Loading...
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/mm.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/sched/mm.h>
77#include <linux/sched/numa_balancing.h>
78#include <linux/sched/task.h>
79#include <linux/nodemask.h>
80#include <linux/cpuset.h>
81#include <linux/slab.h>
82#include <linux/string.h>
83#include <linux/export.h>
84#include <linux/nsproxy.h>
85#include <linux/interrupt.h>
86#include <linux/init.h>
87#include <linux/compat.h>
88#include <linux/ptrace.h>
89#include <linux/swap.h>
90#include <linux/seq_file.h>
91#include <linux/proc_fs.h>
92#include <linux/migrate.h>
93#include <linux/ksm.h>
94#include <linux/rmap.h>
95#include <linux/security.h>
96#include <linux/syscalls.h>
97#include <linux/ctype.h>
98#include <linux/mm_inline.h>
99#include <linux/mmu_notifier.h>
100#include <linux/printk.h>
101#include <linux/swapops.h>
102
103#include <asm/tlbflush.h>
104#include <linux/uaccess.h>
105
106#include "internal.h"
107
108/* Internal flags */
109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112static struct kmem_cache *policy_cache;
113static struct kmem_cache *sn_cache;
114
115/* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117enum zone_type policy_zone = 0;
118
119/*
120 * run-time system-wide default policy => local allocation
121 */
122static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126};
127
128static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130struct mempolicy *get_task_policy(struct task_struct *p)
131{
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147}
148
149static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152} mpol_ops[MPOL_MAX];
153
154static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155{
156 return pol->flags & MPOL_MODE_FLAGS;
157}
158
159static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161{
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165}
166
167static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168{
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173}
174
175static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176{
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184}
185
186static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187{
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192}
193
194/*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205{
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236}
237
238/*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244{
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284}
285
286/* Slow path of a mpol destructor. */
287void __mpol_put(struct mempolicy *p)
288{
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292}
293
294static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295{
296}
297
298static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299{
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316}
317
318static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320{
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340}
341
342/*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350{
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358}
359
360/*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368{
369 mpol_rebind_policy(tsk->mempolicy, new);
370}
371
372/*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379{
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386}
387
388static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404};
405
406static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414};
415
416/*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424{
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429}
430
431static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 unsigned long end, struct mm_walk *walk)
433{
434 int ret = 0;
435 struct page *page;
436 struct queue_pages *qp = walk->private;
437 unsigned long flags;
438
439 if (unlikely(is_pmd_migration_entry(*pmd))) {
440 ret = 1;
441 goto unlock;
442 }
443 page = pmd_page(*pmd);
444 if (is_huge_zero_page(page)) {
445 spin_unlock(ptl);
446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 goto out;
448 }
449 if (!queue_pages_required(page, qp)) {
450 ret = 1;
451 goto unlock;
452 }
453
454 ret = 1;
455 flags = qp->flags;
456 /* go to thp migration */
457 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
458 migrate_page_add(page, qp->pagelist, flags);
459unlock:
460 spin_unlock(ptl);
461out:
462 return ret;
463}
464
465/*
466 * Scan through pages checking if pages follow certain conditions,
467 * and move them to the pagelist if they do.
468 */
469static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
471{
472 struct vm_area_struct *vma = walk->vma;
473 struct page *page;
474 struct queue_pages *qp = walk->private;
475 unsigned long flags = qp->flags;
476 int ret;
477 pte_t *pte;
478 spinlock_t *ptl;
479
480 ptl = pmd_trans_huge_lock(pmd, vma);
481 if (ptl) {
482 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
483 if (ret)
484 return 0;
485 }
486
487 if (pmd_trans_unstable(pmd))
488 return 0;
489
490 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
491 for (; addr != end; pte++, addr += PAGE_SIZE) {
492 if (!pte_present(*pte))
493 continue;
494 page = vm_normal_page(vma, addr, *pte);
495 if (!page)
496 continue;
497 /*
498 * vm_normal_page() filters out zero pages, but there might
499 * still be PageReserved pages to skip, perhaps in a VDSO.
500 */
501 if (PageReserved(page))
502 continue;
503 if (!queue_pages_required(page, qp))
504 continue;
505 migrate_page_add(page, qp->pagelist, flags);
506 }
507 pte_unmap_unlock(pte - 1, ptl);
508 cond_resched();
509 return 0;
510}
511
512static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
513 unsigned long addr, unsigned long end,
514 struct mm_walk *walk)
515{
516#ifdef CONFIG_HUGETLB_PAGE
517 struct queue_pages *qp = walk->private;
518 unsigned long flags = qp->flags;
519 struct page *page;
520 spinlock_t *ptl;
521 pte_t entry;
522
523 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
524 entry = huge_ptep_get(pte);
525 if (!pte_present(entry))
526 goto unlock;
527 page = pte_page(entry);
528 if (!queue_pages_required(page, qp))
529 goto unlock;
530 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
531 if (flags & (MPOL_MF_MOVE_ALL) ||
532 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
533 isolate_huge_page(page, qp->pagelist);
534unlock:
535 spin_unlock(ptl);
536#else
537 BUG();
538#endif
539 return 0;
540}
541
542#ifdef CONFIG_NUMA_BALANCING
543/*
544 * This is used to mark a range of virtual addresses to be inaccessible.
545 * These are later cleared by a NUMA hinting fault. Depending on these
546 * faults, pages may be migrated for better NUMA placement.
547 *
548 * This is assuming that NUMA faults are handled using PROT_NONE. If
549 * an architecture makes a different choice, it will need further
550 * changes to the core.
551 */
552unsigned long change_prot_numa(struct vm_area_struct *vma,
553 unsigned long addr, unsigned long end)
554{
555 int nr_updated;
556
557 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
558 if (nr_updated)
559 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
560
561 return nr_updated;
562}
563#else
564static unsigned long change_prot_numa(struct vm_area_struct *vma,
565 unsigned long addr, unsigned long end)
566{
567 return 0;
568}
569#endif /* CONFIG_NUMA_BALANCING */
570
571static int queue_pages_test_walk(unsigned long start, unsigned long end,
572 struct mm_walk *walk)
573{
574 struct vm_area_struct *vma = walk->vma;
575 struct queue_pages *qp = walk->private;
576 unsigned long endvma = vma->vm_end;
577 unsigned long flags = qp->flags;
578
579 if (!vma_migratable(vma))
580 return 1;
581
582 if (endvma > end)
583 endvma = end;
584 if (vma->vm_start > start)
585 start = vma->vm_start;
586
587 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
588 if (!vma->vm_next && vma->vm_end < end)
589 return -EFAULT;
590 if (qp->prev && qp->prev->vm_end < vma->vm_start)
591 return -EFAULT;
592 }
593
594 qp->prev = vma;
595
596 if (flags & MPOL_MF_LAZY) {
597 /* Similar to task_numa_work, skip inaccessible VMAs */
598 if (!is_vm_hugetlb_page(vma) &&
599 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
600 !(vma->vm_flags & VM_MIXEDMAP))
601 change_prot_numa(vma, start, endvma);
602 return 1;
603 }
604
605 /* queue pages from current vma */
606 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
607 return 0;
608 return 1;
609}
610
611/*
612 * Walk through page tables and collect pages to be migrated.
613 *
614 * If pages found in a given range are on a set of nodes (determined by
615 * @nodes and @flags,) it's isolated and queued to the pagelist which is
616 * passed via @private.)
617 */
618static int
619queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
620 nodemask_t *nodes, unsigned long flags,
621 struct list_head *pagelist)
622{
623 struct queue_pages qp = {
624 .pagelist = pagelist,
625 .flags = flags,
626 .nmask = nodes,
627 .prev = NULL,
628 };
629 struct mm_walk queue_pages_walk = {
630 .hugetlb_entry = queue_pages_hugetlb,
631 .pmd_entry = queue_pages_pte_range,
632 .test_walk = queue_pages_test_walk,
633 .mm = mm,
634 .private = &qp,
635 };
636
637 return walk_page_range(start, end, &queue_pages_walk);
638}
639
640/*
641 * Apply policy to a single VMA
642 * This must be called with the mmap_sem held for writing.
643 */
644static int vma_replace_policy(struct vm_area_struct *vma,
645 struct mempolicy *pol)
646{
647 int err;
648 struct mempolicy *old;
649 struct mempolicy *new;
650
651 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
652 vma->vm_start, vma->vm_end, vma->vm_pgoff,
653 vma->vm_ops, vma->vm_file,
654 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
655
656 new = mpol_dup(pol);
657 if (IS_ERR(new))
658 return PTR_ERR(new);
659
660 if (vma->vm_ops && vma->vm_ops->set_policy) {
661 err = vma->vm_ops->set_policy(vma, new);
662 if (err)
663 goto err_out;
664 }
665
666 old = vma->vm_policy;
667 vma->vm_policy = new; /* protected by mmap_sem */
668 mpol_put(old);
669
670 return 0;
671 err_out:
672 mpol_put(new);
673 return err;
674}
675
676/* Step 2: apply policy to a range and do splits. */
677static int mbind_range(struct mm_struct *mm, unsigned long start,
678 unsigned long end, struct mempolicy *new_pol)
679{
680 struct vm_area_struct *next;
681 struct vm_area_struct *prev;
682 struct vm_area_struct *vma;
683 int err = 0;
684 pgoff_t pgoff;
685 unsigned long vmstart;
686 unsigned long vmend;
687
688 vma = find_vma(mm, start);
689 if (!vma || vma->vm_start > start)
690 return -EFAULT;
691
692 prev = vma->vm_prev;
693 if (start > vma->vm_start)
694 prev = vma;
695
696 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
697 next = vma->vm_next;
698 vmstart = max(start, vma->vm_start);
699 vmend = min(end, vma->vm_end);
700
701 if (mpol_equal(vma_policy(vma), new_pol))
702 continue;
703
704 pgoff = vma->vm_pgoff +
705 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
706 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
707 vma->anon_vma, vma->vm_file, pgoff,
708 new_pol, vma->vm_userfaultfd_ctx);
709 if (prev) {
710 vma = prev;
711 next = vma->vm_next;
712 if (mpol_equal(vma_policy(vma), new_pol))
713 continue;
714 /* vma_merge() joined vma && vma->next, case 8 */
715 goto replace;
716 }
717 if (vma->vm_start != vmstart) {
718 err = split_vma(vma->vm_mm, vma, vmstart, 1);
719 if (err)
720 goto out;
721 }
722 if (vma->vm_end != vmend) {
723 err = split_vma(vma->vm_mm, vma, vmend, 0);
724 if (err)
725 goto out;
726 }
727 replace:
728 err = vma_replace_policy(vma, new_pol);
729 if (err)
730 goto out;
731 }
732
733 out:
734 return err;
735}
736
737/* Set the process memory policy */
738static long do_set_mempolicy(unsigned short mode, unsigned short flags,
739 nodemask_t *nodes)
740{
741 struct mempolicy *new, *old;
742 NODEMASK_SCRATCH(scratch);
743 int ret;
744
745 if (!scratch)
746 return -ENOMEM;
747
748 new = mpol_new(mode, flags, nodes);
749 if (IS_ERR(new)) {
750 ret = PTR_ERR(new);
751 goto out;
752 }
753
754 task_lock(current);
755 ret = mpol_set_nodemask(new, nodes, scratch);
756 if (ret) {
757 task_unlock(current);
758 mpol_put(new);
759 goto out;
760 }
761 old = current->mempolicy;
762 current->mempolicy = new;
763 if (new && new->mode == MPOL_INTERLEAVE)
764 current->il_prev = MAX_NUMNODES-1;
765 task_unlock(current);
766 mpol_put(old);
767 ret = 0;
768out:
769 NODEMASK_SCRATCH_FREE(scratch);
770 return ret;
771}
772
773/*
774 * Return nodemask for policy for get_mempolicy() query
775 *
776 * Called with task's alloc_lock held
777 */
778static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
779{
780 nodes_clear(*nodes);
781 if (p == &default_policy)
782 return;
783
784 switch (p->mode) {
785 case MPOL_BIND:
786 /* Fall through */
787 case MPOL_INTERLEAVE:
788 *nodes = p->v.nodes;
789 break;
790 case MPOL_PREFERRED:
791 if (!(p->flags & MPOL_F_LOCAL))
792 node_set(p->v.preferred_node, *nodes);
793 /* else return empty node mask for local allocation */
794 break;
795 default:
796 BUG();
797 }
798}
799
800static int lookup_node(unsigned long addr)
801{
802 struct page *p;
803 int err;
804
805 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
806 if (err >= 0) {
807 err = page_to_nid(p);
808 put_page(p);
809 }
810 return err;
811}
812
813/* Retrieve NUMA policy */
814static long do_get_mempolicy(int *policy, nodemask_t *nmask,
815 unsigned long addr, unsigned long flags)
816{
817 int err;
818 struct mm_struct *mm = current->mm;
819 struct vm_area_struct *vma = NULL;
820 struct mempolicy *pol = current->mempolicy;
821
822 if (flags &
823 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
824 return -EINVAL;
825
826 if (flags & MPOL_F_MEMS_ALLOWED) {
827 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
828 return -EINVAL;
829 *policy = 0; /* just so it's initialized */
830 task_lock(current);
831 *nmask = cpuset_current_mems_allowed;
832 task_unlock(current);
833 return 0;
834 }
835
836 if (flags & MPOL_F_ADDR) {
837 /*
838 * Do NOT fall back to task policy if the
839 * vma/shared policy at addr is NULL. We
840 * want to return MPOL_DEFAULT in this case.
841 */
842 down_read(&mm->mmap_sem);
843 vma = find_vma_intersection(mm, addr, addr+1);
844 if (!vma) {
845 up_read(&mm->mmap_sem);
846 return -EFAULT;
847 }
848 if (vma->vm_ops && vma->vm_ops->get_policy)
849 pol = vma->vm_ops->get_policy(vma, addr);
850 else
851 pol = vma->vm_policy;
852 } else if (addr)
853 return -EINVAL;
854
855 if (!pol)
856 pol = &default_policy; /* indicates default behavior */
857
858 if (flags & MPOL_F_NODE) {
859 if (flags & MPOL_F_ADDR) {
860 err = lookup_node(addr);
861 if (err < 0)
862 goto out;
863 *policy = err;
864 } else if (pol == current->mempolicy &&
865 pol->mode == MPOL_INTERLEAVE) {
866 *policy = next_node_in(current->il_prev, pol->v.nodes);
867 } else {
868 err = -EINVAL;
869 goto out;
870 }
871 } else {
872 *policy = pol == &default_policy ? MPOL_DEFAULT :
873 pol->mode;
874 /*
875 * Internal mempolicy flags must be masked off before exposing
876 * the policy to userspace.
877 */
878 *policy |= (pol->flags & MPOL_MODE_FLAGS);
879 }
880
881 err = 0;
882 if (nmask) {
883 if (mpol_store_user_nodemask(pol)) {
884 *nmask = pol->w.user_nodemask;
885 } else {
886 task_lock(current);
887 get_policy_nodemask(pol, nmask);
888 task_unlock(current);
889 }
890 }
891
892 out:
893 mpol_cond_put(pol);
894 if (vma)
895 up_read(¤t->mm->mmap_sem);
896 return err;
897}
898
899#ifdef CONFIG_MIGRATION
900/*
901 * page migration, thp tail pages can be passed.
902 */
903static void migrate_page_add(struct page *page, struct list_head *pagelist,
904 unsigned long flags)
905{
906 struct page *head = compound_head(page);
907 /*
908 * Avoid migrating a page that is shared with others.
909 */
910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
911 if (!isolate_lru_page(head)) {
912 list_add_tail(&head->lru, pagelist);
913 mod_node_page_state(page_pgdat(head),
914 NR_ISOLATED_ANON + page_is_file_cache(head),
915 hpage_nr_pages(head));
916 }
917 }
918}
919
920/* page allocation callback for NUMA node migration */
921struct page *alloc_new_node_page(struct page *page, unsigned long node)
922{
923 if (PageHuge(page))
924 return alloc_huge_page_node(page_hstate(compound_head(page)),
925 node);
926 else if (PageTransHuge(page)) {
927 struct page *thp;
928
929 thp = alloc_pages_node(node,
930 (GFP_TRANSHUGE | __GFP_THISNODE),
931 HPAGE_PMD_ORDER);
932 if (!thp)
933 return NULL;
934 prep_transhuge_page(thp);
935 return thp;
936 } else
937 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
938 __GFP_THISNODE, 0);
939}
940
941/*
942 * Migrate pages from one node to a target node.
943 * Returns error or the number of pages not migrated.
944 */
945static int migrate_to_node(struct mm_struct *mm, int source, int dest,
946 int flags)
947{
948 nodemask_t nmask;
949 LIST_HEAD(pagelist);
950 int err = 0;
951
952 nodes_clear(nmask);
953 node_set(source, nmask);
954
955 /*
956 * This does not "check" the range but isolates all pages that
957 * need migration. Between passing in the full user address
958 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
959 */
960 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
961 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
962 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
963
964 if (!list_empty(&pagelist)) {
965 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
966 MIGRATE_SYNC, MR_SYSCALL);
967 if (err)
968 putback_movable_pages(&pagelist);
969 }
970
971 return err;
972}
973
974/*
975 * Move pages between the two nodesets so as to preserve the physical
976 * layout as much as possible.
977 *
978 * Returns the number of page that could not be moved.
979 */
980int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
981 const nodemask_t *to, int flags)
982{
983 int busy = 0;
984 int err;
985 nodemask_t tmp;
986
987 err = migrate_prep();
988 if (err)
989 return err;
990
991 down_read(&mm->mmap_sem);
992
993 /*
994 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
995 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
996 * bit in 'tmp', and return that <source, dest> pair for migration.
997 * The pair of nodemasks 'to' and 'from' define the map.
998 *
999 * If no pair of bits is found that way, fallback to picking some
1000 * pair of 'source' and 'dest' bits that are not the same. If the
1001 * 'source' and 'dest' bits are the same, this represents a node
1002 * that will be migrating to itself, so no pages need move.
1003 *
1004 * If no bits are left in 'tmp', or if all remaining bits left
1005 * in 'tmp' correspond to the same bit in 'to', return false
1006 * (nothing left to migrate).
1007 *
1008 * This lets us pick a pair of nodes to migrate between, such that
1009 * if possible the dest node is not already occupied by some other
1010 * source node, minimizing the risk of overloading the memory on a
1011 * node that would happen if we migrated incoming memory to a node
1012 * before migrating outgoing memory source that same node.
1013 *
1014 * A single scan of tmp is sufficient. As we go, we remember the
1015 * most recent <s, d> pair that moved (s != d). If we find a pair
1016 * that not only moved, but what's better, moved to an empty slot
1017 * (d is not set in tmp), then we break out then, with that pair.
1018 * Otherwise when we finish scanning from_tmp, we at least have the
1019 * most recent <s, d> pair that moved. If we get all the way through
1020 * the scan of tmp without finding any node that moved, much less
1021 * moved to an empty node, then there is nothing left worth migrating.
1022 */
1023
1024 tmp = *from;
1025 while (!nodes_empty(tmp)) {
1026 int s,d;
1027 int source = NUMA_NO_NODE;
1028 int dest = 0;
1029
1030 for_each_node_mask(s, tmp) {
1031
1032 /*
1033 * do_migrate_pages() tries to maintain the relative
1034 * node relationship of the pages established between
1035 * threads and memory areas.
1036 *
1037 * However if the number of source nodes is not equal to
1038 * the number of destination nodes we can not preserve
1039 * this node relative relationship. In that case, skip
1040 * copying memory from a node that is in the destination
1041 * mask.
1042 *
1043 * Example: [2,3,4] -> [3,4,5] moves everything.
1044 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045 */
1046
1047 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048 (node_isset(s, *to)))
1049 continue;
1050
1051 d = node_remap(s, *from, *to);
1052 if (s == d)
1053 continue;
1054
1055 source = s; /* Node moved. Memorize */
1056 dest = d;
1057
1058 /* dest not in remaining from nodes? */
1059 if (!node_isset(dest, tmp))
1060 break;
1061 }
1062 if (source == NUMA_NO_NODE)
1063 break;
1064
1065 node_clear(source, tmp);
1066 err = migrate_to_node(mm, source, dest, flags);
1067 if (err > 0)
1068 busy += err;
1069 if (err < 0)
1070 break;
1071 }
1072 up_read(&mm->mmap_sem);
1073 if (err < 0)
1074 return err;
1075 return busy;
1076
1077}
1078
1079/*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start by assuming the page is mapped by the same vma as contains @start.
1082 * Search forward from there, if not. N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086static struct page *new_page(struct page *page, unsigned long start)
1087{
1088 struct vm_area_struct *vma;
1089 unsigned long uninitialized_var(address);
1090
1091 vma = find_vma(current->mm, start);
1092 while (vma) {
1093 address = page_address_in_vma(page, vma);
1094 if (address != -EFAULT)
1095 break;
1096 vma = vma->vm_next;
1097 }
1098
1099 if (PageHuge(page)) {
1100 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101 vma, address);
1102 } else if (PageTransHuge(page)) {
1103 struct page *thp;
1104
1105 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106 HPAGE_PMD_ORDER);
1107 if (!thp)
1108 return NULL;
1109 prep_transhuge_page(thp);
1110 return thp;
1111 }
1112 /*
1113 * if !vma, alloc_page_vma() will use task or system default policy
1114 */
1115 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116 vma, address);
1117}
1118#else
1119
1120static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121 unsigned long flags)
1122{
1123}
1124
1125int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126 const nodemask_t *to, int flags)
1127{
1128 return -ENOSYS;
1129}
1130
1131static struct page *new_page(struct page *page, unsigned long start)
1132{
1133 return NULL;
1134}
1135#endif
1136
1137static long do_mbind(unsigned long start, unsigned long len,
1138 unsigned short mode, unsigned short mode_flags,
1139 nodemask_t *nmask, unsigned long flags)
1140{
1141 struct mm_struct *mm = current->mm;
1142 struct mempolicy *new;
1143 unsigned long end;
1144 int err;
1145 LIST_HEAD(pagelist);
1146
1147 if (flags & ~(unsigned long)MPOL_MF_VALID)
1148 return -EINVAL;
1149 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150 return -EPERM;
1151
1152 if (start & ~PAGE_MASK)
1153 return -EINVAL;
1154
1155 if (mode == MPOL_DEFAULT)
1156 flags &= ~MPOL_MF_STRICT;
1157
1158 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159 end = start + len;
1160
1161 if (end < start)
1162 return -EINVAL;
1163 if (end == start)
1164 return 0;
1165
1166 new = mpol_new(mode, mode_flags, nmask);
1167 if (IS_ERR(new))
1168 return PTR_ERR(new);
1169
1170 if (flags & MPOL_MF_LAZY)
1171 new->flags |= MPOL_F_MOF;
1172
1173 /*
1174 * If we are using the default policy then operation
1175 * on discontinuous address spaces is okay after all
1176 */
1177 if (!new)
1178 flags |= MPOL_MF_DISCONTIG_OK;
1179
1180 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181 start, start + len, mode, mode_flags,
1182 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183
1184 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185
1186 err = migrate_prep();
1187 if (err)
1188 goto mpol_out;
1189 }
1190 {
1191 NODEMASK_SCRATCH(scratch);
1192 if (scratch) {
1193 down_write(&mm->mmap_sem);
1194 task_lock(current);
1195 err = mpol_set_nodemask(new, nmask, scratch);
1196 task_unlock(current);
1197 if (err)
1198 up_write(&mm->mmap_sem);
1199 } else
1200 err = -ENOMEM;
1201 NODEMASK_SCRATCH_FREE(scratch);
1202 }
1203 if (err)
1204 goto mpol_out;
1205
1206 err = queue_pages_range(mm, start, end, nmask,
1207 flags | MPOL_MF_INVERT, &pagelist);
1208 if (!err)
1209 err = mbind_range(mm, start, end, new);
1210
1211 if (!err) {
1212 int nr_failed = 0;
1213
1214 if (!list_empty(&pagelist)) {
1215 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218 if (nr_failed)
1219 putback_movable_pages(&pagelist);
1220 }
1221
1222 if (nr_failed && (flags & MPOL_MF_STRICT))
1223 err = -EIO;
1224 } else
1225 putback_movable_pages(&pagelist);
1226
1227 up_write(&mm->mmap_sem);
1228 mpol_out:
1229 mpol_put(new);
1230 return err;
1231}
1232
1233/*
1234 * User space interface with variable sized bitmaps for nodelists.
1235 */
1236
1237/* Copy a node mask from user space. */
1238static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239 unsigned long maxnode)
1240{
1241 unsigned long k;
1242 unsigned long t;
1243 unsigned long nlongs;
1244 unsigned long endmask;
1245
1246 --maxnode;
1247 nodes_clear(*nodes);
1248 if (maxnode == 0 || !nmask)
1249 return 0;
1250 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 return -EINVAL;
1252
1253 nlongs = BITS_TO_LONGS(maxnode);
1254 if ((maxnode % BITS_PER_LONG) == 0)
1255 endmask = ~0UL;
1256 else
1257 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258
1259 /*
1260 * When the user specified more nodes than supported just check
1261 * if the non supported part is all zero.
1262 *
1263 * If maxnode have more longs than MAX_NUMNODES, check
1264 * the bits in that area first. And then go through to
1265 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267 */
1268 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1269 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1270 if (get_user(t, nmask + k))
1271 return -EFAULT;
1272 if (k == nlongs - 1) {
1273 if (t & endmask)
1274 return -EINVAL;
1275 } else if (t)
1276 return -EINVAL;
1277 }
1278 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279 endmask = ~0UL;
1280 }
1281
1282 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283 unsigned long valid_mask = endmask;
1284
1285 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286 if (get_user(t, nmask + nlongs - 1))
1287 return -EFAULT;
1288 if (t & valid_mask)
1289 return -EINVAL;
1290 }
1291
1292 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293 return -EFAULT;
1294 nodes_addr(*nodes)[nlongs-1] &= endmask;
1295 return 0;
1296}
1297
1298/* Copy a kernel node mask to user space */
1299static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300 nodemask_t *nodes)
1301{
1302 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1304
1305 if (copy > nbytes) {
1306 if (copy > PAGE_SIZE)
1307 return -EINVAL;
1308 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309 return -EFAULT;
1310 copy = nbytes;
1311 }
1312 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313}
1314
1315static long kernel_mbind(unsigned long start, unsigned long len,
1316 unsigned long mode, const unsigned long __user *nmask,
1317 unsigned long maxnode, unsigned int flags)
1318{
1319 nodemask_t nodes;
1320 int err;
1321 unsigned short mode_flags;
1322
1323 mode_flags = mode & MPOL_MODE_FLAGS;
1324 mode &= ~MPOL_MODE_FLAGS;
1325 if (mode >= MPOL_MAX)
1326 return -EINVAL;
1327 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328 (mode_flags & MPOL_F_RELATIVE_NODES))
1329 return -EINVAL;
1330 err = get_nodes(&nodes, nmask, maxnode);
1331 if (err)
1332 return err;
1333 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1334}
1335
1336SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337 unsigned long, mode, const unsigned long __user *, nmask,
1338 unsigned long, maxnode, unsigned int, flags)
1339{
1340 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341}
1342
1343/* Set the process memory policy */
1344static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345 unsigned long maxnode)
1346{
1347 int err;
1348 nodemask_t nodes;
1349 unsigned short flags;
1350
1351 flags = mode & MPOL_MODE_FLAGS;
1352 mode &= ~MPOL_MODE_FLAGS;
1353 if ((unsigned int)mode >= MPOL_MAX)
1354 return -EINVAL;
1355 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356 return -EINVAL;
1357 err = get_nodes(&nodes, nmask, maxnode);
1358 if (err)
1359 return err;
1360 return do_set_mempolicy(mode, flags, &nodes);
1361}
1362
1363SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364 unsigned long, maxnode)
1365{
1366 return kernel_set_mempolicy(mode, nmask, maxnode);
1367}
1368
1369static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370 const unsigned long __user *old_nodes,
1371 const unsigned long __user *new_nodes)
1372{
1373 struct mm_struct *mm = NULL;
1374 struct task_struct *task;
1375 nodemask_t task_nodes;
1376 int err;
1377 nodemask_t *old;
1378 nodemask_t *new;
1379 NODEMASK_SCRATCH(scratch);
1380
1381 if (!scratch)
1382 return -ENOMEM;
1383
1384 old = &scratch->mask1;
1385 new = &scratch->mask2;
1386
1387 err = get_nodes(old, old_nodes, maxnode);
1388 if (err)
1389 goto out;
1390
1391 err = get_nodes(new, new_nodes, maxnode);
1392 if (err)
1393 goto out;
1394
1395 /* Find the mm_struct */
1396 rcu_read_lock();
1397 task = pid ? find_task_by_vpid(pid) : current;
1398 if (!task) {
1399 rcu_read_unlock();
1400 err = -ESRCH;
1401 goto out;
1402 }
1403 get_task_struct(task);
1404
1405 err = -EINVAL;
1406
1407 /*
1408 * Check if this process has the right to modify the specified process.
1409 * Use the regular "ptrace_may_access()" checks.
1410 */
1411 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1412 rcu_read_unlock();
1413 err = -EPERM;
1414 goto out_put;
1415 }
1416 rcu_read_unlock();
1417
1418 task_nodes = cpuset_mems_allowed(task);
1419 /* Is the user allowed to access the target nodes? */
1420 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421 err = -EPERM;
1422 goto out_put;
1423 }
1424
1425 task_nodes = cpuset_mems_allowed(current);
1426 nodes_and(*new, *new, task_nodes);
1427 if (nodes_empty(*new))
1428 goto out_put;
1429
1430 nodes_and(*new, *new, node_states[N_MEMORY]);
1431 if (nodes_empty(*new))
1432 goto out_put;
1433
1434 err = security_task_movememory(task);
1435 if (err)
1436 goto out_put;
1437
1438 mm = get_task_mm(task);
1439 put_task_struct(task);
1440
1441 if (!mm) {
1442 err = -EINVAL;
1443 goto out;
1444 }
1445
1446 err = do_migrate_pages(mm, old, new,
1447 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449 mmput(mm);
1450out:
1451 NODEMASK_SCRATCH_FREE(scratch);
1452
1453 return err;
1454
1455out_put:
1456 put_task_struct(task);
1457 goto out;
1458
1459}
1460
1461SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462 const unsigned long __user *, old_nodes,
1463 const unsigned long __user *, new_nodes)
1464{
1465 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466}
1467
1468
1469/* Retrieve NUMA policy */
1470static int kernel_get_mempolicy(int __user *policy,
1471 unsigned long __user *nmask,
1472 unsigned long maxnode,
1473 unsigned long addr,
1474 unsigned long flags)
1475{
1476 int err;
1477 int uninitialized_var(pval);
1478 nodemask_t nodes;
1479
1480 if (nmask != NULL && maxnode < MAX_NUMNODES)
1481 return -EINVAL;
1482
1483 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485 if (err)
1486 return err;
1487
1488 if (policy && put_user(pval, policy))
1489 return -EFAULT;
1490
1491 if (nmask)
1492 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494 return err;
1495}
1496
1497SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498 unsigned long __user *, nmask, unsigned long, maxnode,
1499 unsigned long, addr, unsigned long, flags)
1500{
1501 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502}
1503
1504#ifdef CONFIG_COMPAT
1505
1506COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507 compat_ulong_t __user *, nmask,
1508 compat_ulong_t, maxnode,
1509 compat_ulong_t, addr, compat_ulong_t, flags)
1510{
1511 long err;
1512 unsigned long __user *nm = NULL;
1513 unsigned long nr_bits, alloc_size;
1514 DECLARE_BITMAP(bm, MAX_NUMNODES);
1515
1516 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519 if (nmask)
1520 nm = compat_alloc_user_space(alloc_size);
1521
1522 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523
1524 if (!err && nmask) {
1525 unsigned long copy_size;
1526 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527 err = copy_from_user(bm, nm, copy_size);
1528 /* ensure entire bitmap is zeroed */
1529 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530 err |= compat_put_bitmap(nmask, bm, nr_bits);
1531 }
1532
1533 return err;
1534}
1535
1536COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537 compat_ulong_t, maxnode)
1538{
1539 unsigned long __user *nm = NULL;
1540 unsigned long nr_bits, alloc_size;
1541 DECLARE_BITMAP(bm, MAX_NUMNODES);
1542
1543 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545
1546 if (nmask) {
1547 if (compat_get_bitmap(bm, nmask, nr_bits))
1548 return -EFAULT;
1549 nm = compat_alloc_user_space(alloc_size);
1550 if (copy_to_user(nm, bm, alloc_size))
1551 return -EFAULT;
1552 }
1553
1554 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1555}
1556
1557COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559 compat_ulong_t, maxnode, compat_ulong_t, flags)
1560{
1561 unsigned long __user *nm = NULL;
1562 unsigned long nr_bits, alloc_size;
1563 nodemask_t bm;
1564
1565 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568 if (nmask) {
1569 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570 return -EFAULT;
1571 nm = compat_alloc_user_space(alloc_size);
1572 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573 return -EFAULT;
1574 }
1575
1576 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577}
1578
1579COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580 compat_ulong_t, maxnode,
1581 const compat_ulong_t __user *, old_nodes,
1582 const compat_ulong_t __user *, new_nodes)
1583{
1584 unsigned long __user *old = NULL;
1585 unsigned long __user *new = NULL;
1586 nodemask_t tmp_mask;
1587 unsigned long nr_bits;
1588 unsigned long size;
1589
1590 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592 if (old_nodes) {
1593 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594 return -EFAULT;
1595 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596 if (new_nodes)
1597 new = old + size / sizeof(unsigned long);
1598 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599 return -EFAULT;
1600 }
1601 if (new_nodes) {
1602 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603 return -EFAULT;
1604 if (new == NULL)
1605 new = compat_alloc_user_space(size);
1606 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607 return -EFAULT;
1608 }
1609 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610}
1611
1612#endif /* CONFIG_COMPAT */
1613
1614struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615 unsigned long addr)
1616{
1617 struct mempolicy *pol = NULL;
1618
1619 if (vma) {
1620 if (vma->vm_ops && vma->vm_ops->get_policy) {
1621 pol = vma->vm_ops->get_policy(vma, addr);
1622 } else if (vma->vm_policy) {
1623 pol = vma->vm_policy;
1624
1625 /*
1626 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628 * count on these policies which will be dropped by
1629 * mpol_cond_put() later
1630 */
1631 if (mpol_needs_cond_ref(pol))
1632 mpol_get(pol);
1633 }
1634 }
1635
1636 return pol;
1637}
1638
1639/*
1640 * get_vma_policy(@vma, @addr)
1641 * @vma: virtual memory area whose policy is sought
1642 * @addr: address in @vma for shared policy lookup
1643 *
1644 * Returns effective policy for a VMA at specified address.
1645 * Falls back to current->mempolicy or system default policy, as necessary.
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task. It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1650 */
1651static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652 unsigned long addr)
1653{
1654 struct mempolicy *pol = __get_vma_policy(vma, addr);
1655
1656 if (!pol)
1657 pol = get_task_policy(current);
1658
1659 return pol;
1660}
1661
1662bool vma_policy_mof(struct vm_area_struct *vma)
1663{
1664 struct mempolicy *pol;
1665
1666 if (vma->vm_ops && vma->vm_ops->get_policy) {
1667 bool ret = false;
1668
1669 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670 if (pol && (pol->flags & MPOL_F_MOF))
1671 ret = true;
1672 mpol_cond_put(pol);
1673
1674 return ret;
1675 }
1676
1677 pol = vma->vm_policy;
1678 if (!pol)
1679 pol = get_task_policy(current);
1680
1681 return pol->flags & MPOL_F_MOF;
1682}
1683
1684static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685{
1686 enum zone_type dynamic_policy_zone = policy_zone;
1687
1688 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689
1690 /*
1691 * if policy->v.nodes has movable memory only,
1692 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693 *
1694 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695 * so if the following test faile, it implies
1696 * policy->v.nodes has movable memory only.
1697 */
1698 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699 dynamic_policy_zone = ZONE_MOVABLE;
1700
1701 return zone >= dynamic_policy_zone;
1702}
1703
1704/*
1705 * Return a nodemask representing a mempolicy for filtering nodes for
1706 * page allocation
1707 */
1708static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709{
1710 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1711 if (unlikely(policy->mode == MPOL_BIND) &&
1712 apply_policy_zone(policy, gfp_zone(gfp)) &&
1713 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714 return &policy->v.nodes;
1715
1716 return NULL;
1717}
1718
1719/* Return the node id preferred by the given mempolicy, or the given id */
1720static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721 int nd)
1722{
1723 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724 nd = policy->v.preferred_node;
1725 else {
1726 /*
1727 * __GFP_THISNODE shouldn't even be used with the bind policy
1728 * because we might easily break the expectation to stay on the
1729 * requested node and not break the policy.
1730 */
1731 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1732 }
1733
1734 return nd;
1735}
1736
1737/* Do dynamic interleaving for a process */
1738static unsigned interleave_nodes(struct mempolicy *policy)
1739{
1740 unsigned next;
1741 struct task_struct *me = current;
1742
1743 next = next_node_in(me->il_prev, policy->v.nodes);
1744 if (next < MAX_NUMNODES)
1745 me->il_prev = next;
1746 return next;
1747}
1748
1749/*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
1752 */
1753unsigned int mempolicy_slab_node(void)
1754{
1755 struct mempolicy *policy;
1756 int node = numa_mem_id();
1757
1758 if (in_interrupt())
1759 return node;
1760
1761 policy = current->mempolicy;
1762 if (!policy || policy->flags & MPOL_F_LOCAL)
1763 return node;
1764
1765 switch (policy->mode) {
1766 case MPOL_PREFERRED:
1767 /*
1768 * handled MPOL_F_LOCAL above
1769 */
1770 return policy->v.preferred_node;
1771
1772 case MPOL_INTERLEAVE:
1773 return interleave_nodes(policy);
1774
1775 case MPOL_BIND: {
1776 struct zoneref *z;
1777
1778 /*
1779 * Follow bind policy behavior and start allocation at the
1780 * first node.
1781 */
1782 struct zonelist *zonelist;
1783 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785 z = first_zones_zonelist(zonelist, highest_zoneidx,
1786 &policy->v.nodes);
1787 return z->zone ? z->zone->node : node;
1788 }
1789
1790 default:
1791 BUG();
1792 }
1793}
1794
1795/*
1796 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1797 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798 * number of present nodes.
1799 */
1800static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801{
1802 unsigned nnodes = nodes_weight(pol->v.nodes);
1803 unsigned target;
1804 int i;
1805 int nid;
1806
1807 if (!nnodes)
1808 return numa_node_id();
1809 target = (unsigned int)n % nnodes;
1810 nid = first_node(pol->v.nodes);
1811 for (i = 0; i < target; i++)
1812 nid = next_node(nid, pol->v.nodes);
1813 return nid;
1814}
1815
1816/* Determine a node number for interleave */
1817static inline unsigned interleave_nid(struct mempolicy *pol,
1818 struct vm_area_struct *vma, unsigned long addr, int shift)
1819{
1820 if (vma) {
1821 unsigned long off;
1822
1823 /*
1824 * for small pages, there is no difference between
1825 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826 * for huge pages, since vm_pgoff is in units of small
1827 * pages, we need to shift off the always 0 bits to get
1828 * a useful offset.
1829 */
1830 BUG_ON(shift < PAGE_SHIFT);
1831 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832 off += (addr - vma->vm_start) >> shift;
1833 return offset_il_node(pol, off);
1834 } else
1835 return interleave_nodes(pol);
1836}
1837
1838#ifdef CONFIG_HUGETLBFS
1839/*
1840 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a nid suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855 struct mempolicy **mpol, nodemask_t **nodemask)
1856{
1857 int nid;
1858
1859 *mpol = get_vma_policy(vma, addr);
1860 *nodemask = NULL; /* assume !MPOL_BIND */
1861
1862 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863 nid = interleave_nid(*mpol, vma, addr,
1864 huge_page_shift(hstate_vma(vma)));
1865 } else {
1866 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867 if ((*mpol)->mode == MPOL_BIND)
1868 *nodemask = &(*mpol)->v.nodes;
1869 }
1870 return nid;
1871}
1872
1873/*
1874 * init_nodemask_of_mempolicy
1875 *
1876 * If the current task's mempolicy is "default" [NULL], return 'false'
1877 * to indicate default policy. Otherwise, extract the policy nodemask
1878 * for 'bind' or 'interleave' policy into the argument nodemask, or
1879 * initialize the argument nodemask to contain the single node for
1880 * 'preferred' or 'local' policy and return 'true' to indicate presence
1881 * of non-default mempolicy.
1882 *
1883 * We don't bother with reference counting the mempolicy [mpol_get/put]
1884 * because the current task is examining it's own mempolicy and a task's
1885 * mempolicy is only ever changed by the task itself.
1886 *
1887 * N.B., it is the caller's responsibility to free a returned nodemask.
1888 */
1889bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890{
1891 struct mempolicy *mempolicy;
1892 int nid;
1893
1894 if (!(mask && current->mempolicy))
1895 return false;
1896
1897 task_lock(current);
1898 mempolicy = current->mempolicy;
1899 switch (mempolicy->mode) {
1900 case MPOL_PREFERRED:
1901 if (mempolicy->flags & MPOL_F_LOCAL)
1902 nid = numa_node_id();
1903 else
1904 nid = mempolicy->v.preferred_node;
1905 init_nodemask_of_node(mask, nid);
1906 break;
1907
1908 case MPOL_BIND:
1909 /* Fall through */
1910 case MPOL_INTERLEAVE:
1911 *mask = mempolicy->v.nodes;
1912 break;
1913
1914 default:
1915 BUG();
1916 }
1917 task_unlock(current);
1918
1919 return true;
1920}
1921#endif
1922
1923/*
1924 * mempolicy_nodemask_intersects
1925 *
1926 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927 * policy. Otherwise, check for intersection between mask and the policy
1928 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1929 * policy, always return true since it may allocate elsewhere on fallback.
1930 *
1931 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932 */
1933bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934 const nodemask_t *mask)
1935{
1936 struct mempolicy *mempolicy;
1937 bool ret = true;
1938
1939 if (!mask)
1940 return ret;
1941 task_lock(tsk);
1942 mempolicy = tsk->mempolicy;
1943 if (!mempolicy)
1944 goto out;
1945
1946 switch (mempolicy->mode) {
1947 case MPOL_PREFERRED:
1948 /*
1949 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950 * allocate from, they may fallback to other nodes when oom.
1951 * Thus, it's possible for tsk to have allocated memory from
1952 * nodes in mask.
1953 */
1954 break;
1955 case MPOL_BIND:
1956 case MPOL_INTERLEAVE:
1957 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958 break;
1959 default:
1960 BUG();
1961 }
1962out:
1963 task_unlock(tsk);
1964 return ret;
1965}
1966
1967/* Allocate a page in interleaved policy.
1968 Own path because it needs to do special accounting. */
1969static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970 unsigned nid)
1971{
1972 struct page *page;
1973
1974 page = __alloc_pages(gfp, order, nid);
1975 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976 if (!static_branch_likely(&vm_numa_stat_key))
1977 return page;
1978 if (page && page_to_nid(page) == nid) {
1979 preempt_disable();
1980 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981 preempt_enable();
1982 }
1983 return page;
1984}
1985
1986/**
1987 * alloc_pages_vma - Allocate a page for a VMA.
1988 *
1989 * @gfp:
1990 * %GFP_USER user allocation.
1991 * %GFP_KERNEL kernel allocations,
1992 * %GFP_HIGHMEM highmem/user allocations,
1993 * %GFP_FS allocation should not call back into a file system.
1994 * %GFP_ATOMIC don't sleep.
1995 *
1996 * @order:Order of the GFP allocation.
1997 * @vma: Pointer to VMA or NULL if not available.
1998 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1999 * @node: Which node to prefer for allocation (modulo policy).
2000 * @hugepage: for hugepages try only the preferred node if possible
2001 *
2002 * This function allocates a page from the kernel page pool and applies
2003 * a NUMA policy associated with the VMA or the current process.
2004 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005 * mm_struct of the VMA to prevent it from going away. Should be used for
2006 * all allocations for pages that will be mapped into user space. Returns
2007 * NULL when no page can be allocated.
2008 */
2009struct page *
2010alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011 unsigned long addr, int node, bool hugepage)
2012{
2013 struct mempolicy *pol;
2014 struct page *page;
2015 int preferred_nid;
2016 nodemask_t *nmask;
2017
2018 pol = get_vma_policy(vma, addr);
2019
2020 if (pol->mode == MPOL_INTERLEAVE) {
2021 unsigned nid;
2022
2023 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024 mpol_cond_put(pol);
2025 page = alloc_page_interleave(gfp, order, nid);
2026 goto out;
2027 }
2028
2029 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030 int hpage_node = node;
2031
2032 /*
2033 * For hugepage allocation and non-interleave policy which
2034 * allows the current node (or other explicitly preferred
2035 * node) we only try to allocate from the current/preferred
2036 * node and don't fall back to other nodes, as the cost of
2037 * remote accesses would likely offset THP benefits.
2038 *
2039 * If the policy is interleave, or does not allow the current
2040 * node in its nodemask, we allocate the standard way.
2041 */
2042 if (pol->mode == MPOL_PREFERRED &&
2043 !(pol->flags & MPOL_F_LOCAL))
2044 hpage_node = pol->v.preferred_node;
2045
2046 nmask = policy_nodemask(gfp, pol);
2047 if (!nmask || node_isset(hpage_node, *nmask)) {
2048 mpol_cond_put(pol);
2049 page = __alloc_pages_node(hpage_node,
2050 gfp | __GFP_THISNODE, order);
2051 goto out;
2052 }
2053 }
2054
2055 nmask = policy_nodemask(gfp, pol);
2056 preferred_nid = policy_node(gfp, pol, node);
2057 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058 mpol_cond_put(pol);
2059out:
2060 return page;
2061}
2062
2063/**
2064 * alloc_pages_current - Allocate pages.
2065 *
2066 * @gfp:
2067 * %GFP_USER user allocation,
2068 * %GFP_KERNEL kernel allocation,
2069 * %GFP_HIGHMEM highmem allocation,
2070 * %GFP_FS don't call back into a file system.
2071 * %GFP_ATOMIC don't sleep.
2072 * @order: Power of two of allocation size in pages. 0 is a single page.
2073 *
2074 * Allocate a page from the kernel page pool. When not in
2075 * interrupt context and apply the current process NUMA policy.
2076 * Returns NULL when no page can be allocated.
2077 */
2078struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079{
2080 struct mempolicy *pol = &default_policy;
2081 struct page *page;
2082
2083 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084 pol = get_task_policy(current);
2085
2086 /*
2087 * No reference counting needed for current->mempolicy
2088 * nor system default_policy
2089 */
2090 if (pol->mode == MPOL_INTERLEAVE)
2091 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092 else
2093 page = __alloc_pages_nodemask(gfp, order,
2094 policy_node(gfp, pol, numa_node_id()),
2095 policy_nodemask(gfp, pol));
2096
2097 return page;
2098}
2099EXPORT_SYMBOL(alloc_pages_current);
2100
2101int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102{
2103 struct mempolicy *pol = mpol_dup(vma_policy(src));
2104
2105 if (IS_ERR(pol))
2106 return PTR_ERR(pol);
2107 dst->vm_policy = pol;
2108 return 0;
2109}
2110
2111/*
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed(). This
2115 * keeps mempolicies cpuset relative after its cpuset moves. See
2116 * further kernel/cpuset.c update_nodemask().
2117 *
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2120 */
2121
2122/* Slow path of a mempolicy duplicate */
2123struct mempolicy *__mpol_dup(struct mempolicy *old)
2124{
2125 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126
2127 if (!new)
2128 return ERR_PTR(-ENOMEM);
2129
2130 /* task's mempolicy is protected by alloc_lock */
2131 if (old == current->mempolicy) {
2132 task_lock(current);
2133 *new = *old;
2134 task_unlock(current);
2135 } else
2136 *new = *old;
2137
2138 if (current_cpuset_is_being_rebound()) {
2139 nodemask_t mems = cpuset_mems_allowed(current);
2140 mpol_rebind_policy(new, &mems);
2141 }
2142 atomic_set(&new->refcnt, 1);
2143 return new;
2144}
2145
2146/* Slow path of a mempolicy comparison */
2147bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148{
2149 if (!a || !b)
2150 return false;
2151 if (a->mode != b->mode)
2152 return false;
2153 if (a->flags != b->flags)
2154 return false;
2155 if (mpol_store_user_nodemask(a))
2156 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157 return false;
2158
2159 switch (a->mode) {
2160 case MPOL_BIND:
2161 /* Fall through */
2162 case MPOL_INTERLEAVE:
2163 return !!nodes_equal(a->v.nodes, b->v.nodes);
2164 case MPOL_PREFERRED:
2165 /* a's ->flags is the same as b's */
2166 if (a->flags & MPOL_F_LOCAL)
2167 return true;
2168 return a->v.preferred_node == b->v.preferred_node;
2169 default:
2170 BUG();
2171 return false;
2172 }
2173}
2174
2175/*
2176 * Shared memory backing store policy support.
2177 *
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2182 */
2183
2184/*
2185 * lookup first element intersecting start-end. Caller holds sp->lock for
2186 * reading or for writing
2187 */
2188static struct sp_node *
2189sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190{
2191 struct rb_node *n = sp->root.rb_node;
2192
2193 while (n) {
2194 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195
2196 if (start >= p->end)
2197 n = n->rb_right;
2198 else if (end <= p->start)
2199 n = n->rb_left;
2200 else
2201 break;
2202 }
2203 if (!n)
2204 return NULL;
2205 for (;;) {
2206 struct sp_node *w = NULL;
2207 struct rb_node *prev = rb_prev(n);
2208 if (!prev)
2209 break;
2210 w = rb_entry(prev, struct sp_node, nd);
2211 if (w->end <= start)
2212 break;
2213 n = prev;
2214 }
2215 return rb_entry(n, struct sp_node, nd);
2216}
2217
2218/*
2219 * Insert a new shared policy into the list. Caller holds sp->lock for
2220 * writing.
2221 */
2222static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223{
2224 struct rb_node **p = &sp->root.rb_node;
2225 struct rb_node *parent = NULL;
2226 struct sp_node *nd;
2227
2228 while (*p) {
2229 parent = *p;
2230 nd = rb_entry(parent, struct sp_node, nd);
2231 if (new->start < nd->start)
2232 p = &(*p)->rb_left;
2233 else if (new->end > nd->end)
2234 p = &(*p)->rb_right;
2235 else
2236 BUG();
2237 }
2238 rb_link_node(&new->nd, parent, p);
2239 rb_insert_color(&new->nd, &sp->root);
2240 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241 new->policy ? new->policy->mode : 0);
2242}
2243
2244/* Find shared policy intersecting idx */
2245struct mempolicy *
2246mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247{
2248 struct mempolicy *pol = NULL;
2249 struct sp_node *sn;
2250
2251 if (!sp->root.rb_node)
2252 return NULL;
2253 read_lock(&sp->lock);
2254 sn = sp_lookup(sp, idx, idx+1);
2255 if (sn) {
2256 mpol_get(sn->policy);
2257 pol = sn->policy;
2258 }
2259 read_unlock(&sp->lock);
2260 return pol;
2261}
2262
2263static void sp_free(struct sp_node *n)
2264{
2265 mpol_put(n->policy);
2266 kmem_cache_free(sn_cache, n);
2267}
2268
2269/**
2270 * mpol_misplaced - check whether current page node is valid in policy
2271 *
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2275 *
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2277 * node id.
2278 *
2279 * Returns:
2280 * -1 - not misplaced, page is in the right node
2281 * node - node id where the page should be
2282 *
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
2285 */
2286int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287{
2288 struct mempolicy *pol;
2289 struct zoneref *z;
2290 int curnid = page_to_nid(page);
2291 unsigned long pgoff;
2292 int thiscpu = raw_smp_processor_id();
2293 int thisnid = cpu_to_node(thiscpu);
2294 int polnid = -1;
2295 int ret = -1;
2296
2297 pol = get_vma_policy(vma, addr);
2298 if (!(pol->flags & MPOL_F_MOF))
2299 goto out;
2300
2301 switch (pol->mode) {
2302 case MPOL_INTERLEAVE:
2303 pgoff = vma->vm_pgoff;
2304 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305 polnid = offset_il_node(pol, pgoff);
2306 break;
2307
2308 case MPOL_PREFERRED:
2309 if (pol->flags & MPOL_F_LOCAL)
2310 polnid = numa_node_id();
2311 else
2312 polnid = pol->v.preferred_node;
2313 break;
2314
2315 case MPOL_BIND:
2316
2317 /*
2318 * allows binding to multiple nodes.
2319 * use current page if in policy nodemask,
2320 * else select nearest allowed node, if any.
2321 * If no allowed nodes, use current [!misplaced].
2322 */
2323 if (node_isset(curnid, pol->v.nodes))
2324 goto out;
2325 z = first_zones_zonelist(
2326 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327 gfp_zone(GFP_HIGHUSER),
2328 &pol->v.nodes);
2329 polnid = z->zone->node;
2330 break;
2331
2332 default:
2333 BUG();
2334 }
2335
2336 /* Migrate the page towards the node whose CPU is referencing it */
2337 if (pol->flags & MPOL_F_MORON) {
2338 polnid = thisnid;
2339
2340 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2341 goto out;
2342 }
2343
2344 if (curnid != polnid)
2345 ret = polnid;
2346out:
2347 mpol_cond_put(pol);
2348
2349 return ret;
2350}
2351
2352/*
2353 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2354 * dropped after task->mempolicy is set to NULL so that any allocation done as
2355 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356 * policy.
2357 */
2358void mpol_put_task_policy(struct task_struct *task)
2359{
2360 struct mempolicy *pol;
2361
2362 task_lock(task);
2363 pol = task->mempolicy;
2364 task->mempolicy = NULL;
2365 task_unlock(task);
2366 mpol_put(pol);
2367}
2368
2369static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370{
2371 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372 rb_erase(&n->nd, &sp->root);
2373 sp_free(n);
2374}
2375
2376static void sp_node_init(struct sp_node *node, unsigned long start,
2377 unsigned long end, struct mempolicy *pol)
2378{
2379 node->start = start;
2380 node->end = end;
2381 node->policy = pol;
2382}
2383
2384static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385 struct mempolicy *pol)
2386{
2387 struct sp_node *n;
2388 struct mempolicy *newpol;
2389
2390 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391 if (!n)
2392 return NULL;
2393
2394 newpol = mpol_dup(pol);
2395 if (IS_ERR(newpol)) {
2396 kmem_cache_free(sn_cache, n);
2397 return NULL;
2398 }
2399 newpol->flags |= MPOL_F_SHARED;
2400 sp_node_init(n, start, end, newpol);
2401
2402 return n;
2403}
2404
2405/* Replace a policy range. */
2406static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407 unsigned long end, struct sp_node *new)
2408{
2409 struct sp_node *n;
2410 struct sp_node *n_new = NULL;
2411 struct mempolicy *mpol_new = NULL;
2412 int ret = 0;
2413
2414restart:
2415 write_lock(&sp->lock);
2416 n = sp_lookup(sp, start, end);
2417 /* Take care of old policies in the same range. */
2418 while (n && n->start < end) {
2419 struct rb_node *next = rb_next(&n->nd);
2420 if (n->start >= start) {
2421 if (n->end <= end)
2422 sp_delete(sp, n);
2423 else
2424 n->start = end;
2425 } else {
2426 /* Old policy spanning whole new range. */
2427 if (n->end > end) {
2428 if (!n_new)
2429 goto alloc_new;
2430
2431 *mpol_new = *n->policy;
2432 atomic_set(&mpol_new->refcnt, 1);
2433 sp_node_init(n_new, end, n->end, mpol_new);
2434 n->end = start;
2435 sp_insert(sp, n_new);
2436 n_new = NULL;
2437 mpol_new = NULL;
2438 break;
2439 } else
2440 n->end = start;
2441 }
2442 if (!next)
2443 break;
2444 n = rb_entry(next, struct sp_node, nd);
2445 }
2446 if (new)
2447 sp_insert(sp, new);
2448 write_unlock(&sp->lock);
2449 ret = 0;
2450
2451err_out:
2452 if (mpol_new)
2453 mpol_put(mpol_new);
2454 if (n_new)
2455 kmem_cache_free(sn_cache, n_new);
2456
2457 return ret;
2458
2459alloc_new:
2460 write_unlock(&sp->lock);
2461 ret = -ENOMEM;
2462 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463 if (!n_new)
2464 goto err_out;
2465 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466 if (!mpol_new)
2467 goto err_out;
2468 goto restart;
2469}
2470
2471/**
2472 * mpol_shared_policy_init - initialize shared policy for inode
2473 * @sp: pointer to inode shared policy
2474 * @mpol: struct mempolicy to install
2475 *
2476 * Install non-NULL @mpol in inode's shared policy rb-tree.
2477 * On entry, the current task has a reference on a non-NULL @mpol.
2478 * This must be released on exit.
2479 * This is called at get_inode() calls and we can use GFP_KERNEL.
2480 */
2481void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482{
2483 int ret;
2484
2485 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2486 rwlock_init(&sp->lock);
2487
2488 if (mpol) {
2489 struct vm_area_struct pvma;
2490 struct mempolicy *new;
2491 NODEMASK_SCRATCH(scratch);
2492
2493 if (!scratch)
2494 goto put_mpol;
2495 /* contextualize the tmpfs mount point mempolicy */
2496 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497 if (IS_ERR(new))
2498 goto free_scratch; /* no valid nodemask intersection */
2499
2500 task_lock(current);
2501 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502 task_unlock(current);
2503 if (ret)
2504 goto put_new;
2505
2506 /* Create pseudo-vma that contains just the policy */
2507 memset(&pvma, 0, sizeof(struct vm_area_struct));
2508 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2509 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510
2511put_new:
2512 mpol_put(new); /* drop initial ref */
2513free_scratch:
2514 NODEMASK_SCRATCH_FREE(scratch);
2515put_mpol:
2516 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2517 }
2518}
2519
2520int mpol_set_shared_policy(struct shared_policy *info,
2521 struct vm_area_struct *vma, struct mempolicy *npol)
2522{
2523 int err;
2524 struct sp_node *new = NULL;
2525 unsigned long sz = vma_pages(vma);
2526
2527 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528 vma->vm_pgoff,
2529 sz, npol ? npol->mode : -1,
2530 npol ? npol->flags : -1,
2531 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532
2533 if (npol) {
2534 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535 if (!new)
2536 return -ENOMEM;
2537 }
2538 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539 if (err && new)
2540 sp_free(new);
2541 return err;
2542}
2543
2544/* Free a backing policy store on inode delete. */
2545void mpol_free_shared_policy(struct shared_policy *p)
2546{
2547 struct sp_node *n;
2548 struct rb_node *next;
2549
2550 if (!p->root.rb_node)
2551 return;
2552 write_lock(&p->lock);
2553 next = rb_first(&p->root);
2554 while (next) {
2555 n = rb_entry(next, struct sp_node, nd);
2556 next = rb_next(&n->nd);
2557 sp_delete(p, n);
2558 }
2559 write_unlock(&p->lock);
2560}
2561
2562#ifdef CONFIG_NUMA_BALANCING
2563static int __initdata numabalancing_override;
2564
2565static void __init check_numabalancing_enable(void)
2566{
2567 bool numabalancing_default = false;
2568
2569 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570 numabalancing_default = true;
2571
2572 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573 if (numabalancing_override)
2574 set_numabalancing_state(numabalancing_override == 1);
2575
2576 if (num_online_nodes() > 1 && !numabalancing_override) {
2577 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578 numabalancing_default ? "Enabling" : "Disabling");
2579 set_numabalancing_state(numabalancing_default);
2580 }
2581}
2582
2583static int __init setup_numabalancing(char *str)
2584{
2585 int ret = 0;
2586 if (!str)
2587 goto out;
2588
2589 if (!strcmp(str, "enable")) {
2590 numabalancing_override = 1;
2591 ret = 1;
2592 } else if (!strcmp(str, "disable")) {
2593 numabalancing_override = -1;
2594 ret = 1;
2595 }
2596out:
2597 if (!ret)
2598 pr_warn("Unable to parse numa_balancing=\n");
2599
2600 return ret;
2601}
2602__setup("numa_balancing=", setup_numabalancing);
2603#else
2604static inline void __init check_numabalancing_enable(void)
2605{
2606}
2607#endif /* CONFIG_NUMA_BALANCING */
2608
2609/* assumes fs == KERNEL_DS */
2610void __init numa_policy_init(void)
2611{
2612 nodemask_t interleave_nodes;
2613 unsigned long largest = 0;
2614 int nid, prefer = 0;
2615
2616 policy_cache = kmem_cache_create("numa_policy",
2617 sizeof(struct mempolicy),
2618 0, SLAB_PANIC, NULL);
2619
2620 sn_cache = kmem_cache_create("shared_policy_node",
2621 sizeof(struct sp_node),
2622 0, SLAB_PANIC, NULL);
2623
2624 for_each_node(nid) {
2625 preferred_node_policy[nid] = (struct mempolicy) {
2626 .refcnt = ATOMIC_INIT(1),
2627 .mode = MPOL_PREFERRED,
2628 .flags = MPOL_F_MOF | MPOL_F_MORON,
2629 .v = { .preferred_node = nid, },
2630 };
2631 }
2632
2633 /*
2634 * Set interleaving policy for system init. Interleaving is only
2635 * enabled across suitably sized nodes (default is >= 16MB), or
2636 * fall back to the largest node if they're all smaller.
2637 */
2638 nodes_clear(interleave_nodes);
2639 for_each_node_state(nid, N_MEMORY) {
2640 unsigned long total_pages = node_present_pages(nid);
2641
2642 /* Preserve the largest node */
2643 if (largest < total_pages) {
2644 largest = total_pages;
2645 prefer = nid;
2646 }
2647
2648 /* Interleave this node? */
2649 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650 node_set(nid, interleave_nodes);
2651 }
2652
2653 /* All too small, use the largest */
2654 if (unlikely(nodes_empty(interleave_nodes)))
2655 node_set(prefer, interleave_nodes);
2656
2657 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658 pr_err("%s: interleaving failed\n", __func__);
2659
2660 check_numabalancing_enable();
2661}
2662
2663/* Reset policy of current process to default */
2664void numa_default_policy(void)
2665{
2666 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667}
2668
2669/*
2670 * Parse and format mempolicy from/to strings
2671 */
2672
2673/*
2674 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2675 */
2676static const char * const policy_modes[] =
2677{
2678 [MPOL_DEFAULT] = "default",
2679 [MPOL_PREFERRED] = "prefer",
2680 [MPOL_BIND] = "bind",
2681 [MPOL_INTERLEAVE] = "interleave",
2682 [MPOL_LOCAL] = "local",
2683};
2684
2685
2686#ifdef CONFIG_TMPFS
2687/**
2688 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689 * @str: string containing mempolicy to parse
2690 * @mpol: pointer to struct mempolicy pointer, returned on success.
2691 *
2692 * Format of input:
2693 * <mode>[=<flags>][:<nodelist>]
2694 *
2695 * On success, returns 0, else 1
2696 */
2697int mpol_parse_str(char *str, struct mempolicy **mpol)
2698{
2699 struct mempolicy *new = NULL;
2700 unsigned short mode;
2701 unsigned short mode_flags;
2702 nodemask_t nodes;
2703 char *nodelist = strchr(str, ':');
2704 char *flags = strchr(str, '=');
2705 int err = 1;
2706
2707 if (nodelist) {
2708 /* NUL-terminate mode or flags string */
2709 *nodelist++ = '\0';
2710 if (nodelist_parse(nodelist, nodes))
2711 goto out;
2712 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713 goto out;
2714 } else
2715 nodes_clear(nodes);
2716
2717 if (flags)
2718 *flags++ = '\0'; /* terminate mode string */
2719
2720 for (mode = 0; mode < MPOL_MAX; mode++) {
2721 if (!strcmp(str, policy_modes[mode])) {
2722 break;
2723 }
2724 }
2725 if (mode >= MPOL_MAX)
2726 goto out;
2727
2728 switch (mode) {
2729 case MPOL_PREFERRED:
2730 /*
2731 * Insist on a nodelist of one node only
2732 */
2733 if (nodelist) {
2734 char *rest = nodelist;
2735 while (isdigit(*rest))
2736 rest++;
2737 if (*rest)
2738 goto out;
2739 }
2740 break;
2741 case MPOL_INTERLEAVE:
2742 /*
2743 * Default to online nodes with memory if no nodelist
2744 */
2745 if (!nodelist)
2746 nodes = node_states[N_MEMORY];
2747 break;
2748 case MPOL_LOCAL:
2749 /*
2750 * Don't allow a nodelist; mpol_new() checks flags
2751 */
2752 if (nodelist)
2753 goto out;
2754 mode = MPOL_PREFERRED;
2755 break;
2756 case MPOL_DEFAULT:
2757 /*
2758 * Insist on a empty nodelist
2759 */
2760 if (!nodelist)
2761 err = 0;
2762 goto out;
2763 case MPOL_BIND:
2764 /*
2765 * Insist on a nodelist
2766 */
2767 if (!nodelist)
2768 goto out;
2769 }
2770
2771 mode_flags = 0;
2772 if (flags) {
2773 /*
2774 * Currently, we only support two mutually exclusive
2775 * mode flags.
2776 */
2777 if (!strcmp(flags, "static"))
2778 mode_flags |= MPOL_F_STATIC_NODES;
2779 else if (!strcmp(flags, "relative"))
2780 mode_flags |= MPOL_F_RELATIVE_NODES;
2781 else
2782 goto out;
2783 }
2784
2785 new = mpol_new(mode, mode_flags, &nodes);
2786 if (IS_ERR(new))
2787 goto out;
2788
2789 /*
2790 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792 */
2793 if (mode != MPOL_PREFERRED)
2794 new->v.nodes = nodes;
2795 else if (nodelist)
2796 new->v.preferred_node = first_node(nodes);
2797 else
2798 new->flags |= MPOL_F_LOCAL;
2799
2800 /*
2801 * Save nodes for contextualization: this will be used to "clone"
2802 * the mempolicy in a specific context [cpuset] at a later time.
2803 */
2804 new->w.user_nodemask = nodes;
2805
2806 err = 0;
2807
2808out:
2809 /* Restore string for error message */
2810 if (nodelist)
2811 *--nodelist = ':';
2812 if (flags)
2813 *--flags = '=';
2814 if (!err)
2815 *mpol = new;
2816 return err;
2817}
2818#endif /* CONFIG_TMPFS */
2819
2820/**
2821 * mpol_to_str - format a mempolicy structure for printing
2822 * @buffer: to contain formatted mempolicy string
2823 * @maxlen: length of @buffer
2824 * @pol: pointer to mempolicy to be formatted
2825 *
2826 * Convert @pol into a string. If @buffer is too short, truncate the string.
2827 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828 * longest flag, "relative", and to display at least a few node ids.
2829 */
2830void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831{
2832 char *p = buffer;
2833 nodemask_t nodes = NODE_MASK_NONE;
2834 unsigned short mode = MPOL_DEFAULT;
2835 unsigned short flags = 0;
2836
2837 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838 mode = pol->mode;
2839 flags = pol->flags;
2840 }
2841
2842 switch (mode) {
2843 case MPOL_DEFAULT:
2844 break;
2845 case MPOL_PREFERRED:
2846 if (flags & MPOL_F_LOCAL)
2847 mode = MPOL_LOCAL;
2848 else
2849 node_set(pol->v.preferred_node, nodes);
2850 break;
2851 case MPOL_BIND:
2852 case MPOL_INTERLEAVE:
2853 nodes = pol->v.nodes;
2854 break;
2855 default:
2856 WARN_ON_ONCE(1);
2857 snprintf(p, maxlen, "unknown");
2858 return;
2859 }
2860
2861 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862
2863 if (flags & MPOL_MODE_FLAGS) {
2864 p += snprintf(p, buffer + maxlen - p, "=");
2865
2866 /*
2867 * Currently, the only defined flags are mutually exclusive
2868 */
2869 if (flags & MPOL_F_STATIC_NODES)
2870 p += snprintf(p, buffer + maxlen - p, "static");
2871 else if (flags & MPOL_F_RELATIVE_NODES)
2872 p += snprintf(p, buffer + maxlen - p, "relative");
2873 }
2874
2875 if (!nodes_empty(nodes))
2876 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877 nodemask_pr_args(&nodes));
2878}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/pagewalk.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/sched/mm.h>
77#include <linux/sched/numa_balancing.h>
78#include <linux/sched/task.h>
79#include <linux/nodemask.h>
80#include <linux/cpuset.h>
81#include <linux/slab.h>
82#include <linux/string.h>
83#include <linux/export.h>
84#include <linux/nsproxy.h>
85#include <linux/interrupt.h>
86#include <linux/init.h>
87#include <linux/compat.h>
88#include <linux/ptrace.h>
89#include <linux/swap.h>
90#include <linux/seq_file.h>
91#include <linux/proc_fs.h>
92#include <linux/migrate.h>
93#include <linux/ksm.h>
94#include <linux/rmap.h>
95#include <linux/security.h>
96#include <linux/syscalls.h>
97#include <linux/ctype.h>
98#include <linux/mm_inline.h>
99#include <linux/mmu_notifier.h>
100#include <linux/printk.h>
101#include <linux/swapops.h>
102
103#include <asm/tlbflush.h>
104#include <linux/uaccess.h>
105
106#include "internal.h"
107
108/* Internal flags */
109#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112static struct kmem_cache *policy_cache;
113static struct kmem_cache *sn_cache;
114
115/* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117enum zone_type policy_zone = 0;
118
119/*
120 * run-time system-wide default policy => local allocation
121 */
122static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_LOCAL,
125};
126
127static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128
129/**
130 * numa_map_to_online_node - Find closest online node
131 * @node: Node id to start the search
132 *
133 * Lookup the next closest node by distance if @nid is not online.
134 */
135int numa_map_to_online_node(int node)
136{
137 int min_dist = INT_MAX, dist, n, min_node;
138
139 if (node == NUMA_NO_NODE || node_online(node))
140 return node;
141
142 min_node = node;
143 for_each_online_node(n) {
144 dist = node_distance(node, n);
145 if (dist < min_dist) {
146 min_dist = dist;
147 min_node = n;
148 }
149 }
150
151 return min_node;
152}
153EXPORT_SYMBOL_GPL(numa_map_to_online_node);
154
155struct mempolicy *get_task_policy(struct task_struct *p)
156{
157 struct mempolicy *pol = p->mempolicy;
158 int node;
159
160 if (pol)
161 return pol;
162
163 node = numa_node_id();
164 if (node != NUMA_NO_NODE) {
165 pol = &preferred_node_policy[node];
166 /* preferred_node_policy is not initialised early in boot */
167 if (pol->mode)
168 return pol;
169 }
170
171 return &default_policy;
172}
173
174static const struct mempolicy_operations {
175 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
176 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
177} mpol_ops[MPOL_MAX];
178
179static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
180{
181 return pol->flags & MPOL_MODE_FLAGS;
182}
183
184static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
185 const nodemask_t *rel)
186{
187 nodemask_t tmp;
188 nodes_fold(tmp, *orig, nodes_weight(*rel));
189 nodes_onto(*ret, tmp, *rel);
190}
191
192static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
193{
194 if (nodes_empty(*nodes))
195 return -EINVAL;
196 pol->nodes = *nodes;
197 return 0;
198}
199
200static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
201{
202 if (nodes_empty(*nodes))
203 return -EINVAL;
204
205 nodes_clear(pol->nodes);
206 node_set(first_node(*nodes), pol->nodes);
207 return 0;
208}
209
210static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
211{
212 if (nodes_empty(*nodes))
213 return -EINVAL;
214 pol->nodes = *nodes;
215 return 0;
216}
217
218/*
219 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
220 * any, for the new policy. mpol_new() has already validated the nodes
221 * parameter with respect to the policy mode and flags.
222 *
223 * Must be called holding task's alloc_lock to protect task's mems_allowed
224 * and mempolicy. May also be called holding the mmap_lock for write.
225 */
226static int mpol_set_nodemask(struct mempolicy *pol,
227 const nodemask_t *nodes, struct nodemask_scratch *nsc)
228{
229 int ret;
230
231 /*
232 * Default (pol==NULL) resp. local memory policies are not a
233 * subject of any remapping. They also do not need any special
234 * constructor.
235 */
236 if (!pol || pol->mode == MPOL_LOCAL)
237 return 0;
238
239 /* Check N_MEMORY */
240 nodes_and(nsc->mask1,
241 cpuset_current_mems_allowed, node_states[N_MEMORY]);
242
243 VM_BUG_ON(!nodes);
244
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
254
255 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
256 return ret;
257}
258
259/*
260 * This function just creates a new policy, does some check and simple
261 * initialization. You must invoke mpol_set_nodemask() to set nodes.
262 */
263static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 nodemask_t *nodes)
265{
266 struct mempolicy *policy;
267
268 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
269 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
270
271 if (mode == MPOL_DEFAULT) {
272 if (nodes && !nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 return NULL;
275 }
276 VM_BUG_ON(!nodes);
277
278 /*
279 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
280 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
281 * All other modes require a valid pointer to a non-empty nodemask.
282 */
283 if (mode == MPOL_PREFERRED) {
284 if (nodes_empty(*nodes)) {
285 if (((flags & MPOL_F_STATIC_NODES) ||
286 (flags & MPOL_F_RELATIVE_NODES)))
287 return ERR_PTR(-EINVAL);
288
289 mode = MPOL_LOCAL;
290 }
291 } else if (mode == MPOL_LOCAL) {
292 if (!nodes_empty(*nodes) ||
293 (flags & MPOL_F_STATIC_NODES) ||
294 (flags & MPOL_F_RELATIVE_NODES))
295 return ERR_PTR(-EINVAL);
296 } else if (nodes_empty(*nodes))
297 return ERR_PTR(-EINVAL);
298 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
299 if (!policy)
300 return ERR_PTR(-ENOMEM);
301 atomic_set(&policy->refcnt, 1);
302 policy->mode = mode;
303 policy->flags = flags;
304
305 return policy;
306}
307
308/* Slow path of a mpol destructor. */
309void __mpol_put(struct mempolicy *p)
310{
311 if (!atomic_dec_and_test(&p->refcnt))
312 return;
313 kmem_cache_free(policy_cache, p);
314}
315
316static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
317{
318}
319
320static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
321{
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 *nodes);
331 pol->w.cpuset_mems_allowed = *nodes;
332 }
333
334 if (nodes_empty(tmp))
335 tmp = *nodes;
336
337 pol->nodes = tmp;
338}
339
340static void mpol_rebind_preferred(struct mempolicy *pol,
341 const nodemask_t *nodes)
342{
343 pol->w.cpuset_mems_allowed = *nodes;
344}
345
346/*
347 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 *
349 * Per-vma policies are protected by mmap_lock. Allocations using per-task
350 * policies are protected by task->mems_allowed_seq to prevent a premature
351 * OOM/allocation failure due to parallel nodemask modification.
352 */
353static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354{
355 if (!pol)
356 return;
357 if (!mpol_store_user_nodemask(pol) &&
358 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
359 return;
360
361 mpol_ops[pol->mode].rebind(pol, newmask);
362}
363
364/*
365 * Wrapper for mpol_rebind_policy() that just requires task
366 * pointer, and updates task mempolicy.
367 *
368 * Called with task's alloc_lock held.
369 */
370
371void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372{
373 mpol_rebind_policy(tsk->mempolicy, new);
374}
375
376/*
377 * Rebind each vma in mm to new nodemask.
378 *
379 * Call holding a reference to mm. Takes mm->mmap_lock during call.
380 */
381
382void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383{
384 struct vm_area_struct *vma;
385
386 mmap_write_lock(mm);
387 for (vma = mm->mmap; vma; vma = vma->vm_next)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
390}
391
392static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 [MPOL_DEFAULT] = {
394 .rebind = mpol_rebind_default,
395 },
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_interleave,
398 .rebind = mpol_rebind_nodemask,
399 },
400 [MPOL_PREFERRED] = {
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
403 },
404 [MPOL_BIND] = {
405 .create = mpol_new_bind,
406 .rebind = mpol_rebind_nodemask,
407 },
408 [MPOL_LOCAL] = {
409 .rebind = mpol_rebind_default,
410 },
411};
412
413static int migrate_page_add(struct page *page, struct list_head *pagelist,
414 unsigned long flags);
415
416struct queue_pages {
417 struct list_head *pagelist;
418 unsigned long flags;
419 nodemask_t *nmask;
420 unsigned long start;
421 unsigned long end;
422 struct vm_area_struct *first;
423};
424
425/*
426 * Check if the page's nid is in qp->nmask.
427 *
428 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
429 * in the invert of qp->nmask.
430 */
431static inline bool queue_pages_required(struct page *page,
432 struct queue_pages *qp)
433{
434 int nid = page_to_nid(page);
435 unsigned long flags = qp->flags;
436
437 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
438}
439
440/*
441 * queue_pages_pmd() has four possible return values:
442 * 0 - pages are placed on the right node or queued successfully, or
443 * special page is met, i.e. huge zero page.
444 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
445 * specified.
446 * 2 - THP was split.
447 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
448 * existing page was already on a node that does not follow the
449 * policy.
450 */
451static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
452 unsigned long end, struct mm_walk *walk)
453 __releases(ptl)
454{
455 int ret = 0;
456 struct page *page;
457 struct queue_pages *qp = walk->private;
458 unsigned long flags;
459
460 if (unlikely(is_pmd_migration_entry(*pmd))) {
461 ret = -EIO;
462 goto unlock;
463 }
464 page = pmd_page(*pmd);
465 if (is_huge_zero_page(page)) {
466 spin_unlock(ptl);
467 walk->action = ACTION_CONTINUE;
468 goto out;
469 }
470 if (!queue_pages_required(page, qp))
471 goto unlock;
472
473 flags = qp->flags;
474 /* go to thp migration */
475 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
476 if (!vma_migratable(walk->vma) ||
477 migrate_page_add(page, qp->pagelist, flags)) {
478 ret = 1;
479 goto unlock;
480 }
481 } else
482 ret = -EIO;
483unlock:
484 spin_unlock(ptl);
485out:
486 return ret;
487}
488
489/*
490 * Scan through pages checking if pages follow certain conditions,
491 * and move them to the pagelist if they do.
492 *
493 * queue_pages_pte_range() has three possible return values:
494 * 0 - pages are placed on the right node or queued successfully, or
495 * special page is met, i.e. zero page.
496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
497 * specified.
498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
499 * on a node that does not follow the policy.
500 */
501static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
502 unsigned long end, struct mm_walk *walk)
503{
504 struct vm_area_struct *vma = walk->vma;
505 struct page *page;
506 struct queue_pages *qp = walk->private;
507 unsigned long flags = qp->flags;
508 int ret;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
511 spinlock_t *ptl;
512
513 ptl = pmd_trans_huge_lock(pmd, vma);
514 if (ptl) {
515 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
516 if (ret != 2)
517 return ret;
518 }
519 /* THP was split, fall through to pte walk */
520
521 if (pmd_trans_unstable(pmd))
522 return 0;
523
524 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
525 for (; addr != end; pte++, addr += PAGE_SIZE) {
526 if (!pte_present(*pte))
527 continue;
528 page = vm_normal_page(vma, addr, *pte);
529 if (!page)
530 continue;
531 /*
532 * vm_normal_page() filters out zero pages, but there might
533 * still be PageReserved pages to skip, perhaps in a VDSO.
534 */
535 if (PageReserved(page))
536 continue;
537 if (!queue_pages_required(page, qp))
538 continue;
539 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
540 /* MPOL_MF_STRICT must be specified if we get here */
541 if (!vma_migratable(vma)) {
542 has_unmovable = true;
543 break;
544 }
545
546 /*
547 * Do not abort immediately since there may be
548 * temporary off LRU pages in the range. Still
549 * need migrate other LRU pages.
550 */
551 if (migrate_page_add(page, qp->pagelist, flags))
552 has_unmovable = true;
553 } else
554 break;
555 }
556 pte_unmap_unlock(mapped_pte, ptl);
557 cond_resched();
558
559 if (has_unmovable)
560 return 1;
561
562 return addr != end ? -EIO : 0;
563}
564
565static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
566 unsigned long addr, unsigned long end,
567 struct mm_walk *walk)
568{
569 int ret = 0;
570#ifdef CONFIG_HUGETLB_PAGE
571 struct queue_pages *qp = walk->private;
572 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 struct page *page;
574 spinlock_t *ptl;
575 pte_t entry;
576
577 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
578 entry = huge_ptep_get(pte);
579 if (!pte_present(entry))
580 goto unlock;
581 page = pte_page(entry);
582 if (!queue_pages_required(page, qp))
583 goto unlock;
584
585 if (flags == MPOL_MF_STRICT) {
586 /*
587 * STRICT alone means only detecting misplaced page and no
588 * need to further check other vma.
589 */
590 ret = -EIO;
591 goto unlock;
592 }
593
594 if (!vma_migratable(walk->vma)) {
595 /*
596 * Must be STRICT with MOVE*, otherwise .test_walk() have
597 * stopped walking current vma.
598 * Detecting misplaced page but allow migrating pages which
599 * have been queued.
600 */
601 ret = 1;
602 goto unlock;
603 }
604
605 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
606 if (flags & (MPOL_MF_MOVE_ALL) ||
607 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
608 if (!isolate_huge_page(page, qp->pagelist) &&
609 (flags & MPOL_MF_STRICT))
610 /*
611 * Failed to isolate page but allow migrating pages
612 * which have been queued.
613 */
614 ret = 1;
615 }
616unlock:
617 spin_unlock(ptl);
618#else
619 BUG();
620#endif
621 return ret;
622}
623
624#ifdef CONFIG_NUMA_BALANCING
625/*
626 * This is used to mark a range of virtual addresses to be inaccessible.
627 * These are later cleared by a NUMA hinting fault. Depending on these
628 * faults, pages may be migrated for better NUMA placement.
629 *
630 * This is assuming that NUMA faults are handled using PROT_NONE. If
631 * an architecture makes a different choice, it will need further
632 * changes to the core.
633 */
634unsigned long change_prot_numa(struct vm_area_struct *vma,
635 unsigned long addr, unsigned long end)
636{
637 int nr_updated;
638
639 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
640 if (nr_updated)
641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642
643 return nr_updated;
644}
645#else
646static unsigned long change_prot_numa(struct vm_area_struct *vma,
647 unsigned long addr, unsigned long end)
648{
649 return 0;
650}
651#endif /* CONFIG_NUMA_BALANCING */
652
653static int queue_pages_test_walk(unsigned long start, unsigned long end,
654 struct mm_walk *walk)
655{
656 struct vm_area_struct *vma = walk->vma;
657 struct queue_pages *qp = walk->private;
658 unsigned long endvma = vma->vm_end;
659 unsigned long flags = qp->flags;
660
661 /* range check first */
662 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
663
664 if (!qp->first) {
665 qp->first = vma;
666 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
667 (qp->start < vma->vm_start))
668 /* hole at head side of range */
669 return -EFAULT;
670 }
671 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
672 ((vma->vm_end < qp->end) &&
673 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
674 /* hole at middle or tail of range */
675 return -EFAULT;
676
677 /*
678 * Need check MPOL_MF_STRICT to return -EIO if possible
679 * regardless of vma_migratable
680 */
681 if (!vma_migratable(vma) &&
682 !(flags & MPOL_MF_STRICT))
683 return 1;
684
685 if (endvma > end)
686 endvma = end;
687
688 if (flags & MPOL_MF_LAZY) {
689 /* Similar to task_numa_work, skip inaccessible VMAs */
690 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
691 !(vma->vm_flags & VM_MIXEDMAP))
692 change_prot_numa(vma, start, endvma);
693 return 1;
694 }
695
696 /* queue pages from current vma */
697 if (flags & MPOL_MF_VALID)
698 return 0;
699 return 1;
700}
701
702static const struct mm_walk_ops queue_pages_walk_ops = {
703 .hugetlb_entry = queue_pages_hugetlb,
704 .pmd_entry = queue_pages_pte_range,
705 .test_walk = queue_pages_test_walk,
706};
707
708/*
709 * Walk through page tables and collect pages to be migrated.
710 *
711 * If pages found in a given range are on a set of nodes (determined by
712 * @nodes and @flags,) it's isolated and queued to the pagelist which is
713 * passed via @private.
714 *
715 * queue_pages_range() has three possible return values:
716 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
717 * specified.
718 * 0 - queue pages successfully or no misplaced page.
719 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
720 * memory range specified by nodemask and maxnode points outside
721 * your accessible address space (-EFAULT)
722 */
723static int
724queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
725 nodemask_t *nodes, unsigned long flags,
726 struct list_head *pagelist)
727{
728 int err;
729 struct queue_pages qp = {
730 .pagelist = pagelist,
731 .flags = flags,
732 .nmask = nodes,
733 .start = start,
734 .end = end,
735 .first = NULL,
736 };
737
738 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
739
740 if (!qp.first)
741 /* whole range in hole */
742 err = -EFAULT;
743
744 return err;
745}
746
747/*
748 * Apply policy to a single VMA
749 * This must be called with the mmap_lock held for writing.
750 */
751static int vma_replace_policy(struct vm_area_struct *vma,
752 struct mempolicy *pol)
753{
754 int err;
755 struct mempolicy *old;
756 struct mempolicy *new;
757
758 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
759 vma->vm_start, vma->vm_end, vma->vm_pgoff,
760 vma->vm_ops, vma->vm_file,
761 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
762
763 new = mpol_dup(pol);
764 if (IS_ERR(new))
765 return PTR_ERR(new);
766
767 if (vma->vm_ops && vma->vm_ops->set_policy) {
768 err = vma->vm_ops->set_policy(vma, new);
769 if (err)
770 goto err_out;
771 }
772
773 old = vma->vm_policy;
774 vma->vm_policy = new; /* protected by mmap_lock */
775 mpol_put(old);
776
777 return 0;
778 err_out:
779 mpol_put(new);
780 return err;
781}
782
783/* Step 2: apply policy to a range and do splits. */
784static int mbind_range(struct mm_struct *mm, unsigned long start,
785 unsigned long end, struct mempolicy *new_pol)
786{
787 struct vm_area_struct *next;
788 struct vm_area_struct *prev;
789 struct vm_area_struct *vma;
790 int err = 0;
791 pgoff_t pgoff;
792 unsigned long vmstart;
793 unsigned long vmend;
794
795 vma = find_vma(mm, start);
796 VM_BUG_ON(!vma);
797
798 prev = vma->vm_prev;
799 if (start > vma->vm_start)
800 prev = vma;
801
802 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
803 next = vma->vm_next;
804 vmstart = max(start, vma->vm_start);
805 vmend = min(end, vma->vm_end);
806
807 if (mpol_equal(vma_policy(vma), new_pol))
808 continue;
809
810 pgoff = vma->vm_pgoff +
811 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
812 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
813 vma->anon_vma, vma->vm_file, pgoff,
814 new_pol, vma->vm_userfaultfd_ctx);
815 if (prev) {
816 vma = prev;
817 next = vma->vm_next;
818 if (mpol_equal(vma_policy(vma), new_pol))
819 continue;
820 /* vma_merge() joined vma && vma->next, case 8 */
821 goto replace;
822 }
823 if (vma->vm_start != vmstart) {
824 err = split_vma(vma->vm_mm, vma, vmstart, 1);
825 if (err)
826 goto out;
827 }
828 if (vma->vm_end != vmend) {
829 err = split_vma(vma->vm_mm, vma, vmend, 0);
830 if (err)
831 goto out;
832 }
833 replace:
834 err = vma_replace_policy(vma, new_pol);
835 if (err)
836 goto out;
837 }
838
839 out:
840 return err;
841}
842
843/* Set the process memory policy */
844static long do_set_mempolicy(unsigned short mode, unsigned short flags,
845 nodemask_t *nodes)
846{
847 struct mempolicy *new, *old;
848 NODEMASK_SCRATCH(scratch);
849 int ret;
850
851 if (!scratch)
852 return -ENOMEM;
853
854 new = mpol_new(mode, flags, nodes);
855 if (IS_ERR(new)) {
856 ret = PTR_ERR(new);
857 goto out;
858 }
859
860 ret = mpol_set_nodemask(new, nodes, scratch);
861 if (ret) {
862 mpol_put(new);
863 goto out;
864 }
865 task_lock(current);
866 old = current->mempolicy;
867 current->mempolicy = new;
868 if (new && new->mode == MPOL_INTERLEAVE)
869 current->il_prev = MAX_NUMNODES-1;
870 task_unlock(current);
871 mpol_put(old);
872 ret = 0;
873out:
874 NODEMASK_SCRATCH_FREE(scratch);
875 return ret;
876}
877
878/*
879 * Return nodemask for policy for get_mempolicy() query
880 *
881 * Called with task's alloc_lock held
882 */
883static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
884{
885 nodes_clear(*nodes);
886 if (p == &default_policy)
887 return;
888
889 switch (p->mode) {
890 case MPOL_BIND:
891 case MPOL_INTERLEAVE:
892 case MPOL_PREFERRED:
893 *nodes = p->nodes;
894 break;
895 case MPOL_LOCAL:
896 /* return empty node mask for local allocation */
897 break;
898 default:
899 BUG();
900 }
901}
902
903static int lookup_node(struct mm_struct *mm, unsigned long addr)
904{
905 struct page *p = NULL;
906 int err;
907
908 int locked = 1;
909 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
910 if (err > 0) {
911 err = page_to_nid(p);
912 put_page(p);
913 }
914 if (locked)
915 mmap_read_unlock(mm);
916 return err;
917}
918
919/* Retrieve NUMA policy */
920static long do_get_mempolicy(int *policy, nodemask_t *nmask,
921 unsigned long addr, unsigned long flags)
922{
923 int err;
924 struct mm_struct *mm = current->mm;
925 struct vm_area_struct *vma = NULL;
926 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
927
928 if (flags &
929 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
930 return -EINVAL;
931
932 if (flags & MPOL_F_MEMS_ALLOWED) {
933 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
934 return -EINVAL;
935 *policy = 0; /* just so it's initialized */
936 task_lock(current);
937 *nmask = cpuset_current_mems_allowed;
938 task_unlock(current);
939 return 0;
940 }
941
942 if (flags & MPOL_F_ADDR) {
943 /*
944 * Do NOT fall back to task policy if the
945 * vma/shared policy at addr is NULL. We
946 * want to return MPOL_DEFAULT in this case.
947 */
948 mmap_read_lock(mm);
949 vma = vma_lookup(mm, addr);
950 if (!vma) {
951 mmap_read_unlock(mm);
952 return -EFAULT;
953 }
954 if (vma->vm_ops && vma->vm_ops->get_policy)
955 pol = vma->vm_ops->get_policy(vma, addr);
956 else
957 pol = vma->vm_policy;
958 } else if (addr)
959 return -EINVAL;
960
961 if (!pol)
962 pol = &default_policy; /* indicates default behavior */
963
964 if (flags & MPOL_F_NODE) {
965 if (flags & MPOL_F_ADDR) {
966 /*
967 * Take a refcount on the mpol, lookup_node()
968 * will drop the mmap_lock, so after calling
969 * lookup_node() only "pol" remains valid, "vma"
970 * is stale.
971 */
972 pol_refcount = pol;
973 vma = NULL;
974 mpol_get(pol);
975 err = lookup_node(mm, addr);
976 if (err < 0)
977 goto out;
978 *policy = err;
979 } else if (pol == current->mempolicy &&
980 pol->mode == MPOL_INTERLEAVE) {
981 *policy = next_node_in(current->il_prev, pol->nodes);
982 } else {
983 err = -EINVAL;
984 goto out;
985 }
986 } else {
987 *policy = pol == &default_policy ? MPOL_DEFAULT :
988 pol->mode;
989 /*
990 * Internal mempolicy flags must be masked off before exposing
991 * the policy to userspace.
992 */
993 *policy |= (pol->flags & MPOL_MODE_FLAGS);
994 }
995
996 err = 0;
997 if (nmask) {
998 if (mpol_store_user_nodemask(pol)) {
999 *nmask = pol->w.user_nodemask;
1000 } else {
1001 task_lock(current);
1002 get_policy_nodemask(pol, nmask);
1003 task_unlock(current);
1004 }
1005 }
1006
1007 out:
1008 mpol_cond_put(pol);
1009 if (vma)
1010 mmap_read_unlock(mm);
1011 if (pol_refcount)
1012 mpol_put(pol_refcount);
1013 return err;
1014}
1015
1016#ifdef CONFIG_MIGRATION
1017/*
1018 * page migration, thp tail pages can be passed.
1019 */
1020static int migrate_page_add(struct page *page, struct list_head *pagelist,
1021 unsigned long flags)
1022{
1023 struct page *head = compound_head(page);
1024 /*
1025 * Avoid migrating a page that is shared with others.
1026 */
1027 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1028 if (!isolate_lru_page(head)) {
1029 list_add_tail(&head->lru, pagelist);
1030 mod_node_page_state(page_pgdat(head),
1031 NR_ISOLATED_ANON + page_is_file_lru(head),
1032 thp_nr_pages(head));
1033 } else if (flags & MPOL_MF_STRICT) {
1034 /*
1035 * Non-movable page may reach here. And, there may be
1036 * temporary off LRU pages or non-LRU movable pages.
1037 * Treat them as unmovable pages since they can't be
1038 * isolated, so they can't be moved at the moment. It
1039 * should return -EIO for this case too.
1040 */
1041 return -EIO;
1042 }
1043 }
1044
1045 return 0;
1046}
1047
1048/*
1049 * Migrate pages from one node to a target node.
1050 * Returns error or the number of pages not migrated.
1051 */
1052static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1053 int flags)
1054{
1055 nodemask_t nmask;
1056 LIST_HEAD(pagelist);
1057 int err = 0;
1058 struct migration_target_control mtc = {
1059 .nid = dest,
1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1061 };
1062
1063 nodes_clear(nmask);
1064 node_set(source, nmask);
1065
1066 /*
1067 * This does not "check" the range but isolates all pages that
1068 * need migration. Between passing in the full user address
1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1070 */
1071 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1072 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1073 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1074
1075 if (!list_empty(&pagelist)) {
1076 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1077 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1078 if (err)
1079 putback_movable_pages(&pagelist);
1080 }
1081
1082 return err;
1083}
1084
1085/*
1086 * Move pages between the two nodesets so as to preserve the physical
1087 * layout as much as possible.
1088 *
1089 * Returns the number of page that could not be moved.
1090 */
1091int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092 const nodemask_t *to, int flags)
1093{
1094 int busy = 0;
1095 int err = 0;
1096 nodemask_t tmp;
1097
1098 lru_cache_disable();
1099
1100 mmap_read_lock(mm);
1101
1102 /*
1103 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1104 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1105 * bit in 'tmp', and return that <source, dest> pair for migration.
1106 * The pair of nodemasks 'to' and 'from' define the map.
1107 *
1108 * If no pair of bits is found that way, fallback to picking some
1109 * pair of 'source' and 'dest' bits that are not the same. If the
1110 * 'source' and 'dest' bits are the same, this represents a node
1111 * that will be migrating to itself, so no pages need move.
1112 *
1113 * If no bits are left in 'tmp', or if all remaining bits left
1114 * in 'tmp' correspond to the same bit in 'to', return false
1115 * (nothing left to migrate).
1116 *
1117 * This lets us pick a pair of nodes to migrate between, such that
1118 * if possible the dest node is not already occupied by some other
1119 * source node, minimizing the risk of overloading the memory on a
1120 * node that would happen if we migrated incoming memory to a node
1121 * before migrating outgoing memory source that same node.
1122 *
1123 * A single scan of tmp is sufficient. As we go, we remember the
1124 * most recent <s, d> pair that moved (s != d). If we find a pair
1125 * that not only moved, but what's better, moved to an empty slot
1126 * (d is not set in tmp), then we break out then, with that pair.
1127 * Otherwise when we finish scanning from_tmp, we at least have the
1128 * most recent <s, d> pair that moved. If we get all the way through
1129 * the scan of tmp without finding any node that moved, much less
1130 * moved to an empty node, then there is nothing left worth migrating.
1131 */
1132
1133 tmp = *from;
1134 while (!nodes_empty(tmp)) {
1135 int s, d;
1136 int source = NUMA_NO_NODE;
1137 int dest = 0;
1138
1139 for_each_node_mask(s, tmp) {
1140
1141 /*
1142 * do_migrate_pages() tries to maintain the relative
1143 * node relationship of the pages established between
1144 * threads and memory areas.
1145 *
1146 * However if the number of source nodes is not equal to
1147 * the number of destination nodes we can not preserve
1148 * this node relative relationship. In that case, skip
1149 * copying memory from a node that is in the destination
1150 * mask.
1151 *
1152 * Example: [2,3,4] -> [3,4,5] moves everything.
1153 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1154 */
1155
1156 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1157 (node_isset(s, *to)))
1158 continue;
1159
1160 d = node_remap(s, *from, *to);
1161 if (s == d)
1162 continue;
1163
1164 source = s; /* Node moved. Memorize */
1165 dest = d;
1166
1167 /* dest not in remaining from nodes? */
1168 if (!node_isset(dest, tmp))
1169 break;
1170 }
1171 if (source == NUMA_NO_NODE)
1172 break;
1173
1174 node_clear(source, tmp);
1175 err = migrate_to_node(mm, source, dest, flags);
1176 if (err > 0)
1177 busy += err;
1178 if (err < 0)
1179 break;
1180 }
1181 mmap_read_unlock(mm);
1182
1183 lru_cache_enable();
1184 if (err < 0)
1185 return err;
1186 return busy;
1187
1188}
1189
1190/*
1191 * Allocate a new page for page migration based on vma policy.
1192 * Start by assuming the page is mapped by the same vma as contains @start.
1193 * Search forward from there, if not. N.B., this assumes that the
1194 * list of pages handed to migrate_pages()--which is how we get here--
1195 * is in virtual address order.
1196 */
1197static struct page *new_page(struct page *page, unsigned long start)
1198{
1199 struct vm_area_struct *vma;
1200 unsigned long address;
1201
1202 vma = find_vma(current->mm, start);
1203 while (vma) {
1204 address = page_address_in_vma(page, vma);
1205 if (address != -EFAULT)
1206 break;
1207 vma = vma->vm_next;
1208 }
1209
1210 if (PageHuge(page)) {
1211 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1212 vma, address);
1213 } else if (PageTransHuge(page)) {
1214 struct page *thp;
1215
1216 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1217 HPAGE_PMD_ORDER);
1218 if (!thp)
1219 return NULL;
1220 prep_transhuge_page(thp);
1221 return thp;
1222 }
1223 /*
1224 * if !vma, alloc_page_vma() will use task or system default policy
1225 */
1226 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1227 vma, address);
1228}
1229#else
1230
1231static int migrate_page_add(struct page *page, struct list_head *pagelist,
1232 unsigned long flags)
1233{
1234 return -EIO;
1235}
1236
1237int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1238 const nodemask_t *to, int flags)
1239{
1240 return -ENOSYS;
1241}
1242
1243static struct page *new_page(struct page *page, unsigned long start)
1244{
1245 return NULL;
1246}
1247#endif
1248
1249static long do_mbind(unsigned long start, unsigned long len,
1250 unsigned short mode, unsigned short mode_flags,
1251 nodemask_t *nmask, unsigned long flags)
1252{
1253 struct mm_struct *mm = current->mm;
1254 struct mempolicy *new;
1255 unsigned long end;
1256 int err;
1257 int ret;
1258 LIST_HEAD(pagelist);
1259
1260 if (flags & ~(unsigned long)MPOL_MF_VALID)
1261 return -EINVAL;
1262 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1263 return -EPERM;
1264
1265 if (start & ~PAGE_MASK)
1266 return -EINVAL;
1267
1268 if (mode == MPOL_DEFAULT)
1269 flags &= ~MPOL_MF_STRICT;
1270
1271 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1272 end = start + len;
1273
1274 if (end < start)
1275 return -EINVAL;
1276 if (end == start)
1277 return 0;
1278
1279 new = mpol_new(mode, mode_flags, nmask);
1280 if (IS_ERR(new))
1281 return PTR_ERR(new);
1282
1283 if (flags & MPOL_MF_LAZY)
1284 new->flags |= MPOL_F_MOF;
1285
1286 /*
1287 * If we are using the default policy then operation
1288 * on discontinuous address spaces is okay after all
1289 */
1290 if (!new)
1291 flags |= MPOL_MF_DISCONTIG_OK;
1292
1293 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1294 start, start + len, mode, mode_flags,
1295 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1296
1297 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1298
1299 lru_cache_disable();
1300 }
1301 {
1302 NODEMASK_SCRATCH(scratch);
1303 if (scratch) {
1304 mmap_write_lock(mm);
1305 err = mpol_set_nodemask(new, nmask, scratch);
1306 if (err)
1307 mmap_write_unlock(mm);
1308 } else
1309 err = -ENOMEM;
1310 NODEMASK_SCRATCH_FREE(scratch);
1311 }
1312 if (err)
1313 goto mpol_out;
1314
1315 ret = queue_pages_range(mm, start, end, nmask,
1316 flags | MPOL_MF_INVERT, &pagelist);
1317
1318 if (ret < 0) {
1319 err = ret;
1320 goto up_out;
1321 }
1322
1323 err = mbind_range(mm, start, end, new);
1324
1325 if (!err) {
1326 int nr_failed = 0;
1327
1328 if (!list_empty(&pagelist)) {
1329 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1330 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1331 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1332 if (nr_failed)
1333 putback_movable_pages(&pagelist);
1334 }
1335
1336 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1337 err = -EIO;
1338 } else {
1339up_out:
1340 if (!list_empty(&pagelist))
1341 putback_movable_pages(&pagelist);
1342 }
1343
1344 mmap_write_unlock(mm);
1345mpol_out:
1346 mpol_put(new);
1347 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1348 lru_cache_enable();
1349 return err;
1350}
1351
1352/*
1353 * User space interface with variable sized bitmaps for nodelists.
1354 */
1355
1356/* Copy a node mask from user space. */
1357static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1358 unsigned long maxnode)
1359{
1360 unsigned long k;
1361 unsigned long t;
1362 unsigned long nlongs;
1363 unsigned long endmask;
1364
1365 --maxnode;
1366 nodes_clear(*nodes);
1367 if (maxnode == 0 || !nmask)
1368 return 0;
1369 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1370 return -EINVAL;
1371
1372 nlongs = BITS_TO_LONGS(maxnode);
1373 if ((maxnode % BITS_PER_LONG) == 0)
1374 endmask = ~0UL;
1375 else
1376 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1377
1378 /*
1379 * When the user specified more nodes than supported just check
1380 * if the non supported part is all zero.
1381 *
1382 * If maxnode have more longs than MAX_NUMNODES, check
1383 * the bits in that area first. And then go through to
1384 * check the rest bits which equal or bigger than MAX_NUMNODES.
1385 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1386 */
1387 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1388 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1389 if (get_user(t, nmask + k))
1390 return -EFAULT;
1391 if (k == nlongs - 1) {
1392 if (t & endmask)
1393 return -EINVAL;
1394 } else if (t)
1395 return -EINVAL;
1396 }
1397 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1398 endmask = ~0UL;
1399 }
1400
1401 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1402 unsigned long valid_mask = endmask;
1403
1404 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1405 if (get_user(t, nmask + nlongs - 1))
1406 return -EFAULT;
1407 if (t & valid_mask)
1408 return -EINVAL;
1409 }
1410
1411 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1412 return -EFAULT;
1413 nodes_addr(*nodes)[nlongs-1] &= endmask;
1414 return 0;
1415}
1416
1417/* Copy a kernel node mask to user space */
1418static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1419 nodemask_t *nodes)
1420{
1421 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1422 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1423
1424 if (copy > nbytes) {
1425 if (copy > PAGE_SIZE)
1426 return -EINVAL;
1427 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1428 return -EFAULT;
1429 copy = nbytes;
1430 }
1431 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1432}
1433
1434/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1435static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1436{
1437 *flags = *mode & MPOL_MODE_FLAGS;
1438 *mode &= ~MPOL_MODE_FLAGS;
1439 if ((unsigned int)(*mode) >= MPOL_MAX)
1440 return -EINVAL;
1441 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1442 return -EINVAL;
1443 if (*flags & MPOL_F_NUMA_BALANCING) {
1444 if (*mode != MPOL_BIND)
1445 return -EINVAL;
1446 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1447 }
1448 return 0;
1449}
1450
1451static long kernel_mbind(unsigned long start, unsigned long len,
1452 unsigned long mode, const unsigned long __user *nmask,
1453 unsigned long maxnode, unsigned int flags)
1454{
1455 unsigned short mode_flags;
1456 nodemask_t nodes;
1457 int lmode = mode;
1458 int err;
1459
1460 start = untagged_addr(start);
1461 err = sanitize_mpol_flags(&lmode, &mode_flags);
1462 if (err)
1463 return err;
1464
1465 err = get_nodes(&nodes, nmask, maxnode);
1466 if (err)
1467 return err;
1468
1469 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1470}
1471
1472SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1473 unsigned long, mode, const unsigned long __user *, nmask,
1474 unsigned long, maxnode, unsigned int, flags)
1475{
1476 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1477}
1478
1479/* Set the process memory policy */
1480static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1481 unsigned long maxnode)
1482{
1483 unsigned short mode_flags;
1484 nodemask_t nodes;
1485 int lmode = mode;
1486 int err;
1487
1488 err = sanitize_mpol_flags(&lmode, &mode_flags);
1489 if (err)
1490 return err;
1491
1492 err = get_nodes(&nodes, nmask, maxnode);
1493 if (err)
1494 return err;
1495
1496 return do_set_mempolicy(lmode, mode_flags, &nodes);
1497}
1498
1499SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1500 unsigned long, maxnode)
1501{
1502 return kernel_set_mempolicy(mode, nmask, maxnode);
1503}
1504
1505static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1506 const unsigned long __user *old_nodes,
1507 const unsigned long __user *new_nodes)
1508{
1509 struct mm_struct *mm = NULL;
1510 struct task_struct *task;
1511 nodemask_t task_nodes;
1512 int err;
1513 nodemask_t *old;
1514 nodemask_t *new;
1515 NODEMASK_SCRATCH(scratch);
1516
1517 if (!scratch)
1518 return -ENOMEM;
1519
1520 old = &scratch->mask1;
1521 new = &scratch->mask2;
1522
1523 err = get_nodes(old, old_nodes, maxnode);
1524 if (err)
1525 goto out;
1526
1527 err = get_nodes(new, new_nodes, maxnode);
1528 if (err)
1529 goto out;
1530
1531 /* Find the mm_struct */
1532 rcu_read_lock();
1533 task = pid ? find_task_by_vpid(pid) : current;
1534 if (!task) {
1535 rcu_read_unlock();
1536 err = -ESRCH;
1537 goto out;
1538 }
1539 get_task_struct(task);
1540
1541 err = -EINVAL;
1542
1543 /*
1544 * Check if this process has the right to modify the specified process.
1545 * Use the regular "ptrace_may_access()" checks.
1546 */
1547 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1548 rcu_read_unlock();
1549 err = -EPERM;
1550 goto out_put;
1551 }
1552 rcu_read_unlock();
1553
1554 task_nodes = cpuset_mems_allowed(task);
1555 /* Is the user allowed to access the target nodes? */
1556 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1557 err = -EPERM;
1558 goto out_put;
1559 }
1560
1561 task_nodes = cpuset_mems_allowed(current);
1562 nodes_and(*new, *new, task_nodes);
1563 if (nodes_empty(*new))
1564 goto out_put;
1565
1566 err = security_task_movememory(task);
1567 if (err)
1568 goto out_put;
1569
1570 mm = get_task_mm(task);
1571 put_task_struct(task);
1572
1573 if (!mm) {
1574 err = -EINVAL;
1575 goto out;
1576 }
1577
1578 err = do_migrate_pages(mm, old, new,
1579 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1580
1581 mmput(mm);
1582out:
1583 NODEMASK_SCRATCH_FREE(scratch);
1584
1585 return err;
1586
1587out_put:
1588 put_task_struct(task);
1589 goto out;
1590
1591}
1592
1593SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1594 const unsigned long __user *, old_nodes,
1595 const unsigned long __user *, new_nodes)
1596{
1597 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1598}
1599
1600
1601/* Retrieve NUMA policy */
1602static int kernel_get_mempolicy(int __user *policy,
1603 unsigned long __user *nmask,
1604 unsigned long maxnode,
1605 unsigned long addr,
1606 unsigned long flags)
1607{
1608 int err;
1609 int pval;
1610 nodemask_t nodes;
1611
1612 if (nmask != NULL && maxnode < nr_node_ids)
1613 return -EINVAL;
1614
1615 addr = untagged_addr(addr);
1616
1617 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1618
1619 if (err)
1620 return err;
1621
1622 if (policy && put_user(pval, policy))
1623 return -EFAULT;
1624
1625 if (nmask)
1626 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1627
1628 return err;
1629}
1630
1631SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1632 unsigned long __user *, nmask, unsigned long, maxnode,
1633 unsigned long, addr, unsigned long, flags)
1634{
1635 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1636}
1637
1638#ifdef CONFIG_COMPAT
1639
1640COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1641 compat_ulong_t __user *, nmask,
1642 compat_ulong_t, maxnode,
1643 compat_ulong_t, addr, compat_ulong_t, flags)
1644{
1645 long err;
1646 unsigned long __user *nm = NULL;
1647 unsigned long nr_bits, alloc_size;
1648 DECLARE_BITMAP(bm, MAX_NUMNODES);
1649
1650 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1651 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1652
1653 if (nmask)
1654 nm = compat_alloc_user_space(alloc_size);
1655
1656 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1657
1658 if (!err && nmask) {
1659 unsigned long copy_size;
1660 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1661 err = copy_from_user(bm, nm, copy_size);
1662 /* ensure entire bitmap is zeroed */
1663 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1664 err |= compat_put_bitmap(nmask, bm, nr_bits);
1665 }
1666
1667 return err;
1668}
1669
1670COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1671 compat_ulong_t, maxnode)
1672{
1673 unsigned long __user *nm = NULL;
1674 unsigned long nr_bits, alloc_size;
1675 DECLARE_BITMAP(bm, MAX_NUMNODES);
1676
1677 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1678 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1679
1680 if (nmask) {
1681 if (compat_get_bitmap(bm, nmask, nr_bits))
1682 return -EFAULT;
1683 nm = compat_alloc_user_space(alloc_size);
1684 if (copy_to_user(nm, bm, alloc_size))
1685 return -EFAULT;
1686 }
1687
1688 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1689}
1690
1691COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1692 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1693 compat_ulong_t, maxnode, compat_ulong_t, flags)
1694{
1695 unsigned long __user *nm = NULL;
1696 unsigned long nr_bits, alloc_size;
1697 nodemask_t bm;
1698
1699 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1700 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1701
1702 if (nmask) {
1703 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1704 return -EFAULT;
1705 nm = compat_alloc_user_space(alloc_size);
1706 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1707 return -EFAULT;
1708 }
1709
1710 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1711}
1712
1713COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1714 compat_ulong_t, maxnode,
1715 const compat_ulong_t __user *, old_nodes,
1716 const compat_ulong_t __user *, new_nodes)
1717{
1718 unsigned long __user *old = NULL;
1719 unsigned long __user *new = NULL;
1720 nodemask_t tmp_mask;
1721 unsigned long nr_bits;
1722 unsigned long size;
1723
1724 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1725 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1726 if (old_nodes) {
1727 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1728 return -EFAULT;
1729 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1730 if (new_nodes)
1731 new = old + size / sizeof(unsigned long);
1732 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1733 return -EFAULT;
1734 }
1735 if (new_nodes) {
1736 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1737 return -EFAULT;
1738 if (new == NULL)
1739 new = compat_alloc_user_space(size);
1740 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1741 return -EFAULT;
1742 }
1743 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1744}
1745
1746#endif /* CONFIG_COMPAT */
1747
1748bool vma_migratable(struct vm_area_struct *vma)
1749{
1750 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1751 return false;
1752
1753 /*
1754 * DAX device mappings require predictable access latency, so avoid
1755 * incurring periodic faults.
1756 */
1757 if (vma_is_dax(vma))
1758 return false;
1759
1760 if (is_vm_hugetlb_page(vma) &&
1761 !hugepage_migration_supported(hstate_vma(vma)))
1762 return false;
1763
1764 /*
1765 * Migration allocates pages in the highest zone. If we cannot
1766 * do so then migration (at least from node to node) is not
1767 * possible.
1768 */
1769 if (vma->vm_file &&
1770 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1771 < policy_zone)
1772 return false;
1773 return true;
1774}
1775
1776struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1777 unsigned long addr)
1778{
1779 struct mempolicy *pol = NULL;
1780
1781 if (vma) {
1782 if (vma->vm_ops && vma->vm_ops->get_policy) {
1783 pol = vma->vm_ops->get_policy(vma, addr);
1784 } else if (vma->vm_policy) {
1785 pol = vma->vm_policy;
1786
1787 /*
1788 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1789 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1790 * count on these policies which will be dropped by
1791 * mpol_cond_put() later
1792 */
1793 if (mpol_needs_cond_ref(pol))
1794 mpol_get(pol);
1795 }
1796 }
1797
1798 return pol;
1799}
1800
1801/*
1802 * get_vma_policy(@vma, @addr)
1803 * @vma: virtual memory area whose policy is sought
1804 * @addr: address in @vma for shared policy lookup
1805 *
1806 * Returns effective policy for a VMA at specified address.
1807 * Falls back to current->mempolicy or system default policy, as necessary.
1808 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1809 * count--added by the get_policy() vm_op, as appropriate--to protect against
1810 * freeing by another task. It is the caller's responsibility to free the
1811 * extra reference for shared policies.
1812 */
1813static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1814 unsigned long addr)
1815{
1816 struct mempolicy *pol = __get_vma_policy(vma, addr);
1817
1818 if (!pol)
1819 pol = get_task_policy(current);
1820
1821 return pol;
1822}
1823
1824bool vma_policy_mof(struct vm_area_struct *vma)
1825{
1826 struct mempolicy *pol;
1827
1828 if (vma->vm_ops && vma->vm_ops->get_policy) {
1829 bool ret = false;
1830
1831 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1832 if (pol && (pol->flags & MPOL_F_MOF))
1833 ret = true;
1834 mpol_cond_put(pol);
1835
1836 return ret;
1837 }
1838
1839 pol = vma->vm_policy;
1840 if (!pol)
1841 pol = get_task_policy(current);
1842
1843 return pol->flags & MPOL_F_MOF;
1844}
1845
1846static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1847{
1848 enum zone_type dynamic_policy_zone = policy_zone;
1849
1850 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1851
1852 /*
1853 * if policy->nodes has movable memory only,
1854 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1855 *
1856 * policy->nodes is intersect with node_states[N_MEMORY].
1857 * so if the following test fails, it implies
1858 * policy->nodes has movable memory only.
1859 */
1860 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1861 dynamic_policy_zone = ZONE_MOVABLE;
1862
1863 return zone >= dynamic_policy_zone;
1864}
1865
1866/*
1867 * Return a nodemask representing a mempolicy for filtering nodes for
1868 * page allocation
1869 */
1870nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1871{
1872 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1873 if (unlikely(policy->mode == MPOL_BIND) &&
1874 apply_policy_zone(policy, gfp_zone(gfp)) &&
1875 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1876 return &policy->nodes;
1877
1878 return NULL;
1879}
1880
1881/* Return the node id preferred by the given mempolicy, or the given id */
1882static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1883{
1884 if (policy->mode == MPOL_PREFERRED) {
1885 nd = first_node(policy->nodes);
1886 } else {
1887 /*
1888 * __GFP_THISNODE shouldn't even be used with the bind policy
1889 * because we might easily break the expectation to stay on the
1890 * requested node and not break the policy.
1891 */
1892 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1893 }
1894
1895 return nd;
1896}
1897
1898/* Do dynamic interleaving for a process */
1899static unsigned interleave_nodes(struct mempolicy *policy)
1900{
1901 unsigned next;
1902 struct task_struct *me = current;
1903
1904 next = next_node_in(me->il_prev, policy->nodes);
1905 if (next < MAX_NUMNODES)
1906 me->il_prev = next;
1907 return next;
1908}
1909
1910/*
1911 * Depending on the memory policy provide a node from which to allocate the
1912 * next slab entry.
1913 */
1914unsigned int mempolicy_slab_node(void)
1915{
1916 struct mempolicy *policy;
1917 int node = numa_mem_id();
1918
1919 if (in_interrupt())
1920 return node;
1921
1922 policy = current->mempolicy;
1923 if (!policy)
1924 return node;
1925
1926 switch (policy->mode) {
1927 case MPOL_PREFERRED:
1928 return first_node(policy->nodes);
1929
1930 case MPOL_INTERLEAVE:
1931 return interleave_nodes(policy);
1932
1933 case MPOL_BIND: {
1934 struct zoneref *z;
1935
1936 /*
1937 * Follow bind policy behavior and start allocation at the
1938 * first node.
1939 */
1940 struct zonelist *zonelist;
1941 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1942 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1943 z = first_zones_zonelist(zonelist, highest_zoneidx,
1944 &policy->nodes);
1945 return z->zone ? zone_to_nid(z->zone) : node;
1946 }
1947 case MPOL_LOCAL:
1948 return node;
1949
1950 default:
1951 BUG();
1952 }
1953}
1954
1955/*
1956 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1957 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1959 */
1960static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961{
1962 nodemask_t nodemask = pol->nodes;
1963 unsigned int target, nnodes;
1964 int i;
1965 int nid;
1966 /*
1967 * The barrier will stabilize the nodemask in a register or on
1968 * the stack so that it will stop changing under the code.
1969 *
1970 * Between first_node() and next_node(), pol->nodes could be changed
1971 * by other threads. So we put pol->nodes in a local stack.
1972 */
1973 barrier();
1974
1975 nnodes = nodes_weight(nodemask);
1976 if (!nnodes)
1977 return numa_node_id();
1978 target = (unsigned int)n % nnodes;
1979 nid = first_node(nodemask);
1980 for (i = 0; i < target; i++)
1981 nid = next_node(nid, nodemask);
1982 return nid;
1983}
1984
1985/* Determine a node number for interleave */
1986static inline unsigned interleave_nid(struct mempolicy *pol,
1987 struct vm_area_struct *vma, unsigned long addr, int shift)
1988{
1989 if (vma) {
1990 unsigned long off;
1991
1992 /*
1993 * for small pages, there is no difference between
1994 * shift and PAGE_SHIFT, so the bit-shift is safe.
1995 * for huge pages, since vm_pgoff is in units of small
1996 * pages, we need to shift off the always 0 bits to get
1997 * a useful offset.
1998 */
1999 BUG_ON(shift < PAGE_SHIFT);
2000 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2001 off += (addr - vma->vm_start) >> shift;
2002 return offset_il_node(pol, off);
2003 } else
2004 return interleave_nodes(pol);
2005}
2006
2007#ifdef CONFIG_HUGETLBFS
2008/*
2009 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2010 * @vma: virtual memory area whose policy is sought
2011 * @addr: address in @vma for shared policy lookup and interleave policy
2012 * @gfp_flags: for requested zone
2013 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2014 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2015 *
2016 * Returns a nid suitable for a huge page allocation and a pointer
2017 * to the struct mempolicy for conditional unref after allocation.
2018 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2019 * @nodemask for filtering the zonelist.
2020 *
2021 * Must be protected by read_mems_allowed_begin()
2022 */
2023int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2024 struct mempolicy **mpol, nodemask_t **nodemask)
2025{
2026 int nid;
2027
2028 *mpol = get_vma_policy(vma, addr);
2029 *nodemask = NULL; /* assume !MPOL_BIND */
2030
2031 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2032 nid = interleave_nid(*mpol, vma, addr,
2033 huge_page_shift(hstate_vma(vma)));
2034 } else {
2035 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2036 if ((*mpol)->mode == MPOL_BIND)
2037 *nodemask = &(*mpol)->nodes;
2038 }
2039 return nid;
2040}
2041
2042/*
2043 * init_nodemask_of_mempolicy
2044 *
2045 * If the current task's mempolicy is "default" [NULL], return 'false'
2046 * to indicate default policy. Otherwise, extract the policy nodemask
2047 * for 'bind' or 'interleave' policy into the argument nodemask, or
2048 * initialize the argument nodemask to contain the single node for
2049 * 'preferred' or 'local' policy and return 'true' to indicate presence
2050 * of non-default mempolicy.
2051 *
2052 * We don't bother with reference counting the mempolicy [mpol_get/put]
2053 * because the current task is examining it's own mempolicy and a task's
2054 * mempolicy is only ever changed by the task itself.
2055 *
2056 * N.B., it is the caller's responsibility to free a returned nodemask.
2057 */
2058bool init_nodemask_of_mempolicy(nodemask_t *mask)
2059{
2060 struct mempolicy *mempolicy;
2061
2062 if (!(mask && current->mempolicy))
2063 return false;
2064
2065 task_lock(current);
2066 mempolicy = current->mempolicy;
2067 switch (mempolicy->mode) {
2068 case MPOL_PREFERRED:
2069 case MPOL_BIND:
2070 case MPOL_INTERLEAVE:
2071 *mask = mempolicy->nodes;
2072 break;
2073
2074 case MPOL_LOCAL:
2075 init_nodemask_of_node(mask, numa_node_id());
2076 break;
2077
2078 default:
2079 BUG();
2080 }
2081 task_unlock(current);
2082
2083 return true;
2084}
2085#endif
2086
2087/*
2088 * mempolicy_in_oom_domain
2089 *
2090 * If tsk's mempolicy is "bind", check for intersection between mask and
2091 * the policy nodemask. Otherwise, return true for all other policies
2092 * including "interleave", as a tsk with "interleave" policy may have
2093 * memory allocated from all nodes in system.
2094 *
2095 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2096 */
2097bool mempolicy_in_oom_domain(struct task_struct *tsk,
2098 const nodemask_t *mask)
2099{
2100 struct mempolicy *mempolicy;
2101 bool ret = true;
2102
2103 if (!mask)
2104 return ret;
2105
2106 task_lock(tsk);
2107 mempolicy = tsk->mempolicy;
2108 if (mempolicy && mempolicy->mode == MPOL_BIND)
2109 ret = nodes_intersects(mempolicy->nodes, *mask);
2110 task_unlock(tsk);
2111
2112 return ret;
2113}
2114
2115/* Allocate a page in interleaved policy.
2116 Own path because it needs to do special accounting. */
2117static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2118 unsigned nid)
2119{
2120 struct page *page;
2121
2122 page = __alloc_pages(gfp, order, nid, NULL);
2123 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2124 if (!static_branch_likely(&vm_numa_stat_key))
2125 return page;
2126 if (page && page_to_nid(page) == nid) {
2127 preempt_disable();
2128 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2129 preempt_enable();
2130 }
2131 return page;
2132}
2133
2134/**
2135 * alloc_pages_vma - Allocate a page for a VMA.
2136 * @gfp: GFP flags.
2137 * @order: Order of the GFP allocation.
2138 * @vma: Pointer to VMA or NULL if not available.
2139 * @addr: Virtual address of the allocation. Must be inside @vma.
2140 * @node: Which node to prefer for allocation (modulo policy).
2141 * @hugepage: For hugepages try only the preferred node if possible.
2142 *
2143 * Allocate a page for a specific address in @vma, using the appropriate
2144 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2145 * of the mm_struct of the VMA to prevent it from going away. Should be
2146 * used for all allocations for pages that will be mapped into user space.
2147 *
2148 * Return: The page on success or NULL if allocation fails.
2149 */
2150struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2151 unsigned long addr, int node, bool hugepage)
2152{
2153 struct mempolicy *pol;
2154 struct page *page;
2155 int preferred_nid;
2156 nodemask_t *nmask;
2157
2158 pol = get_vma_policy(vma, addr);
2159
2160 if (pol->mode == MPOL_INTERLEAVE) {
2161 unsigned nid;
2162
2163 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2164 mpol_cond_put(pol);
2165 page = alloc_page_interleave(gfp, order, nid);
2166 goto out;
2167 }
2168
2169 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2170 int hpage_node = node;
2171
2172 /*
2173 * For hugepage allocation and non-interleave policy which
2174 * allows the current node (or other explicitly preferred
2175 * node) we only try to allocate from the current/preferred
2176 * node and don't fall back to other nodes, as the cost of
2177 * remote accesses would likely offset THP benefits.
2178 *
2179 * If the policy is interleave, or does not allow the current
2180 * node in its nodemask, we allocate the standard way.
2181 */
2182 if (pol->mode == MPOL_PREFERRED)
2183 hpage_node = first_node(pol->nodes);
2184
2185 nmask = policy_nodemask(gfp, pol);
2186 if (!nmask || node_isset(hpage_node, *nmask)) {
2187 mpol_cond_put(pol);
2188 /*
2189 * First, try to allocate THP only on local node, but
2190 * don't reclaim unnecessarily, just compact.
2191 */
2192 page = __alloc_pages_node(hpage_node,
2193 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2194
2195 /*
2196 * If hugepage allocations are configured to always
2197 * synchronous compact or the vma has been madvised
2198 * to prefer hugepage backing, retry allowing remote
2199 * memory with both reclaim and compact as well.
2200 */
2201 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2202 page = __alloc_pages_node(hpage_node,
2203 gfp, order);
2204
2205 goto out;
2206 }
2207 }
2208
2209 nmask = policy_nodemask(gfp, pol);
2210 preferred_nid = policy_node(gfp, pol, node);
2211 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2212 mpol_cond_put(pol);
2213out:
2214 return page;
2215}
2216EXPORT_SYMBOL(alloc_pages_vma);
2217
2218/**
2219 * alloc_pages - Allocate pages.
2220 * @gfp: GFP flags.
2221 * @order: Power of two of number of pages to allocate.
2222 *
2223 * Allocate 1 << @order contiguous pages. The physical address of the
2224 * first page is naturally aligned (eg an order-3 allocation will be aligned
2225 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2226 * process is honoured when in process context.
2227 *
2228 * Context: Can be called from any context, providing the appropriate GFP
2229 * flags are used.
2230 * Return: The page on success or NULL if allocation fails.
2231 */
2232struct page *alloc_pages(gfp_t gfp, unsigned order)
2233{
2234 struct mempolicy *pol = &default_policy;
2235 struct page *page;
2236
2237 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2238 pol = get_task_policy(current);
2239
2240 /*
2241 * No reference counting needed for current->mempolicy
2242 * nor system default_policy
2243 */
2244 if (pol->mode == MPOL_INTERLEAVE)
2245 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2246 else
2247 page = __alloc_pages(gfp, order,
2248 policy_node(gfp, pol, numa_node_id()),
2249 policy_nodemask(gfp, pol));
2250
2251 return page;
2252}
2253EXPORT_SYMBOL(alloc_pages);
2254
2255int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2256{
2257 struct mempolicy *pol = mpol_dup(vma_policy(src));
2258
2259 if (IS_ERR(pol))
2260 return PTR_ERR(pol);
2261 dst->vm_policy = pol;
2262 return 0;
2263}
2264
2265/*
2266 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2267 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2268 * with the mems_allowed returned by cpuset_mems_allowed(). This
2269 * keeps mempolicies cpuset relative after its cpuset moves. See
2270 * further kernel/cpuset.c update_nodemask().
2271 *
2272 * current's mempolicy may be rebinded by the other task(the task that changes
2273 * cpuset's mems), so we needn't do rebind work for current task.
2274 */
2275
2276/* Slow path of a mempolicy duplicate */
2277struct mempolicy *__mpol_dup(struct mempolicy *old)
2278{
2279 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2280
2281 if (!new)
2282 return ERR_PTR(-ENOMEM);
2283
2284 /* task's mempolicy is protected by alloc_lock */
2285 if (old == current->mempolicy) {
2286 task_lock(current);
2287 *new = *old;
2288 task_unlock(current);
2289 } else
2290 *new = *old;
2291
2292 if (current_cpuset_is_being_rebound()) {
2293 nodemask_t mems = cpuset_mems_allowed(current);
2294 mpol_rebind_policy(new, &mems);
2295 }
2296 atomic_set(&new->refcnt, 1);
2297 return new;
2298}
2299
2300/* Slow path of a mempolicy comparison */
2301bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2302{
2303 if (!a || !b)
2304 return false;
2305 if (a->mode != b->mode)
2306 return false;
2307 if (a->flags != b->flags)
2308 return false;
2309 if (mpol_store_user_nodemask(a))
2310 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2311 return false;
2312
2313 switch (a->mode) {
2314 case MPOL_BIND:
2315 case MPOL_INTERLEAVE:
2316 case MPOL_PREFERRED:
2317 return !!nodes_equal(a->nodes, b->nodes);
2318 case MPOL_LOCAL:
2319 return true;
2320 default:
2321 BUG();
2322 return false;
2323 }
2324}
2325
2326/*
2327 * Shared memory backing store policy support.
2328 *
2329 * Remember policies even when nobody has shared memory mapped.
2330 * The policies are kept in Red-Black tree linked from the inode.
2331 * They are protected by the sp->lock rwlock, which should be held
2332 * for any accesses to the tree.
2333 */
2334
2335/*
2336 * lookup first element intersecting start-end. Caller holds sp->lock for
2337 * reading or for writing
2338 */
2339static struct sp_node *
2340sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2341{
2342 struct rb_node *n = sp->root.rb_node;
2343
2344 while (n) {
2345 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2346
2347 if (start >= p->end)
2348 n = n->rb_right;
2349 else if (end <= p->start)
2350 n = n->rb_left;
2351 else
2352 break;
2353 }
2354 if (!n)
2355 return NULL;
2356 for (;;) {
2357 struct sp_node *w = NULL;
2358 struct rb_node *prev = rb_prev(n);
2359 if (!prev)
2360 break;
2361 w = rb_entry(prev, struct sp_node, nd);
2362 if (w->end <= start)
2363 break;
2364 n = prev;
2365 }
2366 return rb_entry(n, struct sp_node, nd);
2367}
2368
2369/*
2370 * Insert a new shared policy into the list. Caller holds sp->lock for
2371 * writing.
2372 */
2373static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2374{
2375 struct rb_node **p = &sp->root.rb_node;
2376 struct rb_node *parent = NULL;
2377 struct sp_node *nd;
2378
2379 while (*p) {
2380 parent = *p;
2381 nd = rb_entry(parent, struct sp_node, nd);
2382 if (new->start < nd->start)
2383 p = &(*p)->rb_left;
2384 else if (new->end > nd->end)
2385 p = &(*p)->rb_right;
2386 else
2387 BUG();
2388 }
2389 rb_link_node(&new->nd, parent, p);
2390 rb_insert_color(&new->nd, &sp->root);
2391 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2392 new->policy ? new->policy->mode : 0);
2393}
2394
2395/* Find shared policy intersecting idx */
2396struct mempolicy *
2397mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2398{
2399 struct mempolicy *pol = NULL;
2400 struct sp_node *sn;
2401
2402 if (!sp->root.rb_node)
2403 return NULL;
2404 read_lock(&sp->lock);
2405 sn = sp_lookup(sp, idx, idx+1);
2406 if (sn) {
2407 mpol_get(sn->policy);
2408 pol = sn->policy;
2409 }
2410 read_unlock(&sp->lock);
2411 return pol;
2412}
2413
2414static void sp_free(struct sp_node *n)
2415{
2416 mpol_put(n->policy);
2417 kmem_cache_free(sn_cache, n);
2418}
2419
2420/**
2421 * mpol_misplaced - check whether current page node is valid in policy
2422 *
2423 * @page: page to be checked
2424 * @vma: vm area where page mapped
2425 * @addr: virtual address where page mapped
2426 *
2427 * Lookup current policy node id for vma,addr and "compare to" page's
2428 * node id. Policy determination "mimics" alloc_page_vma().
2429 * Called from fault path where we know the vma and faulting address.
2430 *
2431 * Return: -1 if the page is in a node that is valid for this policy, or a
2432 * suitable node ID to allocate a replacement page from.
2433 */
2434int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2435{
2436 struct mempolicy *pol;
2437 struct zoneref *z;
2438 int curnid = page_to_nid(page);
2439 unsigned long pgoff;
2440 int thiscpu = raw_smp_processor_id();
2441 int thisnid = cpu_to_node(thiscpu);
2442 int polnid = NUMA_NO_NODE;
2443 int ret = -1;
2444
2445 pol = get_vma_policy(vma, addr);
2446 if (!(pol->flags & MPOL_F_MOF))
2447 goto out;
2448
2449 switch (pol->mode) {
2450 case MPOL_INTERLEAVE:
2451 pgoff = vma->vm_pgoff;
2452 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2453 polnid = offset_il_node(pol, pgoff);
2454 break;
2455
2456 case MPOL_PREFERRED:
2457 polnid = first_node(pol->nodes);
2458 break;
2459
2460 case MPOL_LOCAL:
2461 polnid = numa_node_id();
2462 break;
2463
2464 case MPOL_BIND:
2465 /* Optimize placement among multiple nodes via NUMA balancing */
2466 if (pol->flags & MPOL_F_MORON) {
2467 if (node_isset(thisnid, pol->nodes))
2468 break;
2469 goto out;
2470 }
2471
2472 /*
2473 * allows binding to multiple nodes.
2474 * use current page if in policy nodemask,
2475 * else select nearest allowed node, if any.
2476 * If no allowed nodes, use current [!misplaced].
2477 */
2478 if (node_isset(curnid, pol->nodes))
2479 goto out;
2480 z = first_zones_zonelist(
2481 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2482 gfp_zone(GFP_HIGHUSER),
2483 &pol->nodes);
2484 polnid = zone_to_nid(z->zone);
2485 break;
2486
2487 default:
2488 BUG();
2489 }
2490
2491 /* Migrate the page towards the node whose CPU is referencing it */
2492 if (pol->flags & MPOL_F_MORON) {
2493 polnid = thisnid;
2494
2495 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2496 goto out;
2497 }
2498
2499 if (curnid != polnid)
2500 ret = polnid;
2501out:
2502 mpol_cond_put(pol);
2503
2504 return ret;
2505}
2506
2507/*
2508 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2509 * dropped after task->mempolicy is set to NULL so that any allocation done as
2510 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2511 * policy.
2512 */
2513void mpol_put_task_policy(struct task_struct *task)
2514{
2515 struct mempolicy *pol;
2516
2517 task_lock(task);
2518 pol = task->mempolicy;
2519 task->mempolicy = NULL;
2520 task_unlock(task);
2521 mpol_put(pol);
2522}
2523
2524static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2525{
2526 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2527 rb_erase(&n->nd, &sp->root);
2528 sp_free(n);
2529}
2530
2531static void sp_node_init(struct sp_node *node, unsigned long start,
2532 unsigned long end, struct mempolicy *pol)
2533{
2534 node->start = start;
2535 node->end = end;
2536 node->policy = pol;
2537}
2538
2539static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2540 struct mempolicy *pol)
2541{
2542 struct sp_node *n;
2543 struct mempolicy *newpol;
2544
2545 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2546 if (!n)
2547 return NULL;
2548
2549 newpol = mpol_dup(pol);
2550 if (IS_ERR(newpol)) {
2551 kmem_cache_free(sn_cache, n);
2552 return NULL;
2553 }
2554 newpol->flags |= MPOL_F_SHARED;
2555 sp_node_init(n, start, end, newpol);
2556
2557 return n;
2558}
2559
2560/* Replace a policy range. */
2561static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2562 unsigned long end, struct sp_node *new)
2563{
2564 struct sp_node *n;
2565 struct sp_node *n_new = NULL;
2566 struct mempolicy *mpol_new = NULL;
2567 int ret = 0;
2568
2569restart:
2570 write_lock(&sp->lock);
2571 n = sp_lookup(sp, start, end);
2572 /* Take care of old policies in the same range. */
2573 while (n && n->start < end) {
2574 struct rb_node *next = rb_next(&n->nd);
2575 if (n->start >= start) {
2576 if (n->end <= end)
2577 sp_delete(sp, n);
2578 else
2579 n->start = end;
2580 } else {
2581 /* Old policy spanning whole new range. */
2582 if (n->end > end) {
2583 if (!n_new)
2584 goto alloc_new;
2585
2586 *mpol_new = *n->policy;
2587 atomic_set(&mpol_new->refcnt, 1);
2588 sp_node_init(n_new, end, n->end, mpol_new);
2589 n->end = start;
2590 sp_insert(sp, n_new);
2591 n_new = NULL;
2592 mpol_new = NULL;
2593 break;
2594 } else
2595 n->end = start;
2596 }
2597 if (!next)
2598 break;
2599 n = rb_entry(next, struct sp_node, nd);
2600 }
2601 if (new)
2602 sp_insert(sp, new);
2603 write_unlock(&sp->lock);
2604 ret = 0;
2605
2606err_out:
2607 if (mpol_new)
2608 mpol_put(mpol_new);
2609 if (n_new)
2610 kmem_cache_free(sn_cache, n_new);
2611
2612 return ret;
2613
2614alloc_new:
2615 write_unlock(&sp->lock);
2616 ret = -ENOMEM;
2617 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2618 if (!n_new)
2619 goto err_out;
2620 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2621 if (!mpol_new)
2622 goto err_out;
2623 goto restart;
2624}
2625
2626/**
2627 * mpol_shared_policy_init - initialize shared policy for inode
2628 * @sp: pointer to inode shared policy
2629 * @mpol: struct mempolicy to install
2630 *
2631 * Install non-NULL @mpol in inode's shared policy rb-tree.
2632 * On entry, the current task has a reference on a non-NULL @mpol.
2633 * This must be released on exit.
2634 * This is called at get_inode() calls and we can use GFP_KERNEL.
2635 */
2636void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2637{
2638 int ret;
2639
2640 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2641 rwlock_init(&sp->lock);
2642
2643 if (mpol) {
2644 struct vm_area_struct pvma;
2645 struct mempolicy *new;
2646 NODEMASK_SCRATCH(scratch);
2647
2648 if (!scratch)
2649 goto put_mpol;
2650 /* contextualize the tmpfs mount point mempolicy */
2651 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2652 if (IS_ERR(new))
2653 goto free_scratch; /* no valid nodemask intersection */
2654
2655 task_lock(current);
2656 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2657 task_unlock(current);
2658 if (ret)
2659 goto put_new;
2660
2661 /* Create pseudo-vma that contains just the policy */
2662 vma_init(&pvma, NULL);
2663 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2664 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2665
2666put_new:
2667 mpol_put(new); /* drop initial ref */
2668free_scratch:
2669 NODEMASK_SCRATCH_FREE(scratch);
2670put_mpol:
2671 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2672 }
2673}
2674
2675int mpol_set_shared_policy(struct shared_policy *info,
2676 struct vm_area_struct *vma, struct mempolicy *npol)
2677{
2678 int err;
2679 struct sp_node *new = NULL;
2680 unsigned long sz = vma_pages(vma);
2681
2682 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2683 vma->vm_pgoff,
2684 sz, npol ? npol->mode : -1,
2685 npol ? npol->flags : -1,
2686 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2687
2688 if (npol) {
2689 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2690 if (!new)
2691 return -ENOMEM;
2692 }
2693 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2694 if (err && new)
2695 sp_free(new);
2696 return err;
2697}
2698
2699/* Free a backing policy store on inode delete. */
2700void mpol_free_shared_policy(struct shared_policy *p)
2701{
2702 struct sp_node *n;
2703 struct rb_node *next;
2704
2705 if (!p->root.rb_node)
2706 return;
2707 write_lock(&p->lock);
2708 next = rb_first(&p->root);
2709 while (next) {
2710 n = rb_entry(next, struct sp_node, nd);
2711 next = rb_next(&n->nd);
2712 sp_delete(p, n);
2713 }
2714 write_unlock(&p->lock);
2715}
2716
2717#ifdef CONFIG_NUMA_BALANCING
2718static int __initdata numabalancing_override;
2719
2720static void __init check_numabalancing_enable(void)
2721{
2722 bool numabalancing_default = false;
2723
2724 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2725 numabalancing_default = true;
2726
2727 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2728 if (numabalancing_override)
2729 set_numabalancing_state(numabalancing_override == 1);
2730
2731 if (num_online_nodes() > 1 && !numabalancing_override) {
2732 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2733 numabalancing_default ? "Enabling" : "Disabling");
2734 set_numabalancing_state(numabalancing_default);
2735 }
2736}
2737
2738static int __init setup_numabalancing(char *str)
2739{
2740 int ret = 0;
2741 if (!str)
2742 goto out;
2743
2744 if (!strcmp(str, "enable")) {
2745 numabalancing_override = 1;
2746 ret = 1;
2747 } else if (!strcmp(str, "disable")) {
2748 numabalancing_override = -1;
2749 ret = 1;
2750 }
2751out:
2752 if (!ret)
2753 pr_warn("Unable to parse numa_balancing=\n");
2754
2755 return ret;
2756}
2757__setup("numa_balancing=", setup_numabalancing);
2758#else
2759static inline void __init check_numabalancing_enable(void)
2760{
2761}
2762#endif /* CONFIG_NUMA_BALANCING */
2763
2764/* assumes fs == KERNEL_DS */
2765void __init numa_policy_init(void)
2766{
2767 nodemask_t interleave_nodes;
2768 unsigned long largest = 0;
2769 int nid, prefer = 0;
2770
2771 policy_cache = kmem_cache_create("numa_policy",
2772 sizeof(struct mempolicy),
2773 0, SLAB_PANIC, NULL);
2774
2775 sn_cache = kmem_cache_create("shared_policy_node",
2776 sizeof(struct sp_node),
2777 0, SLAB_PANIC, NULL);
2778
2779 for_each_node(nid) {
2780 preferred_node_policy[nid] = (struct mempolicy) {
2781 .refcnt = ATOMIC_INIT(1),
2782 .mode = MPOL_PREFERRED,
2783 .flags = MPOL_F_MOF | MPOL_F_MORON,
2784 .nodes = nodemask_of_node(nid),
2785 };
2786 }
2787
2788 /*
2789 * Set interleaving policy for system init. Interleaving is only
2790 * enabled across suitably sized nodes (default is >= 16MB), or
2791 * fall back to the largest node if they're all smaller.
2792 */
2793 nodes_clear(interleave_nodes);
2794 for_each_node_state(nid, N_MEMORY) {
2795 unsigned long total_pages = node_present_pages(nid);
2796
2797 /* Preserve the largest node */
2798 if (largest < total_pages) {
2799 largest = total_pages;
2800 prefer = nid;
2801 }
2802
2803 /* Interleave this node? */
2804 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2805 node_set(nid, interleave_nodes);
2806 }
2807
2808 /* All too small, use the largest */
2809 if (unlikely(nodes_empty(interleave_nodes)))
2810 node_set(prefer, interleave_nodes);
2811
2812 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2813 pr_err("%s: interleaving failed\n", __func__);
2814
2815 check_numabalancing_enable();
2816}
2817
2818/* Reset policy of current process to default */
2819void numa_default_policy(void)
2820{
2821 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2822}
2823
2824/*
2825 * Parse and format mempolicy from/to strings
2826 */
2827
2828static const char * const policy_modes[] =
2829{
2830 [MPOL_DEFAULT] = "default",
2831 [MPOL_PREFERRED] = "prefer",
2832 [MPOL_BIND] = "bind",
2833 [MPOL_INTERLEAVE] = "interleave",
2834 [MPOL_LOCAL] = "local",
2835};
2836
2837
2838#ifdef CONFIG_TMPFS
2839/**
2840 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2841 * @str: string containing mempolicy to parse
2842 * @mpol: pointer to struct mempolicy pointer, returned on success.
2843 *
2844 * Format of input:
2845 * <mode>[=<flags>][:<nodelist>]
2846 *
2847 * On success, returns 0, else 1
2848 */
2849int mpol_parse_str(char *str, struct mempolicy **mpol)
2850{
2851 struct mempolicy *new = NULL;
2852 unsigned short mode_flags;
2853 nodemask_t nodes;
2854 char *nodelist = strchr(str, ':');
2855 char *flags = strchr(str, '=');
2856 int err = 1, mode;
2857
2858 if (flags)
2859 *flags++ = '\0'; /* terminate mode string */
2860
2861 if (nodelist) {
2862 /* NUL-terminate mode or flags string */
2863 *nodelist++ = '\0';
2864 if (nodelist_parse(nodelist, nodes))
2865 goto out;
2866 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2867 goto out;
2868 } else
2869 nodes_clear(nodes);
2870
2871 mode = match_string(policy_modes, MPOL_MAX, str);
2872 if (mode < 0)
2873 goto out;
2874
2875 switch (mode) {
2876 case MPOL_PREFERRED:
2877 /*
2878 * Insist on a nodelist of one node only, although later
2879 * we use first_node(nodes) to grab a single node, so here
2880 * nodelist (or nodes) cannot be empty.
2881 */
2882 if (nodelist) {
2883 char *rest = nodelist;
2884 while (isdigit(*rest))
2885 rest++;
2886 if (*rest)
2887 goto out;
2888 if (nodes_empty(nodes))
2889 goto out;
2890 }
2891 break;
2892 case MPOL_INTERLEAVE:
2893 /*
2894 * Default to online nodes with memory if no nodelist
2895 */
2896 if (!nodelist)
2897 nodes = node_states[N_MEMORY];
2898 break;
2899 case MPOL_LOCAL:
2900 /*
2901 * Don't allow a nodelist; mpol_new() checks flags
2902 */
2903 if (nodelist)
2904 goto out;
2905 break;
2906 case MPOL_DEFAULT:
2907 /*
2908 * Insist on a empty nodelist
2909 */
2910 if (!nodelist)
2911 err = 0;
2912 goto out;
2913 case MPOL_BIND:
2914 /*
2915 * Insist on a nodelist
2916 */
2917 if (!nodelist)
2918 goto out;
2919 }
2920
2921 mode_flags = 0;
2922 if (flags) {
2923 /*
2924 * Currently, we only support two mutually exclusive
2925 * mode flags.
2926 */
2927 if (!strcmp(flags, "static"))
2928 mode_flags |= MPOL_F_STATIC_NODES;
2929 else if (!strcmp(flags, "relative"))
2930 mode_flags |= MPOL_F_RELATIVE_NODES;
2931 else
2932 goto out;
2933 }
2934
2935 new = mpol_new(mode, mode_flags, &nodes);
2936 if (IS_ERR(new))
2937 goto out;
2938
2939 /*
2940 * Save nodes for mpol_to_str() to show the tmpfs mount options
2941 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2942 */
2943 if (mode != MPOL_PREFERRED) {
2944 new->nodes = nodes;
2945 } else if (nodelist) {
2946 nodes_clear(new->nodes);
2947 node_set(first_node(nodes), new->nodes);
2948 } else {
2949 new->mode = MPOL_LOCAL;
2950 }
2951
2952 /*
2953 * Save nodes for contextualization: this will be used to "clone"
2954 * the mempolicy in a specific context [cpuset] at a later time.
2955 */
2956 new->w.user_nodemask = nodes;
2957
2958 err = 0;
2959
2960out:
2961 /* Restore string for error message */
2962 if (nodelist)
2963 *--nodelist = ':';
2964 if (flags)
2965 *--flags = '=';
2966 if (!err)
2967 *mpol = new;
2968 return err;
2969}
2970#endif /* CONFIG_TMPFS */
2971
2972/**
2973 * mpol_to_str - format a mempolicy structure for printing
2974 * @buffer: to contain formatted mempolicy string
2975 * @maxlen: length of @buffer
2976 * @pol: pointer to mempolicy to be formatted
2977 *
2978 * Convert @pol into a string. If @buffer is too short, truncate the string.
2979 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2980 * longest flag, "relative", and to display at least a few node ids.
2981 */
2982void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2983{
2984 char *p = buffer;
2985 nodemask_t nodes = NODE_MASK_NONE;
2986 unsigned short mode = MPOL_DEFAULT;
2987 unsigned short flags = 0;
2988
2989 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2990 mode = pol->mode;
2991 flags = pol->flags;
2992 }
2993
2994 switch (mode) {
2995 case MPOL_DEFAULT:
2996 case MPOL_LOCAL:
2997 break;
2998 case MPOL_PREFERRED:
2999 case MPOL_BIND:
3000 case MPOL_INTERLEAVE:
3001 nodes = pol->nodes;
3002 break;
3003 default:
3004 WARN_ON_ONCE(1);
3005 snprintf(p, maxlen, "unknown");
3006 return;
3007 }
3008
3009 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3010
3011 if (flags & MPOL_MODE_FLAGS) {
3012 p += snprintf(p, buffer + maxlen - p, "=");
3013
3014 /*
3015 * Currently, the only defined flags are mutually exclusive
3016 */
3017 if (flags & MPOL_F_STATIC_NODES)
3018 p += snprintf(p, buffer + maxlen - p, "static");
3019 else if (flags & MPOL_F_RELATIVE_NODES)
3020 p += snprintf(p, buffer + maxlen - p, "relative");
3021 }
3022
3023 if (!nodes_empty(nodes))
3024 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3025 nodemask_pr_args(&nodes));
3026}