Linux Audio

Check our new training course

Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_VOLUMES_H
  7#define BTRFS_VOLUMES_H
  8
  9#include <linux/bio.h>
 10#include <linux/sort.h>
 11#include <linux/btrfs.h>
 12#include "async-thread.h"
 13
 
 
 14extern struct mutex uuid_mutex;
 15
 16#define BTRFS_STRIPE_LEN	SZ_64K
 17
 18struct buffer_head;
 19struct btrfs_pending_bios {
 20	struct bio *head;
 21	struct bio *tail;
 
 
 
 
 
 
 
 
 
 22};
 23
 24/*
 25 * Use sequence counter to get consistent device stat data on
 26 * 32-bit processors.
 27 */
 28#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
 29#include <linux/seqlock.h>
 30#define __BTRFS_NEED_DEVICE_DATA_ORDERED
 31#define btrfs_device_data_ordered_init(device)	\
 32	seqcount_init(&device->data_seqcount)
 33#else
 34#define btrfs_device_data_ordered_init(device) do { } while (0)
 35#endif
 36
 37#define BTRFS_DEV_STATE_WRITEABLE	(0)
 38#define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
 39#define BTRFS_DEV_STATE_MISSING		(2)
 40#define BTRFS_DEV_STATE_REPLACE_TGT	(3)
 41#define BTRFS_DEV_STATE_FLUSH_SENT	(4)
 
 
 
 42
 43struct btrfs_device {
 44	struct list_head dev_list;
 45	struct list_head dev_alloc_list;
 
 46	struct btrfs_fs_devices *fs_devices;
 47	struct btrfs_fs_info *fs_info;
 48
 49	struct rcu_string *name;
 50
 51	u64 generation;
 52
 53	spinlock_t io_lock ____cacheline_aligned;
 54	int running_pending;
 55	/* regular prio bios */
 56	struct btrfs_pending_bios pending_bios;
 57	/* sync bios */
 58	struct btrfs_pending_bios pending_sync_bios;
 59
 60	struct block_device *bdev;
 61
 
 
 62	/* the mode sent to blkdev_get */
 63	fmode_t mode;
 64
 65	unsigned long dev_state;
 66	blk_status_t last_flush_error;
 67	int flush_bio_sent;
 68
 69#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
 70	seqcount_t data_seqcount;
 71#endif
 72
 73	/* the internal btrfs device id */
 74	u64 devid;
 75
 76	/* size of the device in memory */
 77	u64 total_bytes;
 78
 79	/* size of the device on disk */
 80	u64 disk_total_bytes;
 81
 82	/* bytes used */
 83	u64 bytes_used;
 84
 85	/* optimal io alignment for this device */
 86	u32 io_align;
 87
 88	/* optimal io width for this device */
 89	u32 io_width;
 90	/* type and info about this device */
 91	u64 type;
 92
 93	/* minimal io size for this device */
 94	u32 sector_size;
 95
 96	/* physical drive uuid (or lvm uuid) */
 97	u8 uuid[BTRFS_UUID_SIZE];
 98
 99	/*
100	 * size of the device on the current transaction
101	 *
102	 * This variant is update when committing the transaction,
103	 * and protected by device_list_mutex
104	 */
105	u64 commit_total_bytes;
106
107	/* bytes used on the current transaction */
108	u64 commit_bytes_used;
109	/*
110	 * used to manage the device which is resized
111	 *
112	 * It is protected by chunk_lock.
113	 */
114	struct list_head resized_list;
115
116	/* for sending down flush barriers */
117	struct bio *flush_bio;
118	struct completion flush_wait;
119
120	/* per-device scrub information */
121	struct scrub_ctx *scrub_ctx;
122
123	struct btrfs_work work;
124	struct rcu_head rcu;
125
126	/* readahead state */
127	atomic_t reada_in_flight;
128	u64 reada_next;
129	struct reada_zone *reada_curr_zone;
130	struct radix_tree_root reada_zones;
131	struct radix_tree_root reada_extents;
132
133	/* disk I/O failure stats. For detailed description refer to
134	 * enum btrfs_dev_stat_values in ioctl.h */
135	int dev_stats_valid;
136
137	/* Counter to record the change of device stats */
138	atomic_t dev_stats_ccnt;
139	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
 
 
 
 
 
 
 
 
 
140};
141
142/*
143 * If we read those variants at the context of their own lock, we needn't
144 * use the following helpers, reading them directly is safe.
145 */
146#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
147#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
148static inline u64							\
149btrfs_device_get_##name(const struct btrfs_device *dev)			\
150{									\
151	u64 size;							\
152	unsigned int seq;						\
153									\
154	do {								\
155		seq = read_seqcount_begin(&dev->data_seqcount);		\
156		size = dev->name;					\
157	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
158	return size;							\
159}									\
160									\
161static inline void							\
162btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
163{									\
164	preempt_disable();						\
165	write_seqcount_begin(&dev->data_seqcount);			\
166	dev->name = size;						\
167	write_seqcount_end(&dev->data_seqcount);			\
168	preempt_enable();						\
169}
170#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
171#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
172static inline u64							\
173btrfs_device_get_##name(const struct btrfs_device *dev)			\
174{									\
175	u64 size;							\
176									\
177	preempt_disable();						\
178	size = dev->name;						\
179	preempt_enable();						\
180	return size;							\
181}									\
182									\
183static inline void							\
184btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
185{									\
186	preempt_disable();						\
187	dev->name = size;						\
188	preempt_enable();						\
189}
190#else
191#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
192static inline u64							\
193btrfs_device_get_##name(const struct btrfs_device *dev)			\
194{									\
195	return dev->name;						\
196}									\
197									\
198static inline void							\
199btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
200{									\
201	dev->name = size;						\
202}
203#endif
204
205BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
206BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
207BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209struct btrfs_fs_devices {
210	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 
 
 
211
212	u64 num_devices;
213	u64 open_devices;
214	u64 rw_devices;
215	u64 missing_devices;
216	u64 total_rw_bytes;
217	u64 total_devices;
 
 
 
 
218	struct block_device *latest_bdev;
219
220	/* all of the devices in the FS, protected by a mutex
221	 * so we can safely walk it to write out the supers without
222	 * worrying about add/remove by the multi-device code.
223	 * Scrubbing super can kick off supers writing by holding
224	 * this mutex lock.
225	 */
226	struct mutex device_list_mutex;
 
 
227	struct list_head devices;
228
229	struct list_head resized_devices;
230	/* devices not currently being allocated */
 
 
231	struct list_head alloc_list;
232	struct list_head list;
233
234	struct btrfs_fs_devices *seed;
235	int seeding;
236
237	int opened;
238
239	/* set when we find or add a device that doesn't have the
240	 * nonrot flag set
241	 */
242	int rotating;
243
244	struct btrfs_fs_info *fs_info;
245	/* sysfs kobjects */
246	struct kobject fsid_kobj;
247	struct kobject *device_dir_kobj;
 
248	struct completion kobj_unregister;
 
 
 
 
 
249};
250
251#define BTRFS_BIO_INLINE_CSUM_SIZE	64
252
 
 
 
 
 
 
 
 
 
253/*
254 * we need the mirror number and stripe index to be passed around
255 * the call chain while we are processing end_io (especially errors).
256 * Really, what we need is a btrfs_bio structure that has this info
257 * and is properly sized with its stripe array, but we're not there
258 * quite yet.  We have our own btrfs bioset, and all of the bios
259 * we allocate are actually btrfs_io_bios.  We'll cram as much of
260 * struct btrfs_bio as we can into this over time.
261 */
262typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
263struct btrfs_io_bio {
264	unsigned int mirror_num;
265	unsigned int stripe_index;
266	u64 logical;
267	u8 *csum;
268	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
269	u8 *csum_allocated;
270	btrfs_io_bio_end_io_t *end_io;
271	struct bvec_iter iter;
272	/*
273	 * This member must come last, bio_alloc_bioset will allocate enough
274	 * bytes for entire btrfs_io_bio but relies on bio being last.
275	 */
276	struct bio bio;
277};
278
279static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
280{
281	return container_of(bio, struct btrfs_io_bio, bio);
282}
283
 
 
 
 
 
 
 
 
284struct btrfs_bio_stripe {
285	struct btrfs_device *dev;
286	u64 physical;
287	u64 length; /* only used for discard mappings */
288};
289
290struct btrfs_bio;
291typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
292
293struct btrfs_bio {
294	refcount_t refs;
295	atomic_t stripes_pending;
296	struct btrfs_fs_info *fs_info;
297	u64 map_type; /* get from map_lookup->type */
298	bio_end_io_t *end_io;
299	struct bio *orig_bio;
300	unsigned long flags;
301	void *private;
302	atomic_t error;
303	int max_errors;
304	int num_stripes;
305	int mirror_num;
306	int num_tgtdevs;
307	int *tgtdev_map;
308	/*
309	 * logical block numbers for the start of each stripe
310	 * The last one or two are p/q.  These are sorted,
311	 * so raid_map[0] is the start of our full stripe
312	 */
313	u64 *raid_map;
314	struct btrfs_bio_stripe stripes[];
315};
316
317struct btrfs_device_info {
318	struct btrfs_device *dev;
319	u64 dev_offset;
320	u64 max_avail;
321	u64 total_avail;
322};
323
324struct btrfs_raid_attr {
325	int sub_stripes;	/* sub_stripes info for map */
326	int dev_stripes;	/* stripes per dev */
327	int devs_max;		/* max devs to use */
328	int devs_min;		/* min devs needed */
329	int tolerated_failures; /* max tolerated fail devs */
330	int devs_increment;	/* ndevs has to be a multiple of this */
331	int ncopies;		/* how many copies to data has */
 
 
 
 
 
332};
333
334extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
335extern const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES];
336extern const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES];
337
338struct map_lookup {
339	u64 type;
340	int io_align;
341	int io_width;
342	u64 stripe_len;
343	int num_stripes;
344	int sub_stripes;
 
345	struct btrfs_bio_stripe stripes[];
346};
347
348#define map_lookup_size(n) (sizeof(struct map_lookup) + \
349			    (sizeof(struct btrfs_bio_stripe) * (n)))
350
351struct btrfs_balance_args;
352struct btrfs_balance_progress;
353struct btrfs_balance_control {
354	struct btrfs_fs_info *fs_info;
355
356	struct btrfs_balance_args data;
357	struct btrfs_balance_args meta;
358	struct btrfs_balance_args sys;
359
360	u64 flags;
361
362	struct btrfs_balance_progress stat;
363};
364
365enum btrfs_map_op {
366	BTRFS_MAP_READ,
367	BTRFS_MAP_WRITE,
368	BTRFS_MAP_DISCARD,
369	BTRFS_MAP_GET_READ_MIRRORS,
370};
371
372static inline enum btrfs_map_op btrfs_op(struct bio *bio)
373{
374	switch (bio_op(bio)) {
375	case REQ_OP_DISCARD:
376		return BTRFS_MAP_DISCARD;
377	case REQ_OP_WRITE:
 
378		return BTRFS_MAP_WRITE;
379	default:
380		WARN_ON_ONCE(1);
 
381	case REQ_OP_READ:
382		return BTRFS_MAP_READ;
383	}
384}
385
386int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
387				   u64 end, u64 *length);
388void btrfs_get_bbio(struct btrfs_bio *bbio);
389void btrfs_put_bbio(struct btrfs_bio *bbio);
390int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
391		    u64 logical, u64 *length,
392		    struct btrfs_bio **bbio_ret, int mirror_num);
393int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
394		     u64 logical, u64 *length,
395		     struct btrfs_bio **bbio_ret);
396int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
397		     u64 chunk_start, u64 physical, u64 devid,
398		     u64 **logical, int *naddrs, int *stripe_len);
399int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
400int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
401int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
402		      struct btrfs_fs_info *fs_info, u64 type);
403void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
404void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
405blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
406			   int mirror_num, int async_submit);
407int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
408		       fmode_t flags, void *holder);
409int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
410			  struct btrfs_fs_devices **fs_devices_ret);
411int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
412void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
413void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
414		struct btrfs_device *device, struct btrfs_device *this_dev);
415int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
416					 const char *device_path,
417					 struct btrfs_device **device);
418int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
419					 const char *devpath,
420					 struct btrfs_device **device);
421struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
422					const u64 *devid,
423					const u8 *uuid);
 
424int btrfs_rm_device(struct btrfs_fs_info *fs_info,
425		    const char *device_path, u64 devid);
 
426void __exit btrfs_cleanup_fs_uuids(void);
427int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
428int btrfs_grow_device(struct btrfs_trans_handle *trans,
429		      struct btrfs_device *device, u64 new_size);
430struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
431				       u8 *uuid, u8 *fsid);
432int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
433int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
434int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
435				  const char *device_path,
436				  struct btrfs_device *srcdev,
437				  struct btrfs_device **device_out);
438int btrfs_balance(struct btrfs_balance_control *bctl,
439		  struct btrfs_ioctl_balance_args *bargs);
 
440int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
441int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
442int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
 
443int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
444int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
445int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
446int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
447int find_free_dev_extent_start(struct btrfs_transaction *transaction,
448			 struct btrfs_device *device, u64 num_bytes,
449			 u64 search_start, u64 *start, u64 *max_avail);
450int find_free_dev_extent(struct btrfs_trans_handle *trans,
451			 struct btrfs_device *device, u64 num_bytes,
452			 u64 *start, u64 *max_avail);
453void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
454int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
455			struct btrfs_ioctl_get_dev_stats *stats);
456void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
457int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
458int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
459			struct btrfs_fs_info *fs_info);
460void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
461					struct btrfs_device *srcdev);
462void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
463				      struct btrfs_device *srcdev);
464void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
465				      struct btrfs_device *tgtdev);
466void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
467int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
468			   u64 logical, u64 len);
469unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
470				    u64 logical);
471int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
472				struct btrfs_fs_info *fs_info,
473				u64 chunk_offset, u64 chunk_size);
474int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
475		       struct btrfs_fs_info *fs_info, u64 chunk_offset);
 
 
 
476
477static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
478				      int index)
479{
480	atomic_inc(dev->dev_stat_values + index);
481	/*
482	 * This memory barrier orders stores updating statistics before stores
483	 * updating dev_stats_ccnt.
484	 *
485	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
486	 */
487	smp_mb__before_atomic();
488	atomic_inc(&dev->dev_stats_ccnt);
489}
490
491static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
492				      int index)
493{
494	return atomic_read(dev->dev_stat_values + index);
495}
496
497static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
498						int index)
499{
500	int ret;
501
502	ret = atomic_xchg(dev->dev_stat_values + index, 0);
503	/*
504	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
505	 * - RMW operations that have a return value are fully ordered;
506	 *
507	 * This implicit memory barriers is paired with the smp_rmb in
508	 * btrfs_run_dev_stats
509	 */
510	atomic_inc(&dev->dev_stats_ccnt);
511	return ret;
512}
513
514static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
515				      int index, unsigned long val)
516{
517	atomic_set(dev->dev_stat_values + index, val);
518	/*
519	 * This memory barrier orders stores updating statistics before stores
520	 * updating dev_stats_ccnt.
521	 *
522	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
523	 */
524	smp_mb__before_atomic();
525	atomic_inc(&dev->dev_stats_ccnt);
526}
527
528static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
529					int index)
530{
531	btrfs_dev_stat_set(dev, index, 0);
532}
533
534/*
535 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
536 * can be used as index to access btrfs_raid_array[].
537 */
538static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
539{
540	if (flags & BTRFS_BLOCK_GROUP_RAID10)
541		return BTRFS_RAID_RAID10;
542	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
543		return BTRFS_RAID_RAID1;
 
 
 
 
544	else if (flags & BTRFS_BLOCK_GROUP_DUP)
545		return BTRFS_RAID_DUP;
546	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
547		return BTRFS_RAID_RAID0;
548	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
549		return BTRFS_RAID_RAID5;
550	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
551		return BTRFS_RAID_RAID6;
552
553	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
554}
555
556void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
557void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans);
558
559struct list_head *btrfs_get_fs_uuids(void);
560void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
561void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
562bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
563					struct btrfs_device *failing_dev);
 
 
 
 
 
 
 
 
564
565#endif
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_VOLUMES_H
  7#define BTRFS_VOLUMES_H
  8
  9#include <linux/bio.h>
 10#include <linux/sort.h>
 11#include <linux/btrfs.h>
 12#include "async-thread.h"
 13
 14#define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
 15
 16extern struct mutex uuid_mutex;
 17
 18#define BTRFS_STRIPE_LEN	SZ_64K
 19
 20struct btrfs_io_geometry {
 21	/* remaining bytes before crossing a stripe */
 22	u64 len;
 23	/* offset of logical address in chunk */
 24	u64 offset;
 25	/* length of single IO stripe */
 26	u64 stripe_len;
 27	/* number of stripe where address falls */
 28	u64 stripe_nr;
 29	/* offset of address in stripe */
 30	u64 stripe_offset;
 31	/* offset of raid56 stripe into the chunk */
 32	u64 raid56_stripe_offset;
 33};
 34
 35/*
 36 * Use sequence counter to get consistent device stat data on
 37 * 32-bit processors.
 38 */
 39#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
 40#include <linux/seqlock.h>
 41#define __BTRFS_NEED_DEVICE_DATA_ORDERED
 42#define btrfs_device_data_ordered_init(device)	\
 43	seqcount_init(&device->data_seqcount)
 44#else
 45#define btrfs_device_data_ordered_init(device) do { } while (0)
 46#endif
 47
 48#define BTRFS_DEV_STATE_WRITEABLE	(0)
 49#define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
 50#define BTRFS_DEV_STATE_MISSING		(2)
 51#define BTRFS_DEV_STATE_REPLACE_TGT	(3)
 52#define BTRFS_DEV_STATE_FLUSH_SENT	(4)
 53#define BTRFS_DEV_STATE_NO_READA	(5)
 54
 55struct btrfs_zoned_device_info;
 56
 57struct btrfs_device {
 58	struct list_head dev_list; /* device_list_mutex */
 59	struct list_head dev_alloc_list; /* chunk mutex */
 60	struct list_head post_commit_list; /* chunk mutex */
 61	struct btrfs_fs_devices *fs_devices;
 62	struct btrfs_fs_info *fs_info;
 63
 64	struct rcu_string __rcu *name;
 65
 66	u64 generation;
 67
 
 
 
 
 
 
 
 68	struct block_device *bdev;
 69
 70	struct btrfs_zoned_device_info *zone_info;
 71
 72	/* the mode sent to blkdev_get */
 73	fmode_t mode;
 74
 75	unsigned long dev_state;
 76	blk_status_t last_flush_error;
 
 77
 78#ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
 79	seqcount_t data_seqcount;
 80#endif
 81
 82	/* the internal btrfs device id */
 83	u64 devid;
 84
 85	/* size of the device in memory */
 86	u64 total_bytes;
 87
 88	/* size of the device on disk */
 89	u64 disk_total_bytes;
 90
 91	/* bytes used */
 92	u64 bytes_used;
 93
 94	/* optimal io alignment for this device */
 95	u32 io_align;
 96
 97	/* optimal io width for this device */
 98	u32 io_width;
 99	/* type and info about this device */
100	u64 type;
101
102	/* minimal io size for this device */
103	u32 sector_size;
104
105	/* physical drive uuid (or lvm uuid) */
106	u8 uuid[BTRFS_UUID_SIZE];
107
108	/*
109	 * size of the device on the current transaction
110	 *
111	 * This variant is update when committing the transaction,
112	 * and protected by chunk mutex
113	 */
114	u64 commit_total_bytes;
115
116	/* bytes used on the current transaction */
117	u64 commit_bytes_used;
 
 
 
 
 
 
118
119	/* for sending down flush barriers */
120	struct bio *flush_bio;
121	struct completion flush_wait;
122
123	/* per-device scrub information */
124	struct scrub_ctx *scrub_ctx;
125
 
 
 
126	/* readahead state */
127	atomic_t reada_in_flight;
128	u64 reada_next;
129	struct reada_zone *reada_curr_zone;
130	struct radix_tree_root reada_zones;
131	struct radix_tree_root reada_extents;
132
133	/* disk I/O failure stats. For detailed description refer to
134	 * enum btrfs_dev_stat_values in ioctl.h */
135	int dev_stats_valid;
136
137	/* Counter to record the change of device stats */
138	atomic_t dev_stats_ccnt;
139	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
140
141	struct extent_io_tree alloc_state;
142
143	struct completion kobj_unregister;
144	/* For sysfs/FSID/devinfo/devid/ */
145	struct kobject devid_kobj;
146
147	/* Bandwidth limit for scrub, in bytes */
148	u64 scrub_speed_max;
149};
150
151/*
152 * If we read those variants at the context of their own lock, we needn't
153 * use the following helpers, reading them directly is safe.
154 */
155#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
156#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
157static inline u64							\
158btrfs_device_get_##name(const struct btrfs_device *dev)			\
159{									\
160	u64 size;							\
161	unsigned int seq;						\
162									\
163	do {								\
164		seq = read_seqcount_begin(&dev->data_seqcount);		\
165		size = dev->name;					\
166	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
167	return size;							\
168}									\
169									\
170static inline void							\
171btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
172{									\
173	preempt_disable();						\
174	write_seqcount_begin(&dev->data_seqcount);			\
175	dev->name = size;						\
176	write_seqcount_end(&dev->data_seqcount);			\
177	preempt_enable();						\
178}
179#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
180#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
181static inline u64							\
182btrfs_device_get_##name(const struct btrfs_device *dev)			\
183{									\
184	u64 size;							\
185									\
186	preempt_disable();						\
187	size = dev->name;						\
188	preempt_enable();						\
189	return size;							\
190}									\
191									\
192static inline void							\
193btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
194{									\
195	preempt_disable();						\
196	dev->name = size;						\
197	preempt_enable();						\
198}
199#else
200#define BTRFS_DEVICE_GETSET_FUNCS(name)					\
201static inline u64							\
202btrfs_device_get_##name(const struct btrfs_device *dev)			\
203{									\
204	return dev->name;						\
205}									\
206									\
207static inline void							\
208btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
209{									\
210	dev->name = size;						\
211}
212#endif
213
214BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
215BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
216BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
217
218enum btrfs_chunk_allocation_policy {
219	BTRFS_CHUNK_ALLOC_REGULAR,
220	BTRFS_CHUNK_ALLOC_ZONED,
221};
222
223/*
224 * Read policies for mirrored block group profiles, read picks the stripe based
225 * on these policies.
226 */
227enum btrfs_read_policy {
228	/* Use process PID to choose the stripe */
229	BTRFS_READ_POLICY_PID,
230	BTRFS_NR_READ_POLICY,
231};
232
233struct btrfs_fs_devices {
234	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
235	u8 metadata_uuid[BTRFS_FSID_SIZE];
236	bool fsid_change;
237	struct list_head fs_list;
238
239	u64 num_devices;
240	u64 open_devices;
241	u64 rw_devices;
242	u64 missing_devices;
243	u64 total_rw_bytes;
244	u64 total_devices;
245
246	/* Highest generation number of seen devices */
247	u64 latest_generation;
248
249	struct block_device *latest_bdev;
250
251	/* all of the devices in the FS, protected by a mutex
252	 * so we can safely walk it to write out the supers without
253	 * worrying about add/remove by the multi-device code.
254	 * Scrubbing super can kick off supers writing by holding
255	 * this mutex lock.
256	 */
257	struct mutex device_list_mutex;
258
259	/* List of all devices, protected by device_list_mutex */
260	struct list_head devices;
261
262	/*
263	 * Devices which can satisfy space allocation. Protected by
264	 * chunk_mutex
265	 */
266	struct list_head alloc_list;
 
267
268	struct list_head seed_list;
269	bool seeding;
270
271	int opened;
272
273	/* set when we find or add a device that doesn't have the
274	 * nonrot flag set
275	 */
276	bool rotating;
277
278	struct btrfs_fs_info *fs_info;
279	/* sysfs kobjects */
280	struct kobject fsid_kobj;
281	struct kobject *devices_kobj;
282	struct kobject *devinfo_kobj;
283	struct completion kobj_unregister;
284
285	enum btrfs_chunk_allocation_policy chunk_alloc_policy;
286
287	/* Policy used to read the mirrored stripes */
288	enum btrfs_read_policy read_policy;
289};
290
291#define BTRFS_BIO_INLINE_CSUM_SIZE	64
292
293#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
294			- sizeof(struct btrfs_chunk))		\
295			/ sizeof(struct btrfs_stripe) + 1)
296
297#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
298				- 2 * sizeof(struct btrfs_disk_key)	\
299				- 2 * sizeof(struct btrfs_chunk))	\
300				/ sizeof(struct btrfs_stripe) + 1)
301
302/*
303 * we need the mirror number and stripe index to be passed around
304 * the call chain while we are processing end_io (especially errors).
305 * Really, what we need is a btrfs_bio structure that has this info
306 * and is properly sized with its stripe array, but we're not there
307 * quite yet.  We have our own btrfs bioset, and all of the bios
308 * we allocate are actually btrfs_io_bios.  We'll cram as much of
309 * struct btrfs_bio as we can into this over time.
310 */
 
311struct btrfs_io_bio {
312	unsigned int mirror_num;
313	struct btrfs_device *device;
314	u64 logical;
315	u8 *csum;
316	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
 
 
317	struct bvec_iter iter;
318	/*
319	 * This member must come last, bio_alloc_bioset will allocate enough
320	 * bytes for entire btrfs_io_bio but relies on bio being last.
321	 */
322	struct bio bio;
323};
324
325static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
326{
327	return container_of(bio, struct btrfs_io_bio, bio);
328}
329
330static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
331{
332	if (io_bio->csum != io_bio->csum_inline) {
333		kfree(io_bio->csum);
334		io_bio->csum = NULL;
335	}
336}
337
338struct btrfs_bio_stripe {
339	struct btrfs_device *dev;
340	u64 physical;
341	u64 length; /* only used for discard mappings */
342};
343
 
 
 
344struct btrfs_bio {
345	refcount_t refs;
346	atomic_t stripes_pending;
347	struct btrfs_fs_info *fs_info;
348	u64 map_type; /* get from map_lookup->type */
349	bio_end_io_t *end_io;
350	struct bio *orig_bio;
 
351	void *private;
352	atomic_t error;
353	int max_errors;
354	int num_stripes;
355	int mirror_num;
356	int num_tgtdevs;
357	int *tgtdev_map;
358	/*
359	 * logical block numbers for the start of each stripe
360	 * The last one or two are p/q.  These are sorted,
361	 * so raid_map[0] is the start of our full stripe
362	 */
363	u64 *raid_map;
364	struct btrfs_bio_stripe stripes[];
365};
366
367struct btrfs_device_info {
368	struct btrfs_device *dev;
369	u64 dev_offset;
370	u64 max_avail;
371	u64 total_avail;
372};
373
374struct btrfs_raid_attr {
375	u8 sub_stripes;		/* sub_stripes info for map */
376	u8 dev_stripes;		/* stripes per dev */
377	u8 devs_max;		/* max devs to use */
378	u8 devs_min;		/* min devs needed */
379	u8 tolerated_failures;	/* max tolerated fail devs */
380	u8 devs_increment;	/* ndevs has to be a multiple of this */
381	u8 ncopies;		/* how many copies to data has */
382	u8 nparity;		/* number of stripes worth of bytes to store
383				 * parity information */
384	u8 mindev_error;	/* error code if min devs requisite is unmet */
385	const char raid_name[8]; /* name of the raid */
386	u64 bg_flag;		/* block group flag of the raid */
387};
388
389extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
 
 
390
391struct map_lookup {
392	u64 type;
393	int io_align;
394	int io_width;
395	u64 stripe_len;
396	int num_stripes;
397	int sub_stripes;
398	int verified_stripes; /* For mount time dev extent verification */
399	struct btrfs_bio_stripe stripes[];
400};
401
402#define map_lookup_size(n) (sizeof(struct map_lookup) + \
403			    (sizeof(struct btrfs_bio_stripe) * (n)))
404
405struct btrfs_balance_args;
406struct btrfs_balance_progress;
407struct btrfs_balance_control {
 
 
408	struct btrfs_balance_args data;
409	struct btrfs_balance_args meta;
410	struct btrfs_balance_args sys;
411
412	u64 flags;
413
414	struct btrfs_balance_progress stat;
415};
416
417enum btrfs_map_op {
418	BTRFS_MAP_READ,
419	BTRFS_MAP_WRITE,
420	BTRFS_MAP_DISCARD,
421	BTRFS_MAP_GET_READ_MIRRORS,
422};
423
424static inline enum btrfs_map_op btrfs_op(struct bio *bio)
425{
426	switch (bio_op(bio)) {
427	case REQ_OP_DISCARD:
428		return BTRFS_MAP_DISCARD;
429	case REQ_OP_WRITE:
430	case REQ_OP_ZONE_APPEND:
431		return BTRFS_MAP_WRITE;
432	default:
433		WARN_ON_ONCE(1);
434		fallthrough;
435	case REQ_OP_READ:
436		return BTRFS_MAP_READ;
437	}
438}
439
 
 
440void btrfs_get_bbio(struct btrfs_bio *bbio);
441void btrfs_put_bbio(struct btrfs_bio *bbio);
442int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
443		    u64 logical, u64 *length,
444		    struct btrfs_bio **bbio_ret, int mirror_num);
445int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
446		     u64 logical, u64 *length,
447		     struct btrfs_bio **bbio_ret);
448int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *map,
449			  enum btrfs_map_op op, u64 logical,
450			  struct btrfs_io_geometry *io_geom);
451int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
452int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
453struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
454					    u64 type);
455void btrfs_mapping_tree_free(struct extent_map_tree *tree);
 
456blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
457			   int mirror_num);
458int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
459		       fmode_t flags, void *holder);
460struct btrfs_device *btrfs_scan_one_device(const char *path,
461					   fmode_t flags, void *holder);
462int btrfs_forget_devices(const char *path);
463void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
464void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
465void btrfs_assign_next_active_device(struct btrfs_device *device,
466				     struct btrfs_device *this_dev);
467struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
468						  u64 devid,
469						  const char *devpath);
 
 
470struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
471					const u64 *devid,
472					const u8 *uuid);
473void btrfs_free_device(struct btrfs_device *device);
474int btrfs_rm_device(struct btrfs_fs_info *fs_info,
475		    const char *device_path, u64 devid,
476		    struct block_device **bdev, fmode_t *mode);
477void __exit btrfs_cleanup_fs_uuids(void);
478int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
479int btrfs_grow_device(struct btrfs_trans_handle *trans,
480		      struct btrfs_device *device, u64 new_size);
481struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
482				       u64 devid, u8 *uuid, u8 *fsid);
483int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
484int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
485int btrfs_balance(struct btrfs_fs_info *fs_info,
486		  struct btrfs_balance_control *bctl,
 
 
 
487		  struct btrfs_ioctl_balance_args *bargs);
488void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
489int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
490int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
491int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
492int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset);
493int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
494int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
495int btrfs_uuid_scan_kthread(void *data);
496int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
497int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
 
 
 
 
498			 u64 *start, u64 *max_avail);
499void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
500int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
501			struct btrfs_ioctl_get_dev_stats *stats);
502void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
503int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
504int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
505void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
506void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
507void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
 
 
 
 
 
508int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
509			   u64 logical, u64 len);
510unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
511				    u64 logical);
512int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
513			     u64 chunk_offset, u64 chunk_size);
514int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
515				     struct btrfs_block_group *bg);
516int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
517struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
518				       u64 logical, u64 length);
519void btrfs_release_disk_super(struct btrfs_super_block *super);
520
521static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
522				      int index)
523{
524	atomic_inc(dev->dev_stat_values + index);
525	/*
526	 * This memory barrier orders stores updating statistics before stores
527	 * updating dev_stats_ccnt.
528	 *
529	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
530	 */
531	smp_mb__before_atomic();
532	atomic_inc(&dev->dev_stats_ccnt);
533}
534
535static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
536				      int index)
537{
538	return atomic_read(dev->dev_stat_values + index);
539}
540
541static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
542						int index)
543{
544	int ret;
545
546	ret = atomic_xchg(dev->dev_stat_values + index, 0);
547	/*
548	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
549	 * - RMW operations that have a return value are fully ordered;
550	 *
551	 * This implicit memory barriers is paired with the smp_rmb in
552	 * btrfs_run_dev_stats
553	 */
554	atomic_inc(&dev->dev_stats_ccnt);
555	return ret;
556}
557
558static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
559				      int index, unsigned long val)
560{
561	atomic_set(dev->dev_stat_values + index, val);
562	/*
563	 * This memory barrier orders stores updating statistics before stores
564	 * updating dev_stats_ccnt.
565	 *
566	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
567	 */
568	smp_mb__before_atomic();
569	atomic_inc(&dev->dev_stats_ccnt);
570}
571
 
 
 
 
 
 
572/*
573 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
574 * can be used as index to access btrfs_raid_array[].
575 */
576static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
577{
578	if (flags & BTRFS_BLOCK_GROUP_RAID10)
579		return BTRFS_RAID_RAID10;
580	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
581		return BTRFS_RAID_RAID1;
582	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
583		return BTRFS_RAID_RAID1C3;
584	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
585		return BTRFS_RAID_RAID1C4;
586	else if (flags & BTRFS_BLOCK_GROUP_DUP)
587		return BTRFS_RAID_DUP;
588	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
589		return BTRFS_RAID_RAID0;
590	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
591		return BTRFS_RAID_RAID5;
592	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
593		return BTRFS_RAID_RAID6;
594
595	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
596}
597
598void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
 
599
600struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
 
 
601bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
602					struct btrfs_device *failing_dev);
603void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
604			       struct block_device *bdev,
605			       const char *device_path);
606
607int btrfs_bg_type_to_factor(u64 flags);
608const char *btrfs_bg_type_to_raid_name(u64 flags);
609int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
610int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
611
612#endif