Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/delay.h>
  30#include <linux/smp.h>
  31#include <linux/security.h>
  32#include <linux/bootmem.h>
  33#include <linux/memblock.h>
  34#include <linux/syscalls.h>
  35#include <linux/crash_core.h>
  36#include <linux/kdb.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kmsg_dump.h>
  39#include <linux/syslog.h>
  40#include <linux/cpu.h>
  41#include <linux/notifier.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
 
  58#include "console_cmdline.h"
  59#include "braille.h"
  60#include "internal.h"
  61
  62int console_printk[4] = {
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  64	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  65	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  66	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  67};
 
 
 
 
  68
  69/*
  70 * Low level drivers may need that to know if they can schedule in
  71 * their unblank() callback or not. So let's export it.
  72 */
  73int oops_in_progress;
  74EXPORT_SYMBOL(oops_in_progress);
  75
  76/*
  77 * console_sem protects the console_drivers list, and also
  78 * provides serialisation for access to the entire console
  79 * driver system.
  80 */
  81static DEFINE_SEMAPHORE(console_sem);
  82struct console *console_drivers;
  83EXPORT_SYMBOL_GPL(console_drivers);
  84
 
 
 
 
 
 
  85#ifdef CONFIG_LOCKDEP
  86static struct lockdep_map console_lock_dep_map = {
  87	.name = "console_lock"
  88};
  89#endif
  90
  91enum devkmsg_log_bits {
  92	__DEVKMSG_LOG_BIT_ON = 0,
  93	__DEVKMSG_LOG_BIT_OFF,
  94	__DEVKMSG_LOG_BIT_LOCK,
  95};
  96
  97enum devkmsg_log_masks {
  98	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
  99	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 100	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 101};
 102
 103/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 104#define DEVKMSG_LOG_MASK_DEFAULT	0
 105
 106static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 107
 108static int __control_devkmsg(char *str)
 109{
 
 
 110	if (!str)
 111		return -EINVAL;
 112
 113	if (!strncmp(str, "on", 2)) {
 
 114		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 115		return 2;
 116	} else if (!strncmp(str, "off", 3)) {
 
 
 
 117		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 118		return 3;
 119	} else if (!strncmp(str, "ratelimit", 9)) {
 
 
 
 120		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 121		return 9;
 122	}
 
 123	return -EINVAL;
 124}
 125
 126static int __init control_devkmsg(char *str)
 127{
 128	if (__control_devkmsg(str) < 0)
 129		return 1;
 130
 131	/*
 132	 * Set sysctl string accordingly:
 133	 */
 134	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 135		strcpy(devkmsg_log_str, "on");
 136	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 137		strcpy(devkmsg_log_str, "off");
 138	/* else "ratelimit" which is set by default. */
 139
 140	/*
 141	 * Sysctl cannot change it anymore. The kernel command line setting of
 142	 * this parameter is to force the setting to be permanent throughout the
 143	 * runtime of the system. This is a precation measure against userspace
 144	 * trying to be a smarta** and attempting to change it up on us.
 145	 */
 146	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 147
 148	return 0;
 149}
 150__setup("printk.devkmsg=", control_devkmsg);
 151
 152char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 153
 154int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 155			      void __user *buffer, size_t *lenp, loff_t *ppos)
 156{
 157	char old_str[DEVKMSG_STR_MAX_SIZE];
 158	unsigned int old;
 159	int err;
 160
 161	if (write) {
 162		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 163			return -EINVAL;
 164
 165		old = devkmsg_log;
 166		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 167	}
 168
 169	err = proc_dostring(table, write, buffer, lenp, ppos);
 170	if (err)
 171		return err;
 172
 173	if (write) {
 174		err = __control_devkmsg(devkmsg_log_str);
 175
 176		/*
 177		 * Do not accept an unknown string OR a known string with
 178		 * trailing crap...
 179		 */
 180		if (err < 0 || (err + 1 != *lenp)) {
 181
 182			/* ... and restore old setting. */
 183			devkmsg_log = old;
 184			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 185
 186			return -EINVAL;
 187		}
 188	}
 189
 190	return 0;
 191}
 192
 193/*
 194 * Number of registered extended console drivers.
 195 *
 196 * If extended consoles are present, in-kernel cont reassembly is disabled
 197 * and each fragment is stored as a separate log entry with proper
 198 * continuation flag so that every emitted message has full metadata.  This
 199 * doesn't change the result for regular consoles or /proc/kmsg.  For
 200 * /dev/kmsg, as long as the reader concatenates messages according to
 201 * consecutive continuation flags, the end result should be the same too.
 202 */
 203static int nr_ext_console_drivers;
 204
 205/*
 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 207 * macros instead of functions so that _RET_IP_ contains useful information.
 208 */
 209#define down_console_sem() do { \
 210	down(&console_sem);\
 211	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 212} while (0)
 213
 214static int __down_trylock_console_sem(unsigned long ip)
 215{
 216	int lock_failed;
 217	unsigned long flags;
 218
 219	/*
 220	 * Here and in __up_console_sem() we need to be in safe mode,
 221	 * because spindump/WARN/etc from under console ->lock will
 222	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 223	 */
 224	printk_safe_enter_irqsave(flags);
 225	lock_failed = down_trylock(&console_sem);
 226	printk_safe_exit_irqrestore(flags);
 227
 228	if (lock_failed)
 229		return 1;
 230	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 231	return 0;
 232}
 233#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 234
 235static void __up_console_sem(unsigned long ip)
 236{
 237	unsigned long flags;
 238
 239	mutex_release(&console_lock_dep_map, 1, ip);
 240
 241	printk_safe_enter_irqsave(flags);
 242	up(&console_sem);
 243	printk_safe_exit_irqrestore(flags);
 244}
 245#define up_console_sem() __up_console_sem(_RET_IP_)
 246
 247/*
 248 * This is used for debugging the mess that is the VT code by
 249 * keeping track if we have the console semaphore held. It's
 250 * definitely not the perfect debug tool (we don't know if _WE_
 251 * hold it and are racing, but it helps tracking those weird code
 252 * paths in the console code where we end up in places I want
 253 * locked without the console sempahore held).
 254 */
 255static int console_locked, console_suspended;
 256
 257/*
 258 * If exclusive_console is non-NULL then only this console is to be printed to.
 259 */
 260static struct console *exclusive_console;
 261
 262/*
 263 *	Array of consoles built from command line options (console=)
 264 */
 265
 266#define MAX_CMDLINECONSOLES 8
 267
 268static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 269
 270static int preferred_console = -1;
 
 271int console_set_on_cmdline;
 272EXPORT_SYMBOL(console_set_on_cmdline);
 273
 274/* Flag: console code may call schedule() */
 275static int console_may_schedule;
 276
 277enum con_msg_format_flags {
 278	MSG_FORMAT_DEFAULT	= 0,
 279	MSG_FORMAT_SYSLOG	= (1 << 0),
 280};
 281
 282static int console_msg_format = MSG_FORMAT_DEFAULT;
 283
 284/*
 285 * The printk log buffer consists of a chain of concatenated variable
 286 * length records. Every record starts with a record header, containing
 287 * the overall length of the record.
 288 *
 289 * The heads to the first and last entry in the buffer, as well as the
 290 * sequence numbers of these entries are maintained when messages are
 291 * stored.
 292 *
 293 * If the heads indicate available messages, the length in the header
 294 * tells the start next message. A length == 0 for the next message
 295 * indicates a wrap-around to the beginning of the buffer.
 296 *
 297 * Every record carries the monotonic timestamp in microseconds, as well as
 298 * the standard userspace syslog level and syslog facility. The usual
 299 * kernel messages use LOG_KERN; userspace-injected messages always carry
 300 * a matching syslog facility, by default LOG_USER. The origin of every
 301 * message can be reliably determined that way.
 302 *
 303 * The human readable log message directly follows the message header. The
 304 * length of the message text is stored in the header, the stored message
 305 * is not terminated.
 306 *
 307 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 308 * to provide userspace with a machine-readable message context.
 309 *
 310 * Examples for well-defined, commonly used property names are:
 311 *   DEVICE=b12:8               device identifier
 312 *                                b12:8         block dev_t
 313 *                                c127:3        char dev_t
 314 *                                n8            netdev ifindex
 315 *                                +sound:card0  subsystem:devname
 316 *   SUBSYSTEM=pci              driver-core subsystem name
 317 *
 318 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 319 * follows directly after a '=' character. Every property is terminated by
 320 * a '\0' character. The last property is not terminated.
 321 *
 322 * Example of a message structure:
 323 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 324 *   0008  34 00                        record is 52 bytes long
 325 *   000a        0b 00                  text is 11 bytes long
 326 *   000c              1f 00            dictionary is 23 bytes long
 327 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 328 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 329 *         69 6e 65                     "ine"
 330 *   001b           44 45 56 49 43      "DEVIC"
 331 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 332 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 333 *         67                           "g"
 334 *   0032     00 00 00                  padding to next message header
 335 *
 336 * The 'struct printk_log' buffer header must never be directly exported to
 337 * userspace, it is a kernel-private implementation detail that might
 338 * need to be changed in the future, when the requirements change.
 339 *
 340 * /dev/kmsg exports the structured data in the following line format:
 341 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 342 *
 343 * Users of the export format should ignore possible additional values
 344 * separated by ',', and find the message after the ';' character.
 345 *
 346 * The optional key/value pairs are attached as continuation lines starting
 347 * with a space character and terminated by a newline. All possible
 348 * non-prinatable characters are escaped in the "\xff" notation.
 349 */
 350
 351enum log_flags {
 352	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 353	LOG_NEWLINE	= 2,	/* text ended with a newline */
 354	LOG_PREFIX	= 4,	/* text started with a prefix */
 355	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 356};
 357
 358struct printk_log {
 359	u64 ts_nsec;		/* timestamp in nanoseconds */
 360	u16 len;		/* length of entire record */
 361	u16 text_len;		/* length of text buffer */
 362	u16 dict_len;		/* length of dictionary buffer */
 363	u8 facility;		/* syslog facility */
 364	u8 flags:5;		/* internal record flags */
 365	u8 level:3;		/* syslog level */
 366}
 367#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 368__packed __aligned(4)
 369#endif
 370;
 371
 372/*
 373 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 374 * within the scheduler's rq lock. It must be released before calling
 375 * console_unlock() or anything else that might wake up a process.
 376 */
 377DEFINE_RAW_SPINLOCK(logbuf_lock);
 378
 379/*
 380 * Helper macros to lock/unlock logbuf_lock and switch between
 381 * printk-safe/unsafe modes.
 382 */
 383#define logbuf_lock_irq()				\
 384	do {						\
 385		printk_safe_enter_irq();		\
 386		raw_spin_lock(&logbuf_lock);		\
 387	} while (0)
 388
 389#define logbuf_unlock_irq()				\
 390	do {						\
 391		raw_spin_unlock(&logbuf_lock);		\
 392		printk_safe_exit_irq();			\
 393	} while (0)
 394
 395#define logbuf_lock_irqsave(flags)			\
 396	do {						\
 397		printk_safe_enter_irqsave(flags);	\
 398		raw_spin_lock(&logbuf_lock);		\
 399	} while (0)
 400
 401#define logbuf_unlock_irqrestore(flags)		\
 402	do {						\
 403		raw_spin_unlock(&logbuf_lock);		\
 404		printk_safe_exit_irqrestore(flags);	\
 405	} while (0)
 406
 407#ifdef CONFIG_PRINTK
 408DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 409/* the next printk record to read by syslog(READ) or /proc/kmsg */
 410static u64 syslog_seq;
 411static u32 syslog_idx;
 412static size_t syslog_partial;
 
 413
 414/* index and sequence number of the first record stored in the buffer */
 415static u64 log_first_seq;
 416static u32 log_first_idx;
 417
 418/* index and sequence number of the next record to store in the buffer */
 419static u64 log_next_seq;
 420static u32 log_next_idx;
 421
 422/* the next printk record to write to the console */
 423static u64 console_seq;
 424static u32 console_idx;
 
 
 
 
 
 
 425
 426/* the next printk record to read after the last 'clear' command */
 427static u64 clear_seq;
 428static u32 clear_idx;
 
 
 
 
 
 
 
 429
 
 
 
 430#define PREFIX_MAX		32
 431#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 
 
 
 
 
 
 432
 433#define LOG_LEVEL(v)		((v) & 0x07)
 434#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 435
 436/* record buffer */
 437#define LOG_ALIGN __alignof__(struct printk_log)
 438#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 439static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 440static char *log_buf = __log_buf;
 441static u32 log_buf_len = __LOG_BUF_LEN;
 442
 443/* Return log buffer address */
 444char *log_buf_addr_get(void)
 445{
 446	return log_buf;
 447}
 
 448
 449/* Return log buffer size */
 450u32 log_buf_len_get(void)
 451{
 452	return log_buf_len;
 453}
 454
 455/* human readable text of the record */
 456static char *log_text(const struct printk_log *msg)
 457{
 458	return (char *)msg + sizeof(struct printk_log);
 459}
 460
 461/* optional key/value pair dictionary attached to the record */
 462static char *log_dict(const struct printk_log *msg)
 463{
 464	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 465}
 466
 467/* get record by index; idx must point to valid msg */
 468static struct printk_log *log_from_idx(u32 idx)
 469{
 470	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 
 
 471
 472	/*
 473	 * A length == 0 record is the end of buffer marker. Wrap around and
 474	 * read the message at the start of the buffer.
 475	 */
 476	if (!msg->len)
 477		return (struct printk_log *)log_buf;
 478	return msg;
 479}
 480
 481/* get next record; idx must point to valid msg */
 482static u32 log_next(u32 idx)
 483{
 484	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 485
 486	/* length == 0 indicates the end of the buffer; wrap */
 487	/*
 488	 * A length == 0 record is the end of buffer marker. Wrap around and
 489	 * read the message at the start of the buffer as *this* one, and
 490	 * return the one after that.
 491	 */
 492	if (!msg->len) {
 493		msg = (struct printk_log *)log_buf;
 494		return msg->len;
 495	}
 496	return idx + msg->len;
 497}
 498
 499/*
 500 * Check whether there is enough free space for the given message.
 501 *
 502 * The same values of first_idx and next_idx mean that the buffer
 503 * is either empty or full.
 504 *
 505 * If the buffer is empty, we must respect the position of the indexes.
 506 * They cannot be reset to the beginning of the buffer.
 507 */
 508static int logbuf_has_space(u32 msg_size, bool empty)
 509{
 510	u32 free;
 
 
 511
 512	if (log_next_idx > log_first_idx || empty)
 513		free = max(log_buf_len - log_next_idx, log_first_idx);
 514	else
 515		free = log_first_idx - log_next_idx;
 
 516
 517	/*
 518	 * We need space also for an empty header that signalizes wrapping
 519	 * of the buffer.
 520	 */
 521	return free >= msg_size + sizeof(struct printk_log);
 522}
 523
 524static int log_make_free_space(u32 msg_size)
 
 525{
 526	while (log_first_seq < log_next_seq &&
 527	       !logbuf_has_space(msg_size, false)) {
 528		/* drop old messages until we have enough contiguous space */
 529		log_first_idx = log_next(log_first_idx);
 530		log_first_seq++;
 531	}
 532
 533	if (clear_seq < log_first_seq) {
 534		clear_seq = log_first_seq;
 535		clear_idx = log_first_idx;
 536	}
 537
 538	/* sequence numbers are equal, so the log buffer is empty */
 539	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 540		return 0;
 541
 542	return -ENOMEM;
 543}
 544
 545/* compute the message size including the padding bytes */
 546static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 547{
 548	u32 size;
 549
 550	size = sizeof(struct printk_log) + text_len + dict_len;
 551	*pad_len = (-size) & (LOG_ALIGN - 1);
 552	size += *pad_len;
 553
 554	return size;
 555}
 556
 557/*
 558 * Define how much of the log buffer we could take at maximum. The value
 559 * must be greater than two. Note that only half of the buffer is available
 560 * when the index points to the middle.
 561 */
 562#define MAX_LOG_TAKE_PART 4
 563static const char trunc_msg[] = "<truncated>";
 564
 565static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 566			u16 *dict_len, u32 *pad_len)
 567{
 568	/*
 569	 * The message should not take the whole buffer. Otherwise, it might
 570	 * get removed too soon.
 571	 */
 572	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 
 573	if (*text_len > max_text_len)
 574		*text_len = max_text_len;
 575	/* enable the warning message */
 576	*trunc_msg_len = strlen(trunc_msg);
 577	/* disable the "dict" completely */
 578	*dict_len = 0;
 579	/* compute the size again, count also the warning message */
 580	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 581}
 582
 583/* insert record into the buffer, discard old ones, update heads */
 584static int log_store(int facility, int level,
 585		     enum log_flags flags, u64 ts_nsec,
 586		     const char *dict, u16 dict_len,
 587		     const char *text, u16 text_len)
 588{
 589	struct printk_log *msg;
 590	u32 size, pad_len;
 591	u16 trunc_msg_len = 0;
 592
 593	/* number of '\0' padding bytes to next message */
 594	size = msg_used_size(text_len, dict_len, &pad_len);
 595
 596	if (log_make_free_space(size)) {
 597		/* truncate the message if it is too long for empty buffer */
 598		size = truncate_msg(&text_len, &trunc_msg_len,
 599				    &dict_len, &pad_len);
 600		/* survive when the log buffer is too small for trunc_msg */
 601		if (log_make_free_space(size))
 602			return 0;
 603	}
 604
 605	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 606		/*
 607		 * This message + an additional empty header does not fit
 608		 * at the end of the buffer. Add an empty header with len == 0
 609		 * to signify a wrap around.
 610		 */
 611		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 612		log_next_idx = 0;
 613	}
 614
 615	/* fill message */
 616	msg = (struct printk_log *)(log_buf + log_next_idx);
 617	memcpy(log_text(msg), text, text_len);
 618	msg->text_len = text_len;
 619	if (trunc_msg_len) {
 620		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 621		msg->text_len += trunc_msg_len;
 622	}
 623	memcpy(log_dict(msg), dict, dict_len);
 624	msg->dict_len = dict_len;
 625	msg->facility = facility;
 626	msg->level = level & 7;
 627	msg->flags = flags & 0x1f;
 628	if (ts_nsec > 0)
 629		msg->ts_nsec = ts_nsec;
 630	else
 631		msg->ts_nsec = local_clock();
 632	memset(log_dict(msg) + dict_len, 0, pad_len);
 633	msg->len = size;
 634
 635	/* insert message */
 636	log_next_idx += msg->len;
 637	log_next_seq++;
 638
 639	return msg->text_len;
 640}
 641
 642int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 643
 644static int syslog_action_restricted(int type)
 645{
 646	if (dmesg_restrict)
 647		return 1;
 648	/*
 649	 * Unless restricted, we allow "read all" and "get buffer size"
 650	 * for everybody.
 651	 */
 652	return type != SYSLOG_ACTION_READ_ALL &&
 653	       type != SYSLOG_ACTION_SIZE_BUFFER;
 654}
 655
 656static int check_syslog_permissions(int type, int source)
 657{
 658	/*
 659	 * If this is from /proc/kmsg and we've already opened it, then we've
 660	 * already done the capabilities checks at open time.
 661	 */
 662	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 663		goto ok;
 664
 665	if (syslog_action_restricted(type)) {
 666		if (capable(CAP_SYSLOG))
 667			goto ok;
 668		/*
 669		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 670		 * a warning.
 671		 */
 672		if (capable(CAP_SYS_ADMIN)) {
 673			pr_warn_once("%s (%d): Attempt to access syslog with "
 674				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 675				     "(deprecated).\n",
 676				 current->comm, task_pid_nr(current));
 677			goto ok;
 678		}
 679		return -EPERM;
 680	}
 681ok:
 682	return security_syslog(type);
 683}
 684
 685static void append_char(char **pp, char *e, char c)
 686{
 687	if (*pp < e)
 688		*(*pp)++ = c;
 689}
 690
 691static ssize_t msg_print_ext_header(char *buf, size_t size,
 692				    struct printk_log *msg, u64 seq)
 693{
 694	u64 ts_usec = msg->ts_nsec;
 
 
 
 
 
 
 
 
 
 695
 696	do_div(ts_usec, 1000);
 697
 698	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 699		       (msg->facility << 3) | msg->level, seq, ts_usec,
 700		       msg->flags & LOG_CONT ? 'c' : '-');
 701}
 702
 703static ssize_t msg_print_ext_body(char *buf, size_t size,
 704				  char *dict, size_t dict_len,
 705				  char *text, size_t text_len)
 706{
 707	char *p = buf, *e = buf + size;
 708	size_t i;
 709
 710	/* escape non-printable characters */
 711	for (i = 0; i < text_len; i++) {
 712		unsigned char c = text[i];
 713
 714		if (c < ' ' || c >= 127 || c == '\\')
 715			p += scnprintf(p, e - p, "\\x%02x", c);
 716		else
 717			append_char(&p, e, c);
 718	}
 719	append_char(&p, e, '\n');
 
 
 
 720
 721	if (dict_len) {
 722		bool line = true;
 
 
 
 723
 724		for (i = 0; i < dict_len; i++) {
 725			unsigned char c = dict[i];
 726
 727			if (line) {
 728				append_char(&p, e, ' ');
 729				line = false;
 730			}
 731
 732			if (c == '\0') {
 733				append_char(&p, e, '\n');
 734				line = true;
 735				continue;
 736			}
 737
 738			if (c < ' ' || c >= 127 || c == '\\') {
 739				p += scnprintf(p, e - p, "\\x%02x", c);
 740				continue;
 741			}
 
 742
 743			append_char(&p, e, c);
 744		}
 745		append_char(&p, e, '\n');
 746	}
 747
 748	return p - buf;
 
 
 
 
 
 
 
 
 749}
 750
 751/* /dev/kmsg - userspace message inject/listen interface */
 752struct devkmsg_user {
 753	u64 seq;
 754	u32 idx;
 755	struct ratelimit_state rs;
 756	struct mutex lock;
 757	char buf[CONSOLE_EXT_LOG_MAX];
 
 
 
 
 758};
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 760static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 761{
 762	char *buf, *line;
 763	int level = default_message_loglevel;
 764	int facility = 1;	/* LOG_USER */
 765	struct file *file = iocb->ki_filp;
 766	struct devkmsg_user *user = file->private_data;
 767	size_t len = iov_iter_count(from);
 768	ssize_t ret = len;
 769
 770	if (!user || len > LOG_LINE_MAX)
 771		return -EINVAL;
 772
 773	/* Ignore when user logging is disabled. */
 774	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 775		return len;
 776
 777	/* Ratelimit when not explicitly enabled. */
 778	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 779		if (!___ratelimit(&user->rs, current->comm))
 780			return ret;
 781	}
 782
 783	buf = kmalloc(len+1, GFP_KERNEL);
 784	if (buf == NULL)
 785		return -ENOMEM;
 786
 787	buf[len] = '\0';
 788	if (!copy_from_iter_full(buf, len, from)) {
 789		kfree(buf);
 790		return -EFAULT;
 791	}
 792
 793	/*
 794	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 795	 * the decimal value represents 32bit, the lower 3 bit are the log
 796	 * level, the rest are the log facility.
 797	 *
 798	 * If no prefix or no userspace facility is specified, we
 799	 * enforce LOG_USER, to be able to reliably distinguish
 800	 * kernel-generated messages from userspace-injected ones.
 801	 */
 802	line = buf;
 803	if (line[0] == '<') {
 804		char *endp = NULL;
 805		unsigned int u;
 806
 807		u = simple_strtoul(line + 1, &endp, 10);
 808		if (endp && endp[0] == '>') {
 809			level = LOG_LEVEL(u);
 810			if (LOG_FACILITY(u) != 0)
 811				facility = LOG_FACILITY(u);
 812			endp++;
 813			len -= endp - line;
 814			line = endp;
 815		}
 816	}
 817
 818	printk_emit(facility, level, NULL, 0, "%s", line);
 819	kfree(buf);
 820	return ret;
 821}
 822
 823static ssize_t devkmsg_read(struct file *file, char __user *buf,
 824			    size_t count, loff_t *ppos)
 825{
 826	struct devkmsg_user *user = file->private_data;
 827	struct printk_log *msg;
 828	size_t len;
 829	ssize_t ret;
 830
 831	if (!user)
 832		return -EBADF;
 833
 834	ret = mutex_lock_interruptible(&user->lock);
 835	if (ret)
 836		return ret;
 837
 838	logbuf_lock_irq();
 839	while (user->seq == log_next_seq) {
 840		if (file->f_flags & O_NONBLOCK) {
 841			ret = -EAGAIN;
 842			logbuf_unlock_irq();
 843			goto out;
 844		}
 845
 846		logbuf_unlock_irq();
 847		ret = wait_event_interruptible(log_wait,
 848					       user->seq != log_next_seq);
 849		if (ret)
 850			goto out;
 851		logbuf_lock_irq();
 852	}
 853
 854	if (user->seq < log_first_seq) {
 855		/* our last seen message is gone, return error and reset */
 856		user->idx = log_first_idx;
 857		user->seq = log_first_seq;
 858		ret = -EPIPE;
 859		logbuf_unlock_irq();
 860		goto out;
 861	}
 862
 863	msg = log_from_idx(user->idx);
 864	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 865				   msg, user->seq);
 866	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 867				  log_dict(msg), msg->dict_len,
 868				  log_text(msg), msg->text_len);
 869
 870	user->idx = log_next(user->idx);
 871	user->seq++;
 872	logbuf_unlock_irq();
 873
 874	if (len > count) {
 875		ret = -EINVAL;
 876		goto out;
 877	}
 878
 879	if (copy_to_user(buf, user->buf, len)) {
 880		ret = -EFAULT;
 881		goto out;
 882	}
 883	ret = len;
 884out:
 885	mutex_unlock(&user->lock);
 886	return ret;
 887}
 888
 
 
 
 
 
 
 
 
 889static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 890{
 891	struct devkmsg_user *user = file->private_data;
 892	loff_t ret = 0;
 893
 894	if (!user)
 895		return -EBADF;
 896	if (offset)
 897		return -ESPIPE;
 898
 899	logbuf_lock_irq();
 900	switch (whence) {
 901	case SEEK_SET:
 902		/* the first record */
 903		user->idx = log_first_idx;
 904		user->seq = log_first_seq;
 905		break;
 906	case SEEK_DATA:
 907		/*
 908		 * The first record after the last SYSLOG_ACTION_CLEAR,
 909		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 910		 * changes no global state, and does not clear anything.
 911		 */
 912		user->idx = clear_idx;
 913		user->seq = clear_seq;
 914		break;
 915	case SEEK_END:
 916		/* after the last record */
 917		user->idx = log_next_idx;
 918		user->seq = log_next_seq;
 919		break;
 920	default:
 921		ret = -EINVAL;
 922	}
 923	logbuf_unlock_irq();
 924	return ret;
 925}
 926
 927static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 928{
 929	struct devkmsg_user *user = file->private_data;
 
 930	__poll_t ret = 0;
 931
 932	if (!user)
 933		return EPOLLERR|EPOLLNVAL;
 934
 935	poll_wait(file, &log_wait, wait);
 936
 937	logbuf_lock_irq();
 938	if (user->seq < log_next_seq) {
 939		/* return error when data has vanished underneath us */
 940		if (user->seq < log_first_seq)
 941			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 942		else
 943			ret = EPOLLIN|EPOLLRDNORM;
 944	}
 945	logbuf_unlock_irq();
 946
 947	return ret;
 948}
 949
 950static int devkmsg_open(struct inode *inode, struct file *file)
 951{
 952	struct devkmsg_user *user;
 953	int err;
 954
 955	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 956		return -EPERM;
 957
 958	/* write-only does not need any file context */
 959	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 960		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 961					       SYSLOG_FROM_READER);
 962		if (err)
 963			return err;
 964	}
 965
 966	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 967	if (!user)
 968		return -ENOMEM;
 969
 970	ratelimit_default_init(&user->rs);
 971	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 972
 973	mutex_init(&user->lock);
 974
 975	logbuf_lock_irq();
 976	user->idx = log_first_idx;
 977	user->seq = log_first_seq;
 978	logbuf_unlock_irq();
 
 
 979
 980	file->private_data = user;
 981	return 0;
 982}
 983
 984static int devkmsg_release(struct inode *inode, struct file *file)
 985{
 986	struct devkmsg_user *user = file->private_data;
 987
 988	if (!user)
 989		return 0;
 990
 991	ratelimit_state_exit(&user->rs);
 992
 993	mutex_destroy(&user->lock);
 994	kfree(user);
 995	return 0;
 996}
 997
 998const struct file_operations kmsg_fops = {
 999	.open = devkmsg_open,
1000	.read = devkmsg_read,
1001	.write_iter = devkmsg_write,
1002	.llseek = devkmsg_llseek,
1003	.poll = devkmsg_poll,
1004	.release = devkmsg_release,
1005};
1006
1007#ifdef CONFIG_CRASH_CORE
1008/*
1009 * This appends the listed symbols to /proc/vmcore
1010 *
1011 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1012 * obtain access to symbols that are otherwise very difficult to locate.  These
1013 * symbols are specifically used so that utilities can access and extract the
1014 * dmesg log from a vmcore file after a crash.
1015 */
1016void log_buf_vmcoreinfo_setup(void)
1017{
1018	VMCOREINFO_SYMBOL(log_buf);
1019	VMCOREINFO_SYMBOL(log_buf_len);
1020	VMCOREINFO_SYMBOL(log_first_idx);
1021	VMCOREINFO_SYMBOL(clear_idx);
1022	VMCOREINFO_SYMBOL(log_next_idx);
 
1023	/*
1024	 * Export struct printk_log size and field offsets. User space tools can
1025	 * parse it and detect any changes to structure down the line.
1026	 */
1027	VMCOREINFO_STRUCT_SIZE(printk_log);
1028	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1029	VMCOREINFO_OFFSET(printk_log, len);
1030	VMCOREINFO_OFFSET(printk_log, text_len);
1031	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032}
1033#endif
1034
1035/* requested log_buf_len from kernel cmdline */
1036static unsigned long __initdata new_log_buf_len;
1037
1038/* we practice scaling the ring buffer by powers of 2 */
1039static void __init log_buf_len_update(unsigned size)
1040{
 
 
 
 
 
1041	if (size)
1042		size = roundup_pow_of_two(size);
1043	if (size > log_buf_len)
1044		new_log_buf_len = size;
1045}
1046
1047/* save requested log_buf_len since it's too early to process it */
1048static int __init log_buf_len_setup(char *str)
1049{
1050	unsigned size = memparse(str, &str);
 
 
 
 
 
1051
1052	log_buf_len_update(size);
1053
1054	return 0;
1055}
1056early_param("log_buf_len", log_buf_len_setup);
1057
1058#ifdef CONFIG_SMP
1059#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1060
1061static void __init log_buf_add_cpu(void)
1062{
1063	unsigned int cpu_extra;
1064
1065	/*
1066	 * archs should set up cpu_possible_bits properly with
1067	 * set_cpu_possible() after setup_arch() but just in
1068	 * case lets ensure this is valid.
1069	 */
1070	if (num_possible_cpus() == 1)
1071		return;
1072
1073	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1074
1075	/* by default this will only continue through for large > 64 CPUs */
1076	if (cpu_extra <= __LOG_BUF_LEN / 2)
1077		return;
1078
1079	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1080		__LOG_CPU_MAX_BUF_LEN);
1081	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1082		cpu_extra);
1083	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1084
1085	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1086}
1087#else /* !CONFIG_SMP */
1088static inline void log_buf_add_cpu(void) {}
1089#endif /* CONFIG_SMP */
1090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091void __init setup_log_buf(int early)
1092{
 
 
 
 
 
 
 
1093	unsigned long flags;
1094	char *new_log_buf;
1095	int free;
 
 
 
 
 
 
 
 
 
1096
1097	if (log_buf != __log_buf)
1098		return;
1099
1100	if (!early && !new_log_buf_len)
1101		log_buf_add_cpu();
1102
1103	if (!new_log_buf_len)
1104		return;
1105
1106	if (early) {
1107		new_log_buf =
1108			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1109	} else {
1110		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1111							  LOG_ALIGN);
1112	}
1113
 
1114	if (unlikely(!new_log_buf)) {
1115		pr_err("log_buf_len: %ld bytes not available\n",
1116			new_log_buf_len);
1117		return;
1118	}
1119
1120	logbuf_lock_irqsave(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121	log_buf_len = new_log_buf_len;
1122	log_buf = new_log_buf;
1123	new_log_buf_len = 0;
1124	free = __LOG_BUF_LEN - log_next_idx;
1125	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1126	logbuf_unlock_irqrestore(flags);
1127
1128	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1129	pr_info("early log buf free: %d(%d%%)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130		free, (free * 100) / __LOG_BUF_LEN);
 
 
 
 
 
 
1131}
1132
1133static bool __read_mostly ignore_loglevel;
1134
1135static int __init ignore_loglevel_setup(char *str)
1136{
1137	ignore_loglevel = true;
1138	pr_info("debug: ignoring loglevel setting.\n");
1139
1140	return 0;
1141}
1142
1143early_param("ignore_loglevel", ignore_loglevel_setup);
1144module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1145MODULE_PARM_DESC(ignore_loglevel,
1146		 "ignore loglevel setting (prints all kernel messages to the console)");
1147
1148static bool suppress_message_printing(int level)
1149{
1150	return (level >= console_loglevel && !ignore_loglevel);
1151}
1152
1153#ifdef CONFIG_BOOT_PRINTK_DELAY
1154
1155static int boot_delay; /* msecs delay after each printk during bootup */
1156static unsigned long long loops_per_msec;	/* based on boot_delay */
1157
1158static int __init boot_delay_setup(char *str)
1159{
1160	unsigned long lpj;
1161
1162	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1163	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1164
1165	get_option(&str, &boot_delay);
1166	if (boot_delay > 10 * 1000)
1167		boot_delay = 0;
1168
1169	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1170		"HZ: %d, loops_per_msec: %llu\n",
1171		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1172	return 0;
1173}
1174early_param("boot_delay", boot_delay_setup);
1175
1176static void boot_delay_msec(int level)
1177{
1178	unsigned long long k;
1179	unsigned long timeout;
1180
1181	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1182		|| suppress_message_printing(level)) {
1183		return;
1184	}
1185
1186	k = (unsigned long long)loops_per_msec * boot_delay;
1187
1188	timeout = jiffies + msecs_to_jiffies(boot_delay);
1189	while (k) {
1190		k--;
1191		cpu_relax();
1192		/*
1193		 * use (volatile) jiffies to prevent
1194		 * compiler reduction; loop termination via jiffies
1195		 * is secondary and may or may not happen.
1196		 */
1197		if (time_after(jiffies, timeout))
1198			break;
1199		touch_nmi_watchdog();
1200	}
1201}
1202#else
1203static inline void boot_delay_msec(int level)
1204{
1205}
1206#endif
1207
1208static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1209module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1210
1211static size_t print_time(u64 ts, char *buf)
1212{
1213	unsigned long rem_nsec;
 
1214
1215	if (!printk_time)
1216		return 0;
 
1217
1218	rem_nsec = do_div(ts, 1000000000);
 
 
1219
1220	if (!buf)
1221		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 
 
1222
1223	return sprintf(buf, "[%5lu.%06lu] ",
1224		       (unsigned long)ts, rem_nsec / 1000);
 
1225}
 
 
 
1226
1227static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1228{
1229	size_t len = 0;
1230	unsigned int prefix = (msg->facility << 3) | msg->level;
1231
1232	if (syslog) {
1233		if (buf) {
1234			len += sprintf(buf, "<%u>", prefix);
1235		} else {
1236			len += 3;
1237			if (prefix > 999)
1238				len += 3;
1239			else if (prefix > 99)
1240				len += 2;
1241			else if (prefix > 9)
1242				len++;
1243		}
1244	}
1245
1246	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1247	return len;
1248}
1249
1250static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1251{
1252	const char *text = log_text(msg);
1253	size_t text_size = msg->text_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254	size_t len = 0;
 
1255
1256	do {
1257		const char *next = memchr(text, '\n', text_size);
1258		size_t text_len;
 
 
 
 
 
1259
 
 
 
 
 
 
 
 
1260		if (next) {
1261			text_len = next - text;
1262			next++;
1263			text_size -= next - text;
1264		} else {
1265			text_len = text_size;
 
 
 
1266		}
1267
1268		if (buf) {
1269			if (print_prefix(msg, syslog, NULL) +
1270			    text_len + 1 >= size - len)
 
 
 
 
1271				break;
1272
1273			len += print_prefix(msg, syslog, buf + len);
1274			memcpy(buf + len, text, text_len);
1275			len += text_len;
1276			buf[len++] = '\n';
1277		} else {
1278			/* SYSLOG_ACTION_* buffer size only calculation */
1279			len += print_prefix(msg, syslog, NULL);
1280			len += text_len;
1281			len++;
1282		}
1283
1284		text = next;
1285	} while (text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	return len;
1288}
1289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290static int syslog_print(char __user *buf, int size)
1291{
 
 
1292	char *text;
1293	struct printk_log *msg;
1294	int len = 0;
1295
1296	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1297	if (!text)
1298		return -ENOMEM;
1299
 
 
1300	while (size > 0) {
1301		size_t n;
1302		size_t skip;
1303
1304		logbuf_lock_irq();
1305		if (syslog_seq < log_first_seq) {
1306			/* messages are gone, move to first one */
1307			syslog_seq = log_first_seq;
1308			syslog_idx = log_first_idx;
1309			syslog_partial = 0;
1310		}
1311		if (syslog_seq == log_next_seq) {
1312			logbuf_unlock_irq();
1313			break;
1314		}
 
 
 
 
 
 
 
 
 
 
 
 
1315
1316		skip = syslog_partial;
1317		msg = log_from_idx(syslog_idx);
1318		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1319		if (n - syslog_partial <= size) {
1320			/* message fits into buffer, move forward */
1321			syslog_idx = log_next(syslog_idx);
1322			syslog_seq++;
1323			n -= syslog_partial;
1324			syslog_partial = 0;
1325		} else if (!len){
1326			/* partial read(), remember position */
1327			n = size;
1328			syslog_partial += n;
1329		} else
1330			n = 0;
1331		logbuf_unlock_irq();
 
1332
1333		if (!n)
1334			break;
1335
1336		if (copy_to_user(buf, text + skip, n)) {
1337			if (!len)
1338				len = -EFAULT;
1339			break;
1340		}
1341
1342		len += n;
1343		size -= n;
1344		buf += n;
1345	}
1346
1347	kfree(text);
1348	return len;
1349}
1350
1351static int syslog_print_all(char __user *buf, int size, bool clear)
1352{
 
 
1353	char *text;
1354	int len = 0;
 
 
1355
1356	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357	if (!text)
1358		return -ENOMEM;
1359
1360	logbuf_lock_irq();
1361	if (buf) {
1362		u64 next_seq;
1363		u64 seq;
1364		u32 idx;
 
 
 
1365
1366		/*
1367		 * Find first record that fits, including all following records,
1368		 * into the user-provided buffer for this dump.
1369		 */
1370		seq = clear_seq;
1371		idx = clear_idx;
1372		while (seq < log_next_seq) {
1373			struct printk_log *msg = log_from_idx(idx);
1374
1375			len += msg_print_text(msg, true, NULL, 0);
1376			idx = log_next(idx);
1377			seq++;
1378		}
1379
1380		/* move first record forward until length fits into the buffer */
1381		seq = clear_seq;
1382		idx = clear_idx;
1383		while (len > size && seq < log_next_seq) {
1384			struct printk_log *msg = log_from_idx(idx);
1385
1386			len -= msg_print_text(msg, true, NULL, 0);
1387			idx = log_next(idx);
1388			seq++;
1389		}
1390
1391		/* last message fitting into this dump */
1392		next_seq = log_next_seq;
1393
1394		len = 0;
1395		while (len >= 0 && seq < next_seq) {
1396			struct printk_log *msg = log_from_idx(idx);
1397			int textlen;
1398
1399			textlen = msg_print_text(msg, true, text,
1400						 LOG_LINE_MAX + PREFIX_MAX);
1401			if (textlen < 0) {
1402				len = textlen;
1403				break;
1404			}
1405			idx = log_next(idx);
1406			seq++;
1407
1408			logbuf_unlock_irq();
1409			if (copy_to_user(buf + len, text, textlen))
1410				len = -EFAULT;
1411			else
1412				len += textlen;
1413			logbuf_lock_irq();
1414
1415			if (seq < log_first_seq) {
1416				/* messages are gone, move to next one */
1417				seq = log_first_seq;
1418				idx = log_first_idx;
1419			}
1420		}
 
 
 
 
 
 
 
 
 
 
1421	}
1422
1423	if (clear) {
1424		clear_seq = log_next_seq;
1425		clear_idx = log_next_idx;
 
1426	}
1427	logbuf_unlock_irq();
1428
1429	kfree(text);
1430	return len;
1431}
1432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433int do_syslog(int type, char __user *buf, int len, int source)
1434{
 
1435	bool clear = false;
1436	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1437	int error;
1438
1439	error = check_syslog_permissions(type, source);
1440	if (error)
1441		return error;
1442
1443	switch (type) {
1444	case SYSLOG_ACTION_CLOSE:	/* Close log */
1445		break;
1446	case SYSLOG_ACTION_OPEN:	/* Open log */
1447		break;
1448	case SYSLOG_ACTION_READ:	/* Read from log */
1449		if (!buf || len < 0)
1450			return -EINVAL;
1451		if (!len)
1452			return 0;
1453		if (!access_ok(VERIFY_WRITE, buf, len))
1454			return -EFAULT;
 
1455		error = wait_event_interruptible(log_wait,
1456						 syslog_seq != log_next_seq);
1457		if (error)
1458			return error;
1459		error = syslog_print(buf, len);
1460		break;
1461	/* Read/clear last kernel messages */
1462	case SYSLOG_ACTION_READ_CLEAR:
1463		clear = true;
1464		/* FALL THRU */
1465	/* Read last kernel messages */
1466	case SYSLOG_ACTION_READ_ALL:
1467		if (!buf || len < 0)
1468			return -EINVAL;
1469		if (!len)
1470			return 0;
1471		if (!access_ok(VERIFY_WRITE, buf, len))
1472			return -EFAULT;
1473		error = syslog_print_all(buf, len, clear);
1474		break;
1475	/* Clear ring buffer */
1476	case SYSLOG_ACTION_CLEAR:
1477		syslog_print_all(NULL, 0, true);
1478		break;
1479	/* Disable logging to console */
1480	case SYSLOG_ACTION_CONSOLE_OFF:
1481		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1482			saved_console_loglevel = console_loglevel;
1483		console_loglevel = minimum_console_loglevel;
1484		break;
1485	/* Enable logging to console */
1486	case SYSLOG_ACTION_CONSOLE_ON:
1487		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1488			console_loglevel = saved_console_loglevel;
1489			saved_console_loglevel = LOGLEVEL_DEFAULT;
1490		}
1491		break;
1492	/* Set level of messages printed to console */
1493	case SYSLOG_ACTION_CONSOLE_LEVEL:
1494		if (len < 1 || len > 8)
1495			return -EINVAL;
1496		if (len < minimum_console_loglevel)
1497			len = minimum_console_loglevel;
1498		console_loglevel = len;
1499		/* Implicitly re-enable logging to console */
1500		saved_console_loglevel = LOGLEVEL_DEFAULT;
1501		break;
1502	/* Number of chars in the log buffer */
1503	case SYSLOG_ACTION_SIZE_UNREAD:
1504		logbuf_lock_irq();
1505		if (syslog_seq < log_first_seq) {
 
 
 
 
 
 
 
1506			/* messages are gone, move to first one */
1507			syslog_seq = log_first_seq;
1508			syslog_idx = log_first_idx;
1509			syslog_partial = 0;
1510		}
1511		if (source == SYSLOG_FROM_PROC) {
1512			/*
1513			 * Short-cut for poll(/"proc/kmsg") which simply checks
1514			 * for pending data, not the size; return the count of
1515			 * records, not the length.
1516			 */
1517			error = log_next_seq - syslog_seq;
1518		} else {
1519			u64 seq = syslog_seq;
1520			u32 idx = syslog_idx;
1521
1522			while (seq < log_next_seq) {
1523				struct printk_log *msg = log_from_idx(idx);
1524
1525				error += msg_print_text(msg, true, NULL, 0);
1526				idx = log_next(idx);
1527				seq++;
1528			}
1529			error -= syslog_partial;
1530		}
1531		logbuf_unlock_irq();
 
1532		break;
1533	/* Size of the log buffer */
1534	case SYSLOG_ACTION_SIZE_BUFFER:
1535		error = log_buf_len;
1536		break;
1537	default:
1538		error = -EINVAL;
1539		break;
1540	}
1541
1542	return error;
1543}
1544
1545SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1546{
1547	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1548}
1549
1550/*
1551 * Special console_lock variants that help to reduce the risk of soft-lockups.
1552 * They allow to pass console_lock to another printk() call using a busy wait.
1553 */
1554
1555#ifdef CONFIG_LOCKDEP
1556static struct lockdep_map console_owner_dep_map = {
1557	.name = "console_owner"
1558};
1559#endif
1560
1561static DEFINE_RAW_SPINLOCK(console_owner_lock);
1562static struct task_struct *console_owner;
1563static bool console_waiter;
1564
1565/**
1566 * console_lock_spinning_enable - mark beginning of code where another
1567 *	thread might safely busy wait
1568 *
1569 * This basically converts console_lock into a spinlock. This marks
1570 * the section where the console_lock owner can not sleep, because
1571 * there may be a waiter spinning (like a spinlock). Also it must be
1572 * ready to hand over the lock at the end of the section.
1573 */
1574static void console_lock_spinning_enable(void)
1575{
1576	raw_spin_lock(&console_owner_lock);
1577	console_owner = current;
1578	raw_spin_unlock(&console_owner_lock);
1579
1580	/* The waiter may spin on us after setting console_owner */
1581	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1582}
1583
1584/**
1585 * console_lock_spinning_disable_and_check - mark end of code where another
1586 *	thread was able to busy wait and check if there is a waiter
1587 *
1588 * This is called at the end of the section where spinning is allowed.
1589 * It has two functions. First, it is a signal that it is no longer
1590 * safe to start busy waiting for the lock. Second, it checks if
1591 * there is a busy waiter and passes the lock rights to her.
1592 *
1593 * Important: Callers lose the lock if there was a busy waiter.
1594 *	They must not touch items synchronized by console_lock
1595 *	in this case.
1596 *
1597 * Return: 1 if the lock rights were passed, 0 otherwise.
1598 */
1599static int console_lock_spinning_disable_and_check(void)
1600{
1601	int waiter;
1602
1603	raw_spin_lock(&console_owner_lock);
1604	waiter = READ_ONCE(console_waiter);
1605	console_owner = NULL;
1606	raw_spin_unlock(&console_owner_lock);
1607
1608	if (!waiter) {
1609		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1610		return 0;
1611	}
1612
1613	/* The waiter is now free to continue */
1614	WRITE_ONCE(console_waiter, false);
1615
1616	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617
1618	/*
1619	 * Hand off console_lock to waiter. The waiter will perform
1620	 * the up(). After this, the waiter is the console_lock owner.
1621	 */
1622	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1623	return 1;
1624}
1625
1626/**
1627 * console_trylock_spinning - try to get console_lock by busy waiting
1628 *
1629 * This allows to busy wait for the console_lock when the current
1630 * owner is running in specially marked sections. It means that
1631 * the current owner is running and cannot reschedule until it
1632 * is ready to lose the lock.
1633 *
1634 * Return: 1 if we got the lock, 0 othrewise
1635 */
1636static int console_trylock_spinning(void)
1637{
1638	struct task_struct *owner = NULL;
1639	bool waiter;
1640	bool spin = false;
1641	unsigned long flags;
1642
1643	if (console_trylock())
1644		return 1;
1645
1646	printk_safe_enter_irqsave(flags);
1647
1648	raw_spin_lock(&console_owner_lock);
1649	owner = READ_ONCE(console_owner);
1650	waiter = READ_ONCE(console_waiter);
1651	if (!waiter && owner && owner != current) {
1652		WRITE_ONCE(console_waiter, true);
1653		spin = true;
1654	}
1655	raw_spin_unlock(&console_owner_lock);
1656
1657	/*
1658	 * If there is an active printk() writing to the
1659	 * consoles, instead of having it write our data too,
1660	 * see if we can offload that load from the active
1661	 * printer, and do some printing ourselves.
1662	 * Go into a spin only if there isn't already a waiter
1663	 * spinning, and there is an active printer, and
1664	 * that active printer isn't us (recursive printk?).
1665	 */
1666	if (!spin) {
1667		printk_safe_exit_irqrestore(flags);
1668		return 0;
1669	}
1670
1671	/* We spin waiting for the owner to release us */
1672	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1673	/* Owner will clear console_waiter on hand off */
1674	while (READ_ONCE(console_waiter))
1675		cpu_relax();
1676	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1677
1678	printk_safe_exit_irqrestore(flags);
1679	/*
1680	 * The owner passed the console lock to us.
1681	 * Since we did not spin on console lock, annotate
1682	 * this as a trylock. Otherwise lockdep will
1683	 * complain.
1684	 */
1685	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1686
1687	return 1;
1688}
1689
1690/*
1691 * Call the console drivers, asking them to write out
1692 * log_buf[start] to log_buf[end - 1].
1693 * The console_lock must be held.
1694 */
1695static void call_console_drivers(const char *ext_text, size_t ext_len,
1696				 const char *text, size_t len)
1697{
 
 
1698	struct console *con;
1699
1700	trace_console_rcuidle(text, len);
1701
1702	if (!console_drivers)
1703		return;
1704
 
 
 
 
 
 
 
1705	for_each_console(con) {
1706		if (exclusive_console && con != exclusive_console)
1707			continue;
1708		if (!(con->flags & CON_ENABLED))
1709			continue;
1710		if (!con->write)
1711			continue;
1712		if (!cpu_online(smp_processor_id()) &&
1713		    !(con->flags & CON_ANYTIME))
1714			continue;
1715		if (con->flags & CON_EXTENDED)
1716			con->write(con, ext_text, ext_len);
1717		else
 
 
1718			con->write(con, text, len);
 
1719	}
1720}
1721
1722int printk_delay_msec __read_mostly;
1723
1724static inline void printk_delay(void)
1725{
1726	if (unlikely(printk_delay_msec)) {
1727		int m = printk_delay_msec;
1728
1729		while (m--) {
1730			mdelay(1);
1731			touch_nmi_watchdog();
1732		}
1733	}
1734}
1735
1736/*
1737 * Continuation lines are buffered, and not committed to the record buffer
1738 * until the line is complete, or a race forces it. The line fragments
1739 * though, are printed immediately to the consoles to ensure everything has
1740 * reached the console in case of a kernel crash.
1741 */
1742static struct cont {
1743	char buf[LOG_LINE_MAX];
1744	size_t len;			/* length == 0 means unused buffer */
1745	struct task_struct *owner;	/* task of first print*/
1746	u64 ts_nsec;			/* time of first print */
1747	u8 level;			/* log level of first message */
1748	u8 facility;			/* log facility of first message */
1749	enum log_flags flags;		/* prefix, newline flags */
1750} cont;
1751
1752static void cont_flush(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753{
1754	if (cont.len == 0)
1755		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756
1757	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1758		  NULL, 0, cont.buf, cont.len);
1759	cont.len = 0;
 
 
1760}
1761
1762static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
 
1763{
1764	/*
1765	 * If ext consoles are present, flush and skip in-kernel
1766	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1767	 * the line gets too long, split it up in separate records.
1768	 */
1769	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1770		cont_flush();
1771		return false;
1772	}
1773
1774	if (!cont.len) {
1775		cont.facility = facility;
1776		cont.level = level;
1777		cont.owner = current;
1778		cont.ts_nsec = local_clock();
1779		cont.flags = flags;
1780	}
1781
1782	memcpy(cont.buf + cont.len, text, len);
1783	cont.len += len;
1784
1785	// The original flags come from the first line,
1786	// but later continuations can add a newline.
1787	if (flags & LOG_NEWLINE) {
1788		cont.flags |= LOG_NEWLINE;
1789		cont_flush();
1790	}
1791
1792	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1793		cont_flush();
 
1794
1795	return true;
 
 
 
 
 
 
 
1796}
1797
1798static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
 
 
 
1799{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800	/*
1801	 * If an earlier line was buffered, and we're a continuation
1802	 * write from the same process, try to add it to the buffer.
 
 
1803	 */
1804	if (cont.len) {
1805		if (cont.owner == current && (lflags & LOG_CONT)) {
1806			if (cont_add(facility, level, lflags, text, text_len))
1807				return text_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808		}
1809		/* Otherwise, make sure it's flushed */
1810		cont_flush();
1811	}
1812
1813	/* Skip empty continuation lines that couldn't be added - they just flush */
1814	if (!text_len && (lflags & LOG_CONT))
1815		return 0;
 
 
 
 
 
 
1816
1817	/* If it doesn't end in a newline, try to buffer the current line */
1818	if (!(lflags & LOG_NEWLINE)) {
1819		if (cont_add(facility, level, lflags, text, text_len))
1820			return text_len;
1821	}
1822
1823	/* Store it in the record log */
1824	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825}
1826
1827asmlinkage int vprintk_emit(int facility, int level,
1828			    const char *dict, size_t dictlen,
1829			    const char *fmt, va_list args)
1830{
1831	static char textbuf[LOG_LINE_MAX];
1832	char *text = textbuf;
1833	size_t text_len;
1834	enum log_flags lflags = 0;
1835	unsigned long flags;
1836	int printed_len;
1837	bool in_sched = false;
 
 
 
 
 
1838
1839	if (level == LOGLEVEL_SCHED) {
1840		level = LOGLEVEL_DEFAULT;
1841		in_sched = true;
1842	}
1843
1844	boot_delay_msec(level);
1845	printk_delay();
1846
1847	/* This stops the holder of console_sem just where we want him */
1848	logbuf_lock_irqsave(flags);
1849	/*
1850	 * The printf needs to come first; we need the syslog
1851	 * prefix which might be passed-in as a parameter.
1852	 */
1853	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1854
1855	/* mark and strip a trailing newline */
1856	if (text_len && text[text_len-1] == '\n') {
1857		text_len--;
1858		lflags |= LOG_NEWLINE;
1859	}
1860
1861	/* strip kernel syslog prefix and extract log level or control flags */
1862	if (facility == 0) {
1863		int kern_level;
1864
1865		while ((kern_level = printk_get_level(text)) != 0) {
1866			switch (kern_level) {
1867			case '0' ... '7':
1868				if (level == LOGLEVEL_DEFAULT)
1869					level = kern_level - '0';
1870				/* fallthrough */
1871			case 'd':	/* KERN_DEFAULT */
1872				lflags |= LOG_PREFIX;
1873				break;
1874			case 'c':	/* KERN_CONT */
1875				lflags |= LOG_CONT;
1876			}
1877
1878			text_len -= 2;
1879			text += 2;
1880		}
1881	}
1882
1883	if (level == LOGLEVEL_DEFAULT)
1884		level = default_message_loglevel;
1885
1886	if (dict)
1887		lflags |= LOG_PREFIX|LOG_NEWLINE;
1888
1889	printed_len = log_output(facility, level, lflags, dict, dictlen, text, text_len);
1890
1891	logbuf_unlock_irqrestore(flags);
1892
1893	/* If called from the scheduler, we can not call up(). */
1894	if (!in_sched) {
1895		/*
1896		 * Disable preemption to avoid being preempted while holding
1897		 * console_sem which would prevent anyone from printing to
1898		 * console
1899		 */
1900		preempt_disable();
1901		/*
1902		 * Try to acquire and then immediately release the console
1903		 * semaphore.  The release will print out buffers and wake up
1904		 * /dev/kmsg and syslog() users.
1905		 */
1906		if (console_trylock_spinning())
1907			console_unlock();
1908		preempt_enable();
1909	}
1910
 
1911	return printed_len;
1912}
1913EXPORT_SYMBOL(vprintk_emit);
1914
1915asmlinkage int vprintk(const char *fmt, va_list args)
1916{
1917	return vprintk_func(fmt, args);
1918}
1919EXPORT_SYMBOL(vprintk);
1920
1921asmlinkage int printk_emit(int facility, int level,
1922			   const char *dict, size_t dictlen,
1923			   const char *fmt, ...)
1924{
1925	va_list args;
1926	int r;
1927
1928	va_start(args, fmt);
1929	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1930	va_end(args);
1931
1932	return r;
1933}
1934EXPORT_SYMBOL(printk_emit);
1935
1936int vprintk_default(const char *fmt, va_list args)
1937{
1938	int r;
1939
1940#ifdef CONFIG_KGDB_KDB
1941	/* Allow to pass printk() to kdb but avoid a recursion. */
1942	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1943		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1944		return r;
1945	}
1946#endif
1947	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1948
1949	return r;
1950}
1951EXPORT_SYMBOL_GPL(vprintk_default);
1952
1953/**
1954 * printk - print a kernel message
1955 * @fmt: format string
1956 *
1957 * This is printk(). It can be called from any context. We want it to work.
1958 *
1959 * We try to grab the console_lock. If we succeed, it's easy - we log the
1960 * output and call the console drivers.  If we fail to get the semaphore, we
1961 * place the output into the log buffer and return. The current holder of
1962 * the console_sem will notice the new output in console_unlock(); and will
1963 * send it to the consoles before releasing the lock.
1964 *
1965 * One effect of this deferred printing is that code which calls printk() and
1966 * then changes console_loglevel may break. This is because console_loglevel
1967 * is inspected when the actual printing occurs.
1968 *
1969 * See also:
1970 * printf(3)
1971 *
1972 * See the vsnprintf() documentation for format string extensions over C99.
1973 */
1974asmlinkage __visible int printk(const char *fmt, ...)
1975{
1976	va_list args;
1977	int r;
1978
1979	va_start(args, fmt);
1980	r = vprintk_func(fmt, args);
1981	va_end(args);
1982
1983	return r;
1984}
1985EXPORT_SYMBOL(printk);
1986
1987#else /* CONFIG_PRINTK */
1988
1989#define LOG_LINE_MAX		0
1990#define PREFIX_MAX		0
 
 
 
1991
1992static u64 syslog_seq;
1993static u32 syslog_idx;
1994static u64 console_seq;
1995static u32 console_idx;
1996static u64 log_first_seq;
1997static u32 log_first_idx;
1998static u64 log_next_seq;
1999static char *log_text(const struct printk_log *msg) { return NULL; }
2000static char *log_dict(const struct printk_log *msg) { return NULL; }
2001static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2002static u32 log_next(u32 idx) { return 0; }
2003static ssize_t msg_print_ext_header(char *buf, size_t size,
2004				    struct printk_log *msg,
2005				    u64 seq) { return 0; }
 
 
2006static ssize_t msg_print_ext_body(char *buf, size_t size,
2007				  char *dict, size_t dict_len,
2008				  char *text, size_t text_len) { return 0; }
2009static void console_lock_spinning_enable(void) { }
2010static int console_lock_spinning_disable_and_check(void) { return 0; }
2011static void call_console_drivers(const char *ext_text, size_t ext_len,
2012				 const char *text, size_t len) {}
2013static size_t msg_print_text(const struct printk_log *msg,
2014			     bool syslog, char *buf, size_t size) { return 0; }
2015static bool suppress_message_printing(int level) { return false; }
2016
2017#endif /* CONFIG_PRINTK */
2018
2019#ifdef CONFIG_EARLY_PRINTK
2020struct console *early_console;
2021
2022asmlinkage __visible void early_printk(const char *fmt, ...)
2023{
2024	va_list ap;
2025	char buf[512];
2026	int n;
2027
2028	if (!early_console)
2029		return;
2030
2031	va_start(ap, fmt);
2032	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2033	va_end(ap);
2034
2035	early_console->write(early_console, buf, n);
2036}
2037#endif
2038
2039static int __add_preferred_console(char *name, int idx, char *options,
2040				   char *brl_options)
2041{
2042	struct console_cmdline *c;
2043	int i;
2044
2045	/*
2046	 *	See if this tty is not yet registered, and
2047	 *	if we have a slot free.
2048	 */
2049	for (i = 0, c = console_cmdline;
2050	     i < MAX_CMDLINECONSOLES && c->name[0];
2051	     i++, c++) {
2052		if (strcmp(c->name, name) == 0 && c->index == idx) {
2053			if (!brl_options)
2054				preferred_console = i;
 
 
2055			return 0;
2056		}
2057	}
2058	if (i == MAX_CMDLINECONSOLES)
2059		return -E2BIG;
2060	if (!brl_options)
2061		preferred_console = i;
2062	strlcpy(c->name, name, sizeof(c->name));
2063	c->options = options;
 
2064	braille_set_options(c, brl_options);
2065
2066	c->index = idx;
2067	return 0;
2068}
2069
2070static int __init console_msg_format_setup(char *str)
2071{
2072	if (!strcmp(str, "syslog"))
2073		console_msg_format = MSG_FORMAT_SYSLOG;
2074	if (!strcmp(str, "default"))
2075		console_msg_format = MSG_FORMAT_DEFAULT;
2076	return 1;
2077}
2078__setup("console_msg_format=", console_msg_format_setup);
2079
2080/*
2081 * Set up a console.  Called via do_early_param() in init/main.c
2082 * for each "console=" parameter in the boot command line.
2083 */
2084static int __init console_setup(char *str)
2085{
2086	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2087	char *s, *options, *brl_options = NULL;
2088	int idx;
2089
 
 
 
 
 
 
 
 
 
 
2090	if (_braille_console_setup(&str, &brl_options))
2091		return 1;
2092
2093	/*
2094	 * Decode str into name, index, options.
2095	 */
2096	if (str[0] >= '0' && str[0] <= '9') {
2097		strcpy(buf, "ttyS");
2098		strncpy(buf + 4, str, sizeof(buf) - 5);
2099	} else {
2100		strncpy(buf, str, sizeof(buf) - 1);
2101	}
2102	buf[sizeof(buf) - 1] = 0;
2103	options = strchr(str, ',');
2104	if (options)
2105		*(options++) = 0;
2106#ifdef __sparc__
2107	if (!strcmp(str, "ttya"))
2108		strcpy(buf, "ttyS0");
2109	if (!strcmp(str, "ttyb"))
2110		strcpy(buf, "ttyS1");
2111#endif
2112	for (s = buf; *s; s++)
2113		if (isdigit(*s) || *s == ',')
2114			break;
2115	idx = simple_strtoul(s, NULL, 10);
2116	*s = 0;
2117
2118	__add_preferred_console(buf, idx, options, brl_options);
2119	console_set_on_cmdline = 1;
2120	return 1;
2121}
2122__setup("console=", console_setup);
2123
2124/**
2125 * add_preferred_console - add a device to the list of preferred consoles.
2126 * @name: device name
2127 * @idx: device index
2128 * @options: options for this console
2129 *
2130 * The last preferred console added will be used for kernel messages
2131 * and stdin/out/err for init.  Normally this is used by console_setup
2132 * above to handle user-supplied console arguments; however it can also
2133 * be used by arch-specific code either to override the user or more
2134 * commonly to provide a default console (ie from PROM variables) when
2135 * the user has not supplied one.
2136 */
2137int add_preferred_console(char *name, int idx, char *options)
2138{
2139	return __add_preferred_console(name, idx, options, NULL);
2140}
2141
2142bool console_suspend_enabled = true;
2143EXPORT_SYMBOL(console_suspend_enabled);
2144
2145static int __init console_suspend_disable(char *str)
2146{
2147	console_suspend_enabled = false;
2148	return 1;
2149}
2150__setup("no_console_suspend", console_suspend_disable);
2151module_param_named(console_suspend, console_suspend_enabled,
2152		bool, S_IRUGO | S_IWUSR);
2153MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2154	" and hibernate operations");
2155
2156/**
2157 * suspend_console - suspend the console subsystem
2158 *
2159 * This disables printk() while we go into suspend states
2160 */
2161void suspend_console(void)
2162{
2163	if (!console_suspend_enabled)
2164		return;
2165	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2166	console_lock();
2167	console_suspended = 1;
2168	up_console_sem();
2169}
2170
2171void resume_console(void)
2172{
2173	if (!console_suspend_enabled)
2174		return;
2175	down_console_sem();
2176	console_suspended = 0;
2177	console_unlock();
2178}
2179
2180/**
2181 * console_cpu_notify - print deferred console messages after CPU hotplug
2182 * @cpu: unused
2183 *
2184 * If printk() is called from a CPU that is not online yet, the messages
2185 * will be printed on the console only if there are CON_ANYTIME consoles.
2186 * This function is called when a new CPU comes online (or fails to come
2187 * up) or goes offline.
2188 */
2189static int console_cpu_notify(unsigned int cpu)
2190{
2191	if (!cpuhp_tasks_frozen) {
2192		/* If trylock fails, someone else is doing the printing */
2193		if (console_trylock())
2194			console_unlock();
2195	}
2196	return 0;
2197}
2198
2199/**
2200 * console_lock - lock the console system for exclusive use.
2201 *
2202 * Acquires a lock which guarantees that the caller has
2203 * exclusive access to the console system and the console_drivers list.
2204 *
2205 * Can sleep, returns nothing.
2206 */
2207void console_lock(void)
2208{
2209	might_sleep();
2210
2211	down_console_sem();
2212	if (console_suspended)
2213		return;
2214	console_locked = 1;
2215	console_may_schedule = 1;
2216}
2217EXPORT_SYMBOL(console_lock);
2218
2219/**
2220 * console_trylock - try to lock the console system for exclusive use.
2221 *
2222 * Try to acquire a lock which guarantees that the caller has exclusive
2223 * access to the console system and the console_drivers list.
2224 *
2225 * returns 1 on success, and 0 on failure to acquire the lock.
2226 */
2227int console_trylock(void)
2228{
2229	if (down_trylock_console_sem())
2230		return 0;
2231	if (console_suspended) {
2232		up_console_sem();
2233		return 0;
2234	}
2235	console_locked = 1;
2236	console_may_schedule = 0;
2237	return 1;
2238}
2239EXPORT_SYMBOL(console_trylock);
2240
2241int is_console_locked(void)
2242{
2243	return console_locked;
2244}
 
2245
2246/*
2247 * Check if we have any console that is capable of printing while cpu is
2248 * booting or shutting down. Requires console_sem.
2249 */
2250static int have_callable_console(void)
2251{
2252	struct console *con;
2253
2254	for_each_console(con)
2255		if ((con->flags & CON_ENABLED) &&
2256				(con->flags & CON_ANYTIME))
2257			return 1;
2258
2259	return 0;
2260}
2261
2262/*
2263 * Can we actually use the console at this time on this cpu?
2264 *
2265 * Console drivers may assume that per-cpu resources have been allocated. So
2266 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2267 * call them until this CPU is officially up.
2268 */
2269static inline int can_use_console(void)
2270{
2271	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2272}
2273
2274/**
2275 * console_unlock - unlock the console system
2276 *
2277 * Releases the console_lock which the caller holds on the console system
2278 * and the console driver list.
2279 *
2280 * While the console_lock was held, console output may have been buffered
2281 * by printk().  If this is the case, console_unlock(); emits
2282 * the output prior to releasing the lock.
2283 *
2284 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2285 *
2286 * console_unlock(); may be called from any context.
2287 */
2288void console_unlock(void)
2289{
2290	static char ext_text[CONSOLE_EXT_LOG_MAX];
2291	static char text[LOG_LINE_MAX + PREFIX_MAX];
2292	static u64 seen_seq;
2293	unsigned long flags;
2294	bool wake_klogd = false;
2295	bool do_cond_resched, retry;
 
 
 
2296
2297	if (console_suspended) {
2298		up_console_sem();
2299		return;
2300	}
2301
 
 
2302	/*
2303	 * Console drivers are called with interrupts disabled, so
2304	 * @console_may_schedule should be cleared before; however, we may
2305	 * end up dumping a lot of lines, for example, if called from
2306	 * console registration path, and should invoke cond_resched()
2307	 * between lines if allowable.  Not doing so can cause a very long
2308	 * scheduling stall on a slow console leading to RCU stall and
2309	 * softlockup warnings which exacerbate the issue with more
2310	 * messages practically incapacitating the system.
2311	 *
2312	 * console_trylock() is not able to detect the preemptive
2313	 * context reliably. Therefore the value must be stored before
2314	 * and cleared after the the "again" goto label.
2315	 */
2316	do_cond_resched = console_may_schedule;
2317again:
2318	console_may_schedule = 0;
2319
2320	/*
2321	 * We released the console_sem lock, so we need to recheck if
2322	 * cpu is online and (if not) is there at least one CON_ANYTIME
2323	 * console.
2324	 */
2325	if (!can_use_console()) {
2326		console_locked = 0;
2327		up_console_sem();
2328		return;
2329	}
2330
2331	for (;;) {
2332		struct printk_log *msg;
2333		size_t ext_len = 0;
2334		size_t len;
2335
2336		printk_safe_enter_irqsave(flags);
2337		raw_spin_lock(&logbuf_lock);
2338		if (seen_seq != log_next_seq) {
2339			wake_klogd = true;
2340			seen_seq = log_next_seq;
2341		}
2342
2343		if (console_seq < log_first_seq) {
2344			len = sprintf(text, "** %u printk messages dropped **\n",
2345				      (unsigned)(log_first_seq - console_seq));
2346
2347			/* messages are gone, move to first one */
2348			console_seq = log_first_seq;
2349			console_idx = log_first_idx;
2350		} else {
2351			len = 0;
2352		}
2353skip:
2354		if (console_seq == log_next_seq)
2355			break;
2356
2357		msg = log_from_idx(console_idx);
2358		if (suppress_message_printing(msg->level)) {
 
 
 
 
2359			/*
2360			 * Skip record we have buffered and already printed
2361			 * directly to the console when we received it, and
2362			 * record that has level above the console loglevel.
2363			 */
2364			console_idx = log_next(console_idx);
2365			console_seq++;
2366			goto skip;
2367		}
2368
2369		len += msg_print_text(msg,
2370				console_msg_format & MSG_FORMAT_SYSLOG,
2371				text + len,
2372				sizeof(text) - len);
 
 
 
 
 
 
2373		if (nr_ext_console_drivers) {
2374			ext_len = msg_print_ext_header(ext_text,
2375						sizeof(ext_text),
2376						msg, console_seq);
2377			ext_len += msg_print_ext_body(ext_text + ext_len,
2378						sizeof(ext_text) - ext_len,
2379						log_dict(msg), msg->dict_len,
2380						log_text(msg), msg->text_len);
 
2381		}
2382		console_idx = log_next(console_idx);
 
 
2383		console_seq++;
2384		raw_spin_unlock(&logbuf_lock);
2385
2386		/*
2387		 * While actively printing out messages, if another printk()
2388		 * were to occur on another CPU, it may wait for this one to
2389		 * finish. This task can not be preempted if there is a
2390		 * waiter waiting to take over.
2391		 */
2392		console_lock_spinning_enable();
2393
2394		stop_critical_timings();	/* don't trace print latency */
2395		call_console_drivers(ext_text, ext_len, text, len);
2396		start_critical_timings();
2397
2398		if (console_lock_spinning_disable_and_check()) {
2399			printk_safe_exit_irqrestore(flags);
2400			goto out;
2401		}
2402
2403		printk_safe_exit_irqrestore(flags);
2404
2405		if (do_cond_resched)
2406			cond_resched();
2407	}
2408
2409	console_locked = 0;
2410
2411	/* Release the exclusive_console once it is used */
2412	if (unlikely(exclusive_console))
2413		exclusive_console = NULL;
2414
2415	raw_spin_unlock(&logbuf_lock);
2416
 
2417	up_console_sem();
2418
2419	/*
2420	 * Someone could have filled up the buffer again, so re-check if there's
2421	 * something to flush. In case we cannot trylock the console_sem again,
2422	 * there's a new owner and the console_unlock() from them will do the
2423	 * flush, no worries.
2424	 */
2425	raw_spin_lock(&logbuf_lock);
2426	retry = console_seq != log_next_seq;
2427	raw_spin_unlock(&logbuf_lock);
2428	printk_safe_exit_irqrestore(flags);
2429
2430	if (retry && console_trylock())
2431		goto again;
2432
2433out:
2434	if (wake_klogd)
2435		wake_up_klogd();
2436}
2437EXPORT_SYMBOL(console_unlock);
2438
2439/**
2440 * console_conditional_schedule - yield the CPU if required
2441 *
2442 * If the console code is currently allowed to sleep, and
2443 * if this CPU should yield the CPU to another task, do
2444 * so here.
2445 *
2446 * Must be called within console_lock();.
2447 */
2448void __sched console_conditional_schedule(void)
2449{
2450	if (console_may_schedule)
2451		cond_resched();
2452}
2453EXPORT_SYMBOL(console_conditional_schedule);
2454
2455void console_unblank(void)
2456{
2457	struct console *c;
2458
2459	/*
2460	 * console_unblank can no longer be called in interrupt context unless
2461	 * oops_in_progress is set to 1..
2462	 */
2463	if (oops_in_progress) {
2464		if (down_trylock_console_sem() != 0)
2465			return;
2466	} else
2467		console_lock();
2468
2469	console_locked = 1;
2470	console_may_schedule = 0;
2471	for_each_console(c)
2472		if ((c->flags & CON_ENABLED) && c->unblank)
2473			c->unblank();
2474	console_unlock();
2475}
2476
2477/**
2478 * console_flush_on_panic - flush console content on panic
 
2479 *
2480 * Immediately output all pending messages no matter what.
2481 */
2482void console_flush_on_panic(void)
2483{
2484	/*
2485	 * If someone else is holding the console lock, trylock will fail
2486	 * and may_schedule may be set.  Ignore and proceed to unlock so
2487	 * that messages are flushed out.  As this can be called from any
2488	 * context and we don't want to get preempted while flushing,
2489	 * ensure may_schedule is cleared.
2490	 */
2491	console_trylock();
2492	console_may_schedule = 0;
 
 
 
 
 
 
 
 
2493	console_unlock();
2494}
2495
2496/*
2497 * Return the console tty driver structure and its associated index
2498 */
2499struct tty_driver *console_device(int *index)
2500{
2501	struct console *c;
2502	struct tty_driver *driver = NULL;
2503
2504	console_lock();
2505	for_each_console(c) {
2506		if (!c->device)
2507			continue;
2508		driver = c->device(c, index);
2509		if (driver)
2510			break;
2511	}
2512	console_unlock();
2513	return driver;
2514}
2515
2516/*
2517 * Prevent further output on the passed console device so that (for example)
2518 * serial drivers can disable console output before suspending a port, and can
2519 * re-enable output afterwards.
2520 */
2521void console_stop(struct console *console)
2522{
2523	console_lock();
2524	console->flags &= ~CON_ENABLED;
2525	console_unlock();
2526}
2527EXPORT_SYMBOL(console_stop);
2528
2529void console_start(struct console *console)
2530{
2531	console_lock();
2532	console->flags |= CON_ENABLED;
2533	console_unlock();
2534}
2535EXPORT_SYMBOL(console_start);
2536
2537static int __read_mostly keep_bootcon;
2538
2539static int __init keep_bootcon_setup(char *str)
2540{
2541	keep_bootcon = 1;
2542	pr_info("debug: skip boot console de-registration.\n");
2543
2544	return 0;
2545}
2546
2547early_param("keep_bootcon", keep_bootcon_setup);
2548
2549/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550 * The console driver calls this routine during kernel initialization
2551 * to register the console printing procedure with printk() and to
2552 * print any messages that were printed by the kernel before the
2553 * console driver was initialized.
2554 *
2555 * This can happen pretty early during the boot process (because of
2556 * early_printk) - sometimes before setup_arch() completes - be careful
2557 * of what kernel features are used - they may not be initialised yet.
2558 *
2559 * There are two types of consoles - bootconsoles (early_printk) and
2560 * "real" consoles (everything which is not a bootconsole) which are
2561 * handled differently.
2562 *  - Any number of bootconsoles can be registered at any time.
2563 *  - As soon as a "real" console is registered, all bootconsoles
2564 *    will be unregistered automatically.
2565 *  - Once a "real" console is registered, any attempt to register a
2566 *    bootconsoles will be rejected
2567 */
2568void register_console(struct console *newcon)
2569{
2570	int i;
2571	unsigned long flags;
2572	struct console *bcon = NULL;
2573	struct console_cmdline *c;
2574	static bool has_preferred;
2575
2576	if (console_drivers)
2577		for_each_console(bcon)
2578			if (WARN(bcon == newcon,
2579					"console '%s%d' already registered\n",
2580					bcon->name, bcon->index))
2581				return;
2582
2583	/*
2584	 * before we register a new CON_BOOT console, make sure we don't
2585	 * already have a valid console
2586	 */
2587	if (console_drivers && newcon->flags & CON_BOOT) {
2588		/* find the last or real console */
2589		for_each_console(bcon) {
2590			if (!(bcon->flags & CON_BOOT)) {
2591				pr_info("Too late to register bootconsole %s%d\n",
2592					newcon->name, newcon->index);
2593				return;
2594			}
2595		}
2596	}
2597
2598	if (console_drivers && console_drivers->flags & CON_BOOT)
2599		bcon = console_drivers;
2600
2601	if (!has_preferred || bcon || !console_drivers)
2602		has_preferred = preferred_console >= 0;
2603
2604	/*
2605	 *	See if we want to use this console driver. If we
2606	 *	didn't select a console we take the first one
2607	 *	that registers here.
2608	 */
2609	if (!has_preferred) {
2610		if (newcon->index < 0)
2611			newcon->index = 0;
2612		if (newcon->setup == NULL ||
2613		    newcon->setup(newcon, NULL) == 0) {
2614			newcon->flags |= CON_ENABLED;
2615			if (newcon->device) {
2616				newcon->flags |= CON_CONSDEV;
2617				has_preferred = true;
2618			}
2619		}
2620	}
2621
2622	/*
2623	 *	See if this console matches one we selected on
2624	 *	the command line.
2625	 */
2626	for (i = 0, c = console_cmdline;
2627	     i < MAX_CMDLINECONSOLES && c->name[0];
2628	     i++, c++) {
2629		if (!newcon->match ||
2630		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2631			/* default matching */
2632			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2633			if (strcmp(c->name, newcon->name) != 0)
2634				continue;
2635			if (newcon->index >= 0 &&
2636			    newcon->index != c->index)
2637				continue;
2638			if (newcon->index < 0)
2639				newcon->index = c->index;
2640
2641			if (_braille_register_console(newcon, c))
2642				return;
2643
2644			if (newcon->setup &&
2645			    newcon->setup(newcon, c->options) != 0)
2646				break;
2647		}
2648
2649		newcon->flags |= CON_ENABLED;
2650		if (i == preferred_console) {
2651			newcon->flags |= CON_CONSDEV;
2652			has_preferred = true;
2653		}
2654		break;
2655	}
2656
2657	if (!(newcon->flags & CON_ENABLED))
 
2658		return;
2659
2660	/*
2661	 * If we have a bootconsole, and are switching to a real console,
2662	 * don't print everything out again, since when the boot console, and
2663	 * the real console are the same physical device, it's annoying to
2664	 * see the beginning boot messages twice
2665	 */
2666	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2667		newcon->flags &= ~CON_PRINTBUFFER;
2668
2669	/*
2670	 *	Put this console in the list - keep the
2671	 *	preferred driver at the head of the list.
2672	 */
2673	console_lock();
2674	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2675		newcon->next = console_drivers;
2676		console_drivers = newcon;
2677		if (newcon->next)
2678			newcon->next->flags &= ~CON_CONSDEV;
 
 
2679	} else {
2680		newcon->next = console_drivers->next;
2681		console_drivers->next = newcon;
2682	}
2683
2684	if (newcon->flags & CON_EXTENDED)
2685		if (!nr_ext_console_drivers++)
2686			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2687
2688	if (newcon->flags & CON_PRINTBUFFER) {
2689		/*
2690		 * console_unlock(); will print out the buffered messages
2691		 * for us.
2692		 */
2693		logbuf_lock_irqsave(flags);
2694		console_seq = syslog_seq;
2695		console_idx = syslog_idx;
2696		logbuf_unlock_irqrestore(flags);
2697		/*
2698		 * We're about to replay the log buffer.  Only do this to the
2699		 * just-registered console to avoid excessive message spam to
2700		 * the already-registered consoles.
 
 
 
 
2701		 */
2702		exclusive_console = newcon;
 
 
 
 
 
 
2703	}
2704	console_unlock();
2705	console_sysfs_notify();
2706
2707	/*
2708	 * By unregistering the bootconsoles after we enable the real console
2709	 * we get the "console xxx enabled" message on all the consoles -
2710	 * boot consoles, real consoles, etc - this is to ensure that end
2711	 * users know there might be something in the kernel's log buffer that
2712	 * went to the bootconsole (that they do not see on the real console)
2713	 */
2714	pr_info("%sconsole [%s%d] enabled\n",
2715		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2716		newcon->name, newcon->index);
2717	if (bcon &&
2718	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2719	    !keep_bootcon) {
2720		/* We need to iterate through all boot consoles, to make
2721		 * sure we print everything out, before we unregister them.
2722		 */
2723		for_each_console(bcon)
2724			if (bcon->flags & CON_BOOT)
2725				unregister_console(bcon);
2726	}
2727}
2728EXPORT_SYMBOL(register_console);
2729
2730int unregister_console(struct console *console)
2731{
2732        struct console *a, *b;
2733	int res;
2734
2735	pr_info("%sconsole [%s%d] disabled\n",
2736		(console->flags & CON_BOOT) ? "boot" : "" ,
2737		console->name, console->index);
2738
2739	res = _braille_unregister_console(console);
2740	if (res)
2741		return res;
 
 
2742
2743	res = 1;
2744	console_lock();
2745	if (console_drivers == console) {
2746		console_drivers=console->next;
2747		res = 0;
2748	} else if (console_drivers) {
2749		for (a=console_drivers->next, b=console_drivers ;
2750		     a; b=a, a=b->next) {
2751			if (a == console) {
2752				b->next = a->next;
2753				res = 0;
2754				break;
2755			}
2756		}
2757	}
2758
2759	if (!res && (console->flags & CON_EXTENDED))
 
 
 
2760		nr_ext_console_drivers--;
2761
2762	/*
2763	 * If this isn't the last console and it has CON_CONSDEV set, we
2764	 * need to set it on the next preferred console.
2765	 */
2766	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2767		console_drivers->flags |= CON_CONSDEV;
2768
2769	console->flags &= ~CON_ENABLED;
2770	console_unlock();
2771	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
2772	return res;
2773}
2774EXPORT_SYMBOL(unregister_console);
2775
2776/*
2777 * Initialize the console device. This is called *early*, so
2778 * we can't necessarily depend on lots of kernel help here.
2779 * Just do some early initializations, and do the complex setup
2780 * later.
2781 */
2782void __init console_init(void)
2783{
2784	int ret;
2785	initcall_t *call;
 
2786
2787	/* Setup the default TTY line discipline. */
2788	n_tty_init();
2789
2790	/*
2791	 * set up the console device so that later boot sequences can
2792	 * inform about problems etc..
2793	 */
2794	call = __con_initcall_start;
2795	trace_initcall_level("console");
2796	while (call < __con_initcall_end) {
2797		trace_initcall_start((*call));
2798		ret = (*call)();
2799		trace_initcall_finish((*call), ret);
2800		call++;
 
2801	}
2802}
2803
2804/*
2805 * Some boot consoles access data that is in the init section and which will
2806 * be discarded after the initcalls have been run. To make sure that no code
2807 * will access this data, unregister the boot consoles in a late initcall.
2808 *
2809 * If for some reason, such as deferred probe or the driver being a loadable
2810 * module, the real console hasn't registered yet at this point, there will
2811 * be a brief interval in which no messages are logged to the console, which
2812 * makes it difficult to diagnose problems that occur during this time.
2813 *
2814 * To mitigate this problem somewhat, only unregister consoles whose memory
2815 * intersects with the init section. Note that all other boot consoles will
2816 * get unregistred when the real preferred console is registered.
2817 */
2818static int __init printk_late_init(void)
2819{
2820	struct console *con;
2821	int ret;
2822
2823	for_each_console(con) {
2824		if (!(con->flags & CON_BOOT))
2825			continue;
2826
2827		/* Check addresses that might be used for enabled consoles. */
2828		if (init_section_intersects(con, sizeof(*con)) ||
2829		    init_section_contains(con->write, 0) ||
2830		    init_section_contains(con->read, 0) ||
2831		    init_section_contains(con->device, 0) ||
2832		    init_section_contains(con->unblank, 0) ||
2833		    init_section_contains(con->data, 0)) {
2834			/*
2835			 * Please, consider moving the reported consoles out
2836			 * of the init section.
2837			 */
2838			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2839				con->name, con->index);
2840			unregister_console(con);
2841		}
2842	}
2843	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2844					console_cpu_notify);
2845	WARN_ON(ret < 0);
2846	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2847					console_cpu_notify, NULL);
2848	WARN_ON(ret < 0);
2849	return 0;
2850}
2851late_initcall(printk_late_init);
2852
2853#if defined CONFIG_PRINTK
2854/*
2855 * Delayed printk version, for scheduler-internal messages:
2856 */
2857#define PRINTK_PENDING_WAKEUP	0x01
2858#define PRINTK_PENDING_OUTPUT	0x02
2859
2860static DEFINE_PER_CPU(int, printk_pending);
2861
2862static void wake_up_klogd_work_func(struct irq_work *irq_work)
2863{
2864	int pending = __this_cpu_xchg(printk_pending, 0);
2865
2866	if (pending & PRINTK_PENDING_OUTPUT) {
2867		/* If trylock fails, someone else is doing the printing */
2868		if (console_trylock())
2869			console_unlock();
2870	}
2871
2872	if (pending & PRINTK_PENDING_WAKEUP)
2873		wake_up_interruptible(&log_wait);
2874}
2875
2876static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2877	.func = wake_up_klogd_work_func,
2878	.flags = IRQ_WORK_LAZY,
2879};
2880
2881void wake_up_klogd(void)
2882{
 
 
 
2883	preempt_disable();
2884	if (waitqueue_active(&log_wait)) {
2885		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2886		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2887	}
2888	preempt_enable();
2889}
2890
2891int vprintk_deferred(const char *fmt, va_list args)
2892{
2893	int r;
2894
2895	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2896
2897	preempt_disable();
2898	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2899	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2900	preempt_enable();
 
 
 
 
 
 
 
 
2901
2902	return r;
2903}
2904
2905int printk_deferred(const char *fmt, ...)
2906{
2907	va_list args;
2908	int r;
2909
2910	va_start(args, fmt);
2911	r = vprintk_deferred(fmt, args);
2912	va_end(args);
2913
2914	return r;
2915}
2916
2917/*
2918 * printk rate limiting, lifted from the networking subsystem.
2919 *
2920 * This enforces a rate limit: not more than 10 kernel messages
2921 * every 5s to make a denial-of-service attack impossible.
2922 */
2923DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2924
2925int __printk_ratelimit(const char *func)
2926{
2927	return ___ratelimit(&printk_ratelimit_state, func);
2928}
2929EXPORT_SYMBOL(__printk_ratelimit);
2930
2931/**
2932 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2933 * @caller_jiffies: pointer to caller's state
2934 * @interval_msecs: minimum interval between prints
2935 *
2936 * printk_timed_ratelimit() returns true if more than @interval_msecs
2937 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2938 * returned true.
2939 */
2940bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2941			unsigned int interval_msecs)
2942{
2943	unsigned long elapsed = jiffies - *caller_jiffies;
2944
2945	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2946		return false;
2947
2948	*caller_jiffies = jiffies;
2949	return true;
2950}
2951EXPORT_SYMBOL(printk_timed_ratelimit);
2952
2953static DEFINE_SPINLOCK(dump_list_lock);
2954static LIST_HEAD(dump_list);
2955
2956/**
2957 * kmsg_dump_register - register a kernel log dumper.
2958 * @dumper: pointer to the kmsg_dumper structure
2959 *
2960 * Adds a kernel log dumper to the system. The dump callback in the
2961 * structure will be called when the kernel oopses or panics and must be
2962 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2963 */
2964int kmsg_dump_register(struct kmsg_dumper *dumper)
2965{
2966	unsigned long flags;
2967	int err = -EBUSY;
2968
2969	/* The dump callback needs to be set */
2970	if (!dumper->dump)
2971		return -EINVAL;
2972
2973	spin_lock_irqsave(&dump_list_lock, flags);
2974	/* Don't allow registering multiple times */
2975	if (!dumper->registered) {
2976		dumper->registered = 1;
2977		list_add_tail_rcu(&dumper->list, &dump_list);
2978		err = 0;
2979	}
2980	spin_unlock_irqrestore(&dump_list_lock, flags);
2981
2982	return err;
2983}
2984EXPORT_SYMBOL_GPL(kmsg_dump_register);
2985
2986/**
2987 * kmsg_dump_unregister - unregister a kmsg dumper.
2988 * @dumper: pointer to the kmsg_dumper structure
2989 *
2990 * Removes a dump device from the system. Returns zero on success and
2991 * %-EINVAL otherwise.
2992 */
2993int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2994{
2995	unsigned long flags;
2996	int err = -EINVAL;
2997
2998	spin_lock_irqsave(&dump_list_lock, flags);
2999	if (dumper->registered) {
3000		dumper->registered = 0;
3001		list_del_rcu(&dumper->list);
3002		err = 0;
3003	}
3004	spin_unlock_irqrestore(&dump_list_lock, flags);
3005	synchronize_rcu();
3006
3007	return err;
3008}
3009EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3010
3011static bool always_kmsg_dump;
3012module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014/**
3015 * kmsg_dump - dump kernel log to kernel message dumpers.
3016 * @reason: the reason (oops, panic etc) for dumping
3017 *
3018 * Call each of the registered dumper's dump() callback, which can
3019 * retrieve the kmsg records with kmsg_dump_get_line() or
3020 * kmsg_dump_get_buffer().
3021 */
3022void kmsg_dump(enum kmsg_dump_reason reason)
3023{
3024	struct kmsg_dumper *dumper;
3025	unsigned long flags;
3026
3027	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3028		return;
3029
3030	rcu_read_lock();
3031	list_for_each_entry_rcu(dumper, &dump_list, list) {
3032		if (dumper->max_reason && reason > dumper->max_reason)
3033			continue;
3034
3035		/* initialize iterator with data about the stored records */
3036		dumper->active = true;
3037
3038		logbuf_lock_irqsave(flags);
3039		dumper->cur_seq = clear_seq;
3040		dumper->cur_idx = clear_idx;
3041		dumper->next_seq = log_next_seq;
3042		dumper->next_idx = log_next_idx;
3043		logbuf_unlock_irqrestore(flags);
 
 
 
 
3044
3045		/* invoke dumper which will iterate over records */
3046		dumper->dump(dumper, reason);
3047
3048		/* reset iterator */
3049		dumper->active = false;
3050	}
3051	rcu_read_unlock();
3052}
3053
3054/**
3055 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3056 * @dumper: registered kmsg dumper
3057 * @syslog: include the "<4>" prefixes
3058 * @line: buffer to copy the line to
3059 * @size: maximum size of the buffer
3060 * @len: length of line placed into buffer
3061 *
3062 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3063 * record, and copy one record into the provided buffer.
3064 *
3065 * Consecutive calls will return the next available record moving
3066 * towards the end of the buffer with the youngest messages.
3067 *
3068 * A return value of FALSE indicates that there are no more records to
3069 * read.
3070 *
3071 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3072 */
3073bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3074			       char *line, size_t size, size_t *len)
3075{
3076	struct printk_log *msg;
 
 
 
 
3077	size_t l = 0;
3078	bool ret = false;
3079
3080	if (!dumper->active)
3081		goto out;
3082
3083	if (dumper->cur_seq < log_first_seq) {
3084		/* messages are gone, move to first available one */
3085		dumper->cur_seq = log_first_seq;
3086		dumper->cur_idx = log_first_idx;
3087	}
3088
3089	/* last entry */
3090	if (dumper->cur_seq >= log_next_seq)
3091		goto out;
 
 
 
 
 
 
 
 
 
3092
3093	msg = log_from_idx(dumper->cur_idx);
3094	l = msg_print_text(msg, syslog, line, size);
3095
3096	dumper->cur_idx = log_next(dumper->cur_idx);
3097	dumper->cur_seq++;
3098	ret = true;
3099out:
 
3100	if (len)
3101		*len = l;
3102	return ret;
3103}
3104
3105/**
3106 * kmsg_dump_get_line - retrieve one kmsg log line
3107 * @dumper: registered kmsg dumper
3108 * @syslog: include the "<4>" prefixes
3109 * @line: buffer to copy the line to
3110 * @size: maximum size of the buffer
3111 * @len: length of line placed into buffer
3112 *
3113 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3114 * record, and copy one record into the provided buffer.
3115 *
3116 * Consecutive calls will return the next available record moving
3117 * towards the end of the buffer with the youngest messages.
3118 *
3119 * A return value of FALSE indicates that there are no more records to
3120 * read.
3121 */
3122bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3123			char *line, size_t size, size_t *len)
3124{
3125	unsigned long flags;
3126	bool ret;
3127
3128	logbuf_lock_irqsave(flags);
3129	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3130	logbuf_unlock_irqrestore(flags);
3131
3132	return ret;
3133}
3134EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3135
3136/**
3137 * kmsg_dump_get_buffer - copy kmsg log lines
3138 * @dumper: registered kmsg dumper
3139 * @syslog: include the "<4>" prefixes
3140 * @buf: buffer to copy the line to
3141 * @size: maximum size of the buffer
3142 * @len: length of line placed into buffer
3143 *
3144 * Start at the end of the kmsg buffer and fill the provided buffer
3145 * with as many of the the *youngest* kmsg records that fit into it.
3146 * If the buffer is large enough, all available kmsg records will be
3147 * copied with a single call.
3148 *
3149 * Consecutive calls will fill the buffer with the next block of
3150 * available older records, not including the earlier retrieved ones.
3151 *
3152 * A return value of FALSE indicates that there are no more records to
3153 * read.
3154 */
3155bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3156			  char *buf, size_t size, size_t *len)
3157{
 
 
 
3158	unsigned long flags;
3159	u64 seq;
3160	u32 idx;
3161	u64 next_seq;
3162	u32 next_idx;
3163	size_t l = 0;
3164	bool ret = false;
 
3165
3166	if (!dumper->active)
3167		goto out;
3168
3169	logbuf_lock_irqsave(flags);
3170	if (dumper->cur_seq < log_first_seq) {
3171		/* messages are gone, move to first available one */
3172		dumper->cur_seq = log_first_seq;
3173		dumper->cur_idx = log_first_idx;
 
 
 
 
3174	}
3175
3176	/* last entry */
3177	if (dumper->cur_seq >= dumper->next_seq) {
3178		logbuf_unlock_irqrestore(flags);
3179		goto out;
3180	}
3181
3182	/* calculate length of entire buffer */
3183	seq = dumper->cur_seq;
3184	idx = dumper->cur_idx;
3185	while (seq < dumper->next_seq) {
3186		struct printk_log *msg = log_from_idx(idx);
3187
3188		l += msg_print_text(msg, true, NULL, 0);
3189		idx = log_next(idx);
3190		seq++;
3191	}
3192
3193	/* move first record forward until length fits into the buffer */
3194	seq = dumper->cur_seq;
3195	idx = dumper->cur_idx;
3196	while (l > size && seq < dumper->next_seq) {
3197		struct printk_log *msg = log_from_idx(idx);
3198
3199		l -= msg_print_text(msg, true, NULL, 0);
3200		idx = log_next(idx);
3201		seq++;
3202	}
3203
3204	/* last message in next interation */
3205	next_seq = seq;
3206	next_idx = idx;
 
3207
3208	l = 0;
3209	while (seq < dumper->next_seq) {
3210		struct printk_log *msg = log_from_idx(idx);
3211
3212		l += msg_print_text(msg, syslog, buf + l, size - l);
3213		idx = log_next(idx);
3214		seq++;
3215	}
3216
3217	dumper->next_seq = next_seq;
3218	dumper->next_idx = next_idx;
3219	ret = true;
3220	logbuf_unlock_irqrestore(flags);
3221out:
3222	if (len)
3223		*len = l;
3224	return ret;
3225}
3226EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3227
3228/**
3229 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3230 * @dumper: registered kmsg dumper
3231 *
3232 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3233 * kmsg_dump_get_buffer() can be called again and used multiple
3234 * times within the same dumper.dump() callback.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235 *
3236 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3237 */
3238void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3239{
3240	dumper->cur_seq = clear_seq;
3241	dumper->cur_idx = clear_idx;
3242	dumper->next_seq = log_next_seq;
3243	dumper->next_idx = log_next_idx;
3244}
 
3245
3246/**
3247 * kmsg_dump_rewind - reset the interator
3248 * @dumper: registered kmsg dumper
3249 *
3250 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3251 * kmsg_dump_get_buffer() can be called again and used multiple
3252 * times within the same dumper.dump() callback.
 
 
 
3253 */
3254void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3255{
3256	unsigned long flags;
 
 
 
3257
3258	logbuf_lock_irqsave(flags);
3259	kmsg_dump_rewind_nolock(dumper);
3260	logbuf_unlock_irqrestore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261}
3262EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3263
3264#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98	.name = "console_lock"
  99};
 100#endif
 101
 102enum devkmsg_log_bits {
 103	__DEVKMSG_LOG_BIT_ON = 0,
 104	__DEVKMSG_LOG_BIT_OFF,
 105	__DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT	0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121	size_t len;
 122
 123	if (!str)
 124		return -EINVAL;
 125
 126	len = str_has_prefix(str, "on");
 127	if (len) {
 128		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129		return len;
 130	}
 131
 132	len = str_has_prefix(str, "off");
 133	if (len) {
 134		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135		return len;
 136	}
 137
 138	len = str_has_prefix(str, "ratelimit");
 139	if (len) {
 140		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141		return len;
 142	}
 143
 144	return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149	if (__control_devkmsg(str) < 0)
 150		return 1;
 151
 152	/*
 153	 * Set sysctl string accordingly:
 154	 */
 155	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156		strcpy(devkmsg_log_str, "on");
 157	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158		strcpy(devkmsg_log_str, "off");
 159	/* else "ratelimit" which is set by default. */
 160
 161	/*
 162	 * Sysctl cannot change it anymore. The kernel command line setting of
 163	 * this parameter is to force the setting to be permanent throughout the
 164	 * runtime of the system. This is a precation measure against userspace
 165	 * trying to be a smarta** and attempting to change it up on us.
 166	 */
 167	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169	return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176			      void *buffer, size_t *lenp, loff_t *ppos)
 177{
 178	char old_str[DEVKMSG_STR_MAX_SIZE];
 179	unsigned int old;
 180	int err;
 181
 182	if (write) {
 183		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184			return -EINVAL;
 185
 186		old = devkmsg_log;
 187		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188	}
 189
 190	err = proc_dostring(table, write, buffer, lenp, ppos);
 191	if (err)
 192		return err;
 193
 194	if (write) {
 195		err = __control_devkmsg(devkmsg_log_str);
 196
 197		/*
 198		 * Do not accept an unknown string OR a known string with
 199		 * trailing crap...
 200		 */
 201		if (err < 0 || (err + 1 != *lenp)) {
 202
 203			/* ... and restore old setting. */
 204			devkmsg_log = old;
 205			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207			return -EINVAL;
 208		}
 209	}
 210
 211	return 0;
 212}
 213
 214/* Number of registered extended console drivers. */
 
 
 
 
 
 
 
 
 
 215static int nr_ext_console_drivers;
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222	down(&console_sem);\
 223	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228	int lock_failed;
 229	unsigned long flags;
 230
 231	/*
 232	 * Here and in __up_console_sem() we need to be in safe mode,
 233	 * because spindump/WARN/etc from under console ->lock will
 234	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 235	 */
 236	printk_safe_enter_irqsave(flags);
 237	lock_failed = down_trylock(&console_sem);
 238	printk_safe_exit_irqrestore(flags);
 239
 240	if (lock_failed)
 241		return 1;
 242	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243	return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249	unsigned long flags;
 250
 251	mutex_release(&console_lock_dep_map, ip);
 252
 253	printk_safe_enter_irqsave(flags);
 254	up(&console_sem);
 255	printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console semaphore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *	Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 282static int preferred_console = -1;
 283static bool has_preferred_console;
 284int console_set_on_cmdline;
 285EXPORT_SYMBOL(console_set_on_cmdline);
 286
 287/* Flag: console code may call schedule() */
 288static int console_may_schedule;
 289
 290enum con_msg_format_flags {
 291	MSG_FORMAT_DEFAULT	= 0,
 292	MSG_FORMAT_SYSLOG	= (1 << 0),
 293};
 294
 295static int console_msg_format = MSG_FORMAT_DEFAULT;
 296
 297/*
 298 * The printk log buffer consists of a sequenced collection of records, each
 299 * containing variable length message text. Every record also contains its
 300 * own meta-data (@info).
 301 *
 302 * Every record meta-data carries the timestamp in microseconds, as well as
 303 * the standard userspace syslog level and syslog facility. The usual kernel
 304 * messages use LOG_KERN; userspace-injected messages always carry a matching
 305 * syslog facility, by default LOG_USER. The origin of every message can be
 306 * reliably determined that way.
 307 *
 308 * The human readable log message of a record is available in @text, the
 309 * length of the message text in @text_len. The stored message is not
 310 * terminated.
 
 
 
 
 
 
 
 
 311 *
 312 * Optionally, a record can carry a dictionary of properties (key/value
 313 * pairs), to provide userspace with a machine-readable message context.
 314 *
 315 * Examples for well-defined, commonly used property names are:
 316 *   DEVICE=b12:8               device identifier
 317 *                                b12:8         block dev_t
 318 *                                c127:3        char dev_t
 319 *                                n8            netdev ifindex
 320 *                                +sound:card0  subsystem:devname
 321 *   SUBSYSTEM=pci              driver-core subsystem name
 322 *
 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 324 * and values are terminated by a '\0' character.
 325 *
 326 * Example of record values:
 327 *   record.text_buf                = "it's a line" (unterminated)
 328 *   record.info.seq                = 56
 329 *   record.info.ts_nsec            = 36863
 330 *   record.info.text_len           = 11
 331 *   record.info.facility           = 0 (LOG_KERN)
 332 *   record.info.flags              = 0
 333 *   record.info.level              = 3 (LOG_ERR)
 334 *   record.info.caller_id          = 299 (task 299)
 335 *   record.info.dev_info.subsystem = "pci" (terminated)
 336 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 
 
 
 337 *
 338 * The 'struct printk_info' buffer must never be directly exported to
 339 * userspace, it is a kernel-private implementation detail that might
 340 * need to be changed in the future, when the requirements change.
 341 *
 342 * /dev/kmsg exports the structured data in the following line format:
 343 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 344 *
 345 * Users of the export format should ignore possible additional values
 346 * separated by ',', and find the message after the ';' character.
 347 *
 348 * The optional key/value pairs are attached as continuation lines starting
 349 * with a space character and terminated by a newline. All possible
 350 * non-prinatable characters are escaped in the "\xff" notation.
 351 */
 352
 353enum log_flags {
 
 354	LOG_NEWLINE	= 2,	/* text ended with a newline */
 
 355	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 356};
 357
 358/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 359static DEFINE_RAW_SPINLOCK(syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361#ifdef CONFIG_PRINTK
 362DECLARE_WAIT_QUEUE_HEAD(log_wait);
 363/* All 3 protected by @syslog_lock. */
 364/* the next printk record to read by syslog(READ) or /proc/kmsg */
 365static u64 syslog_seq;
 
 366static size_t syslog_partial;
 367static bool syslog_time;
 368
 369/* All 3 protected by @console_sem. */
 
 
 
 
 
 
 
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u64 exclusive_console_stop_seq;
 373static unsigned long console_dropped;
 374
 375struct latched_seq {
 376	seqcount_latch_t	latch;
 377	u64			val[2];
 378};
 379
 380/*
 381 * The next printk record to read after the last 'clear' command. There are
 382 * two copies (updated with seqcount_latch) so that reads can locklessly
 383 * access a valid value. Writers are synchronized by @syslog_lock.
 384 */
 385static struct latched_seq clear_seq = {
 386	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 387	.val[0]		= 0,
 388	.val[1]		= 0,
 389};
 390
 391#ifdef CONFIG_PRINTK_CALLER
 392#define PREFIX_MAX		48
 393#else
 394#define PREFIX_MAX		32
 395#endif
 396
 397/* the maximum size of a formatted record (i.e. with prefix added per line) */
 398#define CONSOLE_LOG_MAX		1024
 399
 400/* the maximum size allowed to be reserved for a record */
 401#define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
 402
 403#define LOG_LEVEL(v)		((v) & 0x07)
 404#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 405
 406/* record buffer */
 407#define LOG_ALIGN __alignof__(unsigned long)
 408#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 409#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 410static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 411static char *log_buf = __log_buf;
 412static u32 log_buf_len = __LOG_BUF_LEN;
 413
 414/*
 415 * Define the average message size. This only affects the number of
 416 * descriptors that will be available. Underestimating is better than
 417 * overestimating (too many available descriptors is better than not enough).
 418 */
 419#define PRB_AVGBITS 5	/* 32 character average length */
 420
 421#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 422#error CONFIG_LOG_BUF_SHIFT value too small.
 423#endif
 424_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 425		 PRB_AVGBITS, &__log_buf[0]);
 426
 427static struct printk_ringbuffer printk_rb_dynamic;
 
 
 
 
 428
 429static struct printk_ringbuffer *prb = &printk_rb_static;
 
 
 
 
 430
 431/*
 432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 433 * per_cpu_areas are initialised. This variable is set to true when
 434 * it's safe to access per-CPU data.
 435 */
 436static bool __printk_percpu_data_ready __read_mostly;
 437
 438bool printk_percpu_data_ready(void)
 439{
 440	return __printk_percpu_data_ready;
 
 
 
 
 441}
 442
 443/* Must be called under syslog_lock. */
 444static void latched_seq_write(struct latched_seq *ls, u64 val)
 445{
 446	raw_write_seqcount_latch(&ls->latch);
 447	ls->val[0] = val;
 448	raw_write_seqcount_latch(&ls->latch);
 449	ls->val[1] = val;
 
 
 
 
 
 
 
 
 
 450}
 451
 452/* Can be called from any context. */
 453static u64 latched_seq_read_nolock(struct latched_seq *ls)
 
 
 
 
 
 
 
 
 454{
 455	unsigned int seq;
 456	unsigned int idx;
 457	u64 val;
 458
 459	do {
 460		seq = raw_read_seqcount_latch(&ls->latch);
 461		idx = seq & 0x1;
 462		val = ls->val[idx];
 463	} while (read_seqcount_latch_retry(&ls->latch, seq));
 464
 465	return val;
 
 
 
 
 466}
 467
 468/* Return log buffer address */
 469char *log_buf_addr_get(void)
 470{
 471	return log_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472}
 473
 474/* Return log buffer size */
 475u32 log_buf_len_get(void)
 476{
 477	return log_buf_len;
 
 
 
 
 
 
 478}
 479
 480/*
 481 * Define how much of the log buffer we could take at maximum. The value
 482 * must be greater than two. Note that only half of the buffer is available
 483 * when the index points to the middle.
 484 */
 485#define MAX_LOG_TAKE_PART 4
 486static const char trunc_msg[] = "<truncated>";
 487
 488static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 
 489{
 490	/*
 491	 * The message should not take the whole buffer. Otherwise, it might
 492	 * get removed too soon.
 493	 */
 494	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 495
 496	if (*text_len > max_text_len)
 497		*text_len = max_text_len;
 
 
 
 
 
 
 
 498
 499	/* enable the warning message (if there is room) */
 500	*trunc_msg_len = strlen(trunc_msg);
 501	if (*text_len >= *trunc_msg_len)
 502		*text_len -= *trunc_msg_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503	else
 504		*trunc_msg_len = 0;
 
 
 
 
 
 
 
 
 505}
 506
 507int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 508
 509static int syslog_action_restricted(int type)
 510{
 511	if (dmesg_restrict)
 512		return 1;
 513	/*
 514	 * Unless restricted, we allow "read all" and "get buffer size"
 515	 * for everybody.
 516	 */
 517	return type != SYSLOG_ACTION_READ_ALL &&
 518	       type != SYSLOG_ACTION_SIZE_BUFFER;
 519}
 520
 521static int check_syslog_permissions(int type, int source)
 522{
 523	/*
 524	 * If this is from /proc/kmsg and we've already opened it, then we've
 525	 * already done the capabilities checks at open time.
 526	 */
 527	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 528		goto ok;
 529
 530	if (syslog_action_restricted(type)) {
 531		if (capable(CAP_SYSLOG))
 532			goto ok;
 533		/*
 534		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 535		 * a warning.
 536		 */
 537		if (capable(CAP_SYS_ADMIN)) {
 538			pr_warn_once("%s (%d): Attempt to access syslog with "
 539				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 540				     "(deprecated).\n",
 541				 current->comm, task_pid_nr(current));
 542			goto ok;
 543		}
 544		return -EPERM;
 545	}
 546ok:
 547	return security_syslog(type);
 548}
 549
 550static void append_char(char **pp, char *e, char c)
 551{
 552	if (*pp < e)
 553		*(*pp)++ = c;
 554}
 555
 556static ssize_t info_print_ext_header(char *buf, size_t size,
 557				     struct printk_info *info)
 558{
 559	u64 ts_usec = info->ts_nsec;
 560	char caller[20];
 561#ifdef CONFIG_PRINTK_CALLER
 562	u32 id = info->caller_id;
 563
 564	snprintf(caller, sizeof(caller), ",caller=%c%u",
 565		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 566#else
 567	caller[0] = '\0';
 568#endif
 569
 570	do_div(ts_usec, 1000);
 571
 572	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 573			 (info->facility << 3) | info->level, info->seq,
 574			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 575}
 576
 577static ssize_t msg_add_ext_text(char *buf, size_t size,
 578				const char *text, size_t text_len,
 579				unsigned char endc)
 580{
 581	char *p = buf, *e = buf + size;
 582	size_t i;
 583
 584	/* escape non-printable characters */
 585	for (i = 0; i < text_len; i++) {
 586		unsigned char c = text[i];
 587
 588		if (c < ' ' || c >= 127 || c == '\\')
 589			p += scnprintf(p, e - p, "\\x%02x", c);
 590		else
 591			append_char(&p, e, c);
 592	}
 593	append_char(&p, e, endc);
 594
 595	return p - buf;
 596}
 597
 598static ssize_t msg_add_dict_text(char *buf, size_t size,
 599				 const char *key, const char *val)
 600{
 601	size_t val_len = strlen(val);
 602	ssize_t len;
 603
 604	if (!val_len)
 605		return 0;
 606
 607	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 608	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 609	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 
 610
 611	return len;
 612}
 
 
 
 613
 614static ssize_t msg_print_ext_body(char *buf, size_t size,
 615				  char *text, size_t text_len,
 616				  struct dev_printk_info *dev_info)
 617{
 618	ssize_t len;
 619
 620	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 
 
 
 621
 622	if (!dev_info)
 623		goto out;
 624
 625	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 626				 dev_info->subsystem);
 627	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 628				 dev_info->device);
 629out:
 630	return len;
 631}
 632
 633/* /dev/kmsg - userspace message inject/listen interface */
 634struct devkmsg_user {
 635	atomic64_t seq;
 
 636	struct ratelimit_state rs;
 637	struct mutex lock;
 638	char buf[CONSOLE_EXT_LOG_MAX];
 639
 640	struct printk_info info;
 641	char text_buf[CONSOLE_EXT_LOG_MAX];
 642	struct printk_record record;
 643};
 644
 645static __printf(3, 4) __cold
 646int devkmsg_emit(int facility, int level, const char *fmt, ...)
 647{
 648	va_list args;
 649	int r;
 650
 651	va_start(args, fmt);
 652	r = vprintk_emit(facility, level, NULL, fmt, args);
 653	va_end(args);
 654
 655	return r;
 656}
 657
 658static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 659{
 660	char *buf, *line;
 661	int level = default_message_loglevel;
 662	int facility = 1;	/* LOG_USER */
 663	struct file *file = iocb->ki_filp;
 664	struct devkmsg_user *user = file->private_data;
 665	size_t len = iov_iter_count(from);
 666	ssize_t ret = len;
 667
 668	if (!user || len > LOG_LINE_MAX)
 669		return -EINVAL;
 670
 671	/* Ignore when user logging is disabled. */
 672	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 673		return len;
 674
 675	/* Ratelimit when not explicitly enabled. */
 676	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 677		if (!___ratelimit(&user->rs, current->comm))
 678			return ret;
 679	}
 680
 681	buf = kmalloc(len+1, GFP_KERNEL);
 682	if (buf == NULL)
 683		return -ENOMEM;
 684
 685	buf[len] = '\0';
 686	if (!copy_from_iter_full(buf, len, from)) {
 687		kfree(buf);
 688		return -EFAULT;
 689	}
 690
 691	/*
 692	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 693	 * the decimal value represents 32bit, the lower 3 bit are the log
 694	 * level, the rest are the log facility.
 695	 *
 696	 * If no prefix or no userspace facility is specified, we
 697	 * enforce LOG_USER, to be able to reliably distinguish
 698	 * kernel-generated messages from userspace-injected ones.
 699	 */
 700	line = buf;
 701	if (line[0] == '<') {
 702		char *endp = NULL;
 703		unsigned int u;
 704
 705		u = simple_strtoul(line + 1, &endp, 10);
 706		if (endp && endp[0] == '>') {
 707			level = LOG_LEVEL(u);
 708			if (LOG_FACILITY(u) != 0)
 709				facility = LOG_FACILITY(u);
 710			endp++;
 
 711			line = endp;
 712		}
 713	}
 714
 715	devkmsg_emit(facility, level, "%s", line);
 716	kfree(buf);
 717	return ret;
 718}
 719
 720static ssize_t devkmsg_read(struct file *file, char __user *buf,
 721			    size_t count, loff_t *ppos)
 722{
 723	struct devkmsg_user *user = file->private_data;
 724	struct printk_record *r = &user->record;
 725	size_t len;
 726	ssize_t ret;
 727
 728	if (!user)
 729		return -EBADF;
 730
 731	ret = mutex_lock_interruptible(&user->lock);
 732	if (ret)
 733		return ret;
 734
 735	printk_safe_enter_irq();
 736	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
 737		if (file->f_flags & O_NONBLOCK) {
 738			ret = -EAGAIN;
 739			printk_safe_exit_irq();
 740			goto out;
 741		}
 742
 743		printk_safe_exit_irq();
 744		ret = wait_event_interruptible(log_wait,
 745				prb_read_valid(prb, atomic64_read(&user->seq), r));
 746		if (ret)
 747			goto out;
 748		printk_safe_enter_irq();
 749	}
 750
 751	if (r->info->seq != atomic64_read(&user->seq)) {
 752		/* our last seen message is gone, return error and reset */
 753		atomic64_set(&user->seq, r->info->seq);
 
 754		ret = -EPIPE;
 755		printk_safe_exit_irq();
 756		goto out;
 757	}
 758
 759	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
 
 
 760	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 761				  &r->text_buf[0], r->info->text_len,
 762				  &r->info->dev_info);
 763
 764	atomic64_set(&user->seq, r->info->seq + 1);
 765	printk_safe_exit_irq();
 
 766
 767	if (len > count) {
 768		ret = -EINVAL;
 769		goto out;
 770	}
 771
 772	if (copy_to_user(buf, user->buf, len)) {
 773		ret = -EFAULT;
 774		goto out;
 775	}
 776	ret = len;
 777out:
 778	mutex_unlock(&user->lock);
 779	return ret;
 780}
 781
 782/*
 783 * Be careful when modifying this function!!!
 784 *
 785 * Only few operations are supported because the device works only with the
 786 * entire variable length messages (records). Non-standard values are
 787 * returned in the other cases and has been this way for quite some time.
 788 * User space applications might depend on this behavior.
 789 */
 790static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 791{
 792	struct devkmsg_user *user = file->private_data;
 793	loff_t ret = 0;
 794
 795	if (!user)
 796		return -EBADF;
 797	if (offset)
 798		return -ESPIPE;
 799
 800	printk_safe_enter_irq();
 801	switch (whence) {
 802	case SEEK_SET:
 803		/* the first record */
 804		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 805		break;
 806	case SEEK_DATA:
 807		/*
 808		 * The first record after the last SYSLOG_ACTION_CLEAR,
 809		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 810		 * changes no global state, and does not clear anything.
 811		 */
 812		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 
 813		break;
 814	case SEEK_END:
 815		/* after the last record */
 816		atomic64_set(&user->seq, prb_next_seq(prb));
 
 817		break;
 818	default:
 819		ret = -EINVAL;
 820	}
 821	printk_safe_exit_irq();
 822	return ret;
 823}
 824
 825static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 826{
 827	struct devkmsg_user *user = file->private_data;
 828	struct printk_info info;
 829	__poll_t ret = 0;
 830
 831	if (!user)
 832		return EPOLLERR|EPOLLNVAL;
 833
 834	poll_wait(file, &log_wait, wait);
 835
 836	printk_safe_enter_irq();
 837	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 838		/* return error when data has vanished underneath us */
 839		if (info.seq != atomic64_read(&user->seq))
 840			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 841		else
 842			ret = EPOLLIN|EPOLLRDNORM;
 843	}
 844	printk_safe_exit_irq();
 845
 846	return ret;
 847}
 848
 849static int devkmsg_open(struct inode *inode, struct file *file)
 850{
 851	struct devkmsg_user *user;
 852	int err;
 853
 854	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 855		return -EPERM;
 856
 857	/* write-only does not need any file context */
 858	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 859		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 860					       SYSLOG_FROM_READER);
 861		if (err)
 862			return err;
 863	}
 864
 865	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 866	if (!user)
 867		return -ENOMEM;
 868
 869	ratelimit_default_init(&user->rs);
 870	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 871
 872	mutex_init(&user->lock);
 873
 874	prb_rec_init_rd(&user->record, &user->info,
 875			&user->text_buf[0], sizeof(user->text_buf));
 876
 877	printk_safe_enter_irq();
 878	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 879	printk_safe_exit_irq();
 880
 881	file->private_data = user;
 882	return 0;
 883}
 884
 885static int devkmsg_release(struct inode *inode, struct file *file)
 886{
 887	struct devkmsg_user *user = file->private_data;
 888
 889	if (!user)
 890		return 0;
 891
 892	ratelimit_state_exit(&user->rs);
 893
 894	mutex_destroy(&user->lock);
 895	kfree(user);
 896	return 0;
 897}
 898
 899const struct file_operations kmsg_fops = {
 900	.open = devkmsg_open,
 901	.read = devkmsg_read,
 902	.write_iter = devkmsg_write,
 903	.llseek = devkmsg_llseek,
 904	.poll = devkmsg_poll,
 905	.release = devkmsg_release,
 906};
 907
 908#ifdef CONFIG_CRASH_CORE
 909/*
 910 * This appends the listed symbols to /proc/vmcore
 911 *
 912 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 913 * obtain access to symbols that are otherwise very difficult to locate.  These
 914 * symbols are specifically used so that utilities can access and extract the
 915 * dmesg log from a vmcore file after a crash.
 916 */
 917void log_buf_vmcoreinfo_setup(void)
 918{
 919	struct dev_printk_info *dev_info = NULL;
 920
 921	VMCOREINFO_SYMBOL(prb);
 922	VMCOREINFO_SYMBOL(printk_rb_static);
 923	VMCOREINFO_SYMBOL(clear_seq);
 924
 925	/*
 926	 * Export struct size and field offsets. User space tools can
 927	 * parse it and detect any changes to structure down the line.
 928	 */
 929
 930	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 931	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 932	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 933	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 934
 935	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 936	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 937	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 938	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 939	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 940	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 941
 942	VMCOREINFO_STRUCT_SIZE(prb_desc);
 943	VMCOREINFO_OFFSET(prb_desc, state_var);
 944	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 945
 946	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 947	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 948	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 949
 950	VMCOREINFO_STRUCT_SIZE(printk_info);
 951	VMCOREINFO_OFFSET(printk_info, seq);
 952	VMCOREINFO_OFFSET(printk_info, ts_nsec);
 953	VMCOREINFO_OFFSET(printk_info, text_len);
 954	VMCOREINFO_OFFSET(printk_info, caller_id);
 955	VMCOREINFO_OFFSET(printk_info, dev_info);
 956
 957	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
 958	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
 959	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
 960	VMCOREINFO_OFFSET(dev_printk_info, device);
 961	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
 962
 963	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
 964	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
 965	VMCOREINFO_OFFSET(prb_data_ring, data);
 966	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
 967	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
 968
 969	VMCOREINFO_SIZE(atomic_long_t);
 970	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
 971
 972	VMCOREINFO_STRUCT_SIZE(latched_seq);
 973	VMCOREINFO_OFFSET(latched_seq, val);
 974}
 975#endif
 976
 977/* requested log_buf_len from kernel cmdline */
 978static unsigned long __initdata new_log_buf_len;
 979
 980/* we practice scaling the ring buffer by powers of 2 */
 981static void __init log_buf_len_update(u64 size)
 982{
 983	if (size > (u64)LOG_BUF_LEN_MAX) {
 984		size = (u64)LOG_BUF_LEN_MAX;
 985		pr_err("log_buf over 2G is not supported.\n");
 986	}
 987
 988	if (size)
 989		size = roundup_pow_of_two(size);
 990	if (size > log_buf_len)
 991		new_log_buf_len = (unsigned long)size;
 992}
 993
 994/* save requested log_buf_len since it's too early to process it */
 995static int __init log_buf_len_setup(char *str)
 996{
 997	u64 size;
 998
 999	if (!str)
1000		return -EINVAL;
1001
1002	size = memparse(str, &str);
1003
1004	log_buf_len_update(size);
1005
1006	return 0;
1007}
1008early_param("log_buf_len", log_buf_len_setup);
1009
1010#ifdef CONFIG_SMP
1011#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1012
1013static void __init log_buf_add_cpu(void)
1014{
1015	unsigned int cpu_extra;
1016
1017	/*
1018	 * archs should set up cpu_possible_bits properly with
1019	 * set_cpu_possible() after setup_arch() but just in
1020	 * case lets ensure this is valid.
1021	 */
1022	if (num_possible_cpus() == 1)
1023		return;
1024
1025	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1026
1027	/* by default this will only continue through for large > 64 CPUs */
1028	if (cpu_extra <= __LOG_BUF_LEN / 2)
1029		return;
1030
1031	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1032		__LOG_CPU_MAX_BUF_LEN);
1033	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1034		cpu_extra);
1035	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1036
1037	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1038}
1039#else /* !CONFIG_SMP */
1040static inline void log_buf_add_cpu(void) {}
1041#endif /* CONFIG_SMP */
1042
1043static void __init set_percpu_data_ready(void)
1044{
1045	printk_safe_init();
1046	/* Make sure we set this flag only after printk_safe() init is done */
1047	barrier();
1048	__printk_percpu_data_ready = true;
1049}
1050
1051static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052				     struct printk_record *r)
1053{
1054	struct prb_reserved_entry e;
1055	struct printk_record dest_r;
1056
1057	prb_rec_init_wr(&dest_r, r->info->text_len);
1058
1059	if (!prb_reserve(&e, rb, &dest_r))
1060		return 0;
1061
1062	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063	dest_r.info->text_len = r->info->text_len;
1064	dest_r.info->facility = r->info->facility;
1065	dest_r.info->level = r->info->level;
1066	dest_r.info->flags = r->info->flags;
1067	dest_r.info->ts_nsec = r->info->ts_nsec;
1068	dest_r.info->caller_id = r->info->caller_id;
1069	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070
1071	prb_final_commit(&e);
1072
1073	return prb_record_text_space(&e);
1074}
1075
1076static char setup_text_buf[LOG_LINE_MAX] __initdata;
1077
1078void __init setup_log_buf(int early)
1079{
1080	struct printk_info *new_infos;
1081	unsigned int new_descs_count;
1082	struct prb_desc *new_descs;
1083	struct printk_info info;
1084	struct printk_record r;
1085	size_t new_descs_size;
1086	size_t new_infos_size;
1087	unsigned long flags;
1088	char *new_log_buf;
1089	unsigned int free;
1090	u64 seq;
1091
1092	/*
1093	 * Some archs call setup_log_buf() multiple times - first is very
1094	 * early, e.g. from setup_arch(), and second - when percpu_areas
1095	 * are initialised.
1096	 */
1097	if (!early)
1098		set_percpu_data_ready();
1099
1100	if (log_buf != __log_buf)
1101		return;
1102
1103	if (!early && !new_log_buf_len)
1104		log_buf_add_cpu();
1105
1106	if (!new_log_buf_len)
1107		return;
1108
1109	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1110	if (new_descs_count == 0) {
1111		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1112		return;
 
 
1113	}
1114
1115	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1116	if (unlikely(!new_log_buf)) {
1117		pr_err("log_buf_len: %lu text bytes not available\n",
1118		       new_log_buf_len);
1119		return;
1120	}
1121
1122	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1123	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1124	if (unlikely(!new_descs)) {
1125		pr_err("log_buf_len: %zu desc bytes not available\n",
1126		       new_descs_size);
1127		goto err_free_log_buf;
1128	}
1129
1130	new_infos_size = new_descs_count * sizeof(struct printk_info);
1131	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1132	if (unlikely(!new_infos)) {
1133		pr_err("log_buf_len: %zu info bytes not available\n",
1134		       new_infos_size);
1135		goto err_free_descs;
1136	}
1137
1138	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1139
1140	prb_init(&printk_rb_dynamic,
1141		 new_log_buf, ilog2(new_log_buf_len),
1142		 new_descs, ilog2(new_descs_count),
1143		 new_infos);
1144
1145	printk_safe_enter_irqsave(flags);
1146
1147	log_buf_len = new_log_buf_len;
1148	log_buf = new_log_buf;
1149	new_log_buf_len = 0;
 
 
 
1150
1151	free = __LOG_BUF_LEN;
1152	prb_for_each_record(0, &printk_rb_static, seq, &r)
1153		free -= add_to_rb(&printk_rb_dynamic, &r);
1154
1155	/*
1156	 * This is early enough that everything is still running on the
1157	 * boot CPU and interrupts are disabled. So no new messages will
1158	 * appear during the transition to the dynamic buffer.
1159	 */
1160	prb = &printk_rb_dynamic;
1161
1162	printk_safe_exit_irqrestore(flags);
1163
1164	if (seq != prb_next_seq(&printk_rb_static)) {
1165		pr_err("dropped %llu messages\n",
1166		       prb_next_seq(&printk_rb_static) - seq);
1167	}
1168
1169	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170	pr_info("early log buf free: %u(%u%%)\n",
1171		free, (free * 100) / __LOG_BUF_LEN);
1172	return;
1173
1174err_free_descs:
1175	memblock_free(__pa(new_descs), new_descs_size);
1176err_free_log_buf:
1177	memblock_free(__pa(new_log_buf), new_log_buf_len);
1178}
1179
1180static bool __read_mostly ignore_loglevel;
1181
1182static int __init ignore_loglevel_setup(char *str)
1183{
1184	ignore_loglevel = true;
1185	pr_info("debug: ignoring loglevel setting.\n");
1186
1187	return 0;
1188}
1189
1190early_param("ignore_loglevel", ignore_loglevel_setup);
1191module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1192MODULE_PARM_DESC(ignore_loglevel,
1193		 "ignore loglevel setting (prints all kernel messages to the console)");
1194
1195static bool suppress_message_printing(int level)
1196{
1197	return (level >= console_loglevel && !ignore_loglevel);
1198}
1199
1200#ifdef CONFIG_BOOT_PRINTK_DELAY
1201
1202static int boot_delay; /* msecs delay after each printk during bootup */
1203static unsigned long long loops_per_msec;	/* based on boot_delay */
1204
1205static int __init boot_delay_setup(char *str)
1206{
1207	unsigned long lpj;
1208
1209	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1210	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1211
1212	get_option(&str, &boot_delay);
1213	if (boot_delay > 10 * 1000)
1214		boot_delay = 0;
1215
1216	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1217		"HZ: %d, loops_per_msec: %llu\n",
1218		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1219	return 0;
1220}
1221early_param("boot_delay", boot_delay_setup);
1222
1223static void boot_delay_msec(int level)
1224{
1225	unsigned long long k;
1226	unsigned long timeout;
1227
1228	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1229		|| suppress_message_printing(level)) {
1230		return;
1231	}
1232
1233	k = (unsigned long long)loops_per_msec * boot_delay;
1234
1235	timeout = jiffies + msecs_to_jiffies(boot_delay);
1236	while (k) {
1237		k--;
1238		cpu_relax();
1239		/*
1240		 * use (volatile) jiffies to prevent
1241		 * compiler reduction; loop termination via jiffies
1242		 * is secondary and may or may not happen.
1243		 */
1244		if (time_after(jiffies, timeout))
1245			break;
1246		touch_nmi_watchdog();
1247	}
1248}
1249#else
1250static inline void boot_delay_msec(int level)
1251{
1252}
1253#endif
1254
1255static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1256module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1257
1258static size_t print_syslog(unsigned int level, char *buf)
1259{
1260	return sprintf(buf, "<%u>", level);
1261}
1262
1263static size_t print_time(u64 ts, char *buf)
1264{
1265	unsigned long rem_nsec = do_div(ts, 1000000000);
1266
1267	return sprintf(buf, "[%5lu.%06lu]",
1268		       (unsigned long)ts, rem_nsec / 1000);
1269}
1270
1271#ifdef CONFIG_PRINTK_CALLER
1272static size_t print_caller(u32 id, char *buf)
1273{
1274	char caller[12];
1275
1276	snprintf(caller, sizeof(caller), "%c%u",
1277		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1278	return sprintf(buf, "[%6s]", caller);
1279}
1280#else
1281#define print_caller(id, buf) 0
1282#endif
1283
1284static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1285				bool time, char *buf)
1286{
1287	size_t len = 0;
 
1288
1289	if (syslog)
1290		len = print_syslog((info->facility << 3) | info->level, buf);
1291
1292	if (time)
1293		len += print_time(info->ts_nsec, buf + len);
1294
1295	len += print_caller(info->caller_id, buf + len);
1296
1297	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1298		buf[len++] = ' ';
1299		buf[len] = '\0';
 
1300	}
1301
 
1302	return len;
1303}
1304
1305/*
1306 * Prepare the record for printing. The text is shifted within the given
1307 * buffer to avoid a need for another one. The following operations are
1308 * done:
1309 *
1310 *   - Add prefix for each line.
1311 *   - Drop truncated lines that no longer fit into the buffer.
1312 *   - Add the trailing newline that has been removed in vprintk_store().
1313 *   - Add a string terminator.
1314 *
1315 * Since the produced string is always terminated, the maximum possible
1316 * return value is @r->text_buf_size - 1;
1317 *
1318 * Return: The length of the updated/prepared text, including the added
1319 * prefixes and the newline. The terminator is not counted. The dropped
1320 * line(s) are not counted.
1321 */
1322static size_t record_print_text(struct printk_record *r, bool syslog,
1323				bool time)
1324{
1325	size_t text_len = r->info->text_len;
1326	size_t buf_size = r->text_buf_size;
1327	char *text = r->text_buf;
1328	char prefix[PREFIX_MAX];
1329	bool truncated = false;
1330	size_t prefix_len;
1331	size_t line_len;
1332	size_t len = 0;
1333	char *next;
1334
1335	/*
1336	 * If the message was truncated because the buffer was not large
1337	 * enough, treat the available text as if it were the full text.
1338	 */
1339	if (text_len > buf_size)
1340		text_len = buf_size;
1341
1342	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1343
1344	/*
1345	 * @text_len: bytes of unprocessed text
1346	 * @line_len: bytes of current line _without_ newline
1347	 * @text:     pointer to beginning of current line
1348	 * @len:      number of bytes prepared in r->text_buf
1349	 */
1350	for (;;) {
1351		next = memchr(text, '\n', text_len);
1352		if (next) {
1353			line_len = next - text;
 
 
1354		} else {
1355			/* Drop truncated line(s). */
1356			if (truncated)
1357				break;
1358			line_len = text_len;
1359		}
1360
1361		/*
1362		 * Truncate the text if there is not enough space to add the
1363		 * prefix and a trailing newline and a terminator.
1364		 */
1365		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1366			/* Drop even the current line if no space. */
1367			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1368				break;
1369
1370			text_len = buf_size - len - prefix_len - 1 - 1;
1371			truncated = true;
 
 
 
 
 
 
 
1372		}
1373
1374		memmove(text + prefix_len, text, text_len);
1375		memcpy(text, prefix, prefix_len);
1376
1377		/*
1378		 * Increment the prepared length to include the text and
1379		 * prefix that were just moved+copied. Also increment for the
1380		 * newline at the end of this line. If this is the last line,
1381		 * there is no newline, but it will be added immediately below.
1382		 */
1383		len += prefix_len + line_len + 1;
1384		if (text_len == line_len) {
1385			/*
1386			 * This is the last line. Add the trailing newline
1387			 * removed in vprintk_store().
1388			 */
1389			text[prefix_len + line_len] = '\n';
1390			break;
1391		}
1392
1393		/*
1394		 * Advance beyond the added prefix and the related line with
1395		 * its newline.
1396		 */
1397		text += prefix_len + line_len + 1;
1398
1399		/*
1400		 * The remaining text has only decreased by the line with its
1401		 * newline.
1402		 *
1403		 * Note that @text_len can become zero. It happens when @text
1404		 * ended with a newline (either due to truncation or the
1405		 * original string ending with "\n\n"). The loop is correctly
1406		 * repeated and (if not truncated) an empty line with a prefix
1407		 * will be prepared.
1408		 */
1409		text_len -= line_len + 1;
1410	}
1411
1412	/*
1413	 * If a buffer was provided, it will be terminated. Space for the
1414	 * string terminator is guaranteed to be available. The terminator is
1415	 * not counted in the return value.
1416	 */
1417	if (buf_size > 0)
1418		r->text_buf[len] = 0;
1419
1420	return len;
1421}
1422
1423static size_t get_record_print_text_size(struct printk_info *info,
1424					 unsigned int line_count,
1425					 bool syslog, bool time)
1426{
1427	char prefix[PREFIX_MAX];
1428	size_t prefix_len;
1429
1430	prefix_len = info_print_prefix(info, syslog, time, prefix);
1431
1432	/*
1433	 * Each line will be preceded with a prefix. The intermediate
1434	 * newlines are already within the text, but a final trailing
1435	 * newline will be added.
1436	 */
1437	return ((prefix_len * line_count) + info->text_len + 1);
1438}
1439
1440/*
1441 * Beginning with @start_seq, find the first record where it and all following
1442 * records up to (but not including) @max_seq fit into @size.
1443 *
1444 * @max_seq is simply an upper bound and does not need to exist. If the caller
1445 * does not require an upper bound, -1 can be used for @max_seq.
1446 */
1447static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1448				  bool syslog, bool time)
1449{
1450	struct printk_info info;
1451	unsigned int line_count;
1452	size_t len = 0;
1453	u64 seq;
1454
1455	/* Determine the size of the records up to @max_seq. */
1456	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1457		if (info.seq >= max_seq)
1458			break;
1459		len += get_record_print_text_size(&info, line_count, syslog, time);
1460	}
1461
1462	/*
1463	 * Adjust the upper bound for the next loop to avoid subtracting
1464	 * lengths that were never added.
1465	 */
1466	if (seq < max_seq)
1467		max_seq = seq;
1468
1469	/*
1470	 * Move first record forward until length fits into the buffer. Ignore
1471	 * newest messages that were not counted in the above cycle. Messages
1472	 * might appear and get lost in the meantime. This is a best effort
1473	 * that prevents an infinite loop that could occur with a retry.
1474	 */
1475	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476		if (len <= size || info.seq >= max_seq)
1477			break;
1478		len -= get_record_print_text_size(&info, line_count, syslog, time);
1479	}
1480
1481	return seq;
1482}
1483
1484static int syslog_print(char __user *buf, int size)
1485{
1486	struct printk_info info;
1487	struct printk_record r;
1488	char *text;
 
1489	int len = 0;
1490
1491	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1492	if (!text)
1493		return -ENOMEM;
1494
1495	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1496
1497	while (size > 0) {
1498		size_t n;
1499		size_t skip;
1500
1501		printk_safe_enter_irq();
1502		raw_spin_lock(&syslog_lock);
1503		if (!prb_read_valid(prb, syslog_seq, &r)) {
1504			raw_spin_unlock(&syslog_lock);
1505			printk_safe_exit_irq();
 
 
 
 
1506			break;
1507		}
1508		if (r.info->seq != syslog_seq) {
1509			/* message is gone, move to next valid one */
1510			syslog_seq = r.info->seq;
1511			syslog_partial = 0;
1512		}
1513
1514		/*
1515		 * To keep reading/counting partial line consistent,
1516		 * use printk_time value as of the beginning of a line.
1517		 */
1518		if (!syslog_partial)
1519			syslog_time = printk_time;
1520
1521		skip = syslog_partial;
1522		n = record_print_text(&r, true, syslog_time);
 
1523		if (n - syslog_partial <= size) {
1524			/* message fits into buffer, move forward */
1525			syslog_seq = r.info->seq + 1;
 
1526			n -= syslog_partial;
1527			syslog_partial = 0;
1528		} else if (!len){
1529			/* partial read(), remember position */
1530			n = size;
1531			syslog_partial += n;
1532		} else
1533			n = 0;
1534		raw_spin_unlock(&syslog_lock);
1535		printk_safe_exit_irq();
1536
1537		if (!n)
1538			break;
1539
1540		if (copy_to_user(buf, text + skip, n)) {
1541			if (!len)
1542				len = -EFAULT;
1543			break;
1544		}
1545
1546		len += n;
1547		size -= n;
1548		buf += n;
1549	}
1550
1551	kfree(text);
1552	return len;
1553}
1554
1555static int syslog_print_all(char __user *buf, int size, bool clear)
1556{
1557	struct printk_info info;
1558	struct printk_record r;
1559	char *text;
1560	int len = 0;
1561	u64 seq;
1562	bool time;
1563
1564	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1565	if (!text)
1566		return -ENOMEM;
1567
1568	time = printk_time;
1569	printk_safe_enter_irq();
1570	/*
1571	 * Find first record that fits, including all following records,
1572	 * into the user-provided buffer for this dump.
1573	 */
1574	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1575				     size, true, time);
1576
1577	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	len = 0;
1580	prb_for_each_record(seq, prb, seq, &r) {
1581		int textlen;
1582
1583		textlen = record_print_text(&r, true, time);
1584
1585		if (len + textlen > size) {
1586			seq--;
1587			break;
 
 
 
1588		}
1589
1590		printk_safe_exit_irq();
1591		if (copy_to_user(buf + len, text, textlen))
1592			len = -EFAULT;
1593		else
1594			len += textlen;
1595		printk_safe_enter_irq();
1596
1597		if (len < 0)
1598			break;
1599	}
1600
1601	if (clear) {
1602		raw_spin_lock(&syslog_lock);
1603		latched_seq_write(&clear_seq, seq);
1604		raw_spin_unlock(&syslog_lock);
1605	}
1606	printk_safe_exit_irq();
1607
1608	kfree(text);
1609	return len;
1610}
1611
1612static void syslog_clear(void)
1613{
1614	printk_safe_enter_irq();
1615	raw_spin_lock(&syslog_lock);
1616	latched_seq_write(&clear_seq, prb_next_seq(prb));
1617	raw_spin_unlock(&syslog_lock);
1618	printk_safe_exit_irq();
1619}
1620
1621/* Return a consistent copy of @syslog_seq. */
1622static u64 read_syslog_seq_irq(void)
1623{
1624	u64 seq;
1625
1626	raw_spin_lock_irq(&syslog_lock);
1627	seq = syslog_seq;
1628	raw_spin_unlock_irq(&syslog_lock);
1629
1630	return seq;
1631}
1632
1633int do_syslog(int type, char __user *buf, int len, int source)
1634{
1635	struct printk_info info;
1636	bool clear = false;
1637	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1638	int error;
1639
1640	error = check_syslog_permissions(type, source);
1641	if (error)
1642		return error;
1643
1644	switch (type) {
1645	case SYSLOG_ACTION_CLOSE:	/* Close log */
1646		break;
1647	case SYSLOG_ACTION_OPEN:	/* Open log */
1648		break;
1649	case SYSLOG_ACTION_READ:	/* Read from log */
1650		if (!buf || len < 0)
1651			return -EINVAL;
1652		if (!len)
1653			return 0;
1654		if (!access_ok(buf, len))
1655			return -EFAULT;
1656
1657		error = wait_event_interruptible(log_wait,
1658				prb_read_valid(prb, read_syslog_seq_irq(), NULL));
1659		if (error)
1660			return error;
1661		error = syslog_print(buf, len);
1662		break;
1663	/* Read/clear last kernel messages */
1664	case SYSLOG_ACTION_READ_CLEAR:
1665		clear = true;
1666		fallthrough;
1667	/* Read last kernel messages */
1668	case SYSLOG_ACTION_READ_ALL:
1669		if (!buf || len < 0)
1670			return -EINVAL;
1671		if (!len)
1672			return 0;
1673		if (!access_ok(buf, len))
1674			return -EFAULT;
1675		error = syslog_print_all(buf, len, clear);
1676		break;
1677	/* Clear ring buffer */
1678	case SYSLOG_ACTION_CLEAR:
1679		syslog_clear();
1680		break;
1681	/* Disable logging to console */
1682	case SYSLOG_ACTION_CONSOLE_OFF:
1683		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1684			saved_console_loglevel = console_loglevel;
1685		console_loglevel = minimum_console_loglevel;
1686		break;
1687	/* Enable logging to console */
1688	case SYSLOG_ACTION_CONSOLE_ON:
1689		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1690			console_loglevel = saved_console_loglevel;
1691			saved_console_loglevel = LOGLEVEL_DEFAULT;
1692		}
1693		break;
1694	/* Set level of messages printed to console */
1695	case SYSLOG_ACTION_CONSOLE_LEVEL:
1696		if (len < 1 || len > 8)
1697			return -EINVAL;
1698		if (len < minimum_console_loglevel)
1699			len = minimum_console_loglevel;
1700		console_loglevel = len;
1701		/* Implicitly re-enable logging to console */
1702		saved_console_loglevel = LOGLEVEL_DEFAULT;
1703		break;
1704	/* Number of chars in the log buffer */
1705	case SYSLOG_ACTION_SIZE_UNREAD:
1706		printk_safe_enter_irq();
1707		raw_spin_lock(&syslog_lock);
1708		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1709			/* No unread messages. */
1710			raw_spin_unlock(&syslog_lock);
1711			printk_safe_exit_irq();
1712			return 0;
1713		}
1714		if (info.seq != syslog_seq) {
1715			/* messages are gone, move to first one */
1716			syslog_seq = info.seq;
 
1717			syslog_partial = 0;
1718		}
1719		if (source == SYSLOG_FROM_PROC) {
1720			/*
1721			 * Short-cut for poll(/"proc/kmsg") which simply checks
1722			 * for pending data, not the size; return the count of
1723			 * records, not the length.
1724			 */
1725			error = prb_next_seq(prb) - syslog_seq;
1726		} else {
1727			bool time = syslog_partial ? syslog_time : printk_time;
1728			unsigned int line_count;
1729			u64 seq;
1730
1731			prb_for_each_info(syslog_seq, prb, seq, &info,
1732					  &line_count) {
1733				error += get_record_print_text_size(&info, line_count,
1734								    true, time);
1735				time = printk_time;
1736			}
1737			error -= syslog_partial;
1738		}
1739		raw_spin_unlock(&syslog_lock);
1740		printk_safe_exit_irq();
1741		break;
1742	/* Size of the log buffer */
1743	case SYSLOG_ACTION_SIZE_BUFFER:
1744		error = log_buf_len;
1745		break;
1746	default:
1747		error = -EINVAL;
1748		break;
1749	}
1750
1751	return error;
1752}
1753
1754SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1755{
1756	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1757}
1758
1759/*
1760 * Special console_lock variants that help to reduce the risk of soft-lockups.
1761 * They allow to pass console_lock to another printk() call using a busy wait.
1762 */
1763
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map console_owner_dep_map = {
1766	.name = "console_owner"
1767};
1768#endif
1769
1770static DEFINE_RAW_SPINLOCK(console_owner_lock);
1771static struct task_struct *console_owner;
1772static bool console_waiter;
1773
1774/**
1775 * console_lock_spinning_enable - mark beginning of code where another
1776 *	thread might safely busy wait
1777 *
1778 * This basically converts console_lock into a spinlock. This marks
1779 * the section where the console_lock owner can not sleep, because
1780 * there may be a waiter spinning (like a spinlock). Also it must be
1781 * ready to hand over the lock at the end of the section.
1782 */
1783static void console_lock_spinning_enable(void)
1784{
1785	raw_spin_lock(&console_owner_lock);
1786	console_owner = current;
1787	raw_spin_unlock(&console_owner_lock);
1788
1789	/* The waiter may spin on us after setting console_owner */
1790	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1791}
1792
1793/**
1794 * console_lock_spinning_disable_and_check - mark end of code where another
1795 *	thread was able to busy wait and check if there is a waiter
1796 *
1797 * This is called at the end of the section where spinning is allowed.
1798 * It has two functions. First, it is a signal that it is no longer
1799 * safe to start busy waiting for the lock. Second, it checks if
1800 * there is a busy waiter and passes the lock rights to her.
1801 *
1802 * Important: Callers lose the lock if there was a busy waiter.
1803 *	They must not touch items synchronized by console_lock
1804 *	in this case.
1805 *
1806 * Return: 1 if the lock rights were passed, 0 otherwise.
1807 */
1808static int console_lock_spinning_disable_and_check(void)
1809{
1810	int waiter;
1811
1812	raw_spin_lock(&console_owner_lock);
1813	waiter = READ_ONCE(console_waiter);
1814	console_owner = NULL;
1815	raw_spin_unlock(&console_owner_lock);
1816
1817	if (!waiter) {
1818		spin_release(&console_owner_dep_map, _THIS_IP_);
1819		return 0;
1820	}
1821
1822	/* The waiter is now free to continue */
1823	WRITE_ONCE(console_waiter, false);
1824
1825	spin_release(&console_owner_dep_map, _THIS_IP_);
1826
1827	/*
1828	 * Hand off console_lock to waiter. The waiter will perform
1829	 * the up(). After this, the waiter is the console_lock owner.
1830	 */
1831	mutex_release(&console_lock_dep_map, _THIS_IP_);
1832	return 1;
1833}
1834
1835/**
1836 * console_trylock_spinning - try to get console_lock by busy waiting
1837 *
1838 * This allows to busy wait for the console_lock when the current
1839 * owner is running in specially marked sections. It means that
1840 * the current owner is running and cannot reschedule until it
1841 * is ready to lose the lock.
1842 *
1843 * Return: 1 if we got the lock, 0 othrewise
1844 */
1845static int console_trylock_spinning(void)
1846{
1847	struct task_struct *owner = NULL;
1848	bool waiter;
1849	bool spin = false;
1850	unsigned long flags;
1851
1852	if (console_trylock())
1853		return 1;
1854
1855	printk_safe_enter_irqsave(flags);
1856
1857	raw_spin_lock(&console_owner_lock);
1858	owner = READ_ONCE(console_owner);
1859	waiter = READ_ONCE(console_waiter);
1860	if (!waiter && owner && owner != current) {
1861		WRITE_ONCE(console_waiter, true);
1862		spin = true;
1863	}
1864	raw_spin_unlock(&console_owner_lock);
1865
1866	/*
1867	 * If there is an active printk() writing to the
1868	 * consoles, instead of having it write our data too,
1869	 * see if we can offload that load from the active
1870	 * printer, and do some printing ourselves.
1871	 * Go into a spin only if there isn't already a waiter
1872	 * spinning, and there is an active printer, and
1873	 * that active printer isn't us (recursive printk?).
1874	 */
1875	if (!spin) {
1876		printk_safe_exit_irqrestore(flags);
1877		return 0;
1878	}
1879
1880	/* We spin waiting for the owner to release us */
1881	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1882	/* Owner will clear console_waiter on hand off */
1883	while (READ_ONCE(console_waiter))
1884		cpu_relax();
1885	spin_release(&console_owner_dep_map, _THIS_IP_);
1886
1887	printk_safe_exit_irqrestore(flags);
1888	/*
1889	 * The owner passed the console lock to us.
1890	 * Since we did not spin on console lock, annotate
1891	 * this as a trylock. Otherwise lockdep will
1892	 * complain.
1893	 */
1894	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1895
1896	return 1;
1897}
1898
1899/*
1900 * Call the console drivers, asking them to write out
1901 * log_buf[start] to log_buf[end - 1].
1902 * The console_lock must be held.
1903 */
1904static void call_console_drivers(const char *ext_text, size_t ext_len,
1905				 const char *text, size_t len)
1906{
1907	static char dropped_text[64];
1908	size_t dropped_len = 0;
1909	struct console *con;
1910
1911	trace_console_rcuidle(text, len);
1912
1913	if (!console_drivers)
1914		return;
1915
1916	if (console_dropped) {
1917		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1918				       "** %lu printk messages dropped **\n",
1919				       console_dropped);
1920		console_dropped = 0;
1921	}
1922
1923	for_each_console(con) {
1924		if (exclusive_console && con != exclusive_console)
1925			continue;
1926		if (!(con->flags & CON_ENABLED))
1927			continue;
1928		if (!con->write)
1929			continue;
1930		if (!cpu_online(smp_processor_id()) &&
1931		    !(con->flags & CON_ANYTIME))
1932			continue;
1933		if (con->flags & CON_EXTENDED)
1934			con->write(con, ext_text, ext_len);
1935		else {
1936			if (dropped_len)
1937				con->write(con, dropped_text, dropped_len);
1938			con->write(con, text, len);
1939		}
1940	}
1941}
1942
1943int printk_delay_msec __read_mostly;
1944
1945static inline void printk_delay(void)
1946{
1947	if (unlikely(printk_delay_msec)) {
1948		int m = printk_delay_msec;
1949
1950		while (m--) {
1951			mdelay(1);
1952			touch_nmi_watchdog();
1953		}
1954	}
1955}
1956
1957static inline u32 printk_caller_id(void)
1958{
1959	return in_task() ? task_pid_nr(current) :
1960		0x80000000 + raw_smp_processor_id();
1961}
 
 
 
 
 
 
 
 
 
 
1962
1963/**
1964 * parse_prefix - Parse level and control flags.
1965 *
1966 * @text:     The terminated text message.
1967 * @level:    A pointer to the current level value, will be updated.
1968 * @lflags:   A pointer to the current log flags, will be updated.
1969 *
1970 * @level may be NULL if the caller is not interested in the parsed value.
1971 * Otherwise the variable pointed to by @level must be set to
1972 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1973 *
1974 * @lflags may be NULL if the caller is not interested in the parsed value.
1975 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1976 * value.
1977 *
1978 * Return: The length of the parsed level and control flags.
1979 */
1980static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1981{
1982	u16 prefix_len = 0;
1983	int kern_level;
1984
1985	while (*text) {
1986		kern_level = printk_get_level(text);
1987		if (!kern_level)
1988			break;
1989
1990		switch (kern_level) {
1991		case '0' ... '7':
1992			if (level && *level == LOGLEVEL_DEFAULT)
1993				*level = kern_level - '0';
1994			break;
1995		case 'c':	/* KERN_CONT */
1996			if (lflags)
1997				*lflags |= LOG_CONT;
1998		}
1999
2000		prefix_len += 2;
2001		text += 2;
2002	}
2003
2004	return prefix_len;
2005}
2006
2007static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
2008			 const char *fmt, va_list args)
2009{
2010	u16 text_len;
 
 
 
 
 
 
 
 
2011
2012	text_len = vscnprintf(text, size, fmt, args);
2013
2014	/* Mark and strip a trailing newline. */
2015	if (text_len && text[text_len - 1] == '\n') {
2016		text_len--;
2017		*lflags |= LOG_NEWLINE;
 
 
 
 
 
 
 
 
 
 
2018	}
2019
2020	/* Strip log level and control flags. */
2021	if (facility == 0) {
2022		u16 prefix_len;
2023
2024		prefix_len = parse_prefix(text, NULL, NULL);
2025		if (prefix_len) {
2026			text_len -= prefix_len;
2027			memmove(text, text + prefix_len, text_len);
2028		}
2029	}
2030
2031	return text_len;
2032}
2033
2034__printf(4, 0)
2035int vprintk_store(int facility, int level,
2036		  const struct dev_printk_info *dev_info,
2037		  const char *fmt, va_list args)
2038{
2039	const u32 caller_id = printk_caller_id();
2040	struct prb_reserved_entry e;
2041	enum log_flags lflags = 0;
2042	struct printk_record r;
2043	u16 trunc_msg_len = 0;
2044	char prefix_buf[8];
2045	u16 reserve_size;
2046	va_list args2;
2047	u16 text_len;
2048	u64 ts_nsec;
2049
2050	/*
2051	 * Since the duration of printk() can vary depending on the message
2052	 * and state of the ringbuffer, grab the timestamp now so that it is
2053	 * close to the call of printk(). This provides a more deterministic
2054	 * timestamp with respect to the caller.
2055	 */
2056	ts_nsec = local_clock();
2057
2058	/*
2059	 * The sprintf needs to come first since the syslog prefix might be
2060	 * passed in as a parameter. An extra byte must be reserved so that
2061	 * later the vscnprintf() into the reserved buffer has room for the
2062	 * terminating '\0', which is not counted by vsnprintf().
2063	 */
2064	va_copy(args2, args);
2065	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2066	va_end(args2);
2067
2068	if (reserve_size > LOG_LINE_MAX)
2069		reserve_size = LOG_LINE_MAX;
2070
2071	/* Extract log level or control flags. */
2072	if (facility == 0)
2073		parse_prefix(&prefix_buf[0], &level, &lflags);
2074
2075	if (level == LOGLEVEL_DEFAULT)
2076		level = default_message_loglevel;
2077
2078	if (dev_info)
2079		lflags |= LOG_NEWLINE;
2080
2081	if (lflags & LOG_CONT) {
2082		prb_rec_init_wr(&r, reserve_size);
2083		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2084			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2085						 facility, &lflags, fmt, args);
2086			r.info->text_len += text_len;
2087
2088			if (lflags & LOG_NEWLINE) {
2089				r.info->flags |= LOG_NEWLINE;
2090				prb_final_commit(&e);
2091			} else {
2092				prb_commit(&e);
2093			}
2094
2095			return text_len;
2096		}
 
 
2097	}
2098
2099	/*
2100	 * Explicitly initialize the record before every prb_reserve() call.
2101	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2102	 * structure when they fail.
2103	 */
2104	prb_rec_init_wr(&r, reserve_size);
2105	if (!prb_reserve(&e, prb, &r)) {
2106		/* truncate the message if it is too long for empty buffer */
2107		truncate_msg(&reserve_size, &trunc_msg_len);
2108
2109		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2110		if (!prb_reserve(&e, prb, &r))
2111			return 0;
 
2112	}
2113
2114	/* fill message */
2115	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2116	if (trunc_msg_len)
2117		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2118	r.info->text_len = text_len + trunc_msg_len;
2119	r.info->facility = facility;
2120	r.info->level = level & 7;
2121	r.info->flags = lflags & 0x1f;
2122	r.info->ts_nsec = ts_nsec;
2123	r.info->caller_id = caller_id;
2124	if (dev_info)
2125		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2126
2127	/* A message without a trailing newline can be continued. */
2128	if (!(lflags & LOG_NEWLINE))
2129		prb_commit(&e);
2130	else
2131		prb_final_commit(&e);
2132
2133	return (text_len + trunc_msg_len);
2134}
2135
2136asmlinkage int vprintk_emit(int facility, int level,
2137			    const struct dev_printk_info *dev_info,
2138			    const char *fmt, va_list args)
2139{
 
 
 
 
 
2140	int printed_len;
2141	bool in_sched = false;
2142	unsigned long flags;
2143
2144	/* Suppress unimportant messages after panic happens */
2145	if (unlikely(suppress_printk))
2146		return 0;
2147
2148	if (level == LOGLEVEL_SCHED) {
2149		level = LOGLEVEL_DEFAULT;
2150		in_sched = true;
2151	}
2152
2153	boot_delay_msec(level);
2154	printk_delay();
2155
2156	printk_safe_enter_irqsave(flags);
2157	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2158	printk_safe_exit_irqrestore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159
2160	/* If called from the scheduler, we can not call up(). */
2161	if (!in_sched) {
2162		/*
2163		 * Disable preemption to avoid being preempted while holding
2164		 * console_sem which would prevent anyone from printing to
2165		 * console
2166		 */
2167		preempt_disable();
2168		/*
2169		 * Try to acquire and then immediately release the console
2170		 * semaphore.  The release will print out buffers and wake up
2171		 * /dev/kmsg and syslog() users.
2172		 */
2173		if (console_trylock_spinning())
2174			console_unlock();
2175		preempt_enable();
2176	}
2177
2178	wake_up_klogd();
2179	return printed_len;
2180}
2181EXPORT_SYMBOL(vprintk_emit);
2182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183int vprintk_default(const char *fmt, va_list args)
2184{
2185	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
 
 
 
 
 
 
 
 
 
 
 
2186}
2187EXPORT_SYMBOL_GPL(vprintk_default);
2188
2189/**
2190 * printk - print a kernel message
2191 * @fmt: format string
2192 *
2193 * This is printk(). It can be called from any context. We want it to work.
2194 *
2195 * We try to grab the console_lock. If we succeed, it's easy - we log the
2196 * output and call the console drivers.  If we fail to get the semaphore, we
2197 * place the output into the log buffer and return. The current holder of
2198 * the console_sem will notice the new output in console_unlock(); and will
2199 * send it to the consoles before releasing the lock.
2200 *
2201 * One effect of this deferred printing is that code which calls printk() and
2202 * then changes console_loglevel may break. This is because console_loglevel
2203 * is inspected when the actual printing occurs.
2204 *
2205 * See also:
2206 * printf(3)
2207 *
2208 * See the vsnprintf() documentation for format string extensions over C99.
2209 */
2210asmlinkage __visible int printk(const char *fmt, ...)
2211{
2212	va_list args;
2213	int r;
2214
2215	va_start(args, fmt);
2216	r = vprintk(fmt, args);
2217	va_end(args);
2218
2219	return r;
2220}
2221EXPORT_SYMBOL(printk);
2222
2223#else /* CONFIG_PRINTK */
2224
2225#define CONSOLE_LOG_MAX		0
2226#define printk_time		false
2227
2228#define prb_read_valid(rb, seq, r)	false
2229#define prb_first_valid_seq(rb)		0
2230
2231static u64 syslog_seq;
 
2232static u64 console_seq;
2233static u64 exclusive_console_stop_seq;
2234static unsigned long console_dropped;
2235
2236static size_t record_print_text(const struct printk_record *r,
2237				bool syslog, bool time)
2238{
2239	return 0;
2240}
2241static ssize_t info_print_ext_header(char *buf, size_t size,
2242				     struct printk_info *info)
2243{
2244	return 0;
2245}
2246static ssize_t msg_print_ext_body(char *buf, size_t size,
2247				  char *text, size_t text_len,
2248				  struct dev_printk_info *dev_info) { return 0; }
2249static void console_lock_spinning_enable(void) { }
2250static int console_lock_spinning_disable_and_check(void) { return 0; }
2251static void call_console_drivers(const char *ext_text, size_t ext_len,
2252				 const char *text, size_t len) {}
 
 
2253static bool suppress_message_printing(int level) { return false; }
2254
2255#endif /* CONFIG_PRINTK */
2256
2257#ifdef CONFIG_EARLY_PRINTK
2258struct console *early_console;
2259
2260asmlinkage __visible void early_printk(const char *fmt, ...)
2261{
2262	va_list ap;
2263	char buf[512];
2264	int n;
2265
2266	if (!early_console)
2267		return;
2268
2269	va_start(ap, fmt);
2270	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2271	va_end(ap);
2272
2273	early_console->write(early_console, buf, n);
2274}
2275#endif
2276
2277static int __add_preferred_console(char *name, int idx, char *options,
2278				   char *brl_options, bool user_specified)
2279{
2280	struct console_cmdline *c;
2281	int i;
2282
2283	/*
2284	 *	See if this tty is not yet registered, and
2285	 *	if we have a slot free.
2286	 */
2287	for (i = 0, c = console_cmdline;
2288	     i < MAX_CMDLINECONSOLES && c->name[0];
2289	     i++, c++) {
2290		if (strcmp(c->name, name) == 0 && c->index == idx) {
2291			if (!brl_options)
2292				preferred_console = i;
2293			if (user_specified)
2294				c->user_specified = true;
2295			return 0;
2296		}
2297	}
2298	if (i == MAX_CMDLINECONSOLES)
2299		return -E2BIG;
2300	if (!brl_options)
2301		preferred_console = i;
2302	strlcpy(c->name, name, sizeof(c->name));
2303	c->options = options;
2304	c->user_specified = user_specified;
2305	braille_set_options(c, brl_options);
2306
2307	c->index = idx;
2308	return 0;
2309}
2310
2311static int __init console_msg_format_setup(char *str)
2312{
2313	if (!strcmp(str, "syslog"))
2314		console_msg_format = MSG_FORMAT_SYSLOG;
2315	if (!strcmp(str, "default"))
2316		console_msg_format = MSG_FORMAT_DEFAULT;
2317	return 1;
2318}
2319__setup("console_msg_format=", console_msg_format_setup);
2320
2321/*
2322 * Set up a console.  Called via do_early_param() in init/main.c
2323 * for each "console=" parameter in the boot command line.
2324 */
2325static int __init console_setup(char *str)
2326{
2327	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2328	char *s, *options, *brl_options = NULL;
2329	int idx;
2330
2331	/*
2332	 * console="" or console=null have been suggested as a way to
2333	 * disable console output. Use ttynull that has been created
2334	 * for exactly this purpose.
2335	 */
2336	if (str[0] == 0 || strcmp(str, "null") == 0) {
2337		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2338		return 1;
2339	}
2340
2341	if (_braille_console_setup(&str, &brl_options))
2342		return 1;
2343
2344	/*
2345	 * Decode str into name, index, options.
2346	 */
2347	if (str[0] >= '0' && str[0] <= '9') {
2348		strcpy(buf, "ttyS");
2349		strncpy(buf + 4, str, sizeof(buf) - 5);
2350	} else {
2351		strncpy(buf, str, sizeof(buf) - 1);
2352	}
2353	buf[sizeof(buf) - 1] = 0;
2354	options = strchr(str, ',');
2355	if (options)
2356		*(options++) = 0;
2357#ifdef __sparc__
2358	if (!strcmp(str, "ttya"))
2359		strcpy(buf, "ttyS0");
2360	if (!strcmp(str, "ttyb"))
2361		strcpy(buf, "ttyS1");
2362#endif
2363	for (s = buf; *s; s++)
2364		if (isdigit(*s) || *s == ',')
2365			break;
2366	idx = simple_strtoul(s, NULL, 10);
2367	*s = 0;
2368
2369	__add_preferred_console(buf, idx, options, brl_options, true);
2370	console_set_on_cmdline = 1;
2371	return 1;
2372}
2373__setup("console=", console_setup);
2374
2375/**
2376 * add_preferred_console - add a device to the list of preferred consoles.
2377 * @name: device name
2378 * @idx: device index
2379 * @options: options for this console
2380 *
2381 * The last preferred console added will be used for kernel messages
2382 * and stdin/out/err for init.  Normally this is used by console_setup
2383 * above to handle user-supplied console arguments; however it can also
2384 * be used by arch-specific code either to override the user or more
2385 * commonly to provide a default console (ie from PROM variables) when
2386 * the user has not supplied one.
2387 */
2388int add_preferred_console(char *name, int idx, char *options)
2389{
2390	return __add_preferred_console(name, idx, options, NULL, false);
2391}
2392
2393bool console_suspend_enabled = true;
2394EXPORT_SYMBOL(console_suspend_enabled);
2395
2396static int __init console_suspend_disable(char *str)
2397{
2398	console_suspend_enabled = false;
2399	return 1;
2400}
2401__setup("no_console_suspend", console_suspend_disable);
2402module_param_named(console_suspend, console_suspend_enabled,
2403		bool, S_IRUGO | S_IWUSR);
2404MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2405	" and hibernate operations");
2406
2407/**
2408 * suspend_console - suspend the console subsystem
2409 *
2410 * This disables printk() while we go into suspend states
2411 */
2412void suspend_console(void)
2413{
2414	if (!console_suspend_enabled)
2415		return;
2416	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2417	console_lock();
2418	console_suspended = 1;
2419	up_console_sem();
2420}
2421
2422void resume_console(void)
2423{
2424	if (!console_suspend_enabled)
2425		return;
2426	down_console_sem();
2427	console_suspended = 0;
2428	console_unlock();
2429}
2430
2431/**
2432 * console_cpu_notify - print deferred console messages after CPU hotplug
2433 * @cpu: unused
2434 *
2435 * If printk() is called from a CPU that is not online yet, the messages
2436 * will be printed on the console only if there are CON_ANYTIME consoles.
2437 * This function is called when a new CPU comes online (or fails to come
2438 * up) or goes offline.
2439 */
2440static int console_cpu_notify(unsigned int cpu)
2441{
2442	if (!cpuhp_tasks_frozen) {
2443		/* If trylock fails, someone else is doing the printing */
2444		if (console_trylock())
2445			console_unlock();
2446	}
2447	return 0;
2448}
2449
2450/**
2451 * console_lock - lock the console system for exclusive use.
2452 *
2453 * Acquires a lock which guarantees that the caller has
2454 * exclusive access to the console system and the console_drivers list.
2455 *
2456 * Can sleep, returns nothing.
2457 */
2458void console_lock(void)
2459{
2460	might_sleep();
2461
2462	down_console_sem();
2463	if (console_suspended)
2464		return;
2465	console_locked = 1;
2466	console_may_schedule = 1;
2467}
2468EXPORT_SYMBOL(console_lock);
2469
2470/**
2471 * console_trylock - try to lock the console system for exclusive use.
2472 *
2473 * Try to acquire a lock which guarantees that the caller has exclusive
2474 * access to the console system and the console_drivers list.
2475 *
2476 * returns 1 on success, and 0 on failure to acquire the lock.
2477 */
2478int console_trylock(void)
2479{
2480	if (down_trylock_console_sem())
2481		return 0;
2482	if (console_suspended) {
2483		up_console_sem();
2484		return 0;
2485	}
2486	console_locked = 1;
2487	console_may_schedule = 0;
2488	return 1;
2489}
2490EXPORT_SYMBOL(console_trylock);
2491
2492int is_console_locked(void)
2493{
2494	return console_locked;
2495}
2496EXPORT_SYMBOL(is_console_locked);
2497
2498/*
2499 * Check if we have any console that is capable of printing while cpu is
2500 * booting or shutting down. Requires console_sem.
2501 */
2502static int have_callable_console(void)
2503{
2504	struct console *con;
2505
2506	for_each_console(con)
2507		if ((con->flags & CON_ENABLED) &&
2508				(con->flags & CON_ANYTIME))
2509			return 1;
2510
2511	return 0;
2512}
2513
2514/*
2515 * Can we actually use the console at this time on this cpu?
2516 *
2517 * Console drivers may assume that per-cpu resources have been allocated. So
2518 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2519 * call them until this CPU is officially up.
2520 */
2521static inline int can_use_console(void)
2522{
2523	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2524}
2525
2526/**
2527 * console_unlock - unlock the console system
2528 *
2529 * Releases the console_lock which the caller holds on the console system
2530 * and the console driver list.
2531 *
2532 * While the console_lock was held, console output may have been buffered
2533 * by printk().  If this is the case, console_unlock(); emits
2534 * the output prior to releasing the lock.
2535 *
2536 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2537 *
2538 * console_unlock(); may be called from any context.
2539 */
2540void console_unlock(void)
2541{
2542	static char ext_text[CONSOLE_EXT_LOG_MAX];
2543	static char text[CONSOLE_LOG_MAX];
 
2544	unsigned long flags;
 
2545	bool do_cond_resched, retry;
2546	struct printk_info info;
2547	struct printk_record r;
2548	u64 __maybe_unused next_seq;
2549
2550	if (console_suspended) {
2551		up_console_sem();
2552		return;
2553	}
2554
2555	prb_rec_init_rd(&r, &info, text, sizeof(text));
2556
2557	/*
2558	 * Console drivers are called with interrupts disabled, so
2559	 * @console_may_schedule should be cleared before; however, we may
2560	 * end up dumping a lot of lines, for example, if called from
2561	 * console registration path, and should invoke cond_resched()
2562	 * between lines if allowable.  Not doing so can cause a very long
2563	 * scheduling stall on a slow console leading to RCU stall and
2564	 * softlockup warnings which exacerbate the issue with more
2565	 * messages practically incapacitating the system.
2566	 *
2567	 * console_trylock() is not able to detect the preemptive
2568	 * context reliably. Therefore the value must be stored before
2569	 * and cleared after the "again" goto label.
2570	 */
2571	do_cond_resched = console_may_schedule;
2572again:
2573	console_may_schedule = 0;
2574
2575	/*
2576	 * We released the console_sem lock, so we need to recheck if
2577	 * cpu is online and (if not) is there at least one CON_ANYTIME
2578	 * console.
2579	 */
2580	if (!can_use_console()) {
2581		console_locked = 0;
2582		up_console_sem();
2583		return;
2584	}
2585
2586	for (;;) {
 
2587		size_t ext_len = 0;
2588		size_t len;
2589
2590		printk_safe_enter_irqsave(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591skip:
2592		if (!prb_read_valid(prb, console_seq, &r))
2593			break;
2594
2595		if (console_seq != r.info->seq) {
2596			console_dropped += r.info->seq - console_seq;
2597			console_seq = r.info->seq;
2598		}
2599
2600		if (suppress_message_printing(r.info->level)) {
2601			/*
2602			 * Skip record we have buffered and already printed
2603			 * directly to the console when we received it, and
2604			 * record that has level above the console loglevel.
2605			 */
 
2606			console_seq++;
2607			goto skip;
2608		}
2609
2610		/* Output to all consoles once old messages replayed. */
2611		if (unlikely(exclusive_console &&
2612			     console_seq >= exclusive_console_stop_seq)) {
2613			exclusive_console = NULL;
2614		}
2615
2616		/*
2617		 * Handle extended console text first because later
2618		 * record_print_text() will modify the record buffer in-place.
2619		 */
2620		if (nr_ext_console_drivers) {
2621			ext_len = info_print_ext_header(ext_text,
2622						sizeof(ext_text),
2623						r.info);
2624			ext_len += msg_print_ext_body(ext_text + ext_len,
2625						sizeof(ext_text) - ext_len,
2626						&r.text_buf[0],
2627						r.info->text_len,
2628						&r.info->dev_info);
2629		}
2630		len = record_print_text(&r,
2631				console_msg_format & MSG_FORMAT_SYSLOG,
2632				printk_time);
2633		console_seq++;
 
2634
2635		/*
2636		 * While actively printing out messages, if another printk()
2637		 * were to occur on another CPU, it may wait for this one to
2638		 * finish. This task can not be preempted if there is a
2639		 * waiter waiting to take over.
2640		 */
2641		console_lock_spinning_enable();
2642
2643		stop_critical_timings();	/* don't trace print latency */
2644		call_console_drivers(ext_text, ext_len, text, len);
2645		start_critical_timings();
2646
2647		if (console_lock_spinning_disable_and_check()) {
2648			printk_safe_exit_irqrestore(flags);
2649			return;
2650		}
2651
2652		printk_safe_exit_irqrestore(flags);
2653
2654		if (do_cond_resched)
2655			cond_resched();
2656	}
2657
2658	/* Get consistent value of the next-to-be-used sequence number. */
2659	next_seq = console_seq;
 
 
 
 
 
2660
2661	console_locked = 0;
2662	up_console_sem();
2663
2664	/*
2665	 * Someone could have filled up the buffer again, so re-check if there's
2666	 * something to flush. In case we cannot trylock the console_sem again,
2667	 * there's a new owner and the console_unlock() from them will do the
2668	 * flush, no worries.
2669	 */
2670	retry = prb_read_valid(prb, next_seq, NULL);
 
 
2671	printk_safe_exit_irqrestore(flags);
2672
2673	if (retry && console_trylock())
2674		goto again;
 
 
 
 
2675}
2676EXPORT_SYMBOL(console_unlock);
2677
2678/**
2679 * console_conditional_schedule - yield the CPU if required
2680 *
2681 * If the console code is currently allowed to sleep, and
2682 * if this CPU should yield the CPU to another task, do
2683 * so here.
2684 *
2685 * Must be called within console_lock();.
2686 */
2687void __sched console_conditional_schedule(void)
2688{
2689	if (console_may_schedule)
2690		cond_resched();
2691}
2692EXPORT_SYMBOL(console_conditional_schedule);
2693
2694void console_unblank(void)
2695{
2696	struct console *c;
2697
2698	/*
2699	 * console_unblank can no longer be called in interrupt context unless
2700	 * oops_in_progress is set to 1..
2701	 */
2702	if (oops_in_progress) {
2703		if (down_trylock_console_sem() != 0)
2704			return;
2705	} else
2706		console_lock();
2707
2708	console_locked = 1;
2709	console_may_schedule = 0;
2710	for_each_console(c)
2711		if ((c->flags & CON_ENABLED) && c->unblank)
2712			c->unblank();
2713	console_unlock();
2714}
2715
2716/**
2717 * console_flush_on_panic - flush console content on panic
2718 * @mode: flush all messages in buffer or just the pending ones
2719 *
2720 * Immediately output all pending messages no matter what.
2721 */
2722void console_flush_on_panic(enum con_flush_mode mode)
2723{
2724	/*
2725	 * If someone else is holding the console lock, trylock will fail
2726	 * and may_schedule may be set.  Ignore and proceed to unlock so
2727	 * that messages are flushed out.  As this can be called from any
2728	 * context and we don't want to get preempted while flushing,
2729	 * ensure may_schedule is cleared.
2730	 */
2731	console_trylock();
2732	console_may_schedule = 0;
2733
2734	if (mode == CONSOLE_REPLAY_ALL) {
2735		unsigned long flags;
2736
2737		printk_safe_enter_irqsave(flags);
2738		console_seq = prb_first_valid_seq(prb);
2739		printk_safe_exit_irqrestore(flags);
2740	}
2741	console_unlock();
2742}
2743
2744/*
2745 * Return the console tty driver structure and its associated index
2746 */
2747struct tty_driver *console_device(int *index)
2748{
2749	struct console *c;
2750	struct tty_driver *driver = NULL;
2751
2752	console_lock();
2753	for_each_console(c) {
2754		if (!c->device)
2755			continue;
2756		driver = c->device(c, index);
2757		if (driver)
2758			break;
2759	}
2760	console_unlock();
2761	return driver;
2762}
2763
2764/*
2765 * Prevent further output on the passed console device so that (for example)
2766 * serial drivers can disable console output before suspending a port, and can
2767 * re-enable output afterwards.
2768 */
2769void console_stop(struct console *console)
2770{
2771	console_lock();
2772	console->flags &= ~CON_ENABLED;
2773	console_unlock();
2774}
2775EXPORT_SYMBOL(console_stop);
2776
2777void console_start(struct console *console)
2778{
2779	console_lock();
2780	console->flags |= CON_ENABLED;
2781	console_unlock();
2782}
2783EXPORT_SYMBOL(console_start);
2784
2785static int __read_mostly keep_bootcon;
2786
2787static int __init keep_bootcon_setup(char *str)
2788{
2789	keep_bootcon = 1;
2790	pr_info("debug: skip boot console de-registration.\n");
2791
2792	return 0;
2793}
2794
2795early_param("keep_bootcon", keep_bootcon_setup);
2796
2797/*
2798 * This is called by register_console() to try to match
2799 * the newly registered console with any of the ones selected
2800 * by either the command line or add_preferred_console() and
2801 * setup/enable it.
2802 *
2803 * Care need to be taken with consoles that are statically
2804 * enabled such as netconsole
2805 */
2806static int try_enable_new_console(struct console *newcon, bool user_specified)
2807{
2808	struct console_cmdline *c;
2809	int i, err;
2810
2811	for (i = 0, c = console_cmdline;
2812	     i < MAX_CMDLINECONSOLES && c->name[0];
2813	     i++, c++) {
2814		if (c->user_specified != user_specified)
2815			continue;
2816		if (!newcon->match ||
2817		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2818			/* default matching */
2819			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2820			if (strcmp(c->name, newcon->name) != 0)
2821				continue;
2822			if (newcon->index >= 0 &&
2823			    newcon->index != c->index)
2824				continue;
2825			if (newcon->index < 0)
2826				newcon->index = c->index;
2827
2828			if (_braille_register_console(newcon, c))
2829				return 0;
2830
2831			if (newcon->setup &&
2832			    (err = newcon->setup(newcon, c->options)) != 0)
2833				return err;
2834		}
2835		newcon->flags |= CON_ENABLED;
2836		if (i == preferred_console) {
2837			newcon->flags |= CON_CONSDEV;
2838			has_preferred_console = true;
2839		}
2840		return 0;
2841	}
2842
2843	/*
2844	 * Some consoles, such as pstore and netconsole, can be enabled even
2845	 * without matching. Accept the pre-enabled consoles only when match()
2846	 * and setup() had a chance to be called.
2847	 */
2848	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2849		return 0;
2850
2851	return -ENOENT;
2852}
2853
2854/*
2855 * The console driver calls this routine during kernel initialization
2856 * to register the console printing procedure with printk() and to
2857 * print any messages that were printed by the kernel before the
2858 * console driver was initialized.
2859 *
2860 * This can happen pretty early during the boot process (because of
2861 * early_printk) - sometimes before setup_arch() completes - be careful
2862 * of what kernel features are used - they may not be initialised yet.
2863 *
2864 * There are two types of consoles - bootconsoles (early_printk) and
2865 * "real" consoles (everything which is not a bootconsole) which are
2866 * handled differently.
2867 *  - Any number of bootconsoles can be registered at any time.
2868 *  - As soon as a "real" console is registered, all bootconsoles
2869 *    will be unregistered automatically.
2870 *  - Once a "real" console is registered, any attempt to register a
2871 *    bootconsoles will be rejected
2872 */
2873void register_console(struct console *newcon)
2874{
 
2875	unsigned long flags;
2876	struct console *bcon = NULL;
2877	int err;
 
2878
2879	for_each_console(bcon) {
2880		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2881					 bcon->name, bcon->index))
2882			return;
2883	}
 
2884
2885	/*
2886	 * before we register a new CON_BOOT console, make sure we don't
2887	 * already have a valid console
2888	 */
2889	if (newcon->flags & CON_BOOT) {
 
2890		for_each_console(bcon) {
2891			if (!(bcon->flags & CON_BOOT)) {
2892				pr_info("Too late to register bootconsole %s%d\n",
2893					newcon->name, newcon->index);
2894				return;
2895			}
2896		}
2897	}
2898
2899	if (console_drivers && console_drivers->flags & CON_BOOT)
2900		bcon = console_drivers;
2901
2902	if (!has_preferred_console || bcon || !console_drivers)
2903		has_preferred_console = preferred_console >= 0;
2904
2905	/*
2906	 *	See if we want to use this console driver. If we
2907	 *	didn't select a console we take the first one
2908	 *	that registers here.
2909	 */
2910	if (!has_preferred_console) {
2911		if (newcon->index < 0)
2912			newcon->index = 0;
2913		if (newcon->setup == NULL ||
2914		    newcon->setup(newcon, NULL) == 0) {
2915			newcon->flags |= CON_ENABLED;
2916			if (newcon->device) {
2917				newcon->flags |= CON_CONSDEV;
2918				has_preferred_console = true;
2919			}
2920		}
2921	}
2922
2923	/* See if this console matches one we selected on the command line */
2924	err = try_enable_new_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925
2926	/* If not, try to match against the platform default(s) */
2927	if (err == -ENOENT)
2928		err = try_enable_new_console(newcon, false);
 
 
 
 
2929
2930	/* printk() messages are not printed to the Braille console. */
2931	if (err || newcon->flags & CON_BRL)
2932		return;
2933
2934	/*
2935	 * If we have a bootconsole, and are switching to a real console,
2936	 * don't print everything out again, since when the boot console, and
2937	 * the real console are the same physical device, it's annoying to
2938	 * see the beginning boot messages twice
2939	 */
2940	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2941		newcon->flags &= ~CON_PRINTBUFFER;
2942
2943	/*
2944	 *	Put this console in the list - keep the
2945	 *	preferred driver at the head of the list.
2946	 */
2947	console_lock();
2948	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2949		newcon->next = console_drivers;
2950		console_drivers = newcon;
2951		if (newcon->next)
2952			newcon->next->flags &= ~CON_CONSDEV;
2953		/* Ensure this flag is always set for the head of the list */
2954		newcon->flags |= CON_CONSDEV;
2955	} else {
2956		newcon->next = console_drivers->next;
2957		console_drivers->next = newcon;
2958	}
2959
2960	if (newcon->flags & CON_EXTENDED)
2961		nr_ext_console_drivers++;
 
2962
2963	if (newcon->flags & CON_PRINTBUFFER) {
2964		/*
2965		 * console_unlock(); will print out the buffered messages
2966		 * for us.
2967		 *
 
 
 
 
 
2968		 * We're about to replay the log buffer.  Only do this to the
2969		 * just-registered console to avoid excessive message spam to
2970		 * the already-registered consoles.
2971		 *
2972		 * Set exclusive_console with disabled interrupts to reduce
2973		 * race window with eventual console_flush_on_panic() that
2974		 * ignores console_lock.
2975		 */
2976		exclusive_console = newcon;
2977		exclusive_console_stop_seq = console_seq;
2978
2979		/* Get a consistent copy of @syslog_seq. */
2980		raw_spin_lock_irqsave(&syslog_lock, flags);
2981		console_seq = syslog_seq;
2982		raw_spin_unlock_irqrestore(&syslog_lock, flags);
2983	}
2984	console_unlock();
2985	console_sysfs_notify();
2986
2987	/*
2988	 * By unregistering the bootconsoles after we enable the real console
2989	 * we get the "console xxx enabled" message on all the consoles -
2990	 * boot consoles, real consoles, etc - this is to ensure that end
2991	 * users know there might be something in the kernel's log buffer that
2992	 * went to the bootconsole (that they do not see on the real console)
2993	 */
2994	pr_info("%sconsole [%s%d] enabled\n",
2995		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2996		newcon->name, newcon->index);
2997	if (bcon &&
2998	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2999	    !keep_bootcon) {
3000		/* We need to iterate through all boot consoles, to make
3001		 * sure we print everything out, before we unregister them.
3002		 */
3003		for_each_console(bcon)
3004			if (bcon->flags & CON_BOOT)
3005				unregister_console(bcon);
3006	}
3007}
3008EXPORT_SYMBOL(register_console);
3009
3010int unregister_console(struct console *console)
3011{
3012	struct console *con;
3013	int res;
3014
3015	pr_info("%sconsole [%s%d] disabled\n",
3016		(console->flags & CON_BOOT) ? "boot" : "" ,
3017		console->name, console->index);
3018
3019	res = _braille_unregister_console(console);
3020	if (res < 0)
3021		return res;
3022	if (res > 0)
3023		return 0;
3024
3025	res = -ENODEV;
3026	console_lock();
3027	if (console_drivers == console) {
3028		console_drivers=console->next;
3029		res = 0;
3030	} else {
3031		for_each_console(con) {
3032			if (con->next == console) {
3033				con->next = console->next;
 
3034				res = 0;
3035				break;
3036			}
3037		}
3038	}
3039
3040	if (res)
3041		goto out_disable_unlock;
3042
3043	if (console->flags & CON_EXTENDED)
3044		nr_ext_console_drivers--;
3045
3046	/*
3047	 * If this isn't the last console and it has CON_CONSDEV set, we
3048	 * need to set it on the next preferred console.
3049	 */
3050	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3051		console_drivers->flags |= CON_CONSDEV;
3052
3053	console->flags &= ~CON_ENABLED;
3054	console_unlock();
3055	console_sysfs_notify();
3056
3057	if (console->exit)
3058		res = console->exit(console);
3059
3060	return res;
3061
3062out_disable_unlock:
3063	console->flags &= ~CON_ENABLED;
3064	console_unlock();
3065
3066	return res;
3067}
3068EXPORT_SYMBOL(unregister_console);
3069
3070/*
3071 * Initialize the console device. This is called *early*, so
3072 * we can't necessarily depend on lots of kernel help here.
3073 * Just do some early initializations, and do the complex setup
3074 * later.
3075 */
3076void __init console_init(void)
3077{
3078	int ret;
3079	initcall_t call;
3080	initcall_entry_t *ce;
3081
3082	/* Setup the default TTY line discipline. */
3083	n_tty_init();
3084
3085	/*
3086	 * set up the console device so that later boot sequences can
3087	 * inform about problems etc..
3088	 */
3089	ce = __con_initcall_start;
3090	trace_initcall_level("console");
3091	while (ce < __con_initcall_end) {
3092		call = initcall_from_entry(ce);
3093		trace_initcall_start(call);
3094		ret = call();
3095		trace_initcall_finish(call, ret);
3096		ce++;
3097	}
3098}
3099
3100/*
3101 * Some boot consoles access data that is in the init section and which will
3102 * be discarded after the initcalls have been run. To make sure that no code
3103 * will access this data, unregister the boot consoles in a late initcall.
3104 *
3105 * If for some reason, such as deferred probe or the driver being a loadable
3106 * module, the real console hasn't registered yet at this point, there will
3107 * be a brief interval in which no messages are logged to the console, which
3108 * makes it difficult to diagnose problems that occur during this time.
3109 *
3110 * To mitigate this problem somewhat, only unregister consoles whose memory
3111 * intersects with the init section. Note that all other boot consoles will
3112 * get unregistered when the real preferred console is registered.
3113 */
3114static int __init printk_late_init(void)
3115{
3116	struct console *con;
3117	int ret;
3118
3119	for_each_console(con) {
3120		if (!(con->flags & CON_BOOT))
3121			continue;
3122
3123		/* Check addresses that might be used for enabled consoles. */
3124		if (init_section_intersects(con, sizeof(*con)) ||
3125		    init_section_contains(con->write, 0) ||
3126		    init_section_contains(con->read, 0) ||
3127		    init_section_contains(con->device, 0) ||
3128		    init_section_contains(con->unblank, 0) ||
3129		    init_section_contains(con->data, 0)) {
3130			/*
3131			 * Please, consider moving the reported consoles out
3132			 * of the init section.
3133			 */
3134			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3135				con->name, con->index);
3136			unregister_console(con);
3137		}
3138	}
3139	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3140					console_cpu_notify);
3141	WARN_ON(ret < 0);
3142	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3143					console_cpu_notify, NULL);
3144	WARN_ON(ret < 0);
3145	return 0;
3146}
3147late_initcall(printk_late_init);
3148
3149#if defined CONFIG_PRINTK
3150/*
3151 * Delayed printk version, for scheduler-internal messages:
3152 */
3153#define PRINTK_PENDING_WAKEUP	0x01
3154#define PRINTK_PENDING_OUTPUT	0x02
3155
3156static DEFINE_PER_CPU(int, printk_pending);
3157
3158static void wake_up_klogd_work_func(struct irq_work *irq_work)
3159{
3160	int pending = __this_cpu_xchg(printk_pending, 0);
3161
3162	if (pending & PRINTK_PENDING_OUTPUT) {
3163		/* If trylock fails, someone else is doing the printing */
3164		if (console_trylock())
3165			console_unlock();
3166	}
3167
3168	if (pending & PRINTK_PENDING_WAKEUP)
3169		wake_up_interruptible(&log_wait);
3170}
3171
3172static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3173	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
 
 
3174
3175void wake_up_klogd(void)
3176{
3177	if (!printk_percpu_data_ready())
3178		return;
3179
3180	preempt_disable();
3181	if (waitqueue_active(&log_wait)) {
3182		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3183		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3184	}
3185	preempt_enable();
3186}
3187
3188void defer_console_output(void)
3189{
3190	if (!printk_percpu_data_ready())
3191		return;
 
3192
3193	preempt_disable();
3194	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3195	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3196	preempt_enable();
3197}
3198
3199int vprintk_deferred(const char *fmt, va_list args)
3200{
3201	int r;
3202
3203	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3204	defer_console_output();
3205
3206	return r;
3207}
3208
3209int printk_deferred(const char *fmt, ...)
3210{
3211	va_list args;
3212	int r;
3213
3214	va_start(args, fmt);
3215	r = vprintk_deferred(fmt, args);
3216	va_end(args);
3217
3218	return r;
3219}
3220
3221/*
3222 * printk rate limiting, lifted from the networking subsystem.
3223 *
3224 * This enforces a rate limit: not more than 10 kernel messages
3225 * every 5s to make a denial-of-service attack impossible.
3226 */
3227DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3228
3229int __printk_ratelimit(const char *func)
3230{
3231	return ___ratelimit(&printk_ratelimit_state, func);
3232}
3233EXPORT_SYMBOL(__printk_ratelimit);
3234
3235/**
3236 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3237 * @caller_jiffies: pointer to caller's state
3238 * @interval_msecs: minimum interval between prints
3239 *
3240 * printk_timed_ratelimit() returns true if more than @interval_msecs
3241 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3242 * returned true.
3243 */
3244bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3245			unsigned int interval_msecs)
3246{
3247	unsigned long elapsed = jiffies - *caller_jiffies;
3248
3249	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3250		return false;
3251
3252	*caller_jiffies = jiffies;
3253	return true;
3254}
3255EXPORT_SYMBOL(printk_timed_ratelimit);
3256
3257static DEFINE_SPINLOCK(dump_list_lock);
3258static LIST_HEAD(dump_list);
3259
3260/**
3261 * kmsg_dump_register - register a kernel log dumper.
3262 * @dumper: pointer to the kmsg_dumper structure
3263 *
3264 * Adds a kernel log dumper to the system. The dump callback in the
3265 * structure will be called when the kernel oopses or panics and must be
3266 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3267 */
3268int kmsg_dump_register(struct kmsg_dumper *dumper)
3269{
3270	unsigned long flags;
3271	int err = -EBUSY;
3272
3273	/* The dump callback needs to be set */
3274	if (!dumper->dump)
3275		return -EINVAL;
3276
3277	spin_lock_irqsave(&dump_list_lock, flags);
3278	/* Don't allow registering multiple times */
3279	if (!dumper->registered) {
3280		dumper->registered = 1;
3281		list_add_tail_rcu(&dumper->list, &dump_list);
3282		err = 0;
3283	}
3284	spin_unlock_irqrestore(&dump_list_lock, flags);
3285
3286	return err;
3287}
3288EXPORT_SYMBOL_GPL(kmsg_dump_register);
3289
3290/**
3291 * kmsg_dump_unregister - unregister a kmsg dumper.
3292 * @dumper: pointer to the kmsg_dumper structure
3293 *
3294 * Removes a dump device from the system. Returns zero on success and
3295 * %-EINVAL otherwise.
3296 */
3297int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3298{
3299	unsigned long flags;
3300	int err = -EINVAL;
3301
3302	spin_lock_irqsave(&dump_list_lock, flags);
3303	if (dumper->registered) {
3304		dumper->registered = 0;
3305		list_del_rcu(&dumper->list);
3306		err = 0;
3307	}
3308	spin_unlock_irqrestore(&dump_list_lock, flags);
3309	synchronize_rcu();
3310
3311	return err;
3312}
3313EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3314
3315static bool always_kmsg_dump;
3316module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3317
3318const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3319{
3320	switch (reason) {
3321	case KMSG_DUMP_PANIC:
3322		return "Panic";
3323	case KMSG_DUMP_OOPS:
3324		return "Oops";
3325	case KMSG_DUMP_EMERG:
3326		return "Emergency";
3327	case KMSG_DUMP_SHUTDOWN:
3328		return "Shutdown";
3329	default:
3330		return "Unknown";
3331	}
3332}
3333EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3334
3335/**
3336 * kmsg_dump - dump kernel log to kernel message dumpers.
3337 * @reason: the reason (oops, panic etc) for dumping
3338 *
3339 * Call each of the registered dumper's dump() callback, which can
3340 * retrieve the kmsg records with kmsg_dump_get_line() or
3341 * kmsg_dump_get_buffer().
3342 */
3343void kmsg_dump(enum kmsg_dump_reason reason)
3344{
3345	struct kmsg_dumper *dumper;
 
 
 
 
3346
3347	rcu_read_lock();
3348	list_for_each_entry_rcu(dumper, &dump_list, list) {
3349		enum kmsg_dump_reason max_reason = dumper->max_reason;
 
 
 
 
3350
3351		/*
3352		 * If client has not provided a specific max_reason, default
3353		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3354		 */
3355		if (max_reason == KMSG_DUMP_UNDEF) {
3356			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3357							KMSG_DUMP_OOPS;
3358		}
3359		if (reason > max_reason)
3360			continue;
3361
3362		/* invoke dumper which will iterate over records */
3363		dumper->dump(dumper, reason);
 
 
 
3364	}
3365	rcu_read_unlock();
3366}
3367
3368/**
3369 * kmsg_dump_get_line - retrieve one kmsg log line
3370 * @iter: kmsg dump iterator
3371 * @syslog: include the "<4>" prefixes
3372 * @line: buffer to copy the line to
3373 * @size: maximum size of the buffer
3374 * @len: length of line placed into buffer
3375 *
3376 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3377 * record, and copy one record into the provided buffer.
3378 *
3379 * Consecutive calls will return the next available record moving
3380 * towards the end of the buffer with the youngest messages.
3381 *
3382 * A return value of FALSE indicates that there are no more records to
3383 * read.
 
 
3384 */
3385bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3386			char *line, size_t size, size_t *len)
3387{
3388	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3389	struct printk_info info;
3390	unsigned int line_count;
3391	struct printk_record r;
3392	unsigned long flags;
3393	size_t l = 0;
3394	bool ret = false;
3395
3396	if (iter->cur_seq < min_seq)
3397		iter->cur_seq = min_seq;
3398
3399	printk_safe_enter_irqsave(flags);
3400	prb_rec_init_rd(&r, &info, line, size);
 
 
 
3401
3402	/* Read text or count text lines? */
3403	if (line) {
3404		if (!prb_read_valid(prb, iter->cur_seq, &r))
3405			goto out;
3406		l = record_print_text(&r, syslog, printk_time);
3407	} else {
3408		if (!prb_read_valid_info(prb, iter->cur_seq,
3409					 &info, &line_count)) {
3410			goto out;
3411		}
3412		l = get_record_print_text_size(&info, line_count, syslog,
3413					       printk_time);
3414
3415	}
 
3416
3417	iter->cur_seq = r.info->seq + 1;
 
3418	ret = true;
3419out:
3420	printk_safe_exit_irqrestore(flags);
3421	if (len)
3422		*len = l;
3423	return ret;
3424}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3426
3427/**
3428 * kmsg_dump_get_buffer - copy kmsg log lines
3429 * @iter: kmsg dump iterator
3430 * @syslog: include the "<4>" prefixes
3431 * @buf: buffer to copy the line to
3432 * @size: maximum size of the buffer
3433 * @len_out: length of line placed into buffer
3434 *
3435 * Start at the end of the kmsg buffer and fill the provided buffer
3436 * with as many of the *youngest* kmsg records that fit into it.
3437 * If the buffer is large enough, all available kmsg records will be
3438 * copied with a single call.
3439 *
3440 * Consecutive calls will fill the buffer with the next block of
3441 * available older records, not including the earlier retrieved ones.
3442 *
3443 * A return value of FALSE indicates that there are no more records to
3444 * read.
3445 */
3446bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3447			  char *buf, size_t size, size_t *len_out)
3448{
3449	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3450	struct printk_info info;
3451	struct printk_record r;
3452	unsigned long flags;
3453	u64 seq;
 
3454	u64 next_seq;
3455	size_t len = 0;
 
3456	bool ret = false;
3457	bool time = printk_time;
3458
3459	if (!buf || !size)
3460		goto out;
3461
3462	if (iter->cur_seq < min_seq)
3463		iter->cur_seq = min_seq;
3464
3465	printk_safe_enter_irqsave(flags);
3466	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3467		if (info.seq != iter->cur_seq) {
3468			/* messages are gone, move to first available one */
3469			iter->cur_seq = info.seq;
3470		}
3471	}
3472
3473	/* last entry */
3474	if (iter->cur_seq >= iter->next_seq) {
3475		printk_safe_exit_irqrestore(flags);
3476		goto out;
3477	}
3478
3479	/*
3480	 * Find first record that fits, including all following records,
3481	 * into the user-provided buffer for this dump. Pass in size-1
3482	 * because this function (by way of record_print_text()) will
3483	 * not write more than size-1 bytes of text into @buf.
3484	 */
3485	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3486				     size - 1, syslog, time);
 
 
3487
3488	/*
3489	 * Next kmsg_dump_get_buffer() invocation will dump block of
3490	 * older records stored right before this one.
3491	 */
3492	next_seq = seq;
3493
3494	prb_rec_init_rd(&r, &info, buf, size);
 
 
 
3495
3496	len = 0;
3497	prb_for_each_record(seq, prb, seq, &r) {
3498		if (r.info->seq >= iter->next_seq)
3499			break;
3500
3501		len += record_print_text(&r, syslog, time);
 
 
3502
3503		/* Adjust record to store to remaining buffer space. */
3504		prb_rec_init_rd(&r, &info, buf + len, size - len);
 
3505	}
3506
3507	iter->next_seq = next_seq;
 
3508	ret = true;
3509	printk_safe_exit_irqrestore(flags);
3510out:
3511	if (len_out)
3512		*len_out = len;
3513	return ret;
3514}
3515EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3516
3517/**
3518 * kmsg_dump_rewind - reset the iterator
3519 * @iter: kmsg dump iterator
3520 *
3521 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3522 * kmsg_dump_get_buffer() can be called again and used multiple
3523 * times within the same dumper.dump() callback.
3524 */
3525void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3526{
3527	unsigned long flags;
3528
3529	printk_safe_enter_irqsave(flags);
3530	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3531	iter->next_seq = prb_next_seq(prb);
3532	printk_safe_exit_irqrestore(flags);
3533}
3534EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3535
3536#endif
3537
3538#ifdef CONFIG_SMP
3539static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3540static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3541
3542/**
3543 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3544 *                               spinning lock is not owned by any CPU.
3545 *
3546 * Context: Any context.
3547 */
3548void __printk_wait_on_cpu_lock(void)
3549{
3550	do {
3551		cpu_relax();
3552	} while (atomic_read(&printk_cpulock_owner) != -1);
 
3553}
3554EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3555
3556/**
3557 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3558 *                          spinning lock.
3559 *
3560 * If no processor has the lock, the calling processor takes the lock and
3561 * becomes the owner. If the calling processor is already the owner of the
3562 * lock, this function succeeds immediately.
3563 *
3564 * Context: Any context. Expects interrupts to be disabled.
3565 * Return: 1 on success, otherwise 0.
3566 */
3567int __printk_cpu_trylock(void)
3568{
3569	int cpu;
3570	int old;
3571
3572	cpu = smp_processor_id();
3573
3574	/*
3575	 * Guarantee loads and stores from this CPU when it is the lock owner
3576	 * are _not_ visible to the previous lock owner. This pairs with
3577	 * __printk_cpu_unlock:B.
3578	 *
3579	 * Memory barrier involvement:
3580	 *
3581	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3582	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3583	 *
3584	 * Relies on:
3585	 *
3586	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3587	 * of the previous CPU
3588	 *    matching
3589	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3590	 * of this CPU
3591	 */
3592	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3593				     cpu); /* LMM(__printk_cpu_trylock:A) */
3594	if (old == -1) {
3595		/*
3596		 * This CPU is now the owner and begins loading/storing
3597		 * data: LMM(__printk_cpu_trylock:B)
3598		 */
3599		return 1;
3600
3601	} else if (old == cpu) {
3602		/* This CPU is already the owner. */
3603		atomic_inc(&printk_cpulock_nested);
3604		return 1;
3605	}
3606
3607	return 0;
3608}
3609EXPORT_SYMBOL(__printk_cpu_trylock);
3610
3611/**
3612 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3613 *
3614 * The calling processor must be the owner of the lock.
3615 *
3616 * Context: Any context. Expects interrupts to be disabled.
3617 */
3618void __printk_cpu_unlock(void)
3619{
3620	if (atomic_read(&printk_cpulock_nested)) {
3621		atomic_dec(&printk_cpulock_nested);
3622		return;
3623	}
3624
3625	/*
3626	 * This CPU is finished loading/storing data:
3627	 * LMM(__printk_cpu_unlock:A)
3628	 */
3629
3630	/*
3631	 * Guarantee loads and stores from this CPU when it was the
3632	 * lock owner are visible to the next lock owner. This pairs
3633	 * with __printk_cpu_trylock:A.
3634	 *
3635	 * Memory barrier involvement:
3636	 *
3637	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3638	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3639	 *
3640	 * Relies on:
3641	 *
3642	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3643	 * of this CPU
3644	 *    matching
3645	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3646	 * of the next CPU
3647	 */
3648	atomic_set_release(&printk_cpulock_owner,
3649			   -1); /* LMM(__printk_cpu_unlock:B) */
3650}
3651EXPORT_SYMBOL(__printk_cpu_unlock);
3652#endif /* CONFIG_SMP */