Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/mm.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_PREFERRED,
 125	.flags = MPOL_F_LOCAL,
 126};
 127
 128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct mempolicy *get_task_policy(struct task_struct *p)
 131{
 132	struct mempolicy *pol = p->mempolicy;
 133	int node;
 134
 135	if (pol)
 136		return pol;
 137
 138	node = numa_node_id();
 139	if (node != NUMA_NO_NODE) {
 140		pol = &preferred_node_policy[node];
 141		/* preferred_node_policy is not initialised early in boot */
 142		if (pol->mode)
 143			return pol;
 144	}
 145
 146	return &default_policy;
 147}
 148
 149static const struct mempolicy_operations {
 150	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 151	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 152} mpol_ops[MPOL_MAX];
 153
 154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 155{
 156	return pol->flags & MPOL_MODE_FLAGS;
 157}
 158
 159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 160				   const nodemask_t *rel)
 161{
 162	nodemask_t tmp;
 163	nodes_fold(tmp, *orig, nodes_weight(*rel));
 164	nodes_onto(*ret, tmp, *rel);
 165}
 166
 167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 168{
 169	if (nodes_empty(*nodes))
 170		return -EINVAL;
 171	pol->v.nodes = *nodes;
 172	return 0;
 173}
 174
 175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 176{
 177	if (!nodes)
 178		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
 179	else if (nodes_empty(*nodes))
 180		return -EINVAL;			/*  no allowed nodes */
 181	else
 182		pol->v.preferred_node = first_node(*nodes);
 183	return 0;
 184}
 185
 186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 187{
 188	if (nodes_empty(*nodes))
 189		return -EINVAL;
 190	pol->v.nodes = *nodes;
 191	return 0;
 192}
 193
 194/*
 195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 196 * any, for the new policy.  mpol_new() has already validated the nodes
 197 * parameter with respect to the policy mode and flags.  But, we need to
 198 * handle an empty nodemask with MPOL_PREFERRED here.
 199 *
 200 * Must be called holding task's alloc_lock to protect task's mems_allowed
 201 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 202 */
 203static int mpol_set_nodemask(struct mempolicy *pol,
 204		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 205{
 206	int ret;
 207
 208	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 209	if (pol == NULL)
 
 
 
 
 210		return 0;
 
 211	/* Check N_MEMORY */
 212	nodes_and(nsc->mask1,
 213		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 214
 215	VM_BUG_ON(!nodes);
 216	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 217		nodes = NULL;	/* explicit local allocation */
 218	else {
 219		if (pol->flags & MPOL_F_RELATIVE_NODES)
 220			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 221		else
 222			nodes_and(nsc->mask2, *nodes, nsc->mask1);
 223
 224		if (mpol_store_user_nodemask(pol))
 225			pol->w.user_nodemask = *nodes;
 226		else
 227			pol->w.cpuset_mems_allowed =
 228						cpuset_current_mems_allowed;
 229	}
 230
 231	if (nodes)
 232		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 233	else
 234		ret = mpol_ops[pol->mode].create(pol, NULL);
 
 
 235	return ret;
 236}
 237
 238/*
 239 * This function just creates a new policy, does some check and simple
 240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 241 */
 242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 243				  nodemask_t *nodes)
 244{
 245	struct mempolicy *policy;
 246
 247	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 248		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 249
 250	if (mode == MPOL_DEFAULT) {
 251		if (nodes && !nodes_empty(*nodes))
 252			return ERR_PTR(-EINVAL);
 253		return NULL;
 254	}
 255	VM_BUG_ON(!nodes);
 256
 257	/*
 258	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 259	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 260	 * All other modes require a valid pointer to a non-empty nodemask.
 261	 */
 262	if (mode == MPOL_PREFERRED) {
 263		if (nodes_empty(*nodes)) {
 264			if (((flags & MPOL_F_STATIC_NODES) ||
 265			     (flags & MPOL_F_RELATIVE_NODES)))
 266				return ERR_PTR(-EINVAL);
 
 
 267		}
 268	} else if (mode == MPOL_LOCAL) {
 269		if (!nodes_empty(*nodes) ||
 270		    (flags & MPOL_F_STATIC_NODES) ||
 271		    (flags & MPOL_F_RELATIVE_NODES))
 272			return ERR_PTR(-EINVAL);
 273		mode = MPOL_PREFERRED;
 274	} else if (nodes_empty(*nodes))
 275		return ERR_PTR(-EINVAL);
 276	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 277	if (!policy)
 278		return ERR_PTR(-ENOMEM);
 279	atomic_set(&policy->refcnt, 1);
 280	policy->mode = mode;
 281	policy->flags = flags;
 282
 283	return policy;
 284}
 285
 286/* Slow path of a mpol destructor. */
 287void __mpol_put(struct mempolicy *p)
 288{
 289	if (!atomic_dec_and_test(&p->refcnt))
 290		return;
 291	kmem_cache_free(policy_cache, p);
 292}
 293
 294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 295{
 296}
 297
 298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 299{
 300	nodemask_t tmp;
 301
 302	if (pol->flags & MPOL_F_STATIC_NODES)
 303		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 304	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 305		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 306	else {
 307		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
 308								*nodes);
 309		pol->w.cpuset_mems_allowed = tmp;
 310	}
 311
 312	if (nodes_empty(tmp))
 313		tmp = *nodes;
 314
 315	pol->v.nodes = tmp;
 316}
 317
 318static void mpol_rebind_preferred(struct mempolicy *pol,
 319						const nodemask_t *nodes)
 320{
 321	nodemask_t tmp;
 322
 323	if (pol->flags & MPOL_F_STATIC_NODES) {
 324		int node = first_node(pol->w.user_nodemask);
 325
 326		if (node_isset(node, *nodes)) {
 327			pol->v.preferred_node = node;
 328			pol->flags &= ~MPOL_F_LOCAL;
 329		} else
 330			pol->flags |= MPOL_F_LOCAL;
 331	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 332		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 333		pol->v.preferred_node = first_node(tmp);
 334	} else if (!(pol->flags & MPOL_F_LOCAL)) {
 335		pol->v.preferred_node = node_remap(pol->v.preferred_node,
 336						   pol->w.cpuset_mems_allowed,
 337						   *nodes);
 338		pol->w.cpuset_mems_allowed = *nodes;
 339	}
 340}
 341
 342/*
 343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 344 *
 345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
 346 * policies are protected by task->mems_allowed_seq to prevent a premature
 347 * OOM/allocation failure due to parallel nodemask modification.
 348 */
 349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 350{
 351	if (!pol)
 352		return;
 353	if (!mpol_store_user_nodemask(pol) &&
 354	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 355		return;
 356
 357	mpol_ops[pol->mode].rebind(pol, newmask);
 358}
 359
 360/*
 361 * Wrapper for mpol_rebind_policy() that just requires task
 362 * pointer, and updates task mempolicy.
 363 *
 364 * Called with task's alloc_lock held.
 365 */
 366
 367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 368{
 369	mpol_rebind_policy(tsk->mempolicy, new);
 370}
 371
 372/*
 373 * Rebind each vma in mm to new nodemask.
 374 *
 375 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 376 */
 377
 378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 379{
 380	struct vm_area_struct *vma;
 381
 382	down_write(&mm->mmap_sem);
 383	for (vma = mm->mmap; vma; vma = vma->vm_next)
 384		mpol_rebind_policy(vma->vm_policy, new);
 385	up_write(&mm->mmap_sem);
 386}
 387
 388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 389	[MPOL_DEFAULT] = {
 390		.rebind = mpol_rebind_default,
 391	},
 392	[MPOL_INTERLEAVE] = {
 393		.create = mpol_new_interleave,
 394		.rebind = mpol_rebind_nodemask,
 395	},
 396	[MPOL_PREFERRED] = {
 397		.create = mpol_new_preferred,
 398		.rebind = mpol_rebind_preferred,
 399	},
 400	[MPOL_BIND] = {
 401		.create = mpol_new_bind,
 402		.rebind = mpol_rebind_nodemask,
 403	},
 
 
 
 404};
 405
 406static void migrate_page_add(struct page *page, struct list_head *pagelist,
 407				unsigned long flags);
 408
 409struct queue_pages {
 410	struct list_head *pagelist;
 411	unsigned long flags;
 412	nodemask_t *nmask;
 413	struct vm_area_struct *prev;
 
 
 414};
 415
 416/*
 417 * Check if the page's nid is in qp->nmask.
 418 *
 419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 420 * in the invert of qp->nmask.
 421 */
 422static inline bool queue_pages_required(struct page *page,
 423					struct queue_pages *qp)
 424{
 425	int nid = page_to_nid(page);
 426	unsigned long flags = qp->flags;
 427
 428	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 432				unsigned long end, struct mm_walk *walk)
 
 433{
 434	int ret = 0;
 435	struct page *page;
 436	struct queue_pages *qp = walk->private;
 437	unsigned long flags;
 438
 439	if (unlikely(is_pmd_migration_entry(*pmd))) {
 440		ret = 1;
 441		goto unlock;
 442	}
 443	page = pmd_page(*pmd);
 444	if (is_huge_zero_page(page)) {
 445		spin_unlock(ptl);
 446		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
 447		goto out;
 448	}
 449	if (!queue_pages_required(page, qp)) {
 450		ret = 1;
 451		goto unlock;
 452	}
 453
 454	ret = 1;
 455	flags = qp->flags;
 456	/* go to thp migration */
 457	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 458		migrate_page_add(page, qp->pagelist, flags);
 
 
 
 
 
 
 459unlock:
 460	spin_unlock(ptl);
 461out:
 462	return ret;
 463}
 464
 465/*
 466 * Scan through pages checking if pages follow certain conditions,
 467 * and move them to the pagelist if they do.
 
 
 
 
 
 
 
 
 468 */
 469static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 470			unsigned long end, struct mm_walk *walk)
 471{
 472	struct vm_area_struct *vma = walk->vma;
 473	struct page *page;
 474	struct queue_pages *qp = walk->private;
 475	unsigned long flags = qp->flags;
 476	int ret;
 477	pte_t *pte;
 
 478	spinlock_t *ptl;
 479
 480	ptl = pmd_trans_huge_lock(pmd, vma);
 481	if (ptl) {
 482		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 483		if (ret)
 484			return 0;
 485	}
 
 486
 487	if (pmd_trans_unstable(pmd))
 488		return 0;
 489
 490	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 491	for (; addr != end; pte++, addr += PAGE_SIZE) {
 492		if (!pte_present(*pte))
 493			continue;
 494		page = vm_normal_page(vma, addr, *pte);
 495		if (!page)
 496			continue;
 497		/*
 498		 * vm_normal_page() filters out zero pages, but there might
 499		 * still be PageReserved pages to skip, perhaps in a VDSO.
 500		 */
 501		if (PageReserved(page))
 502			continue;
 503		if (!queue_pages_required(page, qp))
 504			continue;
 505		migrate_page_add(page, qp->pagelist, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506	}
 507	pte_unmap_unlock(pte - 1, ptl);
 508	cond_resched();
 509	return 0;
 
 
 
 
 510}
 511
 512static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 513			       unsigned long addr, unsigned long end,
 514			       struct mm_walk *walk)
 515{
 
 516#ifdef CONFIG_HUGETLB_PAGE
 517	struct queue_pages *qp = walk->private;
 518	unsigned long flags = qp->flags;
 519	struct page *page;
 520	spinlock_t *ptl;
 521	pte_t entry;
 522
 523	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 524	entry = huge_ptep_get(pte);
 525	if (!pte_present(entry))
 526		goto unlock;
 527	page = pte_page(entry);
 528	if (!queue_pages_required(page, qp))
 529		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 531	if (flags & (MPOL_MF_MOVE_ALL) ||
 532	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 533		isolate_huge_page(page, qp->pagelist);
 
 
 
 
 
 
 
 534unlock:
 535	spin_unlock(ptl);
 536#else
 537	BUG();
 538#endif
 539	return 0;
 540}
 541
 542#ifdef CONFIG_NUMA_BALANCING
 543/*
 544 * This is used to mark a range of virtual addresses to be inaccessible.
 545 * These are later cleared by a NUMA hinting fault. Depending on these
 546 * faults, pages may be migrated for better NUMA placement.
 547 *
 548 * This is assuming that NUMA faults are handled using PROT_NONE. If
 549 * an architecture makes a different choice, it will need further
 550 * changes to the core.
 551 */
 552unsigned long change_prot_numa(struct vm_area_struct *vma,
 553			unsigned long addr, unsigned long end)
 554{
 555	int nr_updated;
 556
 557	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
 558	if (nr_updated)
 559		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 560
 561	return nr_updated;
 562}
 563#else
 564static unsigned long change_prot_numa(struct vm_area_struct *vma,
 565			unsigned long addr, unsigned long end)
 566{
 567	return 0;
 568}
 569#endif /* CONFIG_NUMA_BALANCING */
 570
 571static int queue_pages_test_walk(unsigned long start, unsigned long end,
 572				struct mm_walk *walk)
 573{
 574	struct vm_area_struct *vma = walk->vma;
 575	struct queue_pages *qp = walk->private;
 576	unsigned long endvma = vma->vm_end;
 577	unsigned long flags = qp->flags;
 578
 579	if (!vma_migratable(vma))
 580		return 1;
 581
 582	if (endvma > end)
 583		endvma = end;
 584	if (vma->vm_start > start)
 585		start = vma->vm_start;
 586
 587	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 588		if (!vma->vm_next && vma->vm_end < end)
 589			return -EFAULT;
 590		if (qp->prev && qp->prev->vm_end < vma->vm_start)
 
 591			return -EFAULT;
 592	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	qp->prev = vma;
 
 595
 596	if (flags & MPOL_MF_LAZY) {
 597		/* Similar to task_numa_work, skip inaccessible VMAs */
 598		if (!is_vm_hugetlb_page(vma) &&
 599			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
 600			!(vma->vm_flags & VM_MIXEDMAP))
 601			change_prot_numa(vma, start, endvma);
 602		return 1;
 603	}
 604
 605	/* queue pages from current vma */
 606	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 607		return 0;
 608	return 1;
 609}
 610
 
 
 
 
 
 
 611/*
 612 * Walk through page tables and collect pages to be migrated.
 613 *
 614 * If pages found in a given range are on a set of nodes (determined by
 615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 616 * passed via @private.)
 
 
 
 
 
 
 
 
 617 */
 618static int
 619queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 620		nodemask_t *nodes, unsigned long flags,
 621		struct list_head *pagelist)
 622{
 
 623	struct queue_pages qp = {
 624		.pagelist = pagelist,
 625		.flags = flags,
 626		.nmask = nodes,
 627		.prev = NULL,
 628	};
 629	struct mm_walk queue_pages_walk = {
 630		.hugetlb_entry = queue_pages_hugetlb,
 631		.pmd_entry = queue_pages_pte_range,
 632		.test_walk = queue_pages_test_walk,
 633		.mm = mm,
 634		.private = &qp,
 635	};
 636
 637	return walk_page_range(start, end, &queue_pages_walk);
 
 
 
 
 
 
 638}
 639
 640/*
 641 * Apply policy to a single VMA
 642 * This must be called with the mmap_sem held for writing.
 643 */
 644static int vma_replace_policy(struct vm_area_struct *vma,
 645						struct mempolicy *pol)
 646{
 647	int err;
 648	struct mempolicy *old;
 649	struct mempolicy *new;
 650
 651	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 652		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 653		 vma->vm_ops, vma->vm_file,
 654		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 655
 656	new = mpol_dup(pol);
 657	if (IS_ERR(new))
 658		return PTR_ERR(new);
 659
 660	if (vma->vm_ops && vma->vm_ops->set_policy) {
 661		err = vma->vm_ops->set_policy(vma, new);
 662		if (err)
 663			goto err_out;
 664	}
 665
 666	old = vma->vm_policy;
 667	vma->vm_policy = new; /* protected by mmap_sem */
 668	mpol_put(old);
 669
 670	return 0;
 671 err_out:
 672	mpol_put(new);
 673	return err;
 674}
 675
 676/* Step 2: apply policy to a range and do splits. */
 677static int mbind_range(struct mm_struct *mm, unsigned long start,
 678		       unsigned long end, struct mempolicy *new_pol)
 679{
 680	struct vm_area_struct *next;
 681	struct vm_area_struct *prev;
 682	struct vm_area_struct *vma;
 683	int err = 0;
 684	pgoff_t pgoff;
 685	unsigned long vmstart;
 686	unsigned long vmend;
 687
 688	vma = find_vma(mm, start);
 689	if (!vma || vma->vm_start > start)
 690		return -EFAULT;
 691
 692	prev = vma->vm_prev;
 693	if (start > vma->vm_start)
 694		prev = vma;
 695
 696	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 697		next = vma->vm_next;
 698		vmstart = max(start, vma->vm_start);
 699		vmend   = min(end, vma->vm_end);
 700
 701		if (mpol_equal(vma_policy(vma), new_pol))
 702			continue;
 703
 704		pgoff = vma->vm_pgoff +
 705			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 706		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 707				 vma->anon_vma, vma->vm_file, pgoff,
 708				 new_pol, vma->vm_userfaultfd_ctx);
 709		if (prev) {
 710			vma = prev;
 711			next = vma->vm_next;
 712			if (mpol_equal(vma_policy(vma), new_pol))
 713				continue;
 714			/* vma_merge() joined vma && vma->next, case 8 */
 715			goto replace;
 716		}
 717		if (vma->vm_start != vmstart) {
 718			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 719			if (err)
 720				goto out;
 721		}
 722		if (vma->vm_end != vmend) {
 723			err = split_vma(vma->vm_mm, vma, vmend, 0);
 724			if (err)
 725				goto out;
 726		}
 727 replace:
 728		err = vma_replace_policy(vma, new_pol);
 729		if (err)
 730			goto out;
 731	}
 732
 733 out:
 734	return err;
 735}
 736
 737/* Set the process memory policy */
 738static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 739			     nodemask_t *nodes)
 740{
 741	struct mempolicy *new, *old;
 742	NODEMASK_SCRATCH(scratch);
 743	int ret;
 744
 745	if (!scratch)
 746		return -ENOMEM;
 747
 748	new = mpol_new(mode, flags, nodes);
 749	if (IS_ERR(new)) {
 750		ret = PTR_ERR(new);
 751		goto out;
 752	}
 753
 754	task_lock(current);
 755	ret = mpol_set_nodemask(new, nodes, scratch);
 756	if (ret) {
 757		task_unlock(current);
 758		mpol_put(new);
 759		goto out;
 760	}
 
 761	old = current->mempolicy;
 762	current->mempolicy = new;
 763	if (new && new->mode == MPOL_INTERLEAVE)
 764		current->il_prev = MAX_NUMNODES-1;
 765	task_unlock(current);
 766	mpol_put(old);
 767	ret = 0;
 768out:
 769	NODEMASK_SCRATCH_FREE(scratch);
 770	return ret;
 771}
 772
 773/*
 774 * Return nodemask for policy for get_mempolicy() query
 775 *
 776 * Called with task's alloc_lock held
 777 */
 778static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 779{
 780	nodes_clear(*nodes);
 781	if (p == &default_policy)
 782		return;
 783
 784	switch (p->mode) {
 785	case MPOL_BIND:
 786		/* Fall through */
 787	case MPOL_INTERLEAVE:
 788		*nodes = p->v.nodes;
 789		break;
 790	case MPOL_PREFERRED:
 791		if (!(p->flags & MPOL_F_LOCAL))
 792			node_set(p->v.preferred_node, *nodes);
 793		/* else return empty node mask for local allocation */
 
 794		break;
 795	default:
 796		BUG();
 797	}
 798}
 799
 800static int lookup_node(unsigned long addr)
 801{
 802	struct page *p;
 803	int err;
 804
 805	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
 806	if (err >= 0) {
 
 807		err = page_to_nid(p);
 808		put_page(p);
 809	}
 
 
 810	return err;
 811}
 812
 813/* Retrieve NUMA policy */
 814static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 815			     unsigned long addr, unsigned long flags)
 816{
 817	int err;
 818	struct mm_struct *mm = current->mm;
 819	struct vm_area_struct *vma = NULL;
 820	struct mempolicy *pol = current->mempolicy;
 821
 822	if (flags &
 823		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 824		return -EINVAL;
 825
 826	if (flags & MPOL_F_MEMS_ALLOWED) {
 827		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 828			return -EINVAL;
 829		*policy = 0;	/* just so it's initialized */
 830		task_lock(current);
 831		*nmask  = cpuset_current_mems_allowed;
 832		task_unlock(current);
 833		return 0;
 834	}
 835
 836	if (flags & MPOL_F_ADDR) {
 837		/*
 838		 * Do NOT fall back to task policy if the
 839		 * vma/shared policy at addr is NULL.  We
 840		 * want to return MPOL_DEFAULT in this case.
 841		 */
 842		down_read(&mm->mmap_sem);
 843		vma = find_vma_intersection(mm, addr, addr+1);
 844		if (!vma) {
 845			up_read(&mm->mmap_sem);
 846			return -EFAULT;
 847		}
 848		if (vma->vm_ops && vma->vm_ops->get_policy)
 849			pol = vma->vm_ops->get_policy(vma, addr);
 850		else
 851			pol = vma->vm_policy;
 852	} else if (addr)
 853		return -EINVAL;
 854
 855	if (!pol)
 856		pol = &default_policy;	/* indicates default behavior */
 857
 858	if (flags & MPOL_F_NODE) {
 859		if (flags & MPOL_F_ADDR) {
 860			err = lookup_node(addr);
 
 
 
 
 
 
 
 
 
 861			if (err < 0)
 862				goto out;
 863			*policy = err;
 864		} else if (pol == current->mempolicy &&
 865				pol->mode == MPOL_INTERLEAVE) {
 866			*policy = next_node_in(current->il_prev, pol->v.nodes);
 867		} else {
 868			err = -EINVAL;
 869			goto out;
 870		}
 871	} else {
 872		*policy = pol == &default_policy ? MPOL_DEFAULT :
 873						pol->mode;
 874		/*
 875		 * Internal mempolicy flags must be masked off before exposing
 876		 * the policy to userspace.
 877		 */
 878		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 879	}
 880
 881	err = 0;
 882	if (nmask) {
 883		if (mpol_store_user_nodemask(pol)) {
 884			*nmask = pol->w.user_nodemask;
 885		} else {
 886			task_lock(current);
 887			get_policy_nodemask(pol, nmask);
 888			task_unlock(current);
 889		}
 890	}
 891
 892 out:
 893	mpol_cond_put(pol);
 894	if (vma)
 895		up_read(&current->mm->mmap_sem);
 
 
 896	return err;
 897}
 898
 899#ifdef CONFIG_MIGRATION
 900/*
 901 * page migration, thp tail pages can be passed.
 902 */
 903static void migrate_page_add(struct page *page, struct list_head *pagelist,
 904				unsigned long flags)
 905{
 906	struct page *head = compound_head(page);
 907	/*
 908	 * Avoid migrating a page that is shared with others.
 909	 */
 910	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
 911		if (!isolate_lru_page(head)) {
 912			list_add_tail(&head->lru, pagelist);
 913			mod_node_page_state(page_pgdat(head),
 914				NR_ISOLATED_ANON + page_is_file_cache(head),
 915				hpage_nr_pages(head));
 
 
 
 
 
 
 
 
 
 916		}
 917	}
 918}
 919
 920/* page allocation callback for NUMA node migration */
 921struct page *alloc_new_node_page(struct page *page, unsigned long node)
 922{
 923	if (PageHuge(page))
 924		return alloc_huge_page_node(page_hstate(compound_head(page)),
 925					node);
 926	else if (PageTransHuge(page)) {
 927		struct page *thp;
 928
 929		thp = alloc_pages_node(node,
 930			(GFP_TRANSHUGE | __GFP_THISNODE),
 931			HPAGE_PMD_ORDER);
 932		if (!thp)
 933			return NULL;
 934		prep_transhuge_page(thp);
 935		return thp;
 936	} else
 937		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
 938						    __GFP_THISNODE, 0);
 939}
 940
 941/*
 942 * Migrate pages from one node to a target node.
 943 * Returns error or the number of pages not migrated.
 944 */
 945static int migrate_to_node(struct mm_struct *mm, int source, int dest,
 946			   int flags)
 947{
 948	nodemask_t nmask;
 949	LIST_HEAD(pagelist);
 950	int err = 0;
 
 
 
 
 951
 952	nodes_clear(nmask);
 953	node_set(source, nmask);
 954
 955	/*
 956	 * This does not "check" the range but isolates all pages that
 957	 * need migration.  Between passing in the full user address
 958	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
 959	 */
 960	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
 961	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
 962			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
 963
 964	if (!list_empty(&pagelist)) {
 965		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
 966					MIGRATE_SYNC, MR_SYSCALL);
 967		if (err)
 968			putback_movable_pages(&pagelist);
 969	}
 970
 971	return err;
 972}
 973
 974/*
 975 * Move pages between the two nodesets so as to preserve the physical
 976 * layout as much as possible.
 977 *
 978 * Returns the number of page that could not be moved.
 979 */
 980int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
 981		     const nodemask_t *to, int flags)
 982{
 983	int busy = 0;
 984	int err;
 985	nodemask_t tmp;
 986
 987	err = migrate_prep();
 988	if (err)
 989		return err;
 990
 991	down_read(&mm->mmap_sem);
 992
 993	/*
 994	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
 995	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
 996	 * bit in 'tmp', and return that <source, dest> pair for migration.
 997	 * The pair of nodemasks 'to' and 'from' define the map.
 998	 *
 999	 * If no pair of bits is found that way, fallback to picking some
1000	 * pair of 'source' and 'dest' bits that are not the same.  If the
1001	 * 'source' and 'dest' bits are the same, this represents a node
1002	 * that will be migrating to itself, so no pages need move.
1003	 *
1004	 * If no bits are left in 'tmp', or if all remaining bits left
1005	 * in 'tmp' correspond to the same bit in 'to', return false
1006	 * (nothing left to migrate).
1007	 *
1008	 * This lets us pick a pair of nodes to migrate between, such that
1009	 * if possible the dest node is not already occupied by some other
1010	 * source node, minimizing the risk of overloading the memory on a
1011	 * node that would happen if we migrated incoming memory to a node
1012	 * before migrating outgoing memory source that same node.
1013	 *
1014	 * A single scan of tmp is sufficient.  As we go, we remember the
1015	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1016	 * that not only moved, but what's better, moved to an empty slot
1017	 * (d is not set in tmp), then we break out then, with that pair.
1018	 * Otherwise when we finish scanning from_tmp, we at least have the
1019	 * most recent <s, d> pair that moved.  If we get all the way through
1020	 * the scan of tmp without finding any node that moved, much less
1021	 * moved to an empty node, then there is nothing left worth migrating.
1022	 */
1023
1024	tmp = *from;
1025	while (!nodes_empty(tmp)) {
1026		int s,d;
1027		int source = NUMA_NO_NODE;
1028		int dest = 0;
1029
1030		for_each_node_mask(s, tmp) {
1031
1032			/*
1033			 * do_migrate_pages() tries to maintain the relative
1034			 * node relationship of the pages established between
1035			 * threads and memory areas.
1036                         *
1037			 * However if the number of source nodes is not equal to
1038			 * the number of destination nodes we can not preserve
1039			 * this node relative relationship.  In that case, skip
1040			 * copying memory from a node that is in the destination
1041			 * mask.
1042			 *
1043			 * Example: [2,3,4] -> [3,4,5] moves everything.
1044			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045			 */
1046
1047			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048						(node_isset(s, *to)))
1049				continue;
1050
1051			d = node_remap(s, *from, *to);
1052			if (s == d)
1053				continue;
1054
1055			source = s;	/* Node moved. Memorize */
1056			dest = d;
1057
1058			/* dest not in remaining from nodes? */
1059			if (!node_isset(dest, tmp))
1060				break;
1061		}
1062		if (source == NUMA_NO_NODE)
1063			break;
1064
1065		node_clear(source, tmp);
1066		err = migrate_to_node(mm, source, dest, flags);
1067		if (err > 0)
1068			busy += err;
1069		if (err < 0)
1070			break;
1071	}
1072	up_read(&mm->mmap_sem);
 
 
1073	if (err < 0)
1074		return err;
1075	return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start by assuming the page is mapped by the same vma as contains @start.
1082 * Search forward from there, if not.  N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_page(struct page *page, unsigned long start)
1087{
1088	struct vm_area_struct *vma;
1089	unsigned long uninitialized_var(address);
1090
1091	vma = find_vma(current->mm, start);
1092	while (vma) {
1093		address = page_address_in_vma(page, vma);
1094		if (address != -EFAULT)
1095			break;
1096		vma = vma->vm_next;
1097	}
1098
1099	if (PageHuge(page)) {
1100		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101				vma, address);
1102	} else if (PageTransHuge(page)) {
1103		struct page *thp;
1104
1105		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106					 HPAGE_PMD_ORDER);
1107		if (!thp)
1108			return NULL;
1109		prep_transhuge_page(thp);
1110		return thp;
1111	}
1112	/*
1113	 * if !vma, alloc_page_vma() will use task or system default policy
1114	 */
1115	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116			vma, address);
1117}
1118#else
1119
1120static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121				unsigned long flags)
1122{
 
1123}
1124
1125int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126		     const nodemask_t *to, int flags)
1127{
1128	return -ENOSYS;
1129}
1130
1131static struct page *new_page(struct page *page, unsigned long start)
1132{
1133	return NULL;
1134}
1135#endif
1136
1137static long do_mbind(unsigned long start, unsigned long len,
1138		     unsigned short mode, unsigned short mode_flags,
1139		     nodemask_t *nmask, unsigned long flags)
1140{
1141	struct mm_struct *mm = current->mm;
1142	struct mempolicy *new;
1143	unsigned long end;
1144	int err;
 
1145	LIST_HEAD(pagelist);
1146
1147	if (flags & ~(unsigned long)MPOL_MF_VALID)
1148		return -EINVAL;
1149	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150		return -EPERM;
1151
1152	if (start & ~PAGE_MASK)
1153		return -EINVAL;
1154
1155	if (mode == MPOL_DEFAULT)
1156		flags &= ~MPOL_MF_STRICT;
1157
1158	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159	end = start + len;
1160
1161	if (end < start)
1162		return -EINVAL;
1163	if (end == start)
1164		return 0;
1165
1166	new = mpol_new(mode, mode_flags, nmask);
1167	if (IS_ERR(new))
1168		return PTR_ERR(new);
1169
1170	if (flags & MPOL_MF_LAZY)
1171		new->flags |= MPOL_F_MOF;
1172
1173	/*
1174	 * If we are using the default policy then operation
1175	 * on discontinuous address spaces is okay after all
1176	 */
1177	if (!new)
1178		flags |= MPOL_MF_DISCONTIG_OK;
1179
1180	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181		 start, start + len, mode, mode_flags,
1182		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186		err = migrate_prep();
1187		if (err)
1188			goto mpol_out;
1189	}
1190	{
1191		NODEMASK_SCRATCH(scratch);
1192		if (scratch) {
1193			down_write(&mm->mmap_sem);
1194			task_lock(current);
1195			err = mpol_set_nodemask(new, nmask, scratch);
1196			task_unlock(current);
1197			if (err)
1198				up_write(&mm->mmap_sem);
1199		} else
1200			err = -ENOMEM;
1201		NODEMASK_SCRATCH_FREE(scratch);
1202	}
1203	if (err)
1204		goto mpol_out;
1205
1206	err = queue_pages_range(mm, start, end, nmask,
1207			  flags | MPOL_MF_INVERT, &pagelist);
1208	if (!err)
1209		err = mbind_range(mm, start, end, new);
 
 
 
 
 
1210
1211	if (!err) {
1212		int nr_failed = 0;
1213
1214		if (!list_empty(&pagelist)) {
1215			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218			if (nr_failed)
1219				putback_movable_pages(&pagelist);
1220		}
1221
1222		if (nr_failed && (flags & MPOL_MF_STRICT))
1223			err = -EIO;
1224	} else
1225		putback_movable_pages(&pagelist);
 
 
 
1226
1227	up_write(&mm->mmap_sem);
1228 mpol_out:
1229	mpol_put(new);
 
 
1230	return err;
1231}
1232
1233/*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
1236
1237/* Copy a node mask from user space. */
1238static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239		     unsigned long maxnode)
1240{
1241	unsigned long k;
1242	unsigned long t;
1243	unsigned long nlongs;
1244	unsigned long endmask;
1245
1246	--maxnode;
1247	nodes_clear(*nodes);
1248	if (maxnode == 0 || !nmask)
1249		return 0;
1250	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251		return -EINVAL;
1252
1253	nlongs = BITS_TO_LONGS(maxnode);
1254	if ((maxnode % BITS_PER_LONG) == 0)
1255		endmask = ~0UL;
1256	else
1257		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259	/*
1260	 * When the user specified more nodes than supported just check
1261	 * if the non supported part is all zero.
1262	 *
1263	 * If maxnode have more longs than MAX_NUMNODES, check
1264	 * the bits in that area first. And then go through to
1265	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267	 */
1268	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1269		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1270			if (get_user(t, nmask + k))
1271				return -EFAULT;
1272			if (k == nlongs - 1) {
1273				if (t & endmask)
1274					return -EINVAL;
1275			} else if (t)
1276				return -EINVAL;
1277		}
1278		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279		endmask = ~0UL;
1280	}
1281
1282	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283		unsigned long valid_mask = endmask;
1284
1285		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286		if (get_user(t, nmask + nlongs - 1))
1287			return -EFAULT;
1288		if (t & valid_mask)
1289			return -EINVAL;
1290	}
1291
1292	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293		return -EFAULT;
1294	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295	return 0;
1296}
1297
1298/* Copy a kernel node mask to user space */
1299static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300			      nodemask_t *nodes)
1301{
1302	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1304
1305	if (copy > nbytes) {
1306		if (copy > PAGE_SIZE)
1307			return -EINVAL;
1308		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309			return -EFAULT;
1310		copy = nbytes;
1311	}
1312	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313}
1314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315static long kernel_mbind(unsigned long start, unsigned long len,
1316			 unsigned long mode, const unsigned long __user *nmask,
1317			 unsigned long maxnode, unsigned int flags)
1318{
 
1319	nodemask_t nodes;
 
1320	int err;
1321	unsigned short mode_flags;
1322
1323	mode_flags = mode & MPOL_MODE_FLAGS;
1324	mode &= ~MPOL_MODE_FLAGS;
1325	if (mode >= MPOL_MAX)
1326		return -EINVAL;
1327	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329		return -EINVAL;
1330	err = get_nodes(&nodes, nmask, maxnode);
1331	if (err)
1332		return err;
1333	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
 
1334}
1335
1336SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337		unsigned long, mode, const unsigned long __user *, nmask,
1338		unsigned long, maxnode, unsigned int, flags)
1339{
1340	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341}
1342
1343/* Set the process memory policy */
1344static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345				 unsigned long maxnode)
1346{
1347	int err;
1348	nodemask_t nodes;
1349	unsigned short flags;
 
 
 
 
 
1350
1351	flags = mode & MPOL_MODE_FLAGS;
1352	mode &= ~MPOL_MODE_FLAGS;
1353	if ((unsigned int)mode >= MPOL_MAX)
1354		return -EINVAL;
1355	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356		return -EINVAL;
1357	err = get_nodes(&nodes, nmask, maxnode);
1358	if (err)
1359		return err;
1360	return do_set_mempolicy(mode, flags, &nodes);
 
1361}
1362
1363SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364		unsigned long, maxnode)
1365{
1366	return kernel_set_mempolicy(mode, nmask, maxnode);
1367}
1368
1369static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370				const unsigned long __user *old_nodes,
1371				const unsigned long __user *new_nodes)
1372{
1373	struct mm_struct *mm = NULL;
1374	struct task_struct *task;
1375	nodemask_t task_nodes;
1376	int err;
1377	nodemask_t *old;
1378	nodemask_t *new;
1379	NODEMASK_SCRATCH(scratch);
1380
1381	if (!scratch)
1382		return -ENOMEM;
1383
1384	old = &scratch->mask1;
1385	new = &scratch->mask2;
1386
1387	err = get_nodes(old, old_nodes, maxnode);
1388	if (err)
1389		goto out;
1390
1391	err = get_nodes(new, new_nodes, maxnode);
1392	if (err)
1393		goto out;
1394
1395	/* Find the mm_struct */
1396	rcu_read_lock();
1397	task = pid ? find_task_by_vpid(pid) : current;
1398	if (!task) {
1399		rcu_read_unlock();
1400		err = -ESRCH;
1401		goto out;
1402	}
1403	get_task_struct(task);
1404
1405	err = -EINVAL;
1406
1407	/*
1408	 * Check if this process has the right to modify the specified process.
1409	 * Use the regular "ptrace_may_access()" checks.
1410	 */
1411	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1412		rcu_read_unlock();
1413		err = -EPERM;
1414		goto out_put;
1415	}
1416	rcu_read_unlock();
1417
1418	task_nodes = cpuset_mems_allowed(task);
1419	/* Is the user allowed to access the target nodes? */
1420	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421		err = -EPERM;
1422		goto out_put;
1423	}
1424
1425	task_nodes = cpuset_mems_allowed(current);
1426	nodes_and(*new, *new, task_nodes);
1427	if (nodes_empty(*new))
1428		goto out_put;
1429
1430	nodes_and(*new, *new, node_states[N_MEMORY]);
1431	if (nodes_empty(*new))
1432		goto out_put;
1433
1434	err = security_task_movememory(task);
1435	if (err)
1436		goto out_put;
1437
1438	mm = get_task_mm(task);
1439	put_task_struct(task);
1440
1441	if (!mm) {
1442		err = -EINVAL;
1443		goto out;
1444	}
1445
1446	err = do_migrate_pages(mm, old, new,
1447		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449	mmput(mm);
1450out:
1451	NODEMASK_SCRATCH_FREE(scratch);
1452
1453	return err;
1454
1455out_put:
1456	put_task_struct(task);
1457	goto out;
1458
1459}
1460
1461SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462		const unsigned long __user *, old_nodes,
1463		const unsigned long __user *, new_nodes)
1464{
1465	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466}
1467
1468
1469/* Retrieve NUMA policy */
1470static int kernel_get_mempolicy(int __user *policy,
1471				unsigned long __user *nmask,
1472				unsigned long maxnode,
1473				unsigned long addr,
1474				unsigned long flags)
1475{
1476	int err;
1477	int uninitialized_var(pval);
1478	nodemask_t nodes;
1479
1480	if (nmask != NULL && maxnode < MAX_NUMNODES)
1481		return -EINVAL;
1482
 
 
1483	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485	if (err)
1486		return err;
1487
1488	if (policy && put_user(pval, policy))
1489		return -EFAULT;
1490
1491	if (nmask)
1492		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494	return err;
1495}
1496
1497SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498		unsigned long __user *, nmask, unsigned long, maxnode,
1499		unsigned long, addr, unsigned long, flags)
1500{
1501	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502}
1503
1504#ifdef CONFIG_COMPAT
1505
1506COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507		       compat_ulong_t __user *, nmask,
1508		       compat_ulong_t, maxnode,
1509		       compat_ulong_t, addr, compat_ulong_t, flags)
1510{
1511	long err;
1512	unsigned long __user *nm = NULL;
1513	unsigned long nr_bits, alloc_size;
1514	DECLARE_BITMAP(bm, MAX_NUMNODES);
1515
1516	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519	if (nmask)
1520		nm = compat_alloc_user_space(alloc_size);
1521
1522	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523
1524	if (!err && nmask) {
1525		unsigned long copy_size;
1526		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527		err = copy_from_user(bm, nm, copy_size);
1528		/* ensure entire bitmap is zeroed */
1529		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530		err |= compat_put_bitmap(nmask, bm, nr_bits);
1531	}
1532
1533	return err;
1534}
1535
1536COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537		       compat_ulong_t, maxnode)
1538{
1539	unsigned long __user *nm = NULL;
1540	unsigned long nr_bits, alloc_size;
1541	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542
1543	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545
1546	if (nmask) {
1547		if (compat_get_bitmap(bm, nmask, nr_bits))
1548			return -EFAULT;
1549		nm = compat_alloc_user_space(alloc_size);
1550		if (copy_to_user(nm, bm, alloc_size))
1551			return -EFAULT;
1552	}
1553
1554	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1555}
1556
1557COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1560{
1561	unsigned long __user *nm = NULL;
1562	unsigned long nr_bits, alloc_size;
1563	nodemask_t bm;
1564
1565	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568	if (nmask) {
1569		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570			return -EFAULT;
1571		nm = compat_alloc_user_space(alloc_size);
1572		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573			return -EFAULT;
1574	}
1575
1576	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577}
1578
1579COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580		       compat_ulong_t, maxnode,
1581		       const compat_ulong_t __user *, old_nodes,
1582		       const compat_ulong_t __user *, new_nodes)
1583{
1584	unsigned long __user *old = NULL;
1585	unsigned long __user *new = NULL;
1586	nodemask_t tmp_mask;
1587	unsigned long nr_bits;
1588	unsigned long size;
1589
1590	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592	if (old_nodes) {
1593		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594			return -EFAULT;
1595		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596		if (new_nodes)
1597			new = old + size / sizeof(unsigned long);
1598		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599			return -EFAULT;
1600	}
1601	if (new_nodes) {
1602		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603			return -EFAULT;
1604		if (new == NULL)
1605			new = compat_alloc_user_space(size);
1606		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607			return -EFAULT;
1608	}
1609	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610}
1611
1612#endif /* CONFIG_COMPAT */
1613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615						unsigned long addr)
1616{
1617	struct mempolicy *pol = NULL;
1618
1619	if (vma) {
1620		if (vma->vm_ops && vma->vm_ops->get_policy) {
1621			pol = vma->vm_ops->get_policy(vma, addr);
1622		} else if (vma->vm_policy) {
1623			pol = vma->vm_policy;
1624
1625			/*
1626			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628			 * count on these policies which will be dropped by
1629			 * mpol_cond_put() later
1630			 */
1631			if (mpol_needs_cond_ref(pol))
1632				mpol_get(pol);
1633		}
1634	}
1635
1636	return pol;
1637}
1638
1639/*
1640 * get_vma_policy(@vma, @addr)
1641 * @vma: virtual memory area whose policy is sought
1642 * @addr: address in @vma for shared policy lookup
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to current->mempolicy or system default policy, as necessary.
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task.  It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1650 */
1651static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652						unsigned long addr)
1653{
1654	struct mempolicy *pol = __get_vma_policy(vma, addr);
1655
1656	if (!pol)
1657		pol = get_task_policy(current);
1658
1659	return pol;
1660}
1661
1662bool vma_policy_mof(struct vm_area_struct *vma)
1663{
1664	struct mempolicy *pol;
1665
1666	if (vma->vm_ops && vma->vm_ops->get_policy) {
1667		bool ret = false;
1668
1669		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670		if (pol && (pol->flags & MPOL_F_MOF))
1671			ret = true;
1672		mpol_cond_put(pol);
1673
1674		return ret;
1675	}
1676
1677	pol = vma->vm_policy;
1678	if (!pol)
1679		pol = get_task_policy(current);
1680
1681	return pol->flags & MPOL_F_MOF;
1682}
1683
1684static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685{
1686	enum zone_type dynamic_policy_zone = policy_zone;
1687
1688	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689
1690	/*
1691	 * if policy->v.nodes has movable memory only,
1692	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693	 *
1694	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695	 * so if the following test faile, it implies
1696	 * policy->v.nodes has movable memory only.
1697	 */
1698	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699		dynamic_policy_zone = ZONE_MOVABLE;
1700
1701	return zone >= dynamic_policy_zone;
1702}
1703
1704/*
1705 * Return a nodemask representing a mempolicy for filtering nodes for
1706 * page allocation
1707 */
1708static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709{
1710	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1711	if (unlikely(policy->mode == MPOL_BIND) &&
1712			apply_policy_zone(policy, gfp_zone(gfp)) &&
1713			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714		return &policy->v.nodes;
1715
1716	return NULL;
1717}
1718
1719/* Return the node id preferred by the given mempolicy, or the given id */
1720static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721								int nd)
1722{
1723	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724		nd = policy->v.preferred_node;
1725	else {
1726		/*
1727		 * __GFP_THISNODE shouldn't even be used with the bind policy
1728		 * because we might easily break the expectation to stay on the
1729		 * requested node and not break the policy.
1730		 */
1731		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1732	}
1733
1734	return nd;
1735}
1736
1737/* Do dynamic interleaving for a process */
1738static unsigned interleave_nodes(struct mempolicy *policy)
1739{
1740	unsigned next;
1741	struct task_struct *me = current;
1742
1743	next = next_node_in(me->il_prev, policy->v.nodes);
1744	if (next < MAX_NUMNODES)
1745		me->il_prev = next;
1746	return next;
1747}
1748
1749/*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
1752 */
1753unsigned int mempolicy_slab_node(void)
1754{
1755	struct mempolicy *policy;
1756	int node = numa_mem_id();
1757
1758	if (in_interrupt())
1759		return node;
1760
1761	policy = current->mempolicy;
1762	if (!policy || policy->flags & MPOL_F_LOCAL)
1763		return node;
1764
1765	switch (policy->mode) {
1766	case MPOL_PREFERRED:
1767		/*
1768		 * handled MPOL_F_LOCAL above
1769		 */
1770		return policy->v.preferred_node;
1771
1772	case MPOL_INTERLEAVE:
1773		return interleave_nodes(policy);
1774
1775	case MPOL_BIND: {
1776		struct zoneref *z;
1777
1778		/*
1779		 * Follow bind policy behavior and start allocation at the
1780		 * first node.
1781		 */
1782		struct zonelist *zonelist;
1783		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785		z = first_zones_zonelist(zonelist, highest_zoneidx,
1786							&policy->v.nodes);
1787		return z->zone ? z->zone->node : node;
1788	}
 
 
1789
1790	default:
1791		BUG();
1792	}
1793}
1794
1795/*
1796 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798 * number of present nodes.
1799 */
1800static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801{
1802	unsigned nnodes = nodes_weight(pol->v.nodes);
1803	unsigned target;
1804	int i;
1805	int nid;
 
 
 
 
 
 
 
 
1806
 
1807	if (!nnodes)
1808		return numa_node_id();
1809	target = (unsigned int)n % nnodes;
1810	nid = first_node(pol->v.nodes);
1811	for (i = 0; i < target; i++)
1812		nid = next_node(nid, pol->v.nodes);
1813	return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818		 struct vm_area_struct *vma, unsigned long addr, int shift)
1819{
1820	if (vma) {
1821		unsigned long off;
1822
1823		/*
1824		 * for small pages, there is no difference between
1825		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826		 * for huge pages, since vm_pgoff is in units of small
1827		 * pages, we need to shift off the always 0 bits to get
1828		 * a useful offset.
1829		 */
1830		BUG_ON(shift < PAGE_SHIFT);
1831		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832		off += (addr - vma->vm_start) >> shift;
1833		return offset_il_node(pol, off);
1834	} else
1835		return interleave_nodes(pol);
1836}
1837
1838#ifdef CONFIG_HUGETLBFS
1839/*
1840 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a nid suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855				struct mempolicy **mpol, nodemask_t **nodemask)
1856{
1857	int nid;
1858
1859	*mpol = get_vma_policy(vma, addr);
1860	*nodemask = NULL;	/* assume !MPOL_BIND */
1861
1862	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863		nid = interleave_nid(*mpol, vma, addr,
1864					huge_page_shift(hstate_vma(vma)));
1865	} else {
1866		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867		if ((*mpol)->mode == MPOL_BIND)
1868			*nodemask = &(*mpol)->v.nodes;
1869	}
1870	return nid;
1871}
1872
1873/*
1874 * init_nodemask_of_mempolicy
1875 *
1876 * If the current task's mempolicy is "default" [NULL], return 'false'
1877 * to indicate default policy.  Otherwise, extract the policy nodemask
1878 * for 'bind' or 'interleave' policy into the argument nodemask, or
1879 * initialize the argument nodemask to contain the single node for
1880 * 'preferred' or 'local' policy and return 'true' to indicate presence
1881 * of non-default mempolicy.
1882 *
1883 * We don't bother with reference counting the mempolicy [mpol_get/put]
1884 * because the current task is examining it's own mempolicy and a task's
1885 * mempolicy is only ever changed by the task itself.
1886 *
1887 * N.B., it is the caller's responsibility to free a returned nodemask.
1888 */
1889bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890{
1891	struct mempolicy *mempolicy;
1892	int nid;
1893
1894	if (!(mask && current->mempolicy))
1895		return false;
1896
1897	task_lock(current);
1898	mempolicy = current->mempolicy;
1899	switch (mempolicy->mode) {
1900	case MPOL_PREFERRED:
1901		if (mempolicy->flags & MPOL_F_LOCAL)
1902			nid = numa_node_id();
1903		else
1904			nid = mempolicy->v.preferred_node;
1905		init_nodemask_of_node(mask, nid);
1906		break;
1907
1908	case MPOL_BIND:
1909		/* Fall through */
1910	case MPOL_INTERLEAVE:
1911		*mask =  mempolicy->v.nodes;
 
 
 
 
1912		break;
1913
1914	default:
1915		BUG();
1916	}
1917	task_unlock(current);
1918
1919	return true;
1920}
1921#endif
1922
1923/*
1924 * mempolicy_nodemask_intersects
1925 *
1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927 * policy.  Otherwise, check for intersection between mask and the policy
1928 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1929 * policy, always return true since it may allocate elsewhere on fallback.
1930 *
1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932 */
1933bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934					const nodemask_t *mask)
1935{
1936	struct mempolicy *mempolicy;
1937	bool ret = true;
1938
1939	if (!mask)
1940		return ret;
 
1941	task_lock(tsk);
1942	mempolicy = tsk->mempolicy;
1943	if (!mempolicy)
1944		goto out;
1945
1946	switch (mempolicy->mode) {
1947	case MPOL_PREFERRED:
1948		/*
1949		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950		 * allocate from, they may fallback to other nodes when oom.
1951		 * Thus, it's possible for tsk to have allocated memory from
1952		 * nodes in mask.
1953		 */
1954		break;
1955	case MPOL_BIND:
1956	case MPOL_INTERLEAVE:
1957		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958		break;
1959	default:
1960		BUG();
1961	}
1962out:
1963	task_unlock(tsk);
 
1964	return ret;
1965}
1966
1967/* Allocate a page in interleaved policy.
1968   Own path because it needs to do special accounting. */
1969static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970					unsigned nid)
1971{
1972	struct page *page;
1973
1974	page = __alloc_pages(gfp, order, nid);
1975	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976	if (!static_branch_likely(&vm_numa_stat_key))
1977		return page;
1978	if (page && page_to_nid(page) == nid) {
1979		preempt_disable();
1980		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981		preempt_enable();
1982	}
1983	return page;
1984}
1985
1986/**
1987 * 	alloc_pages_vma	- Allocate a page for a VMA.
 
 
 
 
 
 
 
 
 
 
 
1988 *
1989 * 	@gfp:
1990 *      %GFP_USER    user allocation.
1991 *      %GFP_KERNEL  kernel allocations,
1992 *      %GFP_HIGHMEM highmem/user allocations,
1993 *      %GFP_FS      allocation should not call back into a file system.
1994 *      %GFP_ATOMIC  don't sleep.
1995 *
1996 *	@order:Order of the GFP allocation.
1997 * 	@vma:  Pointer to VMA or NULL if not available.
1998 *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1999 *	@node: Which node to prefer for allocation (modulo policy).
2000 *	@hugepage: for hugepages try only the preferred node if possible
2001 *
2002 * 	This function allocates a page from the kernel page pool and applies
2003 *	a NUMA policy associated with the VMA or the current process.
2004 *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005 *	mm_struct of the VMA to prevent it from going away. Should be used for
2006 *	all allocations for pages that will be mapped into user space. Returns
2007 *	NULL when no page can be allocated.
2008 */
2009struct page *
2010alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011		unsigned long addr, int node, bool hugepage)
2012{
2013	struct mempolicy *pol;
2014	struct page *page;
2015	int preferred_nid;
2016	nodemask_t *nmask;
2017
2018	pol = get_vma_policy(vma, addr);
2019
2020	if (pol->mode == MPOL_INTERLEAVE) {
2021		unsigned nid;
2022
2023		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024		mpol_cond_put(pol);
2025		page = alloc_page_interleave(gfp, order, nid);
2026		goto out;
2027	}
2028
2029	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030		int hpage_node = node;
2031
2032		/*
2033		 * For hugepage allocation and non-interleave policy which
2034		 * allows the current node (or other explicitly preferred
2035		 * node) we only try to allocate from the current/preferred
2036		 * node and don't fall back to other nodes, as the cost of
2037		 * remote accesses would likely offset THP benefits.
2038		 *
2039		 * If the policy is interleave, or does not allow the current
2040		 * node in its nodemask, we allocate the standard way.
2041		 */
2042		if (pol->mode == MPOL_PREFERRED &&
2043						!(pol->flags & MPOL_F_LOCAL))
2044			hpage_node = pol->v.preferred_node;
2045
2046		nmask = policy_nodemask(gfp, pol);
2047		if (!nmask || node_isset(hpage_node, *nmask)) {
2048			mpol_cond_put(pol);
 
 
 
 
2049			page = __alloc_pages_node(hpage_node,
2050						gfp | __GFP_THISNODE, order);
 
 
 
 
 
 
 
 
 
 
 
2051			goto out;
2052		}
2053	}
2054
2055	nmask = policy_nodemask(gfp, pol);
2056	preferred_nid = policy_node(gfp, pol, node);
2057	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058	mpol_cond_put(pol);
2059out:
2060	return page;
2061}
 
2062
2063/**
2064 * 	alloc_pages_current - Allocate pages.
2065 *
2066 *	@gfp:
2067 *		%GFP_USER   user allocation,
2068 *      	%GFP_KERNEL kernel allocation,
2069 *      	%GFP_HIGHMEM highmem allocation,
2070 *      	%GFP_FS     don't call back into a file system.
2071 *      	%GFP_ATOMIC don't sleep.
2072 *	@order: Power of two of allocation size in pages. 0 is a single page.
2073 *
2074 *	Allocate a page from the kernel page pool.  When not in
2075 *	interrupt context and apply the current process NUMA policy.
2076 *	Returns NULL when no page can be allocated.
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080	struct mempolicy *pol = &default_policy;
2081	struct page *page;
2082
2083	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084		pol = get_task_policy(current);
2085
2086	/*
2087	 * No reference counting needed for current->mempolicy
2088	 * nor system default_policy
2089	 */
2090	if (pol->mode == MPOL_INTERLEAVE)
2091		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092	else
2093		page = __alloc_pages_nodemask(gfp, order,
2094				policy_node(gfp, pol, numa_node_id()),
2095				policy_nodemask(gfp, pol));
2096
2097	return page;
2098}
2099EXPORT_SYMBOL(alloc_pages_current);
2100
2101int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102{
2103	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104
2105	if (IS_ERR(pol))
2106		return PTR_ERR(pol);
2107	dst->vm_policy = pol;
2108	return 0;
2109}
2110
2111/*
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed().  This
2115 * keeps mempolicies cpuset relative after its cpuset moves.  See
2116 * further kernel/cpuset.c update_nodemask().
2117 *
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2120 */
2121
2122/* Slow path of a mempolicy duplicate */
2123struct mempolicy *__mpol_dup(struct mempolicy *old)
2124{
2125	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126
2127	if (!new)
2128		return ERR_PTR(-ENOMEM);
2129
2130	/* task's mempolicy is protected by alloc_lock */
2131	if (old == current->mempolicy) {
2132		task_lock(current);
2133		*new = *old;
2134		task_unlock(current);
2135	} else
2136		*new = *old;
2137
2138	if (current_cpuset_is_being_rebound()) {
2139		nodemask_t mems = cpuset_mems_allowed(current);
2140		mpol_rebind_policy(new, &mems);
2141	}
2142	atomic_set(&new->refcnt, 1);
2143	return new;
2144}
2145
2146/* Slow path of a mempolicy comparison */
2147bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148{
2149	if (!a || !b)
2150		return false;
2151	if (a->mode != b->mode)
2152		return false;
2153	if (a->flags != b->flags)
2154		return false;
2155	if (mpol_store_user_nodemask(a))
2156		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157			return false;
2158
2159	switch (a->mode) {
2160	case MPOL_BIND:
2161		/* Fall through */
2162	case MPOL_INTERLEAVE:
2163		return !!nodes_equal(a->v.nodes, b->v.nodes);
2164	case MPOL_PREFERRED:
2165		/* a's ->flags is the same as b's */
2166		if (a->flags & MPOL_F_LOCAL)
2167			return true;
2168		return a->v.preferred_node == b->v.preferred_node;
2169	default:
2170		BUG();
2171		return false;
2172	}
2173}
2174
2175/*
2176 * Shared memory backing store policy support.
2177 *
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2182 */
2183
2184/*
2185 * lookup first element intersecting start-end.  Caller holds sp->lock for
2186 * reading or for writing
2187 */
2188static struct sp_node *
2189sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190{
2191	struct rb_node *n = sp->root.rb_node;
2192
2193	while (n) {
2194		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195
2196		if (start >= p->end)
2197			n = n->rb_right;
2198		else if (end <= p->start)
2199			n = n->rb_left;
2200		else
2201			break;
2202	}
2203	if (!n)
2204		return NULL;
2205	for (;;) {
2206		struct sp_node *w = NULL;
2207		struct rb_node *prev = rb_prev(n);
2208		if (!prev)
2209			break;
2210		w = rb_entry(prev, struct sp_node, nd);
2211		if (w->end <= start)
2212			break;
2213		n = prev;
2214	}
2215	return rb_entry(n, struct sp_node, nd);
2216}
2217
2218/*
2219 * Insert a new shared policy into the list.  Caller holds sp->lock for
2220 * writing.
2221 */
2222static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223{
2224	struct rb_node **p = &sp->root.rb_node;
2225	struct rb_node *parent = NULL;
2226	struct sp_node *nd;
2227
2228	while (*p) {
2229		parent = *p;
2230		nd = rb_entry(parent, struct sp_node, nd);
2231		if (new->start < nd->start)
2232			p = &(*p)->rb_left;
2233		else if (new->end > nd->end)
2234			p = &(*p)->rb_right;
2235		else
2236			BUG();
2237	}
2238	rb_link_node(&new->nd, parent, p);
2239	rb_insert_color(&new->nd, &sp->root);
2240	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241		 new->policy ? new->policy->mode : 0);
2242}
2243
2244/* Find shared policy intersecting idx */
2245struct mempolicy *
2246mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247{
2248	struct mempolicy *pol = NULL;
2249	struct sp_node *sn;
2250
2251	if (!sp->root.rb_node)
2252		return NULL;
2253	read_lock(&sp->lock);
2254	sn = sp_lookup(sp, idx, idx+1);
2255	if (sn) {
2256		mpol_get(sn->policy);
2257		pol = sn->policy;
2258	}
2259	read_unlock(&sp->lock);
2260	return pol;
2261}
2262
2263static void sp_free(struct sp_node *n)
2264{
2265	mpol_put(n->policy);
2266	kmem_cache_free(sn_cache, n);
2267}
2268
2269/**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
2278 *
2279 * Returns:
2280 *	-1	- not misplaced, page is in the right node
2281 *	node	- node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
 
 
 
2285 */
2286int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287{
2288	struct mempolicy *pol;
2289	struct zoneref *z;
2290	int curnid = page_to_nid(page);
2291	unsigned long pgoff;
2292	int thiscpu = raw_smp_processor_id();
2293	int thisnid = cpu_to_node(thiscpu);
2294	int polnid = -1;
2295	int ret = -1;
2296
2297	pol = get_vma_policy(vma, addr);
2298	if (!(pol->flags & MPOL_F_MOF))
2299		goto out;
2300
2301	switch (pol->mode) {
2302	case MPOL_INTERLEAVE:
2303		pgoff = vma->vm_pgoff;
2304		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305		polnid = offset_il_node(pol, pgoff);
2306		break;
2307
2308	case MPOL_PREFERRED:
2309		if (pol->flags & MPOL_F_LOCAL)
2310			polnid = numa_node_id();
2311		else
2312			polnid = pol->v.preferred_node;
 
2313		break;
2314
2315	case MPOL_BIND:
 
 
 
 
 
 
2316
2317		/*
2318		 * allows binding to multiple nodes.
2319		 * use current page if in policy nodemask,
2320		 * else select nearest allowed node, if any.
2321		 * If no allowed nodes, use current [!misplaced].
2322		 */
2323		if (node_isset(curnid, pol->v.nodes))
2324			goto out;
2325		z = first_zones_zonelist(
2326				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327				gfp_zone(GFP_HIGHUSER),
2328				&pol->v.nodes);
2329		polnid = z->zone->node;
2330		break;
2331
2332	default:
2333		BUG();
2334	}
2335
2336	/* Migrate the page towards the node whose CPU is referencing it */
2337	if (pol->flags & MPOL_F_MORON) {
2338		polnid = thisnid;
2339
2340		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2341			goto out;
2342	}
2343
2344	if (curnid != polnid)
2345		ret = polnid;
2346out:
2347	mpol_cond_put(pol);
2348
2349	return ret;
2350}
2351
2352/*
2353 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2354 * dropped after task->mempolicy is set to NULL so that any allocation done as
2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356 * policy.
2357 */
2358void mpol_put_task_policy(struct task_struct *task)
2359{
2360	struct mempolicy *pol;
2361
2362	task_lock(task);
2363	pol = task->mempolicy;
2364	task->mempolicy = NULL;
2365	task_unlock(task);
2366	mpol_put(pol);
2367}
2368
2369static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370{
2371	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372	rb_erase(&n->nd, &sp->root);
2373	sp_free(n);
2374}
2375
2376static void sp_node_init(struct sp_node *node, unsigned long start,
2377			unsigned long end, struct mempolicy *pol)
2378{
2379	node->start = start;
2380	node->end = end;
2381	node->policy = pol;
2382}
2383
2384static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385				struct mempolicy *pol)
2386{
2387	struct sp_node *n;
2388	struct mempolicy *newpol;
2389
2390	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391	if (!n)
2392		return NULL;
2393
2394	newpol = mpol_dup(pol);
2395	if (IS_ERR(newpol)) {
2396		kmem_cache_free(sn_cache, n);
2397		return NULL;
2398	}
2399	newpol->flags |= MPOL_F_SHARED;
2400	sp_node_init(n, start, end, newpol);
2401
2402	return n;
2403}
2404
2405/* Replace a policy range. */
2406static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407				 unsigned long end, struct sp_node *new)
2408{
2409	struct sp_node *n;
2410	struct sp_node *n_new = NULL;
2411	struct mempolicy *mpol_new = NULL;
2412	int ret = 0;
2413
2414restart:
2415	write_lock(&sp->lock);
2416	n = sp_lookup(sp, start, end);
2417	/* Take care of old policies in the same range. */
2418	while (n && n->start < end) {
2419		struct rb_node *next = rb_next(&n->nd);
2420		if (n->start >= start) {
2421			if (n->end <= end)
2422				sp_delete(sp, n);
2423			else
2424				n->start = end;
2425		} else {
2426			/* Old policy spanning whole new range. */
2427			if (n->end > end) {
2428				if (!n_new)
2429					goto alloc_new;
2430
2431				*mpol_new = *n->policy;
2432				atomic_set(&mpol_new->refcnt, 1);
2433				sp_node_init(n_new, end, n->end, mpol_new);
2434				n->end = start;
2435				sp_insert(sp, n_new);
2436				n_new = NULL;
2437				mpol_new = NULL;
2438				break;
2439			} else
2440				n->end = start;
2441		}
2442		if (!next)
2443			break;
2444		n = rb_entry(next, struct sp_node, nd);
2445	}
2446	if (new)
2447		sp_insert(sp, new);
2448	write_unlock(&sp->lock);
2449	ret = 0;
2450
2451err_out:
2452	if (mpol_new)
2453		mpol_put(mpol_new);
2454	if (n_new)
2455		kmem_cache_free(sn_cache, n_new);
2456
2457	return ret;
2458
2459alloc_new:
2460	write_unlock(&sp->lock);
2461	ret = -ENOMEM;
2462	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463	if (!n_new)
2464		goto err_out;
2465	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466	if (!mpol_new)
2467		goto err_out;
2468	goto restart;
2469}
2470
2471/**
2472 * mpol_shared_policy_init - initialize shared policy for inode
2473 * @sp: pointer to inode shared policy
2474 * @mpol:  struct mempolicy to install
2475 *
2476 * Install non-NULL @mpol in inode's shared policy rb-tree.
2477 * On entry, the current task has a reference on a non-NULL @mpol.
2478 * This must be released on exit.
2479 * This is called at get_inode() calls and we can use GFP_KERNEL.
2480 */
2481void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482{
2483	int ret;
2484
2485	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2486	rwlock_init(&sp->lock);
2487
2488	if (mpol) {
2489		struct vm_area_struct pvma;
2490		struct mempolicy *new;
2491		NODEMASK_SCRATCH(scratch);
2492
2493		if (!scratch)
2494			goto put_mpol;
2495		/* contextualize the tmpfs mount point mempolicy */
2496		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497		if (IS_ERR(new))
2498			goto free_scratch; /* no valid nodemask intersection */
2499
2500		task_lock(current);
2501		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502		task_unlock(current);
2503		if (ret)
2504			goto put_new;
2505
2506		/* Create pseudo-vma that contains just the policy */
2507		memset(&pvma, 0, sizeof(struct vm_area_struct));
2508		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2509		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510
2511put_new:
2512		mpol_put(new);			/* drop initial ref */
2513free_scratch:
2514		NODEMASK_SCRATCH_FREE(scratch);
2515put_mpol:
2516		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2517	}
2518}
2519
2520int mpol_set_shared_policy(struct shared_policy *info,
2521			struct vm_area_struct *vma, struct mempolicy *npol)
2522{
2523	int err;
2524	struct sp_node *new = NULL;
2525	unsigned long sz = vma_pages(vma);
2526
2527	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528		 vma->vm_pgoff,
2529		 sz, npol ? npol->mode : -1,
2530		 npol ? npol->flags : -1,
2531		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532
2533	if (npol) {
2534		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535		if (!new)
2536			return -ENOMEM;
2537	}
2538	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539	if (err && new)
2540		sp_free(new);
2541	return err;
2542}
2543
2544/* Free a backing policy store on inode delete. */
2545void mpol_free_shared_policy(struct shared_policy *p)
2546{
2547	struct sp_node *n;
2548	struct rb_node *next;
2549
2550	if (!p->root.rb_node)
2551		return;
2552	write_lock(&p->lock);
2553	next = rb_first(&p->root);
2554	while (next) {
2555		n = rb_entry(next, struct sp_node, nd);
2556		next = rb_next(&n->nd);
2557		sp_delete(p, n);
2558	}
2559	write_unlock(&p->lock);
2560}
2561
2562#ifdef CONFIG_NUMA_BALANCING
2563static int __initdata numabalancing_override;
2564
2565static void __init check_numabalancing_enable(void)
2566{
2567	bool numabalancing_default = false;
2568
2569	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570		numabalancing_default = true;
2571
2572	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573	if (numabalancing_override)
2574		set_numabalancing_state(numabalancing_override == 1);
2575
2576	if (num_online_nodes() > 1 && !numabalancing_override) {
2577		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578			numabalancing_default ? "Enabling" : "Disabling");
2579		set_numabalancing_state(numabalancing_default);
2580	}
2581}
2582
2583static int __init setup_numabalancing(char *str)
2584{
2585	int ret = 0;
2586	if (!str)
2587		goto out;
2588
2589	if (!strcmp(str, "enable")) {
2590		numabalancing_override = 1;
2591		ret = 1;
2592	} else if (!strcmp(str, "disable")) {
2593		numabalancing_override = -1;
2594		ret = 1;
2595	}
2596out:
2597	if (!ret)
2598		pr_warn("Unable to parse numa_balancing=\n");
2599
2600	return ret;
2601}
2602__setup("numa_balancing=", setup_numabalancing);
2603#else
2604static inline void __init check_numabalancing_enable(void)
2605{
2606}
2607#endif /* CONFIG_NUMA_BALANCING */
2608
2609/* assumes fs == KERNEL_DS */
2610void __init numa_policy_init(void)
2611{
2612	nodemask_t interleave_nodes;
2613	unsigned long largest = 0;
2614	int nid, prefer = 0;
2615
2616	policy_cache = kmem_cache_create("numa_policy",
2617					 sizeof(struct mempolicy),
2618					 0, SLAB_PANIC, NULL);
2619
2620	sn_cache = kmem_cache_create("shared_policy_node",
2621				     sizeof(struct sp_node),
2622				     0, SLAB_PANIC, NULL);
2623
2624	for_each_node(nid) {
2625		preferred_node_policy[nid] = (struct mempolicy) {
2626			.refcnt = ATOMIC_INIT(1),
2627			.mode = MPOL_PREFERRED,
2628			.flags = MPOL_F_MOF | MPOL_F_MORON,
2629			.v = { .preferred_node = nid, },
2630		};
2631	}
2632
2633	/*
2634	 * Set interleaving policy for system init. Interleaving is only
2635	 * enabled across suitably sized nodes (default is >= 16MB), or
2636	 * fall back to the largest node if they're all smaller.
2637	 */
2638	nodes_clear(interleave_nodes);
2639	for_each_node_state(nid, N_MEMORY) {
2640		unsigned long total_pages = node_present_pages(nid);
2641
2642		/* Preserve the largest node */
2643		if (largest < total_pages) {
2644			largest = total_pages;
2645			prefer = nid;
2646		}
2647
2648		/* Interleave this node? */
2649		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650			node_set(nid, interleave_nodes);
2651	}
2652
2653	/* All too small, use the largest */
2654	if (unlikely(nodes_empty(interleave_nodes)))
2655		node_set(prefer, interleave_nodes);
2656
2657	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658		pr_err("%s: interleaving failed\n", __func__);
2659
2660	check_numabalancing_enable();
2661}
2662
2663/* Reset policy of current process to default */
2664void numa_default_policy(void)
2665{
2666	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667}
2668
2669/*
2670 * Parse and format mempolicy from/to strings
2671 */
2672
2673/*
2674 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2675 */
2676static const char * const policy_modes[] =
2677{
2678	[MPOL_DEFAULT]    = "default",
2679	[MPOL_PREFERRED]  = "prefer",
2680	[MPOL_BIND]       = "bind",
2681	[MPOL_INTERLEAVE] = "interleave",
2682	[MPOL_LOCAL]      = "local",
2683};
2684
2685
2686#ifdef CONFIG_TMPFS
2687/**
2688 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689 * @str:  string containing mempolicy to parse
2690 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2691 *
2692 * Format of input:
2693 *	<mode>[=<flags>][:<nodelist>]
2694 *
2695 * On success, returns 0, else 1
2696 */
2697int mpol_parse_str(char *str, struct mempolicy **mpol)
2698{
2699	struct mempolicy *new = NULL;
2700	unsigned short mode;
2701	unsigned short mode_flags;
2702	nodemask_t nodes;
2703	char *nodelist = strchr(str, ':');
2704	char *flags = strchr(str, '=');
2705	int err = 1;
 
 
 
2706
2707	if (nodelist) {
2708		/* NUL-terminate mode or flags string */
2709		*nodelist++ = '\0';
2710		if (nodelist_parse(nodelist, nodes))
2711			goto out;
2712		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713			goto out;
2714	} else
2715		nodes_clear(nodes);
2716
2717	if (flags)
2718		*flags++ = '\0';	/* terminate mode string */
2719
2720	for (mode = 0; mode < MPOL_MAX; mode++) {
2721		if (!strcmp(str, policy_modes[mode])) {
2722			break;
2723		}
2724	}
2725	if (mode >= MPOL_MAX)
2726		goto out;
2727
2728	switch (mode) {
2729	case MPOL_PREFERRED:
2730		/*
2731		 * Insist on a nodelist of one node only
 
 
2732		 */
2733		if (nodelist) {
2734			char *rest = nodelist;
2735			while (isdigit(*rest))
2736				rest++;
2737			if (*rest)
2738				goto out;
 
 
2739		}
2740		break;
2741	case MPOL_INTERLEAVE:
2742		/*
2743		 * Default to online nodes with memory if no nodelist
2744		 */
2745		if (!nodelist)
2746			nodes = node_states[N_MEMORY];
2747		break;
2748	case MPOL_LOCAL:
2749		/*
2750		 * Don't allow a nodelist;  mpol_new() checks flags
2751		 */
2752		if (nodelist)
2753			goto out;
2754		mode = MPOL_PREFERRED;
2755		break;
2756	case MPOL_DEFAULT:
2757		/*
2758		 * Insist on a empty nodelist
2759		 */
2760		if (!nodelist)
2761			err = 0;
2762		goto out;
2763	case MPOL_BIND:
2764		/*
2765		 * Insist on a nodelist
2766		 */
2767		if (!nodelist)
2768			goto out;
2769	}
2770
2771	mode_flags = 0;
2772	if (flags) {
2773		/*
2774		 * Currently, we only support two mutually exclusive
2775		 * mode flags.
2776		 */
2777		if (!strcmp(flags, "static"))
2778			mode_flags |= MPOL_F_STATIC_NODES;
2779		else if (!strcmp(flags, "relative"))
2780			mode_flags |= MPOL_F_RELATIVE_NODES;
2781		else
2782			goto out;
2783	}
2784
2785	new = mpol_new(mode, mode_flags, &nodes);
2786	if (IS_ERR(new))
2787		goto out;
2788
2789	/*
2790	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792	 */
2793	if (mode != MPOL_PREFERRED)
2794		new->v.nodes = nodes;
2795	else if (nodelist)
2796		new->v.preferred_node = first_node(nodes);
2797	else
2798		new->flags |= MPOL_F_LOCAL;
 
 
2799
2800	/*
2801	 * Save nodes for contextualization: this will be used to "clone"
2802	 * the mempolicy in a specific context [cpuset] at a later time.
2803	 */
2804	new->w.user_nodemask = nodes;
2805
2806	err = 0;
2807
2808out:
2809	/* Restore string for error message */
2810	if (nodelist)
2811		*--nodelist = ':';
2812	if (flags)
2813		*--flags = '=';
2814	if (!err)
2815		*mpol = new;
2816	return err;
2817}
2818#endif /* CONFIG_TMPFS */
2819
2820/**
2821 * mpol_to_str - format a mempolicy structure for printing
2822 * @buffer:  to contain formatted mempolicy string
2823 * @maxlen:  length of @buffer
2824 * @pol:  pointer to mempolicy to be formatted
2825 *
2826 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828 * longest flag, "relative", and to display at least a few node ids.
2829 */
2830void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831{
2832	char *p = buffer;
2833	nodemask_t nodes = NODE_MASK_NONE;
2834	unsigned short mode = MPOL_DEFAULT;
2835	unsigned short flags = 0;
2836
2837	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838		mode = pol->mode;
2839		flags = pol->flags;
2840	}
2841
2842	switch (mode) {
2843	case MPOL_DEFAULT:
 
2844		break;
2845	case MPOL_PREFERRED:
2846		if (flags & MPOL_F_LOCAL)
2847			mode = MPOL_LOCAL;
2848		else
2849			node_set(pol->v.preferred_node, nodes);
2850		break;
2851	case MPOL_BIND:
2852	case MPOL_INTERLEAVE:
2853		nodes = pol->v.nodes;
2854		break;
2855	default:
2856		WARN_ON_ONCE(1);
2857		snprintf(p, maxlen, "unknown");
2858		return;
2859	}
2860
2861	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862
2863	if (flags & MPOL_MODE_FLAGS) {
2864		p += snprintf(p, buffer + maxlen - p, "=");
2865
2866		/*
2867		 * Currently, the only defined flags are mutually exclusive
2868		 */
2869		if (flags & MPOL_F_STATIC_NODES)
2870			p += snprintf(p, buffer + maxlen - p, "static");
2871		else if (flags & MPOL_F_RELATIVE_NODES)
2872			p += snprintf(p, buffer + maxlen - p, "relative");
2873	}
2874
2875	if (!nodes_empty(nodes))
2876		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877			       nodemask_pr_args(&nodes));
2878}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple NUMA memory policy for the Linux kernel.
   4 *
   5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
 
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *		  in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  69
  70#include <linux/mempolicy.h>
  71#include <linux/pagewalk.h>
  72#include <linux/highmem.h>
  73#include <linux/hugetlb.h>
  74#include <linux/kernel.h>
  75#include <linux/sched.h>
  76#include <linux/sched/mm.h>
  77#include <linux/sched/numa_balancing.h>
  78#include <linux/sched/task.h>
  79#include <linux/nodemask.h>
  80#include <linux/cpuset.h>
  81#include <linux/slab.h>
  82#include <linux/string.h>
  83#include <linux/export.h>
  84#include <linux/nsproxy.h>
  85#include <linux/interrupt.h>
  86#include <linux/init.h>
  87#include <linux/compat.h>
  88#include <linux/ptrace.h>
  89#include <linux/swap.h>
  90#include <linux/seq_file.h>
  91#include <linux/proc_fs.h>
  92#include <linux/migrate.h>
  93#include <linux/ksm.h>
  94#include <linux/rmap.h>
  95#include <linux/security.h>
  96#include <linux/syscalls.h>
  97#include <linux/ctype.h>
  98#include <linux/mm_inline.h>
  99#include <linux/mmu_notifier.h>
 100#include <linux/printk.h>
 101#include <linux/swapops.h>
 102
 103#include <asm/tlbflush.h>
 104#include <linux/uaccess.h>
 105
 106#include "internal.h"
 107
 108/* Internal flags */
 109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
 110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
 111
 112static struct kmem_cache *policy_cache;
 113static struct kmem_cache *sn_cache;
 114
 115/* Highest zone. An specific allocation for a zone below that is not
 116   policied. */
 117enum zone_type policy_zone = 0;
 118
 119/*
 120 * run-time system-wide default policy => local allocation
 121 */
 122static struct mempolicy default_policy = {
 123	.refcnt = ATOMIC_INIT(1), /* never free it */
 124	.mode = MPOL_LOCAL,
 
 125};
 126
 127static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 128
 129/**
 130 * numa_map_to_online_node - Find closest online node
 131 * @node: Node id to start the search
 132 *
 133 * Lookup the next closest node by distance if @nid is not online.
 134 */
 135int numa_map_to_online_node(int node)
 136{
 137	int min_dist = INT_MAX, dist, n, min_node;
 138
 139	if (node == NUMA_NO_NODE || node_online(node))
 140		return node;
 141
 142	min_node = node;
 143	for_each_online_node(n) {
 144		dist = node_distance(node, n);
 145		if (dist < min_dist) {
 146			min_dist = dist;
 147			min_node = n;
 148		}
 149	}
 150
 151	return min_node;
 152}
 153EXPORT_SYMBOL_GPL(numa_map_to_online_node);
 154
 155struct mempolicy *get_task_policy(struct task_struct *p)
 156{
 157	struct mempolicy *pol = p->mempolicy;
 158	int node;
 159
 160	if (pol)
 161		return pol;
 162
 163	node = numa_node_id();
 164	if (node != NUMA_NO_NODE) {
 165		pol = &preferred_node_policy[node];
 166		/* preferred_node_policy is not initialised early in boot */
 167		if (pol->mode)
 168			return pol;
 169	}
 170
 171	return &default_policy;
 172}
 173
 174static const struct mempolicy_operations {
 175	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 176	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
 177} mpol_ops[MPOL_MAX];
 178
 179static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 180{
 181	return pol->flags & MPOL_MODE_FLAGS;
 182}
 183
 184static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 185				   const nodemask_t *rel)
 186{
 187	nodemask_t tmp;
 188	nodes_fold(tmp, *orig, nodes_weight(*rel));
 189	nodes_onto(*ret, tmp, *rel);
 190}
 191
 192static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 193{
 194	if (nodes_empty(*nodes))
 195		return -EINVAL;
 196	pol->nodes = *nodes;
 197	return 0;
 198}
 199
 200static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 201{
 202	if (nodes_empty(*nodes))
 203		return -EINVAL;
 204
 205	nodes_clear(pol->nodes);
 206	node_set(first_node(*nodes), pol->nodes);
 
 207	return 0;
 208}
 209
 210static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 211{
 212	if (nodes_empty(*nodes))
 213		return -EINVAL;
 214	pol->nodes = *nodes;
 215	return 0;
 216}
 217
 218/*
 219 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 220 * any, for the new policy.  mpol_new() has already validated the nodes
 221 * parameter with respect to the policy mode and flags.
 
 222 *
 223 * Must be called holding task's alloc_lock to protect task's mems_allowed
 224 * and mempolicy.  May also be called holding the mmap_lock for write.
 225 */
 226static int mpol_set_nodemask(struct mempolicy *pol,
 227		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 228{
 229	int ret;
 230
 231	/*
 232	 * Default (pol==NULL) resp. local memory policies are not a
 233	 * subject of any remapping. They also do not need any special
 234	 * constructor.
 235	 */
 236	if (!pol || pol->mode == MPOL_LOCAL)
 237		return 0;
 238
 239	/* Check N_MEMORY */
 240	nodes_and(nsc->mask1,
 241		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 242
 243	VM_BUG_ON(!nodes);
 
 
 
 
 
 
 
 244
 245	if (pol->flags & MPOL_F_RELATIVE_NODES)
 246		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
 247	else
 248		nodes_and(nsc->mask2, *nodes, nsc->mask1);
 
 
 249
 250	if (mpol_store_user_nodemask(pol))
 251		pol->w.user_nodemask = *nodes;
 252	else
 253		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
 254
 255	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 256	return ret;
 257}
 258
 259/*
 260 * This function just creates a new policy, does some check and simple
 261 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 262 */
 263static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 264				  nodemask_t *nodes)
 265{
 266	struct mempolicy *policy;
 267
 268	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 269		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 270
 271	if (mode == MPOL_DEFAULT) {
 272		if (nodes && !nodes_empty(*nodes))
 273			return ERR_PTR(-EINVAL);
 274		return NULL;
 275	}
 276	VM_BUG_ON(!nodes);
 277
 278	/*
 279	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 280	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 281	 * All other modes require a valid pointer to a non-empty nodemask.
 282	 */
 283	if (mode == MPOL_PREFERRED) {
 284		if (nodes_empty(*nodes)) {
 285			if (((flags & MPOL_F_STATIC_NODES) ||
 286			     (flags & MPOL_F_RELATIVE_NODES)))
 287				return ERR_PTR(-EINVAL);
 288
 289			mode = MPOL_LOCAL;
 290		}
 291	} else if (mode == MPOL_LOCAL) {
 292		if (!nodes_empty(*nodes) ||
 293		    (flags & MPOL_F_STATIC_NODES) ||
 294		    (flags & MPOL_F_RELATIVE_NODES))
 295			return ERR_PTR(-EINVAL);
 
 296	} else if (nodes_empty(*nodes))
 297		return ERR_PTR(-EINVAL);
 298	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 299	if (!policy)
 300		return ERR_PTR(-ENOMEM);
 301	atomic_set(&policy->refcnt, 1);
 302	policy->mode = mode;
 303	policy->flags = flags;
 304
 305	return policy;
 306}
 307
 308/* Slow path of a mpol destructor. */
 309void __mpol_put(struct mempolicy *p)
 310{
 311	if (!atomic_dec_and_test(&p->refcnt))
 312		return;
 313	kmem_cache_free(policy_cache, p);
 314}
 315
 316static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
 317{
 318}
 319
 320static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
 321{
 322	nodemask_t tmp;
 323
 324	if (pol->flags & MPOL_F_STATIC_NODES)
 325		nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326	else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328	else {
 329		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
 330								*nodes);
 331		pol->w.cpuset_mems_allowed = *nodes;
 332	}
 333
 334	if (nodes_empty(tmp))
 335		tmp = *nodes;
 336
 337	pol->nodes = tmp;
 338}
 339
 340static void mpol_rebind_preferred(struct mempolicy *pol,
 341						const nodemask_t *nodes)
 342{
 343	pol->w.cpuset_mems_allowed = *nodes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344}
 345
 346/*
 347 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 348 *
 349 * Per-vma policies are protected by mmap_lock. Allocations using per-task
 350 * policies are protected by task->mems_allowed_seq to prevent a premature
 351 * OOM/allocation failure due to parallel nodemask modification.
 352 */
 353static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
 354{
 355	if (!pol)
 356		return;
 357	if (!mpol_store_user_nodemask(pol) &&
 358	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 359		return;
 360
 361	mpol_ops[pol->mode].rebind(pol, newmask);
 362}
 363
 364/*
 365 * Wrapper for mpol_rebind_policy() that just requires task
 366 * pointer, and updates task mempolicy.
 367 *
 368 * Called with task's alloc_lock held.
 369 */
 370
 371void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
 372{
 373	mpol_rebind_policy(tsk->mempolicy, new);
 374}
 375
 376/*
 377 * Rebind each vma in mm to new nodemask.
 378 *
 379 * Call holding a reference to mm.  Takes mm->mmap_lock during call.
 380 */
 381
 382void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 383{
 384	struct vm_area_struct *vma;
 385
 386	mmap_write_lock(mm);
 387	for (vma = mm->mmap; vma; vma = vma->vm_next)
 388		mpol_rebind_policy(vma->vm_policy, new);
 389	mmap_write_unlock(mm);
 390}
 391
 392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 393	[MPOL_DEFAULT] = {
 394		.rebind = mpol_rebind_default,
 395	},
 396	[MPOL_INTERLEAVE] = {
 397		.create = mpol_new_interleave,
 398		.rebind = mpol_rebind_nodemask,
 399	},
 400	[MPOL_PREFERRED] = {
 401		.create = mpol_new_preferred,
 402		.rebind = mpol_rebind_preferred,
 403	},
 404	[MPOL_BIND] = {
 405		.create = mpol_new_bind,
 406		.rebind = mpol_rebind_nodemask,
 407	},
 408	[MPOL_LOCAL] = {
 409		.rebind = mpol_rebind_default,
 410	},
 411};
 412
 413static int migrate_page_add(struct page *page, struct list_head *pagelist,
 414				unsigned long flags);
 415
 416struct queue_pages {
 417	struct list_head *pagelist;
 418	unsigned long flags;
 419	nodemask_t *nmask;
 420	unsigned long start;
 421	unsigned long end;
 422	struct vm_area_struct *first;
 423};
 424
 425/*
 426 * Check if the page's nid is in qp->nmask.
 427 *
 428 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
 429 * in the invert of qp->nmask.
 430 */
 431static inline bool queue_pages_required(struct page *page,
 432					struct queue_pages *qp)
 433{
 434	int nid = page_to_nid(page);
 435	unsigned long flags = qp->flags;
 436
 437	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
 438}
 439
 440/*
 441 * queue_pages_pmd() has four possible return values:
 442 * 0 - pages are placed on the right node or queued successfully, or
 443 *     special page is met, i.e. huge zero page.
 444 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 445 *     specified.
 446 * 2 - THP was split.
 447 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
 448 *        existing page was already on a node that does not follow the
 449 *        policy.
 450 */
 451static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
 452				unsigned long end, struct mm_walk *walk)
 453	__releases(ptl)
 454{
 455	int ret = 0;
 456	struct page *page;
 457	struct queue_pages *qp = walk->private;
 458	unsigned long flags;
 459
 460	if (unlikely(is_pmd_migration_entry(*pmd))) {
 461		ret = -EIO;
 462		goto unlock;
 463	}
 464	page = pmd_page(*pmd);
 465	if (is_huge_zero_page(page)) {
 466		spin_unlock(ptl);
 467		walk->action = ACTION_CONTINUE;
 468		goto out;
 469	}
 470	if (!queue_pages_required(page, qp))
 
 471		goto unlock;
 
 472
 
 473	flags = qp->flags;
 474	/* go to thp migration */
 475	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 476		if (!vma_migratable(walk->vma) ||
 477		    migrate_page_add(page, qp->pagelist, flags)) {
 478			ret = 1;
 479			goto unlock;
 480		}
 481	} else
 482		ret = -EIO;
 483unlock:
 484	spin_unlock(ptl);
 485out:
 486	return ret;
 487}
 488
 489/*
 490 * Scan through pages checking if pages follow certain conditions,
 491 * and move them to the pagelist if they do.
 492 *
 493 * queue_pages_pte_range() has three possible return values:
 494 * 0 - pages are placed on the right node or queued successfully, or
 495 *     special page is met, i.e. zero page.
 496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
 497 *     specified.
 498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
 499 *        on a node that does not follow the policy.
 500 */
 501static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
 502			unsigned long end, struct mm_walk *walk)
 503{
 504	struct vm_area_struct *vma = walk->vma;
 505	struct page *page;
 506	struct queue_pages *qp = walk->private;
 507	unsigned long flags = qp->flags;
 508	int ret;
 509	bool has_unmovable = false;
 510	pte_t *pte, *mapped_pte;
 511	spinlock_t *ptl;
 512
 513	ptl = pmd_trans_huge_lock(pmd, vma);
 514	if (ptl) {
 515		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
 516		if (ret != 2)
 517			return ret;
 518	}
 519	/* THP was split, fall through to pte walk */
 520
 521	if (pmd_trans_unstable(pmd))
 522		return 0;
 523
 524	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
 525	for (; addr != end; pte++, addr += PAGE_SIZE) {
 526		if (!pte_present(*pte))
 527			continue;
 528		page = vm_normal_page(vma, addr, *pte);
 529		if (!page)
 530			continue;
 531		/*
 532		 * vm_normal_page() filters out zero pages, but there might
 533		 * still be PageReserved pages to skip, perhaps in a VDSO.
 534		 */
 535		if (PageReserved(page))
 536			continue;
 537		if (!queue_pages_required(page, qp))
 538			continue;
 539		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
 540			/* MPOL_MF_STRICT must be specified if we get here */
 541			if (!vma_migratable(vma)) {
 542				has_unmovable = true;
 543				break;
 544			}
 545
 546			/*
 547			 * Do not abort immediately since there may be
 548			 * temporary off LRU pages in the range.  Still
 549			 * need migrate other LRU pages.
 550			 */
 551			if (migrate_page_add(page, qp->pagelist, flags))
 552				has_unmovable = true;
 553		} else
 554			break;
 555	}
 556	pte_unmap_unlock(mapped_pte, ptl);
 557	cond_resched();
 558
 559	if (has_unmovable)
 560		return 1;
 561
 562	return addr != end ? -EIO : 0;
 563}
 564
 565static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
 566			       unsigned long addr, unsigned long end,
 567			       struct mm_walk *walk)
 568{
 569	int ret = 0;
 570#ifdef CONFIG_HUGETLB_PAGE
 571	struct queue_pages *qp = walk->private;
 572	unsigned long flags = (qp->flags & MPOL_MF_VALID);
 573	struct page *page;
 574	spinlock_t *ptl;
 575	pte_t entry;
 576
 577	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 578	entry = huge_ptep_get(pte);
 579	if (!pte_present(entry))
 580		goto unlock;
 581	page = pte_page(entry);
 582	if (!queue_pages_required(page, qp))
 583		goto unlock;
 584
 585	if (flags == MPOL_MF_STRICT) {
 586		/*
 587		 * STRICT alone means only detecting misplaced page and no
 588		 * need to further check other vma.
 589		 */
 590		ret = -EIO;
 591		goto unlock;
 592	}
 593
 594	if (!vma_migratable(walk->vma)) {
 595		/*
 596		 * Must be STRICT with MOVE*, otherwise .test_walk() have
 597		 * stopped walking current vma.
 598		 * Detecting misplaced page but allow migrating pages which
 599		 * have been queued.
 600		 */
 601		ret = 1;
 602		goto unlock;
 603	}
 604
 605	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 606	if (flags & (MPOL_MF_MOVE_ALL) ||
 607	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
 608		if (!isolate_huge_page(page, qp->pagelist) &&
 609			(flags & MPOL_MF_STRICT))
 610			/*
 611			 * Failed to isolate page but allow migrating pages
 612			 * which have been queued.
 613			 */
 614			ret = 1;
 615	}
 616unlock:
 617	spin_unlock(ptl);
 618#else
 619	BUG();
 620#endif
 621	return ret;
 622}
 623
 624#ifdef CONFIG_NUMA_BALANCING
 625/*
 626 * This is used to mark a range of virtual addresses to be inaccessible.
 627 * These are later cleared by a NUMA hinting fault. Depending on these
 628 * faults, pages may be migrated for better NUMA placement.
 629 *
 630 * This is assuming that NUMA faults are handled using PROT_NONE. If
 631 * an architecture makes a different choice, it will need further
 632 * changes to the core.
 633 */
 634unsigned long change_prot_numa(struct vm_area_struct *vma,
 635			unsigned long addr, unsigned long end)
 636{
 637	int nr_updated;
 638
 639	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
 640	if (nr_updated)
 641		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 642
 643	return nr_updated;
 644}
 645#else
 646static unsigned long change_prot_numa(struct vm_area_struct *vma,
 647			unsigned long addr, unsigned long end)
 648{
 649	return 0;
 650}
 651#endif /* CONFIG_NUMA_BALANCING */
 652
 653static int queue_pages_test_walk(unsigned long start, unsigned long end,
 654				struct mm_walk *walk)
 655{
 656	struct vm_area_struct *vma = walk->vma;
 657	struct queue_pages *qp = walk->private;
 658	unsigned long endvma = vma->vm_end;
 659	unsigned long flags = qp->flags;
 660
 661	/* range check first */
 662	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
 
 
 
 
 
 663
 664	if (!qp->first) {
 665		qp->first = vma;
 666		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 667			(qp->start < vma->vm_start))
 668			/* hole at head side of range */
 669			return -EFAULT;
 670	}
 671	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
 672		((vma->vm_end < qp->end) &&
 673		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
 674		/* hole at middle or tail of range */
 675		return -EFAULT;
 676
 677	/*
 678	 * Need check MPOL_MF_STRICT to return -EIO if possible
 679	 * regardless of vma_migratable
 680	 */
 681	if (!vma_migratable(vma) &&
 682	    !(flags & MPOL_MF_STRICT))
 683		return 1;
 684
 685	if (endvma > end)
 686		endvma = end;
 687
 688	if (flags & MPOL_MF_LAZY) {
 689		/* Similar to task_numa_work, skip inaccessible VMAs */
 690		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
 
 691			!(vma->vm_flags & VM_MIXEDMAP))
 692			change_prot_numa(vma, start, endvma);
 693		return 1;
 694	}
 695
 696	/* queue pages from current vma */
 697	if (flags & MPOL_MF_VALID)
 698		return 0;
 699	return 1;
 700}
 701
 702static const struct mm_walk_ops queue_pages_walk_ops = {
 703	.hugetlb_entry		= queue_pages_hugetlb,
 704	.pmd_entry		= queue_pages_pte_range,
 705	.test_walk		= queue_pages_test_walk,
 706};
 707
 708/*
 709 * Walk through page tables and collect pages to be migrated.
 710 *
 711 * If pages found in a given range are on a set of nodes (determined by
 712 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 713 * passed via @private.
 714 *
 715 * queue_pages_range() has three possible return values:
 716 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
 717 *     specified.
 718 * 0 - queue pages successfully or no misplaced page.
 719 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
 720 *         memory range specified by nodemask and maxnode points outside
 721 *         your accessible address space (-EFAULT)
 722 */
 723static int
 724queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 725		nodemask_t *nodes, unsigned long flags,
 726		struct list_head *pagelist)
 727{
 728	int err;
 729	struct queue_pages qp = {
 730		.pagelist = pagelist,
 731		.flags = flags,
 732		.nmask = nodes,
 733		.start = start,
 734		.end = end,
 735		.first = NULL,
 
 
 
 
 
 736	};
 737
 738	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
 739
 740	if (!qp.first)
 741		/* whole range in hole */
 742		err = -EFAULT;
 743
 744	return err;
 745}
 746
 747/*
 748 * Apply policy to a single VMA
 749 * This must be called with the mmap_lock held for writing.
 750 */
 751static int vma_replace_policy(struct vm_area_struct *vma,
 752						struct mempolicy *pol)
 753{
 754	int err;
 755	struct mempolicy *old;
 756	struct mempolicy *new;
 757
 758	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 759		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 760		 vma->vm_ops, vma->vm_file,
 761		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 762
 763	new = mpol_dup(pol);
 764	if (IS_ERR(new))
 765		return PTR_ERR(new);
 766
 767	if (vma->vm_ops && vma->vm_ops->set_policy) {
 768		err = vma->vm_ops->set_policy(vma, new);
 769		if (err)
 770			goto err_out;
 771	}
 772
 773	old = vma->vm_policy;
 774	vma->vm_policy = new; /* protected by mmap_lock */
 775	mpol_put(old);
 776
 777	return 0;
 778 err_out:
 779	mpol_put(new);
 780	return err;
 781}
 782
 783/* Step 2: apply policy to a range and do splits. */
 784static int mbind_range(struct mm_struct *mm, unsigned long start,
 785		       unsigned long end, struct mempolicy *new_pol)
 786{
 787	struct vm_area_struct *next;
 788	struct vm_area_struct *prev;
 789	struct vm_area_struct *vma;
 790	int err = 0;
 791	pgoff_t pgoff;
 792	unsigned long vmstart;
 793	unsigned long vmend;
 794
 795	vma = find_vma(mm, start);
 796	VM_BUG_ON(!vma);
 
 797
 798	prev = vma->vm_prev;
 799	if (start > vma->vm_start)
 800		prev = vma;
 801
 802	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 803		next = vma->vm_next;
 804		vmstart = max(start, vma->vm_start);
 805		vmend   = min(end, vma->vm_end);
 806
 807		if (mpol_equal(vma_policy(vma), new_pol))
 808			continue;
 809
 810		pgoff = vma->vm_pgoff +
 811			((vmstart - vma->vm_start) >> PAGE_SHIFT);
 812		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 813				 vma->anon_vma, vma->vm_file, pgoff,
 814				 new_pol, vma->vm_userfaultfd_ctx);
 815		if (prev) {
 816			vma = prev;
 817			next = vma->vm_next;
 818			if (mpol_equal(vma_policy(vma), new_pol))
 819				continue;
 820			/* vma_merge() joined vma && vma->next, case 8 */
 821			goto replace;
 822		}
 823		if (vma->vm_start != vmstart) {
 824			err = split_vma(vma->vm_mm, vma, vmstart, 1);
 825			if (err)
 826				goto out;
 827		}
 828		if (vma->vm_end != vmend) {
 829			err = split_vma(vma->vm_mm, vma, vmend, 0);
 830			if (err)
 831				goto out;
 832		}
 833 replace:
 834		err = vma_replace_policy(vma, new_pol);
 835		if (err)
 836			goto out;
 837	}
 838
 839 out:
 840	return err;
 841}
 842
 843/* Set the process memory policy */
 844static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 845			     nodemask_t *nodes)
 846{
 847	struct mempolicy *new, *old;
 848	NODEMASK_SCRATCH(scratch);
 849	int ret;
 850
 851	if (!scratch)
 852		return -ENOMEM;
 853
 854	new = mpol_new(mode, flags, nodes);
 855	if (IS_ERR(new)) {
 856		ret = PTR_ERR(new);
 857		goto out;
 858	}
 859
 
 860	ret = mpol_set_nodemask(new, nodes, scratch);
 861	if (ret) {
 
 862		mpol_put(new);
 863		goto out;
 864	}
 865	task_lock(current);
 866	old = current->mempolicy;
 867	current->mempolicy = new;
 868	if (new && new->mode == MPOL_INTERLEAVE)
 869		current->il_prev = MAX_NUMNODES-1;
 870	task_unlock(current);
 871	mpol_put(old);
 872	ret = 0;
 873out:
 874	NODEMASK_SCRATCH_FREE(scratch);
 875	return ret;
 876}
 877
 878/*
 879 * Return nodemask for policy for get_mempolicy() query
 880 *
 881 * Called with task's alloc_lock held
 882 */
 883static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 884{
 885	nodes_clear(*nodes);
 886	if (p == &default_policy)
 887		return;
 888
 889	switch (p->mode) {
 890	case MPOL_BIND:
 
 891	case MPOL_INTERLEAVE:
 
 
 892	case MPOL_PREFERRED:
 893		*nodes = p->nodes;
 894		break;
 895	case MPOL_LOCAL:
 896		/* return empty node mask for local allocation */
 897		break;
 898	default:
 899		BUG();
 900	}
 901}
 902
 903static int lookup_node(struct mm_struct *mm, unsigned long addr)
 904{
 905	struct page *p = NULL;
 906	int err;
 907
 908	int locked = 1;
 909	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
 910	if (err > 0) {
 911		err = page_to_nid(p);
 912		put_page(p);
 913	}
 914	if (locked)
 915		mmap_read_unlock(mm);
 916	return err;
 917}
 918
 919/* Retrieve NUMA policy */
 920static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 921			     unsigned long addr, unsigned long flags)
 922{
 923	int err;
 924	struct mm_struct *mm = current->mm;
 925	struct vm_area_struct *vma = NULL;
 926	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
 927
 928	if (flags &
 929		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 930		return -EINVAL;
 931
 932	if (flags & MPOL_F_MEMS_ALLOWED) {
 933		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 934			return -EINVAL;
 935		*policy = 0;	/* just so it's initialized */
 936		task_lock(current);
 937		*nmask  = cpuset_current_mems_allowed;
 938		task_unlock(current);
 939		return 0;
 940	}
 941
 942	if (flags & MPOL_F_ADDR) {
 943		/*
 944		 * Do NOT fall back to task policy if the
 945		 * vma/shared policy at addr is NULL.  We
 946		 * want to return MPOL_DEFAULT in this case.
 947		 */
 948		mmap_read_lock(mm);
 949		vma = vma_lookup(mm, addr);
 950		if (!vma) {
 951			mmap_read_unlock(mm);
 952			return -EFAULT;
 953		}
 954		if (vma->vm_ops && vma->vm_ops->get_policy)
 955			pol = vma->vm_ops->get_policy(vma, addr);
 956		else
 957			pol = vma->vm_policy;
 958	} else if (addr)
 959		return -EINVAL;
 960
 961	if (!pol)
 962		pol = &default_policy;	/* indicates default behavior */
 963
 964	if (flags & MPOL_F_NODE) {
 965		if (flags & MPOL_F_ADDR) {
 966			/*
 967			 * Take a refcount on the mpol, lookup_node()
 968			 * will drop the mmap_lock, so after calling
 969			 * lookup_node() only "pol" remains valid, "vma"
 970			 * is stale.
 971			 */
 972			pol_refcount = pol;
 973			vma = NULL;
 974			mpol_get(pol);
 975			err = lookup_node(mm, addr);
 976			if (err < 0)
 977				goto out;
 978			*policy = err;
 979		} else if (pol == current->mempolicy &&
 980				pol->mode == MPOL_INTERLEAVE) {
 981			*policy = next_node_in(current->il_prev, pol->nodes);
 982		} else {
 983			err = -EINVAL;
 984			goto out;
 985		}
 986	} else {
 987		*policy = pol == &default_policy ? MPOL_DEFAULT :
 988						pol->mode;
 989		/*
 990		 * Internal mempolicy flags must be masked off before exposing
 991		 * the policy to userspace.
 992		 */
 993		*policy |= (pol->flags & MPOL_MODE_FLAGS);
 994	}
 995
 996	err = 0;
 997	if (nmask) {
 998		if (mpol_store_user_nodemask(pol)) {
 999			*nmask = pol->w.user_nodemask;
1000		} else {
1001			task_lock(current);
1002			get_policy_nodemask(pol, nmask);
1003			task_unlock(current);
1004		}
1005	}
1006
1007 out:
1008	mpol_cond_put(pol);
1009	if (vma)
1010		mmap_read_unlock(mm);
1011	if (pol_refcount)
1012		mpol_put(pol_refcount);
1013	return err;
1014}
1015
1016#ifdef CONFIG_MIGRATION
1017/*
1018 * page migration, thp tail pages can be passed.
1019 */
1020static int migrate_page_add(struct page *page, struct list_head *pagelist,
1021				unsigned long flags)
1022{
1023	struct page *head = compound_head(page);
1024	/*
1025	 * Avoid migrating a page that is shared with others.
1026	 */
1027	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1028		if (!isolate_lru_page(head)) {
1029			list_add_tail(&head->lru, pagelist);
1030			mod_node_page_state(page_pgdat(head),
1031				NR_ISOLATED_ANON + page_is_file_lru(head),
1032				thp_nr_pages(head));
1033		} else if (flags & MPOL_MF_STRICT) {
1034			/*
1035			 * Non-movable page may reach here.  And, there may be
1036			 * temporary off LRU pages or non-LRU movable pages.
1037			 * Treat them as unmovable pages since they can't be
1038			 * isolated, so they can't be moved at the moment.  It
1039			 * should return -EIO for this case too.
1040			 */
1041			return -EIO;
1042		}
1043	}
 
 
 
 
 
 
 
 
 
 
1044
1045	return 0;
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * Migrate pages from one node to a target node.
1050 * Returns error or the number of pages not migrated.
1051 */
1052static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1053			   int flags)
1054{
1055	nodemask_t nmask;
1056	LIST_HEAD(pagelist);
1057	int err = 0;
1058	struct migration_target_control mtc = {
1059		.nid = dest,
1060		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1061	};
1062
1063	nodes_clear(nmask);
1064	node_set(source, nmask);
1065
1066	/*
1067	 * This does not "check" the range but isolates all pages that
1068	 * need migration.  Between passing in the full user address
1069	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1070	 */
1071	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1072	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1073			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1074
1075	if (!list_empty(&pagelist)) {
1076		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1077				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1078		if (err)
1079			putback_movable_pages(&pagelist);
1080	}
1081
1082	return err;
1083}
1084
1085/*
1086 * Move pages between the two nodesets so as to preserve the physical
1087 * layout as much as possible.
1088 *
1089 * Returns the number of page that could not be moved.
1090 */
1091int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092		     const nodemask_t *to, int flags)
1093{
1094	int busy = 0;
1095	int err = 0;
1096	nodemask_t tmp;
1097
1098	lru_cache_disable();
 
 
1099
1100	mmap_read_lock(mm);
1101
1102	/*
1103	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1104	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1105	 * bit in 'tmp', and return that <source, dest> pair for migration.
1106	 * The pair of nodemasks 'to' and 'from' define the map.
1107	 *
1108	 * If no pair of bits is found that way, fallback to picking some
1109	 * pair of 'source' and 'dest' bits that are not the same.  If the
1110	 * 'source' and 'dest' bits are the same, this represents a node
1111	 * that will be migrating to itself, so no pages need move.
1112	 *
1113	 * If no bits are left in 'tmp', or if all remaining bits left
1114	 * in 'tmp' correspond to the same bit in 'to', return false
1115	 * (nothing left to migrate).
1116	 *
1117	 * This lets us pick a pair of nodes to migrate between, such that
1118	 * if possible the dest node is not already occupied by some other
1119	 * source node, minimizing the risk of overloading the memory on a
1120	 * node that would happen if we migrated incoming memory to a node
1121	 * before migrating outgoing memory source that same node.
1122	 *
1123	 * A single scan of tmp is sufficient.  As we go, we remember the
1124	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1125	 * that not only moved, but what's better, moved to an empty slot
1126	 * (d is not set in tmp), then we break out then, with that pair.
1127	 * Otherwise when we finish scanning from_tmp, we at least have the
1128	 * most recent <s, d> pair that moved.  If we get all the way through
1129	 * the scan of tmp without finding any node that moved, much less
1130	 * moved to an empty node, then there is nothing left worth migrating.
1131	 */
1132
1133	tmp = *from;
1134	while (!nodes_empty(tmp)) {
1135		int s, d;
1136		int source = NUMA_NO_NODE;
1137		int dest = 0;
1138
1139		for_each_node_mask(s, tmp) {
1140
1141			/*
1142			 * do_migrate_pages() tries to maintain the relative
1143			 * node relationship of the pages established between
1144			 * threads and memory areas.
1145                         *
1146			 * However if the number of source nodes is not equal to
1147			 * the number of destination nodes we can not preserve
1148			 * this node relative relationship.  In that case, skip
1149			 * copying memory from a node that is in the destination
1150			 * mask.
1151			 *
1152			 * Example: [2,3,4] -> [3,4,5] moves everything.
1153			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1154			 */
1155
1156			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1157						(node_isset(s, *to)))
1158				continue;
1159
1160			d = node_remap(s, *from, *to);
1161			if (s == d)
1162				continue;
1163
1164			source = s;	/* Node moved. Memorize */
1165			dest = d;
1166
1167			/* dest not in remaining from nodes? */
1168			if (!node_isset(dest, tmp))
1169				break;
1170		}
1171		if (source == NUMA_NO_NODE)
1172			break;
1173
1174		node_clear(source, tmp);
1175		err = migrate_to_node(mm, source, dest, flags);
1176		if (err > 0)
1177			busy += err;
1178		if (err < 0)
1179			break;
1180	}
1181	mmap_read_unlock(mm);
1182
1183	lru_cache_enable();
1184	if (err < 0)
1185		return err;
1186	return busy;
1187
1188}
1189
1190/*
1191 * Allocate a new page for page migration based on vma policy.
1192 * Start by assuming the page is mapped by the same vma as contains @start.
1193 * Search forward from there, if not.  N.B., this assumes that the
1194 * list of pages handed to migrate_pages()--which is how we get here--
1195 * is in virtual address order.
1196 */
1197static struct page *new_page(struct page *page, unsigned long start)
1198{
1199	struct vm_area_struct *vma;
1200	unsigned long address;
1201
1202	vma = find_vma(current->mm, start);
1203	while (vma) {
1204		address = page_address_in_vma(page, vma);
1205		if (address != -EFAULT)
1206			break;
1207		vma = vma->vm_next;
1208	}
1209
1210	if (PageHuge(page)) {
1211		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1212				vma, address);
1213	} else if (PageTransHuge(page)) {
1214		struct page *thp;
1215
1216		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1217					 HPAGE_PMD_ORDER);
1218		if (!thp)
1219			return NULL;
1220		prep_transhuge_page(thp);
1221		return thp;
1222	}
1223	/*
1224	 * if !vma, alloc_page_vma() will use task or system default policy
1225	 */
1226	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1227			vma, address);
1228}
1229#else
1230
1231static int migrate_page_add(struct page *page, struct list_head *pagelist,
1232				unsigned long flags)
1233{
1234	return -EIO;
1235}
1236
1237int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1238		     const nodemask_t *to, int flags)
1239{
1240	return -ENOSYS;
1241}
1242
1243static struct page *new_page(struct page *page, unsigned long start)
1244{
1245	return NULL;
1246}
1247#endif
1248
1249static long do_mbind(unsigned long start, unsigned long len,
1250		     unsigned short mode, unsigned short mode_flags,
1251		     nodemask_t *nmask, unsigned long flags)
1252{
1253	struct mm_struct *mm = current->mm;
1254	struct mempolicy *new;
1255	unsigned long end;
1256	int err;
1257	int ret;
1258	LIST_HEAD(pagelist);
1259
1260	if (flags & ~(unsigned long)MPOL_MF_VALID)
1261		return -EINVAL;
1262	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1263		return -EPERM;
1264
1265	if (start & ~PAGE_MASK)
1266		return -EINVAL;
1267
1268	if (mode == MPOL_DEFAULT)
1269		flags &= ~MPOL_MF_STRICT;
1270
1271	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1272	end = start + len;
1273
1274	if (end < start)
1275		return -EINVAL;
1276	if (end == start)
1277		return 0;
1278
1279	new = mpol_new(mode, mode_flags, nmask);
1280	if (IS_ERR(new))
1281		return PTR_ERR(new);
1282
1283	if (flags & MPOL_MF_LAZY)
1284		new->flags |= MPOL_F_MOF;
1285
1286	/*
1287	 * If we are using the default policy then operation
1288	 * on discontinuous address spaces is okay after all
1289	 */
1290	if (!new)
1291		flags |= MPOL_MF_DISCONTIG_OK;
1292
1293	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1294		 start, start + len, mode, mode_flags,
1295		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1296
1297	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1298
1299		lru_cache_disable();
 
 
1300	}
1301	{
1302		NODEMASK_SCRATCH(scratch);
1303		if (scratch) {
1304			mmap_write_lock(mm);
 
1305			err = mpol_set_nodemask(new, nmask, scratch);
 
1306			if (err)
1307				mmap_write_unlock(mm);
1308		} else
1309			err = -ENOMEM;
1310		NODEMASK_SCRATCH_FREE(scratch);
1311	}
1312	if (err)
1313		goto mpol_out;
1314
1315	ret = queue_pages_range(mm, start, end, nmask,
1316			  flags | MPOL_MF_INVERT, &pagelist);
1317
1318	if (ret < 0) {
1319		err = ret;
1320		goto up_out;
1321	}
1322
1323	err = mbind_range(mm, start, end, new);
1324
1325	if (!err) {
1326		int nr_failed = 0;
1327
1328		if (!list_empty(&pagelist)) {
1329			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1330			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1331				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1332			if (nr_failed)
1333				putback_movable_pages(&pagelist);
1334		}
1335
1336		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1337			err = -EIO;
1338	} else {
1339up_out:
1340		if (!list_empty(&pagelist))
1341			putback_movable_pages(&pagelist);
1342	}
1343
1344	mmap_write_unlock(mm);
1345mpol_out:
1346	mpol_put(new);
1347	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1348		lru_cache_enable();
1349	return err;
1350}
1351
1352/*
1353 * User space interface with variable sized bitmaps for nodelists.
1354 */
1355
1356/* Copy a node mask from user space. */
1357static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1358		     unsigned long maxnode)
1359{
1360	unsigned long k;
1361	unsigned long t;
1362	unsigned long nlongs;
1363	unsigned long endmask;
1364
1365	--maxnode;
1366	nodes_clear(*nodes);
1367	if (maxnode == 0 || !nmask)
1368		return 0;
1369	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1370		return -EINVAL;
1371
1372	nlongs = BITS_TO_LONGS(maxnode);
1373	if ((maxnode % BITS_PER_LONG) == 0)
1374		endmask = ~0UL;
1375	else
1376		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1377
1378	/*
1379	 * When the user specified more nodes than supported just check
1380	 * if the non supported part is all zero.
1381	 *
1382	 * If maxnode have more longs than MAX_NUMNODES, check
1383	 * the bits in that area first. And then go through to
1384	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1385	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1386	 */
1387	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1388		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1389			if (get_user(t, nmask + k))
1390				return -EFAULT;
1391			if (k == nlongs - 1) {
1392				if (t & endmask)
1393					return -EINVAL;
1394			} else if (t)
1395				return -EINVAL;
1396		}
1397		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1398		endmask = ~0UL;
1399	}
1400
1401	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1402		unsigned long valid_mask = endmask;
1403
1404		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1405		if (get_user(t, nmask + nlongs - 1))
1406			return -EFAULT;
1407		if (t & valid_mask)
1408			return -EINVAL;
1409	}
1410
1411	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1412		return -EFAULT;
1413	nodes_addr(*nodes)[nlongs-1] &= endmask;
1414	return 0;
1415}
1416
1417/* Copy a kernel node mask to user space */
1418static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1419			      nodemask_t *nodes)
1420{
1421	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1422	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1423
1424	if (copy > nbytes) {
1425		if (copy > PAGE_SIZE)
1426			return -EINVAL;
1427		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1428			return -EFAULT;
1429		copy = nbytes;
1430	}
1431	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1432}
1433
1434/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1435static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1436{
1437	*flags = *mode & MPOL_MODE_FLAGS;
1438	*mode &= ~MPOL_MODE_FLAGS;
1439	if ((unsigned int)(*mode) >= MPOL_MAX)
1440		return -EINVAL;
1441	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1442		return -EINVAL;
1443	if (*flags & MPOL_F_NUMA_BALANCING) {
1444		if (*mode != MPOL_BIND)
1445			return -EINVAL;
1446		*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1447	}
1448	return 0;
1449}
1450
1451static long kernel_mbind(unsigned long start, unsigned long len,
1452			 unsigned long mode, const unsigned long __user *nmask,
1453			 unsigned long maxnode, unsigned int flags)
1454{
1455	unsigned short mode_flags;
1456	nodemask_t nodes;
1457	int lmode = mode;
1458	int err;
 
1459
1460	start = untagged_addr(start);
1461	err = sanitize_mpol_flags(&lmode, &mode_flags);
1462	if (err)
1463		return err;
1464
 
 
1465	err = get_nodes(&nodes, nmask, maxnode);
1466	if (err)
1467		return err;
1468
1469	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1470}
1471
1472SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1473		unsigned long, mode, const unsigned long __user *, nmask,
1474		unsigned long, maxnode, unsigned int, flags)
1475{
1476	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1477}
1478
1479/* Set the process memory policy */
1480static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1481				 unsigned long maxnode)
1482{
1483	unsigned short mode_flags;
1484	nodemask_t nodes;
1485	int lmode = mode;
1486	int err;
1487
1488	err = sanitize_mpol_flags(&lmode, &mode_flags);
1489	if (err)
1490		return err;
1491
 
 
 
 
 
 
1492	err = get_nodes(&nodes, nmask, maxnode);
1493	if (err)
1494		return err;
1495
1496	return do_set_mempolicy(lmode, mode_flags, &nodes);
1497}
1498
1499SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1500		unsigned long, maxnode)
1501{
1502	return kernel_set_mempolicy(mode, nmask, maxnode);
1503}
1504
1505static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1506				const unsigned long __user *old_nodes,
1507				const unsigned long __user *new_nodes)
1508{
1509	struct mm_struct *mm = NULL;
1510	struct task_struct *task;
1511	nodemask_t task_nodes;
1512	int err;
1513	nodemask_t *old;
1514	nodemask_t *new;
1515	NODEMASK_SCRATCH(scratch);
1516
1517	if (!scratch)
1518		return -ENOMEM;
1519
1520	old = &scratch->mask1;
1521	new = &scratch->mask2;
1522
1523	err = get_nodes(old, old_nodes, maxnode);
1524	if (err)
1525		goto out;
1526
1527	err = get_nodes(new, new_nodes, maxnode);
1528	if (err)
1529		goto out;
1530
1531	/* Find the mm_struct */
1532	rcu_read_lock();
1533	task = pid ? find_task_by_vpid(pid) : current;
1534	if (!task) {
1535		rcu_read_unlock();
1536		err = -ESRCH;
1537		goto out;
1538	}
1539	get_task_struct(task);
1540
1541	err = -EINVAL;
1542
1543	/*
1544	 * Check if this process has the right to modify the specified process.
1545	 * Use the regular "ptrace_may_access()" checks.
1546	 */
1547	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1548		rcu_read_unlock();
1549		err = -EPERM;
1550		goto out_put;
1551	}
1552	rcu_read_unlock();
1553
1554	task_nodes = cpuset_mems_allowed(task);
1555	/* Is the user allowed to access the target nodes? */
1556	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1557		err = -EPERM;
1558		goto out_put;
1559	}
1560
1561	task_nodes = cpuset_mems_allowed(current);
1562	nodes_and(*new, *new, task_nodes);
1563	if (nodes_empty(*new))
1564		goto out_put;
1565
 
 
 
 
1566	err = security_task_movememory(task);
1567	if (err)
1568		goto out_put;
1569
1570	mm = get_task_mm(task);
1571	put_task_struct(task);
1572
1573	if (!mm) {
1574		err = -EINVAL;
1575		goto out;
1576	}
1577
1578	err = do_migrate_pages(mm, old, new,
1579		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1580
1581	mmput(mm);
1582out:
1583	NODEMASK_SCRATCH_FREE(scratch);
1584
1585	return err;
1586
1587out_put:
1588	put_task_struct(task);
1589	goto out;
1590
1591}
1592
1593SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1594		const unsigned long __user *, old_nodes,
1595		const unsigned long __user *, new_nodes)
1596{
1597	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1598}
1599
1600
1601/* Retrieve NUMA policy */
1602static int kernel_get_mempolicy(int __user *policy,
1603				unsigned long __user *nmask,
1604				unsigned long maxnode,
1605				unsigned long addr,
1606				unsigned long flags)
1607{
1608	int err;
1609	int pval;
1610	nodemask_t nodes;
1611
1612	if (nmask != NULL && maxnode < nr_node_ids)
1613		return -EINVAL;
1614
1615	addr = untagged_addr(addr);
1616
1617	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1618
1619	if (err)
1620		return err;
1621
1622	if (policy && put_user(pval, policy))
1623		return -EFAULT;
1624
1625	if (nmask)
1626		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1627
1628	return err;
1629}
1630
1631SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1632		unsigned long __user *, nmask, unsigned long, maxnode,
1633		unsigned long, addr, unsigned long, flags)
1634{
1635	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1636}
1637
1638#ifdef CONFIG_COMPAT
1639
1640COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641		       compat_ulong_t __user *, nmask,
1642		       compat_ulong_t, maxnode,
1643		       compat_ulong_t, addr, compat_ulong_t, flags)
1644{
1645	long err;
1646	unsigned long __user *nm = NULL;
1647	unsigned long nr_bits, alloc_size;
1648	DECLARE_BITMAP(bm, MAX_NUMNODES);
1649
1650	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1651	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1652
1653	if (nmask)
1654		nm = compat_alloc_user_space(alloc_size);
1655
1656	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1657
1658	if (!err && nmask) {
1659		unsigned long copy_size;
1660		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1661		err = copy_from_user(bm, nm, copy_size);
1662		/* ensure entire bitmap is zeroed */
1663		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1664		err |= compat_put_bitmap(nmask, bm, nr_bits);
1665	}
1666
1667	return err;
1668}
1669
1670COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1671		       compat_ulong_t, maxnode)
1672{
1673	unsigned long __user *nm = NULL;
1674	unsigned long nr_bits, alloc_size;
1675	DECLARE_BITMAP(bm, MAX_NUMNODES);
1676
1677	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1678	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1679
1680	if (nmask) {
1681		if (compat_get_bitmap(bm, nmask, nr_bits))
1682			return -EFAULT;
1683		nm = compat_alloc_user_space(alloc_size);
1684		if (copy_to_user(nm, bm, alloc_size))
1685			return -EFAULT;
1686	}
1687
1688	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1689}
1690
1691COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1692		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1693		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1694{
1695	unsigned long __user *nm = NULL;
1696	unsigned long nr_bits, alloc_size;
1697	nodemask_t bm;
1698
1699	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1700	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1701
1702	if (nmask) {
1703		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1704			return -EFAULT;
1705		nm = compat_alloc_user_space(alloc_size);
1706		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1707			return -EFAULT;
1708	}
1709
1710	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1711}
1712
1713COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1714		       compat_ulong_t, maxnode,
1715		       const compat_ulong_t __user *, old_nodes,
1716		       const compat_ulong_t __user *, new_nodes)
1717{
1718	unsigned long __user *old = NULL;
1719	unsigned long __user *new = NULL;
1720	nodemask_t tmp_mask;
1721	unsigned long nr_bits;
1722	unsigned long size;
1723
1724	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1725	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1726	if (old_nodes) {
1727		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1728			return -EFAULT;
1729		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1730		if (new_nodes)
1731			new = old + size / sizeof(unsigned long);
1732		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1733			return -EFAULT;
1734	}
1735	if (new_nodes) {
1736		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1737			return -EFAULT;
1738		if (new == NULL)
1739			new = compat_alloc_user_space(size);
1740		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1741			return -EFAULT;
1742	}
1743	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1744}
1745
1746#endif /* CONFIG_COMPAT */
1747
1748bool vma_migratable(struct vm_area_struct *vma)
1749{
1750	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1751		return false;
1752
1753	/*
1754	 * DAX device mappings require predictable access latency, so avoid
1755	 * incurring periodic faults.
1756	 */
1757	if (vma_is_dax(vma))
1758		return false;
1759
1760	if (is_vm_hugetlb_page(vma) &&
1761		!hugepage_migration_supported(hstate_vma(vma)))
1762		return false;
1763
1764	/*
1765	 * Migration allocates pages in the highest zone. If we cannot
1766	 * do so then migration (at least from node to node) is not
1767	 * possible.
1768	 */
1769	if (vma->vm_file &&
1770		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1771			< policy_zone)
1772		return false;
1773	return true;
1774}
1775
1776struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1777						unsigned long addr)
1778{
1779	struct mempolicy *pol = NULL;
1780
1781	if (vma) {
1782		if (vma->vm_ops && vma->vm_ops->get_policy) {
1783			pol = vma->vm_ops->get_policy(vma, addr);
1784		} else if (vma->vm_policy) {
1785			pol = vma->vm_policy;
1786
1787			/*
1788			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1789			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1790			 * count on these policies which will be dropped by
1791			 * mpol_cond_put() later
1792			 */
1793			if (mpol_needs_cond_ref(pol))
1794				mpol_get(pol);
1795		}
1796	}
1797
1798	return pol;
1799}
1800
1801/*
1802 * get_vma_policy(@vma, @addr)
1803 * @vma: virtual memory area whose policy is sought
1804 * @addr: address in @vma for shared policy lookup
1805 *
1806 * Returns effective policy for a VMA at specified address.
1807 * Falls back to current->mempolicy or system default policy, as necessary.
1808 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1809 * count--added by the get_policy() vm_op, as appropriate--to protect against
1810 * freeing by another task.  It is the caller's responsibility to free the
1811 * extra reference for shared policies.
1812 */
1813static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1814						unsigned long addr)
1815{
1816	struct mempolicy *pol = __get_vma_policy(vma, addr);
1817
1818	if (!pol)
1819		pol = get_task_policy(current);
1820
1821	return pol;
1822}
1823
1824bool vma_policy_mof(struct vm_area_struct *vma)
1825{
1826	struct mempolicy *pol;
1827
1828	if (vma->vm_ops && vma->vm_ops->get_policy) {
1829		bool ret = false;
1830
1831		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1832		if (pol && (pol->flags & MPOL_F_MOF))
1833			ret = true;
1834		mpol_cond_put(pol);
1835
1836		return ret;
1837	}
1838
1839	pol = vma->vm_policy;
1840	if (!pol)
1841		pol = get_task_policy(current);
1842
1843	return pol->flags & MPOL_F_MOF;
1844}
1845
1846static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1847{
1848	enum zone_type dynamic_policy_zone = policy_zone;
1849
1850	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1851
1852	/*
1853	 * if policy->nodes has movable memory only,
1854	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1855	 *
1856	 * policy->nodes is intersect with node_states[N_MEMORY].
1857	 * so if the following test fails, it implies
1858	 * policy->nodes has movable memory only.
1859	 */
1860	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1861		dynamic_policy_zone = ZONE_MOVABLE;
1862
1863	return zone >= dynamic_policy_zone;
1864}
1865
1866/*
1867 * Return a nodemask representing a mempolicy for filtering nodes for
1868 * page allocation
1869 */
1870nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1871{
1872	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1873	if (unlikely(policy->mode == MPOL_BIND) &&
1874			apply_policy_zone(policy, gfp_zone(gfp)) &&
1875			cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1876		return &policy->nodes;
1877
1878	return NULL;
1879}
1880
1881/* Return the node id preferred by the given mempolicy, or the given id */
1882static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
 
1883{
1884	if (policy->mode == MPOL_PREFERRED) {
1885		nd = first_node(policy->nodes);
1886	} else {
1887		/*
1888		 * __GFP_THISNODE shouldn't even be used with the bind policy
1889		 * because we might easily break the expectation to stay on the
1890		 * requested node and not break the policy.
1891		 */
1892		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1893	}
1894
1895	return nd;
1896}
1897
1898/* Do dynamic interleaving for a process */
1899static unsigned interleave_nodes(struct mempolicy *policy)
1900{
1901	unsigned next;
1902	struct task_struct *me = current;
1903
1904	next = next_node_in(me->il_prev, policy->nodes);
1905	if (next < MAX_NUMNODES)
1906		me->il_prev = next;
1907	return next;
1908}
1909
1910/*
1911 * Depending on the memory policy provide a node from which to allocate the
1912 * next slab entry.
1913 */
1914unsigned int mempolicy_slab_node(void)
1915{
1916	struct mempolicy *policy;
1917	int node = numa_mem_id();
1918
1919	if (in_interrupt())
1920		return node;
1921
1922	policy = current->mempolicy;
1923	if (!policy)
1924		return node;
1925
1926	switch (policy->mode) {
1927	case MPOL_PREFERRED:
1928		return first_node(policy->nodes);
 
 
 
1929
1930	case MPOL_INTERLEAVE:
1931		return interleave_nodes(policy);
1932
1933	case MPOL_BIND: {
1934		struct zoneref *z;
1935
1936		/*
1937		 * Follow bind policy behavior and start allocation at the
1938		 * first node.
1939		 */
1940		struct zonelist *zonelist;
1941		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1942		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1943		z = first_zones_zonelist(zonelist, highest_zoneidx,
1944							&policy->nodes);
1945		return z->zone ? zone_to_nid(z->zone) : node;
1946	}
1947	case MPOL_LOCAL:
1948		return node;
1949
1950	default:
1951		BUG();
1952	}
1953}
1954
1955/*
1956 * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1957 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1959 */
1960static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961{
1962	nodemask_t nodemask = pol->nodes;
1963	unsigned int target, nnodes;
1964	int i;
1965	int nid;
1966	/*
1967	 * The barrier will stabilize the nodemask in a register or on
1968	 * the stack so that it will stop changing under the code.
1969	 *
1970	 * Between first_node() and next_node(), pol->nodes could be changed
1971	 * by other threads. So we put pol->nodes in a local stack.
1972	 */
1973	barrier();
1974
1975	nnodes = nodes_weight(nodemask);
1976	if (!nnodes)
1977		return numa_node_id();
1978	target = (unsigned int)n % nnodes;
1979	nid = first_node(nodemask);
1980	for (i = 0; i < target; i++)
1981		nid = next_node(nid, nodemask);
1982	return nid;
1983}
1984
1985/* Determine a node number for interleave */
1986static inline unsigned interleave_nid(struct mempolicy *pol,
1987		 struct vm_area_struct *vma, unsigned long addr, int shift)
1988{
1989	if (vma) {
1990		unsigned long off;
1991
1992		/*
1993		 * for small pages, there is no difference between
1994		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1995		 * for huge pages, since vm_pgoff is in units of small
1996		 * pages, we need to shift off the always 0 bits to get
1997		 * a useful offset.
1998		 */
1999		BUG_ON(shift < PAGE_SHIFT);
2000		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2001		off += (addr - vma->vm_start) >> shift;
2002		return offset_il_node(pol, off);
2003	} else
2004		return interleave_nodes(pol);
2005}
2006
2007#ifdef CONFIG_HUGETLBFS
2008/*
2009 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2010 * @vma: virtual memory area whose policy is sought
2011 * @addr: address in @vma for shared policy lookup and interleave policy
2012 * @gfp_flags: for requested zone
2013 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2014 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2015 *
2016 * Returns a nid suitable for a huge page allocation and a pointer
2017 * to the struct mempolicy for conditional unref after allocation.
2018 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2019 * @nodemask for filtering the zonelist.
2020 *
2021 * Must be protected by read_mems_allowed_begin()
2022 */
2023int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2024				struct mempolicy **mpol, nodemask_t **nodemask)
2025{
2026	int nid;
2027
2028	*mpol = get_vma_policy(vma, addr);
2029	*nodemask = NULL;	/* assume !MPOL_BIND */
2030
2031	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2032		nid = interleave_nid(*mpol, vma, addr,
2033					huge_page_shift(hstate_vma(vma)));
2034	} else {
2035		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2036		if ((*mpol)->mode == MPOL_BIND)
2037			*nodemask = &(*mpol)->nodes;
2038	}
2039	return nid;
2040}
2041
2042/*
2043 * init_nodemask_of_mempolicy
2044 *
2045 * If the current task's mempolicy is "default" [NULL], return 'false'
2046 * to indicate default policy.  Otherwise, extract the policy nodemask
2047 * for 'bind' or 'interleave' policy into the argument nodemask, or
2048 * initialize the argument nodemask to contain the single node for
2049 * 'preferred' or 'local' policy and return 'true' to indicate presence
2050 * of non-default mempolicy.
2051 *
2052 * We don't bother with reference counting the mempolicy [mpol_get/put]
2053 * because the current task is examining it's own mempolicy and a task's
2054 * mempolicy is only ever changed by the task itself.
2055 *
2056 * N.B., it is the caller's responsibility to free a returned nodemask.
2057 */
2058bool init_nodemask_of_mempolicy(nodemask_t *mask)
2059{
2060	struct mempolicy *mempolicy;
 
2061
2062	if (!(mask && current->mempolicy))
2063		return false;
2064
2065	task_lock(current);
2066	mempolicy = current->mempolicy;
2067	switch (mempolicy->mode) {
2068	case MPOL_PREFERRED:
 
 
 
 
 
 
 
2069	case MPOL_BIND:
 
2070	case MPOL_INTERLEAVE:
2071		*mask = mempolicy->nodes;
2072		break;
2073
2074	case MPOL_LOCAL:
2075		init_nodemask_of_node(mask, numa_node_id());
2076		break;
2077
2078	default:
2079		BUG();
2080	}
2081	task_unlock(current);
2082
2083	return true;
2084}
2085#endif
2086
2087/*
2088 * mempolicy_in_oom_domain
2089 *
2090 * If tsk's mempolicy is "bind", check for intersection between mask and
2091 * the policy nodemask. Otherwise, return true for all other policies
2092 * including "interleave", as a tsk with "interleave" policy may have
2093 * memory allocated from all nodes in system.
2094 *
2095 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2096 */
2097bool mempolicy_in_oom_domain(struct task_struct *tsk,
2098					const nodemask_t *mask)
2099{
2100	struct mempolicy *mempolicy;
2101	bool ret = true;
2102
2103	if (!mask)
2104		return ret;
2105
2106	task_lock(tsk);
2107	mempolicy = tsk->mempolicy;
2108	if (mempolicy && mempolicy->mode == MPOL_BIND)
2109		ret = nodes_intersects(mempolicy->nodes, *mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110	task_unlock(tsk);
2111
2112	return ret;
2113}
2114
2115/* Allocate a page in interleaved policy.
2116   Own path because it needs to do special accounting. */
2117static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2118					unsigned nid)
2119{
2120	struct page *page;
2121
2122	page = __alloc_pages(gfp, order, nid, NULL);
2123	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2124	if (!static_branch_likely(&vm_numa_stat_key))
2125		return page;
2126	if (page && page_to_nid(page) == nid) {
2127		preempt_disable();
2128		__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2129		preempt_enable();
2130	}
2131	return page;
2132}
2133
2134/**
2135 * alloc_pages_vma - Allocate a page for a VMA.
2136 * @gfp: GFP flags.
2137 * @order: Order of the GFP allocation.
2138 * @vma: Pointer to VMA or NULL if not available.
2139 * @addr: Virtual address of the allocation.  Must be inside @vma.
2140 * @node: Which node to prefer for allocation (modulo policy).
2141 * @hugepage: For hugepages try only the preferred node if possible.
2142 *
2143 * Allocate a page for a specific address in @vma, using the appropriate
2144 * NUMA policy.  When @vma is not NULL the caller must hold the mmap_lock
2145 * of the mm_struct of the VMA to prevent it from going away.  Should be
2146 * used for all allocations for pages that will be mapped into user space.
2147 *
2148 * Return: The page on success or NULL if allocation fails.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149 */
2150struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
 
2151		unsigned long addr, int node, bool hugepage)
2152{
2153	struct mempolicy *pol;
2154	struct page *page;
2155	int preferred_nid;
2156	nodemask_t *nmask;
2157
2158	pol = get_vma_policy(vma, addr);
2159
2160	if (pol->mode == MPOL_INTERLEAVE) {
2161		unsigned nid;
2162
2163		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2164		mpol_cond_put(pol);
2165		page = alloc_page_interleave(gfp, order, nid);
2166		goto out;
2167	}
2168
2169	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2170		int hpage_node = node;
2171
2172		/*
2173		 * For hugepage allocation and non-interleave policy which
2174		 * allows the current node (or other explicitly preferred
2175		 * node) we only try to allocate from the current/preferred
2176		 * node and don't fall back to other nodes, as the cost of
2177		 * remote accesses would likely offset THP benefits.
2178		 *
2179		 * If the policy is interleave, or does not allow the current
2180		 * node in its nodemask, we allocate the standard way.
2181		 */
2182		if (pol->mode == MPOL_PREFERRED)
2183			hpage_node = first_node(pol->nodes);
 
2184
2185		nmask = policy_nodemask(gfp, pol);
2186		if (!nmask || node_isset(hpage_node, *nmask)) {
2187			mpol_cond_put(pol);
2188			/*
2189			 * First, try to allocate THP only on local node, but
2190			 * don't reclaim unnecessarily, just compact.
2191			 */
2192			page = __alloc_pages_node(hpage_node,
2193				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2194
2195			/*
2196			 * If hugepage allocations are configured to always
2197			 * synchronous compact or the vma has been madvised
2198			 * to prefer hugepage backing, retry allowing remote
2199			 * memory with both reclaim and compact as well.
2200			 */
2201			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2202				page = __alloc_pages_node(hpage_node,
2203								gfp, order);
2204
2205			goto out;
2206		}
2207	}
2208
2209	nmask = policy_nodemask(gfp, pol);
2210	preferred_nid = policy_node(gfp, pol, node);
2211	page = __alloc_pages(gfp, order, preferred_nid, nmask);
2212	mpol_cond_put(pol);
2213out:
2214	return page;
2215}
2216EXPORT_SYMBOL(alloc_pages_vma);
2217
2218/**
2219 * alloc_pages - Allocate pages.
2220 * @gfp: GFP flags.
2221 * @order: Power of two of number of pages to allocate.
2222 *
2223 * Allocate 1 << @order contiguous pages.  The physical address of the
2224 * first page is naturally aligned (eg an order-3 allocation will be aligned
2225 * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2226 * process is honoured when in process context.
2227 *
2228 * Context: Can be called from any context, providing the appropriate GFP
2229 * flags are used.
2230 * Return: The page on success or NULL if allocation fails.
 
2231 */
2232struct page *alloc_pages(gfp_t gfp, unsigned order)
2233{
2234	struct mempolicy *pol = &default_policy;
2235	struct page *page;
2236
2237	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2238		pol = get_task_policy(current);
2239
2240	/*
2241	 * No reference counting needed for current->mempolicy
2242	 * nor system default_policy
2243	 */
2244	if (pol->mode == MPOL_INTERLEAVE)
2245		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2246	else
2247		page = __alloc_pages(gfp, order,
2248				policy_node(gfp, pol, numa_node_id()),
2249				policy_nodemask(gfp, pol));
2250
2251	return page;
2252}
2253EXPORT_SYMBOL(alloc_pages);
2254
2255int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2256{
2257	struct mempolicy *pol = mpol_dup(vma_policy(src));
2258
2259	if (IS_ERR(pol))
2260		return PTR_ERR(pol);
2261	dst->vm_policy = pol;
2262	return 0;
2263}
2264
2265/*
2266 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2267 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2268 * with the mems_allowed returned by cpuset_mems_allowed().  This
2269 * keeps mempolicies cpuset relative after its cpuset moves.  See
2270 * further kernel/cpuset.c update_nodemask().
2271 *
2272 * current's mempolicy may be rebinded by the other task(the task that changes
2273 * cpuset's mems), so we needn't do rebind work for current task.
2274 */
2275
2276/* Slow path of a mempolicy duplicate */
2277struct mempolicy *__mpol_dup(struct mempolicy *old)
2278{
2279	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2280
2281	if (!new)
2282		return ERR_PTR(-ENOMEM);
2283
2284	/* task's mempolicy is protected by alloc_lock */
2285	if (old == current->mempolicy) {
2286		task_lock(current);
2287		*new = *old;
2288		task_unlock(current);
2289	} else
2290		*new = *old;
2291
2292	if (current_cpuset_is_being_rebound()) {
2293		nodemask_t mems = cpuset_mems_allowed(current);
2294		mpol_rebind_policy(new, &mems);
2295	}
2296	atomic_set(&new->refcnt, 1);
2297	return new;
2298}
2299
2300/* Slow path of a mempolicy comparison */
2301bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2302{
2303	if (!a || !b)
2304		return false;
2305	if (a->mode != b->mode)
2306		return false;
2307	if (a->flags != b->flags)
2308		return false;
2309	if (mpol_store_user_nodemask(a))
2310		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2311			return false;
2312
2313	switch (a->mode) {
2314	case MPOL_BIND:
 
2315	case MPOL_INTERLEAVE:
 
2316	case MPOL_PREFERRED:
2317		return !!nodes_equal(a->nodes, b->nodes);
2318	case MPOL_LOCAL:
2319		return true;
 
2320	default:
2321		BUG();
2322		return false;
2323	}
2324}
2325
2326/*
2327 * Shared memory backing store policy support.
2328 *
2329 * Remember policies even when nobody has shared memory mapped.
2330 * The policies are kept in Red-Black tree linked from the inode.
2331 * They are protected by the sp->lock rwlock, which should be held
2332 * for any accesses to the tree.
2333 */
2334
2335/*
2336 * lookup first element intersecting start-end.  Caller holds sp->lock for
2337 * reading or for writing
2338 */
2339static struct sp_node *
2340sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2341{
2342	struct rb_node *n = sp->root.rb_node;
2343
2344	while (n) {
2345		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2346
2347		if (start >= p->end)
2348			n = n->rb_right;
2349		else if (end <= p->start)
2350			n = n->rb_left;
2351		else
2352			break;
2353	}
2354	if (!n)
2355		return NULL;
2356	for (;;) {
2357		struct sp_node *w = NULL;
2358		struct rb_node *prev = rb_prev(n);
2359		if (!prev)
2360			break;
2361		w = rb_entry(prev, struct sp_node, nd);
2362		if (w->end <= start)
2363			break;
2364		n = prev;
2365	}
2366	return rb_entry(n, struct sp_node, nd);
2367}
2368
2369/*
2370 * Insert a new shared policy into the list.  Caller holds sp->lock for
2371 * writing.
2372 */
2373static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2374{
2375	struct rb_node **p = &sp->root.rb_node;
2376	struct rb_node *parent = NULL;
2377	struct sp_node *nd;
2378
2379	while (*p) {
2380		parent = *p;
2381		nd = rb_entry(parent, struct sp_node, nd);
2382		if (new->start < nd->start)
2383			p = &(*p)->rb_left;
2384		else if (new->end > nd->end)
2385			p = &(*p)->rb_right;
2386		else
2387			BUG();
2388	}
2389	rb_link_node(&new->nd, parent, p);
2390	rb_insert_color(&new->nd, &sp->root);
2391	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2392		 new->policy ? new->policy->mode : 0);
2393}
2394
2395/* Find shared policy intersecting idx */
2396struct mempolicy *
2397mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2398{
2399	struct mempolicy *pol = NULL;
2400	struct sp_node *sn;
2401
2402	if (!sp->root.rb_node)
2403		return NULL;
2404	read_lock(&sp->lock);
2405	sn = sp_lookup(sp, idx, idx+1);
2406	if (sn) {
2407		mpol_get(sn->policy);
2408		pol = sn->policy;
2409	}
2410	read_unlock(&sp->lock);
2411	return pol;
2412}
2413
2414static void sp_free(struct sp_node *n)
2415{
2416	mpol_put(n->policy);
2417	kmem_cache_free(sn_cache, n);
2418}
2419
2420/**
2421 * mpol_misplaced - check whether current page node is valid in policy
2422 *
2423 * @page: page to be checked
2424 * @vma: vm area where page mapped
2425 * @addr: virtual address where page mapped
2426 *
2427 * Lookup current policy node id for vma,addr and "compare to" page's
2428 * node id.  Policy determination "mimics" alloc_page_vma().
 
 
 
 
 
 
2429 * Called from fault path where we know the vma and faulting address.
2430 *
2431 * Return: -1 if the page is in a node that is valid for this policy, or a
2432 * suitable node ID to allocate a replacement page from.
2433 */
2434int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2435{
2436	struct mempolicy *pol;
2437	struct zoneref *z;
2438	int curnid = page_to_nid(page);
2439	unsigned long pgoff;
2440	int thiscpu = raw_smp_processor_id();
2441	int thisnid = cpu_to_node(thiscpu);
2442	int polnid = NUMA_NO_NODE;
2443	int ret = -1;
2444
2445	pol = get_vma_policy(vma, addr);
2446	if (!(pol->flags & MPOL_F_MOF))
2447		goto out;
2448
2449	switch (pol->mode) {
2450	case MPOL_INTERLEAVE:
2451		pgoff = vma->vm_pgoff;
2452		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2453		polnid = offset_il_node(pol, pgoff);
2454		break;
2455
2456	case MPOL_PREFERRED:
2457		polnid = first_node(pol->nodes);
2458		break;
2459
2460	case MPOL_LOCAL:
2461		polnid = numa_node_id();
2462		break;
2463
2464	case MPOL_BIND:
2465		/* Optimize placement among multiple nodes via NUMA balancing */
2466		if (pol->flags & MPOL_F_MORON) {
2467			if (node_isset(thisnid, pol->nodes))
2468				break;
2469			goto out;
2470		}
2471
2472		/*
2473		 * allows binding to multiple nodes.
2474		 * use current page if in policy nodemask,
2475		 * else select nearest allowed node, if any.
2476		 * If no allowed nodes, use current [!misplaced].
2477		 */
2478		if (node_isset(curnid, pol->nodes))
2479			goto out;
2480		z = first_zones_zonelist(
2481				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2482				gfp_zone(GFP_HIGHUSER),
2483				&pol->nodes);
2484		polnid = zone_to_nid(z->zone);
2485		break;
2486
2487	default:
2488		BUG();
2489	}
2490
2491	/* Migrate the page towards the node whose CPU is referencing it */
2492	if (pol->flags & MPOL_F_MORON) {
2493		polnid = thisnid;
2494
2495		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2496			goto out;
2497	}
2498
2499	if (curnid != polnid)
2500		ret = polnid;
2501out:
2502	mpol_cond_put(pol);
2503
2504	return ret;
2505}
2506
2507/*
2508 * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2509 * dropped after task->mempolicy is set to NULL so that any allocation done as
2510 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2511 * policy.
2512 */
2513void mpol_put_task_policy(struct task_struct *task)
2514{
2515	struct mempolicy *pol;
2516
2517	task_lock(task);
2518	pol = task->mempolicy;
2519	task->mempolicy = NULL;
2520	task_unlock(task);
2521	mpol_put(pol);
2522}
2523
2524static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2525{
2526	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2527	rb_erase(&n->nd, &sp->root);
2528	sp_free(n);
2529}
2530
2531static void sp_node_init(struct sp_node *node, unsigned long start,
2532			unsigned long end, struct mempolicy *pol)
2533{
2534	node->start = start;
2535	node->end = end;
2536	node->policy = pol;
2537}
2538
2539static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2540				struct mempolicy *pol)
2541{
2542	struct sp_node *n;
2543	struct mempolicy *newpol;
2544
2545	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2546	if (!n)
2547		return NULL;
2548
2549	newpol = mpol_dup(pol);
2550	if (IS_ERR(newpol)) {
2551		kmem_cache_free(sn_cache, n);
2552		return NULL;
2553	}
2554	newpol->flags |= MPOL_F_SHARED;
2555	sp_node_init(n, start, end, newpol);
2556
2557	return n;
2558}
2559
2560/* Replace a policy range. */
2561static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2562				 unsigned long end, struct sp_node *new)
2563{
2564	struct sp_node *n;
2565	struct sp_node *n_new = NULL;
2566	struct mempolicy *mpol_new = NULL;
2567	int ret = 0;
2568
2569restart:
2570	write_lock(&sp->lock);
2571	n = sp_lookup(sp, start, end);
2572	/* Take care of old policies in the same range. */
2573	while (n && n->start < end) {
2574		struct rb_node *next = rb_next(&n->nd);
2575		if (n->start >= start) {
2576			if (n->end <= end)
2577				sp_delete(sp, n);
2578			else
2579				n->start = end;
2580		} else {
2581			/* Old policy spanning whole new range. */
2582			if (n->end > end) {
2583				if (!n_new)
2584					goto alloc_new;
2585
2586				*mpol_new = *n->policy;
2587				atomic_set(&mpol_new->refcnt, 1);
2588				sp_node_init(n_new, end, n->end, mpol_new);
2589				n->end = start;
2590				sp_insert(sp, n_new);
2591				n_new = NULL;
2592				mpol_new = NULL;
2593				break;
2594			} else
2595				n->end = start;
2596		}
2597		if (!next)
2598			break;
2599		n = rb_entry(next, struct sp_node, nd);
2600	}
2601	if (new)
2602		sp_insert(sp, new);
2603	write_unlock(&sp->lock);
2604	ret = 0;
2605
2606err_out:
2607	if (mpol_new)
2608		mpol_put(mpol_new);
2609	if (n_new)
2610		kmem_cache_free(sn_cache, n_new);
2611
2612	return ret;
2613
2614alloc_new:
2615	write_unlock(&sp->lock);
2616	ret = -ENOMEM;
2617	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2618	if (!n_new)
2619		goto err_out;
2620	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2621	if (!mpol_new)
2622		goto err_out;
2623	goto restart;
2624}
2625
2626/**
2627 * mpol_shared_policy_init - initialize shared policy for inode
2628 * @sp: pointer to inode shared policy
2629 * @mpol:  struct mempolicy to install
2630 *
2631 * Install non-NULL @mpol in inode's shared policy rb-tree.
2632 * On entry, the current task has a reference on a non-NULL @mpol.
2633 * This must be released on exit.
2634 * This is called at get_inode() calls and we can use GFP_KERNEL.
2635 */
2636void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2637{
2638	int ret;
2639
2640	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2641	rwlock_init(&sp->lock);
2642
2643	if (mpol) {
2644		struct vm_area_struct pvma;
2645		struct mempolicy *new;
2646		NODEMASK_SCRATCH(scratch);
2647
2648		if (!scratch)
2649			goto put_mpol;
2650		/* contextualize the tmpfs mount point mempolicy */
2651		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2652		if (IS_ERR(new))
2653			goto free_scratch; /* no valid nodemask intersection */
2654
2655		task_lock(current);
2656		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2657		task_unlock(current);
2658		if (ret)
2659			goto put_new;
2660
2661		/* Create pseudo-vma that contains just the policy */
2662		vma_init(&pvma, NULL);
2663		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2664		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2665
2666put_new:
2667		mpol_put(new);			/* drop initial ref */
2668free_scratch:
2669		NODEMASK_SCRATCH_FREE(scratch);
2670put_mpol:
2671		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2672	}
2673}
2674
2675int mpol_set_shared_policy(struct shared_policy *info,
2676			struct vm_area_struct *vma, struct mempolicy *npol)
2677{
2678	int err;
2679	struct sp_node *new = NULL;
2680	unsigned long sz = vma_pages(vma);
2681
2682	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2683		 vma->vm_pgoff,
2684		 sz, npol ? npol->mode : -1,
2685		 npol ? npol->flags : -1,
2686		 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2687
2688	if (npol) {
2689		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2690		if (!new)
2691			return -ENOMEM;
2692	}
2693	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2694	if (err && new)
2695		sp_free(new);
2696	return err;
2697}
2698
2699/* Free a backing policy store on inode delete. */
2700void mpol_free_shared_policy(struct shared_policy *p)
2701{
2702	struct sp_node *n;
2703	struct rb_node *next;
2704
2705	if (!p->root.rb_node)
2706		return;
2707	write_lock(&p->lock);
2708	next = rb_first(&p->root);
2709	while (next) {
2710		n = rb_entry(next, struct sp_node, nd);
2711		next = rb_next(&n->nd);
2712		sp_delete(p, n);
2713	}
2714	write_unlock(&p->lock);
2715}
2716
2717#ifdef CONFIG_NUMA_BALANCING
2718static int __initdata numabalancing_override;
2719
2720static void __init check_numabalancing_enable(void)
2721{
2722	bool numabalancing_default = false;
2723
2724	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2725		numabalancing_default = true;
2726
2727	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2728	if (numabalancing_override)
2729		set_numabalancing_state(numabalancing_override == 1);
2730
2731	if (num_online_nodes() > 1 && !numabalancing_override) {
2732		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2733			numabalancing_default ? "Enabling" : "Disabling");
2734		set_numabalancing_state(numabalancing_default);
2735	}
2736}
2737
2738static int __init setup_numabalancing(char *str)
2739{
2740	int ret = 0;
2741	if (!str)
2742		goto out;
2743
2744	if (!strcmp(str, "enable")) {
2745		numabalancing_override = 1;
2746		ret = 1;
2747	} else if (!strcmp(str, "disable")) {
2748		numabalancing_override = -1;
2749		ret = 1;
2750	}
2751out:
2752	if (!ret)
2753		pr_warn("Unable to parse numa_balancing=\n");
2754
2755	return ret;
2756}
2757__setup("numa_balancing=", setup_numabalancing);
2758#else
2759static inline void __init check_numabalancing_enable(void)
2760{
2761}
2762#endif /* CONFIG_NUMA_BALANCING */
2763
2764/* assumes fs == KERNEL_DS */
2765void __init numa_policy_init(void)
2766{
2767	nodemask_t interleave_nodes;
2768	unsigned long largest = 0;
2769	int nid, prefer = 0;
2770
2771	policy_cache = kmem_cache_create("numa_policy",
2772					 sizeof(struct mempolicy),
2773					 0, SLAB_PANIC, NULL);
2774
2775	sn_cache = kmem_cache_create("shared_policy_node",
2776				     sizeof(struct sp_node),
2777				     0, SLAB_PANIC, NULL);
2778
2779	for_each_node(nid) {
2780		preferred_node_policy[nid] = (struct mempolicy) {
2781			.refcnt = ATOMIC_INIT(1),
2782			.mode = MPOL_PREFERRED,
2783			.flags = MPOL_F_MOF | MPOL_F_MORON,
2784			.nodes = nodemask_of_node(nid),
2785		};
2786	}
2787
2788	/*
2789	 * Set interleaving policy for system init. Interleaving is only
2790	 * enabled across suitably sized nodes (default is >= 16MB), or
2791	 * fall back to the largest node if they're all smaller.
2792	 */
2793	nodes_clear(interleave_nodes);
2794	for_each_node_state(nid, N_MEMORY) {
2795		unsigned long total_pages = node_present_pages(nid);
2796
2797		/* Preserve the largest node */
2798		if (largest < total_pages) {
2799			largest = total_pages;
2800			prefer = nid;
2801		}
2802
2803		/* Interleave this node? */
2804		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2805			node_set(nid, interleave_nodes);
2806	}
2807
2808	/* All too small, use the largest */
2809	if (unlikely(nodes_empty(interleave_nodes)))
2810		node_set(prefer, interleave_nodes);
2811
2812	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2813		pr_err("%s: interleaving failed\n", __func__);
2814
2815	check_numabalancing_enable();
2816}
2817
2818/* Reset policy of current process to default */
2819void numa_default_policy(void)
2820{
2821	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2822}
2823
2824/*
2825 * Parse and format mempolicy from/to strings
2826 */
2827
 
 
 
2828static const char * const policy_modes[] =
2829{
2830	[MPOL_DEFAULT]    = "default",
2831	[MPOL_PREFERRED]  = "prefer",
2832	[MPOL_BIND]       = "bind",
2833	[MPOL_INTERLEAVE] = "interleave",
2834	[MPOL_LOCAL]      = "local",
2835};
2836
2837
2838#ifdef CONFIG_TMPFS
2839/**
2840 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2841 * @str:  string containing mempolicy to parse
2842 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2843 *
2844 * Format of input:
2845 *	<mode>[=<flags>][:<nodelist>]
2846 *
2847 * On success, returns 0, else 1
2848 */
2849int mpol_parse_str(char *str, struct mempolicy **mpol)
2850{
2851	struct mempolicy *new = NULL;
 
2852	unsigned short mode_flags;
2853	nodemask_t nodes;
2854	char *nodelist = strchr(str, ':');
2855	char *flags = strchr(str, '=');
2856	int err = 1, mode;
2857
2858	if (flags)
2859		*flags++ = '\0';	/* terminate mode string */
2860
2861	if (nodelist) {
2862		/* NUL-terminate mode or flags string */
2863		*nodelist++ = '\0';
2864		if (nodelist_parse(nodelist, nodes))
2865			goto out;
2866		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2867			goto out;
2868	} else
2869		nodes_clear(nodes);
2870
2871	mode = match_string(policy_modes, MPOL_MAX, str);
2872	if (mode < 0)
 
 
 
 
 
 
 
2873		goto out;
2874
2875	switch (mode) {
2876	case MPOL_PREFERRED:
2877		/*
2878		 * Insist on a nodelist of one node only, although later
2879		 * we use first_node(nodes) to grab a single node, so here
2880		 * nodelist (or nodes) cannot be empty.
2881		 */
2882		if (nodelist) {
2883			char *rest = nodelist;
2884			while (isdigit(*rest))
2885				rest++;
2886			if (*rest)
2887				goto out;
2888			if (nodes_empty(nodes))
2889				goto out;
2890		}
2891		break;
2892	case MPOL_INTERLEAVE:
2893		/*
2894		 * Default to online nodes with memory if no nodelist
2895		 */
2896		if (!nodelist)
2897			nodes = node_states[N_MEMORY];
2898		break;
2899	case MPOL_LOCAL:
2900		/*
2901		 * Don't allow a nodelist;  mpol_new() checks flags
2902		 */
2903		if (nodelist)
2904			goto out;
 
2905		break;
2906	case MPOL_DEFAULT:
2907		/*
2908		 * Insist on a empty nodelist
2909		 */
2910		if (!nodelist)
2911			err = 0;
2912		goto out;
2913	case MPOL_BIND:
2914		/*
2915		 * Insist on a nodelist
2916		 */
2917		if (!nodelist)
2918			goto out;
2919	}
2920
2921	mode_flags = 0;
2922	if (flags) {
2923		/*
2924		 * Currently, we only support two mutually exclusive
2925		 * mode flags.
2926		 */
2927		if (!strcmp(flags, "static"))
2928			mode_flags |= MPOL_F_STATIC_NODES;
2929		else if (!strcmp(flags, "relative"))
2930			mode_flags |= MPOL_F_RELATIVE_NODES;
2931		else
2932			goto out;
2933	}
2934
2935	new = mpol_new(mode, mode_flags, &nodes);
2936	if (IS_ERR(new))
2937		goto out;
2938
2939	/*
2940	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2941	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2942	 */
2943	if (mode != MPOL_PREFERRED) {
2944		new->nodes = nodes;
2945	} else if (nodelist) {
2946		nodes_clear(new->nodes);
2947		node_set(first_node(nodes), new->nodes);
2948	} else {
2949		new->mode = MPOL_LOCAL;
2950	}
2951
2952	/*
2953	 * Save nodes for contextualization: this will be used to "clone"
2954	 * the mempolicy in a specific context [cpuset] at a later time.
2955	 */
2956	new->w.user_nodemask = nodes;
2957
2958	err = 0;
2959
2960out:
2961	/* Restore string for error message */
2962	if (nodelist)
2963		*--nodelist = ':';
2964	if (flags)
2965		*--flags = '=';
2966	if (!err)
2967		*mpol = new;
2968	return err;
2969}
2970#endif /* CONFIG_TMPFS */
2971
2972/**
2973 * mpol_to_str - format a mempolicy structure for printing
2974 * @buffer:  to contain formatted mempolicy string
2975 * @maxlen:  length of @buffer
2976 * @pol:  pointer to mempolicy to be formatted
2977 *
2978 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2979 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2980 * longest flag, "relative", and to display at least a few node ids.
2981 */
2982void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2983{
2984	char *p = buffer;
2985	nodemask_t nodes = NODE_MASK_NONE;
2986	unsigned short mode = MPOL_DEFAULT;
2987	unsigned short flags = 0;
2988
2989	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2990		mode = pol->mode;
2991		flags = pol->flags;
2992	}
2993
2994	switch (mode) {
2995	case MPOL_DEFAULT:
2996	case MPOL_LOCAL:
2997		break;
2998	case MPOL_PREFERRED:
 
 
 
 
 
2999	case MPOL_BIND:
3000	case MPOL_INTERLEAVE:
3001		nodes = pol->nodes;
3002		break;
3003	default:
3004		WARN_ON_ONCE(1);
3005		snprintf(p, maxlen, "unknown");
3006		return;
3007	}
3008
3009	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3010
3011	if (flags & MPOL_MODE_FLAGS) {
3012		p += snprintf(p, buffer + maxlen - p, "=");
3013
3014		/*
3015		 * Currently, the only defined flags are mutually exclusive
3016		 */
3017		if (flags & MPOL_F_STATIC_NODES)
3018			p += snprintf(p, buffer + maxlen - p, "static");
3019		else if (flags & MPOL_F_RELATIVE_NODES)
3020			p += snprintf(p, buffer + maxlen - p, "relative");
3021	}
3022
3023	if (!nodes_empty(nodes))
3024		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3025			       nodemask_pr_args(&nodes));
3026}