returns if there is a valid area to be used for this
 375 * allocation.  block->first_free is returned if the allocation request fits
 376 * within the block to see if the request can be fulfilled prior to the contig
 377 * hint.
 378 */
 379static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 380				 int align, int *bit_off, int *bits)
 381{
 382	int i = pcpu_off_to_block_index(*bit_off);
 383	int block_off = pcpu_off_to_block_off(*bit_off);
 384	struct pcpu_block_md *block;
 385
 386	*bits = 0;
 387	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 388	     block++, i++) {
 389		/* handles contig area across blocks */
 390		if (*bits) {
 391			*bits += block->left_free;
 392			if (*bits >= alloc_bits)
 393				return;
 394			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 395				continue;
 396		}
 397
 398		/* check block->contig_hint */
 399		*bits = ALIGN(block->contig_hint_start, align) -
 400			block->contig_hint_start;
 401		/*
 402		 * This uses the block offset to determine if this has been
 403		 * checked in the prior iteration.
 404		 */
 405		if (block->contig_hint &&
 406		    block->contig_hint_start >= block_off &&
 407		    block->contig_hint >= *bits + alloc_bits) {
 
 
 408			*bits += alloc_bits + block->contig_hint_start -
 409				 block->first_free;
 410			*bit_off = pcpu_block_off_to_off(i, block->first_free);
 411			return;
 412		}
 413		/* reset to satisfy the second predicate above */
 414		block_off = 0;
 415
 416		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 417				 align);
 418		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 419		*bit_off = pcpu_block_off_to_off(i, *bit_off);
 420		if (*bits >= alloc_bits)
 421			return;
 422	}
 423
 424	/* no valid offsets were found - fail condition */
 425	*bit_off = pcpu_chunk_map_bits(chunk);
 426}
 427
 428/*
 429 * Metadata free area iterators.  These perform aggregation of free areas
 430 * based on the metadata blocks and return the offset @bit_off and size in
 431 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 432 * a fit is found for the allocation request.
 433 */
 434#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
 435	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
 436	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
 437	     (bit_off) += (bits) + 1,					\
 438	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 439
 440#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 441	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 442				  &(bits));				      \
 443	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
 444	     (bit_off) += (bits),					      \
 445	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 446				  &(bits)))
 447
 448/**
 449 * pcpu_mem_zalloc - allocate memory
 450 * @size: bytes to allocate
 451 * @gfp: allocation flags
 452 *
 453 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 455 * This is to facilitate passing through whitelisted flags.  The
 456 * returned memory is always zeroed.
 457 *
 458 * RETURNS:
 459 * Pointer to the allocated area on success, NULL on failure.
 460 */
 461static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 462{
 463	if (WARN_ON_ONCE(!slab_is_available()))
 464		return NULL;
 465
 466	if (size <= PAGE_SIZE)
 467		return kzalloc(size, gfp);
 468	else
 469		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
 470}
 471
 472/**
 473 * pcpu_mem_free - free memory
 474 * @ptr: memory to free
 475 *
 476 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 477 */
 478static void pcpu_mem_free(void *ptr)
 479{
 480	kvfree(ptr);
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483/**
 484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 485 * @chunk: chunk of interest
 486 * @oslot: the previous slot it was on
 487 *
 488 * This function is called after an allocation or free changed @chunk.
 489 * New slot according to the changed state is determined and @chunk is
 490 * moved to the slot.  Note that the reserved chunk is never put on
 491 * chunk slots.
 492 *
 493 * CONTEXT:
 494 * pcpu_lock.
 495 */
 496static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 497{
 498	int nslot = pcpu_chunk_slot(chunk);
 499
 500	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 501		if (oslot < nslot)
 502			list_move(&chunk->list, &pcpu_slot[nslot]);
 503		else
 504			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 505	}
 506}
 507
 508/**
 509 * pcpu_cnt_pop_pages- counts populated backing pages in range
 510 * @chunk: chunk of interest
 511 * @bit_off: start offset
 512 * @bits: size of area to check
 513 *
 514 * Calculates the number of populated pages in the region
 515 * [page_start, page_end).  This keeps track of how many empty populated
 516 * pages are available and decide if async work should be scheduled.
 517 *
 518 * RETURNS:
 519 * The nr of populated pages.
 520 */
 521static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
 522				     int bits)
 523{
 524	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
 525	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 526
 527	if (page_start >= page_end)
 528		return 0;
 
 
 
 
 529
 530	/*
 531	 * bitmap_weight counts the number of bits set in a bitmap up to
 532	 * the specified number of bits.  This is counting the populated
 533	 * pages up to page_end and then subtracting the populated pages
 534	 * up to page_start to count the populated pages in
 535	 * [page_start, page_end).
 536	 */
 537	return bitmap_weight(chunk->populated, page_end) -
 538	       bitmap_weight(chunk->populated, page_start);
 539}
 540
 541/**
 542 * pcpu_chunk_update - updates the chunk metadata given a free area
 543 * @chunk: chunk of interest
 544 * @bit_off: chunk offset
 545 * @bits: size of free area
 546 *
 547 * This updates the chunk's contig hint and starting offset given a free area.
 548 * Choose the best starting offset if the contig hint is equal.
 
 549 */
 550static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
 551{
 552	if (bits > chunk->contig_bits) {
 553		chunk->contig_bits_start = bit_off;
 554		chunk->contig_bits = bits;
 555	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
 556		   (!bit_off ||
 557		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
 558		/* use the start with the best alignment */
 559		chunk->contig_bits_start = bit_off;
 560	}
 561}
 562
 563/**
 564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 565 * @chunk: chunk of interest
 566 *
 567 * Iterates over the metadata blocks to find the largest contig area.
 568 * It also counts the populated pages and uses the delta to update the
 569 * global count.
 570 *
 571 * Updates:
 572 *      chunk->contig_bits
 573 *      chunk->contig_bits_start
 574 *      nr_empty_pop_pages (chunk and global)
 575 */
 576static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
 577{
 578	int bit_off, bits, nr_empty_pop_pages;
 579
 580	/* clear metadata */
 581	chunk->contig_bits = 0;
 582
 583	bit_off = chunk->first_bit;
 584	bits = nr_empty_pop_pages = 0;
 585	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
 586		pcpu_chunk_update(chunk, bit_off, bits);
 587
 588		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
 589	}
 590
 591	/*
 592	 * Keep track of nr_empty_pop_pages.
 593	 *
 594	 * The chunk maintains the previous number of free pages it held,
 595	 * so the delta is used to update the global counter.  The reserved
 596	 * chunk is not part of the free page count as they are populated
 597	 * at init and are special to serving reserved allocations.
 598	 */
 599	if (chunk != pcpu_reserved_chunk)
 600		pcpu_nr_empty_pop_pages +=
 601			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
 602
 603	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
 604}
 605
 606/**
 607 * pcpu_block_update - updates a block given a free area
 608 * @block: block of interest
 609 * @start: start offset in block
 610 * @end: end offset in block
 611 *
 612 * Updates a block given a known free area.  The region [start, end) is
 613 * expected to be the entirety of the free area within a block.  Chooses
 614 * the best starting offset if the contig hints are equal.
 615 */
 616static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 617{
 618	int contig = end - start;
 619
 620	block->first_free = min(block->first_free, start);
 621	if (start == 0)
 622		block->left_free = contig;
 623
 624	if (end == PCPU_BITMAP_BLOCK_BITS)
 625		block->right_free = contig;
 626
 627	if (contig > block->contig_hint) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628		block->contig_hint_start = start;
 629		block->contig_hint = contig;
 630	} else if (block->contig_hint_start && contig == block->contig_hint &&
 631		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
 632		/* use the start with the best alignment */
 633		block->contig_hint_start = start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	}
 635}
 636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637/**
 638 * pcpu_block_refresh_hint
 639 * @chunk: chunk of interest
 640 * @index: index of the metadata block
 641 *
 642 * Scans over the block beginning at first_free and updates the block
 643 * metadata accordingly.
 644 */
 645static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 646{
 647	struct pcpu_block_md *block = chunk->md_blocks + index;
 648	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 649	int rs, re;	/* region start, region end */
 650
 651	/* clear hints */
 652	block->contig_hint = 0;
 653	block->left_free = block->right_free = 0;
 
 
 
 
 
 
 
 
 
 654
 655	/* iterate over free areas and update the contig hints */
 656	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
 657				   PCPU_BITMAP_BLOCK_BITS) {
 658		pcpu_block_update(block, rs, re);
 659	}
 660}
 661
 662/**
 663 * pcpu_block_update_hint_alloc - update hint on allocation path
 664 * @chunk: chunk of interest
 665 * @bit_off: chunk offset
 666 * @bits: size of request
 667 *
 668 * Updates metadata for the allocation path.  The metadata only has to be
 669 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 670 * scans are required if the block's contig hint is broken.
 671 */
 672static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 673					 int bits)
 674{
 
 
 675	struct pcpu_block_md *s_block, *e_block, *block;
 676	int s_index, e_index;	/* block indexes of the freed allocation */
 677	int s_off, e_off;	/* block offsets of the freed allocation */
 678
 679	/*
 680	 * Calculate per block offsets.
 681	 * The calculation uses an inclusive range, but the resulting offsets
 682	 * are [start, end).  e_index always points to the last block in the
 683	 * range.
 684	 */
 685	s_index = pcpu_off_to_block_index(bit_off);
 686	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 687	s_off = pcpu_off_to_block_off(bit_off);
 688	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 689
 690	s_block = chunk->md_blocks + s_index;
 691	e_block = chunk->md_blocks + e_index;
 692
 693	/*
 694	 * Update s_block.
 695	 * block->first_free must be updated if the allocation takes its place.
 696	 * If the allocation breaks the contig_hint, a scan is required to
 697	 * restore this hint.
 698	 */
 
 
 
 699	if (s_off == s_block->first_free)
 700		s_block->first_free = find_next_zero_bit(
 701					pcpu_index_alloc_map(chunk, s_index),
 702					PCPU_BITMAP_BLOCK_BITS,
 703					s_off + bits);
 704
 705	if (s_off >= s_block->contig_hint_start &&
 706	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
 
 
 
 
 
 
 
 
 
 707		/* block contig hint is broken - scan to fix it */
 
 
 708		pcpu_block_refresh_hint(chunk, s_index);
 709	} else {
 710		/* update left and right contig manually */
 711		s_block->left_free = min(s_block->left_free, s_off);
 712		if (s_index == e_index)
 713			s_block->right_free = min_t(int, s_block->right_free,
 714					PCPU_BITMAP_BLOCK_BITS - e_off);
 715		else
 716			s_block->right_free = 0;
 717	}
 718
 719	/*
 720	 * Update e_block.
 721	 */
 722	if (s_index != e_index) {
 
 
 
 723		/*
 724		 * When the allocation is across blocks, the end is along
 725		 * the left part of the e_block.
 726		 */
 727		e_block->first_free = find_next_zero_bit(
 728				pcpu_index_alloc_map(chunk, e_index),
 729				PCPU_BITMAP_BLOCK_BITS, e_off);
 730
 731		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 732			/* reset the block */
 733			e_block++;
 734		} else {
 
 
 
 
 735			if (e_off > e_block->contig_hint_start) {
 736				/* contig hint is broken - scan to fix it */
 737				pcpu_block_refresh_hint(chunk, e_index);
 738			} else {
 739				e_block->left_free = 0;
 740				e_block->right_free =
 741					min_t(int, e_block->right_free,
 742					      PCPU_BITMAP_BLOCK_BITS - e_off);
 743			}
 744		}
 745
 746		/* update in-between md_blocks */
 
 747		for (block = s_block + 1; block < e_block; block++) {
 
 748			block->contig_hint = 0;
 749			block->left_free = 0;
 750			block->right_free = 0;
 751		}
 752	}
 753
 
 
 
 
 
 
 
 
 
 
 754	/*
 755	 * The only time a full chunk scan is required is if the chunk
 756	 * contig hint is broken.  Otherwise, it means a smaller space
 757	 * was used and therefore the chunk contig hint is still correct.
 758	 */
 759	if (bit_off >= chunk->contig_bits_start  &&
 760	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
 761		pcpu_chunk_refresh_hint(chunk);
 
 
 
 762}
 763
 764/**
 765 * pcpu_block_update_hint_free - updates the block hints on the free path
 766 * @chunk: chunk of interest
 767 * @bit_off: chunk offset
 768 * @bits: size of request
 769 *
 770 * Updates metadata for the allocation path.  This avoids a blind block
 771 * refresh by making use of the block contig hints.  If this fails, it scans
 772 * forward and backward to determine the extent of the free area.  This is
 773 * capped at the boundary of blocks.
 774 *
 775 * A chunk update is triggered if a page becomes free, a block becomes free,
 776 * or the free spans across blocks.  This tradeoff is to minimize iterating
 777 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 778 * may be off by up to a page, but it will never be more than the available
 779 * space.  If the contig hint is contained in one block, it will be accurate.
 
 780 */
 781static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 782					int bits)
 783{
 
 784	struct pcpu_block_md *s_block, *e_block, *block;
 785	int s_index, e_index;	/* block indexes of the freed allocation */
 786	int s_off, e_off;	/* block offsets of the freed allocation */
 787	int start, end;		/* start and end of the whole free area */
 788
 789	/*
 790	 * Calculate per block offsets.
 791	 * The calculation uses an inclusive range, but the resulting offsets
 792	 * are [start, end).  e_index always points to the last block in the
 793	 * range.
 794	 */
 795	s_index = pcpu_off_to_block_index(bit_off);
 796	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 797	s_off = pcpu_off_to_block_off(bit_off);
 798	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 799
 800	s_block = chunk->md_blocks + s_index;
 801	e_block = chunk->md_blocks + e_index;
 802
 803	/*
 804	 * Check if the freed area aligns with the block->contig_hint.
 805	 * If it does, then the scan to find the beginning/end of the
 806	 * larger free area can be avoided.
 807	 *
 808	 * start and end refer to beginning and end of the free area
 809	 * within each their respective blocks.  This is not necessarily
 810	 * the entire free area as it may span blocks past the beginning
 811	 * or end of the block.
 812	 */
 813	start = s_off;
 814	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 815		start = s_block->contig_hint_start;
 816	} else {
 817		/*
 818		 * Scan backwards to find the extent of the free area.
 819		 * find_last_bit returns the starting bit, so if the start bit
 820		 * is returned, that means there was no last bit and the
 821		 * remainder of the chunk is free.
 822		 */
 823		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
 824					  start);
 825		start = (start == l_bit) ? 0 : l_bit + 1;
 826	}
 827
 828	end = e_off;
 829	if (e_off == e_block->contig_hint_start)
 830		end = e_block->contig_hint_start + e_block->contig_hint;
 831	else
 832		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
 833				    PCPU_BITMAP_BLOCK_BITS, end);
 834
 835	/* update s_block */
 836	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
 
 
 837	pcpu_block_update(s_block, start, e_off);
 838
 839	/* freeing in the same block */
 840	if (s_index != e_index) {
 841		/* update e_block */
 
 
 842		pcpu_block_update(e_block, 0, end);
 843
 844		/* reset md_blocks in the middle */
 
 845		for (block = s_block + 1; block < e_block; block++) {
 846			block->first_free = 0;
 
 847			block->contig_hint_start = 0;
 848			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
 849			block->left_free = PCPU_BITMAP_BLOCK_BITS;
 850			block->right_free = PCPU_BITMAP_BLOCK_BITS;
 851		}
 852	}
 853
 
 
 
 854	/*
 855	 * Refresh chunk metadata when the free makes a page free, a block
 856	 * free, or spans across blocks.  The contig hint may be off by up to
 857	 * a page, but if the hint is contained in a block, it will be accurate
 858	 * with the else condition below.
 859	 */
 860	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
 861	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
 862	    s_index != e_index)
 863		pcpu_chunk_refresh_hint(chunk);
 864	else
 865		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
 866				  s_block->contig_hint);
 
 867}
 868
 869/**
 870 * pcpu_is_populated - determines if the region is populated
 871 * @chunk: chunk of interest
 872 * @bit_off: chunk offset
 873 * @bits: size of area
 874 * @next_off: return value for the next offset to start searching
 875 *
 876 * For atomic allocations, check if the backing pages are populated.
 877 *
 878 * RETURNS:
 879 * Bool if the backing pages are populated.
 880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 881 */
 882static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
 883			      int *next_off)
 884{
 885	int page_start, page_end, rs, re;
 886
 887	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
 888	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 889
 890	rs = page_start;
 891	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
 892	if (rs >= page_end)
 893		return true;
 894
 895	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
 896	return false;
 897}
 898
 899/**
 900 * pcpu_find_block_fit - finds the block index to start searching
 901 * @chunk: chunk of interest
 902 * @alloc_bits: size of request in allocation units
 903 * @align: alignment of area (max PAGE_SIZE bytes)
 904 * @pop_only: use populated regions only
 905 *
 906 * Given a chunk and an allocation spec, find the offset to begin searching
 907 * for a free region.  This iterates over the bitmap metadata blocks to
 908 * find an offset that will be guaranteed to fit the requirements.  It is
 909 * not quite first fit as if the allocation does not fit in the contig hint
 910 * of a block or chunk, it is skipped.  This errs on the side of caution
 911 * to prevent excess iteration.  Poor alignment can cause the allocator to
 912 * skip over blocks and chunks that have valid free areas.
 913 *
 914 * RETURNS:
 915 * The offset in the bitmap to begin searching.
 916 * -1 if no offset is found.
 917 */
 918static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
 919			       size_t align, bool pop_only)
 920{
 
 921	int bit_off, bits, next_off;
 922
 923	/*
 924	 * Check to see if the allocation can fit in the chunk's contig hint.
 925	 * This is an optimization to prevent scanning by assuming if it
 926	 * cannot fit in the global hint, there is memory pressure and creating
 927	 * a new chunk would happen soon.
 928	 */
 929	bit_off = ALIGN(chunk->contig_bits_start, align) -
 930		  chunk->contig_bits_start;
 931	if (bit_off + alloc_bits > chunk->contig_bits)
 932		return -1;
 933
 934	bit_off = chunk->first_bit;
 935	bits = 0;
 936	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
 937		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
 938						   &next_off))
 939			break;
 940
 941		bit_off = next_off;
 942		bits = 0;
 943	}
 944
 945	if (bit_off == pcpu_chunk_map_bits(chunk))
 946		return -1;
 947
 948	return bit_off;
 949}
 950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951/**
 952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
 953 * @chunk: chunk of interest
 954 * @alloc_bits: size of request in allocation units
 955 * @align: alignment of area (max PAGE_SIZE)
 956 * @start: bit_off to start searching
 957 *
 958 * This function takes in a @start offset to begin searching to fit an
 959 * allocation of @alloc_bits with alignment @align.  It needs to scan
 960 * the allocation map because if it fits within the block's contig hint,
 961 * @start will be block->first_free. This is an attempt to fill the
 962 * allocation prior to breaking the contig hint.  The allocation and
 963 * boundary maps are updated accordingly if it confirms a valid
 964 * free area.
 965 *
 966 * RETURNS:
 967 * Allocated addr offset in @chunk on success.
 968 * -1 if no matching area is found.
 969 */
 970static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
 971			   size_t align, int start)
 972{
 
 973	size_t align_mask = (align) ? (align - 1) : 0;
 
 974	int bit_off, end, oslot;
 975
 976	lockdep_assert_held(&pcpu_lock);
 977
 978	oslot = pcpu_chunk_slot(chunk);
 979
 980	/*
 981	 * Search to find a fit.
 982	 */
 983	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
 984	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
 985					     alloc_bits, align_mask);
 
 986	if (bit_off >= end)
 987		return -1;
 988
 
 
 
 989	/* update alloc map */
 990	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
 991
 992	/* update boundary map */
 993	set_bit(bit_off, chunk->bound_map);
 994	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
 995	set_bit(bit_off + alloc_bits, chunk->bound_map);
 996
 997	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
 998
 999	/* update first free bit */
1000	if (bit_off == chunk->first_bit)
1001		chunk->first_bit = find_next_zero_bit(
1002					chunk->alloc_map,
1003					pcpu_chunk_map_bits(chunk),
1004					bit_off + alloc_bits);
1005
1006	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007
1008	pcpu_chunk_relocate(chunk, oslot);
1009
1010	return bit_off * PCPU_MIN_ALLOC_SIZE;
1011}
1012
1013/**
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1017 *
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
 
 
 
1020 */
1021static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022{
1023	int bit_off, bits, end, oslot;
 
1024
1025	lockdep_assert_held(&pcpu_lock);
1026	pcpu_stats_area_dealloc(chunk);
1027
1028	oslot = pcpu_chunk_slot(chunk);
1029
1030	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031
1032	/* find end index */
1033	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034			    bit_off + 1);
1035	bits = end - bit_off;
1036	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037
 
 
1038	/* update metadata */
1039	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040
1041	/* update first free bit */
1042	chunk->first_bit = min(chunk->first_bit, bit_off);
1043
1044	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045
1046	pcpu_chunk_relocate(chunk, oslot);
 
 
 
 
 
 
 
 
 
 
 
 
1047}
1048
1049static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050{
1051	struct pcpu_block_md *md_block;
1052
 
 
 
1053	for (md_block = chunk->md_blocks;
1054	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055	     md_block++) {
1056		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059	}
1060}
1061
1062/**
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1066 *
1067 * This is responsible for creating the chunks that serve the first chunk.  The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up.  Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1071 *
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1074 */
1075static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076							 int map_size)
1077{
1078	struct pcpu_chunk *chunk;
1079	unsigned long aligned_addr, lcm_align;
1080	int start_offset, offset_bits, region_size, region_bits;
 
1081
1082	/* region calculations */
1083	aligned_addr = tmp_addr & PAGE_MASK;
1084
1085	start_offset = tmp_addr - aligned_addr;
1086
1087	/*
1088	 * Align the end of the region with the LCM of PAGE_SIZE and
1089	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1090	 * the other.
1091	 */
1092	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093	region_size = ALIGN(start_offset + map_size, lcm_align);
1094
1095	/* allocate chunk */
1096	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098				    0);
 
 
 
1099
1100	INIT_LIST_HEAD(&chunk->list);
1101
1102	chunk->base_addr = (void *)aligned_addr;
1103	chunk->start_offset = start_offset;
1104	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105
1106	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107	region_bits = pcpu_chunk_map_bits(chunk);
1108
1109	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110					       sizeof(chunk->alloc_map[0]), 0);
1111	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112					       sizeof(chunk->bound_map[0]), 0);
1113	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114					       sizeof(chunk->md_blocks[0]), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115	pcpu_init_md_blocks(chunk);
1116
1117	/* manage populated page bitmap */
1118	chunk->immutable = true;
1119	bitmap_fill(chunk->populated, chunk->nr_pages);
1120	chunk->nr_populated = chunk->nr_pages;
1121	chunk->nr_empty_pop_pages =
1122		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123				   map_size / PCPU_MIN_ALLOC_SIZE);
1124
1125	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126	chunk->free_bytes = map_size;
1127
1128	if (chunk->start_offset) {
1129		/* hide the beginning of the bitmap */
1130		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131		bitmap_set(chunk->alloc_map, 0, offset_bits);
1132		set_bit(0, chunk->bound_map);
1133		set_bit(offset_bits, chunk->bound_map);
1134
1135		chunk->first_bit = offset_bits;
1136
1137		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138	}
1139
1140	if (chunk->end_offset) {
1141		/* hide the end of the bitmap */
1142		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143		bitmap_set(chunk->alloc_map,
1144			   pcpu_chunk_map_bits(chunk) - offset_bits,
1145			   offset_bits);
1146		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147			chunk->bound_map);
1148		set_bit(region_bits, chunk->bound_map);
1149
1150		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151					     - offset_bits, offset_bits);
1152	}
1153
1154	return chunk;
1155}
1156
1157static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1158{
1159	struct pcpu_chunk *chunk;
1160	int region_bits;
1161
1162	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1163	if (!chunk)
1164		return NULL;
1165
1166	INIT_LIST_HEAD(&chunk->list);
1167	chunk->nr_pages = pcpu_unit_pages;
1168	region_bits = pcpu_chunk_map_bits(chunk);
1169
1170	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171					   sizeof(chunk->alloc_map[0]), gfp);
1172	if (!chunk->alloc_map)
1173		goto alloc_map_fail;
1174
1175	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176					   sizeof(chunk->bound_map[0]), gfp);
1177	if (!chunk->bound_map)
1178		goto bound_map_fail;
1179
1180	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181					   sizeof(chunk->md_blocks[0]), gfp);
1182	if (!chunk->md_blocks)
1183		goto md_blocks_fail;
1184
 
 
 
 
 
 
 
 
 
 
1185	pcpu_init_md_blocks(chunk);
1186
1187	/* init metadata */
1188	chunk->contig_bits = region_bits;
1189	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190
1191	return chunk;
1192
 
 
 
 
1193md_blocks_fail:
1194	pcpu_mem_free(chunk->bound_map);
1195bound_map_fail:
1196	pcpu_mem_free(chunk->alloc_map);
1197alloc_map_fail:
1198	pcpu_mem_free(chunk);
1199
1200	return NULL;
1201}
1202
1203static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204{
1205	if (!chunk)
1206		return;
 
 
 
 
1207	pcpu_mem_free(chunk->bound_map);
1208	pcpu_mem_free(chunk->alloc_map);
1209	pcpu_mem_free(chunk);
1210}
1211
1212/**
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1218 *
1219 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1220 * the bookkeeping information accordingly.  Must be called after each
1221 * successful population.
1222 *
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1225 */
1226static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227				 int page_end, bool for_alloc)
1228{
1229	int nr = page_end - page_start;
1230
1231	lockdep_assert_held(&pcpu_lock);
1232
1233	bitmap_set(chunk->populated, page_start, nr);
1234	chunk->nr_populated += nr;
 
1235
1236	if (!for_alloc) {
1237		chunk->nr_empty_pop_pages += nr;
1238		pcpu_nr_empty_pop_pages += nr;
1239	}
1240}
1241
1242/**
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1247 *
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly.  Must be called after
1250 * each successful depopulation.
1251 */
1252static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253				   int page_start, int page_end)
1254{
1255	int nr = page_end - page_start;
1256
1257	lockdep_assert_held(&pcpu_lock);
1258
1259	bitmap_clear(chunk->populated, page_start, nr);
1260	chunk->nr_populated -= nr;
1261	chunk->nr_empty_pop_pages -= nr;
1262	pcpu_nr_empty_pop_pages -= nr;
 
1263}
1264
1265/*
1266 * Chunk management implementation.
1267 *
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together.  The following functions
1271 * should be implemented.
1272 *
1273 * pcpu_populate_chunk		- populate the specified range of a chunk
1274 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 
1275 * pcpu_create_chunk		- create a new chunk
1276 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page		- translate address to physical address
1278 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279 */
1280static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1281			       int page_start, int page_end, gfp_t gfp);
1282static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1283				  int page_start, int page_end);
 
 
1284static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1285static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1286static struct page *pcpu_addr_to_page(void *addr);
1287static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288
1289#ifdef CONFIG_NEED_PER_CPU_KM
1290#include "percpu-km.c"
1291#else
1292#include "percpu-vm.c"
1293#endif
1294
1295/**
1296 * pcpu_chunk_addr_search - determine chunk containing specified address
1297 * @addr: address for which the chunk needs to be determined.
1298 *
1299 * This is an internal function that handles all but static allocations.
1300 * Static percpu address values should never be passed into the allocator.
1301 *
1302 * RETURNS:
1303 * The address of the found chunk.
1304 */
1305static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1306{
1307	/* is it in the dynamic region (first chunk)? */
1308	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1309		return pcpu_first_chunk;
1310
1311	/* is it in the reserved region? */
1312	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313		return pcpu_reserved_chunk;
1314
1315	/*
1316	 * The address is relative to unit0 which might be unused and
1317	 * thus unmapped.  Offset the address to the unit space of the
1318	 * current processor before looking it up in the vmalloc
1319	 * space.  Note that any possible cpu id can be used here, so
1320	 * there's no need to worry about preemption or cpu hotplug.
1321	 */
1322	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324}
1325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326/**
1327 * pcpu_alloc - the percpu allocator
1328 * @size: size of area to allocate in bytes
1329 * @align: alignment of area (max PAGE_SIZE)
1330 * @reserved: allocate from the reserved chunk if available
1331 * @gfp: allocation flags
1332 *
1333 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335 * then no warning will be triggered on invalid or failed allocation
1336 * requests.
1337 *
1338 * RETURNS:
1339 * Percpu pointer to the allocated area on success, NULL on failure.
1340 */
1341static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1342				 gfp_t gfp)
1343{
1344	/* whitelisted flags that can be passed to the backing allocators */
1345	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1346	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347	bool do_warn = !(gfp & __GFP_NOWARN);
1348	static int warn_limit = 10;
1349	struct pcpu_chunk *chunk;
1350	const char *err;
1351	int slot, off, cpu, ret;
1352	unsigned long flags;
1353	void __percpu *ptr;
1354	size_t bits, bit_align;
1355
 
 
 
 
 
 
1356	/*
1357	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358	 * therefore alignment must be a minimum of that many bytes.
1359	 * An allocation may have internal fragmentation from rounding up
1360	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361	 */
1362	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363		align = PCPU_MIN_ALLOC_SIZE;
1364
1365	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368
1369	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370		     !is_power_of_2(align))) {
1371		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372		     size, align);
1373		return NULL;
1374	}
1375
 
 
 
1376	if (!is_atomic) {
1377		/*
1378		 * pcpu_balance_workfn() allocates memory under this mutex,
1379		 * and it may wait for memory reclaim. Allow current task
1380		 * to become OOM victim, in case of memory pressure.
1381		 */
1382		if (gfp & __GFP_NOFAIL)
1383			mutex_lock(&pcpu_alloc_mutex);
1384		else if (mutex_lock_killable(&pcpu_alloc_mutex))
 
1385			return NULL;
 
1386	}
1387
1388	spin_lock_irqsave(&pcpu_lock, flags);
1389
1390	/* serve reserved allocations from the reserved chunk if available */
1391	if (reserved && pcpu_reserved_chunk) {
1392		chunk = pcpu_reserved_chunk;
1393
1394		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1395		if (off < 0) {
1396			err = "alloc from reserved chunk failed";
1397			goto fail_unlock;
1398		}
1399
1400		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1401		if (off >= 0)
1402			goto area_found;
1403
1404		err = "alloc from reserved chunk failed";
1405		goto fail_unlock;
1406	}
1407
1408restart:
1409	/* search through normal chunks */
1410	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1411		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 
1412			off = pcpu_find_block_fit(chunk, bits, bit_align,
1413						  is_atomic);
1414			if (off < 0)
 
 
1415				continue;
 
1416
1417			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1418			if (off >= 0)
 
1419				goto area_found;
1420
1421		}
1422	}
1423
1424	spin_unlock_irqrestore(&pcpu_lock, flags);
1425
1426	/*
1427	 * No space left.  Create a new chunk.  We don't want multiple
1428	 * tasks to create chunks simultaneously.  Serialize and create iff
1429	 * there's still no empty chunk after grabbing the mutex.
1430	 */
1431	if (is_atomic) {
1432		err = "atomic alloc failed, no space left";
1433		goto fail;
1434	}
1435
1436	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1437		chunk = pcpu_create_chunk(pcpu_gfp);
1438		if (!chunk) {
1439			err = "failed to allocate new chunk";
1440			goto fail;
1441		}
1442
1443		spin_lock_irqsave(&pcpu_lock, flags);
1444		pcpu_chunk_relocate(chunk, -1);
1445	} else {
1446		spin_lock_irqsave(&pcpu_lock, flags);
1447	}
1448
1449	goto restart;
1450
1451area_found:
1452	pcpu_stats_area_alloc(chunk, size);
1453	spin_unlock_irqrestore(&pcpu_lock, flags);
1454
1455	/* populate if not all pages are already there */
1456	if (!is_atomic) {
1457		int page_start, page_end, rs, re;
1458
1459		page_start = PFN_DOWN(off);
1460		page_end = PFN_UP(off + size);
1461
1462		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1463					   page_start, page_end) {
1464			WARN_ON(chunk->immutable);
1465
1466			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1467
1468			spin_lock_irqsave(&pcpu_lock, flags);
1469			if (ret) {
1470				pcpu_free_area(chunk, off);
1471				err = "failed to populate";
1472				goto fail_unlock;
1473			}
1474			pcpu_chunk_populated(chunk, rs, re, true);
1475			spin_unlock_irqrestore(&pcpu_lock, flags);
1476		}
1477
1478		mutex_unlock(&pcpu_alloc_mutex);
1479	}
1480
1481	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1482		pcpu_schedule_balance_work();
1483
1484	/* clear the areas and return address relative to base address */
1485	for_each_possible_cpu(cpu)
1486		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1487
1488	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1489	kmemleak_alloc_percpu(ptr, size, gfp);
1490
1491	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1492			chunk->base_addr, off, ptr);
1493
 
 
1494	return ptr;
1495
1496fail_unlock:
1497	spin_unlock_irqrestore(&pcpu_lock, flags);
1498fail:
1499	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1500
1501	if (!is_atomic && do_warn && warn_limit) {
1502		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503			size, align, is_atomic, err);
1504		dump_stack();
1505		if (!--warn_limit)
1506			pr_info("limit reached, disable warning\n");
1507	}
1508	if (is_atomic) {
1509		/* see the flag handling in pcpu_blance_workfn() */
1510		pcpu_atomic_alloc_failed = true;
1511		pcpu_schedule_balance_work();
1512	} else {
1513		mutex_unlock(&pcpu_alloc_mutex);
1514	}
 
 
 
1515	return NULL;
1516}
1517
1518/**
1519 * __alloc_percpu_gfp - allocate dynamic percpu area
1520 * @size: size of area to allocate in bytes
1521 * @align: alignment of area (max PAGE_SIZE)
1522 * @gfp: allocation flags
1523 *
1524 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526 * be called from any context but is a lot more likely to fail. If @gfp
1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528 * allocation requests.
1529 *
1530 * RETURNS:
1531 * Percpu pointer to the allocated area on success, NULL on failure.
1532 */
1533void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1534{
1535	return pcpu_alloc(size, align, false, gfp);
1536}
1537EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1538
1539/**
1540 * __alloc_percpu - allocate dynamic percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1543 *
1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1545 */
1546void __percpu *__alloc_percpu(size_t size, size_t align)
1547{
1548	return pcpu_alloc(size, align, false, GFP_KERNEL);
1549}
1550EXPORT_SYMBOL_GPL(__alloc_percpu);
1551
1552/**
1553 * __alloc_reserved_percpu - allocate reserved percpu area
1554 * @size: size of area to allocate in bytes
1555 * @align: alignment of area (max PAGE_SIZE)
1556 *
1557 * Allocate zero-filled percpu area of @size bytes aligned at @align
1558 * from reserved percpu area if arch has set it up; otherwise,
1559 * allocation is served from the same dynamic area.  Might sleep.
1560 * Might trigger writeouts.
1561 *
1562 * CONTEXT:
1563 * Does GFP_KERNEL allocation.
1564 *
1565 * RETURNS:
1566 * Percpu pointer to the allocated area on success, NULL on failure.
1567 */
1568void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1569{
1570	return pcpu_alloc(size, align, true, GFP_KERNEL);
1571}
1572
1573/**
1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1575 * @work: unused
1576 *
1577 * Reclaim all fully free chunks except for the first one.  This is also
1578 * responsible for maintaining the pool of empty populated pages.  However,
1579 * it is possible that this is called when physical memory is scarce causing
1580 * OOM killer to be triggered.  We should avoid doing so until an actual
1581 * allocation causes the failure as it is possible that requests can be
1582 * serviced from already backed regions.
1583 */
1584static void pcpu_balance_workfn(struct work_struct *work)
1585{
1586	/* gfp flags passed to underlying allocators */
1587	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1588	LIST_HEAD(to_free);
1589	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1590	struct pcpu_chunk *chunk, *next;
1591	int slot, nr_to_pop, ret;
 
1592
1593	/*
1594	 * There's no reason to keep around multiple unused chunks and VM
1595	 * areas can be scarce.  Destroy all free chunks except for one.
1596	 */
1597	mutex_lock(&pcpu_alloc_mutex);
1598	spin_lock_irq(&pcpu_lock);
1599
1600	list_for_each_entry_safe(chunk, next, free_head, list) {
1601		WARN_ON(chunk->immutable);
1602
1603		/* spare the first one */
1604		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1605			continue;
1606
1607		list_move(&chunk->list, &to_free);
 
1608	}
1609
1610	spin_unlock_irq(&pcpu_lock);
 
1611
 
1612	list_for_each_entry_safe(chunk, next, &to_free, list) {
1613		int rs, re;
1614
1615		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1616					 chunk->nr_pages) {
1617			pcpu_depopulate_chunk(chunk, rs, re);
1618			spin_lock_irq(&pcpu_lock);
1619			pcpu_chunk_depopulated(chunk, rs, re);
1620			spin_unlock_irq(&pcpu_lock);
1621		}
1622		pcpu_destroy_chunk(chunk);
1623		cond_resched();
1624	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625
1626	/*
1627	 * Ensure there are certain number of free populated pages for
1628	 * atomic allocs.  Fill up from the most packed so that atomic
1629	 * allocs don't increase fragmentation.  If atomic allocation
1630	 * failed previously, always populate the maximum amount.  This
1631	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632	 * failing indefinitely; however, large atomic allocs are not
1633	 * something we support properly and can be highly unreliable and
1634	 * inefficient.
1635	 */
1636retry_pop:
1637	if (pcpu_atomic_alloc_failed) {
1638		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1639		/* best effort anyway, don't worry about synchronization */
1640		pcpu_atomic_alloc_failed = false;
1641	} else {
1642		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1643				  pcpu_nr_empty_pop_pages,
1644				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1645	}
1646
1647	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1648		int nr_unpop = 0, rs, re;
1649
1650		if (!nr_to_pop)
1651			break;
1652
1653		spin_lock_irq(&pcpu_lock);
1654		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1655			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1656			if (nr_unpop)
1657				break;
1658		}
1659		spin_unlock_irq(&pcpu_lock);
1660
1661		if (!nr_unpop)
1662			continue;
1663
1664		/* @chunk can't go away while pcpu_alloc_mutex is held */
1665		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1666					   chunk->nr_pages) {
1667			int nr = min(re - rs, nr_to_pop);
1668
 
1669			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
 
 
1670			if (!ret) {
1671				nr_to_pop -= nr;
1672				spin_lock_irq(&pcpu_lock);
1673				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1674				spin_unlock_irq(&pcpu_lock);
1675			} else {
1676				nr_to_pop = 0;
1677			}
1678
1679			if (!nr_to_pop)
1680				break;
1681		}
1682	}
1683
1684	if (nr_to_pop) {
1685		/* ran out of chunks to populate, create a new one and retry */
 
1686		chunk = pcpu_create_chunk(gfp);
 
 
1687		if (chunk) {
1688			spin_lock_irq(&pcpu_lock);
1689			pcpu_chunk_relocate(chunk, -1);
1690			spin_unlock_irq(&pcpu_lock);
1691			goto retry_pop;
1692		}
1693	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695	mutex_unlock(&pcpu_alloc_mutex);
1696}
1697
1698/**
1699 * free_percpu - free percpu area
1700 * @ptr: pointer to area to free
1701 *
1702 * Free percpu area @ptr.
1703 *
1704 * CONTEXT:
1705 * Can be called from atomic context.
1706 */
1707void free_percpu(void __percpu *ptr)
1708{
1709	void *addr;
1710	struct pcpu_chunk *chunk;
1711	unsigned long flags;
1712	int off;
 
1713
1714	if (!ptr)
1715		return;
1716
1717	kmemleak_free_percpu(ptr);
1718
1719	addr = __pcpu_ptr_to_addr(ptr);
1720
1721	spin_lock_irqsave(&pcpu_lock, flags);
1722
1723	chunk = pcpu_chunk_addr_search(addr);
1724	off = addr - chunk->base_addr;
1725
1726	pcpu_free_area(chunk, off);
 
 
1727
1728	/* if there are more than one fully free chunks, wake up grim reaper */
1729	if (chunk->free_bytes == pcpu_unit_size) {
 
 
 
 
1730		struct pcpu_chunk *pos;
1731
1732		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1733			if (pos != chunk) {
1734				pcpu_schedule_balance_work();
1735				break;
1736			}
 
 
 
1737	}
1738
1739	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1740
1741	spin_unlock_irqrestore(&pcpu_lock, flags);
 
 
 
1742}
1743EXPORT_SYMBOL_GPL(free_percpu);
1744
1745bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1746{
1747#ifdef CONFIG_SMP
1748	const size_t static_size = __per_cpu_end - __per_cpu_start;
1749	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1750	unsigned int cpu;
1751
1752	for_each_possible_cpu(cpu) {
1753		void *start = per_cpu_ptr(base, cpu);
1754		void *va = (void *)addr;
1755
1756		if (va >= start && va < start + static_size) {
1757			if (can_addr) {
1758				*can_addr = (unsigned long) (va - start);
1759				*can_addr += (unsigned long)
1760					per_cpu_ptr(base, get_boot_cpu_id());
1761			}
1762			return true;
1763		}
1764	}
1765#endif
1766	/* on UP, can't distinguish from other static vars, always false */
1767	return false;
1768}
1769
1770/**
1771 * is_kernel_percpu_address - test whether address is from static percpu area
1772 * @addr: address to test
1773 *
1774 * Test whether @addr belongs to in-kernel static percpu area.  Module
1775 * static percpu areas are not considered.  For those, use
1776 * is_module_percpu_address().
1777 *
1778 * RETURNS:
1779 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1780 */
1781bool is_kernel_percpu_address(unsigned long addr)
1782{
1783	return __is_kernel_percpu_address(addr, NULL);
1784}
1785
1786/**
1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788 * @addr: the address to be converted to physical address
1789 *
1790 * Given @addr which is dereferenceable address obtained via one of
1791 * percpu access macros, this function translates it into its physical
1792 * address.  The caller is responsible for ensuring @addr stays valid
1793 * until this function finishes.
1794 *
1795 * percpu allocator has special setup for the first chunk, which currently
1796 * supports either embedding in linear address space or vmalloc mapping,
1797 * and, from the second one, the backing allocator (currently either vm or
1798 * km) provides translation.
1799 *
1800 * The addr can be translated simply without checking if it falls into the
1801 * first chunk. But the current code reflects better how percpu allocator
1802 * actually works, and the verification can discover both bugs in percpu
1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1804 * code.
1805 *
1806 * RETURNS:
1807 * The physical address for @addr.
1808 */
1809phys_addr_t per_cpu_ptr_to_phys(void *addr)
1810{
1811	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1812	bool in_first_chunk = false;
1813	unsigned long first_low, first_high;
1814	unsigned int cpu;
1815
1816	/*
1817	 * The following test on unit_low/high isn't strictly
1818	 * necessary but will speed up lookups of addresses which
1819	 * aren't in the first chunk.
1820	 *
1821	 * The address check is against full chunk sizes.  pcpu_base_addr
1822	 * points to the beginning of the first chunk including the
1823	 * static region.  Assumes good intent as the first chunk may
1824	 * not be full (ie. < pcpu_unit_pages in size).
1825	 */
1826	first_low = (unsigned long)pcpu_base_addr +
1827		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1828	first_high = (unsigned long)pcpu_base_addr +
1829		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1830	if ((unsigned long)addr >= first_low &&
1831	    (unsigned long)addr < first_high) {
1832		for_each_possible_cpu(cpu) {
1833			void *start = per_cpu_ptr(base, cpu);
1834
1835			if (addr >= start && addr < start + pcpu_unit_size) {
1836				in_first_chunk = true;
1837				break;
1838			}
1839		}
1840	}
1841
1842	if (in_first_chunk) {
1843		if (!is_vmalloc_addr(addr))
1844			return __pa(addr);
1845		else
1846			return page_to_phys(vmalloc_to_page(addr)) +
1847			       offset_in_page(addr);
1848	} else
1849		return page_to_phys(pcpu_addr_to_page(addr)) +
1850		       offset_in_page(addr);
1851}
1852
1853/**
1854 * pcpu_alloc_alloc_info - allocate percpu allocation info
1855 * @nr_groups: the number of groups
1856 * @nr_units: the number of units
1857 *
1858 * Allocate ai which is large enough for @nr_groups groups containing
1859 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1860 * cpu_map array which is long enough for @nr_units and filled with
1861 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1862 * pointer of other groups.
1863 *
1864 * RETURNS:
1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1866 * failure.
1867 */
1868struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1869						      int nr_units)
1870{
1871	struct pcpu_alloc_info *ai;
1872	size_t base_size, ai_size;
1873	void *ptr;
1874	int unit;
1875
1876	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1877			  __alignof__(ai->groups[0].cpu_map[0]));
1878	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1879
1880	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1881	if (!ptr)
1882		return NULL;
1883	ai = ptr;
1884	ptr += base_size;
1885
1886	ai->groups[0].cpu_map = ptr;
1887
1888	for (unit = 0; unit < nr_units; unit++)
1889		ai->groups[0].cpu_map[unit] = NR_CPUS;
1890
1891	ai->nr_groups = nr_groups;
1892	ai->__ai_size = PFN_ALIGN(ai_size);
1893
1894	return ai;
1895}
1896
1897/**
1898 * pcpu_free_alloc_info - free percpu allocation info
1899 * @ai: pcpu_alloc_info to free
1900 *
1901 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1902 */
1903void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1904{
1905	memblock_free_early(__pa(ai), ai->__ai_size);
1906}
1907
1908/**
1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1910 * @lvl: loglevel
1911 * @ai: allocation info to dump
1912 *
1913 * Print out information about @ai using loglevel @lvl.
1914 */
1915static void pcpu_dump_alloc_info(const char *lvl,
1916				 const struct pcpu_alloc_info *ai)
1917{
1918	int group_width = 1, cpu_width = 1, width;
1919	char empty_str[] = "--------";
1920	int alloc = 0, alloc_end = 0;
1921	int group, v;
1922	int upa, apl;	/* units per alloc, allocs per line */
1923
1924	v = ai->nr_groups;
1925	while (v /= 10)
1926		group_width++;
1927
1928	v = num_possible_cpus();
1929	while (v /= 10)
1930		cpu_width++;
1931	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1932
1933	upa = ai->alloc_size / ai->unit_size;
1934	width = upa * (cpu_width + 1) + group_width + 3;
1935	apl = rounddown_pow_of_two(max(60 / width, 1));
1936
1937	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1939	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1940
1941	for (group = 0; group < ai->nr_groups; group++) {
1942		const struct pcpu_group_info *gi = &ai->groups[group];
1943		int unit = 0, unit_end = 0;
1944
1945		BUG_ON(gi->nr_units % upa);
1946		for (alloc_end += gi->nr_units / upa;
1947		     alloc < alloc_end; alloc++) {
1948			if (!(alloc % apl)) {
1949				pr_cont("\n");
1950				printk("%spcpu-alloc: ", lvl);
1951			}
1952			pr_cont("[%0*d] ", group_width, group);
1953
1954			for (unit_end += upa; unit < unit_end; unit++)
1955				if (gi->cpu_map[unit] != NR_CPUS)
1956					pr_cont("%0*d ",
1957						cpu_width, gi->cpu_map[unit]);
1958				else
1959					pr_cont("%s ", empty_str);
1960		}
1961	}
1962	pr_cont("\n");
1963}
1964
1965/**
1966 * pcpu_setup_first_chunk - initialize the first percpu chunk
1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968 * @base_addr: mapped address
1969 *
1970 * Initialize the first percpu chunk which contains the kernel static
1971 * perpcu area.  This function is to be called from arch percpu area
1972 * setup path.
1973 *
1974 * @ai contains all information necessary to initialize the first
1975 * chunk and prime the dynamic percpu allocator.
1976 *
1977 * @ai->static_size is the size of static percpu area.
1978 *
1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980 * reserve after the static area in the first chunk.  This reserves
1981 * the first chunk such that it's available only through reserved
1982 * percpu allocation.  This is primarily used to serve module percpu
1983 * static areas on architectures where the addressing model has
1984 * limited offset range for symbol relocations to guarantee module
1985 * percpu symbols fall inside the relocatable range.
1986 *
1987 * @ai->dyn_size determines the number of bytes available for dynamic
1988 * allocation in the first chunk.  The area between @ai->static_size +
1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1990 *
1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1993 * @ai->dyn_size.
1994 *
1995 * @ai->atom_size is the allocation atom size and used as alignment
1996 * for vm areas.
1997 *
1998 * @ai->alloc_size is the allocation size and always multiple of
1999 * @ai->atom_size.  This is larger than @ai->atom_size if
2000 * @ai->unit_size is larger than @ai->atom_size.
2001 *
2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003 * percpu areas.  Units which should be colocated are put into the
2004 * same group.  Dynamic VM areas will be allocated according to these
2005 * groupings.  If @ai->nr_groups is zero, a single group containing
2006 * all units is assumed.
2007 *
2008 * The caller should have mapped the first chunk at @base_addr and
2009 * copied static data to each unit.
2010 *
2011 * The first chunk will always contain a static and a dynamic region.
2012 * However, the static region is not managed by any chunk.  If the first
2013 * chunk also contains a reserved region, it is served by two chunks -
2014 * one for the reserved region and one for the dynamic region.  They
2015 * share the same vm, but use offset regions in the area allocation map.
2016 * The chunk serving the dynamic region is circulated in the chunk slots
2017 * and available for dynamic allocation like any other chunk.
2018 *
2019 * RETURNS:
2020 * 0 on success, -errno on failure.
2021 */
2022int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2023				  void *base_addr)
2024{
2025	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2026	size_t static_size, dyn_size;
2027	struct pcpu_chunk *chunk;
2028	unsigned long *group_offsets;
2029	size_t *group_sizes;
2030	unsigned long *unit_off;
2031	unsigned int cpu;
2032	int *unit_map;
2033	int group, unit, i;
2034	int map_size;
2035	unsigned long tmp_addr;
 
2036
2037#define PCPU_SETUP_BUG_ON(cond)	do {					\
2038	if (unlikely(cond)) {						\
2039		pr_emerg("failed to initialize, %s\n", #cond);		\
2040		pr_emerg("cpu_possible_mask=%*pb\n",			\
2041			 cpumask_pr_args(cpu_possible_mask));		\
2042		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2043		BUG();							\
2044	}								\
2045} while (0)
2046
2047	/* sanity checks */
2048	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2049#ifdef CONFIG_SMP
2050	PCPU_SETUP_BUG_ON(!ai->static_size);
2051	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2052#endif
2053	PCPU_SETUP_BUG_ON(!base_addr);
2054	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2055	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2056	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2057	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2058	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2059	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2060	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2061	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2062	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2063			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2064	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2065
2066	/* process group information and build config tables accordingly */
2067	group_offsets = memblock_virt_alloc(ai->nr_groups *
2068					     sizeof(group_offsets[0]), 0);
2069	group_sizes = memblock_virt_alloc(ai->nr_groups *
2070					   sizeof(group_sizes[0]), 0);
2071	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2072	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073
2074	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2075		unit_map[cpu] = UINT_MAX;
2076
2077	pcpu_low_unit_cpu = NR_CPUS;
2078	pcpu_high_unit_cpu = NR_CPUS;
2079
2080	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2081		const struct pcpu_group_info *gi = &ai->groups[group];
2082
2083		group_offsets[group] = gi->base_offset;
2084		group_sizes[group] = gi->nr_units * ai->unit_size;
2085
2086		for (i = 0; i < gi->nr_units; i++) {
2087			cpu = gi->cpu_map[i];
2088			if (cpu == NR_CPUS)
2089				continue;
2090
2091			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2092			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2093			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2094
2095			unit_map[cpu] = unit + i;
2096			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2097
2098			/* determine low/high unit_cpu */
2099			if (pcpu_low_unit_cpu == NR_CPUS ||
2100			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2101				pcpu_low_unit_cpu = cpu;
2102			if (pcpu_high_unit_cpu == NR_CPUS ||
2103			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2104				pcpu_high_unit_cpu = cpu;
2105		}
2106	}
2107	pcpu_nr_units = unit;
2108
2109	for_each_possible_cpu(cpu)
2110		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2111
2112	/* we're done parsing the input, undefine BUG macro and dump config */
2113#undef PCPU_SETUP_BUG_ON
2114	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2115
2116	pcpu_nr_groups = ai->nr_groups;
2117	pcpu_group_offsets = group_offsets;
2118	pcpu_group_sizes = group_sizes;
2119	pcpu_unit_map = unit_map;
2120	pcpu_unit_offsets = unit_off;
2121
2122	/* determine basic parameters */
2123	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2124	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2125	pcpu_atom_size = ai->atom_size;
2126	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2127		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2128
2129	pcpu_stats_save_ai(ai);
2130
2131	/*
2132	 * Allocate chunk slots.  The additional last slot is for
2133	 * empty chunks.
2134	 */
2135	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2136	pcpu_slot = memblock_virt_alloc(
2137			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
 
 
 
 
 
 
 
 
 
 
2138	for (i = 0; i < pcpu_nr_slots; i++)
2139		INIT_LIST_HEAD(&pcpu_slot[i]);
2140
2141	/*
2142	 * The end of the static region needs to be aligned with the
2143	 * minimum allocation size as this offsets the reserved and
2144	 * dynamic region.  The first chunk ends page aligned by
2145	 * expanding the dynamic region, therefore the dynamic region
2146	 * can be shrunk to compensate while still staying above the
2147	 * configured sizes.
2148	 */
2149	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2150	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2151
2152	/*
2153	 * Initialize first chunk.
2154	 * If the reserved_size is non-zero, this initializes the reserved
2155	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2156	 * and the dynamic region is initialized here.  The first chunk,
2157	 * pcpu_first_chunk, will always point to the chunk that serves
2158	 * the dynamic region.
2159	 */
2160	tmp_addr = (unsigned long)base_addr + static_size;
2161	map_size = ai->reserved_size ?: dyn_size;
2162	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2163
2164	/* init dynamic chunk if necessary */
2165	if (ai->reserved_size) {
2166		pcpu_reserved_chunk = chunk;
2167
2168		tmp_addr = (unsigned long)base_addr + static_size +
2169			   ai->reserved_size;
2170		map_size = dyn_size;
2171		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2172	}
2173
2174	/* link the first chunk in */
2175	pcpu_first_chunk = chunk;
2176	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2177	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2178
 
 
 
2179	pcpu_stats_chunk_alloc();
2180	trace_percpu_create_chunk(base_addr);
2181
2182	/* we're done */
2183	pcpu_base_addr = base_addr;
2184	return 0;
2185}
2186
2187#ifdef CONFIG_SMP
2188
2189const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2190	[PCPU_FC_AUTO]	= "auto",
2191	[PCPU_FC_EMBED]	= "embed",
2192	[PCPU_FC_PAGE]	= "page",
2193};
2194
2195enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2196
2197static int __init percpu_alloc_setup(char *str)
2198{
2199	if (!str)
2200		return -EINVAL;
2201
2202	if (0)
2203		/* nada */;
2204#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205	else if (!strcmp(str, "embed"))
2206		pcpu_chosen_fc = PCPU_FC_EMBED;
2207#endif
2208#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209	else if (!strcmp(str, "page"))
2210		pcpu_chosen_fc = PCPU_FC_PAGE;
2211#endif
2212	else
2213		pr_warn("unknown allocator %s specified\n", str);
2214
2215	return 0;
2216}
2217early_param("percpu_alloc", percpu_alloc_setup);
2218
2219/*
2220 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221 * Build it if needed by the arch config or the generic setup is going
2222 * to be used.
2223 */
2224#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226#define BUILD_EMBED_FIRST_CHUNK
2227#endif
2228
2229/* build pcpu_page_first_chunk() iff needed by the arch config */
2230#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231#define BUILD_PAGE_FIRST_CHUNK
2232#endif
2233
2234/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2236/**
2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238 * @reserved_size: the size of reserved percpu area in bytes
2239 * @dyn_size: minimum free size for dynamic allocation in bytes
2240 * @atom_size: allocation atom size
2241 * @cpu_distance_fn: callback to determine distance between cpus, optional
2242 *
2243 * This function determines grouping of units, their mappings to cpus
2244 * and other parameters considering needed percpu size, allocation
2245 * atom size and distances between CPUs.
2246 *
2247 * Groups are always multiples of atom size and CPUs which are of
2248 * LOCAL_DISTANCE both ways are grouped together and share space for
2249 * units in the same group.  The returned configuration is guaranteed
2250 * to have CPUs on different nodes on different groups and >=75% usage
2251 * of allocated virtual address space.
2252 *
2253 * RETURNS:
2254 * On success, pointer to the new allocation_info is returned.  On
2255 * failure, ERR_PTR value is returned.
2256 */
2257static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2258				size_t reserved_size, size_t dyn_size,
2259				size_t atom_size,
2260				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2261{
2262	static int group_map[NR_CPUS] __initdata;
2263	static int group_cnt[NR_CPUS] __initdata;
 
2264	const size_t static_size = __per_cpu_end - __per_cpu_start;
2265	int nr_groups = 1, nr_units = 0;
2266	size_t size_sum, min_unit_size, alloc_size;
2267	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2268	int last_allocs, group, unit;
2269	unsigned int cpu, tcpu;
2270	struct pcpu_alloc_info *ai;
2271	unsigned int *cpu_map;
2272
2273	/* this function may be called multiple times */
2274	memset(group_map, 0, sizeof(group_map));
2275	memset(group_cnt, 0, sizeof(group_cnt));
 
2276
2277	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2278	size_sum = PFN_ALIGN(static_size + reserved_size +
2279			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2280	dyn_size = size_sum - static_size - reserved_size;
2281
2282	/*
2283	 * Determine min_unit_size, alloc_size and max_upa such that
2284	 * alloc_size is multiple of atom_size and is the smallest
2285	 * which can accommodate 4k aligned segments which are equal to
2286	 * or larger than min_unit_size.
2287	 */
2288	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2289
2290	/* determine the maximum # of units that can fit in an allocation */
2291	alloc_size = roundup(min_unit_size, atom_size);
2292	upa = alloc_size / min_unit_size;
2293	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2294		upa--;
2295	max_upa = upa;
2296
 
 
2297	/* group cpus according to their proximity */
2298	for_each_possible_cpu(cpu) {
2299		group = 0;
2300	next_group:
2301		for_each_possible_cpu(tcpu) {
2302			if (cpu == tcpu)
2303				break;
2304			if (group_map[tcpu] == group && cpu_distance_fn &&
2305			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2306			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2307				group++;
2308				nr_groups = max(nr_groups, group + 1);
2309				goto next_group;
2310			}
2311		}
2312		group_map[cpu] = group;
2313		group_cnt[group]++;
 
 
 
 
 
 
 
 
 
 
 
2314	}
 
2315
2316	/*
2317	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318	 * Expand the unit_size until we use >= 75% of the units allocated.
2319	 * Related to atom_size, which could be much larger than the unit_size.
2320	 */
2321	last_allocs = INT_MAX;
 
2322	for (upa = max_upa; upa; upa--) {
2323		int allocs = 0, wasted = 0;
2324
2325		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2326			continue;
2327
2328		for (group = 0; group < nr_groups; group++) {
2329			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2330			allocs += this_allocs;
2331			wasted += this_allocs * upa - group_cnt[group];
2332		}
2333
2334		/*
2335		 * Don't accept if wastage is over 1/3.  The
2336		 * greater-than comparison ensures upa==1 always
2337		 * passes the following check.
2338		 */
2339		if (wasted > num_possible_cpus() / 3)
2340			continue;
2341
2342		/* and then don't consume more memory */
2343		if (allocs > last_allocs)
2344			break;
2345		last_allocs = allocs;
2346		best_upa = upa;
2347	}
 
2348	upa = best_upa;
2349
2350	/* allocate and fill alloc_info */
2351	for (group = 0; group < nr_groups; group++)
2352		nr_units += roundup(group_cnt[group], upa);
2353
2354	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2355	if (!ai)
2356		return ERR_PTR(-ENOMEM);
2357	cpu_map = ai->groups[0].cpu_map;
2358
2359	for (group = 0; group < nr_groups; group++) {
2360		ai->groups[group].cpu_map = cpu_map;
2361		cpu_map += roundup(group_cnt[group], upa);
2362	}
2363
2364	ai->static_size = static_size;
2365	ai->reserved_size = reserved_size;
2366	ai->dyn_size = dyn_size;
2367	ai->unit_size = alloc_size / upa;
2368	ai->atom_size = atom_size;
2369	ai->alloc_size = alloc_size;
2370
2371	for (group = 0, unit = 0; group_cnt[group]; group++) {
2372		struct pcpu_group_info *gi = &ai->groups[group];
2373
2374		/*
2375		 * Initialize base_offset as if all groups are located
2376		 * back-to-back.  The caller should update this to
2377		 * reflect actual allocation.
2378		 */
2379		gi->base_offset = unit * ai->unit_size;
2380
2381		for_each_possible_cpu(cpu)
2382			if (group_map[cpu] == group)
2383				gi->cpu_map[gi->nr_units++] = cpu;
2384		gi->nr_units = roundup(gi->nr_units, upa);
2385		unit += gi->nr_units;
2386	}
2387	BUG_ON(unit != nr_units);
2388
2389	return ai;
2390}
2391#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2392
2393#if defined(BUILD_EMBED_FIRST_CHUNK)
2394/**
2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396 * @reserved_size: the size of reserved percpu area in bytes
2397 * @dyn_size: minimum free size for dynamic allocation in bytes
2398 * @atom_size: allocation atom size
2399 * @cpu_distance_fn: callback to determine distance between cpus, optional
2400 * @alloc_fn: function to allocate percpu page
2401 * @free_fn: function to free percpu page
2402 *
2403 * This is a helper to ease setting up embedded first percpu chunk and
2404 * can be called where pcpu_setup_first_chunk() is expected.
2405 *
2406 * If this function is used to setup the first chunk, it is allocated
2407 * by calling @alloc_fn and used as-is without being mapped into
2408 * vmalloc area.  Allocations are always whole multiples of @atom_size
2409 * aligned to @atom_size.
2410 *
2411 * This enables the first chunk to piggy back on the linear physical
2412 * mapping which often uses larger page size.  Please note that this
2413 * can result in very sparse cpu->unit mapping on NUMA machines thus
2414 * requiring large vmalloc address space.  Don't use this allocator if
2415 * vmalloc space is not orders of magnitude larger than distances
2416 * between node memory addresses (ie. 32bit NUMA machines).
2417 *
2418 * @dyn_size specifies the minimum dynamic area size.
2419 *
2420 * If the needed size is smaller than the minimum or specified unit
2421 * size, the leftover is returned using @free_fn.
2422 *
2423 * RETURNS:
2424 * 0 on success, -errno on failure.
2425 */
2426int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2427				  size_t atom_size,
2428				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2429				  pcpu_fc_alloc_fn_t alloc_fn,
2430				  pcpu_fc_free_fn_t free_fn)
2431{
2432	void *base = (void *)ULONG_MAX;
2433	void **areas = NULL;
2434	struct pcpu_alloc_info *ai;
2435	size_t size_sum, areas_size;
2436	unsigned long max_distance;
2437	int group, i, highest_group, rc;
2438
2439	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2440				   cpu_distance_fn);
2441	if (IS_ERR(ai))
2442		return PTR_ERR(ai);
2443
2444	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2445	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2446
2447	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2448	if (!areas) {
2449		rc = -ENOMEM;
2450		goto out_free;
2451	}
2452
2453	/* allocate, copy and determine base address & max_distance */
2454	highest_group = 0;
2455	for (group = 0; group < ai->nr_groups; group++) {
2456		struct pcpu_group_info *gi = &ai->groups[group];
2457		unsigned int cpu = NR_CPUS;
2458		void *ptr;
2459
2460		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2461			cpu = gi->cpu_map[i];
2462		BUG_ON(cpu == NR_CPUS);
2463
2464		/* allocate space for the whole group */
2465		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2466		if (!ptr) {
2467			rc = -ENOMEM;
2468			goto out_free_areas;
2469		}
2470		/* kmemleak tracks the percpu allocations separately */
2471		kmemleak_free(ptr);
2472		areas[group] = ptr;
2473
2474		base = min(ptr, base);
2475		if (ptr > areas[highest_group])
2476			highest_group = group;
2477	}
2478	max_distance = areas[highest_group] - base;
2479	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2480
2481	/* warn if maximum distance is further than 75% of vmalloc space */
2482	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2483		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484				max_distance, VMALLOC_TOTAL);
2485#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486		/* and fail if we have fallback */
2487		rc = -EINVAL;
2488		goto out_free_areas;
2489#endif
2490	}
2491
2492	/*
2493	 * Copy data and free unused parts.  This should happen after all
2494	 * allocations are complete; otherwise, we may end up with
2495	 * overlapping groups.
2496	 */
2497	for (group = 0; group < ai->nr_groups; group++) {
2498		struct pcpu_group_info *gi = &ai->groups[group];
2499		void *ptr = areas[group];
2500
2501		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2502			if (gi->cpu_map[i] == NR_CPUS) {
2503				/* unused unit, free whole */
2504				free_fn(ptr, ai->unit_size);
2505				continue;
2506			}
2507			/* copy and return the unused part */
2508			memcpy(ptr, __per_cpu_load, ai->static_size);
2509			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2510		}
2511	}
2512
2513	/* base address is now known, determine group base offsets */
2514	for (group = 0; group < ai->nr_groups; group++) {
2515		ai->groups[group].base_offset = areas[group] - base;
2516	}
2517
2518	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2520		ai->dyn_size, ai->unit_size);
2521
2522	rc = pcpu_setup_first_chunk(ai, base);
2523	goto out_free;
2524
2525out_free_areas:
2526	for (group = 0; group < ai->nr_groups; group++)
2527		if (areas[group])
2528			free_fn(areas[group],
2529				ai->groups[group].nr_units * ai->unit_size);
2530out_free:
2531	pcpu_free_alloc_info(ai);
2532	if (areas)
2533		memblock_free_early(__pa(areas), areas_size);
2534	return rc;
2535}
2536#endif /* BUILD_EMBED_FIRST_CHUNK */
2537
2538#ifdef BUILD_PAGE_FIRST_CHUNK
2539/**
2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541 * @reserved_size: the size of reserved percpu area in bytes
2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544 * @populate_pte_fn: function to populate pte
2545 *
2546 * This is a helper to ease setting up page-remapped first percpu
2547 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2548 *
2549 * This is the basic allocator.  Static percpu area is allocated
2550 * page-by-page into vmalloc area.
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno on failure.
2554 */
2555int __init pcpu_page_first_chunk(size_t reserved_size,
2556				 pcpu_fc_alloc_fn_t alloc_fn,
2557				 pcpu_fc_free_fn_t free_fn,
2558				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2559{
2560	static struct vm_struct vm;
2561	struct pcpu_alloc_info *ai;
2562	char psize_str[16];
2563	int unit_pages;
2564	size_t pages_size;
2565	struct page **pages;
2566	int unit, i, j, rc;
2567	int upa;
2568	int nr_g0_units;
2569
2570	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2571
2572	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2573	if (IS_ERR(ai))
2574		return PTR_ERR(ai);
2575	BUG_ON(ai->nr_groups != 1);
2576	upa = ai->alloc_size/ai->unit_size;
2577	nr_g0_units = roundup(num_possible_cpus(), upa);
2578	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2579		pcpu_free_alloc_info(ai);
2580		return -EINVAL;
2581	}
2582
2583	unit_pages = ai->unit_size >> PAGE_SHIFT;
2584
2585	/* unaligned allocations can't be freed, round up to page size */
2586	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2587			       sizeof(pages[0]));
2588	pages = memblock_virt_alloc(pages_size, 0);
 
 
 
2589
2590	/* allocate pages */
2591	j = 0;
2592	for (unit = 0; unit < num_possible_cpus(); unit++) {
2593		unsigned int cpu = ai->groups[0].cpu_map[unit];
2594		for (i = 0; i < unit_pages; i++) {
2595			void *ptr;
2596
2597			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2598			if (!ptr) {
2599				pr_warn("failed to allocate %s page for cpu%u\n",
2600						psize_str, cpu);
2601				goto enomem;
2602			}
2603			/* kmemleak tracks the percpu allocations separately */
2604			kmemleak_free(ptr);
2605			pages[j++] = virt_to_page(ptr);
2606		}
2607	}
2608
2609	/* allocate vm area, map the pages and copy static data */
2610	vm.flags = VM_ALLOC;
2611	vm.size = num_possible_cpus() * ai->unit_size;
2612	vm_area_register_early(&vm, PAGE_SIZE);
2613
2614	for (unit = 0; unit < num_possible_cpus(); unit++) {
2615		unsigned long unit_addr =
2616			(unsigned long)vm.addr + unit * ai->unit_size;
2617
2618		for (i = 0; i < unit_pages; i++)
2619			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2620
2621		/* pte already populated, the following shouldn't fail */
2622		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2623				      unit_pages);
2624		if (rc < 0)
2625			panic("failed to map percpu area, err=%d\n", rc);
2626
2627		/*
2628		 * FIXME: Archs with virtual cache should flush local
2629		 * cache for the linear mapping here - something
2630		 * equivalent to flush_cache_vmap() on the local cpu.
2631		 * flush_cache_vmap() can't be used as most supporting
2632		 * data structures are not set up yet.
2633		 */
2634
2635		/* copy static data */
2636		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2637	}
2638
2639	/* we're ready, commit */
2640	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641		unit_pages, psize_str, vm.addr, ai->static_size,
2642		ai->reserved_size, ai->dyn_size);
2643
2644	rc = pcpu_setup_first_chunk(ai, vm.addr);
2645	goto out_free_ar;
2646
2647enomem:
2648	while (--j >= 0)
2649		free_fn(page_address(pages[j]), PAGE_SIZE);
2650	rc = -ENOMEM;
2651out_free_ar:
2652	memblock_free_early(__pa(pages), pages_size);
2653	pcpu_free_alloc_info(ai);
2654	return rc;
2655}
2656#endif /* BUILD_PAGE_FIRST_CHUNK */
2657
2658#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2659/*
2660 * Generic SMP percpu area setup.
2661 *
2662 * The embedding helper is used because its behavior closely resembles
2663 * the original non-dynamic generic percpu area setup.  This is
2664 * important because many archs have addressing restrictions and might
2665 * fail if the percpu area is located far away from the previous
2666 * location.  As an added bonus, in non-NUMA cases, embedding is
2667 * generally a good idea TLB-wise because percpu area can piggy back
2668 * on the physical linear memory mapping which uses large page
2669 * mappings on applicable archs.
2670 */
2671unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2672EXPORT_SYMBOL(__per_cpu_offset);
2673
2674static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2675				       size_t align)
2676{
2677	return  memblock_virt_alloc_from_nopanic(
2678			size, align, __pa(MAX_DMA_ADDRESS));
2679}
2680
2681static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2682{
2683	memblock_free_early(__pa(ptr), size);
2684}
2685
2686void __init setup_per_cpu_areas(void)
2687{
2688	unsigned long delta;
2689	unsigned int cpu;
2690	int rc;
2691
2692	/*
2693	 * Always reserve area for module percpu variables.  That's
2694	 * what the legacy allocator did.
2695	 */
2696	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2697				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2698				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2699	if (rc < 0)
2700		panic("Failed to initialize percpu areas.");
2701
2702	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2703	for_each_possible_cpu(cpu)
2704		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2705}
2706#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2707
2708#else	/* CONFIG_SMP */
2709
2710/*
2711 * UP percpu area setup.
2712 *
2713 * UP always uses km-based percpu allocator with identity mapping.
2714 * Static percpu variables are indistinguishable from the usual static
2715 * variables and don't require any special preparation.
2716 */
2717void __init setup_per_cpu_areas(void)
2718{
2719	const size_t unit_size =
2720		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2721					 PERCPU_DYNAMIC_RESERVE));
2722	struct pcpu_alloc_info *ai;
2723	void *fc;
2724
2725	ai = pcpu_alloc_alloc_info(1, 1);
2726	fc = memblock_virt_alloc_from_nopanic(unit_size,
2727					      PAGE_SIZE,
2728					      __pa(MAX_DMA_ADDRESS));
2729	if (!ai || !fc)
2730		panic("Failed to allocate memory for percpu areas.");
2731	/* kmemleak tracks the percpu allocations separately */
2732	kmemleak_free(fc);
2733
2734	ai->dyn_size = unit_size;
2735	ai->unit_size = unit_size;
2736	ai->atom_size = unit_size;
2737	ai->alloc_size = unit_size;
2738	ai->groups[0].nr_units = 1;
2739	ai->groups[0].cpu_map[0] = 0;
2740
2741	if (pcpu_setup_first_chunk(ai, fc) < 0)
2742		panic("Failed to initialize percpu areas.");
2743	pcpu_free_alloc_info(ai);
2744}
2745
2746#endif	/* CONFIG_SMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747
2748/*
2749 * Percpu allocator is initialized early during boot when neither slab or
2750 * workqueue is available.  Plug async management until everything is up
2751 * and running.
2752 */
2753static int __init percpu_enable_async(void)
2754{
2755	pcpu_async_enabled = true;
2756	return 0;
2757}
2758subsys_initcall(percpu_enable_async);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/percpu.c - percpu memory allocator
   4 *
   5 * Copyright (C) 2009		SUSE Linux Products GmbH
   6 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   7 *
   8 * Copyright (C) 2017		Facebook Inc.
   9 * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
 
 
  10 *
  11 * The percpu allocator handles both static and dynamic areas.  Percpu
  12 * areas are allocated in chunks which are divided into units.  There is
  13 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  14 * based on NUMA properties of the machine.
  15 *
  16 *  c0                           c1                         c2
  17 *  -------------------          -------------------        ------------
  18 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  19 *  -------------------  ......  -------------------  ....  ------------
  20 *
  21 * Allocation is done by offsets into a unit's address space.  Ie., an
  22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  23 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  24 * and even sparse.  Access is handled by configuring percpu base
  25 * registers according to the cpu to unit mappings and offsetting the
  26 * base address using pcpu_unit_size.
  27 *
  28 * There is special consideration for the first chunk which must handle
  29 * the static percpu variables in the kernel image as allocation services
  30 * are not online yet.  In short, the first chunk is structured like so:
  31 *
  32 *                  <Static | [Reserved] | Dynamic>
  33 *
  34 * The static data is copied from the original section managed by the
  35 * linker.  The reserved section, if non-zero, primarily manages static
  36 * percpu variables from kernel modules.  Finally, the dynamic section
  37 * takes care of normal allocations.
  38 *
  39 * The allocator organizes chunks into lists according to free size and
  40 * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
  41 * flag should be passed.  All memcg-aware allocations are sharing one set
  42 * of chunks and all unaccounted allocations and allocations performed
  43 * by processes belonging to the root memory cgroup are using the second set.
  44 *
  45 * The allocator tries to allocate from the fullest chunk first. Each chunk
  46 * is managed by a bitmap with metadata blocks.  The allocation map is updated
  47 * on every allocation and free to reflect the current state while the boundary
  48 * map is only updated on allocation.  Each metadata block contains
  49 * information to help mitigate the need to iterate over large portions
  50 * of the bitmap.  The reverse mapping from page to chunk is stored in
  51 * the page's index.  Lastly, units are lazily backed and grow in unison.
  52 *
  53 * There is a unique conversion that goes on here between bytes and bits.
  54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  55 * tracks the number of pages it is responsible for in nr_pages.  Helper
  56 * functions are used to convert from between the bytes, bits, and blocks.
  57 * All hints are managed in bits unless explicitly stated.
  58 *
  59 * To use this allocator, arch code should do the following:
  60 *
  61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  62 *   regular address to percpu pointer and back if they need to be
  63 *   different from the default
  64 *
  65 * - use pcpu_setup_first_chunk() during percpu area initialization to
  66 *   setup the first chunk containing the kernel static percpu area
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/bitmap.h>
  72#include <linux/cpumask.h>
  73#include <linux/memblock.h>
  74#include <linux/err.h>
  75#include <linux/lcm.h>
  76#include <linux/list.h>
  77#include <linux/log2.h>
  78#include <linux/mm.h>
  79#include <linux/module.h>
  80#include <linux/mutex.h>
  81#include <linux/percpu.h>
  82#include <linux/pfn.h>
  83#include <linux/slab.h>
  84#include <linux/spinlock.h>
  85#include <linux/vmalloc.h>
  86#include <linux/workqueue.h>
  87#include <linux/kmemleak.h>
  88#include <linux/sched.h>
  89#include <linux/sched/mm.h>
  90#include <linux/memcontrol.h>
  91
  92#include <asm/cacheflush.h>
  93#include <asm/sections.h>
  94#include <asm/tlbflush.h>
  95#include <asm/io.h>
  96
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/percpu.h>
  99
 100#include "percpu-internal.h"
 101
 102/*
 103 * The slots are sorted by the size of the biggest continuous free area.
 104 * 1-31 bytes share the same slot.
 105 */
 106#define PCPU_SLOT_BASE_SHIFT		5
 107/* chunks in slots below this are subject to being sidelined on failed alloc */
 108#define PCPU_SLOT_FAIL_THRESHOLD	3
 109
 110#define PCPU_EMPTY_POP_PAGES_LOW	2
 111#define PCPU_EMPTY_POP_PAGES_HIGH	4
 112
 113#ifdef CONFIG_SMP
 114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 115#ifndef __addr_to_pcpu_ptr
 116#define __addr_to_pcpu_ptr(addr)					\
 117	(void __percpu *)((unsigned long)(addr) -			\
 118			  (unsigned long)pcpu_base_addr	+		\
 119			  (unsigned long)__per_cpu_start)
 120#endif
 121#ifndef __pcpu_ptr_to_addr
 122#define __pcpu_ptr_to_addr(ptr)						\
 123	(void __force *)((unsigned long)(ptr) +				\
 124			 (unsigned long)pcpu_base_addr -		\
 125			 (unsigned long)__per_cpu_start)
 126#endif
 127#else	/* CONFIG_SMP */
 128/* on UP, it's always identity mapped */
 129#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 130#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 131#endif	/* CONFIG_SMP */
 132
 133static int pcpu_unit_pages __ro_after_init;
 134static int pcpu_unit_size __ro_after_init;
 135static int pcpu_nr_units __ro_after_init;
 136static int pcpu_atom_size __ro_after_init;
 137int pcpu_nr_slots __ro_after_init;
 138static int pcpu_free_slot __ro_after_init;
 139int pcpu_sidelined_slot __ro_after_init;
 140int pcpu_to_depopulate_slot __ro_after_init;
 141static size_t pcpu_chunk_struct_size __ro_after_init;
 142
 143/* cpus with the lowest and highest unit addresses */
 144static unsigned int pcpu_low_unit_cpu __ro_after_init;
 145static unsigned int pcpu_high_unit_cpu __ro_after_init;
 146
 147/* the address of the first chunk which starts with the kernel static area */
 148void *pcpu_base_addr __ro_after_init;
 149EXPORT_SYMBOL_GPL(pcpu_base_addr);
 150
 151static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
 152const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
 153
 154/* group information, used for vm allocation */
 155static int pcpu_nr_groups __ro_after_init;
 156static const unsigned long *pcpu_group_offsets __ro_after_init;
 157static const size_t *pcpu_group_sizes __ro_after_init;
 158
 159/*
 160 * The first chunk which always exists.  Note that unlike other
 161 * chunks, this one can be allocated and mapped in several different
 162 * ways and thus often doesn't live in the vmalloc area.
 163 */
 164struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 165
 166/*
 167 * Optional reserved chunk.  This chunk reserves part of the first
 168 * chunk and serves it for reserved allocations.  When the reserved
 169 * region doesn't exist, the following variable is NULL.
 170 */
 171struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 172
 173DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 174static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 175
 176struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 177
 178/* chunks which need their map areas extended, protected by pcpu_lock */
 179static LIST_HEAD(pcpu_map_extend_chunks);
 180
 181/*
 182 * The number of empty populated pages, protected by pcpu_lock.
 183 * The reserved chunk doesn't contribute to the count.
 184 */
 185int pcpu_nr_empty_pop_pages;
 186
 187/*
 188 * The number of populated pages in use by the allocator, protected by
 189 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 190 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 191 * and increments/decrements this count by 1).
 192 */
 193static unsigned long pcpu_nr_populated;
 194
 195/*
 196 * Balance work is used to populate or destroy chunks asynchronously.  We
 197 * try to keep the number of populated free pages between
 198 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 199 * empty chunk.
 200 */
 201static void pcpu_balance_workfn(struct work_struct *work);
 202static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 203static bool pcpu_async_enabled __read_mostly;
 204static bool pcpu_atomic_alloc_failed;
 205
 206static void pcpu_schedule_balance_work(void)
 207{
 208	if (pcpu_async_enabled)
 209		schedule_work(&pcpu_balance_work);
 210}
 211
 212/**
 213 * pcpu_addr_in_chunk - check if the address is served from this chunk
 214 * @chunk: chunk of interest
 215 * @addr: percpu address
 216 *
 217 * RETURNS:
 218 * True if the address is served from this chunk.
 219 */
 220static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 221{
 222	void *start_addr, *end_addr;
 223
 224	if (!chunk)
 225		return false;
 226
 227	start_addr = chunk->base_addr + chunk->start_offset;
 228	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 229		   chunk->end_offset;
 230
 231	return addr >= start_addr && addr < end_addr;
 232}
 233
 234static int __pcpu_size_to_slot(int size)
 235{
 236	int highbit = fls(size);	/* size is in bytes */
 237	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 238}
 239
 240static int pcpu_size_to_slot(int size)
 241{
 242	if (size == pcpu_unit_size)
 243		return pcpu_free_slot;
 244	return __pcpu_size_to_slot(size);
 245}
 246
 247static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 248{
 249	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 250
 251	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 252	    chunk_md->contig_hint == 0)
 253		return 0;
 254
 255	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 256}
 257
 258/* set the pointer to a chunk in a page struct */
 259static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 260{
 261	page->index = (unsigned long)pcpu;
 262}
 263
 264/* obtain pointer to a chunk from a page struct */
 265static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 266{
 267	return (struct pcpu_chunk *)page->index;
 268}
 269
 270static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 271{
 272	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 273}
 274
 275static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 276{
 277	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 278}
 279
 280static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 281				     unsigned int cpu, int page_idx)
 282{
 283	return (unsigned long)chunk->base_addr +
 284	       pcpu_unit_page_offset(cpu, page_idx);
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287/*
 288 * The following are helper functions to help access bitmaps and convert
 289 * between bitmap offsets to address offsets.
 290 */
 291static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 292{
 293	return chunk->alloc_map +
 294	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 295}
 296
 297static unsigned long pcpu_off_to_block_index(int off)
 298{
 299	return off / PCPU_BITMAP_BLOCK_BITS;
 300}
 301
 302static unsigned long pcpu_off_to_block_off(int off)
 303{
 304	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 305}
 306
 307static unsigned long pcpu_block_off_to_off(int index, int off)
 308{
 309	return index * PCPU_BITMAP_BLOCK_BITS + off;
 310}
 311
 312/**
 313 * pcpu_check_block_hint - check against the contig hint
 314 * @block: block of interest
 315 * @bits: size of allocation
 316 * @align: alignment of area (max PAGE_SIZE)
 317 *
 318 * Check to see if the allocation can fit in the block's contig hint.
 319 * Note, a chunk uses the same hints as a block so this can also check against
 320 * the chunk's contig hint.
 321 */
 322static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
 323				  size_t align)
 324{
 325	int bit_off = ALIGN(block->contig_hint_start, align) -
 326		block->contig_hint_start;
 327
 328	return bit_off + bits <= block->contig_hint;
 329}
 330
 331/*
 332 * pcpu_next_hint - determine which hint to use
 333 * @block: block of interest
 334 * @alloc_bits: size of allocation
 335 *
 336 * This determines if we should scan based on the scan_hint or first_free.
 337 * In general, we want to scan from first_free to fulfill allocations by
 338 * first fit.  However, if we know a scan_hint at position scan_hint_start
 339 * cannot fulfill an allocation, we can begin scanning from there knowing
 340 * the contig_hint will be our fallback.
 341 */
 342static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 343{
 344	/*
 345	 * The three conditions below determine if we can skip past the
 346	 * scan_hint.  First, does the scan hint exist.  Second, is the
 347	 * contig_hint after the scan_hint (possibly not true iff
 348	 * contig_hint == scan_hint).  Third, is the allocation request
 349	 * larger than the scan_hint.
 350	 */
 351	if (block->scan_hint &&
 352	    block->contig_hint_start > block->scan_hint_start &&
 353	    alloc_bits > block->scan_hint)
 354		return block->scan_hint_start + block->scan_hint;
 355
 356	return block->first_free;
 357}
 358
 359/**
 360 * pcpu_next_md_free_region - finds the next hint free area
 361 * @chunk: chunk of interest
 362 * @bit_off: chunk offset
 363 * @bits: size of free area
 364 *
 365 * Helper function for pcpu_for_each_md_free_region.  It checks
 366 * block->contig_hint and performs aggregation across blocks to find the
 367 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 368 * loop.
 369 */
 370static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 371				     int *bits)
 372{
 373	int i = pcpu_off_to_block_index(*bit_off);
 374	int block_off = pcpu_off_to_block_off(*bit_off);
 375	struct pcpu_block_md *block;
 376
 377	*bits = 0;
 378	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 379	     block++, i++) {
 380		/* handles contig area across blocks */
 381		if (*bits) {
 382			*bits += block->left_free;
 383			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 384				continue;
 385			return;
 386		}
 387
 388		/*
 389		 * This checks three things.  First is there a contig_hint to
 390		 * check.  Second, have we checked this hint before by
 391		 * comparing the block_off.  Third, is this the same as the
 392		 * right contig hint.  In the last case, it spills over into
 393		 * the next block and should be handled by the contig area
 394		 * across blocks code.
 395		 */
 396		*bits = block->contig_hint;
 397		if (*bits && block->contig_hint_start >= block_off &&
 398		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 399			*bit_off = pcpu_block_off_to_off(i,
 400					block->contig_hint_start);
 401			return;
 402		}
 403		/* reset to satisfy the second predicate above */
 404		block_off = 0;
 405
 406		*bits = block->right_free;
 407		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 408	}
 409}
 410
 411/**
 412 * pcpu_next_fit_region - finds fit areas for a given allocation request
 413 * @chunk: chunk of interest
 414 * @alloc_bits: size of allocation
 415 * @align: alignment of area (max PAGE_SIZE)
 416 * @bit_off: chunk offset
 417 * @bits: size of free area
 418 *
 419 * Finds the next free region that is viable for use with a given size and
 420 * alignment.  This only returns if there is a valid area to be used for this
 421 * allocation.  block->first_free is returned if the allocation request fits
 422 * within the block to see if the request can be fulfilled prior to the contig
 423 * hint.
 424 */
 425static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 426				 int align, int *bit_off, int *bits)
 427{
 428	int i = pcpu_off_to_block_index(*bit_off);
 429	int block_off = pcpu_off_to_block_off(*bit_off);
 430	struct pcpu_block_md *block;
 431
 432	*bits = 0;
 433	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 434	     block++, i++) {
 435		/* handles contig area across blocks */
 436		if (*bits) {
 437			*bits += block->left_free;
 438			if (*bits >= alloc_bits)
 439				return;
 440			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 441				continue;
 442		}
 443
 444		/* check block->contig_hint */
 445		*bits = ALIGN(block->contig_hint_start, align) -
 446			block->contig_hint_start;
 447		/*
 448		 * This uses the block offset to determine if this has been
 449		 * checked in the prior iteration.
 450		 */
 451		if (block->contig_hint &&
 452		    block->contig_hint_start >= block_off &&
 453		    block->contig_hint >= *bits + alloc_bits) {
 454			int start = pcpu_next_hint(block, alloc_bits);
 455
 456			*bits += alloc_bits + block->contig_hint_start -
 457				 start;
 458			*bit_off = pcpu_block_off_to_off(i, start);
 459			return;
 460		}
 461		/* reset to satisfy the second predicate above */
 462		block_off = 0;
 463
 464		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 465				 align);
 466		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 467		*bit_off = pcpu_block_off_to_off(i, *bit_off);
 468		if (*bits >= alloc_bits)
 469			return;
 470	}
 471
 472	/* no valid offsets were found - fail condition */
 473	*bit_off = pcpu_chunk_map_bits(chunk);
 474}
 475
 476/*
 477 * Metadata free area iterators.  These perform aggregation of free areas
 478 * based on the metadata blocks and return the offset @bit_off and size in
 479 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 480 * a fit is found for the allocation request.
 481 */
 482#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
 483	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
 484	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
 485	     (bit_off) += (bits) + 1,					\
 486	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 487
 488#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 489	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 490				  &(bits));				      \
 491	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
 492	     (bit_off) += (bits),					      \
 493	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 494				  &(bits)))
 495
 496/**
 497 * pcpu_mem_zalloc - allocate memory
 498 * @size: bytes to allocate
 499 * @gfp: allocation flags
 500 *
 501 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 502 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 503 * This is to facilitate passing through whitelisted flags.  The
 504 * returned memory is always zeroed.
 505 *
 506 * RETURNS:
 507 * Pointer to the allocated area on success, NULL on failure.
 508 */
 509static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 510{
 511	if (WARN_ON_ONCE(!slab_is_available()))
 512		return NULL;
 513
 514	if (size <= PAGE_SIZE)
 515		return kzalloc(size, gfp);
 516	else
 517		return __vmalloc(size, gfp | __GFP_ZERO);
 518}
 519
 520/**
 521 * pcpu_mem_free - free memory
 522 * @ptr: memory to free
 523 *
 524 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 525 */
 526static void pcpu_mem_free(void *ptr)
 527{
 528	kvfree(ptr);
 529}
 530
 531static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 532			      bool move_front)
 533{
 534	if (chunk != pcpu_reserved_chunk) {
 535		if (move_front)
 536			list_move(&chunk->list, &pcpu_chunk_lists[slot]);
 537		else
 538			list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
 539	}
 540}
 541
 542static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 543{
 544	__pcpu_chunk_move(chunk, slot, true);
 545}
 546
 547/**
 548 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 549 * @chunk: chunk of interest
 550 * @oslot: the previous slot it was on
 551 *
 552 * This function is called after an allocation or free changed @chunk.
 553 * New slot according to the changed state is determined and @chunk is
 554 * moved to the slot.  Note that the reserved chunk is never put on
 555 * chunk slots.
 556 *
 557 * CONTEXT:
 558 * pcpu_lock.
 559 */
 560static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 561{
 562	int nslot = pcpu_chunk_slot(chunk);
 563
 564	/* leave isolated chunks in-place */
 565	if (chunk->isolated)
 566		return;
 567
 568	if (oslot != nslot)
 569		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
 570}
 571
 572static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573{
 574	lockdep_assert_held(&pcpu_lock);
 
 575
 576	if (!chunk->isolated) {
 577		chunk->isolated = true;
 578		pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
 579	}
 580	list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
 581}
 582
 583static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
 584{
 585	lockdep_assert_held(&pcpu_lock);
 586
 587	if (chunk->isolated) {
 588		chunk->isolated = false;
 589		pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
 590		pcpu_chunk_relocate(chunk, -1);
 591	}
 592}
 593
 594/*
 595 * pcpu_update_empty_pages - update empty page counters
 596 * @chunk: chunk of interest
 597 * @nr: nr of empty pages
 
 598 *
 599 * This is used to keep track of the empty pages now based on the premise
 600 * a md_block covers a page.  The hint update functions recognize if a block
 601 * is made full or broken to calculate deltas for keeping track of free pages.
 602 */
 603static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 604{
 605	chunk->nr_empty_pop_pages += nr;
 606	if (chunk != pcpu_reserved_chunk && !chunk->isolated)
 607		pcpu_nr_empty_pop_pages += nr;
 
 
 
 
 
 
 608}
 609
 610/*
 611 * pcpu_region_overlap - determines if two regions overlap
 612 * @a: start of first region, inclusive
 613 * @b: end of first region, exclusive
 614 * @x: start of second region, inclusive
 615 * @y: end of second region, exclusive
 
 616 *
 617 * This is used to determine if the hint region [a, b) overlaps with the
 618 * allocated region [x, y).
 
 
 619 */
 620static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 621{
 622	return (a < y) && (x < b);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623}
 624
 625/**
 626 * pcpu_block_update - updates a block given a free area
 627 * @block: block of interest
 628 * @start: start offset in block
 629 * @end: end offset in block
 630 *
 631 * Updates a block given a known free area.  The region [start, end) is
 632 * expected to be the entirety of the free area within a block.  Chooses
 633 * the best starting offset if the contig hints are equal.
 634 */
 635static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 636{
 637	int contig = end - start;
 638
 639	block->first_free = min(block->first_free, start);
 640	if (start == 0)
 641		block->left_free = contig;
 642
 643	if (end == block->nr_bits)
 644		block->right_free = contig;
 645
 646	if (contig > block->contig_hint) {
 647		/* promote the old contig_hint to be the new scan_hint */
 648		if (start > block->contig_hint_start) {
 649			if (block->contig_hint > block->scan_hint) {
 650				block->scan_hint_start =
 651					block->contig_hint_start;
 652				block->scan_hint = block->contig_hint;
 653			} else if (start < block->scan_hint_start) {
 654				/*
 655				 * The old contig_hint == scan_hint.  But, the
 656				 * new contig is larger so hold the invariant
 657				 * scan_hint_start < contig_hint_start.
 658				 */
 659				block->scan_hint = 0;
 660			}
 661		} else {
 662			block->scan_hint = 0;
 663		}
 664		block->contig_hint_start = start;
 665		block->contig_hint = contig;
 666	} else if (contig == block->contig_hint) {
 667		if (block->contig_hint_start &&
 668		    (!start ||
 669		     __ffs(start) > __ffs(block->contig_hint_start))) {
 670			/* start has a better alignment so use it */
 671			block->contig_hint_start = start;
 672			if (start < block->scan_hint_start &&
 673			    block->contig_hint > block->scan_hint)
 674				block->scan_hint = 0;
 675		} else if (start > block->scan_hint_start ||
 676			   block->contig_hint > block->scan_hint) {
 677			/*
 678			 * Knowing contig == contig_hint, update the scan_hint
 679			 * if it is farther than or larger than the current
 680			 * scan_hint.
 681			 */
 682			block->scan_hint_start = start;
 683			block->scan_hint = contig;
 684		}
 685	} else {
 686		/*
 687		 * The region is smaller than the contig_hint.  So only update
 688		 * the scan_hint if it is larger than or equal and farther than
 689		 * the current scan_hint.
 690		 */
 691		if ((start < block->contig_hint_start &&
 692		     (contig > block->scan_hint ||
 693		      (contig == block->scan_hint &&
 694		       start > block->scan_hint_start)))) {
 695			block->scan_hint_start = start;
 696			block->scan_hint = contig;
 697		}
 698	}
 699}
 700
 701/*
 702 * pcpu_block_update_scan - update a block given a free area from a scan
 703 * @chunk: chunk of interest
 704 * @bit_off: chunk offset
 705 * @bits: size of free area
 706 *
 707 * Finding the final allocation spot first goes through pcpu_find_block_fit()
 708 * to find a block that can hold the allocation and then pcpu_alloc_area()
 709 * where a scan is used.  When allocations require specific alignments,
 710 * we can inadvertently create holes which will not be seen in the alloc
 711 * or free paths.
 712 *
 713 * This takes a given free area hole and updates a block as it may change the
 714 * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 715 * from alignment.
 716 */
 717static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 718				   int bits)
 719{
 720	int s_off = pcpu_off_to_block_off(bit_off);
 721	int e_off = s_off + bits;
 722	int s_index, l_bit;
 723	struct pcpu_block_md *block;
 724
 725	if (e_off > PCPU_BITMAP_BLOCK_BITS)
 726		return;
 727
 728	s_index = pcpu_off_to_block_index(bit_off);
 729	block = chunk->md_blocks + s_index;
 730
 731	/* scan backwards in case of alignment skipping free bits */
 732	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 733	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 734
 735	pcpu_block_update(block, s_off, e_off);
 736}
 737
 738/**
 739 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 740 * @chunk: chunk of interest
 741 * @full_scan: if we should scan from the beginning
 742 *
 743 * Iterates over the metadata blocks to find the largest contig area.
 744 * A full scan can be avoided on the allocation path as this is triggered
 745 * if we broke the contig_hint.  In doing so, the scan_hint will be before
 746 * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 747 * be prevented on freeing as we want to find the largest area possibly
 748 * spanning blocks.
 749 */
 750static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 751{
 752	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 753	int bit_off, bits;
 754
 755	/* promote scan_hint to contig_hint */
 756	if (!full_scan && chunk_md->scan_hint) {
 757		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 758		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 759		chunk_md->contig_hint = chunk_md->scan_hint;
 760		chunk_md->scan_hint = 0;
 761	} else {
 762		bit_off = chunk_md->first_free;
 763		chunk_md->contig_hint = 0;
 764	}
 765
 766	bits = 0;
 767	pcpu_for_each_md_free_region(chunk, bit_off, bits)
 768		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 769}
 770
 771/**
 772 * pcpu_block_refresh_hint
 773 * @chunk: chunk of interest
 774 * @index: index of the metadata block
 775 *
 776 * Scans over the block beginning at first_free and updates the block
 777 * metadata accordingly.
 778 */
 779static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 780{
 781	struct pcpu_block_md *block = chunk->md_blocks + index;
 782	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 783	unsigned int rs, re, start;	/* region start, region end */
 784
 785	/* promote scan_hint to contig_hint */
 786	if (block->scan_hint) {
 787		start = block->scan_hint_start + block->scan_hint;
 788		block->contig_hint_start = block->scan_hint_start;
 789		block->contig_hint = block->scan_hint;
 790		block->scan_hint = 0;
 791	} else {
 792		start = block->first_free;
 793		block->contig_hint = 0;
 794	}
 795
 796	block->right_free = 0;
 797
 798	/* iterate over free areas and update the contig hints */
 799	bitmap_for_each_clear_region(alloc_map, rs, re, start,
 800				     PCPU_BITMAP_BLOCK_BITS)
 801		pcpu_block_update(block, rs, re);
 
 802}
 803
 804/**
 805 * pcpu_block_update_hint_alloc - update hint on allocation path
 806 * @chunk: chunk of interest
 807 * @bit_off: chunk offset
 808 * @bits: size of request
 809 *
 810 * Updates metadata for the allocation path.  The metadata only has to be
 811 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 812 * scans are required if the block's contig hint is broken.
 813 */
 814static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 815					 int bits)
 816{
 817	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 818	int nr_empty_pages = 0;
 819	struct pcpu_block_md *s_block, *e_block, *block;
 820	int s_index, e_index;	/* block indexes of the freed allocation */
 821	int s_off, e_off;	/* block offsets of the freed allocation */
 822
 823	/*
 824	 * Calculate per block offsets.
 825	 * The calculation uses an inclusive range, but the resulting offsets
 826	 * are [start, end).  e_index always points to the last block in the
 827	 * range.
 828	 */
 829	s_index = pcpu_off_to_block_index(bit_off);
 830	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 831	s_off = pcpu_off_to_block_off(bit_off);
 832	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 833
 834	s_block = chunk->md_blocks + s_index;
 835	e_block = chunk->md_blocks + e_index;
 836
 837	/*
 838	 * Update s_block.
 839	 * block->first_free must be updated if the allocation takes its place.
 840	 * If the allocation breaks the contig_hint, a scan is required to
 841	 * restore this hint.
 842	 */
 843	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 844		nr_empty_pages++;
 845
 846	if (s_off == s_block->first_free)
 847		s_block->first_free = find_next_zero_bit(
 848					pcpu_index_alloc_map(chunk, s_index),
 849					PCPU_BITMAP_BLOCK_BITS,
 850					s_off + bits);
 851
 852	if (pcpu_region_overlap(s_block->scan_hint_start,
 853				s_block->scan_hint_start + s_block->scan_hint,
 854				s_off,
 855				s_off + bits))
 856		s_block->scan_hint = 0;
 857
 858	if (pcpu_region_overlap(s_block->contig_hint_start,
 859				s_block->contig_hint_start +
 860				s_block->contig_hint,
 861				s_off,
 862				s_off + bits)) {
 863		/* block contig hint is broken - scan to fix it */
 864		if (!s_off)
 865			s_block->left_free = 0;
 866		pcpu_block_refresh_hint(chunk, s_index);
 867	} else {
 868		/* update left and right contig manually */
 869		s_block->left_free = min(s_block->left_free, s_off);
 870		if (s_index == e_index)
 871			s_block->right_free = min_t(int, s_block->right_free,
 872					PCPU_BITMAP_BLOCK_BITS - e_off);
 873		else
 874			s_block->right_free = 0;
 875	}
 876
 877	/*
 878	 * Update e_block.
 879	 */
 880	if (s_index != e_index) {
 881		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 882			nr_empty_pages++;
 883
 884		/*
 885		 * When the allocation is across blocks, the end is along
 886		 * the left part of the e_block.
 887		 */
 888		e_block->first_free = find_next_zero_bit(
 889				pcpu_index_alloc_map(chunk, e_index),
 890				PCPU_BITMAP_BLOCK_BITS, e_off);
 891
 892		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 893			/* reset the block */
 894			e_block++;
 895		} else {
 896			if (e_off > e_block->scan_hint_start)
 897				e_block->scan_hint = 0;
 898
 899			e_block->left_free = 0;
 900			if (e_off > e_block->contig_hint_start) {
 901				/* contig hint is broken - scan to fix it */
 902				pcpu_block_refresh_hint(chunk, e_index);
 903			} else {
 
 904				e_block->right_free =
 905					min_t(int, e_block->right_free,
 906					      PCPU_BITMAP_BLOCK_BITS - e_off);
 907			}
 908		}
 909
 910		/* update in-between md_blocks */
 911		nr_empty_pages += (e_index - s_index - 1);
 912		for (block = s_block + 1; block < e_block; block++) {
 913			block->scan_hint = 0;
 914			block->contig_hint = 0;
 915			block->left_free = 0;
 916			block->right_free = 0;
 917		}
 918	}
 919
 920	if (nr_empty_pages)
 921		pcpu_update_empty_pages(chunk, -nr_empty_pages);
 922
 923	if (pcpu_region_overlap(chunk_md->scan_hint_start,
 924				chunk_md->scan_hint_start +
 925				chunk_md->scan_hint,
 926				bit_off,
 927				bit_off + bits))
 928		chunk_md->scan_hint = 0;
 929
 930	/*
 931	 * The only time a full chunk scan is required is if the chunk
 932	 * contig hint is broken.  Otherwise, it means a smaller space
 933	 * was used and therefore the chunk contig hint is still correct.
 934	 */
 935	if (pcpu_region_overlap(chunk_md->contig_hint_start,
 936				chunk_md->contig_hint_start +
 937				chunk_md->contig_hint,
 938				bit_off,
 939				bit_off + bits))
 940		pcpu_chunk_refresh_hint(chunk, false);
 941}
 942
 943/**
 944 * pcpu_block_update_hint_free - updates the block hints on the free path
 945 * @chunk: chunk of interest
 946 * @bit_off: chunk offset
 947 * @bits: size of request
 948 *
 949 * Updates metadata for the allocation path.  This avoids a blind block
 950 * refresh by making use of the block contig hints.  If this fails, it scans
 951 * forward and backward to determine the extent of the free area.  This is
 952 * capped at the boundary of blocks.
 953 *
 954 * A chunk update is triggered if a page becomes free, a block becomes free,
 955 * or the free spans across blocks.  This tradeoff is to minimize iterating
 956 * over the block metadata to update chunk_md->contig_hint.
 957 * chunk_md->contig_hint may be off by up to a page, but it will never be more
 958 * than the available space.  If the contig hint is contained in one block, it
 959 * will be accurate.
 960 */
 961static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 962					int bits)
 963{
 964	int nr_empty_pages = 0;
 965	struct pcpu_block_md *s_block, *e_block, *block;
 966	int s_index, e_index;	/* block indexes of the freed allocation */
 967	int s_off, e_off;	/* block offsets of the freed allocation */
 968	int start, end;		/* start and end of the whole free area */
 969
 970	/*
 971	 * Calculate per block offsets.
 972	 * The calculation uses an inclusive range, but the resulting offsets
 973	 * are [start, end).  e_index always points to the last block in the
 974	 * range.
 975	 */
 976	s_index = pcpu_off_to_block_index(bit_off);
 977	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 978	s_off = pcpu_off_to_block_off(bit_off);
 979	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 980
 981	s_block = chunk->md_blocks + s_index;
 982	e_block = chunk->md_blocks + e_index;
 983
 984	/*
 985	 * Check if the freed area aligns with the block->contig_hint.
 986	 * If it does, then the scan to find the beginning/end of the
 987	 * larger free area can be avoided.
 988	 *
 989	 * start and end refer to beginning and end of the free area
 990	 * within each their respective blocks.  This is not necessarily
 991	 * the entire free area as it may span blocks past the beginning
 992	 * or end of the block.
 993	 */
 994	start = s_off;
 995	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 996		start = s_block->contig_hint_start;
 997	} else {
 998		/*
 999		 * Scan backwards to find the extent of the free area.
1000		 * find_last_bit returns the starting bit, so if the start bit
1001		 * is returned, that means there was no last bit and the
1002		 * remainder of the chunk is free.
1003		 */
1004		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1005					  start);
1006		start = (start == l_bit) ? 0 : l_bit + 1;
1007	}
1008
1009	end = e_off;
1010	if (e_off == e_block->contig_hint_start)
1011		end = e_block->contig_hint_start + e_block->contig_hint;
1012	else
1013		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1014				    PCPU_BITMAP_BLOCK_BITS, end);
1015
1016	/* update s_block */
1017	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1018	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1019		nr_empty_pages++;
1020	pcpu_block_update(s_block, start, e_off);
1021
1022	/* freeing in the same block */
1023	if (s_index != e_index) {
1024		/* update e_block */
1025		if (end == PCPU_BITMAP_BLOCK_BITS)
1026			nr_empty_pages++;
1027		pcpu_block_update(e_block, 0, end);
1028
1029		/* reset md_blocks in the middle */
1030		nr_empty_pages += (e_index - s_index - 1);
1031		for (block = s_block + 1; block < e_block; block++) {
1032			block->first_free = 0;
1033			block->scan_hint = 0;
1034			block->contig_hint_start = 0;
1035			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1036			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1037			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1038		}
1039	}
1040
1041	if (nr_empty_pages)
1042		pcpu_update_empty_pages(chunk, nr_empty_pages);
1043
1044	/*
1045	 * Refresh chunk metadata when the free makes a block free or spans
1046	 * across blocks.  The contig_hint may be off by up to a page, but if
1047	 * the contig_hint is contained in a block, it will be accurate with
1048	 * the else condition below.
1049	 */
1050	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1051		pcpu_chunk_refresh_hint(chunk, true);
 
 
1052	else
1053		pcpu_block_update(&chunk->chunk_md,
1054				  pcpu_block_off_to_off(s_index, start),
1055				  end);
1056}
1057
1058/**
1059 * pcpu_is_populated - determines if the region is populated
1060 * @chunk: chunk of interest
1061 * @bit_off: chunk offset
1062 * @bits: size of area
1063 * @next_off: return value for the next offset to start searching
1064 *
1065 * For atomic allocations, check if the backing pages are populated.
1066 *
1067 * RETURNS:
1068 * Bool if the backing pages are populated.
1069 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1070 */
1071static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1072			      int *next_off)
1073{
1074	unsigned int page_start, page_end, rs, re;
1075
1076	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1077	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1078
1079	rs = page_start;
1080	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1081	if (rs >= page_end)
1082		return true;
1083
1084	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1085	return false;
1086}
1087
1088/**
1089 * pcpu_find_block_fit - finds the block index to start searching
1090 * @chunk: chunk of interest
1091 * @alloc_bits: size of request in allocation units
1092 * @align: alignment of area (max PAGE_SIZE bytes)
1093 * @pop_only: use populated regions only
1094 *
1095 * Given a chunk and an allocation spec, find the offset to begin searching
1096 * for a free region.  This iterates over the bitmap metadata blocks to
1097 * find an offset that will be guaranteed to fit the requirements.  It is
1098 * not quite first fit as if the allocation does not fit in the contig hint
1099 * of a block or chunk, it is skipped.  This errs on the side of caution
1100 * to prevent excess iteration.  Poor alignment can cause the allocator to
1101 * skip over blocks and chunks that have valid free areas.
1102 *
1103 * RETURNS:
1104 * The offset in the bitmap to begin searching.
1105 * -1 if no offset is found.
1106 */
1107static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1108			       size_t align, bool pop_only)
1109{
1110	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1111	int bit_off, bits, next_off;
1112
1113	/*
1114	 * This is an optimization to prevent scanning by assuming if the
1115	 * allocation cannot fit in the global hint, there is memory pressure
1116	 * and creating a new chunk would happen soon.
1117	 */
1118	if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
 
 
 
1119		return -1;
1120
1121	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1122	bits = 0;
1123	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1124		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1125						   &next_off))
1126			break;
1127
1128		bit_off = next_off;
1129		bits = 0;
1130	}
1131
1132	if (bit_off == pcpu_chunk_map_bits(chunk))
1133		return -1;
1134
1135	return bit_off;
1136}
1137
1138/*
1139 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1140 * @map: the address to base the search on
1141 * @size: the bitmap size in bits
1142 * @start: the bitnumber to start searching at
1143 * @nr: the number of zeroed bits we're looking for
1144 * @align_mask: alignment mask for zero area
1145 * @largest_off: offset of the largest area skipped
1146 * @largest_bits: size of the largest area skipped
1147 *
1148 * The @align_mask should be one less than a power of 2.
1149 *
1150 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1151 * the largest area that was skipped.  This is imperfect, but in general is
1152 * good enough.  The largest remembered region is the largest failed region
1153 * seen.  This does not include anything we possibly skipped due to alignment.
1154 * pcpu_block_update_scan() does scan backwards to try and recover what was
1155 * lost to alignment.  While this can cause scanning to miss earlier possible
1156 * free areas, smaller allocations will eventually fill those holes.
1157 */
1158static unsigned long pcpu_find_zero_area(unsigned long *map,
1159					 unsigned long size,
1160					 unsigned long start,
1161					 unsigned long nr,
1162					 unsigned long align_mask,
1163					 unsigned long *largest_off,
1164					 unsigned long *largest_bits)
1165{
1166	unsigned long index, end, i, area_off, area_bits;
1167again:
1168	index = find_next_zero_bit(map, size, start);
1169
1170	/* Align allocation */
1171	index = __ALIGN_MASK(index, align_mask);
1172	area_off = index;
1173
1174	end = index + nr;
1175	if (end > size)
1176		return end;
1177	i = find_next_bit(map, end, index);
1178	if (i < end) {
1179		area_bits = i - area_off;
1180		/* remember largest unused area with best alignment */
1181		if (area_bits > *largest_bits ||
1182		    (area_bits == *largest_bits && *largest_off &&
1183		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1184			*largest_off = area_off;
1185			*largest_bits = area_bits;
1186		}
1187
1188		start = i + 1;
1189		goto again;
1190	}
1191	return index;
1192}
1193
1194/**
1195 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1196 * @chunk: chunk of interest
1197 * @alloc_bits: size of request in allocation units
1198 * @align: alignment of area (max PAGE_SIZE)
1199 * @start: bit_off to start searching
1200 *
1201 * This function takes in a @start offset to begin searching to fit an
1202 * allocation of @alloc_bits with alignment @align.  It needs to scan
1203 * the allocation map because if it fits within the block's contig hint,
1204 * @start will be block->first_free. This is an attempt to fill the
1205 * allocation prior to breaking the contig hint.  The allocation and
1206 * boundary maps are updated accordingly if it confirms a valid
1207 * free area.
1208 *
1209 * RETURNS:
1210 * Allocated addr offset in @chunk on success.
1211 * -1 if no matching area is found.
1212 */
1213static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1214			   size_t align, int start)
1215{
1216	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1217	size_t align_mask = (align) ? (align - 1) : 0;
1218	unsigned long area_off = 0, area_bits = 0;
1219	int bit_off, end, oslot;
1220
1221	lockdep_assert_held(&pcpu_lock);
1222
1223	oslot = pcpu_chunk_slot(chunk);
1224
1225	/*
1226	 * Search to find a fit.
1227	 */
1228	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1229		    pcpu_chunk_map_bits(chunk));
1230	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1231				      align_mask, &area_off, &area_bits);
1232	if (bit_off >= end)
1233		return -1;
1234
1235	if (area_bits)
1236		pcpu_block_update_scan(chunk, area_off, area_bits);
1237
1238	/* update alloc map */
1239	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1240
1241	/* update boundary map */
1242	set_bit(bit_off, chunk->bound_map);
1243	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1244	set_bit(bit_off + alloc_bits, chunk->bound_map);
1245
1246	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1247
1248	/* update first free bit */
1249	if (bit_off == chunk_md->first_free)
1250		chunk_md->first_free = find_next_zero_bit(
1251					chunk->alloc_map,
1252					pcpu_chunk_map_bits(chunk),
1253					bit_off + alloc_bits);
1254
1255	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1256
1257	pcpu_chunk_relocate(chunk, oslot);
1258
1259	return bit_off * PCPU_MIN_ALLOC_SIZE;
1260}
1261
1262/**
1263 * pcpu_free_area - frees the corresponding offset
1264 * @chunk: chunk of interest
1265 * @off: addr offset into chunk
1266 *
1267 * This function determines the size of an allocation to free using
1268 * the boundary bitmap and clears the allocation map.
1269 *
1270 * RETURNS:
1271 * Number of freed bytes.
1272 */
1273static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1274{
1275	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1276	int bit_off, bits, end, oslot, freed;
1277
1278	lockdep_assert_held(&pcpu_lock);
1279	pcpu_stats_area_dealloc(chunk);
1280
1281	oslot = pcpu_chunk_slot(chunk);
1282
1283	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1284
1285	/* find end index */
1286	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1287			    bit_off + 1);
1288	bits = end - bit_off;
1289	bitmap_clear(chunk->alloc_map, bit_off, bits);
1290
1291	freed = bits * PCPU_MIN_ALLOC_SIZE;
1292
1293	/* update metadata */
1294	chunk->free_bytes += freed;
1295
1296	/* update first free bit */
1297	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1298
1299	pcpu_block_update_hint_free(chunk, bit_off, bits);
1300
1301	pcpu_chunk_relocate(chunk, oslot);
1302
1303	return freed;
1304}
1305
1306static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1307{
1308	block->scan_hint = 0;
1309	block->contig_hint = nr_bits;
1310	block->left_free = nr_bits;
1311	block->right_free = nr_bits;
1312	block->first_free = 0;
1313	block->nr_bits = nr_bits;
1314}
1315
1316static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1317{
1318	struct pcpu_block_md *md_block;
1319
1320	/* init the chunk's block */
1321	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1322
1323	for (md_block = chunk->md_blocks;
1324	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1325	     md_block++)
1326		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
 
 
 
1327}
1328
1329/**
1330 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1331 * @tmp_addr: the start of the region served
1332 * @map_size: size of the region served
1333 *
1334 * This is responsible for creating the chunks that serve the first chunk.  The
1335 * base_addr is page aligned down of @tmp_addr while the region end is page
1336 * aligned up.  Offsets are kept track of to determine the region served. All
1337 * this is done to appease the bitmap allocator in avoiding partial blocks.
1338 *
1339 * RETURNS:
1340 * Chunk serving the region at @tmp_addr of @map_size.
1341 */
1342static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1343							 int map_size)
1344{
1345	struct pcpu_chunk *chunk;
1346	unsigned long aligned_addr, lcm_align;
1347	int start_offset, offset_bits, region_size, region_bits;
1348	size_t alloc_size;
1349
1350	/* region calculations */
1351	aligned_addr = tmp_addr & PAGE_MASK;
1352
1353	start_offset = tmp_addr - aligned_addr;
1354
1355	/*
1356	 * Align the end of the region with the LCM of PAGE_SIZE and
1357	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1358	 * the other.
1359	 */
1360	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1361	region_size = ALIGN(start_offset + map_size, lcm_align);
1362
1363	/* allocate chunk */
1364	alloc_size = struct_size(chunk, populated,
1365				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1366	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1367	if (!chunk)
1368		panic("%s: Failed to allocate %zu bytes\n", __func__,
1369		      alloc_size);
1370
1371	INIT_LIST_HEAD(&chunk->list);
1372
1373	chunk->base_addr = (void *)aligned_addr;
1374	chunk->start_offset = start_offset;
1375	chunk->end_offset = region_size - chunk->start_offset - map_size;
1376
1377	chunk->nr_pages = region_size >> PAGE_SHIFT;
1378	region_bits = pcpu_chunk_map_bits(chunk);
1379
1380	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1381	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1382	if (!chunk->alloc_map)
1383		panic("%s: Failed to allocate %zu bytes\n", __func__,
1384		      alloc_size);
1385
1386	alloc_size =
1387		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1388	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1389	if (!chunk->bound_map)
1390		panic("%s: Failed to allocate %zu bytes\n", __func__,
1391		      alloc_size);
1392
1393	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1394	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1395	if (!chunk->md_blocks)
1396		panic("%s: Failed to allocate %zu bytes\n", __func__,
1397		      alloc_size);
1398
1399#ifdef CONFIG_MEMCG_KMEM
1400	/* first chunk is free to use */
1401	chunk->obj_cgroups = NULL;
1402#endif
1403	pcpu_init_md_blocks(chunk);
1404
1405	/* manage populated page bitmap */
1406	chunk->immutable = true;
1407	bitmap_fill(chunk->populated, chunk->nr_pages);
1408	chunk->nr_populated = chunk->nr_pages;
1409	chunk->nr_empty_pop_pages = chunk->nr_pages;
 
 
1410
 
1411	chunk->free_bytes = map_size;
1412
1413	if (chunk->start_offset) {
1414		/* hide the beginning of the bitmap */
1415		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1416		bitmap_set(chunk->alloc_map, 0, offset_bits);
1417		set_bit(0, chunk->bound_map);
1418		set_bit(offset_bits, chunk->bound_map);
1419
1420		chunk->chunk_md.first_free = offset_bits;
1421
1422		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1423	}
1424
1425	if (chunk->end_offset) {
1426		/* hide the end of the bitmap */
1427		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1428		bitmap_set(chunk->alloc_map,
1429			   pcpu_chunk_map_bits(chunk) - offset_bits,
1430			   offset_bits);
1431		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1432			chunk->bound_map);
1433		set_bit(region_bits, chunk->bound_map);
1434
1435		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1436					     - offset_bits, offset_bits);
1437	}
1438
1439	return chunk;
1440}
1441
1442static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1443{
1444	struct pcpu_chunk *chunk;
1445	int region_bits;
1446
1447	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1448	if (!chunk)
1449		return NULL;
1450
1451	INIT_LIST_HEAD(&chunk->list);
1452	chunk->nr_pages = pcpu_unit_pages;
1453	region_bits = pcpu_chunk_map_bits(chunk);
1454
1455	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1456					   sizeof(chunk->alloc_map[0]), gfp);
1457	if (!chunk->alloc_map)
1458		goto alloc_map_fail;
1459
1460	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1461					   sizeof(chunk->bound_map[0]), gfp);
1462	if (!chunk->bound_map)
1463		goto bound_map_fail;
1464
1465	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1466					   sizeof(chunk->md_blocks[0]), gfp);
1467	if (!chunk->md_blocks)
1468		goto md_blocks_fail;
1469
1470#ifdef CONFIG_MEMCG_KMEM
1471	if (!mem_cgroup_kmem_disabled()) {
1472		chunk->obj_cgroups =
1473			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1474					sizeof(struct obj_cgroup *), gfp);
1475		if (!chunk->obj_cgroups)
1476			goto objcg_fail;
1477	}
1478#endif
1479
1480	pcpu_init_md_blocks(chunk);
1481
1482	/* init metadata */
 
1483	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1484
1485	return chunk;
1486
1487#ifdef CONFIG_MEMCG_KMEM
1488objcg_fail:
1489	pcpu_mem_free(chunk->md_blocks);
1490#endif
1491md_blocks_fail:
1492	pcpu_mem_free(chunk->bound_map);
1493bound_map_fail:
1494	pcpu_mem_free(chunk->alloc_map);
1495alloc_map_fail:
1496	pcpu_mem_free(chunk);
1497
1498	return NULL;
1499}
1500
1501static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1502{
1503	if (!chunk)
1504		return;
1505#ifdef CONFIG_MEMCG_KMEM
1506	pcpu_mem_free(chunk->obj_cgroups);
1507#endif
1508	pcpu_mem_free(chunk->md_blocks);
1509	pcpu_mem_free(chunk->bound_map);
1510	pcpu_mem_free(chunk->alloc_map);
1511	pcpu_mem_free(chunk);
1512}
1513
1514/**
1515 * pcpu_chunk_populated - post-population bookkeeping
1516 * @chunk: pcpu_chunk which got populated
1517 * @page_start: the start page
1518 * @page_end: the end page
 
1519 *
1520 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1521 * the bookkeeping information accordingly.  Must be called after each
1522 * successful population.
1523 *
1524 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1525 * is to serve an allocation in that area.
1526 */
1527static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1528				 int page_end)
1529{
1530	int nr = page_end - page_start;
1531
1532	lockdep_assert_held(&pcpu_lock);
1533
1534	bitmap_set(chunk->populated, page_start, nr);
1535	chunk->nr_populated += nr;
1536	pcpu_nr_populated += nr;
1537
1538	pcpu_update_empty_pages(chunk, nr);
 
 
 
1539}
1540
1541/**
1542 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1543 * @chunk: pcpu_chunk which got depopulated
1544 * @page_start: the start page
1545 * @page_end: the end page
1546 *
1547 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1548 * Update the bookkeeping information accordingly.  Must be called after
1549 * each successful depopulation.
1550 */
1551static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1552				   int page_start, int page_end)
1553{
1554	int nr = page_end - page_start;
1555
1556	lockdep_assert_held(&pcpu_lock);
1557
1558	bitmap_clear(chunk->populated, page_start, nr);
1559	chunk->nr_populated -= nr;
1560	pcpu_nr_populated -= nr;
1561
1562	pcpu_update_empty_pages(chunk, -nr);
1563}
1564
1565/*
1566 * Chunk management implementation.
1567 *
1568 * To allow different implementations, chunk alloc/free and
1569 * [de]population are implemented in a separate file which is pulled
1570 * into this file and compiled together.  The following functions
1571 * should be implemented.
1572 *
1573 * pcpu_populate_chunk		- populate the specified range of a chunk
1574 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1575 * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk
1576 * pcpu_create_chunk		- create a new chunk
1577 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1578 * pcpu_addr_to_page		- translate address to physical address
1579 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1580 */
1581static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1582			       int page_start, int page_end, gfp_t gfp);
1583static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1584				  int page_start, int page_end);
1585static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1586				      int page_start, int page_end);
1587static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1588static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1589static struct page *pcpu_addr_to_page(void *addr);
1590static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1591
1592#ifdef CONFIG_NEED_PER_CPU_KM
1593#include "percpu-km.c"
1594#else
1595#include "percpu-vm.c"
1596#endif
1597
1598/**
1599 * pcpu_chunk_addr_search - determine chunk containing specified address
1600 * @addr: address for which the chunk needs to be determined.
1601 *
1602 * This is an internal function that handles all but static allocations.
1603 * Static percpu address values should never be passed into the allocator.
1604 *
1605 * RETURNS:
1606 * The address of the found chunk.
1607 */
1608static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1609{
1610	/* is it in the dynamic region (first chunk)? */
1611	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1612		return pcpu_first_chunk;
1613
1614	/* is it in the reserved region? */
1615	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1616		return pcpu_reserved_chunk;
1617
1618	/*
1619	 * The address is relative to unit0 which might be unused and
1620	 * thus unmapped.  Offset the address to the unit space of the
1621	 * current processor before looking it up in the vmalloc
1622	 * space.  Note that any possible cpu id can be used here, so
1623	 * there's no need to worry about preemption or cpu hotplug.
1624	 */
1625	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1626	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1627}
1628
1629#ifdef CONFIG_MEMCG_KMEM
1630static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1631				      struct obj_cgroup **objcgp)
1632{
1633	struct obj_cgroup *objcg;
1634
1635	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1636		return true;
1637
1638	objcg = get_obj_cgroup_from_current();
1639	if (!objcg)
1640		return true;
1641
1642	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1643		obj_cgroup_put(objcg);
1644		return false;
1645	}
1646
1647	*objcgp = objcg;
1648	return true;
1649}
1650
1651static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1652				       struct pcpu_chunk *chunk, int off,
1653				       size_t size)
1654{
1655	if (!objcg)
1656		return;
1657
1658	if (likely(chunk && chunk->obj_cgroups)) {
1659		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1660
1661		rcu_read_lock();
1662		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1663				size * num_possible_cpus());
1664		rcu_read_unlock();
1665	} else {
1666		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1667		obj_cgroup_put(objcg);
1668	}
1669}
1670
1671static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1672{
1673	struct obj_cgroup *objcg;
1674
1675	if (unlikely(!chunk->obj_cgroups))
1676		return;
1677
1678	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1679	if (!objcg)
1680		return;
1681	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1682
1683	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1684
1685	rcu_read_lock();
1686	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1687			-(size * num_possible_cpus()));
1688	rcu_read_unlock();
1689
1690	obj_cgroup_put(objcg);
1691}
1692
1693#else /* CONFIG_MEMCG_KMEM */
1694static bool
1695pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1696{
1697	return true;
1698}
1699
1700static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1701				       struct pcpu_chunk *chunk, int off,
1702				       size_t size)
1703{
1704}
1705
1706static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1707{
1708}
1709#endif /* CONFIG_MEMCG_KMEM */
1710
1711/**
1712 * pcpu_alloc - the percpu allocator
1713 * @size: size of area to allocate in bytes
1714 * @align: alignment of area (max PAGE_SIZE)
1715 * @reserved: allocate from the reserved chunk if available
1716 * @gfp: allocation flags
1717 *
1718 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1719 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1720 * then no warning will be triggered on invalid or failed allocation
1721 * requests.
1722 *
1723 * RETURNS:
1724 * Percpu pointer to the allocated area on success, NULL on failure.
1725 */
1726static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1727				 gfp_t gfp)
1728{
1729	gfp_t pcpu_gfp;
1730	bool is_atomic;
1731	bool do_warn;
1732	struct obj_cgroup *objcg = NULL;
1733	static int warn_limit = 10;
1734	struct pcpu_chunk *chunk, *next;
1735	const char *err;
1736	int slot, off, cpu, ret;
1737	unsigned long flags;
1738	void __percpu *ptr;
1739	size_t bits, bit_align;
1740
1741	gfp = current_gfp_context(gfp);
1742	/* whitelisted flags that can be passed to the backing allocators */
1743	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1744	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1745	do_warn = !(gfp & __GFP_NOWARN);
1746
1747	/*
1748	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1749	 * therefore alignment must be a minimum of that many bytes.
1750	 * An allocation may have internal fragmentation from rounding up
1751	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1752	 */
1753	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1754		align = PCPU_MIN_ALLOC_SIZE;
1755
1756	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1757	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1758	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1759
1760	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1761		     !is_power_of_2(align))) {
1762		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1763		     size, align);
1764		return NULL;
1765	}
1766
1767	if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1768		return NULL;
1769
1770	if (!is_atomic) {
1771		/*
1772		 * pcpu_balance_workfn() allocates memory under this mutex,
1773		 * and it may wait for memory reclaim. Allow current task
1774		 * to become OOM victim, in case of memory pressure.
1775		 */
1776		if (gfp & __GFP_NOFAIL) {
1777			mutex_lock(&pcpu_alloc_mutex);
1778		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1779			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1780			return NULL;
1781		}
1782	}
1783
1784	spin_lock_irqsave(&pcpu_lock, flags);
1785
1786	/* serve reserved allocations from the reserved chunk if available */
1787	if (reserved && pcpu_reserved_chunk) {
1788		chunk = pcpu_reserved_chunk;
1789
1790		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1791		if (off < 0) {
1792			err = "alloc from reserved chunk failed";
1793			goto fail_unlock;
1794		}
1795
1796		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1797		if (off >= 0)
1798			goto area_found;
1799
1800		err = "alloc from reserved chunk failed";
1801		goto fail_unlock;
1802	}
1803
1804restart:
1805	/* search through normal chunks */
1806	for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1807		list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1808					 list) {
1809			off = pcpu_find_block_fit(chunk, bits, bit_align,
1810						  is_atomic);
1811			if (off < 0) {
1812				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1813					pcpu_chunk_move(chunk, 0);
1814				continue;
1815			}
1816
1817			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1818			if (off >= 0) {
1819				pcpu_reintegrate_chunk(chunk);
1820				goto area_found;
1821			}
1822		}
1823	}
1824
1825	spin_unlock_irqrestore(&pcpu_lock, flags);
1826
1827	/*
1828	 * No space left.  Create a new chunk.  We don't want multiple
1829	 * tasks to create chunks simultaneously.  Serialize and create iff
1830	 * there's still no empty chunk after grabbing the mutex.
1831	 */
1832	if (is_atomic) {
1833		err = "atomic alloc failed, no space left";
1834		goto fail;
1835	}
1836
1837	if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1838		chunk = pcpu_create_chunk(pcpu_gfp);
1839		if (!chunk) {
1840			err = "failed to allocate new chunk";
1841			goto fail;
1842		}
1843
1844		spin_lock_irqsave(&pcpu_lock, flags);
1845		pcpu_chunk_relocate(chunk, -1);
1846	} else {
1847		spin_lock_irqsave(&pcpu_lock, flags);
1848	}
1849
1850	goto restart;
1851
1852area_found:
1853	pcpu_stats_area_alloc(chunk, size);
1854	spin_unlock_irqrestore(&pcpu_lock, flags);
1855
1856	/* populate if not all pages are already there */
1857	if (!is_atomic) {
1858		unsigned int page_start, page_end, rs, re;
1859
1860		page_start = PFN_DOWN(off);
1861		page_end = PFN_UP(off + size);
1862
1863		bitmap_for_each_clear_region(chunk->populated, rs, re,
1864					     page_start, page_end) {
1865			WARN_ON(chunk->immutable);
1866
1867			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1868
1869			spin_lock_irqsave(&pcpu_lock, flags);
1870			if (ret) {
1871				pcpu_free_area(chunk, off);
1872				err = "failed to populate";
1873				goto fail_unlock;
1874			}
1875			pcpu_chunk_populated(chunk, rs, re);
1876			spin_unlock_irqrestore(&pcpu_lock, flags);
1877		}
1878
1879		mutex_unlock(&pcpu_alloc_mutex);
1880	}
1881
1882	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1883		pcpu_schedule_balance_work();
1884
1885	/* clear the areas and return address relative to base address */
1886	for_each_possible_cpu(cpu)
1887		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1888
1889	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1890	kmemleak_alloc_percpu(ptr, size, gfp);
1891
1892	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1893			chunk->base_addr, off, ptr);
1894
1895	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1896
1897	return ptr;
1898
1899fail_unlock:
1900	spin_unlock_irqrestore(&pcpu_lock, flags);
1901fail:
1902	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1903
1904	if (!is_atomic && do_warn && warn_limit) {
1905		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1906			size, align, is_atomic, err);
1907		dump_stack();
1908		if (!--warn_limit)
1909			pr_info("limit reached, disable warning\n");
1910	}
1911	if (is_atomic) {
1912		/* see the flag handling in pcpu_balance_workfn() */
1913		pcpu_atomic_alloc_failed = true;
1914		pcpu_schedule_balance_work();
1915	} else {
1916		mutex_unlock(&pcpu_alloc_mutex);
1917	}
1918
1919	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1920
1921	return NULL;
1922}
1923
1924/**
1925 * __alloc_percpu_gfp - allocate dynamic percpu area
1926 * @size: size of area to allocate in bytes
1927 * @align: alignment of area (max PAGE_SIZE)
1928 * @gfp: allocation flags
1929 *
1930 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1931 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1932 * be called from any context but is a lot more likely to fail. If @gfp
1933 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1934 * allocation requests.
1935 *
1936 * RETURNS:
1937 * Percpu pointer to the allocated area on success, NULL on failure.
1938 */
1939void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1940{
1941	return pcpu_alloc(size, align, false, gfp);
1942}
1943EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1944
1945/**
1946 * __alloc_percpu - allocate dynamic percpu area
1947 * @size: size of area to allocate in bytes
1948 * @align: alignment of area (max PAGE_SIZE)
1949 *
1950 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1951 */
1952void __percpu *__alloc_percpu(size_t size, size_t align)
1953{
1954	return pcpu_alloc(size, align, false, GFP_KERNEL);
1955}
1956EXPORT_SYMBOL_GPL(__alloc_percpu);
1957
1958/**
1959 * __alloc_reserved_percpu - allocate reserved percpu area
1960 * @size: size of area to allocate in bytes
1961 * @align: alignment of area (max PAGE_SIZE)
1962 *
1963 * Allocate zero-filled percpu area of @size bytes aligned at @align
1964 * from reserved percpu area if arch has set it up; otherwise,
1965 * allocation is served from the same dynamic area.  Might sleep.
1966 * Might trigger writeouts.
1967 *
1968 * CONTEXT:
1969 * Does GFP_KERNEL allocation.
1970 *
1971 * RETURNS:
1972 * Percpu pointer to the allocated area on success, NULL on failure.
1973 */
1974void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1975{
1976	return pcpu_alloc(size, align, true, GFP_KERNEL);
1977}
1978
1979/**
1980 * pcpu_balance_free - manage the amount of free chunks
1981 * @empty_only: free chunks only if there are no populated pages
1982 *
1983 * If empty_only is %false, reclaim all fully free chunks regardless of the
1984 * number of populated pages.  Otherwise, only reclaim chunks that have no
1985 * populated pages.
1986 *
1987 * CONTEXT:
1988 * pcpu_lock (can be dropped temporarily)
1989 */
1990static void pcpu_balance_free(bool empty_only)
1991{
 
 
1992	LIST_HEAD(to_free);
1993	struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1994	struct pcpu_chunk *chunk, *next;
1995
1996	lockdep_assert_held(&pcpu_lock);
1997
1998	/*
1999	 * There's no reason to keep around multiple unused chunks and VM
2000	 * areas can be scarce.  Destroy all free chunks except for one.
2001	 */
 
 
 
2002	list_for_each_entry_safe(chunk, next, free_head, list) {
2003		WARN_ON(chunk->immutable);
2004
2005		/* spare the first one */
2006		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
2007			continue;
2008
2009		if (!empty_only || chunk->nr_empty_pop_pages == 0)
2010			list_move(&chunk->list, &to_free);
2011	}
2012
2013	if (list_empty(&to_free))
2014		return;
2015
2016	spin_unlock_irq(&pcpu_lock);
2017	list_for_each_entry_safe(chunk, next, &to_free, list) {
2018		unsigned int rs, re;
2019
2020		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
2021					   chunk->nr_pages) {
2022			pcpu_depopulate_chunk(chunk, rs, re);
2023			spin_lock_irq(&pcpu_lock);
2024			pcpu_chunk_depopulated(chunk, rs, re);
2025			spin_unlock_irq(&pcpu_lock);
2026		}
2027		pcpu_destroy_chunk(chunk);
2028		cond_resched();
2029	}
2030	spin_lock_irq(&pcpu_lock);
2031}
2032
2033/**
2034 * pcpu_balance_populated - manage the amount of populated pages
2035 *
2036 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2037 * It is possible that this is called when physical memory is scarce causing
2038 * OOM killer to be triggered.  We should avoid doing so until an actual
2039 * allocation causes the failure as it is possible that requests can be
2040 * serviced from already backed regions.
2041 *
2042 * CONTEXT:
2043 * pcpu_lock (can be dropped temporarily)
2044 */
2045static void pcpu_balance_populated(void)
2046{
2047	/* gfp flags passed to underlying allocators */
2048	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2049	struct pcpu_chunk *chunk;
2050	int slot, nr_to_pop, ret;
2051
2052	lockdep_assert_held(&pcpu_lock);
2053
2054	/*
2055	 * Ensure there are certain number of free populated pages for
2056	 * atomic allocs.  Fill up from the most packed so that atomic
2057	 * allocs don't increase fragmentation.  If atomic allocation
2058	 * failed previously, always populate the maximum amount.  This
2059	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2060	 * failing indefinitely; however, large atomic allocs are not
2061	 * something we support properly and can be highly unreliable and
2062	 * inefficient.
2063	 */
2064retry_pop:
2065	if (pcpu_atomic_alloc_failed) {
2066		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2067		/* best effort anyway, don't worry about synchronization */
2068		pcpu_atomic_alloc_failed = false;
2069	} else {
2070		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2071				  pcpu_nr_empty_pop_pages,
2072				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2073	}
2074
2075	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2076		unsigned int nr_unpop = 0, rs, re;
2077
2078		if (!nr_to_pop)
2079			break;
2080
2081		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
 
2082			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2083			if (nr_unpop)
2084				break;
2085		}
 
2086
2087		if (!nr_unpop)
2088			continue;
2089
2090		/* @chunk can't go away while pcpu_alloc_mutex is held */
2091		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2092					     chunk->nr_pages) {
2093			int nr = min_t(int, re - rs, nr_to_pop);
2094
2095			spin_unlock_irq(&pcpu_lock);
2096			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2097			cond_resched();
2098			spin_lock_irq(&pcpu_lock);
2099			if (!ret) {
2100				nr_to_pop -= nr;
2101				pcpu_chunk_populated(chunk, rs, rs + nr);
 
 
2102			} else {
2103				nr_to_pop = 0;
2104			}
2105
2106			if (!nr_to_pop)
2107				break;
2108		}
2109	}
2110
2111	if (nr_to_pop) {
2112		/* ran out of chunks to populate, create a new one and retry */
2113		spin_unlock_irq(&pcpu_lock);
2114		chunk = pcpu_create_chunk(gfp);
2115		cond_resched();
2116		spin_lock_irq(&pcpu_lock);
2117		if (chunk) {
 
2118			pcpu_chunk_relocate(chunk, -1);
 
2119			goto retry_pop;
2120		}
2121	}
2122}
2123
2124/**
2125 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2126 *
2127 * Scan over chunks in the depopulate list and try to release unused populated
2128 * pages back to the system.  Depopulated chunks are sidelined to prevent
2129 * repopulating these pages unless required.  Fully free chunks are reintegrated
2130 * and freed accordingly (1 is kept around).  If we drop below the empty
2131 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2132 * Each chunk is scanned in the reverse order to keep populated pages close to
2133 * the beginning of the chunk.
2134 *
2135 * CONTEXT:
2136 * pcpu_lock (can be dropped temporarily)
2137 *
2138 */
2139static void pcpu_reclaim_populated(void)
2140{
2141	struct pcpu_chunk *chunk;
2142	struct pcpu_block_md *block;
2143	int freed_page_start, freed_page_end;
2144	int i, end;
2145	bool reintegrate;
2146
2147	lockdep_assert_held(&pcpu_lock);
2148
2149	/*
2150	 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2151	 * longer discoverable to allocations whom may populate pages.  The only
2152	 * other accessor is the free path which only returns area back to the
2153	 * allocator not touching the populated bitmap.
2154	 */
2155	while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
2156		chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2157					 struct pcpu_chunk, list);
2158		WARN_ON(chunk->immutable);
2159
2160		/*
2161		 * Scan chunk's pages in the reverse order to keep populated
2162		 * pages close to the beginning of the chunk.
2163		 */
2164		freed_page_start = chunk->nr_pages;
2165		freed_page_end = 0;
2166		reintegrate = false;
2167		for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2168			/* no more work to do */
2169			if (chunk->nr_empty_pop_pages == 0)
2170				break;
2171
2172			/* reintegrate chunk to prevent atomic alloc failures */
2173			if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2174				reintegrate = true;
2175				goto end_chunk;
2176			}
2177
2178			/*
2179			 * If the page is empty and populated, start or
2180			 * extend the (i, end) range.  If i == 0, decrease
2181			 * i and perform the depopulation to cover the last
2182			 * (first) page in the chunk.
2183			 */
2184			block = chunk->md_blocks + i;
2185			if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2186			    test_bit(i, chunk->populated)) {
2187				if (end == -1)
2188					end = i;
2189				if (i > 0)
2190					continue;
2191				i--;
2192			}
2193
2194			/* depopulate if there is an active range */
2195			if (end == -1)
2196				continue;
2197
2198			spin_unlock_irq(&pcpu_lock);
2199			pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2200			cond_resched();
2201			spin_lock_irq(&pcpu_lock);
2202
2203			pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2204			freed_page_start = min(freed_page_start, i + 1);
2205			freed_page_end = max(freed_page_end, end + 1);
2206
2207			/* reset the range and continue */
2208			end = -1;
2209		}
2210
2211end_chunk:
2212		/* batch tlb flush per chunk to amortize cost */
2213		if (freed_page_start < freed_page_end) {
2214			spin_unlock_irq(&pcpu_lock);
2215			pcpu_post_unmap_tlb_flush(chunk,
2216						  freed_page_start,
2217						  freed_page_end);
2218			cond_resched();
2219			spin_lock_irq(&pcpu_lock);
2220		}
2221
2222		if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2223			pcpu_reintegrate_chunk(chunk);
2224		else
2225			list_move_tail(&chunk->list,
2226				       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2227	}
2228}
2229
2230/**
2231 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2232 * @work: unused
2233 *
2234 * For each chunk type, manage the number of fully free chunks and the number of
2235 * populated pages.  An important thing to consider is when pages are freed and
2236 * how they contribute to the global counts.
2237 */
2238static void pcpu_balance_workfn(struct work_struct *work)
2239{
2240	/*
2241	 * pcpu_balance_free() is called twice because the first time we may
2242	 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2243	 * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2244	 * to move fully free chunks to the active list to be freed if
2245	 * appropriate.
2246	 */
2247	mutex_lock(&pcpu_alloc_mutex);
2248	spin_lock_irq(&pcpu_lock);
2249
2250	pcpu_balance_free(false);
2251	pcpu_reclaim_populated();
2252	pcpu_balance_populated();
2253	pcpu_balance_free(true);
2254
2255	spin_unlock_irq(&pcpu_lock);
2256	mutex_unlock(&pcpu_alloc_mutex);
2257}
2258
2259/**
2260 * free_percpu - free percpu area
2261 * @ptr: pointer to area to free
2262 *
2263 * Free percpu area @ptr.
2264 *
2265 * CONTEXT:
2266 * Can be called from atomic context.
2267 */
2268void free_percpu(void __percpu *ptr)
2269{
2270	void *addr;
2271	struct pcpu_chunk *chunk;
2272	unsigned long flags;
2273	int size, off;
2274	bool need_balance = false;
2275
2276	if (!ptr)
2277		return;
2278
2279	kmemleak_free_percpu(ptr);
2280
2281	addr = __pcpu_ptr_to_addr(ptr);
2282
2283	spin_lock_irqsave(&pcpu_lock, flags);
2284
2285	chunk = pcpu_chunk_addr_search(addr);
2286	off = addr - chunk->base_addr;
2287
2288	size = pcpu_free_area(chunk, off);
2289
2290	pcpu_memcg_free_hook(chunk, off, size);
2291
2292	/*
2293	 * If there are more than one fully free chunks, wake up grim reaper.
2294	 * If the chunk is isolated, it may be in the process of being
2295	 * reclaimed.  Let reclaim manage cleaning up of that chunk.
2296	 */
2297	if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2298		struct pcpu_chunk *pos;
2299
2300		list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2301			if (pos != chunk) {
2302				need_balance = true;
2303				break;
2304			}
2305	} else if (pcpu_should_reclaim_chunk(chunk)) {
2306		pcpu_isolate_chunk(chunk);
2307		need_balance = true;
2308	}
2309
2310	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2311
2312	spin_unlock_irqrestore(&pcpu_lock, flags);
2313
2314	if (need_balance)
2315		pcpu_schedule_balance_work();
2316}
2317EXPORT_SYMBOL_GPL(free_percpu);
2318
2319bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2320{
2321#ifdef CONFIG_SMP
2322	const size_t static_size = __per_cpu_end - __per_cpu_start;
2323	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2324	unsigned int cpu;
2325
2326	for_each_possible_cpu(cpu) {
2327		void *start = per_cpu_ptr(base, cpu);
2328		void *va = (void *)addr;
2329
2330		if (va >= start && va < start + static_size) {
2331			if (can_addr) {
2332				*can_addr = (unsigned long) (va - start);
2333				*can_addr += (unsigned long)
2334					per_cpu_ptr(base, get_boot_cpu_id());
2335			}
2336			return true;
2337		}
2338	}
2339#endif
2340	/* on UP, can't distinguish from other static vars, always false */
2341	return false;
2342}
2343
2344/**
2345 * is_kernel_percpu_address - test whether address is from static percpu area
2346 * @addr: address to test
2347 *
2348 * Test whether @addr belongs to in-kernel static percpu area.  Module
2349 * static percpu areas are not considered.  For those, use
2350 * is_module_percpu_address().
2351 *
2352 * RETURNS:
2353 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2354 */
2355bool is_kernel_percpu_address(unsigned long addr)
2356{
2357	return __is_kernel_percpu_address(addr, NULL);
2358}
2359
2360/**
2361 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2362 * @addr: the address to be converted to physical address
2363 *
2364 * Given @addr which is dereferenceable address obtained via one of
2365 * percpu access macros, this function translates it into its physical
2366 * address.  The caller is responsible for ensuring @addr stays valid
2367 * until this function finishes.
2368 *
2369 * percpu allocator has special setup for the first chunk, which currently
2370 * supports either embedding in linear address space or vmalloc mapping,
2371 * and, from the second one, the backing allocator (currently either vm or
2372 * km) provides translation.
2373 *
2374 * The addr can be translated simply without checking if it falls into the
2375 * first chunk. But the current code reflects better how percpu allocator
2376 * actually works, and the verification can discover both bugs in percpu
2377 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2378 * code.
2379 *
2380 * RETURNS:
2381 * The physical address for @addr.
2382 */
2383phys_addr_t per_cpu_ptr_to_phys(void *addr)
2384{
2385	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2386	bool in_first_chunk = false;
2387	unsigned long first_low, first_high;
2388	unsigned int cpu;
2389
2390	/*
2391	 * The following test on unit_low/high isn't strictly
2392	 * necessary but will speed up lookups of addresses which
2393	 * aren't in the first chunk.
2394	 *
2395	 * The address check is against full chunk sizes.  pcpu_base_addr
2396	 * points to the beginning of the first chunk including the
2397	 * static region.  Assumes good intent as the first chunk may
2398	 * not be full (ie. < pcpu_unit_pages in size).
2399	 */
2400	first_low = (unsigned long)pcpu_base_addr +
2401		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2402	first_high = (unsigned long)pcpu_base_addr +
2403		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2404	if ((unsigned long)addr >= first_low &&
2405	    (unsigned long)addr < first_high) {
2406		for_each_possible_cpu(cpu) {
2407			void *start = per_cpu_ptr(base, cpu);
2408
2409			if (addr >= start && addr < start + pcpu_unit_size) {
2410				in_first_chunk = true;
2411				break;
2412			}
2413		}
2414	}
2415
2416	if (in_first_chunk) {
2417		if (!is_vmalloc_addr(addr))
2418			return __pa(addr);
2419		else
2420			return page_to_phys(vmalloc_to_page(addr)) +
2421			       offset_in_page(addr);
2422	} else
2423		return page_to_phys(pcpu_addr_to_page(addr)) +
2424		       offset_in_page(addr);
2425}
2426
2427/**
2428 * pcpu_alloc_alloc_info - allocate percpu allocation info
2429 * @nr_groups: the number of groups
2430 * @nr_units: the number of units
2431 *
2432 * Allocate ai which is large enough for @nr_groups groups containing
2433 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2434 * cpu_map array which is long enough for @nr_units and filled with
2435 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2436 * pointer of other groups.
2437 *
2438 * RETURNS:
2439 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2440 * failure.
2441 */
2442struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2443						      int nr_units)
2444{
2445	struct pcpu_alloc_info *ai;
2446	size_t base_size, ai_size;
2447	void *ptr;
2448	int unit;
2449
2450	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2451			  __alignof__(ai->groups[0].cpu_map[0]));
2452	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2453
2454	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2455	if (!ptr)
2456		return NULL;
2457	ai = ptr;
2458	ptr += base_size;
2459
2460	ai->groups[0].cpu_map = ptr;
2461
2462	for (unit = 0; unit < nr_units; unit++)
2463		ai->groups[0].cpu_map[unit] = NR_CPUS;
2464
2465	ai->nr_groups = nr_groups;
2466	ai->__ai_size = PFN_ALIGN(ai_size);
2467
2468	return ai;
2469}
2470
2471/**
2472 * pcpu_free_alloc_info - free percpu allocation info
2473 * @ai: pcpu_alloc_info to free
2474 *
2475 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2476 */
2477void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2478{
2479	memblock_free_early(__pa(ai), ai->__ai_size);
2480}
2481
2482/**
2483 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2484 * @lvl: loglevel
2485 * @ai: allocation info to dump
2486 *
2487 * Print out information about @ai using loglevel @lvl.
2488 */
2489static void pcpu_dump_alloc_info(const char *lvl,
2490				 const struct pcpu_alloc_info *ai)
2491{
2492	int group_width = 1, cpu_width = 1, width;
2493	char empty_str[] = "--------";
2494	int alloc = 0, alloc_end = 0;
2495	int group, v;
2496	int upa, apl;	/* units per alloc, allocs per line */
2497
2498	v = ai->nr_groups;
2499	while (v /= 10)
2500		group_width++;
2501
2502	v = num_possible_cpus();
2503	while (v /= 10)
2504		cpu_width++;
2505	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2506
2507	upa = ai->alloc_size / ai->unit_size;
2508	width = upa * (cpu_width + 1) + group_width + 3;
2509	apl = rounddown_pow_of_two(max(60 / width, 1));
2510
2511	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2512	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2513	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2514
2515	for (group = 0; group < ai->nr_groups; group++) {
2516		const struct pcpu_group_info *gi = &ai->groups[group];
2517		int unit = 0, unit_end = 0;
2518
2519		BUG_ON(gi->nr_units % upa);
2520		for (alloc_end += gi->nr_units / upa;
2521		     alloc < alloc_end; alloc++) {
2522			if (!(alloc % apl)) {
2523				pr_cont("\n");
2524				printk("%spcpu-alloc: ", lvl);
2525			}
2526			pr_cont("[%0*d] ", group_width, group);
2527
2528			for (unit_end += upa; unit < unit_end; unit++)
2529				if (gi->cpu_map[unit] != NR_CPUS)
2530					pr_cont("%0*d ",
2531						cpu_width, gi->cpu_map[unit]);
2532				else
2533					pr_cont("%s ", empty_str);
2534		}
2535	}
2536	pr_cont("\n");
2537}
2538
2539/**
2540 * pcpu_setup_first_chunk - initialize the first percpu chunk
2541 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2542 * @base_addr: mapped address
2543 *
2544 * Initialize the first percpu chunk which contains the kernel static
2545 * percpu area.  This function is to be called from arch percpu area
2546 * setup path.
2547 *
2548 * @ai contains all information necessary to initialize the first
2549 * chunk and prime the dynamic percpu allocator.
2550 *
2551 * @ai->static_size is the size of static percpu area.
2552 *
2553 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2554 * reserve after the static area in the first chunk.  This reserves
2555 * the first chunk such that it's available only through reserved
2556 * percpu allocation.  This is primarily used to serve module percpu
2557 * static areas on architectures where the addressing model has
2558 * limited offset range for symbol relocations to guarantee module
2559 * percpu symbols fall inside the relocatable range.
2560 *
2561 * @ai->dyn_size determines the number of bytes available for dynamic
2562 * allocation in the first chunk.  The area between @ai->static_size +
2563 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2564 *
2565 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2566 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2567 * @ai->dyn_size.
2568 *
2569 * @ai->atom_size is the allocation atom size and used as alignment
2570 * for vm areas.
2571 *
2572 * @ai->alloc_size is the allocation size and always multiple of
2573 * @ai->atom_size.  This is larger than @ai->atom_size if
2574 * @ai->unit_size is larger than @ai->atom_size.
2575 *
2576 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2577 * percpu areas.  Units which should be colocated are put into the
2578 * same group.  Dynamic VM areas will be allocated according to these
2579 * groupings.  If @ai->nr_groups is zero, a single group containing
2580 * all units is assumed.
2581 *
2582 * The caller should have mapped the first chunk at @base_addr and
2583 * copied static data to each unit.
2584 *
2585 * The first chunk will always contain a static and a dynamic region.
2586 * However, the static region is not managed by any chunk.  If the first
2587 * chunk also contains a reserved region, it is served by two chunks -
2588 * one for the reserved region and one for the dynamic region.  They
2589 * share the same vm, but use offset regions in the area allocation map.
2590 * The chunk serving the dynamic region is circulated in the chunk slots
2591 * and available for dynamic allocation like any other chunk.
 
 
 
2592 */
2593void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2594				   void *base_addr)
2595{
2596	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2597	size_t static_size, dyn_size;
2598	struct pcpu_chunk *chunk;
2599	unsigned long *group_offsets;
2600	size_t *group_sizes;
2601	unsigned long *unit_off;
2602	unsigned int cpu;
2603	int *unit_map;
2604	int group, unit, i;
2605	int map_size;
2606	unsigned long tmp_addr;
2607	size_t alloc_size;
2608
2609#define PCPU_SETUP_BUG_ON(cond)	do {					\
2610	if (unlikely(cond)) {						\
2611		pr_emerg("failed to initialize, %s\n", #cond);		\
2612		pr_emerg("cpu_possible_mask=%*pb\n",			\
2613			 cpumask_pr_args(cpu_possible_mask));		\
2614		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2615		BUG();							\
2616	}								\
2617} while (0)
2618
2619	/* sanity checks */
2620	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2621#ifdef CONFIG_SMP
2622	PCPU_SETUP_BUG_ON(!ai->static_size);
2623	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2624#endif
2625	PCPU_SETUP_BUG_ON(!base_addr);
2626	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2627	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2628	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2629	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2630	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2631	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2632	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2633	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2634	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2635			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2636	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2637
2638	/* process group information and build config tables accordingly */
2639	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2640	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2641	if (!group_offsets)
2642		panic("%s: Failed to allocate %zu bytes\n", __func__,
2643		      alloc_size);
2644
2645	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2646	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2647	if (!group_sizes)
2648		panic("%s: Failed to allocate %zu bytes\n", __func__,
2649		      alloc_size);
2650
2651	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2652	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2653	if (!unit_map)
2654		panic("%s: Failed to allocate %zu bytes\n", __func__,
2655		      alloc_size);
2656
2657	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2658	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2659	if (!unit_off)
2660		panic("%s: Failed to allocate %zu bytes\n", __func__,
2661		      alloc_size);
2662
2663	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2664		unit_map[cpu] = UINT_MAX;
2665
2666	pcpu_low_unit_cpu = NR_CPUS;
2667	pcpu_high_unit_cpu = NR_CPUS;
2668
2669	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2670		const struct pcpu_group_info *gi = &ai->groups[group];
2671
2672		group_offsets[group] = gi->base_offset;
2673		group_sizes[group] = gi->nr_units * ai->unit_size;
2674
2675		for (i = 0; i < gi->nr_units; i++) {
2676			cpu = gi->cpu_map[i];
2677			if (cpu == NR_CPUS)
2678				continue;
2679
2680			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2681			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2682			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2683
2684			unit_map[cpu] = unit + i;
2685			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2686
2687			/* determine low/high unit_cpu */
2688			if (pcpu_low_unit_cpu == NR_CPUS ||
2689			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2690				pcpu_low_unit_cpu = cpu;
2691			if (pcpu_high_unit_cpu == NR_CPUS ||
2692			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2693				pcpu_high_unit_cpu = cpu;
2694		}
2695	}
2696	pcpu_nr_units = unit;
2697
2698	for_each_possible_cpu(cpu)
2699		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2700
2701	/* we're done parsing the input, undefine BUG macro and dump config */
2702#undef PCPU_SETUP_BUG_ON
2703	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2704
2705	pcpu_nr_groups = ai->nr_groups;
2706	pcpu_group_offsets = group_offsets;
2707	pcpu_group_sizes = group_sizes;
2708	pcpu_unit_map = unit_map;
2709	pcpu_unit_offsets = unit_off;
2710
2711	/* determine basic parameters */
2712	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2713	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2714	pcpu_atom_size = ai->atom_size;
2715	pcpu_chunk_struct_size = struct_size(chunk, populated,
2716					     BITS_TO_LONGS(pcpu_unit_pages));
2717
2718	pcpu_stats_save_ai(ai);
2719
2720	/*
2721	 * Allocate chunk slots.  The slots after the active slots are:
2722	 *   sidelined_slot - isolated, depopulated chunks
2723	 *   free_slot - fully free chunks
2724	 *   to_depopulate_slot - isolated, chunks to depopulate
2725	 */
2726	pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2727	pcpu_free_slot = pcpu_sidelined_slot + 1;
2728	pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2729	pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2730	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2731					  sizeof(pcpu_chunk_lists[0]),
2732					  SMP_CACHE_BYTES);
2733	if (!pcpu_chunk_lists)
2734		panic("%s: Failed to allocate %zu bytes\n", __func__,
2735		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2736
2737	for (i = 0; i < pcpu_nr_slots; i++)
2738		INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2739
2740	/*
2741	 * The end of the static region needs to be aligned with the
2742	 * minimum allocation size as this offsets the reserved and
2743	 * dynamic region.  The first chunk ends page aligned by
2744	 * expanding the dynamic region, therefore the dynamic region
2745	 * can be shrunk to compensate while still staying above the
2746	 * configured sizes.
2747	 */
2748	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2749	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2750
2751	/*
2752	 * Initialize first chunk.
2753	 * If the reserved_size is non-zero, this initializes the reserved
2754	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2755	 * and the dynamic region is initialized here.  The first chunk,
2756	 * pcpu_first_chunk, will always point to the chunk that serves
2757	 * the dynamic region.
2758	 */
2759	tmp_addr = (unsigned long)base_addr + static_size;
2760	map_size = ai->reserved_size ?: dyn_size;
2761	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2762
2763	/* init dynamic chunk if necessary */
2764	if (ai->reserved_size) {
2765		pcpu_reserved_chunk = chunk;
2766
2767		tmp_addr = (unsigned long)base_addr + static_size +
2768			   ai->reserved_size;
2769		map_size = dyn_size;
2770		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2771	}
2772
2773	/* link the first chunk in */
2774	pcpu_first_chunk = chunk;
2775	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2776	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2777
2778	/* include all regions of the first chunk */
2779	pcpu_nr_populated += PFN_DOWN(size_sum);
2780
2781	pcpu_stats_chunk_alloc();
2782	trace_percpu_create_chunk(base_addr);
2783
2784	/* we're done */
2785	pcpu_base_addr = base_addr;
 
2786}
2787
2788#ifdef CONFIG_SMP
2789
2790const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2791	[PCPU_FC_AUTO]	= "auto",
2792	[PCPU_FC_EMBED]	= "embed",
2793	[PCPU_FC_PAGE]	= "page",
2794};
2795
2796enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2797
2798static int __init percpu_alloc_setup(char *str)
2799{
2800	if (!str)
2801		return -EINVAL;
2802
2803	if (0)
2804		/* nada */;
2805#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2806	else if (!strcmp(str, "embed"))
2807		pcpu_chosen_fc = PCPU_FC_EMBED;
2808#endif
2809#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2810	else if (!strcmp(str, "page"))
2811		pcpu_chosen_fc = PCPU_FC_PAGE;
2812#endif
2813	else
2814		pr_warn("unknown allocator %s specified\n", str);
2815
2816	return 0;
2817}
2818early_param("percpu_alloc", percpu_alloc_setup);
2819
2820/*
2821 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2822 * Build it if needed by the arch config or the generic setup is going
2823 * to be used.
2824 */
2825#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2826	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2827#define BUILD_EMBED_FIRST_CHUNK
2828#endif
2829
2830/* build pcpu_page_first_chunk() iff needed by the arch config */
2831#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2832#define BUILD_PAGE_FIRST_CHUNK
2833#endif
2834
2835/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2836#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2837/**
2838 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2839 * @reserved_size: the size of reserved percpu area in bytes
2840 * @dyn_size: minimum free size for dynamic allocation in bytes
2841 * @atom_size: allocation atom size
2842 * @cpu_distance_fn: callback to determine distance between cpus, optional
2843 *
2844 * This function determines grouping of units, their mappings to cpus
2845 * and other parameters considering needed percpu size, allocation
2846 * atom size and distances between CPUs.
2847 *
2848 * Groups are always multiples of atom size and CPUs which are of
2849 * LOCAL_DISTANCE both ways are grouped together and share space for
2850 * units in the same group.  The returned configuration is guaranteed
2851 * to have CPUs on different nodes on different groups and >=75% usage
2852 * of allocated virtual address space.
2853 *
2854 * RETURNS:
2855 * On success, pointer to the new allocation_info is returned.  On
2856 * failure, ERR_PTR value is returned.
2857 */
2858static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2859				size_t reserved_size, size_t dyn_size,
2860				size_t atom_size,
2861				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2862{
2863	static int group_map[NR_CPUS] __initdata;
2864	static int group_cnt[NR_CPUS] __initdata;
2865	static struct cpumask mask __initdata;
2866	const size_t static_size = __per_cpu_end - __per_cpu_start;
2867	int nr_groups = 1, nr_units = 0;
2868	size_t size_sum, min_unit_size, alloc_size;
2869	int upa, max_upa, best_upa;	/* units_per_alloc */
2870	int last_allocs, group, unit;
2871	unsigned int cpu, tcpu;
2872	struct pcpu_alloc_info *ai;
2873	unsigned int *cpu_map;
2874
2875	/* this function may be called multiple times */
2876	memset(group_map, 0, sizeof(group_map));
2877	memset(group_cnt, 0, sizeof(group_cnt));
2878	cpumask_clear(&mask);
2879
2880	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2881	size_sum = PFN_ALIGN(static_size + reserved_size +
2882			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2883	dyn_size = size_sum - static_size - reserved_size;
2884
2885	/*
2886	 * Determine min_unit_size, alloc_size and max_upa such that
2887	 * alloc_size is multiple of atom_size and is the smallest
2888	 * which can accommodate 4k aligned segments which are equal to
2889	 * or larger than min_unit_size.
2890	 */
2891	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2892
2893	/* determine the maximum # of units that can fit in an allocation */
2894	alloc_size = roundup(min_unit_size, atom_size);
2895	upa = alloc_size / min_unit_size;
2896	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2897		upa--;
2898	max_upa = upa;
2899
2900	cpumask_copy(&mask, cpu_possible_mask);
2901
2902	/* group cpus according to their proximity */
2903	for (group = 0; !cpumask_empty(&mask); group++) {
2904		/* pop the group's first cpu */
2905		cpu = cpumask_first(&mask);
 
 
 
 
 
 
 
 
 
 
 
2906		group_map[cpu] = group;
2907		group_cnt[group]++;
2908		cpumask_clear_cpu(cpu, &mask);
2909
2910		for_each_cpu(tcpu, &mask) {
2911			if (!cpu_distance_fn ||
2912			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2913			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2914				group_map[tcpu] = group;
2915				group_cnt[group]++;
2916				cpumask_clear_cpu(tcpu, &mask);
2917			}
2918		}
2919	}
2920	nr_groups = group;
2921
2922	/*
2923	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2924	 * Expand the unit_size until we use >= 75% of the units allocated.
2925	 * Related to atom_size, which could be much larger than the unit_size.
2926	 */
2927	last_allocs = INT_MAX;
2928	best_upa = 0;
2929	for (upa = max_upa; upa; upa--) {
2930		int allocs = 0, wasted = 0;
2931
2932		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2933			continue;
2934
2935		for (group = 0; group < nr_groups; group++) {
2936			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2937			allocs += this_allocs;
2938			wasted += this_allocs * upa - group_cnt[group];
2939		}
2940
2941		/*
2942		 * Don't accept if wastage is over 1/3.  The
2943		 * greater-than comparison ensures upa==1 always
2944		 * passes the following check.
2945		 */
2946		if (wasted > num_possible_cpus() / 3)
2947			continue;
2948
2949		/* and then don't consume more memory */
2950		if (allocs > last_allocs)
2951			break;
2952		last_allocs = allocs;
2953		best_upa = upa;
2954	}
2955	BUG_ON(!best_upa);
2956	upa = best_upa;
2957
2958	/* allocate and fill alloc_info */
2959	for (group = 0; group < nr_groups; group++)
2960		nr_units += roundup(group_cnt[group], upa);
2961
2962	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2963	if (!ai)
2964		return ERR_PTR(-ENOMEM);
2965	cpu_map = ai->groups[0].cpu_map;
2966
2967	for (group = 0; group < nr_groups; group++) {
2968		ai->groups[group].cpu_map = cpu_map;
2969		cpu_map += roundup(group_cnt[group], upa);
2970	}
2971
2972	ai->static_size = static_size;
2973	ai->reserved_size = reserved_size;
2974	ai->dyn_size = dyn_size;
2975	ai->unit_size = alloc_size / upa;
2976	ai->atom_size = atom_size;
2977	ai->alloc_size = alloc_size;
2978
2979	for (group = 0, unit = 0; group < nr_groups; group++) {
2980		struct pcpu_group_info *gi = &ai->groups[group];
2981
2982		/*
2983		 * Initialize base_offset as if all groups are located
2984		 * back-to-back.  The caller should update this to
2985		 * reflect actual allocation.
2986		 */
2987		gi->base_offset = unit * ai->unit_size;
2988
2989		for_each_possible_cpu(cpu)
2990			if (group_map[cpu] == group)
2991				gi->cpu_map[gi->nr_units++] = cpu;
2992		gi->nr_units = roundup(gi->nr_units, upa);
2993		unit += gi->nr_units;
2994	}
2995	BUG_ON(unit != nr_units);
2996
2997	return ai;
2998}
2999#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3000
3001#if defined(BUILD_EMBED_FIRST_CHUNK)
3002/**
3003 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3004 * @reserved_size: the size of reserved percpu area in bytes
3005 * @dyn_size: minimum free size for dynamic allocation in bytes
3006 * @atom_size: allocation atom size
3007 * @cpu_distance_fn: callback to determine distance between cpus, optional
3008 * @alloc_fn: function to allocate percpu page
3009 * @free_fn: function to free percpu page
3010 *
3011 * This is a helper to ease setting up embedded first percpu chunk and
3012 * can be called where pcpu_setup_first_chunk() is expected.
3013 *
3014 * If this function is used to setup the first chunk, it is allocated
3015 * by calling @alloc_fn and used as-is without being mapped into
3016 * vmalloc area.  Allocations are always whole multiples of @atom_size
3017 * aligned to @atom_size.
3018 *
3019 * This enables the first chunk to piggy back on the linear physical
3020 * mapping which often uses larger page size.  Please note that this
3021 * can result in very sparse cpu->unit mapping on NUMA machines thus
3022 * requiring large vmalloc address space.  Don't use this allocator if
3023 * vmalloc space is not orders of magnitude larger than distances
3024 * between node memory addresses (ie. 32bit NUMA machines).
3025 *
3026 * @dyn_size specifies the minimum dynamic area size.
3027 *
3028 * If the needed size is smaller than the minimum or specified unit
3029 * size, the leftover is returned using @free_fn.
3030 *
3031 * RETURNS:
3032 * 0 on success, -errno on failure.
3033 */
3034int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3035				  size_t atom_size,
3036				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3037				  pcpu_fc_alloc_fn_t alloc_fn,
3038				  pcpu_fc_free_fn_t free_fn)
3039{
3040	void *base = (void *)ULONG_MAX;
3041	void **areas = NULL;
3042	struct pcpu_alloc_info *ai;
3043	size_t size_sum, areas_size;
3044	unsigned long max_distance;
3045	int group, i, highest_group, rc = 0;
3046
3047	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3048				   cpu_distance_fn);
3049	if (IS_ERR(ai))
3050		return PTR_ERR(ai);
3051
3052	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3053	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3054
3055	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3056	if (!areas) {
3057		rc = -ENOMEM;
3058		goto out_free;
3059	}
3060
3061	/* allocate, copy and determine base address & max_distance */
3062	highest_group = 0;
3063	for (group = 0; group < ai->nr_groups; group++) {
3064		struct pcpu_group_info *gi = &ai->groups[group];
3065		unsigned int cpu = NR_CPUS;
3066		void *ptr;
3067
3068		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3069			cpu = gi->cpu_map[i];
3070		BUG_ON(cpu == NR_CPUS);
3071
3072		/* allocate space for the whole group */
3073		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
3074		if (!ptr) {
3075			rc = -ENOMEM;
3076			goto out_free_areas;
3077		}
3078		/* kmemleak tracks the percpu allocations separately */
3079		kmemleak_free(ptr);
3080		areas[group] = ptr;
3081
3082		base = min(ptr, base);
3083		if (ptr > areas[highest_group])
3084			highest_group = group;
3085	}
3086	max_distance = areas[highest_group] - base;
3087	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3088
3089	/* warn if maximum distance is further than 75% of vmalloc space */
3090	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3091		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3092				max_distance, VMALLOC_TOTAL);
3093#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3094		/* and fail if we have fallback */
3095		rc = -EINVAL;
3096		goto out_free_areas;
3097#endif
3098	}
3099
3100	/*
3101	 * Copy data and free unused parts.  This should happen after all
3102	 * allocations are complete; otherwise, we may end up with
3103	 * overlapping groups.
3104	 */
3105	for (group = 0; group < ai->nr_groups; group++) {
3106		struct pcpu_group_info *gi = &ai->groups[group];
3107		void *ptr = areas[group];
3108
3109		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3110			if (gi->cpu_map[i] == NR_CPUS) {
3111				/* unused unit, free whole */
3112				free_fn(ptr, ai->unit_size);
3113				continue;
3114			}
3115			/* copy and return the unused part */
3116			memcpy(ptr, __per_cpu_load, ai->static_size);
3117			free_fn(ptr + size_sum, ai->unit_size - size_sum);
3118		}
3119	}
3120
3121	/* base address is now known, determine group base offsets */
3122	for (group = 0; group < ai->nr_groups; group++) {
3123		ai->groups[group].base_offset = areas[group] - base;
3124	}
3125
3126	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3127		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3128		ai->dyn_size, ai->unit_size);
3129
3130	pcpu_setup_first_chunk(ai, base);
3131	goto out_free;
3132
3133out_free_areas:
3134	for (group = 0; group < ai->nr_groups; group++)
3135		if (areas[group])
3136			free_fn(areas[group],
3137				ai->groups[group].nr_units * ai->unit_size);
3138out_free:
3139	pcpu_free_alloc_info(ai);
3140	if (areas)
3141		memblock_free_early(__pa(areas), areas_size);
3142	return rc;
3143}
3144#endif /* BUILD_EMBED_FIRST_CHUNK */
3145
3146#ifdef BUILD_PAGE_FIRST_CHUNK
3147/**
3148 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3149 * @reserved_size: the size of reserved percpu area in bytes
3150 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
3151 * @free_fn: function to free percpu page, always called with PAGE_SIZE
3152 * @populate_pte_fn: function to populate pte
3153 *
3154 * This is a helper to ease setting up page-remapped first percpu
3155 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3156 *
3157 * This is the basic allocator.  Static percpu area is allocated
3158 * page-by-page into vmalloc area.
3159 *
3160 * RETURNS:
3161 * 0 on success, -errno on failure.
3162 */
3163int __init pcpu_page_first_chunk(size_t reserved_size,
3164				 pcpu_fc_alloc_fn_t alloc_fn,
3165				 pcpu_fc_free_fn_t free_fn,
3166				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
3167{
3168	static struct vm_struct vm;
3169	struct pcpu_alloc_info *ai;
3170	char psize_str[16];
3171	int unit_pages;
3172	size_t pages_size;
3173	struct page **pages;
3174	int unit, i, j, rc = 0;
3175	int upa;
3176	int nr_g0_units;
3177
3178	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3179
3180	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3181	if (IS_ERR(ai))
3182		return PTR_ERR(ai);
3183	BUG_ON(ai->nr_groups != 1);
3184	upa = ai->alloc_size/ai->unit_size;
3185	nr_g0_units = roundup(num_possible_cpus(), upa);
3186	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3187		pcpu_free_alloc_info(ai);
3188		return -EINVAL;
3189	}
3190
3191	unit_pages = ai->unit_size >> PAGE_SHIFT;
3192
3193	/* unaligned allocations can't be freed, round up to page size */
3194	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3195			       sizeof(pages[0]));
3196	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3197	if (!pages)
3198		panic("%s: Failed to allocate %zu bytes\n", __func__,
3199		      pages_size);
3200
3201	/* allocate pages */
3202	j = 0;
3203	for (unit = 0; unit < num_possible_cpus(); unit++) {
3204		unsigned int cpu = ai->groups[0].cpu_map[unit];
3205		for (i = 0; i < unit_pages; i++) {
3206			void *ptr;
3207
3208			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3209			if (!ptr) {
3210				pr_warn("failed to allocate %s page for cpu%u\n",
3211						psize_str, cpu);
3212				goto enomem;
3213			}
3214			/* kmemleak tracks the percpu allocations separately */
3215			kmemleak_free(ptr);
3216			pages[j++] = virt_to_page(ptr);
3217		}
3218	}
3219
3220	/* allocate vm area, map the pages and copy static data */
3221	vm.flags = VM_ALLOC;
3222	vm.size = num_possible_cpus() * ai->unit_size;
3223	vm_area_register_early(&vm, PAGE_SIZE);
3224
3225	for (unit = 0; unit < num_possible_cpus(); unit++) {
3226		unsigned long unit_addr =
3227			(unsigned long)vm.addr + unit * ai->unit_size;
3228
3229		for (i = 0; i < unit_pages; i++)
3230			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3231
3232		/* pte already populated, the following shouldn't fail */
3233		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3234				      unit_pages);
3235		if (rc < 0)
3236			panic("failed to map percpu area, err=%d\n", rc);
3237
3238		/*
3239		 * FIXME: Archs with virtual cache should flush local
3240		 * cache for the linear mapping here - something
3241		 * equivalent to flush_cache_vmap() on the local cpu.
3242		 * flush_cache_vmap() can't be used as most supporting
3243		 * data structures are not set up yet.
3244		 */
3245
3246		/* copy static data */
3247		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3248	}
3249
3250	/* we're ready, commit */
3251	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3252		unit_pages, psize_str, ai->static_size,
3253		ai->reserved_size, ai->dyn_size);
3254
3255	pcpu_setup_first_chunk(ai, vm.addr);
3256	goto out_free_ar;
3257
3258enomem:
3259	while (--j >= 0)
3260		free_fn(page_address(pages[j]), PAGE_SIZE);
3261	rc = -ENOMEM;
3262out_free_ar:
3263	memblock_free_early(__pa(pages), pages_size);
3264	pcpu_free_alloc_info(ai);
3265	return rc;
3266}
3267#endif /* BUILD_PAGE_FIRST_CHUNK */
3268
3269#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3270/*
3271 * Generic SMP percpu area setup.
3272 *
3273 * The embedding helper is used because its behavior closely resembles
3274 * the original non-dynamic generic percpu area setup.  This is
3275 * important because many archs have addressing restrictions and might
3276 * fail if the percpu area is located far away from the previous
3277 * location.  As an added bonus, in non-NUMA cases, embedding is
3278 * generally a good idea TLB-wise because percpu area can piggy back
3279 * on the physical linear memory mapping which uses large page
3280 * mappings on applicable archs.
3281 */
3282unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3283EXPORT_SYMBOL(__per_cpu_offset);
3284
3285static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3286				       size_t align)
3287{
3288	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
 
3289}
3290
3291static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3292{
3293	memblock_free_early(__pa(ptr), size);
3294}
3295
3296void __init setup_per_cpu_areas(void)
3297{
3298	unsigned long delta;
3299	unsigned int cpu;
3300	int rc;
3301
3302	/*
3303	 * Always reserve area for module percpu variables.  That's
3304	 * what the legacy allocator did.
3305	 */
3306	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3307				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3308				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3309	if (rc < 0)
3310		panic("Failed to initialize percpu areas.");
3311
3312	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3313	for_each_possible_cpu(cpu)
3314		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3315}
3316#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3317
3318#else	/* CONFIG_SMP */
3319
3320/*
3321 * UP percpu area setup.
3322 *
3323 * UP always uses km-based percpu allocator with identity mapping.
3324 * Static percpu variables are indistinguishable from the usual static
3325 * variables and don't require any special preparation.
3326 */
3327void __init setup_per_cpu_areas(void)
3328{
3329	const size_t unit_size =
3330		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3331					 PERCPU_DYNAMIC_RESERVE));
3332	struct pcpu_alloc_info *ai;
3333	void *fc;
3334
3335	ai = pcpu_alloc_alloc_info(1, 1);
3336	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
 
3337	if (!ai || !fc)
3338		panic("Failed to allocate memory for percpu areas.");
3339	/* kmemleak tracks the percpu allocations separately */
3340	kmemleak_free(fc);
3341
3342	ai->dyn_size = unit_size;
3343	ai->unit_size = unit_size;
3344	ai->atom_size = unit_size;
3345	ai->alloc_size = unit_size;
3346	ai->groups[0].nr_units = 1;
3347	ai->groups[0].cpu_map[0] = 0;
3348
3349	pcpu_setup_first_chunk(ai, fc);
 
3350	pcpu_free_alloc_info(ai);
3351}
3352
3353#endif	/* CONFIG_SMP */
3354
3355/*
3356 * pcpu_nr_pages - calculate total number of populated backing pages
3357 *
3358 * This reflects the number of pages populated to back chunks.  Metadata is
3359 * excluded in the number exposed in meminfo as the number of backing pages
3360 * scales with the number of cpus and can quickly outweigh the memory used for
3361 * metadata.  It also keeps this calculation nice and simple.
3362 *
3363 * RETURNS:
3364 * Total number of populated backing pages in use by the allocator.
3365 */
3366unsigned long pcpu_nr_pages(void)
3367{
3368	return pcpu_nr_populated * pcpu_nr_units;
3369}
3370
3371/*
3372 * Percpu allocator is initialized early during boot when neither slab or
3373 * workqueue is available.  Plug async management until everything is up
3374 * and running.
3375 */
3376static int __init percpu_enable_async(void)
3377{
3378	pcpu_async_enabled = true;
3379	return 0;
3380}
3381subsys_initcall(percpu_enable_async);