Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright (C) IBM Corporation, 2006
  19 * Copyright (C) Fujitsu, 2012
  20 *
  21 * Author: Paul McKenney <paulmck@us.ibm.com>
  22 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
  23 *
  24 * For detailed explanation of Read-Copy Update mechanism see -
  25 *		Documentation/RCU/ *.txt
  26 *
  27 */
  28
 
 
  29#include <linux/export.h>
  30#include <linux/mutex.h>
  31#include <linux/percpu.h>
  32#include <linux/preempt.h>
  33#include <linux/rcupdate_wait.h>
  34#include <linux/sched.h>
  35#include <linux/smp.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/srcu.h>
  39
  40#include "rcu.h"
  41#include "rcu_segcblist.h"
  42
  43/* Holdoff in nanoseconds for auto-expediting. */
  44#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  45static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  46module_param(exp_holdoff, ulong, 0444);
  47
  48/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  49static ulong counter_wrap_check = (ULONG_MAX >> 2);
  50module_param(counter_wrap_check, ulong, 0444);
  51
 
 
 
 
  52static void srcu_invoke_callbacks(struct work_struct *work);
  53static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
  54static void process_srcu(struct work_struct *work);
 
  55
  56/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  57#define spin_lock_rcu_node(p)					\
  58do {									\
  59	spin_lock(&ACCESS_PRIVATE(p, lock));			\
  60	smp_mb__after_unlock_lock();					\
  61} while (0)
  62
  63#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  64
  65#define spin_lock_irq_rcu_node(p)					\
  66do {									\
  67	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
  68	smp_mb__after_unlock_lock();					\
  69} while (0)
  70
  71#define spin_unlock_irq_rcu_node(p)					\
  72	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  73
  74#define spin_lock_irqsave_rcu_node(p, flags)			\
  75do {									\
  76	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
  77	smp_mb__after_unlock_lock();					\
  78} while (0)
  79
  80#define spin_unlock_irqrestore_rcu_node(p, flags)			\
  81	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
  82
  83/*
  84 * Initialize SRCU combining tree.  Note that statically allocated
  85 * srcu_struct structures might already have srcu_read_lock() and
  86 * srcu_read_unlock() running against them.  So if the is_static parameter
  87 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
  88 */
  89static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
  90{
  91	int cpu;
  92	int i;
  93	int level = 0;
  94	int levelspread[RCU_NUM_LVLS];
  95	struct srcu_data *sdp;
  96	struct srcu_node *snp;
  97	struct srcu_node *snp_first;
  98
 
 
 
  99	/* Work out the overall tree geometry. */
 100	sp->level[0] = &sp->node[0];
 101	for (i = 1; i < rcu_num_lvls; i++)
 102		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
 103	rcu_init_levelspread(levelspread, num_rcu_lvl);
 104
 105	/* Each pass through this loop initializes one srcu_node structure. */
 106	rcu_for_each_node_breadth_first(sp, snp) {
 107		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 108		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 109			     ARRAY_SIZE(snp->srcu_data_have_cbs));
 110		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 111			snp->srcu_have_cbs[i] = 0;
 112			snp->srcu_data_have_cbs[i] = 0;
 113		}
 114		snp->srcu_gp_seq_needed_exp = 0;
 115		snp->grplo = -1;
 116		snp->grphi = -1;
 117		if (snp == &sp->node[0]) {
 118			/* Root node, special case. */
 119			snp->srcu_parent = NULL;
 120			continue;
 121		}
 122
 123		/* Non-root node. */
 124		if (snp == sp->level[level + 1])
 125			level++;
 126		snp->srcu_parent = sp->level[level - 1] +
 127				   (snp - sp->level[level]) /
 128				   levelspread[level - 1];
 129	}
 130
 131	/*
 132	 * Initialize the per-CPU srcu_data array, which feeds into the
 133	 * leaves of the srcu_node tree.
 134	 */
 135	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 136		     ARRAY_SIZE(sdp->srcu_unlock_count));
 137	level = rcu_num_lvls - 1;
 138	snp_first = sp->level[level];
 139	for_each_possible_cpu(cpu) {
 140		sdp = per_cpu_ptr(sp->sda, cpu);
 141		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 142		rcu_segcblist_init(&sdp->srcu_cblist);
 143		sdp->srcu_cblist_invoking = false;
 144		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
 145		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
 146		sdp->mynode = &snp_first[cpu / levelspread[level]];
 147		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 148			if (snp->grplo < 0)
 149				snp->grplo = cpu;
 150			snp->grphi = cpu;
 151		}
 152		sdp->cpu = cpu;
 153		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
 154		sdp->sp = sp;
 
 155		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 156		if (is_static)
 157			continue;
 158
 159		/* Dynamically allocated, better be no srcu_read_locks()! */
 160		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
 161			sdp->srcu_lock_count[i] = 0;
 162			sdp->srcu_unlock_count[i] = 0;
 163		}
 164	}
 165}
 166
 167/*
 168 * Initialize non-compile-time initialized fields, including the
 169 * associated srcu_node and srcu_data structures.  The is_static
 170 * parameter is passed through to init_srcu_struct_nodes(), and
 171 * also tells us that ->sda has already been wired up to srcu_data.
 172 */
 173static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
 174{
 175	mutex_init(&sp->srcu_cb_mutex);
 176	mutex_init(&sp->srcu_gp_mutex);
 177	sp->srcu_idx = 0;
 178	sp->srcu_gp_seq = 0;
 179	sp->srcu_barrier_seq = 0;
 180	mutex_init(&sp->srcu_barrier_mutex);
 181	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
 182	INIT_DELAYED_WORK(&sp->work, process_srcu);
 183	if (!is_static)
 184		sp->sda = alloc_percpu(struct srcu_data);
 185	init_srcu_struct_nodes(sp, is_static);
 186	sp->srcu_gp_seq_needed_exp = 0;
 187	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 188	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
 189	return sp->sda ? 0 : -ENOMEM;
 
 
 190}
 191
 192#ifdef CONFIG_DEBUG_LOCK_ALLOC
 193
 194int __init_srcu_struct(struct srcu_struct *sp, const char *name,
 195		       struct lock_class_key *key)
 196{
 197	/* Don't re-initialize a lock while it is held. */
 198	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
 199	lockdep_init_map(&sp->dep_map, name, key, 0);
 200	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 201	return init_srcu_struct_fields(sp, false);
 202}
 203EXPORT_SYMBOL_GPL(__init_srcu_struct);
 204
 205#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 206
 207/**
 208 * init_srcu_struct - initialize a sleep-RCU structure
 209 * @sp: structure to initialize.
 210 *
 211 * Must invoke this on a given srcu_struct before passing that srcu_struct
 212 * to any other function.  Each srcu_struct represents a separate domain
 213 * of SRCU protection.
 214 */
 215int init_srcu_struct(struct srcu_struct *sp)
 216{
 217	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
 218	return init_srcu_struct_fields(sp, false);
 219}
 220EXPORT_SYMBOL_GPL(init_srcu_struct);
 221
 222#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 223
 224/*
 225 * First-use initialization of statically allocated srcu_struct
 226 * structure.  Wiring up the combining tree is more than can be
 227 * done with compile-time initialization, so this check is added
 228 * to each update-side SRCU primitive.  Use sp->lock, which -is-
 229 * compile-time initialized, to resolve races involving multiple
 230 * CPUs trying to garner first-use privileges.
 231 */
 232static void check_init_srcu_struct(struct srcu_struct *sp)
 233{
 234	unsigned long flags;
 235
 236	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
 237	/* The smp_load_acquire() pairs with the smp_store_release(). */
 238	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
 239		return; /* Already initialized. */
 240	spin_lock_irqsave_rcu_node(sp, flags);
 241	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
 242		spin_unlock_irqrestore_rcu_node(sp, flags);
 243		return;
 244	}
 245	init_srcu_struct_fields(sp, true);
 246	spin_unlock_irqrestore_rcu_node(sp, flags);
 247}
 248
 249/*
 250 * Returns approximate total of the readers' ->srcu_lock_count[] values
 251 * for the rank of per-CPU counters specified by idx.
 252 */
 253static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
 254{
 255	int cpu;
 256	unsigned long sum = 0;
 257
 258	for_each_possible_cpu(cpu) {
 259		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 260
 261		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 262	}
 263	return sum;
 264}
 265
 266/*
 267 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 268 * for the rank of per-CPU counters specified by idx.
 269 */
 270static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
 271{
 272	int cpu;
 273	unsigned long sum = 0;
 274
 275	for_each_possible_cpu(cpu) {
 276		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 277
 278		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 279	}
 280	return sum;
 281}
 282
 283/*
 284 * Return true if the number of pre-existing readers is determined to
 285 * be zero.
 286 */
 287static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
 288{
 289	unsigned long unlocks;
 290
 291	unlocks = srcu_readers_unlock_idx(sp, idx);
 292
 293	/*
 294	 * Make sure that a lock is always counted if the corresponding
 295	 * unlock is counted. Needs to be a smp_mb() as the read side may
 296	 * contain a read from a variable that is written to before the
 297	 * synchronize_srcu() in the write side. In this case smp_mb()s
 298	 * A and B act like the store buffering pattern.
 299	 *
 300	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
 301	 * after the synchronize_srcu() from being executed before the
 302	 * grace period ends.
 303	 */
 304	smp_mb(); /* A */
 305
 306	/*
 307	 * If the locks are the same as the unlocks, then there must have
 308	 * been no readers on this index at some time in between. This does
 309	 * not mean that there are no more readers, as one could have read
 310	 * the current index but not have incremented the lock counter yet.
 311	 *
 312	 * So suppose that the updater is preempted here for so long
 313	 * that more than ULONG_MAX non-nested readers come and go in
 314	 * the meantime.  It turns out that this cannot result in overflow
 315	 * because if a reader modifies its unlock count after we read it
 316	 * above, then that reader's next load of ->srcu_idx is guaranteed
 317	 * to get the new value, which will cause it to operate on the
 318	 * other bank of counters, where it cannot contribute to the
 319	 * overflow of these counters.  This means that there is a maximum
 320	 * of 2*NR_CPUS increments, which cannot overflow given current
 321	 * systems, especially not on 64-bit systems.
 322	 *
 323	 * OK, how about nesting?  This does impose a limit on nesting
 324	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 325	 * especially on 64-bit systems.
 326	 */
 327	return srcu_readers_lock_idx(sp, idx) == unlocks;
 328}
 329
 330/**
 331 * srcu_readers_active - returns true if there are readers. and false
 332 *                       otherwise
 333 * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
 334 *
 335 * Note that this is not an atomic primitive, and can therefore suffer
 336 * severe errors when invoked on an active srcu_struct.  That said, it
 337 * can be useful as an error check at cleanup time.
 338 */
 339static bool srcu_readers_active(struct srcu_struct *sp)
 340{
 341	int cpu;
 342	unsigned long sum = 0;
 343
 344	for_each_possible_cpu(cpu) {
 345		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
 346
 347		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 348		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 349		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 350		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 351	}
 352	return sum;
 353}
 354
 355#define SRCU_INTERVAL		1
 356
 357/*
 358 * Return grace-period delay, zero if there are expedited grace
 359 * periods pending, SRCU_INTERVAL otherwise.
 360 */
 361static unsigned long srcu_get_delay(struct srcu_struct *sp)
 362{
 363	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
 364			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
 365		return 0;
 366	return SRCU_INTERVAL;
 367}
 368
 369/**
 370 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 371 * @sp: structure to clean up.
 372 *
 373 * Must invoke this after you are finished using a given srcu_struct that
 374 * was initialized via init_srcu_struct(), else you leak memory.
 375 */
 376void cleanup_srcu_struct(struct srcu_struct *sp)
 377{
 378	int cpu;
 379
 380	if (WARN_ON(!srcu_get_delay(sp)))
 381		return; /* Leakage unless caller handles error. */
 382	if (WARN_ON(srcu_readers_active(sp)))
 383		return; /* Leakage unless caller handles error. */
 384	flush_delayed_work(&sp->work);
 385	for_each_possible_cpu(cpu)
 386		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
 387	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 388	    WARN_ON(srcu_readers_active(sp))) {
 389		pr_info("%s: Active srcu_struct %p state: %d\n", __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
 
 
 
 
 
 
 
 390		return; /* Caller forgot to stop doing call_srcu()? */
 391	}
 392	free_percpu(sp->sda);
 393	sp->sda = NULL;
 394}
 395EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 396
 397/*
 398 * Counts the new reader in the appropriate per-CPU element of the
 399 * srcu_struct.
 400 * Returns an index that must be passed to the matching srcu_read_unlock().
 401 */
 402int __srcu_read_lock(struct srcu_struct *sp)
 403{
 404	int idx;
 405
 406	idx = READ_ONCE(sp->srcu_idx) & 0x1;
 407	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
 408	smp_mb(); /* B */  /* Avoid leaking the critical section. */
 409	return idx;
 410}
 411EXPORT_SYMBOL_GPL(__srcu_read_lock);
 412
 413/*
 414 * Removes the count for the old reader from the appropriate per-CPU
 415 * element of the srcu_struct.  Note that this may well be a different
 416 * CPU than that which was incremented by the corresponding srcu_read_lock().
 417 */
 418void __srcu_read_unlock(struct srcu_struct *sp, int idx)
 419{
 420	smp_mb(); /* C */  /* Avoid leaking the critical section. */
 421	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
 422}
 423EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 424
 425/*
 426 * We use an adaptive strategy for synchronize_srcu() and especially for
 427 * synchronize_srcu_expedited().  We spin for a fixed time period
 428 * (defined below) to allow SRCU readers to exit their read-side critical
 429 * sections.  If there are still some readers after a few microseconds,
 430 * we repeatedly block for 1-millisecond time periods.
 431 */
 432#define SRCU_RETRY_CHECK_DELAY		5
 433
 434/*
 435 * Start an SRCU grace period.
 436 */
 437static void srcu_gp_start(struct srcu_struct *sp)
 438{
 439	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
 440	int state;
 441
 442	lockdep_assert_held(&ACCESS_PRIVATE(sp, lock));
 443	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 
 444	rcu_segcblist_advance(&sdp->srcu_cblist,
 445			      rcu_seq_current(&sp->srcu_gp_seq));
 446	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 447				       rcu_seq_snap(&sp->srcu_gp_seq));
 
 448	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 449	rcu_seq_start(&sp->srcu_gp_seq);
 450	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
 451	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 452}
 453
 454/*
 455 * Track online CPUs to guide callback workqueue placement.
 456 */
 457DEFINE_PER_CPU(bool, srcu_online);
 458
 459void srcu_online_cpu(unsigned int cpu)
 460{
 461	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
 462}
 463
 464void srcu_offline_cpu(unsigned int cpu)
 465{
 466	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
 467}
 468
 469/*
 470 * Place the workqueue handler on the specified CPU if online, otherwise
 471 * just run it whereever.  This is useful for placing workqueue handlers
 472 * that are to invoke the specified CPU's callbacks.
 473 */
 474static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
 475				       struct delayed_work *dwork,
 476				       unsigned long delay)
 477{
 478	bool ret;
 
 
 
 479
 480	preempt_disable();
 481	if (READ_ONCE(per_cpu(srcu_online, cpu)))
 482		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
 483	else
 484		ret = queue_delayed_work(wq, dwork, delay);
 485	preempt_enable();
 486	return ret;
 487}
 488
 489/*
 490 * Schedule callback invocation for the specified srcu_data structure,
 491 * if possible, on the corresponding CPU.
 492 */
 493static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 494{
 495	srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay);
 496}
 497
 498/*
 499 * Schedule callback invocation for all srcu_data structures associated
 500 * with the specified srcu_node structure that have callbacks for the
 501 * just-completed grace period, the one corresponding to idx.  If possible,
 502 * schedule this invocation on the corresponding CPUs.
 503 */
 504static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
 505				  unsigned long mask, unsigned long delay)
 506{
 507	int cpu;
 508
 509	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 510		if (!(mask & (1 << (cpu - snp->grplo))))
 511			continue;
 512		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
 513	}
 514}
 515
 516/*
 517 * Note the end of an SRCU grace period.  Initiates callback invocation
 518 * and starts a new grace period if needed.
 519 *
 520 * The ->srcu_cb_mutex acquisition does not protect any data, but
 521 * instead prevents more than one grace period from starting while we
 522 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 523 * array to have a finite number of elements.
 524 */
 525static void srcu_gp_end(struct srcu_struct *sp)
 526{
 527	unsigned long cbdelay;
 528	bool cbs;
 529	bool last_lvl;
 530	int cpu;
 531	unsigned long flags;
 532	unsigned long gpseq;
 533	int idx;
 534	unsigned long mask;
 535	struct srcu_data *sdp;
 536	struct srcu_node *snp;
 537
 538	/* Prevent more than one additional grace period. */
 539	mutex_lock(&sp->srcu_cb_mutex);
 540
 541	/* End the current grace period. */
 542	spin_lock_irq_rcu_node(sp);
 543	idx = rcu_seq_state(sp->srcu_gp_seq);
 544	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 545	cbdelay = srcu_get_delay(sp);
 546	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 547	rcu_seq_end(&sp->srcu_gp_seq);
 548	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 549	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
 550		sp->srcu_gp_seq_needed_exp = gpseq;
 551	spin_unlock_irq_rcu_node(sp);
 552	mutex_unlock(&sp->srcu_gp_mutex);
 553	/* A new grace period can start at this point.  But only one. */
 554
 555	/* Initiate callback invocation as needed. */
 556	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 557	rcu_for_each_node_breadth_first(sp, snp) {
 558		spin_lock_irq_rcu_node(snp);
 559		cbs = false;
 560		last_lvl = snp >= sp->level[rcu_num_lvls - 1];
 561		if (last_lvl)
 562			cbs = snp->srcu_have_cbs[idx] == gpseq;
 563		snp->srcu_have_cbs[idx] = gpseq;
 564		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 565		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
 566			snp->srcu_gp_seq_needed_exp = gpseq;
 567		mask = snp->srcu_data_have_cbs[idx];
 568		snp->srcu_data_have_cbs[idx] = 0;
 569		spin_unlock_irq_rcu_node(snp);
 570		if (cbs)
 571			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
 572
 573		/* Occasionally prevent srcu_data counter wrap. */
 574		if (!(gpseq & counter_wrap_check) && last_lvl)
 575			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 576				sdp = per_cpu_ptr(sp->sda, cpu);
 577				spin_lock_irqsave_rcu_node(sdp, flags);
 578				if (ULONG_CMP_GE(gpseq,
 579						 sdp->srcu_gp_seq_needed + 100))
 580					sdp->srcu_gp_seq_needed = gpseq;
 581				if (ULONG_CMP_GE(gpseq,
 582						 sdp->srcu_gp_seq_needed_exp + 100))
 583					sdp->srcu_gp_seq_needed_exp = gpseq;
 584				spin_unlock_irqrestore_rcu_node(sdp, flags);
 585			}
 586	}
 587
 588	/* Callback initiation done, allow grace periods after next. */
 589	mutex_unlock(&sp->srcu_cb_mutex);
 590
 591	/* Start a new grace period if needed. */
 592	spin_lock_irq_rcu_node(sp);
 593	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
 594	if (!rcu_seq_state(gpseq) &&
 595	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
 596		srcu_gp_start(sp);
 597		spin_unlock_irq_rcu_node(sp);
 598		srcu_reschedule(sp, 0);
 599	} else {
 600		spin_unlock_irq_rcu_node(sp);
 601	}
 602}
 603
 604/*
 605 * Funnel-locking scheme to scalably mediate many concurrent expedited
 606 * grace-period requests.  This function is invoked for the first known
 607 * expedited request for a grace period that has already been requested,
 608 * but without expediting.  To start a completely new grace period,
 609 * whether expedited or not, use srcu_funnel_gp_start() instead.
 610 */
 611static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
 612				  unsigned long s)
 613{
 614	unsigned long flags;
 615
 616	for (; snp != NULL; snp = snp->srcu_parent) {
 617		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
 618		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
 619			return;
 620		spin_lock_irqsave_rcu_node(snp, flags);
 621		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
 622			spin_unlock_irqrestore_rcu_node(snp, flags);
 623			return;
 624		}
 625		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 626		spin_unlock_irqrestore_rcu_node(snp, flags);
 627	}
 628	spin_lock_irqsave_rcu_node(sp, flags);
 629	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 630		sp->srcu_gp_seq_needed_exp = s;
 631	spin_unlock_irqrestore_rcu_node(sp, flags);
 632}
 633
 634/*
 635 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 636 * requests.  The winner has to do the work of actually starting grace
 637 * period s.  Losers must either ensure that their desired grace-period
 638 * number is recorded on at least their leaf srcu_node structure, or they
 639 * must take steps to invoke their own callbacks.
 
 
 
 640 */
 641static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
 642				 unsigned long s, bool do_norm)
 643{
 644	unsigned long flags;
 645	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 646	struct srcu_node *snp = sdp->mynode;
 647	unsigned long snp_seq;
 648
 649	/* Each pass through the loop does one level of the srcu_node tree. */
 650	for (; snp != NULL; snp = snp->srcu_parent) {
 651		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
 652			return; /* GP already done and CBs recorded. */
 653		spin_lock_irqsave_rcu_node(snp, flags);
 654		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
 655			snp_seq = snp->srcu_have_cbs[idx];
 656			if (snp == sdp->mynode && snp_seq == s)
 657				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 658			spin_unlock_irqrestore_rcu_node(snp, flags);
 659			if (snp == sdp->mynode && snp_seq != s) {
 660				srcu_schedule_cbs_sdp(sdp, do_norm
 661							   ? SRCU_INTERVAL
 662							   : 0);
 663				return;
 664			}
 665			if (!do_norm)
 666				srcu_funnel_exp_start(sp, snp, s);
 667			return;
 668		}
 669		snp->srcu_have_cbs[idx] = s;
 670		if (snp == sdp->mynode)
 671			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 672		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
 673			snp->srcu_gp_seq_needed_exp = s;
 674		spin_unlock_irqrestore_rcu_node(snp, flags);
 675	}
 676
 677	/* Top of tree, must ensure the grace period will be started. */
 678	spin_lock_irqsave_rcu_node(sp, flags);
 679	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
 680		/*
 681		 * Record need for grace period s.  Pair with load
 682		 * acquire setting up for initialization.
 683		 */
 684		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
 685	}
 686	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
 687		sp->srcu_gp_seq_needed_exp = s;
 688
 689	/* If grace period not already done and none in progress, start it. */
 690	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
 691	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 692		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
 693		srcu_gp_start(sp);
 694		queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp));
 
 
 
 
 695	}
 696	spin_unlock_irqrestore_rcu_node(sp, flags);
 697}
 698
 699/*
 700 * Wait until all readers counted by array index idx complete, but
 701 * loop an additional time if there is an expedited grace period pending.
 702 * The caller must ensure that ->srcu_idx is not changed while checking.
 703 */
 704static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
 705{
 706	for (;;) {
 707		if (srcu_readers_active_idx_check(sp, idx))
 708			return true;
 709		if (--trycount + !srcu_get_delay(sp) <= 0)
 710			return false;
 711		udelay(SRCU_RETRY_CHECK_DELAY);
 712	}
 713}
 714
 715/*
 716 * Increment the ->srcu_idx counter so that future SRCU readers will
 717 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 718 * us to wait for pre-existing readers in a starvation-free manner.
 719 */
 720static void srcu_flip(struct srcu_struct *sp)
 721{
 722	/*
 723	 * Ensure that if this updater saw a given reader's increment
 724	 * from __srcu_read_lock(), that reader was using an old value
 725	 * of ->srcu_idx.  Also ensure that if a given reader sees the
 726	 * new value of ->srcu_idx, this updater's earlier scans cannot
 727	 * have seen that reader's increments (which is OK, because this
 728	 * grace period need not wait on that reader).
 729	 */
 730	smp_mb(); /* E */  /* Pairs with B and C. */
 731
 732	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
 733
 734	/*
 735	 * Ensure that if the updater misses an __srcu_read_unlock()
 736	 * increment, that task's next __srcu_read_lock() will see the
 737	 * above counter update.  Note that both this memory barrier
 738	 * and the one in srcu_readers_active_idx_check() provide the
 739	 * guarantee for __srcu_read_lock().
 740	 */
 741	smp_mb(); /* D */  /* Pairs with C. */
 742}
 743
 744/*
 745 * If SRCU is likely idle, return true, otherwise return false.
 746 *
 747 * Note that it is OK for several current from-idle requests for a new
 748 * grace period from idle to specify expediting because they will all end
 749 * up requesting the same grace period anyhow.  So no loss.
 750 *
 751 * Note also that if any CPU (including the current one) is still invoking
 752 * callbacks, this function will nevertheless say "idle".  This is not
 753 * ideal, but the overhead of checking all CPUs' callback lists is even
 754 * less ideal, especially on large systems.  Furthermore, the wakeup
 755 * can happen before the callback is fully removed, so we have no choice
 756 * but to accept this type of error.
 757 *
 758 * This function is also subject to counter-wrap errors, but let's face
 759 * it, if this function was preempted for enough time for the counters
 760 * to wrap, it really doesn't matter whether or not we expedite the grace
 761 * period.  The extra overhead of a needlessly expedited grace period is
 762 * negligible when amoritized over that time period, and the extra latency
 763 * of a needlessly non-expedited grace period is similarly negligible.
 764 */
 765static bool srcu_might_be_idle(struct srcu_struct *sp)
 766{
 767	unsigned long curseq;
 768	unsigned long flags;
 769	struct srcu_data *sdp;
 770	unsigned long t;
 
 771
 
 772	/* If the local srcu_data structure has callbacks, not idle.  */
 773	local_irq_save(flags);
 774	sdp = this_cpu_ptr(sp->sda);
 775	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 776		local_irq_restore(flags);
 777		return false; /* Callbacks already present, so not idle. */
 778	}
 779	local_irq_restore(flags);
 780
 781	/*
 782	 * No local callbacks, so probabalistically probe global state.
 783	 * Exact information would require acquiring locks, which would
 784	 * kill scalability, hence the probabalistic nature of the probe.
 785	 */
 786
 787	/* First, see if enough time has passed since the last GP. */
 788	t = ktime_get_mono_fast_ns();
 
 789	if (exp_holdoff == 0 ||
 790	    time_in_range_open(t, sp->srcu_last_gp_end,
 791			       sp->srcu_last_gp_end + exp_holdoff))
 792		return false; /* Too soon after last GP. */
 793
 794	/* Next, check for probable idleness. */
 795	curseq = rcu_seq_current(&sp->srcu_gp_seq);
 796	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 797	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
 798		return false; /* Grace period in progress, so not idle. */
 799	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 800	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
 801		return false; /* GP # changed, so not idle. */
 802	return true; /* With reasonable probability, idle! */
 803}
 804
 805/*
 806 * SRCU callback function to leak a callback.
 807 */
 808static void srcu_leak_callback(struct rcu_head *rhp)
 809{
 810}
 811
 812/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813 * Enqueue an SRCU callback on the srcu_data structure associated with
 814 * the current CPU and the specified srcu_struct structure, initiating
 815 * grace-period processing if it is not already running.
 816 *
 817 * Note that all CPUs must agree that the grace period extended beyond
 818 * all pre-existing SRCU read-side critical section.  On systems with
 819 * more than one CPU, this means that when "func()" is invoked, each CPU
 820 * is guaranteed to have executed a full memory barrier since the end of
 821 * its last corresponding SRCU read-side critical section whose beginning
 822 * preceded the call to call_rcu().  It also means that each CPU executing
 823 * an SRCU read-side critical section that continues beyond the start of
 824 * "func()" must have executed a memory barrier after the call_rcu()
 825 * but before the beginning of that SRCU read-side critical section.
 826 * Note that these guarantees include CPUs that are offline, idle, or
 827 * executing in user mode, as well as CPUs that are executing in the kernel.
 828 *
 829 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 830 * resulting SRCU callback function "func()", then both CPU A and CPU
 831 * B are guaranteed to execute a full memory barrier during the time
 832 * interval between the call to call_rcu() and the invocation of "func()".
 833 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 834 * again only if the system has more than one CPU).
 835 *
 836 * Of course, these guarantees apply only for invocations of call_srcu(),
 837 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 838 * srcu_struct structure.
 839 */
 840void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 841		 rcu_callback_t func, bool do_norm)
 842{
 843	unsigned long flags;
 844	bool needexp = false;
 845	bool needgp = false;
 846	unsigned long s;
 847	struct srcu_data *sdp;
 848
 849	check_init_srcu_struct(sp);
 850	if (debug_rcu_head_queue(rhp)) {
 851		/* Probable double call_srcu(), so leak the callback. */
 852		WRITE_ONCE(rhp->func, srcu_leak_callback);
 853		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 854		return;
 855	}
 856	rhp->func = func;
 857	local_irq_save(flags);
 858	sdp = this_cpu_ptr(sp->sda);
 859	spin_lock_rcu_node(sdp);
 860	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
 861	rcu_segcblist_advance(&sdp->srcu_cblist,
 862			      rcu_seq_current(&sp->srcu_gp_seq));
 863	s = rcu_seq_snap(&sp->srcu_gp_seq);
 864	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
 865	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 866		sdp->srcu_gp_seq_needed = s;
 867		needgp = true;
 868	}
 869	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 870		sdp->srcu_gp_seq_needed_exp = s;
 871		needexp = true;
 872	}
 873	spin_unlock_irqrestore_rcu_node(sdp, flags);
 874	if (needgp)
 875		srcu_funnel_gp_start(sp, sdp, s, do_norm);
 876	else if (needexp)
 877		srcu_funnel_exp_start(sp, sdp->mynode, s);
 878}
 879
 880/**
 881 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 882 * @sp: srcu_struct in queue the callback
 883 * @rhp: structure to be used for queueing the SRCU callback.
 884 * @func: function to be invoked after the SRCU grace period
 885 *
 886 * The callback function will be invoked some time after a full SRCU
 887 * grace period elapses, in other words after all pre-existing SRCU
 888 * read-side critical sections have completed.  However, the callback
 889 * function might well execute concurrently with other SRCU read-side
 890 * critical sections that started after call_srcu() was invoked.  SRCU
 891 * read-side critical sections are delimited by srcu_read_lock() and
 892 * srcu_read_unlock(), and may be nested.
 893 *
 894 * The callback will be invoked from process context, but must nevertheless
 895 * be fast and must not block.
 896 */
 897void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
 898	       rcu_callback_t func)
 899{
 900	__call_srcu(sp, rhp, func, true);
 901}
 902EXPORT_SYMBOL_GPL(call_srcu);
 903
 904/*
 905 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 906 */
 907static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
 908{
 909	struct rcu_synchronize rcu;
 910
 911	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
 912			 lock_is_held(&rcu_bh_lock_map) ||
 913			 lock_is_held(&rcu_lock_map) ||
 914			 lock_is_held(&rcu_sched_lock_map),
 915			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 916
 917	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 918		return;
 919	might_sleep();
 920	check_init_srcu_struct(sp);
 921	init_completion(&rcu.completion);
 922	init_rcu_head_on_stack(&rcu.head);
 923	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
 924	wait_for_completion(&rcu.completion);
 925	destroy_rcu_head_on_stack(&rcu.head);
 926
 927	/*
 928	 * Make sure that later code is ordered after the SRCU grace
 929	 * period.  This pairs with the spin_lock_irq_rcu_node()
 930	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 931	 * because the current CPU might have been totally uninvolved with
 932	 * (and thus unordered against) that grace period.
 933	 */
 934	smp_mb();
 935}
 936
 937/**
 938 * synchronize_srcu_expedited - Brute-force SRCU grace period
 939 * @sp: srcu_struct with which to synchronize.
 940 *
 941 * Wait for an SRCU grace period to elapse, but be more aggressive about
 942 * spinning rather than blocking when waiting.
 943 *
 944 * Note that synchronize_srcu_expedited() has the same deadlock and
 945 * memory-ordering properties as does synchronize_srcu().
 946 */
 947void synchronize_srcu_expedited(struct srcu_struct *sp)
 948{
 949	__synchronize_srcu(sp, rcu_gp_is_normal());
 950}
 951EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 952
 953/**
 954 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 955 * @sp: srcu_struct with which to synchronize.
 956 *
 957 * Wait for the count to drain to zero of both indexes. To avoid the
 958 * possible starvation of synchronize_srcu(), it waits for the count of
 959 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 960 * and then flip the srcu_idx and wait for the count of the other index.
 961 *
 962 * Can block; must be called from process context.
 963 *
 964 * Note that it is illegal to call synchronize_srcu() from the corresponding
 965 * SRCU read-side critical section; doing so will result in deadlock.
 966 * However, it is perfectly legal to call synchronize_srcu() on one
 967 * srcu_struct from some other srcu_struct's read-side critical section,
 968 * as long as the resulting graph of srcu_structs is acyclic.
 969 *
 970 * There are memory-ordering constraints implied by synchronize_srcu().
 971 * On systems with more than one CPU, when synchronize_srcu() returns,
 972 * each CPU is guaranteed to have executed a full memory barrier since
 973 * the end of its last corresponding SRCU-sched read-side critical section
 974 * whose beginning preceded the call to synchronize_srcu().  In addition,
 975 * each CPU having an SRCU read-side critical section that extends beyond
 976 * the return from synchronize_srcu() is guaranteed to have executed a
 977 * full memory barrier after the beginning of synchronize_srcu() and before
 978 * the beginning of that SRCU read-side critical section.  Note that these
 979 * guarantees include CPUs that are offline, idle, or executing in user mode,
 980 * as well as CPUs that are executing in the kernel.
 981 *
 982 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 983 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 984 * to have executed a full memory barrier during the execution of
 985 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 986 * are the same CPU, but again only if the system has more than one CPU.
 987 *
 988 * Of course, these memory-ordering guarantees apply only when
 989 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 990 * passed the same srcu_struct structure.
 991 *
 
 
 
 992 * If SRCU is likely idle, expedite the first request.  This semantic
 993 * was provided by Classic SRCU, and is relied upon by its users, so TREE
 994 * SRCU must also provide it.  Note that detecting idleness is heuristic
 995 * and subject to both false positives and negatives.
 996 */
 997void synchronize_srcu(struct srcu_struct *sp)
 998{
 999	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
1000		synchronize_srcu_expedited(sp);
1001	else
1002		__synchronize_srcu(sp, true);
1003}
1004EXPORT_SYMBOL_GPL(synchronize_srcu);
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006/*
1007 * Callback function for srcu_barrier() use.
1008 */
1009static void srcu_barrier_cb(struct rcu_head *rhp)
1010{
1011	struct srcu_data *sdp;
1012	struct srcu_struct *sp;
1013
1014	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1015	sp = sdp->sp;
1016	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1017		complete(&sp->srcu_barrier_completion);
1018}
1019
1020/**
1021 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1022 * @sp: srcu_struct on which to wait for in-flight callbacks.
1023 */
1024void srcu_barrier(struct srcu_struct *sp)
1025{
1026	int cpu;
1027	struct srcu_data *sdp;
1028	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1029
1030	check_init_srcu_struct(sp);
1031	mutex_lock(&sp->srcu_barrier_mutex);
1032	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1033		smp_mb(); /* Force ordering following return. */
1034		mutex_unlock(&sp->srcu_barrier_mutex);
1035		return; /* Someone else did our work for us. */
1036	}
1037	rcu_seq_start(&sp->srcu_barrier_seq);
1038	init_completion(&sp->srcu_barrier_completion);
1039
1040	/* Initial count prevents reaching zero until all CBs are posted. */
1041	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1042
1043	/*
1044	 * Each pass through this loop enqueues a callback, but only
1045	 * on CPUs already having callbacks enqueued.  Note that if
1046	 * a CPU already has callbacks enqueue, it must have already
1047	 * registered the need for a future grace period, so all we
1048	 * need do is enqueue a callback that will use the same
1049	 * grace period as the last callback already in the queue.
1050	 */
1051	for_each_possible_cpu(cpu) {
1052		sdp = per_cpu_ptr(sp->sda, cpu);
1053		spin_lock_irq_rcu_node(sdp);
1054		atomic_inc(&sp->srcu_barrier_cpu_cnt);
1055		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1056		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1057		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1058					   &sdp->srcu_barrier_head, 0)) {
1059			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1060			atomic_dec(&sp->srcu_barrier_cpu_cnt);
1061		}
1062		spin_unlock_irq_rcu_node(sdp);
1063	}
1064
1065	/* Remove the initial count, at which point reaching zero can happen. */
1066	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1067		complete(&sp->srcu_barrier_completion);
1068	wait_for_completion(&sp->srcu_barrier_completion);
1069
1070	rcu_seq_end(&sp->srcu_barrier_seq);
1071	mutex_unlock(&sp->srcu_barrier_mutex);
1072}
1073EXPORT_SYMBOL_GPL(srcu_barrier);
1074
1075/**
1076 * srcu_batches_completed - return batches completed.
1077 * @sp: srcu_struct on which to report batch completion.
1078 *
1079 * Report the number of batches, correlated with, but not necessarily
1080 * precisely the same as, the number of grace periods that have elapsed.
1081 */
1082unsigned long srcu_batches_completed(struct srcu_struct *sp)
1083{
1084	return sp->srcu_idx;
1085}
1086EXPORT_SYMBOL_GPL(srcu_batches_completed);
1087
1088/*
1089 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1090 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1091 * completed in that state.
1092 */
1093static void srcu_advance_state(struct srcu_struct *sp)
1094{
1095	int idx;
1096
1097	mutex_lock(&sp->srcu_gp_mutex);
1098
1099	/*
1100	 * Because readers might be delayed for an extended period after
1101	 * fetching ->srcu_idx for their index, at any point in time there
1102	 * might well be readers using both idx=0 and idx=1.  We therefore
1103	 * need to wait for readers to clear from both index values before
1104	 * invoking a callback.
1105	 *
1106	 * The load-acquire ensures that we see the accesses performed
1107	 * by the prior grace period.
1108	 */
1109	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1110	if (idx == SRCU_STATE_IDLE) {
1111		spin_lock_irq_rcu_node(sp);
1112		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1113			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1114			spin_unlock_irq_rcu_node(sp);
1115			mutex_unlock(&sp->srcu_gp_mutex);
1116			return;
1117		}
1118		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1119		if (idx == SRCU_STATE_IDLE)
1120			srcu_gp_start(sp);
1121		spin_unlock_irq_rcu_node(sp);
1122		if (idx != SRCU_STATE_IDLE) {
1123			mutex_unlock(&sp->srcu_gp_mutex);
1124			return; /* Someone else started the grace period. */
1125		}
1126	}
1127
1128	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1129		idx = 1 ^ (sp->srcu_idx & 1);
1130		if (!try_check_zero(sp, idx, 1)) {
1131			mutex_unlock(&sp->srcu_gp_mutex);
1132			return; /* readers present, retry later. */
1133		}
1134		srcu_flip(sp);
1135		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
 
 
1136	}
1137
1138	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1139
1140		/*
1141		 * SRCU read-side critical sections are normally short,
1142		 * so check at least twice in quick succession after a flip.
1143		 */
1144		idx = 1 ^ (sp->srcu_idx & 1);
1145		if (!try_check_zero(sp, idx, 2)) {
1146			mutex_unlock(&sp->srcu_gp_mutex);
1147			return; /* readers present, retry later. */
1148		}
1149		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1150	}
1151}
1152
1153/*
1154 * Invoke a limited number of SRCU callbacks that have passed through
1155 * their grace period.  If there are more to do, SRCU will reschedule
1156 * the workqueue.  Note that needed memory barriers have been executed
1157 * in this task's context by srcu_readers_active_idx_check().
1158 */
1159static void srcu_invoke_callbacks(struct work_struct *work)
1160{
 
1161	bool more;
1162	struct rcu_cblist ready_cbs;
1163	struct rcu_head *rhp;
1164	struct srcu_data *sdp;
1165	struct srcu_struct *sp;
 
 
1166
1167	sdp = container_of(work, struct srcu_data, work.work);
1168	sp = sdp->sp;
1169	rcu_cblist_init(&ready_cbs);
1170	spin_lock_irq_rcu_node(sdp);
1171	rcu_segcblist_advance(&sdp->srcu_cblist,
1172			      rcu_seq_current(&sp->srcu_gp_seq));
1173	if (sdp->srcu_cblist_invoking ||
1174	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1175		spin_unlock_irq_rcu_node(sdp);
1176		return;  /* Someone else on the job or nothing to do. */
1177	}
1178
1179	/* We are on the job!  Extract and invoke ready callbacks. */
1180	sdp->srcu_cblist_invoking = true;
1181	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
 
1182	spin_unlock_irq_rcu_node(sdp);
1183	rhp = rcu_cblist_dequeue(&ready_cbs);
1184	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1185		debug_rcu_head_unqueue(rhp);
1186		local_bh_disable();
1187		rhp->func(rhp);
1188		local_bh_enable();
1189	}
 
1190
1191	/*
1192	 * Update counts, accelerate new callbacks, and if needed,
1193	 * schedule another round of callback invocation.
1194	 */
1195	spin_lock_irq_rcu_node(sdp);
1196	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1197	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1198				       rcu_seq_snap(&sp->srcu_gp_seq));
1199	sdp->srcu_cblist_invoking = false;
1200	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1201	spin_unlock_irq_rcu_node(sdp);
1202	if (more)
1203		srcu_schedule_cbs_sdp(sdp, 0);
1204}
1205
1206/*
1207 * Finished one round of SRCU grace period.  Start another if there are
1208 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1209 */
1210static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1211{
1212	bool pushgp = true;
1213
1214	spin_lock_irq_rcu_node(sp);
1215	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1216		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1217			/* All requests fulfilled, time to go idle. */
1218			pushgp = false;
1219		}
1220	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1221		/* Outstanding request and no GP.  Start one. */
1222		srcu_gp_start(sp);
1223	}
1224	spin_unlock_irq_rcu_node(sp);
1225
1226	if (pushgp)
1227		queue_delayed_work(rcu_gp_wq, &sp->work, delay);
1228}
1229
1230/*
1231 * This is the work-queue function that handles SRCU grace periods.
1232 */
1233static void process_srcu(struct work_struct *work)
1234{
1235	struct srcu_struct *sp;
1236
1237	sp = container_of(work, struct srcu_struct, work.work);
1238
1239	srcu_advance_state(sp);
1240	srcu_reschedule(sp, srcu_get_delay(sp));
1241}
1242
1243void srcutorture_get_gp_data(enum rcutorture_type test_type,
1244			     struct srcu_struct *sp, int *flags,
1245			     unsigned long *gpnum, unsigned long *completed)
1246{
1247	if (test_type != SRCU_FLAVOR)
1248		return;
1249	*flags = 0;
1250	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1251	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1252}
1253EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1254
1255void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1256{
1257	int cpu;
1258	int idx;
1259	unsigned long s0 = 0, s1 = 0;
1260
1261	idx = sp->srcu_idx & 0x1;
1262	pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx);
 
1263	for_each_possible_cpu(cpu) {
1264		unsigned long l0, l1;
1265		unsigned long u0, u1;
1266		long c0, c1;
1267		struct srcu_data *counts;
1268
1269		counts = per_cpu_ptr(sp->sda, cpu);
1270		u0 = counts->srcu_unlock_count[!idx];
1271		u1 = counts->srcu_unlock_count[idx];
1272
1273		/*
1274		 * Make sure that a lock is always counted if the corresponding
1275		 * unlock is counted.
1276		 */
1277		smp_rmb();
1278
1279		l0 = counts->srcu_lock_count[!idx];
1280		l1 = counts->srcu_lock_count[idx];
1281
1282		c0 = l0 - u0;
1283		c1 = l1 - u1;
1284		pr_cont(" %d(%ld,%ld)", cpu, c0, c1);
 
 
1285		s0 += c0;
1286		s1 += c1;
1287	}
1288	pr_cont(" T(%ld,%ld)\n", s0, s1);
1289}
1290EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1291
1292static int __init srcu_bootup_announce(void)
1293{
1294	pr_info("Hierarchical SRCU implementation.\n");
1295	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1296		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1297	return 0;
1298}
1299early_initcall(srcu_bootup_announce);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2006
   6 * Copyright (C) Fujitsu, 2012
   7 *
   8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
   9 *	   Lai Jiangshan <laijs@cn.fujitsu.com>
  10 *
  11 * For detailed explanation of Read-Copy Update mechanism see -
  12 *		Documentation/RCU/ *.txt
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "rcu: " fmt
  17
  18#include <linux/export.h>
  19#include <linux/mutex.h>
  20#include <linux/percpu.h>
  21#include <linux/preempt.h>
  22#include <linux/rcupdate_wait.h>
  23#include <linux/sched.h>
  24#include <linux/smp.h>
  25#include <linux/delay.h>
  26#include <linux/module.h>
  27#include <linux/srcu.h>
  28
  29#include "rcu.h"
  30#include "rcu_segcblist.h"
  31
  32/* Holdoff in nanoseconds for auto-expediting. */
  33#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
  34static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
  35module_param(exp_holdoff, ulong, 0444);
  36
  37/* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
  38static ulong counter_wrap_check = (ULONG_MAX >> 2);
  39module_param(counter_wrap_check, ulong, 0444);
  40
  41/* Early-boot callback-management, so early that no lock is required! */
  42static LIST_HEAD(srcu_boot_list);
  43static bool __read_mostly srcu_init_done;
  44
  45static void srcu_invoke_callbacks(struct work_struct *work);
  46static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
  47static void process_srcu(struct work_struct *work);
  48static void srcu_delay_timer(struct timer_list *t);
  49
  50/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
  51#define spin_lock_rcu_node(p)					\
  52do {									\
  53	spin_lock(&ACCESS_PRIVATE(p, lock));			\
  54	smp_mb__after_unlock_lock();					\
  55} while (0)
  56
  57#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
  58
  59#define spin_lock_irq_rcu_node(p)					\
  60do {									\
  61	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
  62	smp_mb__after_unlock_lock();					\
  63} while (0)
  64
  65#define spin_unlock_irq_rcu_node(p)					\
  66	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
  67
  68#define spin_lock_irqsave_rcu_node(p, flags)			\
  69do {									\
  70	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
  71	smp_mb__after_unlock_lock();					\
  72} while (0)
  73
  74#define spin_unlock_irqrestore_rcu_node(p, flags)			\
  75	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
  76
  77/*
  78 * Initialize SRCU combining tree.  Note that statically allocated
  79 * srcu_struct structures might already have srcu_read_lock() and
  80 * srcu_read_unlock() running against them.  So if the is_static parameter
  81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
  82 */
  83static void init_srcu_struct_nodes(struct srcu_struct *ssp)
  84{
  85	int cpu;
  86	int i;
  87	int level = 0;
  88	int levelspread[RCU_NUM_LVLS];
  89	struct srcu_data *sdp;
  90	struct srcu_node *snp;
  91	struct srcu_node *snp_first;
  92
  93	/* Initialize geometry if it has not already been initialized. */
  94	rcu_init_geometry();
  95
  96	/* Work out the overall tree geometry. */
  97	ssp->level[0] = &ssp->node[0];
  98	for (i = 1; i < rcu_num_lvls; i++)
  99		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
 100	rcu_init_levelspread(levelspread, num_rcu_lvl);
 101
 102	/* Each pass through this loop initializes one srcu_node structure. */
 103	srcu_for_each_node_breadth_first(ssp, snp) {
 104		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
 105		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
 106			     ARRAY_SIZE(snp->srcu_data_have_cbs));
 107		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
 108			snp->srcu_have_cbs[i] = 0;
 109			snp->srcu_data_have_cbs[i] = 0;
 110		}
 111		snp->srcu_gp_seq_needed_exp = 0;
 112		snp->grplo = -1;
 113		snp->grphi = -1;
 114		if (snp == &ssp->node[0]) {
 115			/* Root node, special case. */
 116			snp->srcu_parent = NULL;
 117			continue;
 118		}
 119
 120		/* Non-root node. */
 121		if (snp == ssp->level[level + 1])
 122			level++;
 123		snp->srcu_parent = ssp->level[level - 1] +
 124				   (snp - ssp->level[level]) /
 125				   levelspread[level - 1];
 126	}
 127
 128	/*
 129	 * Initialize the per-CPU srcu_data array, which feeds into the
 130	 * leaves of the srcu_node tree.
 131	 */
 132	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
 133		     ARRAY_SIZE(sdp->srcu_unlock_count));
 134	level = rcu_num_lvls - 1;
 135	snp_first = ssp->level[level];
 136	for_each_possible_cpu(cpu) {
 137		sdp = per_cpu_ptr(ssp->sda, cpu);
 138		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
 139		rcu_segcblist_init(&sdp->srcu_cblist);
 140		sdp->srcu_cblist_invoking = false;
 141		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
 142		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
 143		sdp->mynode = &snp_first[cpu / levelspread[level]];
 144		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
 145			if (snp->grplo < 0)
 146				snp->grplo = cpu;
 147			snp->grphi = cpu;
 148		}
 149		sdp->cpu = cpu;
 150		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
 151		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
 152		sdp->ssp = ssp;
 153		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
 
 
 
 
 
 
 
 
 154	}
 155}
 156
 157/*
 158 * Initialize non-compile-time initialized fields, including the
 159 * associated srcu_node and srcu_data structures.  The is_static
 160 * parameter is passed through to init_srcu_struct_nodes(), and
 161 * also tells us that ->sda has already been wired up to srcu_data.
 162 */
 163static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
 164{
 165	mutex_init(&ssp->srcu_cb_mutex);
 166	mutex_init(&ssp->srcu_gp_mutex);
 167	ssp->srcu_idx = 0;
 168	ssp->srcu_gp_seq = 0;
 169	ssp->srcu_barrier_seq = 0;
 170	mutex_init(&ssp->srcu_barrier_mutex);
 171	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
 172	INIT_DELAYED_WORK(&ssp->work, process_srcu);
 173	if (!is_static)
 174		ssp->sda = alloc_percpu(struct srcu_data);
 175	if (!ssp->sda)
 176		return -ENOMEM;
 177	init_srcu_struct_nodes(ssp);
 178	ssp->srcu_gp_seq_needed_exp = 0;
 179	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
 180	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
 181	return 0;
 182}
 183
 184#ifdef CONFIG_DEBUG_LOCK_ALLOC
 185
 186int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
 187		       struct lock_class_key *key)
 188{
 189	/* Don't re-initialize a lock while it is held. */
 190	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
 191	lockdep_init_map(&ssp->dep_map, name, key, 0);
 192	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 193	return init_srcu_struct_fields(ssp, false);
 194}
 195EXPORT_SYMBOL_GPL(__init_srcu_struct);
 196
 197#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 198
 199/**
 200 * init_srcu_struct - initialize a sleep-RCU structure
 201 * @ssp: structure to initialize.
 202 *
 203 * Must invoke this on a given srcu_struct before passing that srcu_struct
 204 * to any other function.  Each srcu_struct represents a separate domain
 205 * of SRCU protection.
 206 */
 207int init_srcu_struct(struct srcu_struct *ssp)
 208{
 209	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
 210	return init_srcu_struct_fields(ssp, false);
 211}
 212EXPORT_SYMBOL_GPL(init_srcu_struct);
 213
 214#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 215
 216/*
 217 * First-use initialization of statically allocated srcu_struct
 218 * structure.  Wiring up the combining tree is more than can be
 219 * done with compile-time initialization, so this check is added
 220 * to each update-side SRCU primitive.  Use ssp->lock, which -is-
 221 * compile-time initialized, to resolve races involving multiple
 222 * CPUs trying to garner first-use privileges.
 223 */
 224static void check_init_srcu_struct(struct srcu_struct *ssp)
 225{
 226	unsigned long flags;
 227
 
 228	/* The smp_load_acquire() pairs with the smp_store_release(). */
 229	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
 230		return; /* Already initialized. */
 231	spin_lock_irqsave_rcu_node(ssp, flags);
 232	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
 233		spin_unlock_irqrestore_rcu_node(ssp, flags);
 234		return;
 235	}
 236	init_srcu_struct_fields(ssp, true);
 237	spin_unlock_irqrestore_rcu_node(ssp, flags);
 238}
 239
 240/*
 241 * Returns approximate total of the readers' ->srcu_lock_count[] values
 242 * for the rank of per-CPU counters specified by idx.
 243 */
 244static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
 245{
 246	int cpu;
 247	unsigned long sum = 0;
 248
 249	for_each_possible_cpu(cpu) {
 250		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 251
 252		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
 253	}
 254	return sum;
 255}
 256
 257/*
 258 * Returns approximate total of the readers' ->srcu_unlock_count[] values
 259 * for the rank of per-CPU counters specified by idx.
 260 */
 261static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
 262{
 263	int cpu;
 264	unsigned long sum = 0;
 265
 266	for_each_possible_cpu(cpu) {
 267		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 268
 269		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
 270	}
 271	return sum;
 272}
 273
 274/*
 275 * Return true if the number of pre-existing readers is determined to
 276 * be zero.
 277 */
 278static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
 279{
 280	unsigned long unlocks;
 281
 282	unlocks = srcu_readers_unlock_idx(ssp, idx);
 283
 284	/*
 285	 * Make sure that a lock is always counted if the corresponding
 286	 * unlock is counted. Needs to be a smp_mb() as the read side may
 287	 * contain a read from a variable that is written to before the
 288	 * synchronize_srcu() in the write side. In this case smp_mb()s
 289	 * A and B act like the store buffering pattern.
 290	 *
 291	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
 292	 * after the synchronize_srcu() from being executed before the
 293	 * grace period ends.
 294	 */
 295	smp_mb(); /* A */
 296
 297	/*
 298	 * If the locks are the same as the unlocks, then there must have
 299	 * been no readers on this index at some time in between. This does
 300	 * not mean that there are no more readers, as one could have read
 301	 * the current index but not have incremented the lock counter yet.
 302	 *
 303	 * So suppose that the updater is preempted here for so long
 304	 * that more than ULONG_MAX non-nested readers come and go in
 305	 * the meantime.  It turns out that this cannot result in overflow
 306	 * because if a reader modifies its unlock count after we read it
 307	 * above, then that reader's next load of ->srcu_idx is guaranteed
 308	 * to get the new value, which will cause it to operate on the
 309	 * other bank of counters, where it cannot contribute to the
 310	 * overflow of these counters.  This means that there is a maximum
 311	 * of 2*NR_CPUS increments, which cannot overflow given current
 312	 * systems, especially not on 64-bit systems.
 313	 *
 314	 * OK, how about nesting?  This does impose a limit on nesting
 315	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
 316	 * especially on 64-bit systems.
 317	 */
 318	return srcu_readers_lock_idx(ssp, idx) == unlocks;
 319}
 320
 321/**
 322 * srcu_readers_active - returns true if there are readers. and false
 323 *                       otherwise
 324 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
 325 *
 326 * Note that this is not an atomic primitive, and can therefore suffer
 327 * severe errors when invoked on an active srcu_struct.  That said, it
 328 * can be useful as an error check at cleanup time.
 329 */
 330static bool srcu_readers_active(struct srcu_struct *ssp)
 331{
 332	int cpu;
 333	unsigned long sum = 0;
 334
 335	for_each_possible_cpu(cpu) {
 336		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
 337
 338		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
 339		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
 340		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
 341		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
 342	}
 343	return sum;
 344}
 345
 346#define SRCU_INTERVAL		1
 347
 348/*
 349 * Return grace-period delay, zero if there are expedited grace
 350 * periods pending, SRCU_INTERVAL otherwise.
 351 */
 352static unsigned long srcu_get_delay(struct srcu_struct *ssp)
 353{
 354	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
 355			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
 356		return 0;
 357	return SRCU_INTERVAL;
 358}
 359
 360/**
 361 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
 362 * @ssp: structure to clean up.
 363 *
 364 * Must invoke this after you are finished using a given srcu_struct that
 365 * was initialized via init_srcu_struct(), else you leak memory.
 366 */
 367void cleanup_srcu_struct(struct srcu_struct *ssp)
 368{
 369	int cpu;
 370
 371	if (WARN_ON(!srcu_get_delay(ssp)))
 372		return; /* Just leak it! */
 373	if (WARN_ON(srcu_readers_active(ssp)))
 374		return; /* Just leak it! */
 375	flush_delayed_work(&ssp->work);
 376	for_each_possible_cpu(cpu) {
 377		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
 378
 379		del_timer_sync(&sdp->delay_work);
 380		flush_work(&sdp->work);
 381		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
 382			return; /* Forgot srcu_barrier(), so just leak it! */
 383	}
 384	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
 385	    WARN_ON(srcu_readers_active(ssp))) {
 386		pr_info("%s: Active srcu_struct %p state: %d\n",
 387			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
 388		return; /* Caller forgot to stop doing call_srcu()? */
 389	}
 390	free_percpu(ssp->sda);
 391	ssp->sda = NULL;
 392}
 393EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
 394
 395/*
 396 * Counts the new reader in the appropriate per-CPU element of the
 397 * srcu_struct.
 398 * Returns an index that must be passed to the matching srcu_read_unlock().
 399 */
 400int __srcu_read_lock(struct srcu_struct *ssp)
 401{
 402	int idx;
 403
 404	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
 405	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
 406	smp_mb(); /* B */  /* Avoid leaking the critical section. */
 407	return idx;
 408}
 409EXPORT_SYMBOL_GPL(__srcu_read_lock);
 410
 411/*
 412 * Removes the count for the old reader from the appropriate per-CPU
 413 * element of the srcu_struct.  Note that this may well be a different
 414 * CPU than that which was incremented by the corresponding srcu_read_lock().
 415 */
 416void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
 417{
 418	smp_mb(); /* C */  /* Avoid leaking the critical section. */
 419	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
 420}
 421EXPORT_SYMBOL_GPL(__srcu_read_unlock);
 422
 423/*
 424 * We use an adaptive strategy for synchronize_srcu() and especially for
 425 * synchronize_srcu_expedited().  We spin for a fixed time period
 426 * (defined below) to allow SRCU readers to exit their read-side critical
 427 * sections.  If there are still some readers after a few microseconds,
 428 * we repeatedly block for 1-millisecond time periods.
 429 */
 430#define SRCU_RETRY_CHECK_DELAY		5
 431
 432/*
 433 * Start an SRCU grace period.
 434 */
 435static void srcu_gp_start(struct srcu_struct *ssp)
 436{
 437	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
 438	int state;
 439
 440	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
 441	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 442	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
 443	rcu_segcblist_advance(&sdp->srcu_cblist,
 444			      rcu_seq_current(&ssp->srcu_gp_seq));
 445	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
 446				       rcu_seq_snap(&ssp->srcu_gp_seq));
 447	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
 448	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
 449	rcu_seq_start(&ssp->srcu_gp_seq);
 450	state = rcu_seq_state(ssp->srcu_gp_seq);
 451	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
 452}
 453
 
 
 
 
 454
 455static void srcu_delay_timer(struct timer_list *t)
 456{
 457	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
 
 458
 459	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 
 
 460}
 461
 462static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
 
 
 
 
 
 
 463				       unsigned long delay)
 464{
 465	if (!delay) {
 466		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
 467		return;
 468	}
 469
 470	timer_reduce(&sdp->delay_work, jiffies + delay);
 
 
 
 
 
 
 471}
 472
 473/*
 474 * Schedule callback invocation for the specified srcu_data structure,
 475 * if possible, on the corresponding CPU.
 476 */
 477static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
 478{
 479	srcu_queue_delayed_work_on(sdp, delay);
 480}
 481
 482/*
 483 * Schedule callback invocation for all srcu_data structures associated
 484 * with the specified srcu_node structure that have callbacks for the
 485 * just-completed grace period, the one corresponding to idx.  If possible,
 486 * schedule this invocation on the corresponding CPUs.
 487 */
 488static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
 489				  unsigned long mask, unsigned long delay)
 490{
 491	int cpu;
 492
 493	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 494		if (!(mask & (1 << (cpu - snp->grplo))))
 495			continue;
 496		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
 497	}
 498}
 499
 500/*
 501 * Note the end of an SRCU grace period.  Initiates callback invocation
 502 * and starts a new grace period if needed.
 503 *
 504 * The ->srcu_cb_mutex acquisition does not protect any data, but
 505 * instead prevents more than one grace period from starting while we
 506 * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
 507 * array to have a finite number of elements.
 508 */
 509static void srcu_gp_end(struct srcu_struct *ssp)
 510{
 511	unsigned long cbdelay;
 512	bool cbs;
 513	bool last_lvl;
 514	int cpu;
 515	unsigned long flags;
 516	unsigned long gpseq;
 517	int idx;
 518	unsigned long mask;
 519	struct srcu_data *sdp;
 520	struct srcu_node *snp;
 521
 522	/* Prevent more than one additional grace period. */
 523	mutex_lock(&ssp->srcu_cb_mutex);
 524
 525	/* End the current grace period. */
 526	spin_lock_irq_rcu_node(ssp);
 527	idx = rcu_seq_state(ssp->srcu_gp_seq);
 528	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
 529	cbdelay = srcu_get_delay(ssp);
 530	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
 531	rcu_seq_end(&ssp->srcu_gp_seq);
 532	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 533	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
 534		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
 535	spin_unlock_irq_rcu_node(ssp);
 536	mutex_unlock(&ssp->srcu_gp_mutex);
 537	/* A new grace period can start at this point.  But only one. */
 538
 539	/* Initiate callback invocation as needed. */
 540	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
 541	srcu_for_each_node_breadth_first(ssp, snp) {
 542		spin_lock_irq_rcu_node(snp);
 543		cbs = false;
 544		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
 545		if (last_lvl)
 546			cbs = snp->srcu_have_cbs[idx] == gpseq;
 547		snp->srcu_have_cbs[idx] = gpseq;
 548		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
 549		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
 550			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
 551		mask = snp->srcu_data_have_cbs[idx];
 552		snp->srcu_data_have_cbs[idx] = 0;
 553		spin_unlock_irq_rcu_node(snp);
 554		if (cbs)
 555			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
 556
 557		/* Occasionally prevent srcu_data counter wrap. */
 558		if (!(gpseq & counter_wrap_check) && last_lvl)
 559			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
 560				sdp = per_cpu_ptr(ssp->sda, cpu);
 561				spin_lock_irqsave_rcu_node(sdp, flags);
 562				if (ULONG_CMP_GE(gpseq,
 563						 sdp->srcu_gp_seq_needed + 100))
 564					sdp->srcu_gp_seq_needed = gpseq;
 565				if (ULONG_CMP_GE(gpseq,
 566						 sdp->srcu_gp_seq_needed_exp + 100))
 567					sdp->srcu_gp_seq_needed_exp = gpseq;
 568				spin_unlock_irqrestore_rcu_node(sdp, flags);
 569			}
 570	}
 571
 572	/* Callback initiation done, allow grace periods after next. */
 573	mutex_unlock(&ssp->srcu_cb_mutex);
 574
 575	/* Start a new grace period if needed. */
 576	spin_lock_irq_rcu_node(ssp);
 577	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
 578	if (!rcu_seq_state(gpseq) &&
 579	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
 580		srcu_gp_start(ssp);
 581		spin_unlock_irq_rcu_node(ssp);
 582		srcu_reschedule(ssp, 0);
 583	} else {
 584		spin_unlock_irq_rcu_node(ssp);
 585	}
 586}
 587
 588/*
 589 * Funnel-locking scheme to scalably mediate many concurrent expedited
 590 * grace-period requests.  This function is invoked for the first known
 591 * expedited request for a grace period that has already been requested,
 592 * but without expediting.  To start a completely new grace period,
 593 * whether expedited or not, use srcu_funnel_gp_start() instead.
 594 */
 595static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
 596				  unsigned long s)
 597{
 598	unsigned long flags;
 599
 600	for (; snp != NULL; snp = snp->srcu_parent) {
 601		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
 602		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
 603			return;
 604		spin_lock_irqsave_rcu_node(snp, flags);
 605		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
 606			spin_unlock_irqrestore_rcu_node(snp, flags);
 607			return;
 608		}
 609		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 610		spin_unlock_irqrestore_rcu_node(snp, flags);
 611	}
 612	spin_lock_irqsave_rcu_node(ssp, flags);
 613	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 614		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 615	spin_unlock_irqrestore_rcu_node(ssp, flags);
 616}
 617
 618/*
 619 * Funnel-locking scheme to scalably mediate many concurrent grace-period
 620 * requests.  The winner has to do the work of actually starting grace
 621 * period s.  Losers must either ensure that their desired grace-period
 622 * number is recorded on at least their leaf srcu_node structure, or they
 623 * must take steps to invoke their own callbacks.
 624 *
 625 * Note that this function also does the work of srcu_funnel_exp_start(),
 626 * in some cases by directly invoking it.
 627 */
 628static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
 629				 unsigned long s, bool do_norm)
 630{
 631	unsigned long flags;
 632	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
 633	struct srcu_node *snp = sdp->mynode;
 634	unsigned long snp_seq;
 635
 636	/* Each pass through the loop does one level of the srcu_node tree. */
 637	for (; snp != NULL; snp = snp->srcu_parent) {
 638		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
 639			return; /* GP already done and CBs recorded. */
 640		spin_lock_irqsave_rcu_node(snp, flags);
 641		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
 642			snp_seq = snp->srcu_have_cbs[idx];
 643			if (snp == sdp->mynode && snp_seq == s)
 644				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 645			spin_unlock_irqrestore_rcu_node(snp, flags);
 646			if (snp == sdp->mynode && snp_seq != s) {
 647				srcu_schedule_cbs_sdp(sdp, do_norm
 648							   ? SRCU_INTERVAL
 649							   : 0);
 650				return;
 651			}
 652			if (!do_norm)
 653				srcu_funnel_exp_start(ssp, snp, s);
 654			return;
 655		}
 656		snp->srcu_have_cbs[idx] = s;
 657		if (snp == sdp->mynode)
 658			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
 659		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
 660			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
 661		spin_unlock_irqrestore_rcu_node(snp, flags);
 662	}
 663
 664	/* Top of tree, must ensure the grace period will be started. */
 665	spin_lock_irqsave_rcu_node(ssp, flags);
 666	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
 667		/*
 668		 * Record need for grace period s.  Pair with load
 669		 * acquire setting up for initialization.
 670		 */
 671		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
 672	}
 673	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
 674		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
 675
 676	/* If grace period not already done and none in progress, start it. */
 677	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
 678	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
 679		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
 680		srcu_gp_start(ssp);
 681		if (likely(srcu_init_done))
 682			queue_delayed_work(rcu_gp_wq, &ssp->work,
 683					   srcu_get_delay(ssp));
 684		else if (list_empty(&ssp->work.work.entry))
 685			list_add(&ssp->work.work.entry, &srcu_boot_list);
 686	}
 687	spin_unlock_irqrestore_rcu_node(ssp, flags);
 688}
 689
 690/*
 691 * Wait until all readers counted by array index idx complete, but
 692 * loop an additional time if there is an expedited grace period pending.
 693 * The caller must ensure that ->srcu_idx is not changed while checking.
 694 */
 695static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
 696{
 697	for (;;) {
 698		if (srcu_readers_active_idx_check(ssp, idx))
 699			return true;
 700		if (--trycount + !srcu_get_delay(ssp) <= 0)
 701			return false;
 702		udelay(SRCU_RETRY_CHECK_DELAY);
 703	}
 704}
 705
 706/*
 707 * Increment the ->srcu_idx counter so that future SRCU readers will
 708 * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
 709 * us to wait for pre-existing readers in a starvation-free manner.
 710 */
 711static void srcu_flip(struct srcu_struct *ssp)
 712{
 713	/*
 714	 * Ensure that if this updater saw a given reader's increment
 715	 * from __srcu_read_lock(), that reader was using an old value
 716	 * of ->srcu_idx.  Also ensure that if a given reader sees the
 717	 * new value of ->srcu_idx, this updater's earlier scans cannot
 718	 * have seen that reader's increments (which is OK, because this
 719	 * grace period need not wait on that reader).
 720	 */
 721	smp_mb(); /* E */  /* Pairs with B and C. */
 722
 723	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
 724
 725	/*
 726	 * Ensure that if the updater misses an __srcu_read_unlock()
 727	 * increment, that task's next __srcu_read_lock() will see the
 728	 * above counter update.  Note that both this memory barrier
 729	 * and the one in srcu_readers_active_idx_check() provide the
 730	 * guarantee for __srcu_read_lock().
 731	 */
 732	smp_mb(); /* D */  /* Pairs with C. */
 733}
 734
 735/*
 736 * If SRCU is likely idle, return true, otherwise return false.
 737 *
 738 * Note that it is OK for several current from-idle requests for a new
 739 * grace period from idle to specify expediting because they will all end
 740 * up requesting the same grace period anyhow.  So no loss.
 741 *
 742 * Note also that if any CPU (including the current one) is still invoking
 743 * callbacks, this function will nevertheless say "idle".  This is not
 744 * ideal, but the overhead of checking all CPUs' callback lists is even
 745 * less ideal, especially on large systems.  Furthermore, the wakeup
 746 * can happen before the callback is fully removed, so we have no choice
 747 * but to accept this type of error.
 748 *
 749 * This function is also subject to counter-wrap errors, but let's face
 750 * it, if this function was preempted for enough time for the counters
 751 * to wrap, it really doesn't matter whether or not we expedite the grace
 752 * period.  The extra overhead of a needlessly expedited grace period is
 753 * negligible when amortized over that time period, and the extra latency
 754 * of a needlessly non-expedited grace period is similarly negligible.
 755 */
 756static bool srcu_might_be_idle(struct srcu_struct *ssp)
 757{
 758	unsigned long curseq;
 759	unsigned long flags;
 760	struct srcu_data *sdp;
 761	unsigned long t;
 762	unsigned long tlast;
 763
 764	check_init_srcu_struct(ssp);
 765	/* If the local srcu_data structure has callbacks, not idle.  */
 766	sdp = raw_cpu_ptr(ssp->sda);
 767	spin_lock_irqsave_rcu_node(sdp, flags);
 768	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
 769		spin_unlock_irqrestore_rcu_node(sdp, flags);
 770		return false; /* Callbacks already present, so not idle. */
 771	}
 772	spin_unlock_irqrestore_rcu_node(sdp, flags);
 773
 774	/*
 775	 * No local callbacks, so probabilistically probe global state.
 776	 * Exact information would require acquiring locks, which would
 777	 * kill scalability, hence the probabilistic nature of the probe.
 778	 */
 779
 780	/* First, see if enough time has passed since the last GP. */
 781	t = ktime_get_mono_fast_ns();
 782	tlast = READ_ONCE(ssp->srcu_last_gp_end);
 783	if (exp_holdoff == 0 ||
 784	    time_in_range_open(t, tlast, tlast + exp_holdoff))
 
 785		return false; /* Too soon after last GP. */
 786
 787	/* Next, check for probable idleness. */
 788	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
 789	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
 790	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
 791		return false; /* Grace period in progress, so not idle. */
 792	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
 793	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
 794		return false; /* GP # changed, so not idle. */
 795	return true; /* With reasonable probability, idle! */
 796}
 797
 798/*
 799 * SRCU callback function to leak a callback.
 800 */
 801static void srcu_leak_callback(struct rcu_head *rhp)
 802{
 803}
 804
 805/*
 806 * Start an SRCU grace period, and also queue the callback if non-NULL.
 807 */
 808static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
 809					     struct rcu_head *rhp, bool do_norm)
 810{
 811	unsigned long flags;
 812	int idx;
 813	bool needexp = false;
 814	bool needgp = false;
 815	unsigned long s;
 816	struct srcu_data *sdp;
 817
 818	check_init_srcu_struct(ssp);
 819	idx = srcu_read_lock(ssp);
 820	sdp = raw_cpu_ptr(ssp->sda);
 821	spin_lock_irqsave_rcu_node(sdp, flags);
 822	if (rhp)
 823		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
 824	rcu_segcblist_advance(&sdp->srcu_cblist,
 825			      rcu_seq_current(&ssp->srcu_gp_seq));
 826	s = rcu_seq_snap(&ssp->srcu_gp_seq);
 827	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
 828	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
 829		sdp->srcu_gp_seq_needed = s;
 830		needgp = true;
 831	}
 832	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
 833		sdp->srcu_gp_seq_needed_exp = s;
 834		needexp = true;
 835	}
 836	spin_unlock_irqrestore_rcu_node(sdp, flags);
 837	if (needgp)
 838		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
 839	else if (needexp)
 840		srcu_funnel_exp_start(ssp, sdp->mynode, s);
 841	srcu_read_unlock(ssp, idx);
 842	return s;
 843}
 844
 845/*
 846 * Enqueue an SRCU callback on the srcu_data structure associated with
 847 * the current CPU and the specified srcu_struct structure, initiating
 848 * grace-period processing if it is not already running.
 849 *
 850 * Note that all CPUs must agree that the grace period extended beyond
 851 * all pre-existing SRCU read-side critical section.  On systems with
 852 * more than one CPU, this means that when "func()" is invoked, each CPU
 853 * is guaranteed to have executed a full memory barrier since the end of
 854 * its last corresponding SRCU read-side critical section whose beginning
 855 * preceded the call to call_srcu().  It also means that each CPU executing
 856 * an SRCU read-side critical section that continues beyond the start of
 857 * "func()" must have executed a memory barrier after the call_srcu()
 858 * but before the beginning of that SRCU read-side critical section.
 859 * Note that these guarantees include CPUs that are offline, idle, or
 860 * executing in user mode, as well as CPUs that are executing in the kernel.
 861 *
 862 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
 863 * resulting SRCU callback function "func()", then both CPU A and CPU
 864 * B are guaranteed to execute a full memory barrier during the time
 865 * interval between the call to call_srcu() and the invocation of "func()".
 866 * This guarantee applies even if CPU A and CPU B are the same CPU (but
 867 * again only if the system has more than one CPU).
 868 *
 869 * Of course, these guarantees apply only for invocations of call_srcu(),
 870 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
 871 * srcu_struct structure.
 872 */
 873static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 874			rcu_callback_t func, bool do_norm)
 875{
 
 
 
 
 
 
 
 876	if (debug_rcu_head_queue(rhp)) {
 877		/* Probable double call_srcu(), so leak the callback. */
 878		WRITE_ONCE(rhp->func, srcu_leak_callback);
 879		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
 880		return;
 881	}
 882	rhp->func = func;
 883	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884}
 885
 886/**
 887 * call_srcu() - Queue a callback for invocation after an SRCU grace period
 888 * @ssp: srcu_struct in queue the callback
 889 * @rhp: structure to be used for queueing the SRCU callback.
 890 * @func: function to be invoked after the SRCU grace period
 891 *
 892 * The callback function will be invoked some time after a full SRCU
 893 * grace period elapses, in other words after all pre-existing SRCU
 894 * read-side critical sections have completed.  However, the callback
 895 * function might well execute concurrently with other SRCU read-side
 896 * critical sections that started after call_srcu() was invoked.  SRCU
 897 * read-side critical sections are delimited by srcu_read_lock() and
 898 * srcu_read_unlock(), and may be nested.
 899 *
 900 * The callback will be invoked from process context, but must nevertheless
 901 * be fast and must not block.
 902 */
 903void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
 904	       rcu_callback_t func)
 905{
 906	__call_srcu(ssp, rhp, func, true);
 907}
 908EXPORT_SYMBOL_GPL(call_srcu);
 909
 910/*
 911 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
 912 */
 913static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
 914{
 915	struct rcu_synchronize rcu;
 916
 917	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
 918			 lock_is_held(&rcu_bh_lock_map) ||
 919			 lock_is_held(&rcu_lock_map) ||
 920			 lock_is_held(&rcu_sched_lock_map),
 921			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
 922
 923	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 924		return;
 925	might_sleep();
 926	check_init_srcu_struct(ssp);
 927	init_completion(&rcu.completion);
 928	init_rcu_head_on_stack(&rcu.head);
 929	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
 930	wait_for_completion(&rcu.completion);
 931	destroy_rcu_head_on_stack(&rcu.head);
 932
 933	/*
 934	 * Make sure that later code is ordered after the SRCU grace
 935	 * period.  This pairs with the spin_lock_irq_rcu_node()
 936	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
 937	 * because the current CPU might have been totally uninvolved with
 938	 * (and thus unordered against) that grace period.
 939	 */
 940	smp_mb();
 941}
 942
 943/**
 944 * synchronize_srcu_expedited - Brute-force SRCU grace period
 945 * @ssp: srcu_struct with which to synchronize.
 946 *
 947 * Wait for an SRCU grace period to elapse, but be more aggressive about
 948 * spinning rather than blocking when waiting.
 949 *
 950 * Note that synchronize_srcu_expedited() has the same deadlock and
 951 * memory-ordering properties as does synchronize_srcu().
 952 */
 953void synchronize_srcu_expedited(struct srcu_struct *ssp)
 954{
 955	__synchronize_srcu(ssp, rcu_gp_is_normal());
 956}
 957EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
 958
 959/**
 960 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
 961 * @ssp: srcu_struct with which to synchronize.
 962 *
 963 * Wait for the count to drain to zero of both indexes. To avoid the
 964 * possible starvation of synchronize_srcu(), it waits for the count of
 965 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
 966 * and then flip the srcu_idx and wait for the count of the other index.
 967 *
 968 * Can block; must be called from process context.
 969 *
 970 * Note that it is illegal to call synchronize_srcu() from the corresponding
 971 * SRCU read-side critical section; doing so will result in deadlock.
 972 * However, it is perfectly legal to call synchronize_srcu() on one
 973 * srcu_struct from some other srcu_struct's read-side critical section,
 974 * as long as the resulting graph of srcu_structs is acyclic.
 975 *
 976 * There are memory-ordering constraints implied by synchronize_srcu().
 977 * On systems with more than one CPU, when synchronize_srcu() returns,
 978 * each CPU is guaranteed to have executed a full memory barrier since
 979 * the end of its last corresponding SRCU read-side critical section
 980 * whose beginning preceded the call to synchronize_srcu().  In addition,
 981 * each CPU having an SRCU read-side critical section that extends beyond
 982 * the return from synchronize_srcu() is guaranteed to have executed a
 983 * full memory barrier after the beginning of synchronize_srcu() and before
 984 * the beginning of that SRCU read-side critical section.  Note that these
 985 * guarantees include CPUs that are offline, idle, or executing in user mode,
 986 * as well as CPUs that are executing in the kernel.
 987 *
 988 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
 989 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 990 * to have executed a full memory barrier during the execution of
 991 * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
 992 * are the same CPU, but again only if the system has more than one CPU.
 993 *
 994 * Of course, these memory-ordering guarantees apply only when
 995 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
 996 * passed the same srcu_struct structure.
 997 *
 998 * Implementation of these memory-ordering guarantees is similar to
 999 * that of synchronize_rcu().
1000 *
1001 * If SRCU is likely idle, expedite the first request.  This semantic
1002 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1003 * SRCU must also provide it.  Note that detecting idleness is heuristic
1004 * and subject to both false positives and negatives.
1005 */
1006void synchronize_srcu(struct srcu_struct *ssp)
1007{
1008	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1009		synchronize_srcu_expedited(ssp);
1010	else
1011		__synchronize_srcu(ssp, true);
1012}
1013EXPORT_SYMBOL_GPL(synchronize_srcu);
1014
1015/**
1016 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1017 * @ssp: srcu_struct to provide cookie for.
1018 *
1019 * This function returns a cookie that can be passed to
1020 * poll_state_synchronize_srcu(), which will return true if a full grace
1021 * period has elapsed in the meantime.  It is the caller's responsibility
1022 * to make sure that grace period happens, for example, by invoking
1023 * call_srcu() after return from get_state_synchronize_srcu().
1024 */
1025unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1026{
1027	// Any prior manipulation of SRCU-protected data must happen
1028	// before the load from ->srcu_gp_seq.
1029	smp_mb();
1030	return rcu_seq_snap(&ssp->srcu_gp_seq);
1031}
1032EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1033
1034/**
1035 * start_poll_synchronize_srcu - Provide cookie and start grace period
1036 * @ssp: srcu_struct to provide cookie for.
1037 *
1038 * This function returns a cookie that can be passed to
1039 * poll_state_synchronize_srcu(), which will return true if a full grace
1040 * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1041 * this function also ensures that any needed SRCU grace period will be
1042 * started.  This convenience does come at a cost in terms of CPU overhead.
1043 */
1044unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1045{
1046	return srcu_gp_start_if_needed(ssp, NULL, true);
1047}
1048EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1049
1050/**
1051 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1052 * @ssp: srcu_struct to provide cookie for.
1053 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1054 *
1055 * This function takes the cookie that was returned from either
1056 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1057 * returns @true if an SRCU grace period elapsed since the time that the
1058 * cookie was created.
1059 *
1060 * Because cookies are finite in size, wrapping/overflow is possible.
1061 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1062 * where in theory wrapping could happen in about 14 hours assuming
1063 * 25-microsecond expedited SRCU grace periods.  However, a more likely
1064 * overflow lower bound is on the order of 24 days in the case of
1065 * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1066 * system requires geologic timespans, as in more than seven million years
1067 * even for expedited SRCU grace periods.
1068 *
1069 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1070 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1071 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1072 * few minutes.  If this proves to be a problem, this counter will be
1073 * expanded to the same size as for Tree SRCU.
1074 */
1075bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1076{
1077	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1078		return false;
1079	// Ensure that the end of the SRCU grace period happens before
1080	// any subsequent code that the caller might execute.
1081	smp_mb(); // ^^^
1082	return true;
1083}
1084EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1085
1086/*
1087 * Callback function for srcu_barrier() use.
1088 */
1089static void srcu_barrier_cb(struct rcu_head *rhp)
1090{
1091	struct srcu_data *sdp;
1092	struct srcu_struct *ssp;
1093
1094	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1095	ssp = sdp->ssp;
1096	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1097		complete(&ssp->srcu_barrier_completion);
1098}
1099
1100/**
1101 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1102 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1103 */
1104void srcu_barrier(struct srcu_struct *ssp)
1105{
1106	int cpu;
1107	struct srcu_data *sdp;
1108	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1109
1110	check_init_srcu_struct(ssp);
1111	mutex_lock(&ssp->srcu_barrier_mutex);
1112	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1113		smp_mb(); /* Force ordering following return. */
1114		mutex_unlock(&ssp->srcu_barrier_mutex);
1115		return; /* Someone else did our work for us. */
1116	}
1117	rcu_seq_start(&ssp->srcu_barrier_seq);
1118	init_completion(&ssp->srcu_barrier_completion);
1119
1120	/* Initial count prevents reaching zero until all CBs are posted. */
1121	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1122
1123	/*
1124	 * Each pass through this loop enqueues a callback, but only
1125	 * on CPUs already having callbacks enqueued.  Note that if
1126	 * a CPU already has callbacks enqueue, it must have already
1127	 * registered the need for a future grace period, so all we
1128	 * need do is enqueue a callback that will use the same
1129	 * grace period as the last callback already in the queue.
1130	 */
1131	for_each_possible_cpu(cpu) {
1132		sdp = per_cpu_ptr(ssp->sda, cpu);
1133		spin_lock_irq_rcu_node(sdp);
1134		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1135		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1136		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1137		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1138					   &sdp->srcu_barrier_head)) {
1139			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1140			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1141		}
1142		spin_unlock_irq_rcu_node(sdp);
1143	}
1144
1145	/* Remove the initial count, at which point reaching zero can happen. */
1146	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1147		complete(&ssp->srcu_barrier_completion);
1148	wait_for_completion(&ssp->srcu_barrier_completion);
1149
1150	rcu_seq_end(&ssp->srcu_barrier_seq);
1151	mutex_unlock(&ssp->srcu_barrier_mutex);
1152}
1153EXPORT_SYMBOL_GPL(srcu_barrier);
1154
1155/**
1156 * srcu_batches_completed - return batches completed.
1157 * @ssp: srcu_struct on which to report batch completion.
1158 *
1159 * Report the number of batches, correlated with, but not necessarily
1160 * precisely the same as, the number of grace periods that have elapsed.
1161 */
1162unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1163{
1164	return READ_ONCE(ssp->srcu_idx);
1165}
1166EXPORT_SYMBOL_GPL(srcu_batches_completed);
1167
1168/*
1169 * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1170 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1171 * completed in that state.
1172 */
1173static void srcu_advance_state(struct srcu_struct *ssp)
1174{
1175	int idx;
1176
1177	mutex_lock(&ssp->srcu_gp_mutex);
1178
1179	/*
1180	 * Because readers might be delayed for an extended period after
1181	 * fetching ->srcu_idx for their index, at any point in time there
1182	 * might well be readers using both idx=0 and idx=1.  We therefore
1183	 * need to wait for readers to clear from both index values before
1184	 * invoking a callback.
1185	 *
1186	 * The load-acquire ensures that we see the accesses performed
1187	 * by the prior grace period.
1188	 */
1189	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1190	if (idx == SRCU_STATE_IDLE) {
1191		spin_lock_irq_rcu_node(ssp);
1192		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1193			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1194			spin_unlock_irq_rcu_node(ssp);
1195			mutex_unlock(&ssp->srcu_gp_mutex);
1196			return;
1197		}
1198		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1199		if (idx == SRCU_STATE_IDLE)
1200			srcu_gp_start(ssp);
1201		spin_unlock_irq_rcu_node(ssp);
1202		if (idx != SRCU_STATE_IDLE) {
1203			mutex_unlock(&ssp->srcu_gp_mutex);
1204			return; /* Someone else started the grace period. */
1205		}
1206	}
1207
1208	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1209		idx = 1 ^ (ssp->srcu_idx & 1);
1210		if (!try_check_zero(ssp, idx, 1)) {
1211			mutex_unlock(&ssp->srcu_gp_mutex);
1212			return; /* readers present, retry later. */
1213		}
1214		srcu_flip(ssp);
1215		spin_lock_irq_rcu_node(ssp);
1216		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1217		spin_unlock_irq_rcu_node(ssp);
1218	}
1219
1220	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1221
1222		/*
1223		 * SRCU read-side critical sections are normally short,
1224		 * so check at least twice in quick succession after a flip.
1225		 */
1226		idx = 1 ^ (ssp->srcu_idx & 1);
1227		if (!try_check_zero(ssp, idx, 2)) {
1228			mutex_unlock(&ssp->srcu_gp_mutex);
1229			return; /* readers present, retry later. */
1230		}
1231		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1232	}
1233}
1234
1235/*
1236 * Invoke a limited number of SRCU callbacks that have passed through
1237 * their grace period.  If there are more to do, SRCU will reschedule
1238 * the workqueue.  Note that needed memory barriers have been executed
1239 * in this task's context by srcu_readers_active_idx_check().
1240 */
1241static void srcu_invoke_callbacks(struct work_struct *work)
1242{
1243	long len;
1244	bool more;
1245	struct rcu_cblist ready_cbs;
1246	struct rcu_head *rhp;
1247	struct srcu_data *sdp;
1248	struct srcu_struct *ssp;
1249
1250	sdp = container_of(work, struct srcu_data, work);
1251
1252	ssp = sdp->ssp;
 
1253	rcu_cblist_init(&ready_cbs);
1254	spin_lock_irq_rcu_node(sdp);
1255	rcu_segcblist_advance(&sdp->srcu_cblist,
1256			      rcu_seq_current(&ssp->srcu_gp_seq));
1257	if (sdp->srcu_cblist_invoking ||
1258	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1259		spin_unlock_irq_rcu_node(sdp);
1260		return;  /* Someone else on the job or nothing to do. */
1261	}
1262
1263	/* We are on the job!  Extract and invoke ready callbacks. */
1264	sdp->srcu_cblist_invoking = true;
1265	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1266	len = ready_cbs.len;
1267	spin_unlock_irq_rcu_node(sdp);
1268	rhp = rcu_cblist_dequeue(&ready_cbs);
1269	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1270		debug_rcu_head_unqueue(rhp);
1271		local_bh_disable();
1272		rhp->func(rhp);
1273		local_bh_enable();
1274	}
1275	WARN_ON_ONCE(ready_cbs.len);
1276
1277	/*
1278	 * Update counts, accelerate new callbacks, and if needed,
1279	 * schedule another round of callback invocation.
1280	 */
1281	spin_lock_irq_rcu_node(sdp);
1282	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1283	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1284				       rcu_seq_snap(&ssp->srcu_gp_seq));
1285	sdp->srcu_cblist_invoking = false;
1286	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1287	spin_unlock_irq_rcu_node(sdp);
1288	if (more)
1289		srcu_schedule_cbs_sdp(sdp, 0);
1290}
1291
1292/*
1293 * Finished one round of SRCU grace period.  Start another if there are
1294 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1295 */
1296static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1297{
1298	bool pushgp = true;
1299
1300	spin_lock_irq_rcu_node(ssp);
1301	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1302		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1303			/* All requests fulfilled, time to go idle. */
1304			pushgp = false;
1305		}
1306	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1307		/* Outstanding request and no GP.  Start one. */
1308		srcu_gp_start(ssp);
1309	}
1310	spin_unlock_irq_rcu_node(ssp);
1311
1312	if (pushgp)
1313		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1314}
1315
1316/*
1317 * This is the work-queue function that handles SRCU grace periods.
1318 */
1319static void process_srcu(struct work_struct *work)
1320{
1321	struct srcu_struct *ssp;
1322
1323	ssp = container_of(work, struct srcu_struct, work.work);
1324
1325	srcu_advance_state(ssp);
1326	srcu_reschedule(ssp, srcu_get_delay(ssp));
1327}
1328
1329void srcutorture_get_gp_data(enum rcutorture_type test_type,
1330			     struct srcu_struct *ssp, int *flags,
1331			     unsigned long *gp_seq)
1332{
1333	if (test_type != SRCU_FLAVOR)
1334		return;
1335	*flags = 0;
1336	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
 
1337}
1338EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1339
1340void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1341{
1342	int cpu;
1343	int idx;
1344	unsigned long s0 = 0, s1 = 0;
1345
1346	idx = ssp->srcu_idx & 0x1;
1347	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1348		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1349	for_each_possible_cpu(cpu) {
1350		unsigned long l0, l1;
1351		unsigned long u0, u1;
1352		long c0, c1;
1353		struct srcu_data *sdp;
1354
1355		sdp = per_cpu_ptr(ssp->sda, cpu);
1356		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1357		u1 = data_race(sdp->srcu_unlock_count[idx]);
1358
1359		/*
1360		 * Make sure that a lock is always counted if the corresponding
1361		 * unlock is counted.
1362		 */
1363		smp_rmb();
1364
1365		l0 = data_race(sdp->srcu_lock_count[!idx]);
1366		l1 = data_race(sdp->srcu_lock_count[idx]);
1367
1368		c0 = l0 - u0;
1369		c1 = l1 - u1;
1370		pr_cont(" %d(%ld,%ld %c)",
1371			cpu, c0, c1,
1372			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1373		s0 += c0;
1374		s1 += c1;
1375	}
1376	pr_cont(" T(%ld,%ld)\n", s0, s1);
1377}
1378EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1379
1380static int __init srcu_bootup_announce(void)
1381{
1382	pr_info("Hierarchical SRCU implementation.\n");
1383	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1384		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1385	return 0;
1386}
1387early_initcall(srcu_bootup_announce);
1388
1389void __init srcu_init(void)
1390{
1391	struct srcu_struct *ssp;
1392
1393	/*
1394	 * Once that is set, call_srcu() can follow the normal path and
1395	 * queue delayed work. This must follow RCU workqueues creation
1396	 * and timers initialization.
1397	 */
1398	srcu_init_done = true;
1399	while (!list_empty(&srcu_boot_list)) {
1400		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1401				      work.work.entry);
1402		list_del_init(&ssp->work.work.entry);
1403		queue_work(rcu_gp_wq, &ssp->work.work);
1404	}
1405}
1406
1407#ifdef CONFIG_MODULES
1408
1409/* Initialize any global-scope srcu_struct structures used by this module. */
1410static int srcu_module_coming(struct module *mod)
1411{
1412	int i;
1413	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1414	int ret;
1415
1416	for (i = 0; i < mod->num_srcu_structs; i++) {
1417		ret = init_srcu_struct(*(sspp++));
1418		if (WARN_ON_ONCE(ret))
1419			return ret;
1420	}
1421	return 0;
1422}
1423
1424/* Clean up any global-scope srcu_struct structures used by this module. */
1425static void srcu_module_going(struct module *mod)
1426{
1427	int i;
1428	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1429
1430	for (i = 0; i < mod->num_srcu_structs; i++)
1431		cleanup_srcu_struct(*(sspp++));
1432}
1433
1434/* Handle one module, either coming or going. */
1435static int srcu_module_notify(struct notifier_block *self,
1436			      unsigned long val, void *data)
1437{
1438	struct module *mod = data;
1439	int ret = 0;
1440
1441	switch (val) {
1442	case MODULE_STATE_COMING:
1443		ret = srcu_module_coming(mod);
1444		break;
1445	case MODULE_STATE_GOING:
1446		srcu_module_going(mod);
1447		break;
1448	default:
1449		break;
1450	}
1451	return ret;
1452}
1453
1454static struct notifier_block srcu_module_nb = {
1455	.notifier_call = srcu_module_notify,
1456	.priority = 0,
1457};
1458
1459static __init int init_srcu_module_notifier(void)
1460{
1461	int ret;
1462
1463	ret = register_module_notifier(&srcu_module_nb);
1464	if (ret)
1465		pr_warn("Failed to register srcu module notifier\n");
1466	return ret;
1467}
1468late_initcall(init_srcu_module_notifier);
1469
1470#endif /* #ifdef CONFIG_MODULES */