Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/bio.h>
  7#include <linux/slab.h>
  8#include <linux/pagemap.h>
  9#include <linux/highmem.h>
 
 
 
 10#include "ctree.h"
 11#include "disk-io.h"
 12#include "transaction.h"
 13#include "volumes.h"
 14#include "print-tree.h"
 15#include "compression.h"
 16
 17#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
 18				   sizeof(struct btrfs_item) * 2) / \
 19				  size) - 1))
 20
 21#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
 22				       PAGE_SIZE))
 23
 24#define MAX_ORDERED_SUM_BYTES(fs_info) ((PAGE_SIZE - \
 25				   sizeof(struct btrfs_ordered_sum)) / \
 26				   sizeof(u32) * (fs_info)->sectorsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 29			     struct btrfs_root *root,
 30			     u64 objectid, u64 pos,
 31			     u64 disk_offset, u64 disk_num_bytes,
 32			     u64 num_bytes, u64 offset, u64 ram_bytes,
 33			     u8 compression, u8 encryption, u16 other_encoding)
 34{
 35	int ret = 0;
 36	struct btrfs_file_extent_item *item;
 37	struct btrfs_key file_key;
 38	struct btrfs_path *path;
 39	struct extent_buffer *leaf;
 40
 41	path = btrfs_alloc_path();
 42	if (!path)
 43		return -ENOMEM;
 44	file_key.objectid = objectid;
 45	file_key.offset = pos;
 46	file_key.type = BTRFS_EXTENT_DATA_KEY;
 47
 48	path->leave_spinning = 1;
 49	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 50				      sizeof(*item));
 51	if (ret < 0)
 52		goto out;
 53	BUG_ON(ret); /* Can't happen */
 54	leaf = path->nodes[0];
 55	item = btrfs_item_ptr(leaf, path->slots[0],
 56			      struct btrfs_file_extent_item);
 57	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 58	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 59	btrfs_set_file_extent_offset(leaf, item, offset);
 60	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 61	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 62	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 63	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 64	btrfs_set_file_extent_compression(leaf, item, compression);
 65	btrfs_set_file_extent_encryption(leaf, item, encryption);
 66	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 67
 68	btrfs_mark_buffer_dirty(leaf);
 69out:
 70	btrfs_free_path(path);
 71	return ret;
 72}
 73
 74static struct btrfs_csum_item *
 75btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 76		  struct btrfs_root *root,
 77		  struct btrfs_path *path,
 78		  u64 bytenr, int cow)
 79{
 80	struct btrfs_fs_info *fs_info = root->fs_info;
 81	int ret;
 82	struct btrfs_key file_key;
 83	struct btrfs_key found_key;
 84	struct btrfs_csum_item *item;
 85	struct extent_buffer *leaf;
 86	u64 csum_offset = 0;
 87	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 88	int csums_in_item;
 89
 90	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 91	file_key.offset = bytenr;
 92	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 93	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 94	if (ret < 0)
 95		goto fail;
 96	leaf = path->nodes[0];
 97	if (ret > 0) {
 98		ret = 1;
 99		if (path->slots[0] == 0)
100			goto fail;
101		path->slots[0]--;
102		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
103		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
104			goto fail;
105
106		csum_offset = (bytenr - found_key.offset) >>
107				fs_info->sb->s_blocksize_bits;
108		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
109		csums_in_item /= csum_size;
110
111		if (csum_offset == csums_in_item) {
112			ret = -EFBIG;
113			goto fail;
114		} else if (csum_offset > csums_in_item) {
115			goto fail;
116		}
117	}
118	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
119	item = (struct btrfs_csum_item *)((unsigned char *)item +
120					  csum_offset * csum_size);
121	return item;
122fail:
123	if (ret > 0)
124		ret = -ENOENT;
125	return ERR_PTR(ret);
126}
127
128int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
129			     struct btrfs_root *root,
130			     struct btrfs_path *path, u64 objectid,
131			     u64 offset, int mod)
132{
133	int ret;
134	struct btrfs_key file_key;
135	int ins_len = mod < 0 ? -1 : 0;
136	int cow = mod != 0;
137
138	file_key.objectid = objectid;
139	file_key.offset = offset;
140	file_key.type = BTRFS_EXTENT_DATA_KEY;
141	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
142	return ret;
143}
144
145static void btrfs_io_bio_endio_readpage(struct btrfs_io_bio *bio, int err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146{
147	kfree(bio->csum_allocated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148}
149
150static blk_status_t __btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
151				   u64 logical_offset, u32 *dst, int dio)
 
 
 
 
 
 
 
 
 
 
 
152{
153	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
154	struct bio_vec bvec;
155	struct bvec_iter iter;
156	struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
157	struct btrfs_csum_item *item = NULL;
158	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
159	struct btrfs_path *path;
 
 
 
 
 
160	u8 *csum;
161	u64 offset = 0;
162	u64 item_start_offset = 0;
163	u64 item_last_offset = 0;
164	u64 disk_bytenr;
165	u64 page_bytes_left;
166	u32 diff;
167	int nblocks;
168	int count = 0;
169	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171	path = btrfs_alloc_path();
172	if (!path)
173		return BLK_STS_RESOURCE;
174
175	nblocks = bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
176	if (!dst) {
 
 
177		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
178			btrfs_bio->csum_allocated = kmalloc_array(nblocks,
179					csum_size, GFP_NOFS);
180			if (!btrfs_bio->csum_allocated) {
181				btrfs_free_path(path);
182				return BLK_STS_RESOURCE;
183			}
184			btrfs_bio->csum = btrfs_bio->csum_allocated;
185			btrfs_bio->end_io = btrfs_io_bio_endio_readpage;
186		} else {
187			btrfs_bio->csum = btrfs_bio->csum_inline;
188		}
189		csum = btrfs_bio->csum;
190	} else {
191		csum = (u8 *)dst;
192	}
193
194	if (bio->bi_iter.bi_size > PAGE_SIZE * 8)
 
 
 
 
195		path->reada = READA_FORWARD;
196
197	/*
198	 * the free space stuff is only read when it hasn't been
199	 * updated in the current transaction.  So, we can safely
200	 * read from the commit root and sidestep a nasty deadlock
201	 * between reading the free space cache and updating the csum tree.
202	 */
203	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
204		path->search_commit_root = 1;
205		path->skip_locking = 1;
206	}
207
208	disk_bytenr = (u64)bio->bi_iter.bi_sector << 9;
209	if (dio)
210		offset = logical_offset;
211
212	bio_for_each_segment(bvec, bio, iter) {
213		page_bytes_left = bvec.bv_len;
214		if (count)
215			goto next;
216
217		if (!dio)
218			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
219		count = btrfs_find_ordered_sum(inode, offset, disk_bytenr,
220					       (u32 *)csum, nblocks);
221		if (count)
222			goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
224		if (!item || disk_bytenr < item_start_offset ||
225		    disk_bytenr >= item_last_offset) {
226			struct btrfs_key found_key;
227			u32 item_size;
228
229			if (item)
230				btrfs_release_path(path);
231			item = btrfs_lookup_csum(NULL, fs_info->csum_root,
232						 path, disk_bytenr, 0);
233			if (IS_ERR(item)) {
234				count = 1;
235				memset(csum, 0, csum_size);
236				if (BTRFS_I(inode)->root->root_key.objectid ==
237				    BTRFS_DATA_RELOC_TREE_OBJECTID) {
238					set_extent_bits(io_tree, offset,
239						offset + fs_info->sectorsize - 1,
240						EXTENT_NODATASUM);
241				} else {
242					btrfs_info_rl(fs_info,
243						   "no csum found for inode %llu start %llu",
244					       btrfs_ino(BTRFS_I(inode)), offset);
245				}
246				item = NULL;
247				btrfs_release_path(path);
248				goto found;
249			}
250			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
251					      path->slots[0]);
252
253			item_start_offset = found_key.offset;
254			item_size = btrfs_item_size_nr(path->nodes[0],
255						       path->slots[0]);
256			item_last_offset = item_start_offset +
257				(item_size / csum_size) *
258				fs_info->sectorsize;
259			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
260					      struct btrfs_csum_item);
261		}
262		/*
263		 * this byte range must be able to fit inside
264		 * a single leaf so it will also fit inside a u32
265		 */
266		diff = disk_bytenr - item_start_offset;
267		diff = diff / fs_info->sectorsize;
268		diff = diff * csum_size;
269		count = min_t(int, nblocks, (item_last_offset - disk_bytenr) >>
270					    inode->i_sb->s_blocksize_bits);
271		read_extent_buffer(path->nodes[0], csum,
272				   ((unsigned long)item) + diff,
273				   csum_size * count);
274found:
275		csum += count * csum_size;
276		nblocks -= count;
277next:
278		while (count--) {
279			disk_bytenr += fs_info->sectorsize;
280			offset += fs_info->sectorsize;
281			page_bytes_left -= fs_info->sectorsize;
282			if (!page_bytes_left)
283				break; /* move to next bio */
284		}
285	}
286
287	WARN_ON_ONCE(count);
288	btrfs_free_path(path);
289	return 0;
290}
291
292blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u32 *dst)
293{
294	return __btrfs_lookup_bio_sums(inode, bio, 0, dst, 0);
295}
296
297blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio, u64 offset)
298{
299	return __btrfs_lookup_bio_sums(inode, bio, offset, NULL, 1);
300}
301
302int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
303			     struct list_head *list, int search_commit)
304{
305	struct btrfs_fs_info *fs_info = root->fs_info;
306	struct btrfs_key key;
307	struct btrfs_path *path;
308	struct extent_buffer *leaf;
309	struct btrfs_ordered_sum *sums;
310	struct btrfs_csum_item *item;
311	LIST_HEAD(tmplist);
312	unsigned long offset;
313	int ret;
314	size_t size;
315	u64 csum_end;
316	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
317
318	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
319	       IS_ALIGNED(end + 1, fs_info->sectorsize));
320
321	path = btrfs_alloc_path();
322	if (!path)
323		return -ENOMEM;
324
325	if (search_commit) {
326		path->skip_locking = 1;
327		path->reada = READA_FORWARD;
328		path->search_commit_root = 1;
329	}
330
331	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
332	key.offset = start;
333	key.type = BTRFS_EXTENT_CSUM_KEY;
334
335	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
336	if (ret < 0)
337		goto fail;
338	if (ret > 0 && path->slots[0] > 0) {
339		leaf = path->nodes[0];
340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
341		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
342		    key.type == BTRFS_EXTENT_CSUM_KEY) {
343			offset = (start - key.offset) >>
344				 fs_info->sb->s_blocksize_bits;
345			if (offset * csum_size <
346			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
347				path->slots[0]--;
348		}
349	}
350
351	while (start <= end) {
352		leaf = path->nodes[0];
353		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
354			ret = btrfs_next_leaf(root, path);
355			if (ret < 0)
356				goto fail;
357			if (ret > 0)
358				break;
359			leaf = path->nodes[0];
360		}
361
362		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
363		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
364		    key.type != BTRFS_EXTENT_CSUM_KEY ||
365		    key.offset > end)
366			break;
367
368		if (key.offset > start)
369			start = key.offset;
370
371		size = btrfs_item_size_nr(leaf, path->slots[0]);
372		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
373		if (csum_end <= start) {
374			path->slots[0]++;
375			continue;
376		}
377
378		csum_end = min(csum_end, end + 1);
379		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
380				      struct btrfs_csum_item);
381		while (start < csum_end) {
382			size = min_t(size_t, csum_end - start,
383				     MAX_ORDERED_SUM_BYTES(fs_info));
384			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
385				       GFP_NOFS);
386			if (!sums) {
387				ret = -ENOMEM;
388				goto fail;
389			}
390
391			sums->bytenr = start;
392			sums->len = (int)size;
393
394			offset = (start - key.offset) >>
395				fs_info->sb->s_blocksize_bits;
396			offset *= csum_size;
397			size >>= fs_info->sb->s_blocksize_bits;
398
399			read_extent_buffer(path->nodes[0],
400					   sums->sums,
401					   ((unsigned long)item) + offset,
402					   csum_size * size);
403
404			start += fs_info->sectorsize * size;
405			list_add_tail(&sums->list, &tmplist);
406		}
407		path->slots[0]++;
408	}
409	ret = 0;
410fail:
411	while (ret < 0 && !list_empty(&tmplist)) {
412		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
413		list_del(&sums->list);
414		kfree(sums);
415	}
416	list_splice_tail(&tmplist, list);
417
418	btrfs_free_path(path);
419	return ret;
420}
421
422blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
 
 
 
 
 
 
 
 
 
 
423		       u64 file_start, int contig)
424{
425	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
426	struct btrfs_ordered_sum *sums;
427	struct btrfs_ordered_extent *ordered = NULL;
428	char *data;
429	struct bvec_iter iter;
430	struct bio_vec bvec;
431	int index;
432	int nr_sectors;
433	unsigned long total_bytes = 0;
434	unsigned long this_sum_bytes = 0;
435	int i;
436	u64 offset;
 
 
 
 
 
 
437
438	sums = kzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
439		       GFP_NOFS);
440	if (!sums)
441		return BLK_STS_RESOURCE;
442
443	sums->len = bio->bi_iter.bi_size;
444	INIT_LIST_HEAD(&sums->list);
445
446	if (contig)
447		offset = file_start;
448	else
449		offset = 0; /* shut up gcc */
450
451	sums->bytenr = (u64)bio->bi_iter.bi_sector << 9;
452	index = 0;
453
 
 
454	bio_for_each_segment(bvec, bio, iter) {
455		if (!contig)
456			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
457
458		if (!ordered) {
459			ordered = btrfs_lookup_ordered_extent(inode, offset);
460			BUG_ON(!ordered); /* Logic error */
 
 
 
 
 
 
 
 
 
 
 
461		}
462
463		data = kmap_atomic(bvec.bv_page);
464
465		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
466						 bvec.bv_len + fs_info->sectorsize
467						 - 1);
468
469		for (i = 0; i < nr_sectors; i++) {
470			if (offset >= ordered->file_offset + ordered->len ||
471				offset < ordered->file_offset) {
472				unsigned long bytes_left;
473
474				kunmap_atomic(data);
475				sums->len = this_sum_bytes;
476				this_sum_bytes = 0;
477				btrfs_add_ordered_sum(inode, ordered, sums);
478				btrfs_put_ordered_extent(ordered);
479
480				bytes_left = bio->bi_iter.bi_size - total_bytes;
481
482				sums = kzalloc(btrfs_ordered_sum_size(fs_info, bytes_left),
483					       GFP_NOFS);
 
 
484				BUG_ON(!sums); /* -ENOMEM */
485				sums->len = bytes_left;
486				ordered = btrfs_lookup_ordered_extent(inode,
487								offset);
488				ASSERT(ordered); /* Logic error */
489				sums->bytenr = ((u64)bio->bi_iter.bi_sector << 9)
490					+ total_bytes;
491				index = 0;
492
493				data = kmap_atomic(bvec.bv_page);
494			}
495
496			sums->sums[index] = ~(u32)0;
497			sums->sums[index]
498				= btrfs_csum_data(data + bvec.bv_offset
499						+ (i * fs_info->sectorsize),
500						sums->sums[index],
501						fs_info->sectorsize);
502			btrfs_csum_final(sums->sums[index],
503					(char *)(sums->sums + index));
504			index++;
505			offset += fs_info->sectorsize;
506			this_sum_bytes += fs_info->sectorsize;
507			total_bytes += fs_info->sectorsize;
508		}
509
510		kunmap_atomic(data);
511	}
512	this_sum_bytes = 0;
513	btrfs_add_ordered_sum(inode, ordered, sums);
514	btrfs_put_ordered_extent(ordered);
515	return 0;
516}
517
518/*
519 * helper function for csum removal, this expects the
520 * key to describe the csum pointed to by the path, and it expects
521 * the csum to overlap the range [bytenr, len]
522 *
523 * The csum should not be entirely contained in the range and the
524 * range should not be entirely contained in the csum.
525 *
526 * This calls btrfs_truncate_item with the correct args based on the
527 * overlap, and fixes up the key as required.
528 */
529static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
530				       struct btrfs_path *path,
531				       struct btrfs_key *key,
532				       u64 bytenr, u64 len)
533{
534	struct extent_buffer *leaf;
535	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
536	u64 csum_end;
537	u64 end_byte = bytenr + len;
538	u32 blocksize_bits = fs_info->sb->s_blocksize_bits;
539
540	leaf = path->nodes[0];
541	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
542	csum_end <<= fs_info->sb->s_blocksize_bits;
543	csum_end += key->offset;
544
545	if (key->offset < bytenr && csum_end <= end_byte) {
546		/*
547		 *         [ bytenr - len ]
548		 *         [   ]
549		 *   [csum     ]
550		 *   A simple truncate off the end of the item
551		 */
552		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
553		new_size *= csum_size;
554		btrfs_truncate_item(fs_info, path, new_size, 1);
555	} else if (key->offset >= bytenr && csum_end > end_byte &&
556		   end_byte > key->offset) {
557		/*
558		 *         [ bytenr - len ]
559		 *                 [ ]
560		 *                 [csum     ]
561		 * we need to truncate from the beginning of the csum
562		 */
563		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
564		new_size *= csum_size;
565
566		btrfs_truncate_item(fs_info, path, new_size, 0);
567
568		key->offset = end_byte;
569		btrfs_set_item_key_safe(fs_info, path, key);
570	} else {
571		BUG();
572	}
573}
574
575/*
576 * deletes the csum items from the csum tree for a given
577 * range of bytes.
578 */
579int btrfs_del_csums(struct btrfs_trans_handle *trans,
580		    struct btrfs_fs_info *fs_info, u64 bytenr, u64 len)
581{
582	struct btrfs_root *root = fs_info->csum_root;
583	struct btrfs_path *path;
584	struct btrfs_key key;
585	u64 end_byte = bytenr + len;
586	u64 csum_end;
587	struct extent_buffer *leaf;
588	int ret;
589	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
590	int blocksize_bits = fs_info->sb->s_blocksize_bits;
 
 
 
591
592	path = btrfs_alloc_path();
593	if (!path)
594		return -ENOMEM;
595
596	while (1) {
597		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
598		key.offset = end_byte - 1;
599		key.type = BTRFS_EXTENT_CSUM_KEY;
600
601		path->leave_spinning = 1;
602		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
603		if (ret > 0) {
 
604			if (path->slots[0] == 0)
605				break;
606			path->slots[0]--;
607		} else if (ret < 0) {
608			break;
609		}
610
611		leaf = path->nodes[0];
612		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
613
614		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
615		    key.type != BTRFS_EXTENT_CSUM_KEY) {
616			break;
617		}
618
619		if (key.offset >= end_byte)
620			break;
621
622		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
623		csum_end <<= blocksize_bits;
624		csum_end += key.offset;
625
626		/* this csum ends before we start, we're done */
627		if (csum_end <= bytenr)
628			break;
629
630		/* delete the entire item, it is inside our range */
631		if (key.offset >= bytenr && csum_end <= end_byte) {
632			int del_nr = 1;
633
634			/*
635			 * Check how many csum items preceding this one in this
636			 * leaf correspond to our range and then delete them all
637			 * at once.
638			 */
639			if (key.offset > bytenr && path->slots[0] > 0) {
640				int slot = path->slots[0] - 1;
641
642				while (slot >= 0) {
643					struct btrfs_key pk;
644
645					btrfs_item_key_to_cpu(leaf, &pk, slot);
646					if (pk.offset < bytenr ||
647					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
648					    pk.objectid !=
649					    BTRFS_EXTENT_CSUM_OBJECTID)
650						break;
651					path->slots[0] = slot;
652					del_nr++;
653					key.offset = pk.offset;
654					slot--;
655				}
656			}
657			ret = btrfs_del_items(trans, root, path,
658					      path->slots[0], del_nr);
659			if (ret)
660				goto out;
661			if (key.offset == bytenr)
662				break;
663		} else if (key.offset < bytenr && csum_end > end_byte) {
664			unsigned long offset;
665			unsigned long shift_len;
666			unsigned long item_offset;
667			/*
668			 *        [ bytenr - len ]
669			 *     [csum                ]
670			 *
671			 * Our bytes are in the middle of the csum,
672			 * we need to split this item and insert a new one.
673			 *
674			 * But we can't drop the path because the
675			 * csum could change, get removed, extended etc.
676			 *
677			 * The trick here is the max size of a csum item leaves
678			 * enough room in the tree block for a single
679			 * item header.  So, we split the item in place,
680			 * adding a new header pointing to the existing
681			 * bytes.  Then we loop around again and we have
682			 * a nicely formed csum item that we can neatly
683			 * truncate.
684			 */
685			offset = (bytenr - key.offset) >> blocksize_bits;
686			offset *= csum_size;
687
688			shift_len = (len >> blocksize_bits) * csum_size;
689
690			item_offset = btrfs_item_ptr_offset(leaf,
691							    path->slots[0]);
692
693			memzero_extent_buffer(leaf, item_offset + offset,
694					     shift_len);
695			key.offset = bytenr;
696
697			/*
698			 * btrfs_split_item returns -EAGAIN when the
699			 * item changed size or key
700			 */
701			ret = btrfs_split_item(trans, root, path, &key, offset);
702			if (ret && ret != -EAGAIN) {
703				btrfs_abort_transaction(trans, ret);
704				goto out;
705			}
 
706
707			key.offset = end_byte - 1;
708		} else {
709			truncate_one_csum(fs_info, path, &key, bytenr, len);
710			if (key.offset < bytenr)
711				break;
712		}
713		btrfs_release_path(path);
714	}
715	ret = 0;
716out:
717	btrfs_free_path(path);
718	return ret;
719}
720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
722			   struct btrfs_root *root,
723			   struct btrfs_ordered_sum *sums)
724{
725	struct btrfs_fs_info *fs_info = root->fs_info;
726	struct btrfs_key file_key;
727	struct btrfs_key found_key;
728	struct btrfs_path *path;
729	struct btrfs_csum_item *item;
730	struct btrfs_csum_item *item_end;
731	struct extent_buffer *leaf = NULL;
732	u64 next_offset;
733	u64 total_bytes = 0;
734	u64 csum_offset;
735	u64 bytenr;
736	u32 nritems;
737	u32 ins_size;
738	int index = 0;
739	int found_next;
740	int ret;
741	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
742
743	path = btrfs_alloc_path();
744	if (!path)
745		return -ENOMEM;
746again:
747	next_offset = (u64)-1;
748	found_next = 0;
749	bytenr = sums->bytenr + total_bytes;
750	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
751	file_key.offset = bytenr;
752	file_key.type = BTRFS_EXTENT_CSUM_KEY;
753
754	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
755	if (!IS_ERR(item)) {
756		ret = 0;
757		leaf = path->nodes[0];
758		item_end = btrfs_item_ptr(leaf, path->slots[0],
759					  struct btrfs_csum_item);
760		item_end = (struct btrfs_csum_item *)((char *)item_end +
761			   btrfs_item_size_nr(leaf, path->slots[0]));
762		goto found;
763	}
764	ret = PTR_ERR(item);
765	if (ret != -EFBIG && ret != -ENOENT)
766		goto fail_unlock;
767
768	if (ret == -EFBIG) {
769		u32 item_size;
770		/* we found one, but it isn't big enough yet */
771		leaf = path->nodes[0];
772		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
773		if ((item_size / csum_size) >=
774		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
775			/* already at max size, make a new one */
776			goto insert;
777		}
778	} else {
779		int slot = path->slots[0] + 1;
780		/* we didn't find a csum item, insert one */
781		nritems = btrfs_header_nritems(path->nodes[0]);
782		if (!nritems || (path->slots[0] >= nritems - 1)) {
783			ret = btrfs_next_leaf(root, path);
784			if (ret == 1)
785				found_next = 1;
786			if (ret != 0)
787				goto insert;
788			slot = path->slots[0];
789		}
790		btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
791		if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
792		    found_key.type != BTRFS_EXTENT_CSUM_KEY) {
793			found_next = 1;
794			goto insert;
795		}
796		next_offset = found_key.offset;
797		found_next = 1;
798		goto insert;
799	}
800
801	/*
802	 * at this point, we know the tree has an item, but it isn't big
803	 * enough yet to put our csum in.  Grow it
 
 
 
 
 
 
804	 */
 
 
 
 
 
 
 
805	btrfs_release_path(path);
 
806	ret = btrfs_search_slot(trans, root, &file_key, path,
807				csum_size, 1);
 
808	if (ret < 0)
809		goto fail_unlock;
810
811	if (ret > 0) {
812		if (path->slots[0] == 0)
813			goto insert;
814		path->slots[0]--;
815	}
816
817	leaf = path->nodes[0];
818	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
819	csum_offset = (bytenr - found_key.offset) >>
820			fs_info->sb->s_blocksize_bits;
821
822	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
823	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
824	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
825		goto insert;
826	}
827
 
828	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
829	    csum_size) {
830		int extend_nr;
831		u64 tmp;
832		u32 diff;
833		u32 free_space;
834
835		if (btrfs_leaf_free_space(fs_info, leaf) <
836				 sizeof(struct btrfs_item) + csum_size * 2)
837			goto insert;
838
839		free_space = btrfs_leaf_free_space(fs_info, leaf) -
840					 sizeof(struct btrfs_item) - csum_size;
841		tmp = sums->len - total_bytes;
842		tmp >>= fs_info->sb->s_blocksize_bits;
843		WARN_ON(tmp < 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
844
845		extend_nr = max_t(int, 1, (int)tmp);
846		diff = (csum_offset + extend_nr) * csum_size;
847		diff = min(diff,
848			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
849
850		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
851		diff = min(free_space, diff);
852		diff /= csum_size;
853		diff *= csum_size;
854
855		btrfs_extend_item(fs_info, path, diff);
856		ret = 0;
857		goto csum;
858	}
859
860insert:
861	btrfs_release_path(path);
862	csum_offset = 0;
863	if (found_next) {
864		u64 tmp;
865
866		tmp = sums->len - total_bytes;
867		tmp >>= fs_info->sb->s_blocksize_bits;
868		tmp = min(tmp, (next_offset - file_key.offset) >>
869					 fs_info->sb->s_blocksize_bits);
870
871		tmp = max_t(u64, 1, tmp);
872		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
873		ins_size = csum_size * tmp;
874	} else {
875		ins_size = csum_size;
876	}
877	path->leave_spinning = 1;
878	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
879				      ins_size);
880	path->leave_spinning = 0;
881	if (ret < 0)
882		goto fail_unlock;
883	if (WARN_ON(ret != 0))
884		goto fail_unlock;
885	leaf = path->nodes[0];
886csum:
887	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
888	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
889				      btrfs_item_size_nr(leaf, path->slots[0]));
890	item = (struct btrfs_csum_item *)((unsigned char *)item +
891					  csum_offset * csum_size);
892found:
893	ins_size = (u32)(sums->len - total_bytes) >>
894		   fs_info->sb->s_blocksize_bits;
895	ins_size *= csum_size;
896	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
897			      ins_size);
898	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
899			    ins_size);
900
 
901	ins_size /= csum_size;
902	total_bytes += ins_size * fs_info->sectorsize;
903	index += ins_size;
904
905	btrfs_mark_buffer_dirty(path->nodes[0]);
906	if (total_bytes < sums->len) {
907		btrfs_release_path(path);
908		cond_resched();
909		goto again;
910	}
911out:
912	btrfs_free_path(path);
913	return ret;
914
915fail_unlock:
916	goto out;
917}
918
919void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
920				     const struct btrfs_path *path,
921				     struct btrfs_file_extent_item *fi,
922				     const bool new_inline,
923				     struct extent_map *em)
924{
925	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
926	struct btrfs_root *root = inode->root;
927	struct extent_buffer *leaf = path->nodes[0];
928	const int slot = path->slots[0];
929	struct btrfs_key key;
930	u64 extent_start, extent_end;
931	u64 bytenr;
932	u8 type = btrfs_file_extent_type(leaf, fi);
933	int compress_type = btrfs_file_extent_compression(leaf, fi);
934
935	em->bdev = fs_info->fs_devices->latest_bdev;
936	btrfs_item_key_to_cpu(leaf, &key, slot);
937	extent_start = key.offset;
938
939	if (type == BTRFS_FILE_EXTENT_REG ||
940	    type == BTRFS_FILE_EXTENT_PREALLOC) {
941		extent_end = extent_start +
942			btrfs_file_extent_num_bytes(leaf, fi);
943	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
944		size_t size;
945		size = btrfs_file_extent_inline_len(leaf, slot, fi);
946		extent_end = ALIGN(extent_start + size,
947				   fs_info->sectorsize);
948	}
949
950	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
951	if (type == BTRFS_FILE_EXTENT_REG ||
952	    type == BTRFS_FILE_EXTENT_PREALLOC) {
953		em->start = extent_start;
954		em->len = extent_end - extent_start;
955		em->orig_start = extent_start -
956			btrfs_file_extent_offset(leaf, fi);
957		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
958		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
959		if (bytenr == 0) {
960			em->block_start = EXTENT_MAP_HOLE;
961			return;
962		}
963		if (compress_type != BTRFS_COMPRESS_NONE) {
964			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
965			em->compress_type = compress_type;
966			em->block_start = bytenr;
967			em->block_len = em->orig_block_len;
968		} else {
969			bytenr += btrfs_file_extent_offset(leaf, fi);
970			em->block_start = bytenr;
971			em->block_len = em->len;
972			if (type == BTRFS_FILE_EXTENT_PREALLOC)
973				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
974		}
975	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
976		em->block_start = EXTENT_MAP_INLINE;
977		em->start = extent_start;
978		em->len = extent_end - extent_start;
979		/*
980		 * Initialize orig_start and block_len with the same values
981		 * as in inode.c:btrfs_get_extent().
982		 */
983		em->orig_start = EXTENT_MAP_HOLE;
984		em->block_len = (u64)-1;
985		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
986			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
987			em->compress_type = compress_type;
988		}
989	} else {
990		btrfs_err(fs_info,
991			  "unknown file extent item type %d, inode %llu, offset %llu, "
992			  "root %llu", type, btrfs_ino(inode), extent_start,
993			  root->root_key.objectid);
994	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
995}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "misc.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "print-tree.h"
  18#include "compression.h"
  19
  20#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  21				   sizeof(struct btrfs_item) * 2) / \
  22				  size) - 1))
  23
  24#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  25				       PAGE_SIZE))
  26
  27/**
  28 * Set inode's size according to filesystem options
  29 *
  30 * @inode:      inode we want to update the disk_i_size for
  31 * @new_i_size: i_size we want to set to, 0 if we use i_size
  32 *
  33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  34 * returns as it is perfectly fine with a file that has holes without hole file
  35 * extent items.
  36 *
  37 * However without NO_HOLES we need to only return the area that is contiguous
  38 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  39 * to an extent that has a gap in between.
  40 *
  41 * Finally new_i_size should only be set in the case of truncate where we're not
  42 * ready to use i_size_read() as the limiter yet.
  43 */
  44void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  45{
  46	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  47	u64 start, end, i_size;
  48	int ret;
  49
  50	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  51	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  52		inode->disk_i_size = i_size;
  53		return;
  54	}
  55
  56	spin_lock(&inode->lock);
  57	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
  58					 &end, EXTENT_DIRTY);
  59	if (!ret && start == 0)
  60		i_size = min(i_size, end + 1);
  61	else
  62		i_size = 0;
  63	inode->disk_i_size = i_size;
  64	spin_unlock(&inode->lock);
  65}
  66
  67/**
  68 * Mark range within a file as having a new extent inserted
  69 *
  70 * @inode: inode being modified
  71 * @start: start file offset of the file extent we've inserted
  72 * @len:   logical length of the file extent item
  73 *
  74 * Call when we are inserting a new file extent where there was none before.
  75 * Does not need to call this in the case where we're replacing an existing file
  76 * extent, however if not sure it's fine to call this multiple times.
  77 *
  78 * The start and len must match the file extent item, so thus must be sectorsize
  79 * aligned.
  80 */
  81int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  82				      u64 len)
  83{
  84	if (len == 0)
  85		return 0;
  86
  87	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  88
  89	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  90		return 0;
  91	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  92			       EXTENT_DIRTY);
  93}
  94
  95/**
  96 * Marks an inode range as not having a backing extent
  97 *
  98 * @inode: inode being modified
  99 * @start: start file offset of the file extent we've inserted
 100 * @len:   logical length of the file extent item
 101 *
 102 * Called when we drop a file extent, for example when we truncate.  Doesn't
 103 * need to be called for cases where we're replacing a file extent, like when
 104 * we've COWed a file extent.
 105 *
 106 * The start and len must match the file extent item, so thus must be sectorsize
 107 * aligned.
 108 */
 109int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 110					u64 len)
 111{
 112	if (len == 0)
 113		return 0;
 114
 115	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 116	       len == (u64)-1);
 117
 118	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 119		return 0;
 120	return clear_extent_bit(&inode->file_extent_tree, start,
 121				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
 122}
 123
 124static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
 125					u16 csum_size)
 126{
 127	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
 128
 129	return ncsums * fs_info->sectorsize;
 130}
 131
 132int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 133			     struct btrfs_root *root,
 134			     u64 objectid, u64 pos,
 135			     u64 disk_offset, u64 disk_num_bytes,
 136			     u64 num_bytes, u64 offset, u64 ram_bytes,
 137			     u8 compression, u8 encryption, u16 other_encoding)
 138{
 139	int ret = 0;
 140	struct btrfs_file_extent_item *item;
 141	struct btrfs_key file_key;
 142	struct btrfs_path *path;
 143	struct extent_buffer *leaf;
 144
 145	path = btrfs_alloc_path();
 146	if (!path)
 147		return -ENOMEM;
 148	file_key.objectid = objectid;
 149	file_key.offset = pos;
 150	file_key.type = BTRFS_EXTENT_DATA_KEY;
 151
 
 152	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 153				      sizeof(*item));
 154	if (ret < 0)
 155		goto out;
 156	BUG_ON(ret); /* Can't happen */
 157	leaf = path->nodes[0];
 158	item = btrfs_item_ptr(leaf, path->slots[0],
 159			      struct btrfs_file_extent_item);
 160	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 161	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 162	btrfs_set_file_extent_offset(leaf, item, offset);
 163	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 164	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 165	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 166	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 167	btrfs_set_file_extent_compression(leaf, item, compression);
 168	btrfs_set_file_extent_encryption(leaf, item, encryption);
 169	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 170
 171	btrfs_mark_buffer_dirty(leaf);
 172out:
 173	btrfs_free_path(path);
 174	return ret;
 175}
 176
 177static struct btrfs_csum_item *
 178btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 179		  struct btrfs_root *root,
 180		  struct btrfs_path *path,
 181		  u64 bytenr, int cow)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	int ret;
 185	struct btrfs_key file_key;
 186	struct btrfs_key found_key;
 187	struct btrfs_csum_item *item;
 188	struct extent_buffer *leaf;
 189	u64 csum_offset = 0;
 190	const u32 csum_size = fs_info->csum_size;
 191	int csums_in_item;
 192
 193	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 194	file_key.offset = bytenr;
 195	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 196	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 197	if (ret < 0)
 198		goto fail;
 199	leaf = path->nodes[0];
 200	if (ret > 0) {
 201		ret = 1;
 202		if (path->slots[0] == 0)
 203			goto fail;
 204		path->slots[0]--;
 205		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 206		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 207			goto fail;
 208
 209		csum_offset = (bytenr - found_key.offset) >>
 210				fs_info->sectorsize_bits;
 211		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 212		csums_in_item /= csum_size;
 213
 214		if (csum_offset == csums_in_item) {
 215			ret = -EFBIG;
 216			goto fail;
 217		} else if (csum_offset > csums_in_item) {
 218			goto fail;
 219		}
 220	}
 221	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 222	item = (struct btrfs_csum_item *)((unsigned char *)item +
 223					  csum_offset * csum_size);
 224	return item;
 225fail:
 226	if (ret > 0)
 227		ret = -ENOENT;
 228	return ERR_PTR(ret);
 229}
 230
 231int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 232			     struct btrfs_root *root,
 233			     struct btrfs_path *path, u64 objectid,
 234			     u64 offset, int mod)
 235{
 236	int ret;
 237	struct btrfs_key file_key;
 238	int ins_len = mod < 0 ? -1 : 0;
 239	int cow = mod != 0;
 240
 241	file_key.objectid = objectid;
 242	file_key.offset = offset;
 243	file_key.type = BTRFS_EXTENT_DATA_KEY;
 244	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 245	return ret;
 246}
 247
 248/*
 249 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 250 * estore the result to @dst.
 251 *
 252 * Return >0 for the number of sectors we found.
 253 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 254 * for it. Caller may want to try next sector until one range is hit.
 255 * Return <0 for fatal error.
 256 */
 257static int search_csum_tree(struct btrfs_fs_info *fs_info,
 258			    struct btrfs_path *path, u64 disk_bytenr,
 259			    u64 len, u8 *dst)
 260{
 261	struct btrfs_csum_item *item = NULL;
 262	struct btrfs_key key;
 263	const u32 sectorsize = fs_info->sectorsize;
 264	const u32 csum_size = fs_info->csum_size;
 265	u32 itemsize;
 266	int ret;
 267	u64 csum_start;
 268	u64 csum_len;
 269
 270	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 271	       IS_ALIGNED(len, sectorsize));
 272
 273	/* Check if the current csum item covers disk_bytenr */
 274	if (path->nodes[0]) {
 275		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 276				      struct btrfs_csum_item);
 277		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 278		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 279
 280		csum_start = key.offset;
 281		csum_len = (itemsize / csum_size) * sectorsize;
 282
 283		if (in_range(disk_bytenr, csum_start, csum_len))
 284			goto found;
 285	}
 286
 287	/* Current item doesn't contain the desired range, search again */
 288	btrfs_release_path(path);
 289	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
 290	if (IS_ERR(item)) {
 291		ret = PTR_ERR(item);
 292		goto out;
 293	}
 294	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 295	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 296
 297	csum_start = key.offset;
 298	csum_len = (itemsize / csum_size) * sectorsize;
 299	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 300
 301found:
 302	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 303		   disk_bytenr) >> fs_info->sectorsize_bits;
 304	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 305			ret * csum_size);
 306out:
 307	if (ret == -ENOENT)
 308		ret = 0;
 309	return ret;
 310}
 311
 312/*
 313 * Locate the file_offset of @cur_disk_bytenr of a @bio.
 314 *
 315 * Bio of btrfs represents read range of
 316 * [bi_sector << 9, bi_sector << 9 + bi_size).
 317 * Knowing this, we can iterate through each bvec to locate the page belong to
 318 * @cur_disk_bytenr and get the file offset.
 319 *
 320 * @inode is used to determine if the bvec page really belongs to @inode.
 321 *
 322 * Return 0 if we can't find the file offset
 323 * Return >0 if we find the file offset and restore it to @file_offset_ret
 324 */
 325static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
 326				     u64 disk_bytenr, u64 *file_offset_ret)
 327{
 328	struct bvec_iter iter;
 329	struct bio_vec bvec;
 330	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 331	int ret = 0;
 332
 333	bio_for_each_segment(bvec, bio, iter) {
 334		struct page *page = bvec.bv_page;
 335
 336		if (cur > disk_bytenr)
 337			break;
 338		if (cur + bvec.bv_len <= disk_bytenr) {
 339			cur += bvec.bv_len;
 340			continue;
 341		}
 342		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
 343		if (page->mapping && page->mapping->host &&
 344		    page->mapping->host == inode) {
 345			ret = 1;
 346			*file_offset_ret = page_offset(page) + bvec.bv_offset +
 347					   disk_bytenr - cur;
 348			break;
 349		}
 350	}
 351	return ret;
 352}
 353
 354/**
 355 * Lookup the checksum for the read bio in csum tree.
 356 *
 357 * @inode: inode that the bio is for.
 358 * @bio: bio to look up.
 359 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
 360 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 361 *       NULL, the checksum buffer is allocated and returned in
 362 *       btrfs_io_bio(bio)->csum instead.
 363 *
 364 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 365 */
 366blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
 367{
 368	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 
 
 
 369	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 370	struct btrfs_path *path;
 371	const u32 sectorsize = fs_info->sectorsize;
 372	const u32 csum_size = fs_info->csum_size;
 373	u32 orig_len = bio->bi_iter.bi_size;
 374	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 375	u64 cur_disk_bytenr;
 376	u8 *csum;
 377	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 
 
 
 
 
 
 378	int count = 0;
 
 379
 380	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
 381		return BLK_STS_OK;
 382
 383	/*
 384	 * This function is only called for read bio.
 385	 *
 386	 * This means two things:
 387	 * - All our csums should only be in csum tree
 388	 *   No ordered extents csums, as ordered extents are only for write
 389	 *   path.
 390	 * - No need to bother any other info from bvec
 391	 *   Since we're looking up csums, the only important info is the
 392	 *   disk_bytenr and the length, which can be extracted from bi_iter
 393	 *   directly.
 394	 */
 395	ASSERT(bio_op(bio) == REQ_OP_READ);
 396	path = btrfs_alloc_path();
 397	if (!path)
 398		return BLK_STS_RESOURCE;
 399
 
 400	if (!dst) {
 401		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 402
 403		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 404			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 405							GFP_NOFS);
 406			if (!btrfs_bio->csum) {
 407				btrfs_free_path(path);
 408				return BLK_STS_RESOURCE;
 409			}
 
 
 410		} else {
 411			btrfs_bio->csum = btrfs_bio->csum_inline;
 412		}
 413		csum = btrfs_bio->csum;
 414	} else {
 415		csum = dst;
 416	}
 417
 418	/*
 419	 * If requested number of sectors is larger than one leaf can contain,
 420	 * kick the readahead for csum tree.
 421	 */
 422	if (nblocks > fs_info->csums_per_leaf)
 423		path->reada = READA_FORWARD;
 424
 425	/*
 426	 * the free space stuff is only read when it hasn't been
 427	 * updated in the current transaction.  So, we can safely
 428	 * read from the commit root and sidestep a nasty deadlock
 429	 * between reading the free space cache and updating the csum tree.
 430	 */
 431	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 432		path->search_commit_root = 1;
 433		path->skip_locking = 1;
 434	}
 435
 436	for (cur_disk_bytenr = orig_disk_bytenr;
 437	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
 438	     cur_disk_bytenr += (count * sectorsize)) {
 439		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
 440		unsigned int sector_offset;
 441		u8 *csum_dst;
 
 
 442
 443		/*
 444		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
 445		 * we're calculating the offset to the bio start.
 446		 *
 447		 * Bio size is limited to UINT_MAX, thus unsigned int is large
 448		 * enough to contain the raw result, not to mention the right
 449		 * shifted result.
 450		 */
 451		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
 452		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
 453				fs_info->sectorsize_bits;
 454		csum_dst = csum + sector_offset * csum_size;
 455
 456		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 457					 search_len, csum_dst);
 458		if (count <= 0) {
 459			/*
 460			 * Either we hit a critical error or we didn't find
 461			 * the csum.
 462			 * Either way, we put zero into the csums dst, and skip
 463			 * to the next sector.
 464			 */
 465			memset(csum_dst, 0, csum_size);
 466			count = 1;
 467
 468			/*
 469			 * For data reloc inode, we need to mark the range
 470			 * NODATASUM so that balance won't report false csum
 471			 * error.
 472			 */
 473			if (BTRFS_I(inode)->root->root_key.objectid ==
 474			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 475				u64 file_offset;
 476				int ret;
 477
 478				ret = search_file_offset_in_bio(bio, inode,
 479						cur_disk_bytenr, &file_offset);
 480				if (ret)
 481					set_extent_bits(io_tree, file_offset,
 482						file_offset + sectorsize - 1,
 
 483						EXTENT_NODATASUM);
 484			} else {
 485				btrfs_warn_rl(fs_info,
 486			"csum hole found for disk bytenr range [%llu, %llu)",
 487				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 
 
 
 
 488			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489		}
 490	}
 491
 
 492	btrfs_free_path(path);
 493	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 494}
 495
 496int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 497			     struct list_head *list, int search_commit)
 498{
 499	struct btrfs_fs_info *fs_info = root->fs_info;
 500	struct btrfs_key key;
 501	struct btrfs_path *path;
 502	struct extent_buffer *leaf;
 503	struct btrfs_ordered_sum *sums;
 504	struct btrfs_csum_item *item;
 505	LIST_HEAD(tmplist);
 506	unsigned long offset;
 507	int ret;
 508	size_t size;
 509	u64 csum_end;
 510	const u32 csum_size = fs_info->csum_size;
 511
 512	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 513	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 514
 515	path = btrfs_alloc_path();
 516	if (!path)
 517		return -ENOMEM;
 518
 519	if (search_commit) {
 520		path->skip_locking = 1;
 521		path->reada = READA_FORWARD;
 522		path->search_commit_root = 1;
 523	}
 524
 525	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 526	key.offset = start;
 527	key.type = BTRFS_EXTENT_CSUM_KEY;
 528
 529	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 530	if (ret < 0)
 531		goto fail;
 532	if (ret > 0 && path->slots[0] > 0) {
 533		leaf = path->nodes[0];
 534		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 535		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 536		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 537			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 
 538			if (offset * csum_size <
 539			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 540				path->slots[0]--;
 541		}
 542	}
 543
 544	while (start <= end) {
 545		leaf = path->nodes[0];
 546		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 547			ret = btrfs_next_leaf(root, path);
 548			if (ret < 0)
 549				goto fail;
 550			if (ret > 0)
 551				break;
 552			leaf = path->nodes[0];
 553		}
 554
 555		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 556		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 557		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 558		    key.offset > end)
 559			break;
 560
 561		if (key.offset > start)
 562			start = key.offset;
 563
 564		size = btrfs_item_size_nr(leaf, path->slots[0]);
 565		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 566		if (csum_end <= start) {
 567			path->slots[0]++;
 568			continue;
 569		}
 570
 571		csum_end = min(csum_end, end + 1);
 572		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 573				      struct btrfs_csum_item);
 574		while (start < csum_end) {
 575			size = min_t(size_t, csum_end - start,
 576				     max_ordered_sum_bytes(fs_info, csum_size));
 577			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 578				       GFP_NOFS);
 579			if (!sums) {
 580				ret = -ENOMEM;
 581				goto fail;
 582			}
 583
 584			sums->bytenr = start;
 585			sums->len = (int)size;
 586
 587			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 
 588			offset *= csum_size;
 589			size >>= fs_info->sectorsize_bits;
 590
 591			read_extent_buffer(path->nodes[0],
 592					   sums->sums,
 593					   ((unsigned long)item) + offset,
 594					   csum_size * size);
 595
 596			start += fs_info->sectorsize * size;
 597			list_add_tail(&sums->list, &tmplist);
 598		}
 599		path->slots[0]++;
 600	}
 601	ret = 0;
 602fail:
 603	while (ret < 0 && !list_empty(&tmplist)) {
 604		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 605		list_del(&sums->list);
 606		kfree(sums);
 607	}
 608	list_splice_tail(&tmplist, list);
 609
 610	btrfs_free_path(path);
 611	return ret;
 612}
 613
 614/*
 615 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 616 * @inode:	 Owner of the data inside the bio
 617 * @bio:	 Contains the data to be checksummed
 618 * @file_start:  offset in file this bio begins to describe
 619 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 620 *		 contiguous and they begin at @file_start in the file. False/0
 621 *		 means this bio can contain potentially discontiguous bio vecs
 622 *		 so the logical offset of each should be calculated separately.
 623 */
 624blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 625		       u64 file_start, int contig)
 626{
 627	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 628	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 629	struct btrfs_ordered_sum *sums;
 630	struct btrfs_ordered_extent *ordered = NULL;
 631	char *data;
 632	struct bvec_iter iter;
 633	struct bio_vec bvec;
 634	int index;
 635	int nr_sectors;
 636	unsigned long total_bytes = 0;
 637	unsigned long this_sum_bytes = 0;
 638	int i;
 639	u64 offset;
 640	unsigned nofs_flag;
 641
 642	nofs_flag = memalloc_nofs_save();
 643	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 644		       GFP_KERNEL);
 645	memalloc_nofs_restore(nofs_flag);
 646
 
 
 647	if (!sums)
 648		return BLK_STS_RESOURCE;
 649
 650	sums->len = bio->bi_iter.bi_size;
 651	INIT_LIST_HEAD(&sums->list);
 652
 653	if (contig)
 654		offset = file_start;
 655	else
 656		offset = 0; /* shut up gcc */
 657
 658	sums->bytenr = bio->bi_iter.bi_sector << 9;
 659	index = 0;
 660
 661	shash->tfm = fs_info->csum_shash;
 662
 663	bio_for_each_segment(bvec, bio, iter) {
 664		if (!contig)
 665			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 666
 667		if (!ordered) {
 668			ordered = btrfs_lookup_ordered_extent(inode, offset);
 669			/*
 670			 * The bio range is not covered by any ordered extent,
 671			 * must be a code logic error.
 672			 */
 673			if (unlikely(!ordered)) {
 674				WARN(1, KERN_WARNING
 675			"no ordered extent for root %llu ino %llu offset %llu\n",
 676				     inode->root->root_key.objectid,
 677				     btrfs_ino(inode), offset);
 678				kvfree(sums);
 679				return BLK_STS_IOERR;
 680			}
 681		}
 682
 
 
 683		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 684						 bvec.bv_len + fs_info->sectorsize
 685						 - 1);
 686
 687		for (i = 0; i < nr_sectors; i++) {
 688			if (offset >= ordered->file_offset + ordered->num_bytes ||
 689			    offset < ordered->file_offset) {
 690				unsigned long bytes_left;
 691
 
 692				sums->len = this_sum_bytes;
 693				this_sum_bytes = 0;
 694				btrfs_add_ordered_sum(ordered, sums);
 695				btrfs_put_ordered_extent(ordered);
 696
 697				bytes_left = bio->bi_iter.bi_size - total_bytes;
 698
 699				nofs_flag = memalloc_nofs_save();
 700				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 701						      bytes_left), GFP_KERNEL);
 702				memalloc_nofs_restore(nofs_flag);
 703				BUG_ON(!sums); /* -ENOMEM */
 704				sums->len = bytes_left;
 705				ordered = btrfs_lookup_ordered_extent(inode,
 706								offset);
 707				ASSERT(ordered); /* Logic error */
 708				sums->bytenr = (bio->bi_iter.bi_sector << 9)
 709					+ total_bytes;
 710				index = 0;
 
 
 711			}
 712
 713			data = kmap_atomic(bvec.bv_page);
 714			crypto_shash_digest(shash, data + bvec.bv_offset
 715					    + (i * fs_info->sectorsize),
 716					    fs_info->sectorsize,
 717					    sums->sums + index);
 718			kunmap_atomic(data);
 719			index += fs_info->csum_size;
 
 
 720			offset += fs_info->sectorsize;
 721			this_sum_bytes += fs_info->sectorsize;
 722			total_bytes += fs_info->sectorsize;
 723		}
 724
 
 725	}
 726	this_sum_bytes = 0;
 727	btrfs_add_ordered_sum(ordered, sums);
 728	btrfs_put_ordered_extent(ordered);
 729	return 0;
 730}
 731
 732/*
 733 * helper function for csum removal, this expects the
 734 * key to describe the csum pointed to by the path, and it expects
 735 * the csum to overlap the range [bytenr, len]
 736 *
 737 * The csum should not be entirely contained in the range and the
 738 * range should not be entirely contained in the csum.
 739 *
 740 * This calls btrfs_truncate_item with the correct args based on the
 741 * overlap, and fixes up the key as required.
 742 */
 743static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 744				       struct btrfs_path *path,
 745				       struct btrfs_key *key,
 746				       u64 bytenr, u64 len)
 747{
 748	struct extent_buffer *leaf;
 749	const u32 csum_size = fs_info->csum_size;
 750	u64 csum_end;
 751	u64 end_byte = bytenr + len;
 752	u32 blocksize_bits = fs_info->sectorsize_bits;
 753
 754	leaf = path->nodes[0];
 755	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 756	csum_end <<= blocksize_bits;
 757	csum_end += key->offset;
 758
 759	if (key->offset < bytenr && csum_end <= end_byte) {
 760		/*
 761		 *         [ bytenr - len ]
 762		 *         [   ]
 763		 *   [csum     ]
 764		 *   A simple truncate off the end of the item
 765		 */
 766		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 767		new_size *= csum_size;
 768		btrfs_truncate_item(path, new_size, 1);
 769	} else if (key->offset >= bytenr && csum_end > end_byte &&
 770		   end_byte > key->offset) {
 771		/*
 772		 *         [ bytenr - len ]
 773		 *                 [ ]
 774		 *                 [csum     ]
 775		 * we need to truncate from the beginning of the csum
 776		 */
 777		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 778		new_size *= csum_size;
 779
 780		btrfs_truncate_item(path, new_size, 0);
 781
 782		key->offset = end_byte;
 783		btrfs_set_item_key_safe(fs_info, path, key);
 784	} else {
 785		BUG();
 786	}
 787}
 788
 789/*
 790 * deletes the csum items from the csum tree for a given
 791 * range of bytes.
 792 */
 793int btrfs_del_csums(struct btrfs_trans_handle *trans,
 794		    struct btrfs_root *root, u64 bytenr, u64 len)
 795{
 796	struct btrfs_fs_info *fs_info = trans->fs_info;
 797	struct btrfs_path *path;
 798	struct btrfs_key key;
 799	u64 end_byte = bytenr + len;
 800	u64 csum_end;
 801	struct extent_buffer *leaf;
 802	int ret = 0;
 803	const u32 csum_size = fs_info->csum_size;
 804	u32 blocksize_bits = fs_info->sectorsize_bits;
 805
 806	ASSERT(root == fs_info->csum_root ||
 807	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 808
 809	path = btrfs_alloc_path();
 810	if (!path)
 811		return -ENOMEM;
 812
 813	while (1) {
 814		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 815		key.offset = end_byte - 1;
 816		key.type = BTRFS_EXTENT_CSUM_KEY;
 817
 
 818		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 819		if (ret > 0) {
 820			ret = 0;
 821			if (path->slots[0] == 0)
 822				break;
 823			path->slots[0]--;
 824		} else if (ret < 0) {
 825			break;
 826		}
 827
 828		leaf = path->nodes[0];
 829		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 830
 831		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 832		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 833			break;
 834		}
 835
 836		if (key.offset >= end_byte)
 837			break;
 838
 839		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 840		csum_end <<= blocksize_bits;
 841		csum_end += key.offset;
 842
 843		/* this csum ends before we start, we're done */
 844		if (csum_end <= bytenr)
 845			break;
 846
 847		/* delete the entire item, it is inside our range */
 848		if (key.offset >= bytenr && csum_end <= end_byte) {
 849			int del_nr = 1;
 850
 851			/*
 852			 * Check how many csum items preceding this one in this
 853			 * leaf correspond to our range and then delete them all
 854			 * at once.
 855			 */
 856			if (key.offset > bytenr && path->slots[0] > 0) {
 857				int slot = path->slots[0] - 1;
 858
 859				while (slot >= 0) {
 860					struct btrfs_key pk;
 861
 862					btrfs_item_key_to_cpu(leaf, &pk, slot);
 863					if (pk.offset < bytenr ||
 864					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 865					    pk.objectid !=
 866					    BTRFS_EXTENT_CSUM_OBJECTID)
 867						break;
 868					path->slots[0] = slot;
 869					del_nr++;
 870					key.offset = pk.offset;
 871					slot--;
 872				}
 873			}
 874			ret = btrfs_del_items(trans, root, path,
 875					      path->slots[0], del_nr);
 876			if (ret)
 877				break;
 878			if (key.offset == bytenr)
 879				break;
 880		} else if (key.offset < bytenr && csum_end > end_byte) {
 881			unsigned long offset;
 882			unsigned long shift_len;
 883			unsigned long item_offset;
 884			/*
 885			 *        [ bytenr - len ]
 886			 *     [csum                ]
 887			 *
 888			 * Our bytes are in the middle of the csum,
 889			 * we need to split this item and insert a new one.
 890			 *
 891			 * But we can't drop the path because the
 892			 * csum could change, get removed, extended etc.
 893			 *
 894			 * The trick here is the max size of a csum item leaves
 895			 * enough room in the tree block for a single
 896			 * item header.  So, we split the item in place,
 897			 * adding a new header pointing to the existing
 898			 * bytes.  Then we loop around again and we have
 899			 * a nicely formed csum item that we can neatly
 900			 * truncate.
 901			 */
 902			offset = (bytenr - key.offset) >> blocksize_bits;
 903			offset *= csum_size;
 904
 905			shift_len = (len >> blocksize_bits) * csum_size;
 906
 907			item_offset = btrfs_item_ptr_offset(leaf,
 908							    path->slots[0]);
 909
 910			memzero_extent_buffer(leaf, item_offset + offset,
 911					     shift_len);
 912			key.offset = bytenr;
 913
 914			/*
 915			 * btrfs_split_item returns -EAGAIN when the
 916			 * item changed size or key
 917			 */
 918			ret = btrfs_split_item(trans, root, path, &key, offset);
 919			if (ret && ret != -EAGAIN) {
 920				btrfs_abort_transaction(trans, ret);
 921				break;
 922			}
 923			ret = 0;
 924
 925			key.offset = end_byte - 1;
 926		} else {
 927			truncate_one_csum(fs_info, path, &key, bytenr, len);
 928			if (key.offset < bytenr)
 929				break;
 930		}
 931		btrfs_release_path(path);
 932	}
 
 
 933	btrfs_free_path(path);
 934	return ret;
 935}
 936
 937static int find_next_csum_offset(struct btrfs_root *root,
 938				 struct btrfs_path *path,
 939				 u64 *next_offset)
 940{
 941	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
 942	struct btrfs_key found_key;
 943	int slot = path->slots[0] + 1;
 944	int ret;
 945
 946	if (nritems == 0 || slot >= nritems) {
 947		ret = btrfs_next_leaf(root, path);
 948		if (ret < 0) {
 949			return ret;
 950		} else if (ret > 0) {
 951			*next_offset = (u64)-1;
 952			return 0;
 953		}
 954		slot = path->slots[0];
 955	}
 956
 957	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 958
 959	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 960	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
 961		*next_offset = (u64)-1;
 962	else
 963		*next_offset = found_key.offset;
 964
 965	return 0;
 966}
 967
 968int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 969			   struct btrfs_root *root,
 970			   struct btrfs_ordered_sum *sums)
 971{
 972	struct btrfs_fs_info *fs_info = root->fs_info;
 973	struct btrfs_key file_key;
 974	struct btrfs_key found_key;
 975	struct btrfs_path *path;
 976	struct btrfs_csum_item *item;
 977	struct btrfs_csum_item *item_end;
 978	struct extent_buffer *leaf = NULL;
 979	u64 next_offset;
 980	u64 total_bytes = 0;
 981	u64 csum_offset;
 982	u64 bytenr;
 
 983	u32 ins_size;
 984	int index = 0;
 985	int found_next;
 986	int ret;
 987	const u32 csum_size = fs_info->csum_size;
 988
 989	path = btrfs_alloc_path();
 990	if (!path)
 991		return -ENOMEM;
 992again:
 993	next_offset = (u64)-1;
 994	found_next = 0;
 995	bytenr = sums->bytenr + total_bytes;
 996	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 997	file_key.offset = bytenr;
 998	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 999
1000	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1001	if (!IS_ERR(item)) {
1002		ret = 0;
1003		leaf = path->nodes[0];
1004		item_end = btrfs_item_ptr(leaf, path->slots[0],
1005					  struct btrfs_csum_item);
1006		item_end = (struct btrfs_csum_item *)((char *)item_end +
1007			   btrfs_item_size_nr(leaf, path->slots[0]));
1008		goto found;
1009	}
1010	ret = PTR_ERR(item);
1011	if (ret != -EFBIG && ret != -ENOENT)
1012		goto out;
1013
1014	if (ret == -EFBIG) {
1015		u32 item_size;
1016		/* we found one, but it isn't big enough yet */
1017		leaf = path->nodes[0];
1018		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1019		if ((item_size / csum_size) >=
1020		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1021			/* already at max size, make a new one */
1022			goto insert;
1023		}
1024	} else {
1025		/* We didn't find a csum item, insert one. */
1026		ret = find_next_csum_offset(root, path, &next_offset);
1027		if (ret < 0)
1028			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029		found_next = 1;
1030		goto insert;
1031	}
1032
1033	/*
1034	 * At this point, we know the tree has a checksum item that ends at an
1035	 * offset matching the start of the checksum range we want to insert.
1036	 * We try to extend that item as much as possible and then add as many
1037	 * checksums to it as they fit.
1038	 *
1039	 * First check if the leaf has enough free space for at least one
1040	 * checksum. If it has go directly to the item extension code, otherwise
1041	 * release the path and do a search for insertion before the extension.
1042	 */
1043	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1044		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1045		csum_offset = (bytenr - found_key.offset) >>
1046			fs_info->sectorsize_bits;
1047		goto extend_csum;
1048	}
1049
1050	btrfs_release_path(path);
1051	path->search_for_extension = 1;
1052	ret = btrfs_search_slot(trans, root, &file_key, path,
1053				csum_size, 1);
1054	path->search_for_extension = 0;
1055	if (ret < 0)
1056		goto out;
1057
1058	if (ret > 0) {
1059		if (path->slots[0] == 0)
1060			goto insert;
1061		path->slots[0]--;
1062	}
1063
1064	leaf = path->nodes[0];
1065	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1066	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
 
1067
1068	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1069	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1070	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1071		goto insert;
1072	}
1073
1074extend_csum:
1075	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1076	    csum_size) {
1077		int extend_nr;
1078		u64 tmp;
1079		u32 diff;
 
1080
 
 
 
 
 
 
1081		tmp = sums->len - total_bytes;
1082		tmp >>= fs_info->sectorsize_bits;
1083		WARN_ON(tmp < 1);
1084		extend_nr = max_t(int, 1, tmp);
1085
1086		/*
1087		 * A log tree can already have checksum items with a subset of
1088		 * the checksums we are trying to log. This can happen after
1089		 * doing a sequence of partial writes into prealloc extents and
1090		 * fsyncs in between, with a full fsync logging a larger subrange
1091		 * of an extent for which a previous fast fsync logged a smaller
1092		 * subrange. And this happens in particular due to merging file
1093		 * extent items when we complete an ordered extent for a range
1094		 * covered by a prealloc extent - this is done at
1095		 * btrfs_mark_extent_written().
1096		 *
1097		 * So if we try to extend the previous checksum item, which has
1098		 * a range that ends at the start of the range we want to insert,
1099		 * make sure we don't extend beyond the start offset of the next
1100		 * checksum item. If we are at the last item in the leaf, then
1101		 * forget the optimization of extending and add a new checksum
1102		 * item - it is not worth the complexity of releasing the path,
1103		 * getting the first key for the next leaf, repeat the btree
1104		 * search, etc, because log trees are temporary anyway and it
1105		 * would only save a few bytes of leaf space.
1106		 */
1107		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1108			if (path->slots[0] + 1 >=
1109			    btrfs_header_nritems(path->nodes[0])) {
1110				ret = find_next_csum_offset(root, path, &next_offset);
1111				if (ret < 0)
1112					goto out;
1113				found_next = 1;
1114				goto insert;
1115			}
1116
1117			ret = find_next_csum_offset(root, path, &next_offset);
1118			if (ret < 0)
1119				goto out;
1120
1121			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1122			if (tmp <= INT_MAX)
1123				extend_nr = min_t(int, extend_nr, tmp);
1124		}
1125
 
1126		diff = (csum_offset + extend_nr) * csum_size;
1127		diff = min(diff,
1128			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1129
1130		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1131		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1132		diff /= csum_size;
1133		diff *= csum_size;
1134
1135		btrfs_extend_item(path, diff);
1136		ret = 0;
1137		goto csum;
1138	}
1139
1140insert:
1141	btrfs_release_path(path);
1142	csum_offset = 0;
1143	if (found_next) {
1144		u64 tmp;
1145
1146		tmp = sums->len - total_bytes;
1147		tmp >>= fs_info->sectorsize_bits;
1148		tmp = min(tmp, (next_offset - file_key.offset) >>
1149					 fs_info->sectorsize_bits);
1150
1151		tmp = max_t(u64, 1, tmp);
1152		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1153		ins_size = csum_size * tmp;
1154	} else {
1155		ins_size = csum_size;
1156	}
 
1157	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1158				      ins_size);
 
1159	if (ret < 0)
1160		goto out;
1161	if (WARN_ON(ret != 0))
1162		goto out;
1163	leaf = path->nodes[0];
1164csum:
1165	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1166	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1167				      btrfs_item_size_nr(leaf, path->slots[0]));
1168	item = (struct btrfs_csum_item *)((unsigned char *)item +
1169					  csum_offset * csum_size);
1170found:
1171	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
 
1172	ins_size *= csum_size;
1173	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1174			      ins_size);
1175	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1176			    ins_size);
1177
1178	index += ins_size;
1179	ins_size /= csum_size;
1180	total_bytes += ins_size * fs_info->sectorsize;
 
1181
1182	btrfs_mark_buffer_dirty(path->nodes[0]);
1183	if (total_bytes < sums->len) {
1184		btrfs_release_path(path);
1185		cond_resched();
1186		goto again;
1187	}
1188out:
1189	btrfs_free_path(path);
1190	return ret;
 
 
 
1191}
1192
1193void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1194				     const struct btrfs_path *path,
1195				     struct btrfs_file_extent_item *fi,
1196				     const bool new_inline,
1197				     struct extent_map *em)
1198{
1199	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1200	struct btrfs_root *root = inode->root;
1201	struct extent_buffer *leaf = path->nodes[0];
1202	const int slot = path->slots[0];
1203	struct btrfs_key key;
1204	u64 extent_start, extent_end;
1205	u64 bytenr;
1206	u8 type = btrfs_file_extent_type(leaf, fi);
1207	int compress_type = btrfs_file_extent_compression(leaf, fi);
1208
 
1209	btrfs_item_key_to_cpu(leaf, &key, slot);
1210	extent_start = key.offset;
1211	extent_end = btrfs_file_extent_end(path);
 
 
 
 
 
 
 
 
 
 
 
1212	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1213	if (type == BTRFS_FILE_EXTENT_REG ||
1214	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1215		em->start = extent_start;
1216		em->len = extent_end - extent_start;
1217		em->orig_start = extent_start -
1218			btrfs_file_extent_offset(leaf, fi);
1219		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1220		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1221		if (bytenr == 0) {
1222			em->block_start = EXTENT_MAP_HOLE;
1223			return;
1224		}
1225		if (compress_type != BTRFS_COMPRESS_NONE) {
1226			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1227			em->compress_type = compress_type;
1228			em->block_start = bytenr;
1229			em->block_len = em->orig_block_len;
1230		} else {
1231			bytenr += btrfs_file_extent_offset(leaf, fi);
1232			em->block_start = bytenr;
1233			em->block_len = em->len;
1234			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1235				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1236		}
1237	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1238		em->block_start = EXTENT_MAP_INLINE;
1239		em->start = extent_start;
1240		em->len = extent_end - extent_start;
1241		/*
1242		 * Initialize orig_start and block_len with the same values
1243		 * as in inode.c:btrfs_get_extent().
1244		 */
1245		em->orig_start = EXTENT_MAP_HOLE;
1246		em->block_len = (u64)-1;
1247		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1248			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1249			em->compress_type = compress_type;
1250		}
1251	} else {
1252		btrfs_err(fs_info,
1253			  "unknown file extent item type %d, inode %llu, offset %llu, "
1254			  "root %llu", type, btrfs_ino(inode), extent_start,
1255			  root->root_key.objectid);
1256	}
1257}
1258
1259/*
1260 * Returns the end offset (non inclusive) of the file extent item the given path
1261 * points to. If it points to an inline extent, the returned offset is rounded
1262 * up to the sector size.
1263 */
1264u64 btrfs_file_extent_end(const struct btrfs_path *path)
1265{
1266	const struct extent_buffer *leaf = path->nodes[0];
1267	const int slot = path->slots[0];
1268	struct btrfs_file_extent_item *fi;
1269	struct btrfs_key key;
1270	u64 end;
1271
1272	btrfs_item_key_to_cpu(leaf, &key, slot);
1273	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1274	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1275
1276	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1277		end = btrfs_file_extent_ram_bytes(leaf, fi);
1278		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1279	} else {
1280		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1281	}
1282
1283	return end;
1284}