Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  linux/kernel/profile.c
  3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  4 *  with configurable resolution, support for restricting the cpus on
  5 *  which profiling is done, and switching between cpu time and
  6 *  schedule() calls via kernel command line parameters passed at boot.
  7 *
  8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  9 *	Red Hat, July 2004
 10 *  Consolidation of architecture support code for profiling,
 11 *	Nadia Yvette Chambers, Oracle, July 2004
 12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 13 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 14 *	Oracle, 2004
 15 */
 16
 17#include <linux/export.h>
 18#include <linux/profile.h>
 19#include <linux/bootmem.h>
 20#include <linux/notifier.h>
 21#include <linux/mm.h>
 22#include <linux/cpumask.h>
 23#include <linux/cpu.h>
 24#include <linux/highmem.h>
 25#include <linux/mutex.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 28#include <linux/sched/stat.h>
 29
 30#include <asm/sections.h>
 31#include <asm/irq_regs.h>
 32#include <asm/ptrace.h>
 33
 34struct profile_hit {
 35	u32 pc, hits;
 36};
 37#define PROFILE_GRPSHIFT	3
 38#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 39#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 40#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 41
 42static atomic_t *prof_buffer;
 43static unsigned long prof_len, prof_shift;
 
 44
 45int prof_on __read_mostly;
 46EXPORT_SYMBOL_GPL(prof_on);
 47
 48static cpumask_var_t prof_cpu_mask;
 49#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 51static DEFINE_PER_CPU(int, cpu_profile_flip);
 52static DEFINE_MUTEX(profile_flip_mutex);
 53#endif /* CONFIG_SMP */
 54
 55int profile_setup(char *str)
 56{
 57	static const char schedstr[] = "schedule";
 58	static const char sleepstr[] = "sleep";
 59	static const char kvmstr[] = "kvm";
 60	int par;
 61
 62	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 63#ifdef CONFIG_SCHEDSTATS
 64		force_schedstat_enabled();
 65		prof_on = SLEEP_PROFILING;
 66		if (str[strlen(sleepstr)] == ',')
 67			str += strlen(sleepstr) + 1;
 68		if (get_option(&str, &par))
 69			prof_shift = par;
 70		pr_info("kernel sleep profiling enabled (shift: %ld)\n",
 71			prof_shift);
 72#else
 73		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 74#endif /* CONFIG_SCHEDSTATS */
 75	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 76		prof_on = SCHED_PROFILING;
 77		if (str[strlen(schedstr)] == ',')
 78			str += strlen(schedstr) + 1;
 79		if (get_option(&str, &par))
 80			prof_shift = par;
 81		pr_info("kernel schedule profiling enabled (shift: %ld)\n",
 82			prof_shift);
 83	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 84		prof_on = KVM_PROFILING;
 85		if (str[strlen(kvmstr)] == ',')
 86			str += strlen(kvmstr) + 1;
 87		if (get_option(&str, &par))
 88			prof_shift = par;
 89		pr_info("kernel KVM profiling enabled (shift: %ld)\n",
 90			prof_shift);
 91	} else if (get_option(&str, &par)) {
 92		prof_shift = par;
 93		prof_on = CPU_PROFILING;
 94		pr_info("kernel profiling enabled (shift: %ld)\n",
 95			prof_shift);
 96	}
 97	return 1;
 98}
 99__setup("profile=", profile_setup);
100
101
102int __ref profile_init(void)
103{
104	int buffer_bytes;
105	if (!prof_on)
106		return 0;
107
108	/* only text is profiled */
109	prof_len = (_etext - _stext) >> prof_shift;
110	buffer_bytes = prof_len*sizeof(atomic_t);
111
112	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
113		return -ENOMEM;
114
115	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
116
117	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
118	if (prof_buffer)
119		return 0;
120
121	prof_buffer = alloc_pages_exact(buffer_bytes,
122					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
123	if (prof_buffer)
124		return 0;
125
126	prof_buffer = vzalloc(buffer_bytes);
127	if (prof_buffer)
128		return 0;
129
130	free_cpumask_var(prof_cpu_mask);
131	return -ENOMEM;
132}
133
134/* Profile event notifications */
135
136static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
137static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
138static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
139
140void profile_task_exit(struct task_struct *task)
141{
142	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
143}
144
145int profile_handoff_task(struct task_struct *task)
146{
147	int ret;
148	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
149	return (ret == NOTIFY_OK) ? 1 : 0;
150}
151
152void profile_munmap(unsigned long addr)
153{
154	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
155}
156
157int task_handoff_register(struct notifier_block *n)
158{
159	return atomic_notifier_chain_register(&task_free_notifier, n);
160}
161EXPORT_SYMBOL_GPL(task_handoff_register);
162
163int task_handoff_unregister(struct notifier_block *n)
164{
165	return atomic_notifier_chain_unregister(&task_free_notifier, n);
166}
167EXPORT_SYMBOL_GPL(task_handoff_unregister);
168
169int profile_event_register(enum profile_type type, struct notifier_block *n)
170{
171	int err = -EINVAL;
172
173	switch (type) {
174	case PROFILE_TASK_EXIT:
175		err = blocking_notifier_chain_register(
176				&task_exit_notifier, n);
177		break;
178	case PROFILE_MUNMAP:
179		err = blocking_notifier_chain_register(
180				&munmap_notifier, n);
181		break;
182	}
183
184	return err;
185}
186EXPORT_SYMBOL_GPL(profile_event_register);
187
188int profile_event_unregister(enum profile_type type, struct notifier_block *n)
189{
190	int err = -EINVAL;
191
192	switch (type) {
193	case PROFILE_TASK_EXIT:
194		err = blocking_notifier_chain_unregister(
195				&task_exit_notifier, n);
196		break;
197	case PROFILE_MUNMAP:
198		err = blocking_notifier_chain_unregister(
199				&munmap_notifier, n);
200		break;
201	}
202
203	return err;
204}
205EXPORT_SYMBOL_GPL(profile_event_unregister);
206
207#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
208/*
209 * Each cpu has a pair of open-addressed hashtables for pending
210 * profile hits. read_profile() IPI's all cpus to request them
211 * to flip buffers and flushes their contents to prof_buffer itself.
212 * Flip requests are serialized by the profile_flip_mutex. The sole
213 * use of having a second hashtable is for avoiding cacheline
214 * contention that would otherwise happen during flushes of pending
215 * profile hits required for the accuracy of reported profile hits
216 * and so resurrect the interrupt livelock issue.
217 *
218 * The open-addressed hashtables are indexed by profile buffer slot
219 * and hold the number of pending hits to that profile buffer slot on
220 * a cpu in an entry. When the hashtable overflows, all pending hits
221 * are accounted to their corresponding profile buffer slots with
222 * atomic_add() and the hashtable emptied. As numerous pending hits
223 * may be accounted to a profile buffer slot in a hashtable entry,
224 * this amortizes a number of atomic profile buffer increments likely
225 * to be far larger than the number of entries in the hashtable,
226 * particularly given that the number of distinct profile buffer
227 * positions to which hits are accounted during short intervals (e.g.
228 * several seconds) is usually very small. Exclusion from buffer
229 * flipping is provided by interrupt disablement (note that for
230 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
231 * process context).
232 * The hash function is meant to be lightweight as opposed to strong,
233 * and was vaguely inspired by ppc64 firmware-supported inverted
234 * pagetable hash functions, but uses a full hashtable full of finite
235 * collision chains, not just pairs of them.
236 *
237 * -- nyc
238 */
239static void __profile_flip_buffers(void *unused)
240{
241	int cpu = smp_processor_id();
242
243	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
244}
245
246static void profile_flip_buffers(void)
247{
248	int i, j, cpu;
249
250	mutex_lock(&profile_flip_mutex);
251	j = per_cpu(cpu_profile_flip, get_cpu());
252	put_cpu();
253	on_each_cpu(__profile_flip_buffers, NULL, 1);
254	for_each_online_cpu(cpu) {
255		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
256		for (i = 0; i < NR_PROFILE_HIT; ++i) {
257			if (!hits[i].hits) {
258				if (hits[i].pc)
259					hits[i].pc = 0;
260				continue;
261			}
262			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
263			hits[i].hits = hits[i].pc = 0;
264		}
265	}
266	mutex_unlock(&profile_flip_mutex);
267}
268
269static void profile_discard_flip_buffers(void)
270{
271	int i, cpu;
272
273	mutex_lock(&profile_flip_mutex);
274	i = per_cpu(cpu_profile_flip, get_cpu());
275	put_cpu();
276	on_each_cpu(__profile_flip_buffers, NULL, 1);
277	for_each_online_cpu(cpu) {
278		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
279		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
280	}
281	mutex_unlock(&profile_flip_mutex);
282}
283
284static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
285{
286	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
287	int i, j, cpu;
288	struct profile_hit *hits;
289
290	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
291	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
292	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
293	cpu = get_cpu();
294	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
295	if (!hits) {
296		put_cpu();
297		return;
298	}
299	/*
300	 * We buffer the global profiler buffer into a per-CPU
301	 * queue and thus reduce the number of global (and possibly
302	 * NUMA-alien) accesses. The write-queue is self-coalescing:
303	 */
304	local_irq_save(flags);
305	do {
306		for (j = 0; j < PROFILE_GRPSZ; ++j) {
307			if (hits[i + j].pc == pc) {
308				hits[i + j].hits += nr_hits;
309				goto out;
310			} else if (!hits[i + j].hits) {
311				hits[i + j].pc = pc;
312				hits[i + j].hits = nr_hits;
313				goto out;
314			}
315		}
316		i = (i + secondary) & (NR_PROFILE_HIT - 1);
317	} while (i != primary);
318
319	/*
320	 * Add the current hit(s) and flush the write-queue out
321	 * to the global buffer:
322	 */
323	atomic_add(nr_hits, &prof_buffer[pc]);
324	for (i = 0; i < NR_PROFILE_HIT; ++i) {
325		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
326		hits[i].pc = hits[i].hits = 0;
327	}
328out:
329	local_irq_restore(flags);
330	put_cpu();
331}
332
333static int profile_dead_cpu(unsigned int cpu)
334{
335	struct page *page;
336	int i;
337
338	if (prof_cpu_mask != NULL)
339		cpumask_clear_cpu(cpu, prof_cpu_mask);
340
341	for (i = 0; i < 2; i++) {
342		if (per_cpu(cpu_profile_hits, cpu)[i]) {
343			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
344			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
345			__free_page(page);
346		}
347	}
348	return 0;
349}
350
351static int profile_prepare_cpu(unsigned int cpu)
352{
353	int i, node = cpu_to_mem(cpu);
354	struct page *page;
355
356	per_cpu(cpu_profile_flip, cpu) = 0;
357
358	for (i = 0; i < 2; i++) {
359		if (per_cpu(cpu_profile_hits, cpu)[i])
360			continue;
361
362		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
363		if (!page) {
364			profile_dead_cpu(cpu);
365			return -ENOMEM;
366		}
367		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
368
369	}
370	return 0;
371}
372
373static int profile_online_cpu(unsigned int cpu)
374{
375	if (prof_cpu_mask != NULL)
376		cpumask_set_cpu(cpu, prof_cpu_mask);
377
378	return 0;
379}
380
381#else /* !CONFIG_SMP */
382#define profile_flip_buffers()		do { } while (0)
383#define profile_discard_flip_buffers()	do { } while (0)
384
385static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
386{
387	unsigned long pc;
388	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
389	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
390}
391#endif /* !CONFIG_SMP */
392
393void profile_hits(int type, void *__pc, unsigned int nr_hits)
394{
395	if (prof_on != type || !prof_buffer)
396		return;
397	do_profile_hits(type, __pc, nr_hits);
398}
399EXPORT_SYMBOL_GPL(profile_hits);
400
401void profile_tick(int type)
402{
403	struct pt_regs *regs = get_irq_regs();
404
405	if (!user_mode(regs) && prof_cpu_mask != NULL &&
406	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
407		profile_hit(type, (void *)profile_pc(regs));
408}
409
410#ifdef CONFIG_PROC_FS
411#include <linux/proc_fs.h>
412#include <linux/seq_file.h>
413#include <linux/uaccess.h>
414
415static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
416{
417	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
418	return 0;
419}
420
421static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
422{
423	return single_open(file, prof_cpu_mask_proc_show, NULL);
424}
425
426static ssize_t prof_cpu_mask_proc_write(struct file *file,
427	const char __user *buffer, size_t count, loff_t *pos)
428{
429	cpumask_var_t new_value;
430	int err;
431
432	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
433		return -ENOMEM;
434
435	err = cpumask_parse_user(buffer, count, new_value);
436	if (!err) {
437		cpumask_copy(prof_cpu_mask, new_value);
438		err = count;
439	}
440	free_cpumask_var(new_value);
441	return err;
442}
443
444static const struct file_operations prof_cpu_mask_proc_fops = {
445	.open		= prof_cpu_mask_proc_open,
446	.read		= seq_read,
447	.llseek		= seq_lseek,
448	.release	= single_release,
449	.write		= prof_cpu_mask_proc_write,
450};
451
452void create_prof_cpu_mask(void)
453{
454	/* create /proc/irq/prof_cpu_mask */
455	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops);
456}
457
458/*
459 * This function accesses profiling information. The returned data is
460 * binary: the sampling step and the actual contents of the profile
461 * buffer. Use of the program readprofile is recommended in order to
462 * get meaningful info out of these data.
463 */
464static ssize_t
465read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
466{
467	unsigned long p = *ppos;
468	ssize_t read;
469	char *pnt;
470	unsigned int sample_step = 1 << prof_shift;
471
472	profile_flip_buffers();
473	if (p >= (prof_len+1)*sizeof(unsigned int))
474		return 0;
475	if (count > (prof_len+1)*sizeof(unsigned int) - p)
476		count = (prof_len+1)*sizeof(unsigned int) - p;
477	read = 0;
478
479	while (p < sizeof(unsigned int) && count > 0) {
480		if (put_user(*((char *)(&sample_step)+p), buf))
481			return -EFAULT;
482		buf++; p++; count--; read++;
483	}
484	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
485	if (copy_to_user(buf, (void *)pnt, count))
486		return -EFAULT;
487	read += count;
488	*ppos += read;
489	return read;
490}
491
492/*
493 * Writing to /proc/profile resets the counters
494 *
495 * Writing a 'profiling multiplier' value into it also re-sets the profiling
496 * interrupt frequency, on architectures that support this.
497 */
498static ssize_t write_profile(struct file *file, const char __user *buf,
499			     size_t count, loff_t *ppos)
500{
501#ifdef CONFIG_SMP
502	extern int setup_profiling_timer(unsigned int multiplier);
503
504	if (count == sizeof(int)) {
505		unsigned int multiplier;
506
507		if (copy_from_user(&multiplier, buf, sizeof(int)))
508			return -EFAULT;
509
510		if (setup_profiling_timer(multiplier))
511			return -EINVAL;
512	}
513#endif
514	profile_discard_flip_buffers();
515	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
516	return count;
517}
518
519static const struct file_operations proc_profile_operations = {
520	.read		= read_profile,
521	.write		= write_profile,
522	.llseek		= default_llseek,
523};
524
525int __ref create_proc_profile(void)
526{
527	struct proc_dir_entry *entry;
528#ifdef CONFIG_SMP
529	enum cpuhp_state online_state;
530#endif
531
532	int err = 0;
533
534	if (!prof_on)
535		return 0;
536#ifdef CONFIG_SMP
537	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
538				profile_prepare_cpu, profile_dead_cpu);
539	if (err)
540		return err;
541
542	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
543				profile_online_cpu, NULL);
544	if (err < 0)
545		goto err_state_prep;
546	online_state = err;
547	err = 0;
548#endif
549	entry = proc_create("profile", S_IWUSR | S_IRUGO,
550			    NULL, &proc_profile_operations);
551	if (!entry)
552		goto err_state_onl;
553	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
554
555	return err;
556err_state_onl:
557#ifdef CONFIG_SMP
558	cpuhp_remove_state(online_state);
559err_state_prep:
560	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
561#endif
562	return err;
563}
564subsys_initcall(create_proc_profile);
565#endif /* CONFIG_PROC_FS */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 50static cpumask_var_t prof_cpu_mask;
 51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 53static DEFINE_PER_CPU(int, cpu_profile_flip);
 54static DEFINE_MUTEX(profile_flip_mutex);
 55#endif /* CONFIG_SMP */
 56
 57int profile_setup(char *str)
 58{
 59	static const char schedstr[] = "schedule";
 60	static const char sleepstr[] = "sleep";
 61	static const char kvmstr[] = "kvm";
 62	int par;
 63
 64	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 65#ifdef CONFIG_SCHEDSTATS
 66		force_schedstat_enabled();
 67		prof_on = SLEEP_PROFILING;
 68		if (str[strlen(sleepstr)] == ',')
 69			str += strlen(sleepstr) + 1;
 70		if (get_option(&str, &par))
 71			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 72		pr_info("kernel sleep profiling enabled (shift: %u)\n",
 73			prof_shift);
 74#else
 75		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 76#endif /* CONFIG_SCHEDSTATS */
 77	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 78		prof_on = SCHED_PROFILING;
 79		if (str[strlen(schedstr)] == ',')
 80			str += strlen(schedstr) + 1;
 81		if (get_option(&str, &par))
 82			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 83		pr_info("kernel schedule profiling enabled (shift: %u)\n",
 84			prof_shift);
 85	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 86		prof_on = KVM_PROFILING;
 87		if (str[strlen(kvmstr)] == ',')
 88			str += strlen(kvmstr) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 91		pr_info("kernel KVM profiling enabled (shift: %u)\n",
 92			prof_shift);
 93	} else if (get_option(&str, &par)) {
 94		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 95		prof_on = CPU_PROFILING;
 96		pr_info("kernel profiling enabled (shift: %u)\n",
 97			prof_shift);
 98	}
 99	return 1;
100}
101__setup("profile=", profile_setup);
102
103
104int __ref profile_init(void)
105{
106	int buffer_bytes;
107	if (!prof_on)
108		return 0;
109
110	/* only text is profiled */
111	prof_len = (_etext - _stext) >> prof_shift;
112	buffer_bytes = prof_len*sizeof(atomic_t);
113
114	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115		return -ENOMEM;
116
117	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118
119	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120	if (prof_buffer)
121		return 0;
122
123	prof_buffer = alloc_pages_exact(buffer_bytes,
124					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125	if (prof_buffer)
126		return 0;
127
128	prof_buffer = vzalloc(buffer_bytes);
129	if (prof_buffer)
130		return 0;
131
132	free_cpumask_var(prof_cpu_mask);
133	return -ENOMEM;
134}
135
136/* Profile event notifications */
137
138static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141
142void profile_task_exit(struct task_struct *task)
143{
144	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145}
146
147int profile_handoff_task(struct task_struct *task)
148{
149	int ret;
150	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151	return (ret == NOTIFY_OK) ? 1 : 0;
152}
153
154void profile_munmap(unsigned long addr)
155{
156	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157}
158
159int task_handoff_register(struct notifier_block *n)
160{
161	return atomic_notifier_chain_register(&task_free_notifier, n);
162}
163EXPORT_SYMBOL_GPL(task_handoff_register);
164
165int task_handoff_unregister(struct notifier_block *n)
166{
167	return atomic_notifier_chain_unregister(&task_free_notifier, n);
168}
169EXPORT_SYMBOL_GPL(task_handoff_unregister);
170
171int profile_event_register(enum profile_type type, struct notifier_block *n)
172{
173	int err = -EINVAL;
174
175	switch (type) {
176	case PROFILE_TASK_EXIT:
177		err = blocking_notifier_chain_register(
178				&task_exit_notifier, n);
179		break;
180	case PROFILE_MUNMAP:
181		err = blocking_notifier_chain_register(
182				&munmap_notifier, n);
183		break;
184	}
185
186	return err;
187}
188EXPORT_SYMBOL_GPL(profile_event_register);
189
190int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191{
192	int err = -EINVAL;
193
194	switch (type) {
195	case PROFILE_TASK_EXIT:
196		err = blocking_notifier_chain_unregister(
197				&task_exit_notifier, n);
198		break;
199	case PROFILE_MUNMAP:
200		err = blocking_notifier_chain_unregister(
201				&munmap_notifier, n);
202		break;
203	}
204
205	return err;
206}
207EXPORT_SYMBOL_GPL(profile_event_unregister);
208
209#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210/*
211 * Each cpu has a pair of open-addressed hashtables for pending
212 * profile hits. read_profile() IPI's all cpus to request them
213 * to flip buffers and flushes their contents to prof_buffer itself.
214 * Flip requests are serialized by the profile_flip_mutex. The sole
215 * use of having a second hashtable is for avoiding cacheline
216 * contention that would otherwise happen during flushes of pending
217 * profile hits required for the accuracy of reported profile hits
218 * and so resurrect the interrupt livelock issue.
219 *
220 * The open-addressed hashtables are indexed by profile buffer slot
221 * and hold the number of pending hits to that profile buffer slot on
222 * a cpu in an entry. When the hashtable overflows, all pending hits
223 * are accounted to their corresponding profile buffer slots with
224 * atomic_add() and the hashtable emptied. As numerous pending hits
225 * may be accounted to a profile buffer slot in a hashtable entry,
226 * this amortizes a number of atomic profile buffer increments likely
227 * to be far larger than the number of entries in the hashtable,
228 * particularly given that the number of distinct profile buffer
229 * positions to which hits are accounted during short intervals (e.g.
230 * several seconds) is usually very small. Exclusion from buffer
231 * flipping is provided by interrupt disablement (note that for
232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233 * process context).
234 * The hash function is meant to be lightweight as opposed to strong,
235 * and was vaguely inspired by ppc64 firmware-supported inverted
236 * pagetable hash functions, but uses a full hashtable full of finite
237 * collision chains, not just pairs of them.
238 *
239 * -- nyc
240 */
241static void __profile_flip_buffers(void *unused)
242{
243	int cpu = smp_processor_id();
244
245	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
246}
247
248static void profile_flip_buffers(void)
249{
250	int i, j, cpu;
251
252	mutex_lock(&profile_flip_mutex);
253	j = per_cpu(cpu_profile_flip, get_cpu());
254	put_cpu();
255	on_each_cpu(__profile_flip_buffers, NULL, 1);
256	for_each_online_cpu(cpu) {
257		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
258		for (i = 0; i < NR_PROFILE_HIT; ++i) {
259			if (!hits[i].hits) {
260				if (hits[i].pc)
261					hits[i].pc = 0;
262				continue;
263			}
264			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
265			hits[i].hits = hits[i].pc = 0;
266		}
267	}
268	mutex_unlock(&profile_flip_mutex);
269}
270
271static void profile_discard_flip_buffers(void)
272{
273	int i, cpu;
274
275	mutex_lock(&profile_flip_mutex);
276	i = per_cpu(cpu_profile_flip, get_cpu());
277	put_cpu();
278	on_each_cpu(__profile_flip_buffers, NULL, 1);
279	for_each_online_cpu(cpu) {
280		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
281		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
282	}
283	mutex_unlock(&profile_flip_mutex);
284}
285
286static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
287{
288	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
289	int i, j, cpu;
290	struct profile_hit *hits;
291
292	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295	cpu = get_cpu();
296	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297	if (!hits) {
298		put_cpu();
299		return;
300	}
301	/*
302	 * We buffer the global profiler buffer into a per-CPU
303	 * queue and thus reduce the number of global (and possibly
304	 * NUMA-alien) accesses. The write-queue is self-coalescing:
305	 */
306	local_irq_save(flags);
307	do {
308		for (j = 0; j < PROFILE_GRPSZ; ++j) {
309			if (hits[i + j].pc == pc) {
310				hits[i + j].hits += nr_hits;
311				goto out;
312			} else if (!hits[i + j].hits) {
313				hits[i + j].pc = pc;
314				hits[i + j].hits = nr_hits;
315				goto out;
316			}
317		}
318		i = (i + secondary) & (NR_PROFILE_HIT - 1);
319	} while (i != primary);
320
321	/*
322	 * Add the current hit(s) and flush the write-queue out
323	 * to the global buffer:
324	 */
325	atomic_add(nr_hits, &prof_buffer[pc]);
326	for (i = 0; i < NR_PROFILE_HIT; ++i) {
327		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328		hits[i].pc = hits[i].hits = 0;
329	}
330out:
331	local_irq_restore(flags);
332	put_cpu();
333}
334
335static int profile_dead_cpu(unsigned int cpu)
336{
337	struct page *page;
338	int i;
339
340	if (cpumask_available(prof_cpu_mask))
341		cpumask_clear_cpu(cpu, prof_cpu_mask);
342
343	for (i = 0; i < 2; i++) {
344		if (per_cpu(cpu_profile_hits, cpu)[i]) {
345			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
346			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
347			__free_page(page);
348		}
349	}
350	return 0;
351}
352
353static int profile_prepare_cpu(unsigned int cpu)
354{
355	int i, node = cpu_to_mem(cpu);
356	struct page *page;
357
358	per_cpu(cpu_profile_flip, cpu) = 0;
359
360	for (i = 0; i < 2; i++) {
361		if (per_cpu(cpu_profile_hits, cpu)[i])
362			continue;
363
364		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
365		if (!page) {
366			profile_dead_cpu(cpu);
367			return -ENOMEM;
368		}
369		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
370
371	}
372	return 0;
373}
374
375static int profile_online_cpu(unsigned int cpu)
376{
377	if (cpumask_available(prof_cpu_mask))
378		cpumask_set_cpu(cpu, prof_cpu_mask);
379
380	return 0;
381}
382
383#else /* !CONFIG_SMP */
384#define profile_flip_buffers()		do { } while (0)
385#define profile_discard_flip_buffers()	do { } while (0)
386
387static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
388{
389	unsigned long pc;
390	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
391	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
392}
393#endif /* !CONFIG_SMP */
394
395void profile_hits(int type, void *__pc, unsigned int nr_hits)
396{
397	if (prof_on != type || !prof_buffer)
398		return;
399	do_profile_hits(type, __pc, nr_hits);
400}
401EXPORT_SYMBOL_GPL(profile_hits);
402
403void profile_tick(int type)
404{
405	struct pt_regs *regs = get_irq_regs();
406
407	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
408	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
409		profile_hit(type, (void *)profile_pc(regs));
410}
411
412#ifdef CONFIG_PROC_FS
413#include <linux/proc_fs.h>
414#include <linux/seq_file.h>
415#include <linux/uaccess.h>
416
417static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
418{
419	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
420	return 0;
421}
422
423static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
424{
425	return single_open(file, prof_cpu_mask_proc_show, NULL);
426}
427
428static ssize_t prof_cpu_mask_proc_write(struct file *file,
429	const char __user *buffer, size_t count, loff_t *pos)
430{
431	cpumask_var_t new_value;
432	int err;
433
434	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
435		return -ENOMEM;
436
437	err = cpumask_parse_user(buffer, count, new_value);
438	if (!err) {
439		cpumask_copy(prof_cpu_mask, new_value);
440		err = count;
441	}
442	free_cpumask_var(new_value);
443	return err;
444}
445
446static const struct proc_ops prof_cpu_mask_proc_ops = {
447	.proc_open	= prof_cpu_mask_proc_open,
448	.proc_read	= seq_read,
449	.proc_lseek	= seq_lseek,
450	.proc_release	= single_release,
451	.proc_write	= prof_cpu_mask_proc_write,
452};
453
454void create_prof_cpu_mask(void)
455{
456	/* create /proc/irq/prof_cpu_mask */
457	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
458}
459
460/*
461 * This function accesses profiling information. The returned data is
462 * binary: the sampling step and the actual contents of the profile
463 * buffer. Use of the program readprofile is recommended in order to
464 * get meaningful info out of these data.
465 */
466static ssize_t
467read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
468{
469	unsigned long p = *ppos;
470	ssize_t read;
471	char *pnt;
472	unsigned long sample_step = 1UL << prof_shift;
473
474	profile_flip_buffers();
475	if (p >= (prof_len+1)*sizeof(unsigned int))
476		return 0;
477	if (count > (prof_len+1)*sizeof(unsigned int) - p)
478		count = (prof_len+1)*sizeof(unsigned int) - p;
479	read = 0;
480
481	while (p < sizeof(unsigned int) && count > 0) {
482		if (put_user(*((char *)(&sample_step)+p), buf))
483			return -EFAULT;
484		buf++; p++; count--; read++;
485	}
486	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
487	if (copy_to_user(buf, (void *)pnt, count))
488		return -EFAULT;
489	read += count;
490	*ppos += read;
491	return read;
492}
493
494/*
495 * Writing to /proc/profile resets the counters
496 *
497 * Writing a 'profiling multiplier' value into it also re-sets the profiling
498 * interrupt frequency, on architectures that support this.
499 */
500static ssize_t write_profile(struct file *file, const char __user *buf,
501			     size_t count, loff_t *ppos)
502{
503#ifdef CONFIG_SMP
504	extern int setup_profiling_timer(unsigned int multiplier);
505
506	if (count == sizeof(int)) {
507		unsigned int multiplier;
508
509		if (copy_from_user(&multiplier, buf, sizeof(int)))
510			return -EFAULT;
511
512		if (setup_profiling_timer(multiplier))
513			return -EINVAL;
514	}
515#endif
516	profile_discard_flip_buffers();
517	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
518	return count;
519}
520
521static const struct proc_ops profile_proc_ops = {
522	.proc_read	= read_profile,
523	.proc_write	= write_profile,
524	.proc_lseek	= default_llseek,
525};
526
527int __ref create_proc_profile(void)
528{
529	struct proc_dir_entry *entry;
530#ifdef CONFIG_SMP
531	enum cpuhp_state online_state;
532#endif
533
534	int err = 0;
535
536	if (!prof_on)
537		return 0;
538#ifdef CONFIG_SMP
539	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
540				profile_prepare_cpu, profile_dead_cpu);
541	if (err)
542		return err;
543
544	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
545				profile_online_cpu, NULL);
546	if (err < 0)
547		goto err_state_prep;
548	online_state = err;
549	err = 0;
550#endif
551	entry = proc_create("profile", S_IWUSR | S_IRUGO,
552			    NULL, &profile_proc_ops);
553	if (!entry)
554		goto err_state_onl;
555	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
556
557	return err;
558err_state_onl:
559#ifdef CONFIG_SMP
560	cpuhp_remove_state(online_state);
561err_state_prep:
562	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
563#endif
564	return err;
565}
566subsys_initcall(create_proc_profile);
567#endif /* CONFIG_PROC_FS */