Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
 
  16#include "extent_io.h"
 
  17#include "extent_map.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
  20#include "volumes.h"
  21#include "check-integrity.h"
  22#include "locking.h"
  23#include "rcu-string.h"
  24#include "backref.h"
  25#include "disk-io.h"
 
 
 
  26
  27static struct kmem_cache *extent_state_cache;
  28static struct kmem_cache *extent_buffer_cache;
  29static struct bio_set *btrfs_bioset;
  30
  31static inline bool extent_state_in_tree(const struct extent_state *state)
  32{
  33	return !RB_EMPTY_NODE(&state->rb_node);
  34}
  35
  36#ifdef CONFIG_BTRFS_DEBUG
  37static LIST_HEAD(buffers);
  38static LIST_HEAD(states);
  39
  40static DEFINE_SPINLOCK(leak_lock);
  41
  42static inline
  43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
 
  44{
  45	unsigned long flags;
  46
  47	spin_lock_irqsave(&leak_lock, flags);
  48	list_add(new, head);
  49	spin_unlock_irqrestore(&leak_lock, flags);
  50}
  51
  52static inline
  53void btrfs_leak_debug_del(struct list_head *entry)
  54{
  55	unsigned long flags;
  56
  57	spin_lock_irqsave(&leak_lock, flags);
  58	list_del(entry);
  59	spin_unlock_irqrestore(&leak_lock, flags);
  60}
  61
  62static inline
  63void btrfs_leak_debug_check(void)
  64{
  65	struct extent_state *state;
  66	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	while (!list_empty(&states)) {
  69		state = list_entry(states.next, struct extent_state, leak_list);
  70		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  71		       state->start, state->end, state->state,
  72		       extent_state_in_tree(state),
  73		       refcount_read(&state->refs));
  74		list_del(&state->leak_list);
  75		kmem_cache_free(extent_state_cache, state);
  76	}
  77
  78	while (!list_empty(&buffers)) {
  79		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  80		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
  81		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
  82		list_del(&eb->leak_list);
  83		kmem_cache_free(extent_buffer_cache, eb);
  84	}
  85}
  86
  87#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  88	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  90		struct extent_io_tree *tree, u64 start, u64 end)
  91{
  92	if (tree->ops && tree->ops->check_extent_io_range)
  93		tree->ops->check_extent_io_range(tree->private_data, caller,
  94						 start, end);
 
 
 
 
 
 
 
 
 
  95}
  96#else
  97#define btrfs_leak_debug_add(new, head)	do {} while (0)
  98#define btrfs_leak_debug_del(entry)	do {} while (0)
  99#define btrfs_leak_debug_check()	do {} while (0)
 100#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 101#endif
 102
 103#define BUFFER_LRU_MAX 64
 104
 105struct tree_entry {
 106	u64 start;
 107	u64 end;
 108	struct rb_node rb_node;
 109};
 110
 111struct extent_page_data {
 112	struct bio *bio;
 113	struct extent_io_tree *tree;
 114	/* tells writepage not to lock the state bits for this range
 115	 * it still does the unlocking
 116	 */
 117	unsigned int extent_locked:1;
 118
 119	/* tells the submit_bio code to use REQ_SYNC */
 120	unsigned int sync_io:1;
 121};
 122
 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
 124				 struct extent_changeset *changeset,
 125				 int set)
 126{
 127	int ret;
 128
 129	if (!changeset)
 130		return 0;
 131	if (set && (state->state & bits) == bits)
 132		return 0;
 133	if (!set && (state->state & bits) == 0)
 134		return 0;
 135	changeset->bytes_changed += state->end - state->start + 1;
 136	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 137			GFP_ATOMIC);
 138	return ret;
 139}
 140
 141static void flush_write_bio(struct extent_page_data *epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143static inline struct btrfs_fs_info *
 144tree_fs_info(struct extent_io_tree *tree)
 
 
 
 145{
 146	if (tree->ops)
 147		return tree->ops->tree_fs_info(tree->private_data);
 148	return NULL;
 
 
 
 
 149}
 150
 151int __init extent_io_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152{
 153	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 154			sizeof(struct extent_state), 0,
 155			SLAB_MEM_SPREAD, NULL);
 156	if (!extent_state_cache)
 157		return -ENOMEM;
 
 
 158
 
 
 159	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 160			sizeof(struct extent_buffer), 0,
 161			SLAB_MEM_SPREAD, NULL);
 162	if (!extent_buffer_cache)
 163		goto free_state_cache;
 164
 165	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 166				     offsetof(struct btrfs_io_bio, bio),
 167				     BIOSET_NEED_BVECS);
 168	if (!btrfs_bioset)
 169		goto free_buffer_cache;
 170
 171	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 172		goto free_bioset;
 173
 174	return 0;
 175
 176free_bioset:
 177	bioset_free(btrfs_bioset);
 178	btrfs_bioset = NULL;
 179
 180free_buffer_cache:
 181	kmem_cache_destroy(extent_buffer_cache);
 182	extent_buffer_cache = NULL;
 
 
 183
 184free_state_cache:
 
 
 185	kmem_cache_destroy(extent_state_cache);
 186	extent_state_cache = NULL;
 187	return -ENOMEM;
 188}
 189
 190void __cold extent_io_exit(void)
 191{
 192	btrfs_leak_debug_check();
 193
 194	/*
 195	 * Make sure all delayed rcu free are flushed before we
 196	 * destroy caches.
 197	 */
 198	rcu_barrier();
 199	kmem_cache_destroy(extent_state_cache);
 200	kmem_cache_destroy(extent_buffer_cache);
 201	if (btrfs_bioset)
 202		bioset_free(btrfs_bioset);
 203}
 204
 205void extent_io_tree_init(struct extent_io_tree *tree,
 
 
 
 
 
 
 
 
 
 
 206			 void *private_data)
 207{
 
 208	tree->state = RB_ROOT;
 209	tree->ops = NULL;
 210	tree->dirty_bytes = 0;
 211	spin_lock_init(&tree->lock);
 212	tree->private_data = private_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213}
 214
 215static struct extent_state *alloc_extent_state(gfp_t mask)
 216{
 217	struct extent_state *state;
 218
 219	/*
 220	 * The given mask might be not appropriate for the slab allocator,
 221	 * drop the unsupported bits
 222	 */
 223	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 224	state = kmem_cache_alloc(extent_state_cache, mask);
 225	if (!state)
 226		return state;
 227	state->state = 0;
 228	state->failrec = NULL;
 229	RB_CLEAR_NODE(&state->rb_node);
 230	btrfs_leak_debug_add(&state->leak_list, &states);
 231	refcount_set(&state->refs, 1);
 232	init_waitqueue_head(&state->wq);
 233	trace_alloc_extent_state(state, mask, _RET_IP_);
 234	return state;
 235}
 236
 237void free_extent_state(struct extent_state *state)
 238{
 239	if (!state)
 240		return;
 241	if (refcount_dec_and_test(&state->refs)) {
 242		WARN_ON(extent_state_in_tree(state));
 243		btrfs_leak_debug_del(&state->leak_list);
 244		trace_free_extent_state(state, _RET_IP_);
 245		kmem_cache_free(extent_state_cache, state);
 246	}
 247}
 248
 249static struct rb_node *tree_insert(struct rb_root *root,
 250				   struct rb_node *search_start,
 251				   u64 offset,
 252				   struct rb_node *node,
 253				   struct rb_node ***p_in,
 254				   struct rb_node **parent_in)
 255{
 256	struct rb_node **p;
 257	struct rb_node *parent = NULL;
 258	struct tree_entry *entry;
 259
 260	if (p_in && parent_in) {
 261		p = *p_in;
 262		parent = *parent_in;
 263		goto do_insert;
 264	}
 265
 266	p = search_start ? &search_start : &root->rb_node;
 267	while (*p) {
 268		parent = *p;
 269		entry = rb_entry(parent, struct tree_entry, rb_node);
 270
 271		if (offset < entry->start)
 272			p = &(*p)->rb_left;
 273		else if (offset > entry->end)
 274			p = &(*p)->rb_right;
 275		else
 276			return parent;
 277	}
 278
 279do_insert:
 280	rb_link_node(node, parent, p);
 281	rb_insert_color(node, root);
 282	return NULL;
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 286				      struct rb_node **prev_ret,
 287				      struct rb_node **next_ret,
 
 288				      struct rb_node ***p_ret,
 289				      struct rb_node **parent_ret)
 290{
 291	struct rb_root *root = &tree->state;
 292	struct rb_node **n = &root->rb_node;
 293	struct rb_node *prev = NULL;
 294	struct rb_node *orig_prev = NULL;
 295	struct tree_entry *entry;
 296	struct tree_entry *prev_entry = NULL;
 297
 298	while (*n) {
 299		prev = *n;
 300		entry = rb_entry(prev, struct tree_entry, rb_node);
 301		prev_entry = entry;
 302
 303		if (offset < entry->start)
 304			n = &(*n)->rb_left;
 305		else if (offset > entry->end)
 306			n = &(*n)->rb_right;
 307		else
 308			return *n;
 309	}
 310
 311	if (p_ret)
 312		*p_ret = n;
 313	if (parent_ret)
 314		*parent_ret = prev;
 315
 316	if (prev_ret) {
 317		orig_prev = prev;
 318		while (prev && offset > prev_entry->end) {
 319			prev = rb_next(prev);
 320			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 321		}
 322		*prev_ret = prev;
 323		prev = orig_prev;
 324	}
 325
 326	if (next_ret) {
 327		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 328		while (prev && offset < prev_entry->start) {
 329			prev = rb_prev(prev);
 330			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 331		}
 332		*next_ret = prev;
 333	}
 334	return NULL;
 335}
 336
 337static inline struct rb_node *
 338tree_search_for_insert(struct extent_io_tree *tree,
 339		       u64 offset,
 340		       struct rb_node ***p_ret,
 341		       struct rb_node **parent_ret)
 342{
 343	struct rb_node *prev = NULL;
 344	struct rb_node *ret;
 345
 346	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 347	if (!ret)
 348		return prev;
 349	return ret;
 350}
 351
 352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 353					  u64 offset)
 354{
 355	return tree_search_for_insert(tree, offset, NULL, NULL);
 356}
 357
 358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 359		     struct extent_state *other)
 360{
 361	if (tree->ops && tree->ops->merge_extent_hook)
 362		tree->ops->merge_extent_hook(tree->private_data, new, other);
 363}
 364
 365/*
 366 * utility function to look for merge candidates inside a given range.
 367 * Any extents with matching state are merged together into a single
 368 * extent in the tree.  Extents with EXTENT_IO in their state field
 369 * are not merged because the end_io handlers need to be able to do
 370 * operations on them without sleeping (or doing allocations/splits).
 371 *
 372 * This should be called with the tree lock held.
 373 */
 374static void merge_state(struct extent_io_tree *tree,
 375		        struct extent_state *state)
 376{
 377	struct extent_state *other;
 378	struct rb_node *other_node;
 379
 380	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 381		return;
 382
 383	other_node = rb_prev(&state->rb_node);
 384	if (other_node) {
 385		other = rb_entry(other_node, struct extent_state, rb_node);
 386		if (other->end == state->start - 1 &&
 387		    other->state == state->state) {
 388			merge_cb(tree, state, other);
 
 
 
 389			state->start = other->start;
 390			rb_erase(&other->rb_node, &tree->state);
 391			RB_CLEAR_NODE(&other->rb_node);
 392			free_extent_state(other);
 393		}
 394	}
 395	other_node = rb_next(&state->rb_node);
 396	if (other_node) {
 397		other = rb_entry(other_node, struct extent_state, rb_node);
 398		if (other->start == state->end + 1 &&
 399		    other->state == state->state) {
 400			merge_cb(tree, state, other);
 
 
 
 401			state->end = other->end;
 402			rb_erase(&other->rb_node, &tree->state);
 403			RB_CLEAR_NODE(&other->rb_node);
 404			free_extent_state(other);
 405		}
 406	}
 407}
 408
 409static void set_state_cb(struct extent_io_tree *tree,
 410			 struct extent_state *state, unsigned *bits)
 411{
 412	if (tree->ops && tree->ops->set_bit_hook)
 413		tree->ops->set_bit_hook(tree->private_data, state, bits);
 414}
 415
 416static void clear_state_cb(struct extent_io_tree *tree,
 417			   struct extent_state *state, unsigned *bits)
 418{
 419	if (tree->ops && tree->ops->clear_bit_hook)
 420		tree->ops->clear_bit_hook(tree->private_data, state, bits);
 421}
 422
 423static void set_state_bits(struct extent_io_tree *tree,
 424			   struct extent_state *state, unsigned *bits,
 425			   struct extent_changeset *changeset);
 426
 427/*
 428 * insert an extent_state struct into the tree.  'bits' are set on the
 429 * struct before it is inserted.
 430 *
 431 * This may return -EEXIST if the extent is already there, in which case the
 432 * state struct is freed.
 433 *
 434 * The tree lock is not taken internally.  This is a utility function and
 435 * probably isn't what you want to call (see set/clear_extent_bit).
 436 */
 437static int insert_state(struct extent_io_tree *tree,
 438			struct extent_state *state, u64 start, u64 end,
 439			struct rb_node ***p,
 440			struct rb_node **parent,
 441			unsigned *bits, struct extent_changeset *changeset)
 442{
 443	struct rb_node *node;
 444
 445	if (end < start)
 446		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 447		       end, start);
 
 
 448	state->start = start;
 449	state->end = end;
 450
 451	set_state_bits(tree, state, bits, changeset);
 452
 453	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 454	if (node) {
 455		struct extent_state *found;
 456		found = rb_entry(node, struct extent_state, rb_node);
 457		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
 
 458		       found->start, found->end, start, end);
 459		return -EEXIST;
 460	}
 461	merge_state(tree, state);
 462	return 0;
 463}
 464
 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 466		     u64 split)
 467{
 468	if (tree->ops && tree->ops->split_extent_hook)
 469		tree->ops->split_extent_hook(tree->private_data, orig, split);
 470}
 471
 472/*
 473 * split a given extent state struct in two, inserting the preallocated
 474 * struct 'prealloc' as the newly created second half.  'split' indicates an
 475 * offset inside 'orig' where it should be split.
 476 *
 477 * Before calling,
 478 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 479 * are two extent state structs in the tree:
 480 * prealloc: [orig->start, split - 1]
 481 * orig: [ split, orig->end ]
 482 *
 483 * The tree locks are not taken by this function. They need to be held
 484 * by the caller.
 485 */
 486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 487		       struct extent_state *prealloc, u64 split)
 488{
 489	struct rb_node *node;
 490
 491	split_cb(tree, orig, split);
 
 492
 493	prealloc->start = orig->start;
 494	prealloc->end = split - 1;
 495	prealloc->state = orig->state;
 496	orig->start = split;
 497
 498	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 499			   &prealloc->rb_node, NULL, NULL);
 500	if (node) {
 501		free_extent_state(prealloc);
 502		return -EEXIST;
 503	}
 504	return 0;
 505}
 506
 507static struct extent_state *next_state(struct extent_state *state)
 508{
 509	struct rb_node *next = rb_next(&state->rb_node);
 510	if (next)
 511		return rb_entry(next, struct extent_state, rb_node);
 512	else
 513		return NULL;
 514}
 515
 516/*
 517 * utility function to clear some bits in an extent state struct.
 518 * it will optionally wake up any one waiting on this state (wake == 1).
 519 *
 520 * If no bits are set on the state struct after clearing things, the
 521 * struct is freed and removed from the tree
 522 */
 523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 524					    struct extent_state *state,
 525					    unsigned *bits, int wake,
 526					    struct extent_changeset *changeset)
 527{
 528	struct extent_state *next;
 529	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 530	int ret;
 531
 532	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 533		u64 range = state->end - state->start + 1;
 534		WARN_ON(range > tree->dirty_bytes);
 535		tree->dirty_bytes -= range;
 536	}
 537	clear_state_cb(tree, state, bits);
 
 
 
 538	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 539	BUG_ON(ret < 0);
 540	state->state &= ~bits_to_clear;
 541	if (wake)
 542		wake_up(&state->wq);
 543	if (state->state == 0) {
 544		next = next_state(state);
 545		if (extent_state_in_tree(state)) {
 546			rb_erase(&state->rb_node, &tree->state);
 547			RB_CLEAR_NODE(&state->rb_node);
 548			free_extent_state(state);
 549		} else {
 550			WARN_ON(1);
 551		}
 552	} else {
 553		merge_state(tree, state);
 554		next = next_state(state);
 555	}
 556	return next;
 557}
 558
 559static struct extent_state *
 560alloc_extent_state_atomic(struct extent_state *prealloc)
 561{
 562	if (!prealloc)
 563		prealloc = alloc_extent_state(GFP_ATOMIC);
 564
 565	return prealloc;
 566}
 567
 568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 569{
 570	btrfs_panic(tree_fs_info(tree), err,
 571		    "Locking error: Extent tree was modified by another thread while locked.");
 572}
 573
 574/*
 575 * clear some bits on a range in the tree.  This may require splitting
 576 * or inserting elements in the tree, so the gfp mask is used to
 577 * indicate which allocations or sleeping are allowed.
 578 *
 579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 580 * the given range from the tree regardless of state (ie for truncate).
 581 *
 582 * the range [start, end] is inclusive.
 583 *
 584 * This takes the tree lock, and returns 0 on success and < 0 on error.
 585 */
 586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 587			      unsigned bits, int wake, int delete,
 588			      struct extent_state **cached_state,
 589			      gfp_t mask, struct extent_changeset *changeset)
 590{
 591	struct extent_state *state;
 592	struct extent_state *cached;
 593	struct extent_state *prealloc = NULL;
 594	struct rb_node *node;
 595	u64 last_end;
 596	int err;
 597	int clear = 0;
 598
 599	btrfs_debug_check_extent_io_range(tree, start, end);
 
 600
 601	if (bits & EXTENT_DELALLOC)
 602		bits |= EXTENT_NORESERVE;
 603
 604	if (delete)
 605		bits |= ~EXTENT_CTLBITS;
 606	bits |= EXTENT_FIRST_DELALLOC;
 607
 608	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 609		clear = 1;
 610again:
 611	if (!prealloc && gfpflags_allow_blocking(mask)) {
 612		/*
 613		 * Don't care for allocation failure here because we might end
 614		 * up not needing the pre-allocated extent state at all, which
 615		 * is the case if we only have in the tree extent states that
 616		 * cover our input range and don't cover too any other range.
 617		 * If we end up needing a new extent state we allocate it later.
 618		 */
 619		prealloc = alloc_extent_state(mask);
 620	}
 621
 622	spin_lock(&tree->lock);
 623	if (cached_state) {
 624		cached = *cached_state;
 625
 626		if (clear) {
 627			*cached_state = NULL;
 628			cached_state = NULL;
 629		}
 630
 631		if (cached && extent_state_in_tree(cached) &&
 632		    cached->start <= start && cached->end > start) {
 633			if (clear)
 634				refcount_dec(&cached->refs);
 635			state = cached;
 636			goto hit_next;
 637		}
 638		if (clear)
 639			free_extent_state(cached);
 640	}
 641	/*
 642	 * this search will find the extents that end after
 643	 * our range starts
 644	 */
 645	node = tree_search(tree, start);
 646	if (!node)
 647		goto out;
 648	state = rb_entry(node, struct extent_state, rb_node);
 649hit_next:
 650	if (state->start > end)
 651		goto out;
 652	WARN_ON(state->end < start);
 653	last_end = state->end;
 654
 655	/* the state doesn't have the wanted bits, go ahead */
 656	if (!(state->state & bits)) {
 657		state = next_state(state);
 658		goto next;
 659	}
 660
 661	/*
 662	 *     | ---- desired range ---- |
 663	 *  | state | or
 664	 *  | ------------- state -------------- |
 665	 *
 666	 * We need to split the extent we found, and may flip
 667	 * bits on second half.
 668	 *
 669	 * If the extent we found extends past our range, we
 670	 * just split and search again.  It'll get split again
 671	 * the next time though.
 672	 *
 673	 * If the extent we found is inside our range, we clear
 674	 * the desired bit on it.
 675	 */
 676
 677	if (state->start < start) {
 678		prealloc = alloc_extent_state_atomic(prealloc);
 679		BUG_ON(!prealloc);
 680		err = split_state(tree, state, prealloc, start);
 681		if (err)
 682			extent_io_tree_panic(tree, err);
 683
 684		prealloc = NULL;
 685		if (err)
 686			goto out;
 687		if (state->end <= end) {
 688			state = clear_state_bit(tree, state, &bits, wake,
 689						changeset);
 690			goto next;
 691		}
 692		goto search_again;
 693	}
 694	/*
 695	 * | ---- desired range ---- |
 696	 *                        | state |
 697	 * We need to split the extent, and clear the bit
 698	 * on the first half
 699	 */
 700	if (state->start <= end && state->end > end) {
 701		prealloc = alloc_extent_state_atomic(prealloc);
 702		BUG_ON(!prealloc);
 703		err = split_state(tree, state, prealloc, end + 1);
 704		if (err)
 705			extent_io_tree_panic(tree, err);
 706
 707		if (wake)
 708			wake_up(&state->wq);
 709
 710		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 711
 712		prealloc = NULL;
 713		goto out;
 714	}
 715
 716	state = clear_state_bit(tree, state, &bits, wake, changeset);
 717next:
 718	if (last_end == (u64)-1)
 719		goto out;
 720	start = last_end + 1;
 721	if (start <= end && state && !need_resched())
 722		goto hit_next;
 723
 724search_again:
 725	if (start > end)
 726		goto out;
 727	spin_unlock(&tree->lock);
 728	if (gfpflags_allow_blocking(mask))
 729		cond_resched();
 730	goto again;
 731
 732out:
 733	spin_unlock(&tree->lock);
 734	if (prealloc)
 735		free_extent_state(prealloc);
 736
 737	return 0;
 738
 739}
 740
 741static void wait_on_state(struct extent_io_tree *tree,
 742			  struct extent_state *state)
 743		__releases(tree->lock)
 744		__acquires(tree->lock)
 745{
 746	DEFINE_WAIT(wait);
 747	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 748	spin_unlock(&tree->lock);
 749	schedule();
 750	spin_lock(&tree->lock);
 751	finish_wait(&state->wq, &wait);
 752}
 753
 754/*
 755 * waits for one or more bits to clear on a range in the state tree.
 756 * The range [start, end] is inclusive.
 757 * The tree lock is taken by this function
 758 */
 759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 760			    unsigned long bits)
 761{
 762	struct extent_state *state;
 763	struct rb_node *node;
 764
 765	btrfs_debug_check_extent_io_range(tree, start, end);
 766
 767	spin_lock(&tree->lock);
 768again:
 769	while (1) {
 770		/*
 771		 * this search will find all the extents that end after
 772		 * our range starts
 773		 */
 774		node = tree_search(tree, start);
 775process_node:
 776		if (!node)
 777			break;
 778
 779		state = rb_entry(node, struct extent_state, rb_node);
 780
 781		if (state->start > end)
 782			goto out;
 783
 784		if (state->state & bits) {
 785			start = state->start;
 786			refcount_inc(&state->refs);
 787			wait_on_state(tree, state);
 788			free_extent_state(state);
 789			goto again;
 790		}
 791		start = state->end + 1;
 792
 793		if (start > end)
 794			break;
 795
 796		if (!cond_resched_lock(&tree->lock)) {
 797			node = rb_next(node);
 798			goto process_node;
 799		}
 800	}
 801out:
 802	spin_unlock(&tree->lock);
 803}
 804
 805static void set_state_bits(struct extent_io_tree *tree,
 806			   struct extent_state *state,
 807			   unsigned *bits, struct extent_changeset *changeset)
 808{
 809	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 810	int ret;
 811
 812	set_state_cb(tree, state, bits);
 
 
 813	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 814		u64 range = state->end - state->start + 1;
 815		tree->dirty_bytes += range;
 816	}
 817	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 818	BUG_ON(ret < 0);
 819	state->state |= bits_to_set;
 820}
 821
 822static void cache_state_if_flags(struct extent_state *state,
 823				 struct extent_state **cached_ptr,
 824				 unsigned flags)
 825{
 826	if (cached_ptr && !(*cached_ptr)) {
 827		if (!flags || (state->state & flags)) {
 828			*cached_ptr = state;
 829			refcount_inc(&state->refs);
 830		}
 831	}
 832}
 833
 834static void cache_state(struct extent_state *state,
 835			struct extent_state **cached_ptr)
 836{
 837	return cache_state_if_flags(state, cached_ptr,
 838				    EXTENT_IOBITS | EXTENT_BOUNDARY);
 839}
 840
 841/*
 842 * set some bits on a range in the tree.  This may require allocations or
 843 * sleeping, so the gfp mask is used to indicate what is allowed.
 844 *
 845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 846 * part of the range already has the desired bits set.  The start of the
 847 * existing range is returned in failed_start in this case.
 848 *
 849 * [start, end] is inclusive This takes the tree lock.
 850 */
 851
 852static int __must_check
 853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 854		 unsigned bits, unsigned exclusive_bits,
 855		 u64 *failed_start, struct extent_state **cached_state,
 856		 gfp_t mask, struct extent_changeset *changeset)
 857{
 858	struct extent_state *state;
 859	struct extent_state *prealloc = NULL;
 860	struct rb_node *node;
 861	struct rb_node **p;
 862	struct rb_node *parent;
 863	int err = 0;
 864	u64 last_start;
 865	u64 last_end;
 866
 867	btrfs_debug_check_extent_io_range(tree, start, end);
 
 868
 869	bits |= EXTENT_FIRST_DELALLOC;
 
 
 
 870again:
 871	if (!prealloc && gfpflags_allow_blocking(mask)) {
 872		/*
 873		 * Don't care for allocation failure here because we might end
 874		 * up not needing the pre-allocated extent state at all, which
 875		 * is the case if we only have in the tree extent states that
 876		 * cover our input range and don't cover too any other range.
 877		 * If we end up needing a new extent state we allocate it later.
 878		 */
 879		prealloc = alloc_extent_state(mask);
 880	}
 881
 882	spin_lock(&tree->lock);
 883	if (cached_state && *cached_state) {
 884		state = *cached_state;
 885		if (state->start <= start && state->end > start &&
 886		    extent_state_in_tree(state)) {
 887			node = &state->rb_node;
 888			goto hit_next;
 889		}
 890	}
 891	/*
 892	 * this search will find all the extents that end after
 893	 * our range starts.
 894	 */
 895	node = tree_search_for_insert(tree, start, &p, &parent);
 896	if (!node) {
 897		prealloc = alloc_extent_state_atomic(prealloc);
 898		BUG_ON(!prealloc);
 899		err = insert_state(tree, prealloc, start, end,
 900				   &p, &parent, &bits, changeset);
 901		if (err)
 902			extent_io_tree_panic(tree, err);
 903
 904		cache_state(prealloc, cached_state);
 905		prealloc = NULL;
 906		goto out;
 907	}
 908	state = rb_entry(node, struct extent_state, rb_node);
 909hit_next:
 910	last_start = state->start;
 911	last_end = state->end;
 912
 913	/*
 914	 * | ---- desired range ---- |
 915	 * | state |
 916	 *
 917	 * Just lock what we found and keep going
 918	 */
 919	if (state->start == start && state->end <= end) {
 920		if (state->state & exclusive_bits) {
 921			*failed_start = state->start;
 922			err = -EEXIST;
 923			goto out;
 924		}
 925
 926		set_state_bits(tree, state, &bits, changeset);
 927		cache_state(state, cached_state);
 928		merge_state(tree, state);
 929		if (last_end == (u64)-1)
 930			goto out;
 931		start = last_end + 1;
 932		state = next_state(state);
 933		if (start < end && state && state->start == start &&
 934		    !need_resched())
 935			goto hit_next;
 936		goto search_again;
 937	}
 938
 939	/*
 940	 *     | ---- desired range ---- |
 941	 * | state |
 942	 *   or
 943	 * | ------------- state -------------- |
 944	 *
 945	 * We need to split the extent we found, and may flip bits on
 946	 * second half.
 947	 *
 948	 * If the extent we found extends past our
 949	 * range, we just split and search again.  It'll get split
 950	 * again the next time though.
 951	 *
 952	 * If the extent we found is inside our range, we set the
 953	 * desired bit on it.
 954	 */
 955	if (state->start < start) {
 956		if (state->state & exclusive_bits) {
 957			*failed_start = start;
 958			err = -EEXIST;
 959			goto out;
 960		}
 961
 
 
 
 
 
 
 
 
 
 
 962		prealloc = alloc_extent_state_atomic(prealloc);
 963		BUG_ON(!prealloc);
 964		err = split_state(tree, state, prealloc, start);
 965		if (err)
 966			extent_io_tree_panic(tree, err);
 967
 968		prealloc = NULL;
 969		if (err)
 970			goto out;
 971		if (state->end <= end) {
 972			set_state_bits(tree, state, &bits, changeset);
 973			cache_state(state, cached_state);
 974			merge_state(tree, state);
 975			if (last_end == (u64)-1)
 976				goto out;
 977			start = last_end + 1;
 978			state = next_state(state);
 979			if (start < end && state && state->start == start &&
 980			    !need_resched())
 981				goto hit_next;
 982		}
 983		goto search_again;
 984	}
 985	/*
 986	 * | ---- desired range ---- |
 987	 *     | state | or               | state |
 988	 *
 989	 * There's a hole, we need to insert something in it and
 990	 * ignore the extent we found.
 991	 */
 992	if (state->start > start) {
 993		u64 this_end;
 994		if (end < last_start)
 995			this_end = end;
 996		else
 997			this_end = last_start - 1;
 998
 999		prealloc = alloc_extent_state_atomic(prealloc);
1000		BUG_ON(!prealloc);
1001
1002		/*
1003		 * Avoid to free 'prealloc' if it can be merged with
1004		 * the later extent.
1005		 */
1006		err = insert_state(tree, prealloc, start, this_end,
1007				   NULL, NULL, &bits, changeset);
1008		if (err)
1009			extent_io_tree_panic(tree, err);
1010
1011		cache_state(prealloc, cached_state);
1012		prealloc = NULL;
1013		start = this_end + 1;
1014		goto search_again;
1015	}
1016	/*
1017	 * | ---- desired range ---- |
1018	 *                        | state |
1019	 * We need to split the extent, and set the bit
1020	 * on the first half
1021	 */
1022	if (state->start <= end && state->end > end) {
1023		if (state->state & exclusive_bits) {
1024			*failed_start = start;
1025			err = -EEXIST;
1026			goto out;
1027		}
1028
1029		prealloc = alloc_extent_state_atomic(prealloc);
1030		BUG_ON(!prealloc);
1031		err = split_state(tree, state, prealloc, end + 1);
1032		if (err)
1033			extent_io_tree_panic(tree, err);
1034
1035		set_state_bits(tree, prealloc, &bits, changeset);
1036		cache_state(prealloc, cached_state);
1037		merge_state(tree, prealloc);
1038		prealloc = NULL;
1039		goto out;
1040	}
1041
1042search_again:
1043	if (start > end)
1044		goto out;
1045	spin_unlock(&tree->lock);
1046	if (gfpflags_allow_blocking(mask))
1047		cond_resched();
1048	goto again;
1049
1050out:
1051	spin_unlock(&tree->lock);
1052	if (prealloc)
1053		free_extent_state(prealloc);
1054
1055	return err;
1056
1057}
1058
1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060		   unsigned bits, u64 * failed_start,
1061		   struct extent_state **cached_state, gfp_t mask)
1062{
1063	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064				cached_state, mask, NULL);
1065}
1066
1067
1068/**
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * 			another
1071 * @tree:	the io tree to search
1072 * @start:	the start offset in bytes
1073 * @end:	the end offset in bytes (inclusive)
1074 * @bits:	the bits to set in this range
1075 * @clear_bits:	the bits to clear in this range
1076 * @cached_state:	state that we're going to cache
1077 *
1078 * This will go through and set bits for the given range.  If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082 * boundary bits like LOCK.
1083 *
1084 * All allocations are done with GFP_NOFS.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087		       unsigned bits, unsigned clear_bits,
1088		       struct extent_state **cached_state)
1089{
1090	struct extent_state *state;
1091	struct extent_state *prealloc = NULL;
1092	struct rb_node *node;
1093	struct rb_node **p;
1094	struct rb_node *parent;
1095	int err = 0;
1096	u64 last_start;
1097	u64 last_end;
1098	bool first_iteration = true;
1099
1100	btrfs_debug_check_extent_io_range(tree, start, end);
 
 
1101
1102again:
1103	if (!prealloc) {
1104		/*
1105		 * Best effort, don't worry if extent state allocation fails
1106		 * here for the first iteration. We might have a cached state
1107		 * that matches exactly the target range, in which case no
1108		 * extent state allocations are needed. We'll only know this
1109		 * after locking the tree.
1110		 */
1111		prealloc = alloc_extent_state(GFP_NOFS);
1112		if (!prealloc && !first_iteration)
1113			return -ENOMEM;
1114	}
1115
1116	spin_lock(&tree->lock);
1117	if (cached_state && *cached_state) {
1118		state = *cached_state;
1119		if (state->start <= start && state->end > start &&
1120		    extent_state_in_tree(state)) {
1121			node = &state->rb_node;
1122			goto hit_next;
1123		}
1124	}
1125
1126	/*
1127	 * this search will find all the extents that end after
1128	 * our range starts.
1129	 */
1130	node = tree_search_for_insert(tree, start, &p, &parent);
1131	if (!node) {
1132		prealloc = alloc_extent_state_atomic(prealloc);
1133		if (!prealloc) {
1134			err = -ENOMEM;
1135			goto out;
1136		}
1137		err = insert_state(tree, prealloc, start, end,
1138				   &p, &parent, &bits, NULL);
1139		if (err)
1140			extent_io_tree_panic(tree, err);
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		goto out;
1144	}
1145	state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147	last_start = state->start;
1148	last_end = state->end;
1149
1150	/*
1151	 * | ---- desired range ---- |
1152	 * | state |
1153	 *
1154	 * Just lock what we found and keep going
1155	 */
1156	if (state->start == start && state->end <= end) {
1157		set_state_bits(tree, state, &bits, NULL);
1158		cache_state(state, cached_state);
1159		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160		if (last_end == (u64)-1)
1161			goto out;
1162		start = last_end + 1;
1163		if (start < end && state && state->start == start &&
1164		    !need_resched())
1165			goto hit_next;
1166		goto search_again;
1167	}
1168
1169	/*
1170	 *     | ---- desired range ---- |
1171	 * | state |
1172	 *   or
1173	 * | ------------- state -------------- |
1174	 *
1175	 * We need to split the extent we found, and may flip bits on
1176	 * second half.
1177	 *
1178	 * If the extent we found extends past our
1179	 * range, we just split and search again.  It'll get split
1180	 * again the next time though.
1181	 *
1182	 * If the extent we found is inside our range, we set the
1183	 * desired bit on it.
1184	 */
1185	if (state->start < start) {
1186		prealloc = alloc_extent_state_atomic(prealloc);
1187		if (!prealloc) {
1188			err = -ENOMEM;
1189			goto out;
1190		}
1191		err = split_state(tree, state, prealloc, start);
1192		if (err)
1193			extent_io_tree_panic(tree, err);
1194		prealloc = NULL;
1195		if (err)
1196			goto out;
1197		if (state->end <= end) {
1198			set_state_bits(tree, state, &bits, NULL);
1199			cache_state(state, cached_state);
1200			state = clear_state_bit(tree, state, &clear_bits, 0,
1201						NULL);
1202			if (last_end == (u64)-1)
1203				goto out;
1204			start = last_end + 1;
1205			if (start < end && state && state->start == start &&
1206			    !need_resched())
1207				goto hit_next;
1208		}
1209		goto search_again;
1210	}
1211	/*
1212	 * | ---- desired range ---- |
1213	 *     | state | or               | state |
1214	 *
1215	 * There's a hole, we need to insert something in it and
1216	 * ignore the extent we found.
1217	 */
1218	if (state->start > start) {
1219		u64 this_end;
1220		if (end < last_start)
1221			this_end = end;
1222		else
1223			this_end = last_start - 1;
1224
1225		prealloc = alloc_extent_state_atomic(prealloc);
1226		if (!prealloc) {
1227			err = -ENOMEM;
1228			goto out;
1229		}
1230
1231		/*
1232		 * Avoid to free 'prealloc' if it can be merged with
1233		 * the later extent.
1234		 */
1235		err = insert_state(tree, prealloc, start, this_end,
1236				   NULL, NULL, &bits, NULL);
1237		if (err)
1238			extent_io_tree_panic(tree, err);
1239		cache_state(prealloc, cached_state);
1240		prealloc = NULL;
1241		start = this_end + 1;
1242		goto search_again;
1243	}
1244	/*
1245	 * | ---- desired range ---- |
1246	 *                        | state |
1247	 * We need to split the extent, and set the bit
1248	 * on the first half
1249	 */
1250	if (state->start <= end && state->end > end) {
1251		prealloc = alloc_extent_state_atomic(prealloc);
1252		if (!prealloc) {
1253			err = -ENOMEM;
1254			goto out;
1255		}
1256
1257		err = split_state(tree, state, prealloc, end + 1);
1258		if (err)
1259			extent_io_tree_panic(tree, err);
1260
1261		set_state_bits(tree, prealloc, &bits, NULL);
1262		cache_state(prealloc, cached_state);
1263		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264		prealloc = NULL;
1265		goto out;
1266	}
1267
1268search_again:
1269	if (start > end)
1270		goto out;
1271	spin_unlock(&tree->lock);
1272	cond_resched();
1273	first_iteration = false;
1274	goto again;
1275
1276out:
1277	spin_unlock(&tree->lock);
1278	if (prealloc)
1279		free_extent_state(prealloc);
1280
1281	return err;
1282}
1283
1284/* wrappers around set/clear extent bit */
1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286			   unsigned bits, struct extent_changeset *changeset)
1287{
1288	/*
1289	 * We don't support EXTENT_LOCKED yet, as current changeset will
1290	 * record any bits changed, so for EXTENT_LOCKED case, it will
1291	 * either fail with -EEXIST or changeset will record the whole
1292	 * range.
1293	 */
1294	BUG_ON(bits & EXTENT_LOCKED);
1295
1296	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297				changeset);
 
 
 
 
 
 
 
1298}
1299
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301		     unsigned bits, int wake, int delete,
1302		     struct extent_state **cached)
1303{
1304	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305				  cached, GFP_NOFS, NULL);
1306}
1307
1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309		unsigned bits, struct extent_changeset *changeset)
1310{
1311	/*
1312	 * Don't support EXTENT_LOCKED case, same reason as
1313	 * set_record_extent_bits().
1314	 */
1315	BUG_ON(bits & EXTENT_LOCKED);
1316
1317	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318				  changeset);
1319}
1320
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326		     struct extent_state **cached_state)
1327{
1328	int err;
1329	u64 failed_start;
1330
1331	while (1) {
1332		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333				       EXTENT_LOCKED, &failed_start,
1334				       cached_state, GFP_NOFS, NULL);
1335		if (err == -EEXIST) {
1336			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337			start = failed_start;
1338		} else
1339			break;
1340		WARN_ON(start > end);
1341	}
1342	return err;
1343}
1344
1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346{
1347	int err;
1348	u64 failed_start;
1349
1350	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351			       &failed_start, NULL, GFP_NOFS, NULL);
1352	if (err == -EEXIST) {
1353		if (failed_start > start)
1354			clear_extent_bit(tree, start, failed_start - 1,
1355					 EXTENT_LOCKED, 1, 0, NULL);
1356		return 0;
1357	}
1358	return 1;
1359}
1360
1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362{
1363	unsigned long index = start >> PAGE_SHIFT;
1364	unsigned long end_index = end >> PAGE_SHIFT;
1365	struct page *page;
1366
1367	while (index <= end_index) {
1368		page = find_get_page(inode->i_mapping, index);
1369		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370		clear_page_dirty_for_io(page);
1371		put_page(page);
1372		index++;
1373	}
1374}
1375
1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378	unsigned long index = start >> PAGE_SHIFT;
1379	unsigned long end_index = end >> PAGE_SHIFT;
1380	struct page *page;
1381
1382	while (index <= end_index) {
1383		page = find_get_page(inode->i_mapping, index);
1384		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385		__set_page_dirty_nobuffers(page);
1386		account_page_redirty(page);
1387		put_page(page);
1388		index++;
1389	}
1390}
1391
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396{
1397	tree->ops->set_range_writeback(tree->private_data, start, end);
1398}
1399
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it.  tree->lock must be held.  NULL will returned if
1402 * nothing was found after 'start'
1403 */
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
1406			    u64 start, unsigned bits)
1407{
1408	struct rb_node *node;
1409	struct extent_state *state;
1410
1411	/*
1412	 * this search will find all the extents that end after
1413	 * our range starts.
1414	 */
1415	node = tree_search(tree, start);
1416	if (!node)
1417		goto out;
1418
1419	while (1) {
1420		state = rb_entry(node, struct extent_state, rb_node);
1421		if (state->end >= start && (state->state & bits))
1422			return state;
1423
1424		node = rb_next(node);
1425		if (!node)
1426			break;
1427	}
1428out:
1429	return NULL;
1430}
1431
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
1437 * If nothing was found, 1 is returned. If found something, return 0.
 
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440			  u64 *start_ret, u64 *end_ret, unsigned bits,
1441			  struct extent_state **cached_state)
1442{
1443	struct extent_state *state;
1444	struct rb_node *n;
1445	int ret = 1;
1446
1447	spin_lock(&tree->lock);
1448	if (cached_state && *cached_state) {
1449		state = *cached_state;
1450		if (state->end == start - 1 && extent_state_in_tree(state)) {
1451			n = rb_next(&state->rb_node);
1452			while (n) {
1453				state = rb_entry(n, struct extent_state,
1454						 rb_node);
1455				if (state->state & bits)
1456					goto got_it;
1457				n = rb_next(n);
1458			}
1459			free_extent_state(*cached_state);
1460			*cached_state = NULL;
1461			goto out;
1462		}
1463		free_extent_state(*cached_state);
1464		*cached_state = NULL;
1465	}
1466
1467	state = find_first_extent_bit_state(tree, start, bits);
1468got_it:
1469	if (state) {
1470		cache_state_if_flags(state, cached_state, 0);
1471		*start_ret = state->start;
1472		*end_ret = state->end;
1473		ret = 0;
1474	}
1475out:
1476	spin_unlock(&tree->lock);
1477	return ret;
1478}
1479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'.  start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487					u64 *start, u64 *end, u64 max_bytes,
1488					struct extent_state **cached_state)
1489{
1490	struct rb_node *node;
1491	struct extent_state *state;
1492	u64 cur_start = *start;
1493	u64 found = 0;
1494	u64 total_bytes = 0;
1495
1496	spin_lock(&tree->lock);
1497
1498	/*
1499	 * this search will find all the extents that end after
1500	 * our range starts.
1501	 */
1502	node = tree_search(tree, cur_start);
1503	if (!node) {
1504		if (!found)
1505			*end = (u64)-1;
1506		goto out;
1507	}
1508
1509	while (1) {
1510		state = rb_entry(node, struct extent_state, rb_node);
1511		if (found && (state->start != cur_start ||
1512			      (state->state & EXTENT_BOUNDARY))) {
1513			goto out;
1514		}
1515		if (!(state->state & EXTENT_DELALLOC)) {
1516			if (!found)
1517				*end = state->end;
1518			goto out;
1519		}
1520		if (!found) {
1521			*start = state->start;
1522			*cached_state = state;
1523			refcount_inc(&state->refs);
1524		}
1525		found++;
1526		*end = state->end;
1527		cur_start = state->end + 1;
1528		node = rb_next(node);
1529		total_bytes += state->end - state->start + 1;
1530		if (total_bytes >= max_bytes)
1531			break;
1532		if (!node)
1533			break;
1534	}
1535out:
1536	spin_unlock(&tree->lock);
1537	return found;
1538}
1539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1540static int __process_pages_contig(struct address_space *mapping,
1541				  struct page *locked_page,
1542				  pgoff_t start_index, pgoff_t end_index,
1543				  unsigned long page_ops, pgoff_t *index_ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546					   struct page *locked_page,
1547					   u64 start, u64 end)
1548{
1549	unsigned long index = start >> PAGE_SHIFT;
1550	unsigned long end_index = end >> PAGE_SHIFT;
1551
1552	ASSERT(locked_page);
1553	if (index == locked_page->index && end_index == index)
1554		return;
1555
1556	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557			       PAGE_UNLOCK, NULL);
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561					struct page *locked_page,
1562					u64 delalloc_start,
1563					u64 delalloc_end)
1564{
1565	unsigned long index = delalloc_start >> PAGE_SHIFT;
1566	unsigned long index_ret = index;
1567	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
 
1568	int ret;
1569
1570	ASSERT(locked_page);
1571	if (index == locked_page->index && index == end_index)
1572		return 0;
1573
1574	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575				     end_index, PAGE_LOCK, &index_ret);
1576	if (ret == -EAGAIN)
1577		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1578				      (u64)index_ret << PAGE_SHIFT);
1579	return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'.  start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
 
1587 */
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589				    struct extent_io_tree *tree,
1590				    struct page *locked_page, u64 *start,
1591				    u64 *end, u64 max_bytes)
1592{
 
 
1593	u64 delalloc_start;
1594	u64 delalloc_end;
1595	u64 found;
1596	struct extent_state *cached_state = NULL;
1597	int ret;
1598	int loops = 0;
1599
1600again:
1601	/* step one, find a bunch of delalloc bytes starting at start */
1602	delalloc_start = *start;
1603	delalloc_end = 0;
1604	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605				    max_bytes, &cached_state);
1606	if (!found || delalloc_end <= *start) {
1607		*start = delalloc_start;
1608		*end = delalloc_end;
1609		free_extent_state(cached_state);
1610		return 0;
1611	}
1612
1613	/*
1614	 * start comes from the offset of locked_page.  We have to lock
1615	 * pages in order, so we can't process delalloc bytes before
1616	 * locked_page
1617	 */
1618	if (delalloc_start < *start)
1619		delalloc_start = *start;
1620
1621	/*
1622	 * make sure to limit the number of pages we try to lock down
1623	 */
1624	if (delalloc_end + 1 - delalloc_start > max_bytes)
1625		delalloc_end = delalloc_start + max_bytes - 1;
1626
1627	/* step two, lock all the pages after the page that has start */
1628	ret = lock_delalloc_pages(inode, locked_page,
1629				  delalloc_start, delalloc_end);
 
1630	if (ret == -EAGAIN) {
1631		/* some of the pages are gone, lets avoid looping by
1632		 * shortening the size of the delalloc range we're searching
1633		 */
1634		free_extent_state(cached_state);
1635		cached_state = NULL;
1636		if (!loops) {
1637			max_bytes = PAGE_SIZE;
1638			loops = 1;
1639			goto again;
1640		} else {
1641			found = 0;
1642			goto out_failed;
1643		}
1644	}
1645	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646
1647	/* step three, lock the state bits for the whole range */
1648	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649
1650	/* then test to make sure it is all still delalloc */
1651	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652			     EXTENT_DELALLOC, 1, cached_state);
1653	if (!ret) {
1654		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655				     &cached_state);
1656		__unlock_for_delalloc(inode, locked_page,
1657			      delalloc_start, delalloc_end);
1658		cond_resched();
1659		goto again;
1660	}
1661	free_extent_state(cached_state);
1662	*start = delalloc_start;
1663	*end = delalloc_end;
1664out_failed:
1665	return found;
1666}
1667
1668static int __process_pages_contig(struct address_space *mapping,
1669				  struct page *locked_page,
1670				  pgoff_t start_index, pgoff_t end_index,
1671				  unsigned long page_ops, pgoff_t *index_ret)
1672{
1673	unsigned long nr_pages = end_index - start_index + 1;
1674	unsigned long pages_locked = 0;
1675	pgoff_t index = start_index;
1676	struct page *pages[16];
1677	unsigned ret;
1678	int err = 0;
1679	int i;
1680
1681	if (page_ops & PAGE_LOCK) {
1682		ASSERT(page_ops == PAGE_LOCK);
1683		ASSERT(index_ret && *index_ret == start_index);
1684	}
1685
1686	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687		mapping_set_error(mapping, -EIO);
1688
1689	while (nr_pages > 0) {
1690		ret = find_get_pages_contig(mapping, index,
1691				     min_t(unsigned long,
1692				     nr_pages, ARRAY_SIZE(pages)), pages);
1693		if (ret == 0) {
1694			/*
1695			 * Only if we're going to lock these pages,
1696			 * can we find nothing at @index.
1697			 */
1698			ASSERT(page_ops & PAGE_LOCK);
1699			err = -EAGAIN;
1700			goto out;
1701		}
1702
1703		for (i = 0; i < ret; i++) {
1704			if (page_ops & PAGE_SET_PRIVATE2)
1705				SetPagePrivate2(pages[i]);
1706
1707			if (pages[i] == locked_page) {
1708				put_page(pages[i]);
1709				pages_locked++;
1710				continue;
1711			}
1712			if (page_ops & PAGE_CLEAR_DIRTY)
1713				clear_page_dirty_for_io(pages[i]);
1714			if (page_ops & PAGE_SET_WRITEBACK)
1715				set_page_writeback(pages[i]);
1716			if (page_ops & PAGE_SET_ERROR)
1717				SetPageError(pages[i]);
1718			if (page_ops & PAGE_END_WRITEBACK)
1719				end_page_writeback(pages[i]);
1720			if (page_ops & PAGE_UNLOCK)
1721				unlock_page(pages[i]);
1722			if (page_ops & PAGE_LOCK) {
1723				lock_page(pages[i]);
1724				if (!PageDirty(pages[i]) ||
1725				    pages[i]->mapping != mapping) {
1726					unlock_page(pages[i]);
1727					put_page(pages[i]);
1728					err = -EAGAIN;
1729					goto out;
1730				}
1731			}
1732			put_page(pages[i]);
1733			pages_locked++;
1734		}
1735		nr_pages -= ret;
1736		index += ret;
1737		cond_resched();
1738	}
1739out:
1740	if (err && index_ret)
1741		*index_ret = start_index + pages_locked - 1;
1742	return err;
1743}
1744
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746				 u64 delalloc_end, struct page *locked_page,
1747				 unsigned clear_bits,
1748				 unsigned long page_ops)
1749{
1750	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751			 NULL);
1752
1753	__process_pages_contig(inode->i_mapping, locked_page,
1754			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755			       page_ops, NULL);
1756}
1757
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached.  The total number found is returned.
1762 */
1763u64 count_range_bits(struct extent_io_tree *tree,
1764		     u64 *start, u64 search_end, u64 max_bytes,
1765		     unsigned bits, int contig)
1766{
1767	struct rb_node *node;
1768	struct extent_state *state;
1769	u64 cur_start = *start;
1770	u64 total_bytes = 0;
1771	u64 last = 0;
1772	int found = 0;
1773
1774	if (WARN_ON(search_end <= cur_start))
1775		return 0;
1776
1777	spin_lock(&tree->lock);
1778	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779		total_bytes = tree->dirty_bytes;
1780		goto out;
1781	}
1782	/*
1783	 * this search will find all the extents that end after
1784	 * our range starts.
1785	 */
1786	node = tree_search(tree, cur_start);
1787	if (!node)
1788		goto out;
1789
1790	while (1) {
1791		state = rb_entry(node, struct extent_state, rb_node);
1792		if (state->start > search_end)
1793			break;
1794		if (contig && found && state->start > last + 1)
1795			break;
1796		if (state->end >= cur_start && (state->state & bits) == bits) {
1797			total_bytes += min(search_end, state->end) + 1 -
1798				       max(cur_start, state->start);
1799			if (total_bytes >= max_bytes)
1800				break;
1801			if (!found) {
1802				*start = max(cur_start, state->start);
1803				found = 1;
1804			}
1805			last = state->end;
1806		} else if (contig && found) {
1807			break;
1808		}
1809		node = rb_next(node);
1810		if (!node)
1811			break;
1812	}
1813out:
1814	spin_unlock(&tree->lock);
1815	return total_bytes;
1816}
1817
1818/*
1819 * set the private field for a given byte offset in the tree.  If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823		struct io_failure_record *failrec)
1824{
1825	struct rb_node *node;
1826	struct extent_state *state;
1827	int ret = 0;
1828
1829	spin_lock(&tree->lock);
1830	/*
1831	 * this search will find all the extents that end after
1832	 * our range starts.
1833	 */
1834	node = tree_search(tree, start);
1835	if (!node) {
1836		ret = -ENOENT;
1837		goto out;
1838	}
1839	state = rb_entry(node, struct extent_state, rb_node);
1840	if (state->start != start) {
1841		ret = -ENOENT;
1842		goto out;
1843	}
1844	state->failrec = failrec;
1845out:
1846	spin_unlock(&tree->lock);
1847	return ret;
1848}
1849
1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851		struct io_failure_record **failrec)
1852{
1853	struct rb_node *node;
1854	struct extent_state *state;
1855	int ret = 0;
1856
1857	spin_lock(&tree->lock);
1858	/*
1859	 * this search will find all the extents that end after
1860	 * our range starts.
1861	 */
1862	node = tree_search(tree, start);
1863	if (!node) {
1864		ret = -ENOENT;
1865		goto out;
1866	}
1867	state = rb_entry(node, struct extent_state, rb_node);
1868	if (state->start != start) {
1869		ret = -ENOENT;
1870		goto out;
1871	}
1872	*failrec = state->failrec;
 
1873out:
1874	spin_unlock(&tree->lock);
1875	return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
1881 * has the bits set.  Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885		   unsigned bits, int filled, struct extent_state *cached)
1886{
1887	struct extent_state *state = NULL;
1888	struct rb_node *node;
1889	int bitset = 0;
1890
1891	spin_lock(&tree->lock);
1892	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893	    cached->end > start)
1894		node = &cached->rb_node;
1895	else
1896		node = tree_search(tree, start);
1897	while (node && start <= end) {
1898		state = rb_entry(node, struct extent_state, rb_node);
1899
1900		if (filled && state->start > start) {
1901			bitset = 0;
1902			break;
1903		}
1904
1905		if (state->start > end)
1906			break;
1907
1908		if (state->state & bits) {
1909			bitset = 1;
1910			if (!filled)
1911				break;
1912		} else if (filled) {
1913			bitset = 0;
1914			break;
1915		}
1916
1917		if (state->end == (u64)-1)
1918			break;
1919
1920		start = state->end + 1;
1921		if (start > end)
1922			break;
1923		node = rb_next(node);
1924		if (!node) {
1925			if (filled)
1926				bitset = 0;
1927			break;
1928		}
1929	}
1930	spin_unlock(&tree->lock);
1931	return bitset;
1932}
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939{
1940	u64 start = page_offset(page);
1941	u64 end = start + PAGE_SIZE - 1;
1942	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943		SetPageUptodate(page);
1944}
1945
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947		    struct extent_io_tree *io_tree,
1948		    struct io_failure_record *rec)
1949{
1950	int ret;
1951	int err = 0;
1952
1953	set_state_failrec(failure_tree, rec->start, NULL);
1954	ret = clear_extent_bits(failure_tree, rec->start,
1955				rec->start + rec->len - 1,
1956				EXTENT_LOCKED | EXTENT_DIRTY);
1957	if (ret)
1958		err = ret;
1959
1960	ret = clear_extent_bits(io_tree, rec->start,
1961				rec->start + rec->len - 1,
1962				EXTENT_DAMAGED);
1963	if (ret && !err)
1964		err = ret;
1965
1966	kfree(rec);
1967	return err;
1968}
1969
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
1975 * to avoid any synchronization issues, wait for the data after writing, which
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981		      u64 length, u64 logical, struct page *page,
1982		      unsigned int pg_offset, int mirror_num)
1983{
1984	struct bio *bio;
1985	struct btrfs_device *dev;
1986	u64 map_length = 0;
1987	u64 sector;
1988	struct btrfs_bio *bbio = NULL;
1989	int ret;
1990
1991	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992	BUG_ON(!mirror_num);
1993
 
 
 
1994	bio = btrfs_io_bio_alloc(1);
1995	bio->bi_iter.bi_size = 0;
1996	map_length = length;
1997
1998	/*
1999	 * Avoid races with device replace and make sure our bbio has devices
2000	 * associated to its stripes that don't go away while we are doing the
2001	 * read repair operation.
2002	 */
2003	btrfs_bio_counter_inc_blocked(fs_info);
2004	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005		/*
2006		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007		 * to update all raid stripes, but here we just want to correct
2008		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009		 * stripe's dev and sector.
2010		 */
2011		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012				      &map_length, &bbio, 0);
2013		if (ret) {
2014			btrfs_bio_counter_dec(fs_info);
2015			bio_put(bio);
2016			return -EIO;
2017		}
2018		ASSERT(bbio->mirror_num == 1);
2019	} else {
2020		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021				      &map_length, &bbio, mirror_num);
2022		if (ret) {
2023			btrfs_bio_counter_dec(fs_info);
2024			bio_put(bio);
2025			return -EIO;
2026		}
2027		BUG_ON(mirror_num != bbio->mirror_num);
2028	}
2029
2030	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031	bio->bi_iter.bi_sector = sector;
2032	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033	btrfs_put_bbio(bbio);
2034	if (!dev || !dev->bdev ||
2035	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036		btrfs_bio_counter_dec(fs_info);
2037		bio_put(bio);
2038		return -EIO;
2039	}
2040	bio_set_dev(bio, dev->bdev);
2041	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042	bio_add_page(bio, page, length, pg_offset);
2043
2044	if (btrfsic_submit_bio_wait(bio)) {
2045		/* try to remap that extent elsewhere? */
2046		btrfs_bio_counter_dec(fs_info);
2047		bio_put(bio);
2048		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049		return -EIO;
2050	}
2051
2052	btrfs_info_rl_in_rcu(fs_info,
2053		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054				  ino, start,
2055				  rcu_str_deref(dev->name), sector);
2056	btrfs_bio_counter_dec(fs_info);
2057	bio_put(bio);
2058	return 0;
2059}
2060
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062			 struct extent_buffer *eb, int mirror_num)
2063{
 
2064	u64 start = eb->start;
2065	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066	int ret = 0;
2067
2068	if (sb_rdonly(fs_info->sb))
2069		return -EROFS;
2070
2071	for (i = 0; i < num_pages; i++) {
2072		struct page *p = eb->pages[i];
2073
2074		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2075					start - page_offset(p), mirror_num);
2076		if (ret)
2077			break;
2078		start += PAGE_SIZE;
2079	}
2080
2081	return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089		     struct extent_io_tree *failure_tree,
2090		     struct extent_io_tree *io_tree, u64 start,
2091		     struct page *page, u64 ino, unsigned int pg_offset)
2092{
2093	u64 private;
2094	struct io_failure_record *failrec;
2095	struct extent_state *state;
2096	int num_copies;
2097	int ret;
2098
2099	private = 0;
2100	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101			       EXTENT_DIRTY, 0);
2102	if (!ret)
2103		return 0;
2104
2105	ret = get_state_failrec(failure_tree, start, &failrec);
2106	if (ret)
2107		return 0;
2108
2109	BUG_ON(!failrec->this_mirror);
2110
2111	if (failrec->in_validation) {
2112		/* there was no real error, just free the record */
2113		btrfs_debug(fs_info,
2114			"clean_io_failure: freeing dummy error at %llu",
2115			failrec->start);
2116		goto out;
2117	}
2118	if (sb_rdonly(fs_info->sb))
2119		goto out;
2120
2121	spin_lock(&io_tree->lock);
2122	state = find_first_extent_bit_state(io_tree,
2123					    failrec->start,
2124					    EXTENT_LOCKED);
2125	spin_unlock(&io_tree->lock);
2126
2127	if (state && state->start <= failrec->start &&
2128	    state->end >= failrec->start + failrec->len - 1) {
2129		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130					      failrec->len);
2131		if (num_copies > 1)  {
2132			repair_io_failure(fs_info, ino, start, failrec->len,
2133					  failrec->logical, page, pg_offset,
2134					  failrec->failed_mirror);
2135		}
2136	}
2137
2138out:
2139	free_io_failure(failure_tree, io_tree, failrec);
2140
2141	return 0;
2142}
2143
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151{
2152	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153	struct io_failure_record *failrec;
2154	struct extent_state *state, *next;
2155
2156	if (RB_EMPTY_ROOT(&failure_tree->state))
2157		return;
2158
2159	spin_lock(&failure_tree->lock);
2160	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161	while (state) {
2162		if (state->start > end)
2163			break;
2164
2165		ASSERT(state->end <= end);
2166
2167		next = next_state(state);
2168
2169		failrec = state->failrec;
2170		free_extent_state(state);
2171		kfree(failrec);
2172
2173		state = next;
2174	}
2175	spin_unlock(&failure_tree->lock);
2176}
2177
2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179		struct io_failure_record **failrec_ret)
2180{
2181	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182	struct io_failure_record *failrec;
2183	struct extent_map *em;
2184	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 
2187	int ret;
2188	u64 logical;
2189
2190	ret = get_state_failrec(failure_tree, start, &failrec);
2191	if (ret) {
2192		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193		if (!failrec)
2194			return -ENOMEM;
 
 
 
 
 
2195
2196		failrec->start = start;
2197		failrec->len = end - start + 1;
2198		failrec->this_mirror = 0;
2199		failrec->bio_flags = 0;
2200		failrec->in_validation = 0;
2201
2202		read_lock(&em_tree->lock);
2203		em = lookup_extent_mapping(em_tree, start, failrec->len);
2204		if (!em) {
2205			read_unlock(&em_tree->lock);
2206			kfree(failrec);
2207			return -EIO;
2208		}
2209
2210		if (em->start > start || em->start + em->len <= start) {
2211			free_extent_map(em);
2212			em = NULL;
2213		}
 
 
 
 
2214		read_unlock(&em_tree->lock);
2215		if (!em) {
2216			kfree(failrec);
2217			return -EIO;
2218		}
2219
2220		logical = start - em->start;
2221		logical = em->block_start + logical;
2222		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223			logical = em->block_start;
2224			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225			extent_set_compress_type(&failrec->bio_flags,
2226						 em->compress_type);
2227		}
2228
2229		btrfs_debug(fs_info,
2230			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231			logical, start, failrec->len);
2232
2233		failrec->logical = logical;
2234		free_extent_map(em);
 
 
 
 
 
 
 
2235
2236		/* set the bits in the private failure tree */
2237		ret = set_extent_bits(failure_tree, start, end,
2238					EXTENT_LOCKED | EXTENT_DIRTY);
2239		if (ret >= 0)
2240			ret = set_state_failrec(failure_tree, start, failrec);
2241		/* set the bits in the inode's tree */
2242		if (ret >= 0)
2243			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244		if (ret < 0) {
2245			kfree(failrec);
2246			return ret;
2247		}
2248	} else {
2249		btrfs_debug(fs_info,
2250			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251			failrec->logical, failrec->start, failrec->len,
2252			failrec->in_validation);
2253		/*
2254		 * when data can be on disk more than twice, add to failrec here
2255		 * (e.g. with a list for failed_mirror) to make
2256		 * clean_io_failure() clean all those errors at once.
2257		 */
2258	}
2259
2260	*failrec_ret = failrec;
 
 
2261
2262	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2263}
2264
2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266			   struct io_failure_record *failrec, int failed_mirror)
 
2267{
2268	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269	int num_copies;
2270
2271	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2272	if (num_copies == 1) {
2273		/*
2274		 * we only have a single copy of the data, so don't bother with
2275		 * all the retry and error correction code that follows. no
2276		 * matter what the error is, it is very likely to persist.
2277		 */
2278		btrfs_debug(fs_info,
2279			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280			num_copies, failrec->this_mirror, failed_mirror);
2281		return false;
2282	}
2283
 
 
 
2284	/*
2285	 * there are two premises:
2286	 *	a) deliver good data to the caller
2287	 *	b) correct the bad sectors on disk
2288	 */
2289	if (failed_bio_pages > 1) {
2290		/*
2291		 * to fulfill b), we need to know the exact failing sectors, as
2292		 * we don't want to rewrite any more than the failed ones. thus,
2293		 * we need separate read requests for the failed bio
2294		 *
2295		 * if the following BUG_ON triggers, our validation request got
2296		 * merged. we need separate requests for our algorithm to work.
2297		 */
2298		BUG_ON(failrec->in_validation);
2299		failrec->in_validation = 1;
2300		failrec->this_mirror = failed_mirror;
2301	} else {
2302		/*
2303		 * we're ready to fulfill a) and b) alongside. get a good copy
2304		 * of the failed sector and if we succeed, we have setup
2305		 * everything for repair_io_failure to do the rest for us.
2306		 */
2307		if (failrec->in_validation) {
2308			BUG_ON(failrec->this_mirror != failed_mirror);
2309			failrec->in_validation = 0;
2310			failrec->this_mirror = 0;
2311		}
2312		failrec->failed_mirror = failed_mirror;
2313		failrec->this_mirror++;
2314		if (failrec->this_mirror == failed_mirror)
2315			failrec->this_mirror++;
2316	}
2317
2318	if (failrec->this_mirror > num_copies) {
2319		btrfs_debug(fs_info,
2320			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321			num_copies, failrec->this_mirror, failed_mirror);
2322		return false;
2323	}
2324
2325	return true;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330				    struct io_failure_record *failrec,
2331				    struct page *page, int pg_offset, int icsum,
2332				    bio_end_io_t *endio_func, void *data)
2333{
2334	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335	struct bio *bio;
2336	struct btrfs_io_bio *btrfs_failed_bio;
2337	struct btrfs_io_bio *btrfs_bio;
2338
2339	bio = btrfs_io_bio_alloc(1);
2340	bio->bi_end_io = endio_func;
2341	bio->bi_iter.bi_sector = failrec->logical >> 9;
2342	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343	bio->bi_iter.bi_size = 0;
2344	bio->bi_private = data;
2345
2346	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347	if (btrfs_failed_bio->csum) {
2348		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350		btrfs_bio = btrfs_io_bio(bio);
2351		btrfs_bio->csum = btrfs_bio->csum_inline;
2352		icsum *= csum_size;
2353		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354		       csum_size);
2355	}
2356
2357	bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359	return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371			      struct page *page, u64 start, u64 end,
2372			      int failed_mirror)
2373{
2374	struct io_failure_record *failrec;
2375	struct inode *inode = page->mapping->host;
2376	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378	struct bio *bio;
2379	int read_mode = 0;
 
 
2380	blk_status_t status;
2381	int ret;
2382	unsigned failed_bio_pages = bio_pages_all(failed_bio);
 
2383
2384	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385
2386	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387	if (ret)
2388		return ret;
 
2389
2390	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391				    failed_mirror)) {
2392		free_io_failure(failure_tree, tree, failrec);
2393		return -EIO;
2394	}
2395
2396	if (failed_bio_pages > 1)
2397		read_mode |= REQ_FAILFAST_DEV;
2398
2399	phy_offset >>= inode->i_sb->s_blocksize_bits;
2400	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401				      start - page_offset(page),
2402				      (int)phy_offset, failed_bio->bi_end_io,
2403				      NULL);
2404	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
 
 
 
 
 
 
 
 
 
2405
2406	btrfs_debug(btrfs_sb(inode->i_sb),
2407		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408		read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411					 failrec->bio_flags, 0);
2412	if (status) {
2413		free_io_failure(failure_tree, tree, failrec);
2414		bio_put(bio);
2415		ret = blk_status_to_errno(status);
2416	}
 
 
2417
2418	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419}
2420
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
 
2425	int uptodate = (err == 0);
2426	struct extent_io_tree *tree;
2427	int ret = 0;
2428
2429	tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431	if (tree->ops && tree->ops->writepage_end_io_hook)
2432		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433				uptodate);
2434
2435	if (!uptodate) {
2436		ClearPageUptodate(page);
2437		SetPageError(page);
2438		ret = err < 0 ? err : -EIO;
2439		mapping_set_error(page->mapping, ret);
2440	}
2441}
2442
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
2452static void end_bio_extent_writepage(struct bio *bio)
2453{
2454	int error = blk_status_to_errno(bio->bi_status);
2455	struct bio_vec *bvec;
2456	u64 start;
2457	u64 end;
2458	int i;
 
2459
2460	ASSERT(!bio_flagged(bio, BIO_CLONED));
2461	bio_for_each_segment_all(bvec, bio, i) {
2462		struct page *page = bvec->bv_page;
2463		struct inode *inode = page->mapping->host;
2464		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
2465
2466		/* We always issue full-page reads, but if some block
2467		 * in a page fails to read, blk_update_request() will
2468		 * advance bv_offset and adjust bv_len to compensate.
2469		 * Print a warning for nonzero offsets, and an error
2470		 * if they don't add up to a full page.  */
2471		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473				btrfs_err(fs_info,
2474				   "partial page write in btrfs with offset %u and length %u",
2475					bvec->bv_offset, bvec->bv_len);
2476			else
2477				btrfs_info(fs_info,
2478				   "incomplete page write in btrfs with offset %u and length %u",
2479					bvec->bv_offset, bvec->bv_len);
 
 
2480		}
2481
2482		start = page_offset(page);
2483		end = start + bvec->bv_offset + bvec->bv_len - 1;
2484
2485		end_extent_writepage(page, error, start, end);
2486		end_page_writeback(page);
 
2487	}
2488
2489	bio_put(bio);
2490}
2491
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494			      int uptodate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2495{
2496	struct extent_state *cached = NULL;
2497	u64 end = start + len - 1;
 
 
 
 
2498
2499	if (uptodate && tree->track_uptodate)
2500		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501	unlock_extent_cached_atomic(tree, start, end, &cached);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502}
2503
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
2515static void end_bio_extent_readpage(struct bio *bio)
2516{
2517	struct bio_vec *bvec;
2518	int uptodate = !bio->bi_status;
2519	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520	struct extent_io_tree *tree, *failure_tree;
2521	u64 offset = 0;
2522	u64 start;
2523	u64 end;
2524	u64 len;
2525	u64 extent_start = 0;
2526	u64 extent_len = 0;
2527	int mirror;
2528	int ret;
2529	int i;
2530
2531	ASSERT(!bio_flagged(bio, BIO_CLONED));
2532	bio_for_each_segment_all(bvec, bio, i) {
 
2533		struct page *page = bvec->bv_page;
2534		struct inode *inode = page->mapping->host;
2535		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 
 
 
 
 
2536
2537		btrfs_debug(fs_info,
2538			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2540			io_bio->mirror_num);
2541		tree = &BTRFS_I(inode)->io_tree;
2542		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544		/* We always issue full-page reads, but if some block
2545		 * in a page fails to read, blk_update_request() will
2546		 * advance bv_offset and adjust bv_len to compensate.
2547		 * Print a warning for nonzero offsets, and an error
2548		 * if they don't add up to a full page.  */
2549		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551				btrfs_err(fs_info,
2552					"partial page read in btrfs with offset %u and length %u",
2553					bvec->bv_offset, bvec->bv_len);
2554			else
2555				btrfs_info(fs_info,
2556					"incomplete page read in btrfs with offset %u and length %u",
2557					bvec->bv_offset, bvec->bv_len);
2558		}
 
2559
2560		start = page_offset(page);
2561		end = start + bvec->bv_offset + bvec->bv_len - 1;
2562		len = bvec->bv_len;
2563
2564		mirror = io_bio->mirror_num;
2565		if (likely(uptodate && tree->ops)) {
2566			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567							      page, start, end,
2568							      mirror);
 
 
 
 
 
2569			if (ret)
2570				uptodate = 0;
2571			else
2572				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573						 failure_tree, tree, start,
2574						 page,
2575						 btrfs_ino(BTRFS_I(inode)), 0);
2576		}
2577
2578		if (likely(uptodate))
2579			goto readpage_ok;
2580
2581		if (tree->ops) {
2582			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583			if (ret == -EAGAIN) {
2584				/*
2585				 * Data inode's readpage_io_failed_hook() always
2586				 * returns -EAGAIN.
2587				 *
2588				 * The generic bio_readpage_error handles errors
2589				 * the following way: If possible, new read
2590				 * requests are created and submitted and will
2591				 * end up in end_bio_extent_readpage as well (if
2592				 * we're lucky, not in the !uptodate case). In
2593				 * that case it returns 0 and we just go on with
2594				 * the next page in our bio. If it can't handle
2595				 * the error it will return -EIO and we remain
2596				 * responsible for that page.
2597				 */
2598				ret = bio_readpage_error(bio, offset, page,
2599							 start, end, mirror);
2600				if (ret == 0) {
2601					uptodate = !bio->bi_status;
2602					offset += len;
2603					continue;
2604				}
2605			}
2606
2607			/*
2608			 * metadata's readpage_io_failed_hook() always returns
2609			 * -EIO and fixes nothing.  -EIO is also returned if
2610			 * data inode error could not be fixed.
2611			 */
2612			ASSERT(ret == -EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613		}
2614readpage_ok:
2615		if (likely(uptodate)) {
2616			loff_t i_size = i_size_read(inode);
2617			pgoff_t end_index = i_size >> PAGE_SHIFT;
2618			unsigned off;
2619
2620			/* Zero out the end if this page straddles i_size */
2621			off = i_size & (PAGE_SIZE-1);
2622			if (page->index == end_index && off)
2623				zero_user_segment(page, off, PAGE_SIZE);
2624			SetPageUptodate(page);
2625		} else {
2626			ClearPageUptodate(page);
2627			SetPageError(page);
2628		}
2629		unlock_page(page);
2630		offset += len;
 
2631
2632		if (unlikely(!uptodate)) {
2633			if (extent_len) {
2634				endio_readpage_release_extent(tree,
2635							      extent_start,
2636							      extent_len, 1);
2637				extent_start = 0;
2638				extent_len = 0;
2639			}
2640			endio_readpage_release_extent(tree, start,
2641						      end - start + 1, 0);
2642		} else if (!extent_len) {
2643			extent_start = start;
2644			extent_len = end + 1 - start;
2645		} else if (extent_start + extent_len == start) {
2646			extent_len += end + 1 - start;
2647		} else {
2648			endio_readpage_release_extent(tree, extent_start,
2649						      extent_len, uptodate);
2650			extent_start = start;
2651			extent_len = end + 1 - start;
2652		}
2653	}
 
2654
2655	if (extent_len)
2656		endio_readpage_release_extent(tree, extent_start, extent_len,
2657					      uptodate);
2658	if (io_bio->end_io)
2659		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
 
 
 
2660	bio_put(bio);
2661}
2662
2663/*
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
2667 */
2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2669{
2670	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
2672
2673/*
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
2677 */
2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679{
2680	struct bio *bio;
2681
2682	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683	bio_set_dev(bio, bdev);
2684	bio->bi_iter.bi_sector = first_byte >> 9;
2685	btrfs_io_bio_init(btrfs_io_bio(bio));
2686	return bio;
2687}
2688
2689struct bio *btrfs_bio_clone(struct bio *bio)
2690{
2691	struct btrfs_io_bio *btrfs_bio;
2692	struct bio *new;
2693
2694	/* Bio allocation backed by a bioset does not fail */
2695	new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696	btrfs_bio = btrfs_io_bio(new);
2697	btrfs_io_bio_init(btrfs_bio);
2698	btrfs_bio->iter = bio->bi_iter;
2699	return new;
2700}
2701
2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2703{
2704	struct bio *bio;
2705
2706	/* Bio allocation backed by a bioset does not fail */
2707	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708	btrfs_io_bio_init(btrfs_io_bio(bio));
2709	return bio;
2710}
2711
2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713{
2714	struct bio *bio;
2715	struct btrfs_io_bio *btrfs_bio;
2716
2717	/* this will never fail when it's backed by a bioset */
2718	bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719	ASSERT(bio);
2720
2721	btrfs_bio = btrfs_io_bio(bio);
2722	btrfs_io_bio_init(btrfs_bio);
2723
2724	bio_trim(bio, offset >> 9, size >> 9);
2725	btrfs_bio->iter = bio->bi_iter;
2726	return bio;
2727}
2728
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730				       unsigned long bio_flags)
2731{
2732	blk_status_t ret = 0;
2733	struct bio_vec *bvec = bio_last_bvec_all(bio);
2734	struct page *page = bvec->bv_page;
2735	struct extent_io_tree *tree = bio->bi_private;
2736	u64 start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737
2738	start = page_offset(page) + bvec->bv_offset;
 
 
 
 
2739
2740	bio->bi_private = NULL;
 
 
 
 
 
 
 
 
 
2741
2742	if (tree->ops)
2743		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2744					   mirror_num, bio_flags, start);
2745	else
2746		btrfsic_submit_bio(bio);
2747
2748	return blk_status_to_errno(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749}
2750
2751/*
2752 * @opf:	bio REQ_OP_* and REQ_* flags as one value
2753 * @tree:	tree so we can call our merge_bio hook
2754 * @wbc:	optional writeback control for io accounting
2755 * @page:	page to add to the bio
 
 
2756 * @pg_offset:	offset of the new bio or to check whether we are adding
2757 *              a contiguous page to the previous one
2758 * @size:	portion of page that we want to write
2759 * @offset:	starting offset in the page
2760 * @bdev:	attach newly created bios to this bdev
2761 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2762 * @end_io_func:     end_io callback for new bio
2763 * @mirror_num:	     desired mirror to read/write
2764 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2765 * @bio_flags:	flags of the current bio to see if we can merge them
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768			      struct writeback_control *wbc,
2769			      struct page *page, u64 offset,
 
2770			      size_t size, unsigned long pg_offset,
2771			      struct block_device *bdev,
2772			      struct bio **bio_ret,
2773			      bio_end_io_t end_io_func,
2774			      int mirror_num,
2775			      unsigned long prev_bio_flags,
2776			      unsigned long bio_flags,
2777			      bool force_bio_submit)
2778{
2779	int ret = 0;
2780	struct bio *bio;
2781	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782	sector_t sector = offset >> 9;
2783
2784	ASSERT(bio_ret);
2785
2786	if (*bio_ret) {
2787		bool contig;
2788		bool can_merge = true;
2789
2790		bio = *bio_ret;
2791		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792			contig = bio->bi_iter.bi_sector == sector;
2793		else
2794			contig = bio_end_sector(bio) == sector;
2795
2796		if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797					page_size, bio, bio_flags))
2798			can_merge = false;
2799
2800		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801		    force_bio_submit ||
2802		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2804			if (ret < 0) {
2805				*bio_ret = NULL;
2806				return ret;
2807			}
2808			bio = NULL;
2809		} else {
2810			if (wbc)
2811				wbc_account_io(wbc, page, page_size);
2812			return 0;
2813		}
2814	}
2815
2816	bio = btrfs_bio_alloc(bdev, offset);
2817	bio_add_page(bio, page, page_size, pg_offset);
2818	bio->bi_end_io = end_io_func;
2819	bio->bi_private = tree;
2820	bio->bi_write_hint = page->mapping->host->i_write_hint;
2821	bio->bi_opf = opf;
2822	if (wbc) {
 
 
 
 
2823		wbc_init_bio(wbc, bio);
2824		wbc_account_io(wbc, page, page_size);
 
 
 
 
 
 
 
 
 
2825	}
2826
2827	*bio_ret = bio;
 
 
2828
2829	return ret;
2830}
2831
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833				      struct page *page)
 
2834{
2835	if (!PagePrivate(page)) {
2836		SetPagePrivate(page);
2837		get_page(page);
2838		set_page_private(page, (unsigned long)eb);
2839	} else {
2840		WARN_ON(page->private != (unsigned long)eb);
 
 
 
 
 
 
 
 
 
 
 
 
2841	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842}
2843
2844void set_page_extent_mapped(struct page *page)
2845{
2846	if (!PagePrivate(page)) {
2847		SetPagePrivate(page);
2848		get_page(page);
2849		set_page_private(page, EXTENT_PAGE_PRIVATE);
2850	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851}
2852
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855		 u64 start, u64 len, get_extent_t *get_extent,
2856		 struct extent_map **em_cached)
2857{
2858	struct extent_map *em;
2859
2860	if (em_cached && *em_cached) {
2861		em = *em_cached;
2862		if (extent_map_in_tree(em) && start >= em->start &&
2863		    start < extent_map_end(em)) {
2864			refcount_inc(&em->refs);
2865			return em;
2866		}
2867
2868		free_extent_map(em);
2869		*em_cached = NULL;
2870	}
2871
2872	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873	if (em_cached && !IS_ERR_OR_NULL(em)) {
2874		BUG_ON(*em_cached);
2875		refcount_inc(&em->refs);
2876		*em_cached = em;
2877	}
2878	return em;
2879}
2880/*
2881 * basic readpage implementation.  Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
2884 * XXX JDM: This needs looking at to ensure proper page locking
2885 * return 0 on success, otherwise return error
2886 */
2887static int __do_readpage(struct extent_io_tree *tree,
2888			 struct page *page,
2889			 get_extent_t *get_extent,
2890			 struct extent_map **em_cached,
2891			 struct bio **bio, int mirror_num,
2892			 unsigned long *bio_flags, unsigned int read_flags,
2893			 u64 *prev_em_start)
2894{
2895	struct inode *inode = page->mapping->host;
 
2896	u64 start = page_offset(page);
2897	const u64 end = start + PAGE_SIZE - 1;
2898	u64 cur = start;
2899	u64 extent_offset;
2900	u64 last_byte = i_size_read(inode);
2901	u64 block_start;
2902	u64 cur_end;
2903	struct extent_map *em;
2904	struct block_device *bdev;
2905	int ret = 0;
2906	int nr = 0;
2907	size_t pg_offset = 0;
2908	size_t iosize;
2909	size_t disk_io_size;
2910	size_t blocksize = inode->i_sb->s_blocksize;
2911	unsigned long this_bio_flag = 0;
 
2912
2913	set_page_extent_mapped(page);
 
 
 
 
 
 
2914
2915	if (!PageUptodate(page)) {
2916		if (cleancache_get_page(page) == 0) {
2917			BUG_ON(blocksize != PAGE_SIZE);
2918			unlock_extent(tree, start, end);
 
2919			goto out;
2920		}
2921	}
2922
2923	if (page->index == last_byte >> PAGE_SHIFT) {
2924		char *userpage;
2925		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926
2927		if (zero_offset) {
2928			iosize = PAGE_SIZE - zero_offset;
2929			userpage = kmap_atomic(page);
2930			memset(userpage + zero_offset, 0, iosize);
2931			flush_dcache_page(page);
2932			kunmap_atomic(userpage);
2933		}
2934	}
 
2935	while (cur <= end) {
2936		bool force_bio_submit = false;
2937		u64 offset;
2938
2939		if (cur >= last_byte) {
2940			char *userpage;
2941			struct extent_state *cached = NULL;
2942
2943			iosize = PAGE_SIZE - pg_offset;
2944			userpage = kmap_atomic(page);
2945			memset(userpage + pg_offset, 0, iosize);
2946			flush_dcache_page(page);
2947			kunmap_atomic(userpage);
2948			set_extent_uptodate(tree, cur, cur + iosize - 1,
2949					    &cached, GFP_NOFS);
2950			unlock_extent_cached(tree, cur,
2951					     cur + iosize - 1, &cached);
 
2952			break;
2953		}
2954		em = __get_extent_map(inode, page, pg_offset, cur,
2955				      end - cur + 1, get_extent, em_cached);
2956		if (IS_ERR_OR_NULL(em)) {
2957			SetPageError(page);
2958			unlock_extent(tree, cur, end);
 
2959			break;
2960		}
2961		extent_offset = cur - em->start;
2962		BUG_ON(extent_map_end(em) <= cur);
2963		BUG_ON(end < cur);
2964
2965		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967			extent_set_compress_type(&this_bio_flag,
2968						 em->compress_type);
2969		}
2970
2971		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972		cur_end = min(extent_map_end(em) - 1, end);
2973		iosize = ALIGN(iosize, blocksize);
2974		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975			disk_io_size = em->block_len;
2976			offset = em->block_start;
2977		} else {
2978			offset = em->block_start + extent_offset;
2979			disk_io_size = iosize;
2980		}
2981		bdev = em->bdev;
2982		block_start = em->block_start;
2983		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984			block_start = EXTENT_MAP_HOLE;
2985
2986		/*
2987		 * If we have a file range that points to a compressed extent
2988		 * and it's followed by a consecutive file range that points to
2989		 * to the same compressed extent (possibly with a different
2990		 * offset and/or length, so it either points to the whole extent
2991		 * or only part of it), we must make sure we do not submit a
2992		 * single bio to populate the pages for the 2 ranges because
2993		 * this makes the compressed extent read zero out the pages
2994		 * belonging to the 2nd range. Imagine the following scenario:
2995		 *
2996		 *  File layout
2997		 *  [0 - 8K]                     [8K - 24K]
2998		 *    |                               |
2999		 *    |                               |
3000		 * points to extent X,         points to extent X,
3001		 * offset 4K, length of 8K     offset 0, length 16K
3002		 *
3003		 * [extent X, compressed length = 4K uncompressed length = 16K]
3004		 *
3005		 * If the bio to read the compressed extent covers both ranges,
3006		 * it will decompress extent X into the pages belonging to the
3007		 * first range and then it will stop, zeroing out the remaining
3008		 * pages that belong to the other range that points to extent X.
3009		 * So here we make sure we submit 2 bios, one for the first
3010		 * range and another one for the third range. Both will target
3011		 * the same physical extent from disk, but we can't currently
3012		 * make the compressed bio endio callback populate the pages
3013		 * for both ranges because each compressed bio is tightly
3014		 * coupled with a single extent map, and each range can have
3015		 * an extent map with a different offset value relative to the
3016		 * uncompressed data of our extent and different lengths. This
3017		 * is a corner case so we prioritize correctness over
3018		 * non-optimal behavior (submitting 2 bios for the same extent).
3019		 */
3020		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021		    prev_em_start && *prev_em_start != (u64)-1 &&
3022		    *prev_em_start != em->orig_start)
3023			force_bio_submit = true;
3024
3025		if (prev_em_start)
3026			*prev_em_start = em->orig_start;
3027
3028		free_extent_map(em);
3029		em = NULL;
3030
3031		/* we've found a hole, just zero and go on */
3032		if (block_start == EXTENT_MAP_HOLE) {
3033			char *userpage;
3034			struct extent_state *cached = NULL;
3035
3036			userpage = kmap_atomic(page);
3037			memset(userpage + pg_offset, 0, iosize);
3038			flush_dcache_page(page);
3039			kunmap_atomic(userpage);
3040
3041			set_extent_uptodate(tree, cur, cur + iosize - 1,
3042					    &cached, GFP_NOFS);
3043			unlock_extent_cached(tree, cur,
3044					     cur + iosize - 1, &cached);
 
3045			cur = cur + iosize;
3046			pg_offset += iosize;
3047			continue;
3048		}
3049		/* the get_extent function already copied into the page */
3050		if (test_range_bit(tree, cur, cur_end,
3051				   EXTENT_UPTODATE, 1, NULL)) {
3052			check_page_uptodate(tree, page);
3053			unlock_extent(tree, cur, cur + iosize - 1);
 
3054			cur = cur + iosize;
3055			pg_offset += iosize;
3056			continue;
3057		}
3058		/* we have an inline extent but it didn't get marked up
3059		 * to date.  Error out
3060		 */
3061		if (block_start == EXTENT_MAP_INLINE) {
3062			SetPageError(page);
3063			unlock_extent(tree, cur, cur + iosize - 1);
 
3064			cur = cur + iosize;
3065			pg_offset += iosize;
3066			continue;
3067		}
3068
3069		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070					 page, offset, disk_io_size,
3071					 pg_offset, bdev, bio,
3072					 end_bio_extent_readpage, mirror_num,
3073					 *bio_flags,
3074					 this_bio_flag,
3075					 force_bio_submit);
3076		if (!ret) {
3077			nr++;
3078			*bio_flags = this_bio_flag;
3079		} else {
3080			SetPageError(page);
3081			unlock_extent(tree, cur, cur + iosize - 1);
 
3082			goto out;
3083		}
3084		cur = cur + iosize;
3085		pg_offset += iosize;
3086	}
3087out:
3088	if (!nr) {
3089		if (!PageError(page))
3090			SetPageUptodate(page);
3091		unlock_page(page);
3092	}
3093	return ret;
3094}
3095
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097					     struct page *pages[], int nr_pages,
3098					     u64 start, u64 end,
3099					     struct extent_map **em_cached,
3100					     struct bio **bio,
3101					     unsigned long *bio_flags,
3102					     u64 *prev_em_start)
3103{
3104	struct inode *inode;
3105	struct btrfs_ordered_extent *ordered;
3106	int index;
3107
3108	inode = pages[0]->mapping->host;
3109	while (1) {
3110		lock_extent(tree, start, end);
3111		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112						     end - start + 1);
3113		if (!ordered)
3114			break;
3115		unlock_extent(tree, start, end);
3116		btrfs_start_ordered_extent(inode, ordered, 1);
3117		btrfs_put_ordered_extent(ordered);
3118	}
3119
3120	for (index = 0; index < nr_pages; index++) {
3121		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122				bio, 0, bio_flags, 0, prev_em_start);
3123		put_page(pages[index]);
3124	}
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128			       struct page *pages[],
3129			       int nr_pages,
3130			       struct extent_map **em_cached,
3131			       struct bio **bio, unsigned long *bio_flags,
3132			       u64 *prev_em_start)
3133{
3134	u64 start = 0;
3135	u64 end = 0;
3136	u64 page_start;
3137	int index;
3138	int first_index = 0;
3139
3140	for (index = 0; index < nr_pages; index++) {
3141		page_start = page_offset(pages[index]);
3142		if (!end) {
3143			start = page_start;
3144			end = start + PAGE_SIZE - 1;
3145			first_index = index;
3146		} else if (end + 1 == page_start) {
3147			end += PAGE_SIZE;
3148		} else {
3149			__do_contiguous_readpages(tree, &pages[first_index],
3150						  index - first_index, start,
3151						  end, em_cached,
3152						  bio, bio_flags,
3153						  prev_em_start);
3154			start = page_start;
3155			end = start + PAGE_SIZE - 1;
3156			first_index = index;
3157		}
3158	}
3159
3160	if (end)
3161		__do_contiguous_readpages(tree, &pages[first_index],
3162					  index - first_index, start,
3163					  end, em_cached, bio,
3164					  bio_flags, prev_em_start);
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168				   struct page *page,
3169				   get_extent_t *get_extent,
3170				   struct bio **bio, int mirror_num,
3171				   unsigned long *bio_flags,
3172				   unsigned int read_flags)
3173{
3174	struct inode *inode = page->mapping->host;
3175	struct btrfs_ordered_extent *ordered;
3176	u64 start = page_offset(page);
3177	u64 end = start + PAGE_SIZE - 1;
3178	int ret;
3179
3180	while (1) {
3181		lock_extent(tree, start, end);
3182		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183						PAGE_SIZE);
3184		if (!ordered)
3185			break;
3186		unlock_extent(tree, start, end);
3187		btrfs_start_ordered_extent(inode, ordered, 1);
3188		btrfs_put_ordered_extent(ordered);
3189	}
3190
3191	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192			    bio_flags, read_flags, NULL);
3193	return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197			    get_extent_t *get_extent, int mirror_num)
3198{
3199	struct bio *bio = NULL;
3200	unsigned long bio_flags = 0;
3201	int ret;
3202
3203	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204				      &bio_flags, 0);
3205	if (bio)
3206		ret = submit_one_bio(bio, mirror_num, bio_flags);
3207	return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211			      unsigned long nr_written)
3212{
3213	wbc->nr_to_write -= nr_written;
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent).  In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227			      struct page *page, struct writeback_control *wbc,
3228			      struct extent_page_data *epd,
3229			      u64 delalloc_start,
3230			      unsigned long *nr_written)
3231{
3232	struct extent_io_tree *tree = epd->tree;
3233	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234	u64 nr_delalloc;
3235	u64 delalloc_to_write = 0;
3236	u64 delalloc_end = 0;
3237	int ret;
3238	int page_started = 0;
3239
3240	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241		return 0;
3242
3243	while (delalloc_end < page_end) {
3244		nr_delalloc = find_lock_delalloc_range(inode, tree,
3245					       page,
3246					       &delalloc_start,
3247					       &delalloc_end,
3248					       BTRFS_MAX_EXTENT_SIZE);
3249		if (nr_delalloc == 0) {
3250			delalloc_start = delalloc_end + 1;
3251			continue;
3252		}
3253		ret = tree->ops->fill_delalloc(inode, page,
3254					       delalloc_start,
3255					       delalloc_end,
3256					       &page_started,
3257					       nr_written, wbc);
3258		/* File system has been set read-only */
3259		if (ret) {
3260			SetPageError(page);
3261			/* fill_delalloc should be return < 0 for error
3262			 * but just in case, we use > 0 here meaning the
3263			 * IO is started, so we don't want to return > 0
3264			 * unless things are going well.
 
3265			 */
3266			ret = ret < 0 ? ret : -EIO;
3267			goto done;
3268		}
3269		/*
3270		 * delalloc_end is already one less than the total length, so
3271		 * we don't subtract one from PAGE_SIZE
3272		 */
3273		delalloc_to_write += (delalloc_end - delalloc_start +
3274				      PAGE_SIZE) >> PAGE_SHIFT;
3275		delalloc_start = delalloc_end + 1;
3276	}
3277	if (wbc->nr_to_write < delalloc_to_write) {
3278		int thresh = 8192;
3279
3280		if (delalloc_to_write < thresh * 2)
3281			thresh = delalloc_to_write;
3282		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283					 thresh);
3284	}
3285
3286	/* did the fill delalloc function already unlock and start
3287	 * the IO?
3288	 */
3289	if (page_started) {
3290		/*
3291		 * we've unlocked the page, so we can't update
3292		 * the mapping's writeback index, just update
3293		 * nr_to_write.
3294		 */
3295		wbc->nr_to_write -= *nr_written;
3296		return 1;
3297	}
3298
3299	ret = 0;
 
3300
3301done:
3302	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303}
3304
3305/*
3306 * helper for __extent_writepage.  This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314				 struct page *page,
3315				 struct writeback_control *wbc,
3316				 struct extent_page_data *epd,
3317				 loff_t i_size,
3318				 unsigned long nr_written,
3319				 unsigned int write_flags, int *nr_ret)
3320{
3321	struct extent_io_tree *tree = epd->tree;
3322	u64 start = page_offset(page);
3323	u64 page_end = start + PAGE_SIZE - 1;
3324	u64 end;
3325	u64 cur = start;
3326	u64 extent_offset;
3327	u64 block_start;
3328	u64 iosize;
3329	struct extent_map *em;
3330	struct block_device *bdev;
3331	size_t pg_offset = 0;
3332	size_t blocksize;
3333	int ret = 0;
3334	int nr = 0;
 
 
3335	bool compressed;
3336
3337	if (tree->ops && tree->ops->writepage_start_hook) {
3338		ret = tree->ops->writepage_start_hook(page, start,
3339						      page_end);
3340		if (ret) {
3341			/* Fixup worker will requeue */
3342			if (ret == -EBUSY)
3343				wbc->pages_skipped++;
3344			else
3345				redirty_page_for_writepage(wbc, page);
3346
3347			update_nr_written(wbc, nr_written);
3348			unlock_page(page);
3349			return 1;
3350		}
3351	}
3352
3353	/*
3354	 * we don't want to touch the inode after unlocking the page,
3355	 * so we update the mapping writeback index now
3356	 */
3357	update_nr_written(wbc, nr_written + 1);
3358
3359	end = page_end;
3360	if (i_size <= start) {
3361		if (tree->ops && tree->ops->writepage_end_io_hook)
3362			tree->ops->writepage_end_io_hook(page, start,
3363							 page_end, NULL, 1);
3364		goto done;
3365	}
3366
3367	blocksize = inode->i_sb->s_blocksize;
3368
3369	while (cur <= end) {
 
3370		u64 em_end;
3371		u64 offset;
 
 
3372
3373		if (cur >= i_size) {
3374			if (tree->ops && tree->ops->writepage_end_io_hook)
3375				tree->ops->writepage_end_io_hook(page, cur,
3376							 page_end, NULL, 1);
3377			break;
3378		}
3379		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380				     end - cur + 1, 1);
 
 
 
 
 
 
 
3381		if (IS_ERR_OR_NULL(em)) {
3382			SetPageError(page);
3383			ret = PTR_ERR_OR_ZERO(em);
3384			break;
3385		}
3386
3387		extent_offset = cur - em->start;
3388		em_end = extent_map_end(em);
3389		BUG_ON(em_end <= cur);
3390		BUG_ON(end < cur);
3391		iosize = min(em_end - cur, end - cur + 1);
3392		iosize = ALIGN(iosize, blocksize);
3393		offset = em->block_start + extent_offset;
3394		bdev = em->bdev;
3395		block_start = em->block_start;
3396		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 
 
 
 
 
 
 
 
 
 
 
3397		free_extent_map(em);
3398		em = NULL;
3399
3400		/*
3401		 * compressed and inline extents are written through other
3402		 * paths in the FS
3403		 */
3404		if (compressed || block_start == EXTENT_MAP_HOLE ||
3405		    block_start == EXTENT_MAP_INLINE) {
3406			/*
3407			 * end_io notification does not happen here for
3408			 * compressed extents
3409			 */
3410			if (!compressed && tree->ops &&
3411			    tree->ops->writepage_end_io_hook)
3412				tree->ops->writepage_end_io_hook(page, cur,
3413							 cur + iosize - 1,
3414							 NULL, 1);
3415			else if (compressed) {
3416				/* we don't want to end_page_writeback on
3417				 * a compressed extent.  this happens
3418				 * elsewhere
3419				 */
3420				nr++;
3421			}
3422
 
3423			cur += iosize;
3424			pg_offset += iosize;
3425			continue;
3426		}
3427
3428		set_range_writeback(tree, cur, cur + iosize - 1);
3429		if (!PageWriteback(page)) {
3430			btrfs_err(BTRFS_I(inode)->root->fs_info,
3431				   "page %lu not writeback, cur %llu end %llu",
3432			       page->index, cur, end);
3433		}
3434
3435		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436					 page, offset, iosize, pg_offset,
3437					 bdev, &epd->bio,
 
 
 
 
 
 
 
 
 
3438					 end_bio_extent_writepage,
3439					 0, 0, 0, false);
3440		if (ret) {
3441			SetPageError(page);
3442			if (PageWriteback(page))
3443				end_page_writeback(page);
 
3444		}
3445
3446		cur = cur + iosize;
3447		pg_offset += iosize;
3448		nr++;
3449	}
3450done:
3451	*nr_ret = nr;
3452	return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage.  extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback.  Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
 
 
 
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462			      struct extent_page_data *epd)
3463{
3464	struct inode *inode = page->mapping->host;
3465	u64 start = page_offset(page);
3466	u64 page_end = start + PAGE_SIZE - 1;
3467	int ret;
3468	int nr = 0;
3469	size_t pg_offset = 0;
3470	loff_t i_size = i_size_read(inode);
3471	unsigned long end_index = i_size >> PAGE_SHIFT;
3472	unsigned int write_flags = 0;
3473	unsigned long nr_written = 0;
3474
3475	write_flags = wbc_to_write_flags(wbc);
3476
3477	trace___extent_writepage(page, inode, wbc);
3478
3479	WARN_ON(!PageLocked(page));
3480
3481	ClearPageError(page);
3482
3483	pg_offset = i_size & (PAGE_SIZE - 1);
3484	if (page->index > end_index ||
3485	   (page->index == end_index && !pg_offset)) {
3486		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487		unlock_page(page);
3488		return 0;
3489	}
3490
3491	if (page->index == end_index) {
3492		char *userpage;
3493
3494		userpage = kmap_atomic(page);
3495		memset(userpage + pg_offset, 0,
3496		       PAGE_SIZE - pg_offset);
3497		kunmap_atomic(userpage);
3498		flush_dcache_page(page);
3499	}
3500
3501	pg_offset = 0;
3502
3503	set_page_extent_mapped(page);
3504
3505	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506	if (ret == 1)
3507		goto done_unlocked;
3508	if (ret)
3509		goto done;
 
3510
3511	ret = __extent_writepage_io(inode, page, wbc, epd,
3512				    i_size, nr_written, write_flags, &nr);
 
 
 
 
 
 
 
 
 
3513	if (ret == 1)
3514		goto done_unlocked;
3515
3516done:
3517	if (nr == 0) {
3518		/* make sure the mapping tag for page dirty gets cleared */
3519		set_page_writeback(page);
3520		end_page_writeback(page);
3521	}
3522	if (PageError(page)) {
3523		ret = ret < 0 ? ret : -EIO;
3524		end_extent_writepage(page, ret, start, page_end);
3525	}
3526	unlock_page(page);
 
3527	return ret;
3528
3529done_unlocked:
3530	return 0;
3531}
3532
3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534{
3535	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536		       TASK_UNINTERRUPTIBLE);
3537}
3538
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541			  struct btrfs_fs_info *fs_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3542			  struct extent_page_data *epd)
3543{
3544	unsigned long i, num_pages;
 
3545	int flush = 0;
3546	int ret = 0;
3547
3548	if (!btrfs_try_tree_write_lock(eb)) {
 
 
 
3549		flush = 1;
3550		flush_write_bio(epd);
3551		btrfs_tree_lock(eb);
3552	}
3553
3554	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555		btrfs_tree_unlock(eb);
3556		if (!epd->sync_io)
3557			return 0;
3558		if (!flush) {
3559			flush_write_bio(epd);
 
 
3560			flush = 1;
3561		}
3562		while (1) {
3563			wait_on_extent_buffer_writeback(eb);
3564			btrfs_tree_lock(eb);
3565			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566				break;
3567			btrfs_tree_unlock(eb);
3568		}
3569	}
3570
3571	/*
3572	 * We need to do this to prevent races in people who check if the eb is
3573	 * under IO since we can end up having no IO bits set for a short period
3574	 * of time.
3575	 */
3576	spin_lock(&eb->refs_lock);
3577	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579		spin_unlock(&eb->refs_lock);
3580		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582					 -eb->len,
3583					 fs_info->dirty_metadata_batch);
3584		ret = 1;
3585	} else {
3586		spin_unlock(&eb->refs_lock);
3587	}
3588
3589	btrfs_tree_unlock(eb);
3590
3591	if (!ret)
 
 
 
 
 
 
3592		return ret;
3593
3594	num_pages = num_extent_pages(eb->start, eb->len);
3595	for (i = 0; i < num_pages; i++) {
3596		struct page *p = eb->pages[i];
3597
3598		if (!trylock_page(p)) {
3599			if (!flush) {
3600				flush_write_bio(epd);
 
 
 
 
 
 
 
3601				flush = 1;
3602			}
3603			lock_page(p);
3604		}
3605	}
3606
3607	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613	smp_mb__after_atomic();
3614	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
3617static void set_btree_ioerr(struct page *page)
3618{
3619	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621	SetPageError(page);
3622	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623		return;
3624
3625	/*
 
 
 
 
 
 
 
3626	 * If writeback for a btree extent that doesn't belong to a log tree
3627	 * failed, increment the counter transaction->eb_write_errors.
3628	 * We do this because while the transaction is running and before it's
3629	 * committing (when we call filemap_fdata[write|wait]_range against
3630	 * the btree inode), we might have
3631	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632	 * returns an error or an error happens during writeback, when we're
3633	 * committing the transaction we wouldn't know about it, since the pages
3634	 * can be no longer dirty nor marked anymore for writeback (if a
3635	 * subsequent modification to the extent buffer didn't happen before the
3636	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637	 * able to find the pages tagged with SetPageError at transaction
3638	 * commit time. So if this happens we must abort the transaction,
3639	 * otherwise we commit a super block with btree roots that point to
3640	 * btree nodes/leafs whose content on disk is invalid - either garbage
3641	 * or the content of some node/leaf from a past generation that got
3642	 * cowed or deleted and is no longer valid.
3643	 *
3644	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645	 * not be enough - we need to distinguish between log tree extents vs
3646	 * non-log tree extents, and the next filemap_fdatawait_range() call
3647	 * will catch and clear such errors in the mapping - and that call might
3648	 * be from a log sync and not from a transaction commit. Also, checking
3649	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650	 * not done and would not be reliable - the eb might have been released
3651	 * from memory and reading it back again means that flag would not be
3652	 * set (since it's a runtime flag, not persisted on disk).
3653	 *
3654	 * Using the flags below in the btree inode also makes us achieve the
3655	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656	 * writeback for all dirty pages and before filemap_fdatawait_range()
3657	 * is called, the writeback for all dirty pages had already finished
3658	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659	 * filemap_fdatawait_range() would return success, as it could not know
3660	 * that writeback errors happened (the pages were no longer tagged for
3661	 * writeback).
3662	 */
3663	switch (eb->log_index) {
3664	case -1:
3665		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666		break;
3667	case 0:
3668		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669		break;
3670	case 1:
3671		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672		break;
3673	default:
3674		BUG(); /* unexpected, logic error */
3675	}
3676}
3677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3678static void end_bio_extent_buffer_writepage(struct bio *bio)
3679{
3680	struct bio_vec *bvec;
3681	struct extent_buffer *eb;
3682	int i, done;
 
3683
3684	ASSERT(!bio_flagged(bio, BIO_CLONED));
3685	bio_for_each_segment_all(bvec, bio, i) {
3686		struct page *page = bvec->bv_page;
3687
3688		eb = (struct extent_buffer *)page->private;
3689		BUG_ON(!eb);
3690		done = atomic_dec_and_test(&eb->io_pages);
3691
3692		if (bio->bi_status ||
3693		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694			ClearPageUptodate(page);
3695			set_btree_ioerr(page);
3696		}
3697
3698		end_page_writeback(page);
3699
3700		if (!done)
3701			continue;
3702
3703		end_extent_buffer_writeback(eb);
3704	}
3705
3706	bio_put(bio);
3707}
3708
3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710			struct btrfs_fs_info *fs_info,
3711			struct writeback_control *wbc,
3712			struct extent_page_data *epd)
3713{
3714	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716	u64 offset = eb->start;
3717	u32 nritems;
3718	unsigned long i, num_pages;
3719	unsigned long start, end;
3720	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721	int ret = 0;
3722
3723	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724	num_pages = num_extent_pages(eb->start, eb->len);
3725	atomic_set(&eb->io_pages, num_pages);
3726
3727	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3728	nritems = btrfs_header_nritems(eb);
3729	if (btrfs_header_level(eb) > 0) {
3730		end = btrfs_node_key_ptr_offset(nritems);
3731
3732		memzero_extent_buffer(eb, end, eb->len - end);
3733	} else {
3734		/*
3735		 * leaf:
3736		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737		 */
3738		start = btrfs_item_nr_offset(nritems);
3739		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740		memzero_extent_buffer(eb, start, end - start);
3741	}
 
3742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743	for (i = 0; i < num_pages; i++) {
3744		struct page *p = eb->pages[i];
3745
3746		clear_page_dirty_for_io(p);
3747		set_page_writeback(p);
3748		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749					 p, offset, PAGE_SIZE, 0, bdev,
3750					 &epd->bio,
3751					 end_bio_extent_buffer_writepage,
3752					 0, 0, 0, false);
3753		if (ret) {
3754			set_btree_ioerr(p);
3755			if (PageWriteback(p))
3756				end_page_writeback(p);
3757			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758				end_extent_buffer_writeback(eb);
3759			ret = -EIO;
3760			break;
3761		}
3762		offset += PAGE_SIZE;
3763		update_nr_written(wbc, 1);
3764		unlock_page(p);
3765	}
3766
3767	if (unlikely(ret)) {
3768		for (; i < num_pages; i++) {
3769			struct page *p = eb->pages[i];
3770			clear_page_dirty_for_io(p);
3771			unlock_page(p);
3772		}
3773	}
3774
3775	return ret;
3776}
3777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3778int btree_write_cache_pages(struct address_space *mapping,
3779				   struct writeback_control *wbc)
3780{
3781	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783	struct extent_buffer *eb, *prev_eb = NULL;
3784	struct extent_page_data epd = {
3785		.bio = NULL,
3786		.tree = tree,
3787		.extent_locked = 0,
3788		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789	};
 
3790	int ret = 0;
3791	int done = 0;
3792	int nr_to_write_done = 0;
3793	struct pagevec pvec;
3794	int nr_pages;
3795	pgoff_t index;
3796	pgoff_t end;		/* Inclusive */
3797	int scanned = 0;
3798	int tag;
3799
3800	pagevec_init(&pvec);
3801	if (wbc->range_cyclic) {
3802		index = mapping->writeback_index; /* Start from prev offset */
3803		end = -1;
 
 
 
 
 
3804	} else {
3805		index = wbc->range_start >> PAGE_SHIFT;
3806		end = wbc->range_end >> PAGE_SHIFT;
3807		scanned = 1;
3808	}
3809	if (wbc->sync_mode == WB_SYNC_ALL)
3810		tag = PAGECACHE_TAG_TOWRITE;
3811	else
3812		tag = PAGECACHE_TAG_DIRTY;
 
3813retry:
3814	if (wbc->sync_mode == WB_SYNC_ALL)
3815		tag_pages_for_writeback(mapping, index, end);
3816	while (!done && !nr_to_write_done && (index <= end) &&
3817	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818			tag))) {
3819		unsigned i;
3820
3821		scanned = 1;
3822		for (i = 0; i < nr_pages; i++) {
3823			struct page *page = pvec.pages[i];
3824
3825			if (!PagePrivate(page))
3826				continue;
3827
3828			spin_lock(&mapping->private_lock);
3829			if (!PagePrivate(page)) {
3830				spin_unlock(&mapping->private_lock);
3831				continue;
3832			}
3833
3834			eb = (struct extent_buffer *)page->private;
3835
3836			/*
3837			 * Shouldn't happen and normally this would be a BUG_ON
3838			 * but no sense in crashing the users box for something
3839			 * we can survive anyway.
3840			 */
3841			if (WARN_ON(!eb)) {
3842				spin_unlock(&mapping->private_lock);
3843				continue;
3844			}
3845
3846			if (eb == prev_eb) {
3847				spin_unlock(&mapping->private_lock);
3848				continue;
3849			}
3850
3851			ret = atomic_inc_not_zero(&eb->refs);
3852			spin_unlock(&mapping->private_lock);
3853			if (!ret)
3854				continue;
3855
3856			prev_eb = eb;
3857			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858			if (!ret) {
3859				free_extent_buffer(eb);
3860				continue;
3861			}
3862
3863			ret = write_one_eb(eb, fs_info, wbc, &epd);
3864			if (ret) {
3865				done = 1;
3866				free_extent_buffer(eb);
3867				break;
3868			}
3869			free_extent_buffer(eb);
3870
3871			/*
3872			 * the filesystem may choose to bump up nr_to_write.
3873			 * We have to make sure to honor the new nr_to_write
3874			 * at any time
3875			 */
3876			nr_to_write_done = wbc->nr_to_write <= 0;
3877		}
3878		pagevec_release(&pvec);
3879		cond_resched();
3880	}
3881	if (!scanned && !done) {
3882		/*
3883		 * We hit the last page and there is more work to be done: wrap
3884		 * back to the start of the file
3885		 */
3886		scanned = 1;
3887		index = 0;
3888		goto retry;
3889	}
3890	flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3891	return ret;
3892}
3893
3894/**
3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @data: data passed to __extent_writepage function
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them.  If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
3908static int extent_write_cache_pages(struct address_space *mapping,
3909			     struct writeback_control *wbc,
3910			     struct extent_page_data *epd)
3911{
3912	struct inode *inode = mapping->host;
3913	int ret = 0;
3914	int done = 0;
3915	int nr_to_write_done = 0;
3916	struct pagevec pvec;
3917	int nr_pages;
3918	pgoff_t index;
3919	pgoff_t end;		/* Inclusive */
3920	pgoff_t done_index;
3921	int range_whole = 0;
3922	int scanned = 0;
3923	int tag;
3924
3925	/*
3926	 * We have to hold onto the inode so that ordered extents can do their
3927	 * work when the IO finishes.  The alternative to this is failing to add
3928	 * an ordered extent if the igrab() fails there and that is a huge pain
3929	 * to deal with, so instead just hold onto the inode throughout the
3930	 * writepages operation.  If it fails here we are freeing up the inode
3931	 * anyway and we'd rather not waste our time writing out stuff that is
3932	 * going to be truncated anyway.
3933	 */
3934	if (!igrab(inode))
3935		return 0;
3936
3937	pagevec_init(&pvec);
3938	if (wbc->range_cyclic) {
3939		index = mapping->writeback_index; /* Start from prev offset */
3940		end = -1;
 
 
 
 
 
3941	} else {
3942		index = wbc->range_start >> PAGE_SHIFT;
3943		end = wbc->range_end >> PAGE_SHIFT;
3944		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945			range_whole = 1;
3946		scanned = 1;
3947	}
3948	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
3949		tag = PAGECACHE_TAG_TOWRITE;
3950	else
3951		tag = PAGECACHE_TAG_DIRTY;
3952retry:
3953	if (wbc->sync_mode == WB_SYNC_ALL)
3954		tag_pages_for_writeback(mapping, index, end);
3955	done_index = index;
3956	while (!done && !nr_to_write_done && (index <= end) &&
3957			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958						&index, end, tag))) {
3959		unsigned i;
3960
3961		scanned = 1;
3962		for (i = 0; i < nr_pages; i++) {
3963			struct page *page = pvec.pages[i];
3964
3965			done_index = page->index;
3966			/*
3967			 * At this point we hold neither the i_pages lock nor
3968			 * the page lock: the page may be truncated or
3969			 * invalidated (changing page->mapping to NULL),
3970			 * or even swizzled back from swapper_space to
3971			 * tmpfs file mapping
3972			 */
3973			if (!trylock_page(page)) {
3974				flush_write_bio(epd);
 
3975				lock_page(page);
3976			}
3977
3978			if (unlikely(page->mapping != mapping)) {
3979				unlock_page(page);
3980				continue;
3981			}
3982
3983			if (wbc->sync_mode != WB_SYNC_NONE) {
3984				if (PageWriteback(page))
3985					flush_write_bio(epd);
 
 
3986				wait_on_page_writeback(page);
3987			}
3988
3989			if (PageWriteback(page) ||
3990			    !clear_page_dirty_for_io(page)) {
3991				unlock_page(page);
3992				continue;
3993			}
3994
3995			ret = __extent_writepage(page, wbc, epd);
3996
3997			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998				unlock_page(page);
3999				ret = 0;
4000			}
4001			if (ret < 0) {
4002				/*
4003				 * done_index is set past this page,
4004				 * so media errors will not choke
4005				 * background writeout for the entire
4006				 * file. This has consequences for
4007				 * range_cyclic semantics (ie. it may
4008				 * not be suitable for data integrity
4009				 * writeout).
4010				 */
4011				done_index = page->index + 1;
4012				done = 1;
4013				break;
4014			}
4015
4016			/*
4017			 * the filesystem may choose to bump up nr_to_write.
4018			 * We have to make sure to honor the new nr_to_write
4019			 * at any time
4020			 */
4021			nr_to_write_done = wbc->nr_to_write <= 0;
4022		}
4023		pagevec_release(&pvec);
4024		cond_resched();
4025	}
4026	if (!scanned && !done) {
4027		/*
4028		 * We hit the last page and there is more work to be done: wrap
4029		 * back to the start of the file
4030		 */
4031		scanned = 1;
4032		index = 0;
4033		goto retry;
 
 
 
 
 
 
 
 
 
4034	}
4035
4036	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037		mapping->writeback_index = done_index;
4038
4039	btrfs_add_delayed_iput(inode);
4040	return ret;
4041}
4042
4043static void flush_write_bio(struct extent_page_data *epd)
4044{
4045	if (epd->bio) {
4046		int ret;
4047
4048		ret = submit_one_bio(epd->bio, 0, 0);
4049		BUG_ON(ret < 0); /* -ENOMEM */
4050		epd->bio = NULL;
4051	}
4052}
4053
4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4055{
4056	int ret;
4057	struct extent_page_data epd = {
4058		.bio = NULL,
4059		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4060		.extent_locked = 0,
4061		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4062	};
4063
4064	ret = __extent_writepage(page, wbc, &epd);
 
 
 
 
 
4065
4066	flush_write_bio(&epd);
 
4067	return ret;
4068}
4069
4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4071			      int mode)
4072{
4073	int ret = 0;
4074	struct address_space *mapping = inode->i_mapping;
4075	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076	struct page *page;
4077	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078		PAGE_SHIFT;
4079
4080	struct extent_page_data epd = {
4081		.bio = NULL,
4082		.tree = tree,
4083		.extent_locked = 1,
4084		.sync_io = mode == WB_SYNC_ALL,
4085	};
4086	struct writeback_control wbc_writepages = {
4087		.sync_mode	= mode,
4088		.nr_to_write	= nr_pages * 2,
4089		.range_start	= start,
4090		.range_end	= end + 1,
 
 
 
4091	};
4092
 
4093	while (start <= end) {
4094		page = find_get_page(mapping, start >> PAGE_SHIFT);
4095		if (clear_page_dirty_for_io(page))
4096			ret = __extent_writepage(page, &wbc_writepages, &epd);
4097		else {
4098			if (tree->ops && tree->ops->writepage_end_io_hook)
4099				tree->ops->writepage_end_io_hook(page, start,
4100						 start + PAGE_SIZE - 1,
4101						 NULL, 1);
4102			unlock_page(page);
4103		}
4104		put_page(page);
4105		start += PAGE_SIZE;
4106	}
4107
4108	flush_write_bio(&epd);
 
 
 
 
 
 
4109	return ret;
4110}
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113		      struct address_space *mapping,
4114		      struct writeback_control *wbc)
4115{
4116	int ret = 0;
4117	struct extent_page_data epd = {
4118		.bio = NULL,
4119		.tree = tree,
4120		.extent_locked = 0,
4121		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4122	};
4123
4124	ret = extent_write_cache_pages(mapping, wbc, &epd);
4125	flush_write_bio(&epd);
 
 
 
 
 
4126	return ret;
4127}
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130		     struct address_space *mapping,
4131		     struct list_head *pages, unsigned nr_pages)
4132{
4133	struct bio *bio = NULL;
4134	unsigned page_idx;
4135	unsigned long bio_flags = 0;
4136	struct page *pagepool[16];
4137	struct page *page;
4138	struct extent_map *em_cached = NULL;
4139	int nr = 0;
4140	u64 prev_em_start = (u64)-1;
 
4141
4142	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143		page = list_entry(pages->prev, struct page, lru);
 
4144
4145		prefetchw(&page->flags);
4146		list_del(&page->lru);
4147		if (add_to_page_cache_lru(page, mapping,
4148					page->index,
4149					readahead_gfp_mask(mapping))) {
4150			put_page(page);
4151			continue;
4152		}
4153
4154		pagepool[nr++] = page;
4155		if (nr < ARRAY_SIZE(pagepool))
4156			continue;
4157		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158				&bio_flags, &prev_em_start);
4159		nr = 0;
4160	}
4161	if (nr)
4162		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163				&bio_flags, &prev_em_start);
4164
4165	if (em_cached)
4166		free_extent_map(em_cached);
4167
4168	BUG_ON(!list_empty(pages));
4169	if (bio)
4170		return submit_one_bio(bio, 0, bio_flags);
4171	return 0;
4172}
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180			  struct page *page, unsigned long offset)
4181{
4182	struct extent_state *cached_state = NULL;
4183	u64 start = page_offset(page);
4184	u64 end = start + PAGE_SIZE - 1;
4185	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
 
 
 
4187	start += ALIGN(offset, blocksize);
4188	if (start > end)
4189		return 0;
4190
4191	lock_extent_bits(tree, start, end, &cached_state);
4192	wait_on_page_writeback(page);
4193	clear_extent_bit(tree, start, end,
4194			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195			 EXTENT_DO_ACCOUNTING,
4196			 1, 1, &cached_state);
 
 
 
4197	return 0;
4198}
4199
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
4205static int try_release_extent_state(struct extent_map_tree *map,
4206				    struct extent_io_tree *tree,
4207				    struct page *page, gfp_t mask)
4208{
4209	u64 start = page_offset(page);
4210	u64 end = start + PAGE_SIZE - 1;
4211	int ret = 1;
4212
4213	if (test_range_bit(tree, start, end,
4214			   EXTENT_IOBITS, 0, NULL))
4215		ret = 0;
4216	else {
4217		/*
4218		 * at this point we can safely clear everything except the
4219		 * locked bit and the nodatasum bit
 
 
4220		 */
4221		ret = __clear_extent_bit(tree, start, end,
4222				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223				 0, 0, NULL, mask, NULL);
4224
4225		/* if clear_extent_bit failed for enomem reasons,
4226		 * we can't allow the release to continue.
4227		 */
4228		if (ret < 0)
4229			ret = 0;
4230		else
4231			ret = 1;
4232	}
4233	return ret;
4234}
4235
4236/*
4237 * a helper for releasepage.  As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
4242			       struct extent_io_tree *tree, struct page *page,
4243			       gfp_t mask)
4244{
4245	struct extent_map *em;
4246	u64 start = page_offset(page);
4247	u64 end = start + PAGE_SIZE - 1;
 
 
 
4248
4249	if (gfpflags_allow_blocking(mask) &&
4250	    page->mapping->host->i_size > SZ_16M) {
4251		u64 len;
4252		while (start <= end) {
 
 
 
4253			len = end - start + 1;
4254			write_lock(&map->lock);
4255			em = lookup_extent_mapping(map, start, len);
4256			if (!em) {
4257				write_unlock(&map->lock);
4258				break;
4259			}
4260			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261			    em->start != start) {
4262				write_unlock(&map->lock);
4263				free_extent_map(em);
4264				break;
4265			}
4266			if (!test_range_bit(tree, em->start,
4267					    extent_map_end(em) - 1,
4268					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4269					    0, NULL)) {
4270				remove_extent_mapping(map, em);
4271				/* once for the rb tree */
4272				free_extent_map(em);
4273			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4274			start = extent_map_end(em);
4275			write_unlock(&map->lock);
4276
4277			/* once for us */
4278			free_extent_map(em);
 
 
4279		}
4280	}
4281	return try_release_extent_state(map, tree, page, mask);
4282}
4283
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289						u64 offset, u64 last)
4290{
4291	u64 sectorsize = btrfs_inode_sectorsize(inode);
4292	struct extent_map *em;
4293	u64 len;
4294
4295	if (offset >= last)
4296		return NULL;
4297
4298	while (1) {
4299		len = last - offset;
4300		if (len == 0)
4301			break;
4302		len = ALIGN(len, sectorsize);
4303		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304				len, 0);
4305		if (IS_ERR_OR_NULL(em))
4306			return em;
4307
4308		/* if this isn't a hole return it */
4309		if (em->block_start != EXTENT_MAP_HOLE)
4310			return em;
4311
4312		/* this is a hole, advance to the next extent */
4313		offset = extent_map_end(em);
4314		free_extent_map(em);
4315		if (offset >= last)
4316			break;
4317	}
4318	return NULL;
4319}
4320
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327	u64 offset;
4328	u64 phys;
4329	u64 len;
4330	u32 flags;
4331	bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345				struct fiemap_cache *cache,
4346				u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348	int ret = 0;
4349
4350	if (!cache->cached)
4351		goto assign;
4352
4353	/*
4354	 * Sanity check, extent_fiemap() should have ensured that new
4355	 * fiemap extent won't overlap with cahced one.
4356	 * Not recoverable.
4357	 *
4358	 * NOTE: Physical address can overlap, due to compression
4359	 */
4360	if (cache->offset + cache->len > offset) {
4361		WARN_ON(1);
4362		return -EINVAL;
4363	}
4364
4365	/*
4366	 * Only merges fiemap extents if
4367	 * 1) Their logical addresses are continuous
4368	 *
4369	 * 2) Their physical addresses are continuous
4370	 *    So truly compressed (physical size smaller than logical size)
4371	 *    extents won't get merged with each other
4372	 *
4373	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374	 *    So regular extent won't get merged with prealloc extent
4375	 */
4376	if (cache->offset + cache->len  == offset &&
4377	    cache->phys + cache->len == phys  &&
4378	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379			(flags & ~FIEMAP_EXTENT_LAST)) {
4380		cache->len += len;
4381		cache->flags |= flags;
4382		goto try_submit_last;
4383	}
4384
4385	/* Not mergeable, need to submit cached one */
4386	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387				      cache->len, cache->flags);
4388	cache->cached = false;
4389	if (ret)
4390		return ret;
4391assign:
4392	cache->cached = true;
4393	cache->offset = offset;
4394	cache->phys = phys;
4395	cache->len = len;
4396	cache->flags = flags;
4397try_submit_last:
4398	if (cache->flags & FIEMAP_EXTENT_LAST) {
4399		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400				cache->phys, cache->len, cache->flags);
4401		cache->cached = false;
4402	}
4403	return ret;
4404}
4405
4406/*
4407 * Emit last fiemap cache
4408 *
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0		      4k		    8k
4411 * |<- Fiemap range ->|
4412 * |<------------  First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4416 */
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418				  struct fiemap_extent_info *fieinfo,
4419				  struct fiemap_cache *cache)
4420{
4421	int ret;
4422
4423	if (!cache->cached)
4424		return 0;
4425
4426	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427				      cache->len, cache->flags);
4428	cache->cached = false;
4429	if (ret > 0)
4430		ret = 0;
4431	return ret;
4432}
4433
4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435		__u64 start, __u64 len)
4436{
4437	int ret = 0;
4438	u64 off = start;
4439	u64 max = start + len;
4440	u32 flags = 0;
4441	u32 found_type;
4442	u64 last;
4443	u64 last_for_get_extent = 0;
4444	u64 disko = 0;
4445	u64 isize = i_size_read(inode);
4446	struct btrfs_key found_key;
4447	struct extent_map *em = NULL;
4448	struct extent_state *cached_state = NULL;
4449	struct btrfs_path *path;
4450	struct btrfs_root *root = BTRFS_I(inode)->root;
4451	struct fiemap_cache cache = { 0 };
 
 
4452	int end = 0;
4453	u64 em_start = 0;
4454	u64 em_len = 0;
4455	u64 em_end = 0;
4456
4457	if (len == 0)
4458		return -EINVAL;
4459
4460	path = btrfs_alloc_path();
4461	if (!path)
4462		return -ENOMEM;
4463	path->leave_spinning = 1;
4464
 
 
 
 
 
 
 
 
 
 
 
 
4465	start = round_down(start, btrfs_inode_sectorsize(inode));
4466	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467
4468	/*
4469	 * lookup the last file extent.  We're not using i_size here
4470	 * because there might be preallocation past i_size
4471	 */
4472	ret = btrfs_lookup_file_extent(NULL, root, path,
4473			btrfs_ino(BTRFS_I(inode)), -1, 0);
4474	if (ret < 0) {
4475		btrfs_free_path(path);
4476		return ret;
4477	} else {
4478		WARN_ON(!ret);
4479		if (ret == 1)
4480			ret = 0;
4481	}
4482
4483	path->slots[0]--;
4484	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485	found_type = found_key.type;
4486
4487	/* No extents, but there might be delalloc bits */
4488	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489	    found_type != BTRFS_EXTENT_DATA_KEY) {
4490		/* have to trust i_size as the end */
4491		last = (u64)-1;
4492		last_for_get_extent = isize;
4493	} else {
4494		/*
4495		 * remember the start of the last extent.  There are a
4496		 * bunch of different factors that go into the length of the
4497		 * extent, so its much less complex to remember where it started
4498		 */
4499		last = found_key.offset;
4500		last_for_get_extent = last + 1;
4501	}
4502	btrfs_release_path(path);
4503
4504	/*
4505	 * we might have some extents allocated but more delalloc past those
4506	 * extents.  so, we trust isize unless the start of the last extent is
4507	 * beyond isize
4508	 */
4509	if (last < isize) {
4510		last = (u64)-1;
4511		last_for_get_extent = isize;
4512	}
4513
4514	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515			 &cached_state);
4516
4517	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4518	if (!em)
4519		goto out;
4520	if (IS_ERR(em)) {
4521		ret = PTR_ERR(em);
4522		goto out;
4523	}
4524
4525	while (!end) {
4526		u64 offset_in_extent = 0;
4527
4528		/* break if the extent we found is outside the range */
4529		if (em->start >= max || extent_map_end(em) < off)
4530			break;
4531
4532		/*
4533		 * get_extent may return an extent that starts before our
4534		 * requested range.  We have to make sure the ranges
4535		 * we return to fiemap always move forward and don't
4536		 * overlap, so adjust the offsets here
4537		 */
4538		em_start = max(em->start, off);
4539
4540		/*
4541		 * record the offset from the start of the extent
4542		 * for adjusting the disk offset below.  Only do this if the
4543		 * extent isn't compressed since our in ram offset may be past
4544		 * what we have actually allocated on disk.
4545		 */
4546		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547			offset_in_extent = em_start - em->start;
4548		em_end = extent_map_end(em);
4549		em_len = em_end - em_start;
4550		disko = 0;
4551		flags = 0;
 
 
 
 
4552
4553		/*
4554		 * bump off for our next call to get_extent
4555		 */
4556		off = extent_map_end(em);
4557		if (off >= max)
4558			end = 1;
4559
4560		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561			end = 1;
4562			flags |= FIEMAP_EXTENT_LAST;
4563		} else if (em->block_start == EXTENT_MAP_INLINE) {
4564			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565				  FIEMAP_EXTENT_NOT_ALIGNED);
4566		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567			flags |= (FIEMAP_EXTENT_DELALLOC |
4568				  FIEMAP_EXTENT_UNKNOWN);
4569		} else if (fieinfo->fi_extents_max) {
4570			u64 bytenr = em->block_start -
4571				(em->start - em->orig_start);
4572
4573			disko = em->block_start + offset_in_extent;
4574
4575			/*
4576			 * As btrfs supports shared space, this information
4577			 * can be exported to userspace tools via
4578			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4579			 * then we're just getting a count and we can skip the
4580			 * lookup stuff.
4581			 */
4582			ret = btrfs_check_shared(root,
4583						 btrfs_ino(BTRFS_I(inode)),
4584						 bytenr);
4585			if (ret < 0)
4586				goto out_free;
4587			if (ret)
4588				flags |= FIEMAP_EXTENT_SHARED;
4589			ret = 0;
4590		}
4591		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592			flags |= FIEMAP_EXTENT_ENCODED;
4593		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594			flags |= FIEMAP_EXTENT_UNWRITTEN;
4595
4596		free_extent_map(em);
4597		em = NULL;
4598		if ((em_start >= last) || em_len == (u64)-1 ||
4599		   (last == (u64)-1 && isize <= em_end)) {
4600			flags |= FIEMAP_EXTENT_LAST;
4601			end = 1;
4602		}
4603
4604		/* now scan forward to see if this is really the last extent. */
4605		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4606		if (IS_ERR(em)) {
4607			ret = PTR_ERR(em);
4608			goto out;
4609		}
4610		if (!em) {
4611			flags |= FIEMAP_EXTENT_LAST;
4612			end = 1;
4613		}
4614		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615					   em_len, flags);
4616		if (ret) {
4617			if (ret == 1)
4618				ret = 0;
4619			goto out_free;
4620		}
4621	}
4622out_free:
4623	if (!ret)
4624		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625	free_extent_map(em);
4626out:
4627	btrfs_free_path(path);
4628	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629			     &cached_state);
 
 
 
 
 
4630	return ret;
4631}
4632
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
4635	btrfs_leak_debug_del(&eb->leak_list);
4636	kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
4639int extent_buffer_under_io(struct extent_buffer *eb)
4640{
4641	return (atomic_read(&eb->io_pages) ||
4642		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650{
4651	unsigned long index;
4652	struct page *page;
4653	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655	BUG_ON(extent_buffer_under_io(eb));
4656
4657	index = num_extent_pages(eb->start, eb->len);
4658	if (index == 0)
4659		return;
 
 
 
 
 
 
 
 
 
 
4660
4661	do {
4662		index--;
4663		page = eb->pages[index];
4664		if (!page)
4665			continue;
 
 
 
 
 
 
 
 
4666		if (mapped)
4667			spin_lock(&page->mapping->private_lock);
 
 
 
 
4668		/*
4669		 * We do this since we'll remove the pages after we've
4670		 * removed the eb from the radix tree, so we could race
4671		 * and have this page now attached to the new eb.  So
4672		 * only clear page_private if it's still connected to
4673		 * this eb.
4674		 */
4675		if (PagePrivate(page) &&
4676		    page->private == (unsigned long)eb) {
4677			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678			BUG_ON(PageDirty(page));
4679			BUG_ON(PageWriteback(page));
4680			/*
4681			 * We need to make sure we haven't be attached
4682			 * to a new eb.
4683			 */
4684			ClearPagePrivate(page);
4685			set_page_private(page, 0);
4686			/* One for the page private */
4687			put_page(page);
4688		}
4689
4690		if (mapped)
4691			spin_unlock(&page->mapping->private_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4692
4693		/* One for when we allocated the page */
4694		put_page(page);
4695	} while (index != 0);
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
4703	btrfs_release_extent_buffer_page(eb);
 
4704	__free_extent_buffer(eb);
4705}
4706
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709		      unsigned long len)
4710{
4711	struct extent_buffer *eb = NULL;
4712
4713	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714	eb->start = start;
4715	eb->len = len;
4716	eb->fs_info = fs_info;
4717	eb->bflags = 0;
4718	rwlock_init(&eb->lock);
4719	atomic_set(&eb->write_locks, 0);
4720	atomic_set(&eb->read_locks, 0);
4721	atomic_set(&eb->blocking_readers, 0);
4722	atomic_set(&eb->blocking_writers, 0);
4723	atomic_set(&eb->spinning_readers, 0);
4724	atomic_set(&eb->spinning_writers, 0);
4725	eb->lock_nested = 0;
4726	init_waitqueue_head(&eb->write_lock_wq);
4727	init_waitqueue_head(&eb->read_lock_wq);
4728
4729	btrfs_leak_debug_add(&eb->leak_list, &buffers);
 
 
4730
4731	spin_lock_init(&eb->refs_lock);
4732	atomic_set(&eb->refs, 1);
4733	atomic_set(&eb->io_pages, 0);
4734
4735	/*
4736	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737	 */
4738	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4740	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741
4742	return eb;
4743}
4744
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747	unsigned long i;
4748	struct page *p;
4749	struct extent_buffer *new;
4750	unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
4752	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753	if (new == NULL)
4754		return NULL;
4755
 
 
 
 
 
 
 
4756	for (i = 0; i < num_pages; i++) {
 
 
4757		p = alloc_page(GFP_NOFS);
4758		if (!p) {
4759			btrfs_release_extent_buffer(new);
4760			return NULL;
4761		}
4762		attach_extent_buffer_page(new, p);
 
 
 
 
 
4763		WARN_ON(PageDirty(p));
4764		SetPageUptodate(p);
4765		new->pages[i] = p;
4766		copy_page(page_address(p), page_address(src->pages[i]));
4767	}
4768
4769	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772	return new;
4773}
4774
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776						  u64 start, unsigned long len)
4777{
4778	struct extent_buffer *eb;
4779	unsigned long num_pages;
4780	unsigned long i;
4781
4782	num_pages = num_extent_pages(start, len);
4783
4784	eb = __alloc_extent_buffer(fs_info, start, len);
4785	if (!eb)
4786		return NULL;
4787
 
4788	for (i = 0; i < num_pages; i++) {
 
 
4789		eb->pages[i] = alloc_page(GFP_NOFS);
4790		if (!eb->pages[i])
4791			goto err;
 
 
 
4792	}
4793	set_extent_buffer_uptodate(eb);
4794	btrfs_set_header_nritems(eb, 0);
4795	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797	return eb;
4798err:
4799	for (; i > 0; i--)
 
4800		__free_page(eb->pages[i - 1]);
 
4801	__free_extent_buffer(eb);
4802	return NULL;
4803}
4804
4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806						u64 start)
4807{
4808	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4809}
4810
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
4813	int refs;
4814	/* the ref bit is tricky.  We have to make sure it is set
4815	 * if we have the buffer dirty.   Otherwise the
4816	 * code to free a buffer can end up dropping a dirty
4817	 * page
4818	 *
4819	 * Once the ref bit is set, it won't go away while the
4820	 * buffer is dirty or in writeback, and it also won't
4821	 * go away while we have the reference count on the
4822	 * eb bumped.
4823	 *
4824	 * We can't just set the ref bit without bumping the
4825	 * ref on the eb because free_extent_buffer might
4826	 * see the ref bit and try to clear it.  If this happens
4827	 * free_extent_buffer might end up dropping our original
4828	 * ref by mistake and freeing the page before we are able
4829	 * to add one more ref.
4830	 *
4831	 * So bump the ref count first, then set the bit.  If someone
4832	 * beat us to it, drop the ref we added.
 
 
 
 
 
4833	 */
4834	refs = atomic_read(&eb->refs);
4835	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836		return;
4837
4838	spin_lock(&eb->refs_lock);
4839	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840		atomic_inc(&eb->refs);
4841	spin_unlock(&eb->refs_lock);
4842}
4843
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845		struct page *accessed)
4846{
4847	unsigned long num_pages, i;
4848
4849	check_buffer_tree_ref(eb);
4850
4851	num_pages = num_extent_pages(eb->start, eb->len);
4852	for (i = 0; i < num_pages; i++) {
4853		struct page *p = eb->pages[i];
4854
4855		if (p != accessed)
4856			mark_page_accessed(p);
4857	}
4858}
4859
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861					 u64 start)
4862{
4863	struct extent_buffer *eb;
4864
4865	rcu_read_lock();
4866	eb = radix_tree_lookup(&fs_info->buffer_radix,
4867			       start >> PAGE_SHIFT);
4868	if (eb && atomic_inc_not_zero(&eb->refs)) {
4869		rcu_read_unlock();
4870		/*
4871		 * Lock our eb's refs_lock to avoid races with
4872		 * free_extent_buffer. When we get our eb it might be flagged
4873		 * with EXTENT_BUFFER_STALE and another task running
4874		 * free_extent_buffer might have seen that flag set,
4875		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876		 * writeback flags not set) and it's still in the tree (flag
4877		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878		 * of decrementing the extent buffer's reference count twice.
4879		 * So here we could race and increment the eb's reference count,
4880		 * clear its stale flag, mark it as dirty and drop our reference
4881		 * before the other task finishes executing free_extent_buffer,
4882		 * which would later result in an attempt to free an extent
4883		 * buffer that is dirty.
4884		 */
4885		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886			spin_lock(&eb->refs_lock);
4887			spin_unlock(&eb->refs_lock);
4888		}
4889		mark_extent_buffer_accessed(eb, NULL);
4890		return eb;
4891	}
4892	rcu_read_unlock();
4893
4894	return NULL;
4895}
4896
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899					u64 start)
4900{
4901	struct extent_buffer *eb, *exists = NULL;
4902	int ret;
4903
4904	eb = find_extent_buffer(fs_info, start);
4905	if (eb)
4906		return eb;
4907	eb = alloc_dummy_extent_buffer(fs_info, start);
4908	if (!eb)
4909		return NULL;
4910	eb->fs_info = fs_info;
4911again:
4912	ret = radix_tree_preload(GFP_NOFS);
4913	if (ret)
 
4914		goto free_eb;
 
4915	spin_lock(&fs_info->buffer_lock);
4916	ret = radix_tree_insert(&fs_info->buffer_radix,
4917				start >> PAGE_SHIFT, eb);
4918	spin_unlock(&fs_info->buffer_lock);
4919	radix_tree_preload_end();
4920	if (ret == -EEXIST) {
4921		exists = find_extent_buffer(fs_info, start);
4922		if (exists)
4923			goto free_eb;
4924		else
4925			goto again;
4926	}
4927	check_buffer_tree_ref(eb);
4928	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930	/*
4931	 * We will free dummy extent buffer's if they come into
4932	 * free_extent_buffer with a ref count of 2, but if we are using this we
4933	 * want the buffers to stay in memory until we're done with them, so
4934	 * bump the ref count again.
4935	 */
4936	atomic_inc(&eb->refs);
4937	return eb;
4938free_eb:
4939	btrfs_release_extent_buffer(eb);
4940	return exists;
4941}
4942#endif
4943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945					  u64 start)
4946{
4947	unsigned long len = fs_info->nodesize;
4948	unsigned long num_pages = num_extent_pages(start, len);
4949	unsigned long i;
4950	unsigned long index = start >> PAGE_SHIFT;
4951	struct extent_buffer *eb;
4952	struct extent_buffer *exists = NULL;
4953	struct page *p;
4954	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955	int uptodate = 1;
4956	int ret;
4957
4958	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959		btrfs_err(fs_info, "bad tree block start %llu", start);
4960		return ERR_PTR(-EINVAL);
4961	}
4962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4963	eb = find_extent_buffer(fs_info, start);
4964	if (eb)
4965		return eb;
4966
4967	eb = __alloc_extent_buffer(fs_info, start, len);
4968	if (!eb)
4969		return ERR_PTR(-ENOMEM);
 
4970
 
4971	for (i = 0; i < num_pages; i++, index++) {
 
 
4972		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973		if (!p) {
4974			exists = ERR_PTR(-ENOMEM);
4975			goto free_eb;
4976		}
4977
4978		spin_lock(&mapping->private_lock);
4979		if (PagePrivate(p)) {
4980			/*
4981			 * We could have already allocated an eb for this page
4982			 * and attached one so lets see if we can get a ref on
4983			 * the existing eb, and if we can we know it's good and
4984			 * we can just return that one, else we know we can just
4985			 * overwrite page->private.
4986			 */
4987			exists = (struct extent_buffer *)p->private;
4988			if (atomic_inc_not_zero(&exists->refs)) {
4989				spin_unlock(&mapping->private_lock);
4990				unlock_page(p);
4991				put_page(p);
4992				mark_extent_buffer_accessed(exists, p);
4993				goto free_eb;
4994			}
4995			exists = NULL;
4996
4997			/*
4998			 * Do this so attach doesn't complain and we need to
4999			 * drop the ref the old guy had.
5000			 */
5001			ClearPagePrivate(p);
5002			WARN_ON(PageDirty(p));
5003			put_page(p);
 
 
 
5004		}
5005		attach_extent_buffer_page(eb, p);
 
 
 
 
 
 
 
 
 
 
 
 
5006		spin_unlock(&mapping->private_lock);
5007		WARN_ON(PageDirty(p));
 
5008		eb->pages[i] = p;
5009		if (!PageUptodate(p))
5010			uptodate = 0;
5011
5012		/*
5013		 * see below about how we avoid a nasty race with release page
5014		 * and why we unlock later
 
 
 
5015		 */
5016	}
5017	if (uptodate)
5018		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019again:
5020	ret = radix_tree_preload(GFP_NOFS);
5021	if (ret) {
5022		exists = ERR_PTR(ret);
5023		goto free_eb;
5024	}
5025
5026	spin_lock(&fs_info->buffer_lock);
5027	ret = radix_tree_insert(&fs_info->buffer_radix,
5028				start >> PAGE_SHIFT, eb);
5029	spin_unlock(&fs_info->buffer_lock);
5030	radix_tree_preload_end();
5031	if (ret == -EEXIST) {
5032		exists = find_extent_buffer(fs_info, start);
5033		if (exists)
5034			goto free_eb;
5035		else
5036			goto again;
5037	}
5038	/* add one reference for the tree */
5039	check_buffer_tree_ref(eb);
5040	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041
5042	/*
5043	 * there is a race where release page may have
5044	 * tried to find this extent buffer in the radix
5045	 * but failed.  It will tell the VM it is safe to
5046	 * reclaim the, and it will clear the page private bit.
5047	 * We must make sure to set the page private bit properly
5048	 * after the extent buffer is in the radix tree so
5049	 * it doesn't get lost
5050	 */
5051	SetPageChecked(eb->pages[0]);
5052	for (i = 1; i < num_pages; i++) {
5053		p = eb->pages[i];
5054		ClearPageChecked(p);
5055		unlock_page(p);
5056	}
5057	unlock_page(eb->pages[0]);
5058	return eb;
5059
5060free_eb:
5061	WARN_ON(!atomic_dec_and_test(&eb->refs));
5062	for (i = 0; i < num_pages; i++) {
5063		if (eb->pages[i])
5064			unlock_page(eb->pages[i]);
5065	}
5066
5067	btrfs_release_extent_buffer(eb);
5068	return exists;
5069}
5070
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073	struct extent_buffer *eb =
5074			container_of(head, struct extent_buffer, rcu_head);
5075
5076	__free_extent_buffer(eb);
5077}
5078
5079/* Expects to have eb->eb_lock already held */
5080static int release_extent_buffer(struct extent_buffer *eb)
 
5081{
 
 
5082	WARN_ON(atomic_read(&eb->refs) == 0);
5083	if (atomic_dec_and_test(&eb->refs)) {
5084		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085			struct btrfs_fs_info *fs_info = eb->fs_info;
5086
5087			spin_unlock(&eb->refs_lock);
5088
5089			spin_lock(&fs_info->buffer_lock);
5090			radix_tree_delete(&fs_info->buffer_radix,
5091					  eb->start >> PAGE_SHIFT);
5092			spin_unlock(&fs_info->buffer_lock);
5093		} else {
5094			spin_unlock(&eb->refs_lock);
5095		}
5096
 
5097		/* Should be safe to release our pages at this point */
5098		btrfs_release_extent_buffer_page(eb);
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101			__free_extent_buffer(eb);
5102			return 1;
5103		}
5104#endif
5105		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106		return 1;
5107	}
5108	spin_unlock(&eb->refs_lock);
5109
5110	return 0;
5111}
5112
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
5115	int refs;
5116	int old;
5117	if (!eb)
5118		return;
5119
5120	while (1) {
5121		refs = atomic_read(&eb->refs);
5122		if (refs <= 3)
 
 
5123			break;
5124		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125		if (old == refs)
5126			return;
5127	}
5128
5129	spin_lock(&eb->refs_lock);
5130	if (atomic_read(&eb->refs) == 2 &&
5131	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132		atomic_dec(&eb->refs);
5133
5134	if (atomic_read(&eb->refs) == 2 &&
5135	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136	    !extent_buffer_under_io(eb) &&
5137	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138		atomic_dec(&eb->refs);
5139
5140	/*
5141	 * I know this is terrible, but it's temporary until we stop tracking
5142	 * the uptodate bits and such for the extent buffers.
5143	 */
5144	release_extent_buffer(eb);
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149	if (!eb)
5150		return;
5151
5152	spin_lock(&eb->refs_lock);
5153	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
5155	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157		atomic_dec(&eb->refs);
5158	release_extent_buffer(eb);
5159}
5160
5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162{
5163	unsigned long i;
5164	unsigned long num_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5165	struct page *page;
5166
5167	num_pages = num_extent_pages(eb->start, eb->len);
 
 
 
5168
5169	for (i = 0; i < num_pages; i++) {
5170		page = eb->pages[i];
5171		if (!PageDirty(page))
5172			continue;
5173
5174		lock_page(page);
5175		WARN_ON(!PagePrivate(page));
5176
5177		clear_page_dirty_for_io(page);
5178		xa_lock_irq(&page->mapping->i_pages);
5179		if (!PageDirty(page)) {
5180			radix_tree_tag_clear(&page->mapping->i_pages,
5181						page_index(page),
5182						PAGECACHE_TAG_DIRTY);
5183		}
5184		xa_unlock_irq(&page->mapping->i_pages);
5185		ClearPageError(page);
5186		unlock_page(page);
5187	}
5188	WARN_ON(atomic_read(&eb->refs) == 0);
5189}
5190
5191int set_extent_buffer_dirty(struct extent_buffer *eb)
5192{
5193	unsigned long i;
5194	unsigned long num_pages;
5195	int was_dirty = 0;
5196
5197	check_buffer_tree_ref(eb);
5198
5199	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200
5201	num_pages = num_extent_pages(eb->start, eb->len);
5202	WARN_ON(atomic_read(&eb->refs) == 0);
5203	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5205	for (i = 0; i < num_pages; i++)
5206		set_page_dirty(eb->pages[i]);
 
 
5207	return was_dirty;
5208}
5209
5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211{
5212	unsigned long i;
5213	struct page *page;
5214	unsigned long num_pages;
 
5215
5216	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217	num_pages = num_extent_pages(eb->start, eb->len);
5218	for (i = 0; i < num_pages; i++) {
5219		page = eb->pages[i];
5220		if (page)
5221			ClearPageUptodate(page);
 
5222	}
5223}
5224
5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226{
5227	unsigned long i;
5228	struct page *page;
5229	unsigned long num_pages;
 
5230
5231	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232	num_pages = num_extent_pages(eb->start, eb->len);
5233	for (i = 0; i < num_pages; i++) {
5234		page = eb->pages[i];
5235		SetPageUptodate(page);
5236	}
5237}
5238
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
5240			     struct extent_buffer *eb, int wait, int mirror_num)
5241{
5242	unsigned long i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5243	struct page *page;
5244	int err;
5245	int ret = 0;
5246	int locked_pages = 0;
5247	int all_uptodate = 1;
5248	unsigned long num_pages;
5249	unsigned long num_reads = 0;
5250	struct bio *bio = NULL;
5251	unsigned long bio_flags = 0;
5252
5253	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254		return 0;
5255
5256	num_pages = num_extent_pages(eb->start, eb->len);
 
 
 
5257	for (i = 0; i < num_pages; i++) {
5258		page = eb->pages[i];
5259		if (wait == WAIT_NONE) {
 
 
 
 
 
 
 
5260			if (!trylock_page(page))
5261				goto unlock_exit;
5262		} else {
5263			lock_page(page);
5264		}
5265		locked_pages++;
5266	}
5267	/*
5268	 * We need to firstly lock all pages to make sure that
5269	 * the uptodate bit of our pages won't be affected by
5270	 * clear_extent_buffer_uptodate().
5271	 */
5272	for (i = 0; i < num_pages; i++) {
5273		page = eb->pages[i];
5274		if (!PageUptodate(page)) {
5275			num_reads++;
5276			all_uptodate = 0;
5277		}
5278	}
5279
5280	if (all_uptodate) {
5281		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282		goto unlock_exit;
5283	}
5284
5285	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286	eb->read_mirror = 0;
5287	atomic_set(&eb->io_pages, num_reads);
 
 
 
 
 
5288	for (i = 0; i < num_pages; i++) {
5289		page = eb->pages[i];
5290
5291		if (!PageUptodate(page)) {
5292			if (ret) {
5293				atomic_dec(&eb->io_pages);
5294				unlock_page(page);
5295				continue;
5296			}
5297
5298			ClearPageError(page);
5299			err = __extent_read_full_page(tree, page,
5300						      btree_get_extent, &bio,
5301						      mirror_num, &bio_flags,
5302						      REQ_META);
5303			if (err) {
5304				ret = err;
5305				/*
5306				 * We use &bio in above __extent_read_full_page,
5307				 * so we ensure that if it returns error, the
5308				 * current page fails to add itself to bio and
5309				 * it's been unlocked.
5310				 *
5311				 * We must dec io_pages by ourselves.
5312				 */
 
 
 
5313				atomic_dec(&eb->io_pages);
5314			}
5315		} else {
5316			unlock_page(page);
5317		}
5318	}
5319
5320	if (bio) {
5321		err = submit_one_bio(bio, mirror_num, bio_flags);
 
5322		if (err)
5323			return err;
5324	}
5325
5326	if (ret || wait != WAIT_COMPLETE)
5327		return ret;
5328
5329	for (i = 0; i < num_pages; i++) {
5330		page = eb->pages[i];
5331		wait_on_page_locked(page);
5332		if (!PageUptodate(page))
5333			ret = -EIO;
5334	}
5335
5336	return ret;
5337
5338unlock_exit:
5339	while (locked_pages > 0) {
5340		locked_pages--;
5341		page = eb->pages[locked_pages];
5342		unlock_page(page);
5343	}
5344	return ret;
5345}
5346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348			unsigned long start, unsigned long len)
5349{
5350	size_t cur;
5351	size_t offset;
5352	struct page *page;
5353	char *kaddr;
5354	char *dst = (char *)dstv;
5355	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357
5358	if (start + len > eb->len) {
5359		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360		     eb->start, eb->len, start, len);
5361		memset(dst, 0, len);
5362		return;
5363	}
5364
5365	offset = (start_offset + start) & (PAGE_SIZE - 1);
5366
5367	while (len > 0) {
5368		page = eb->pages[i];
5369
5370		cur = min(len, (PAGE_SIZE - offset));
5371		kaddr = page_address(page);
5372		memcpy(dst, kaddr + offset, cur);
5373
5374		dst += cur;
5375		len -= cur;
5376		offset = 0;
5377		i++;
5378	}
5379}
5380
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382			       void __user *dstv,
5383			       unsigned long start, unsigned long len)
5384{
5385	size_t cur;
5386	size_t offset;
5387	struct page *page;
5388	char *kaddr;
5389	char __user *dst = (char __user *)dstv;
5390	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392	int ret = 0;
5393
5394	WARN_ON(start > eb->len);
5395	WARN_ON(start + len > eb->start + eb->len);
5396
5397	offset = (start_offset + start) & (PAGE_SIZE - 1);
5398
5399	while (len > 0) {
5400		page = eb->pages[i];
5401
5402		cur = min(len, (PAGE_SIZE - offset));
5403		kaddr = page_address(page);
5404		if (copy_to_user(dst, kaddr + offset, cur)) {
5405			ret = -EFAULT;
5406			break;
5407		}
5408
5409		dst += cur;
5410		len -= cur;
5411		offset = 0;
5412		i++;
5413	}
5414
5415	return ret;
5416}
5417
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424			      unsigned long start, unsigned long min_len,
5425			      char **map, unsigned long *map_start,
5426			      unsigned long *map_len)
5427{
5428	size_t offset = start & (PAGE_SIZE - 1);
5429	char *kaddr;
5430	struct page *p;
5431	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433	unsigned long end_i = (start_offset + start + min_len - 1) >>
5434		PAGE_SHIFT;
5435
5436	if (start + min_len > eb->len) {
5437		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438		       eb->start, eb->len, start, min_len);
5439		return -EINVAL;
5440	}
5441
5442	if (i != end_i)
5443		return 1;
5444
5445	if (i == 0) {
5446		offset = start_offset;
5447		*map_start = 0;
5448	} else {
5449		offset = 0;
5450		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451	}
5452
5453	p = eb->pages[i];
5454	kaddr = page_address(p);
5455	*map = kaddr + offset;
5456	*map_len = PAGE_SIZE - offset;
5457	return 0;
5458}
5459
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461			 unsigned long start, unsigned long len)
5462{
5463	size_t cur;
5464	size_t offset;
5465	struct page *page;
5466	char *kaddr;
5467	char *ptr = (char *)ptrv;
5468	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470	int ret = 0;
5471
5472	WARN_ON(start > eb->len);
5473	WARN_ON(start + len > eb->start + eb->len);
5474
5475	offset = (start_offset + start) & (PAGE_SIZE - 1);
5476
5477	while (len > 0) {
5478		page = eb->pages[i];
5479
5480		cur = min(len, (PAGE_SIZE - offset));
5481
5482		kaddr = page_address(page);
5483		ret = memcmp(ptr, kaddr + offset, cur);
5484		if (ret)
5485			break;
5486
5487		ptr += cur;
5488		len -= cur;
5489		offset = 0;
5490		i++;
5491	}
5492	return ret;
5493}
5494
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5496		const void *srcv)
5497{
5498	char *kaddr;
5499
5500	WARN_ON(!PageUptodate(eb->pages[0]));
5501	kaddr = page_address(eb->pages[0]);
5502	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503			BTRFS_FSID_SIZE);
 
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508	char *kaddr;
5509
5510	WARN_ON(!PageUptodate(eb->pages[0]));
5511	kaddr = page_address(eb->pages[0]);
5512	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513			BTRFS_FSID_SIZE);
5514}
5515
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517			 unsigned long start, unsigned long len)
5518{
5519	size_t cur;
5520	size_t offset;
5521	struct page *page;
5522	char *kaddr;
5523	char *src = (char *)srcv;
5524	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526
5527	WARN_ON(start > eb->len);
5528	WARN_ON(start + len > eb->start + eb->len);
5529
5530	offset = (start_offset + start) & (PAGE_SIZE - 1);
 
 
 
5531
5532	while (len > 0) {
5533		page = eb->pages[i];
5534		WARN_ON(!PageUptodate(page));
5535
5536		cur = min(len, PAGE_SIZE - offset);
5537		kaddr = page_address(page);
5538		memcpy(kaddr + offset, src, cur);
5539
5540		src += cur;
5541		len -= cur;
5542		offset = 0;
5543		i++;
5544	}
5545}
5546
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548		unsigned long len)
5549{
5550	size_t cur;
5551	size_t offset;
5552	struct page *page;
5553	char *kaddr;
5554	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556
5557	WARN_ON(start > eb->len);
5558	WARN_ON(start + len > eb->start + eb->len);
5559
5560	offset = (start_offset + start) & (PAGE_SIZE - 1);
5561
5562	while (len > 0) {
5563		page = eb->pages[i];
5564		WARN_ON(!PageUptodate(page));
5565
5566		cur = min(len, PAGE_SIZE - offset);
5567		kaddr = page_address(page);
5568		memset(kaddr + offset, 0, cur);
5569
5570		len -= cur;
5571		offset = 0;
5572		i++;
5573	}
5574}
5575
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577			     struct extent_buffer *src)
5578{
5579	int i;
5580	unsigned num_pages;
5581
5582	ASSERT(dst->len == src->len);
5583
5584	num_pages = num_extent_pages(dst->start, dst->len);
5585	for (i = 0; i < num_pages; i++)
5586		copy_page(page_address(dst->pages[i]),
5587				page_address(src->pages[i]));
 
 
 
 
 
 
 
 
 
 
5588}
5589
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
5591			unsigned long dst_offset, unsigned long src_offset,
5592			unsigned long len)
5593{
5594	u64 dst_len = dst->len;
5595	size_t cur;
5596	size_t offset;
5597	struct page *page;
5598	char *kaddr;
5599	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
 
 
 
5601
5602	WARN_ON(src->len != dst_len);
5603
5604	offset = (start_offset + dst_offset) &
5605		(PAGE_SIZE - 1);
5606
5607	while (len > 0) {
5608		page = dst->pages[i];
5609		WARN_ON(!PageUptodate(page));
5610
5611		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612
5613		kaddr = page_address(page);
5614		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615
5616		src_offset += cur;
5617		len -= cur;
5618		offset = 0;
5619		i++;
5620	}
5621}
5622
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625	u8 *p = map + BIT_BYTE(start);
5626	const unsigned int size = start + len;
5627	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630	while (len - bits_to_set >= 0) {
5631		*p |= mask_to_set;
5632		len -= bits_to_set;
5633		bits_to_set = BITS_PER_BYTE;
5634		mask_to_set = ~0;
5635		p++;
5636	}
5637	if (len) {
5638		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639		*p |= mask_to_set;
5640	}
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645	u8 *p = map + BIT_BYTE(start);
5646	const unsigned int size = start + len;
5647	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650	while (len - bits_to_clear >= 0) {
5651		*p &= ~mask_to_clear;
5652		len -= bits_to_clear;
5653		bits_to_clear = BITS_PER_BYTE;
5654		mask_to_clear = ~0;
5655		p++;
5656	}
5657	if (len) {
5658		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659		*p &= ~mask_to_clear;
5660	}
5661}
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677				    unsigned long start, unsigned long nr,
5678				    unsigned long *page_index,
5679				    size_t *page_offset)
5680{
5681	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682	size_t byte_offset = BIT_BYTE(nr);
5683	size_t offset;
5684
5685	/*
5686	 * The byte we want is the offset of the extent buffer + the offset of
5687	 * the bitmap item in the extent buffer + the offset of the byte in the
5688	 * bitmap item.
5689	 */
5690	offset = start_offset + start + byte_offset;
5691
5692	*page_index = offset >> PAGE_SHIFT;
5693	*page_offset = offset & (PAGE_SIZE - 1);
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703			   unsigned long nr)
5704{
5705	u8 *kaddr;
5706	struct page *page;
5707	unsigned long i;
5708	size_t offset;
5709
5710	eb_bitmap_offset(eb, start, nr, &i, &offset);
5711	page = eb->pages[i];
5712	WARN_ON(!PageUptodate(page));
5713	kaddr = page_address(page);
5714	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725			      unsigned long pos, unsigned long len)
5726{
5727	u8 *kaddr;
5728	struct page *page;
5729	unsigned long i;
5730	size_t offset;
5731	const unsigned int size = pos + len;
5732	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734
5735	eb_bitmap_offset(eb, start, pos, &i, &offset);
5736	page = eb->pages[i];
5737	WARN_ON(!PageUptodate(page));
5738	kaddr = page_address(page);
5739
5740	while (len >= bits_to_set) {
5741		kaddr[offset] |= mask_to_set;
5742		len -= bits_to_set;
5743		bits_to_set = BITS_PER_BYTE;
5744		mask_to_set = ~0;
5745		if (++offset >= PAGE_SIZE && len > 0) {
5746			offset = 0;
5747			page = eb->pages[++i];
5748			WARN_ON(!PageUptodate(page));
5749			kaddr = page_address(page);
5750		}
5751	}
5752	if (len) {
5753		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754		kaddr[offset] |= mask_to_set;
5755	}
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767				unsigned long pos, unsigned long len)
 
5768{
5769	u8 *kaddr;
5770	struct page *page;
5771	unsigned long i;
5772	size_t offset;
5773	const unsigned int size = pos + len;
5774	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776
5777	eb_bitmap_offset(eb, start, pos, &i, &offset);
5778	page = eb->pages[i];
5779	WARN_ON(!PageUptodate(page));
5780	kaddr = page_address(page);
5781
5782	while (len >= bits_to_clear) {
5783		kaddr[offset] &= ~mask_to_clear;
5784		len -= bits_to_clear;
5785		bits_to_clear = BITS_PER_BYTE;
5786		mask_to_clear = ~0;
5787		if (++offset >= PAGE_SIZE && len > 0) {
5788			offset = 0;
5789			page = eb->pages[++i];
5790			WARN_ON(!PageUptodate(page));
5791			kaddr = page_address(page);
5792		}
5793	}
5794	if (len) {
5795		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796		kaddr[offset] &= ~mask_to_clear;
5797	}
5798}
5799
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802	unsigned long distance = (src > dst) ? src - dst : dst - src;
5803	return distance < len;
5804}
5805
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807		       unsigned long dst_off, unsigned long src_off,
5808		       unsigned long len)
5809{
5810	char *dst_kaddr = page_address(dst_page);
5811	char *src_kaddr;
5812	int must_memmove = 0;
5813
5814	if (dst_page != src_page) {
5815		src_kaddr = page_address(src_page);
5816	} else {
5817		src_kaddr = dst_kaddr;
5818		if (areas_overlap(src_off, dst_off, len))
5819			must_memmove = 1;
5820	}
5821
5822	if (must_memmove)
5823		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824	else
5825		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829			   unsigned long src_offset, unsigned long len)
 
5830{
5831	struct btrfs_fs_info *fs_info = dst->fs_info;
5832	size_t cur;
5833	size_t dst_off_in_page;
5834	size_t src_off_in_page;
5835	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836	unsigned long dst_i;
5837	unsigned long src_i;
5838
5839	if (src_offset + len > dst->len) {
5840		btrfs_err(fs_info,
5841			"memmove bogus src_offset %lu move len %lu dst len %lu",
5842			 src_offset, len, dst->len);
5843		BUG_ON(1);
5844	}
5845	if (dst_offset + len > dst->len) {
5846		btrfs_err(fs_info,
5847			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5848			 dst_offset, len, dst->len);
5849		BUG_ON(1);
5850	}
5851
5852	while (len > 0) {
5853		dst_off_in_page = (start_offset + dst_offset) &
5854			(PAGE_SIZE - 1);
5855		src_off_in_page = (start_offset + src_offset) &
5856			(PAGE_SIZE - 1);
5857
5858		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860
5861		cur = min(len, (unsigned long)(PAGE_SIZE -
5862					       src_off_in_page));
5863		cur = min_t(unsigned long, cur,
5864			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5865
5866		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867			   dst_off_in_page, src_off_in_page, cur);
5868
5869		src_offset += cur;
5870		dst_offset += cur;
5871		len -= cur;
5872	}
5873}
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876			   unsigned long src_offset, unsigned long len)
 
5877{
5878	struct btrfs_fs_info *fs_info = dst->fs_info;
5879	size_t cur;
5880	size_t dst_off_in_page;
5881	size_t src_off_in_page;
5882	unsigned long dst_end = dst_offset + len - 1;
5883	unsigned long src_end = src_offset + len - 1;
5884	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885	unsigned long dst_i;
5886	unsigned long src_i;
5887
5888	if (src_offset + len > dst->len) {
5889		btrfs_err(fs_info,
5890			  "memmove bogus src_offset %lu move len %lu len %lu",
5891			  src_offset, len, dst->len);
5892		BUG_ON(1);
5893	}
5894	if (dst_offset + len > dst->len) {
5895		btrfs_err(fs_info,
5896			  "memmove bogus dst_offset %lu move len %lu len %lu",
5897			  dst_offset, len, dst->len);
5898		BUG_ON(1);
5899	}
5900	if (dst_offset < src_offset) {
5901		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902		return;
5903	}
5904	while (len > 0) {
5905		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907
5908		dst_off_in_page = (start_offset + dst_end) &
5909			(PAGE_SIZE - 1);
5910		src_off_in_page = (start_offset + src_end) &
5911			(PAGE_SIZE - 1);
5912
5913		cur = min_t(unsigned long, len, src_off_in_page + 1);
5914		cur = min(cur, dst_off_in_page + 1);
5915		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916			   dst_off_in_page - cur + 1,
5917			   src_off_in_page - cur + 1, cur);
5918
5919		dst_end -= cur;
5920		src_end -= cur;
5921		len -= cur;
5922	}
5923}
5924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5925int try_release_extent_buffer(struct page *page)
5926{
5927	struct extent_buffer *eb;
5928
 
 
 
5929	/*
5930	 * We need to make sure nobody is attaching this page to an eb right
5931	 * now.
5932	 */
5933	spin_lock(&page->mapping->private_lock);
5934	if (!PagePrivate(page)) {
5935		spin_unlock(&page->mapping->private_lock);
5936		return 1;
5937	}
5938
5939	eb = (struct extent_buffer *)page->private;
5940	BUG_ON(!eb);
5941
5942	/*
5943	 * This is a little awful but should be ok, we need to make sure that
5944	 * the eb doesn't disappear out from under us while we're looking at
5945	 * this page.
5946	 */
5947	spin_lock(&eb->refs_lock);
5948	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949		spin_unlock(&eb->refs_lock);
5950		spin_unlock(&page->mapping->private_lock);
5951		return 0;
5952	}
5953	spin_unlock(&page->mapping->private_lock);
5954
5955	/*
5956	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957	 * so just return, this page will likely be freed soon anyway.
5958	 */
5959	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960		spin_unlock(&eb->refs_lock);
5961		return 0;
5962	}
5963
5964	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5965}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "misc.h"
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "volumes.h"
  23#include "check-integrity.h"
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31
  32static struct kmem_cache *extent_state_cache;
  33static struct kmem_cache *extent_buffer_cache;
  34static struct bio_set btrfs_bioset;
  35
  36static inline bool extent_state_in_tree(const struct extent_state *state)
  37{
  38	return !RB_EMPTY_NODE(&state->rb_node);
  39}
  40
  41#ifdef CONFIG_BTRFS_DEBUG
 
  42static LIST_HEAD(states);
 
  43static DEFINE_SPINLOCK(leak_lock);
  44
  45static inline void btrfs_leak_debug_add(spinlock_t *lock,
  46					struct list_head *new,
  47					struct list_head *head)
  48{
  49	unsigned long flags;
  50
  51	spin_lock_irqsave(lock, flags);
  52	list_add(new, head);
  53	spin_unlock_irqrestore(lock, flags);
  54}
  55
  56static inline void btrfs_leak_debug_del(spinlock_t *lock,
  57					struct list_head *entry)
  58{
  59	unsigned long flags;
  60
  61	spin_lock_irqsave(lock, flags);
  62	list_del(entry);
  63	spin_unlock_irqrestore(lock, flags);
  64}
  65
  66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 
  67{
 
  68	struct extent_buffer *eb;
  69	unsigned long flags;
  70
  71	/*
  72	 * If we didn't get into open_ctree our allocated_ebs will not be
  73	 * initialized, so just skip this.
  74	 */
  75	if (!fs_info->allocated_ebs.next)
  76		return;
  77
  78	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  79	while (!list_empty(&fs_info->allocated_ebs)) {
  80		eb = list_first_entry(&fs_info->allocated_ebs,
  81				      struct extent_buffer, leak_list);
  82		pr_err(
  83	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  84		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  85		       btrfs_header_owner(eb));
  86		list_del(&eb->leak_list);
  87		kmem_cache_free(extent_buffer_cache, eb);
  88	}
  89	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  90}
  91
  92static inline void btrfs_extent_state_leak_debug_check(void)
  93{
  94	struct extent_state *state;
  95
  96	while (!list_empty(&states)) {
  97		state = list_entry(states.next, struct extent_state, leak_list);
  98		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  99		       state->start, state->end, state->state,
 100		       extent_state_in_tree(state),
 101		       refcount_read(&state->refs));
 102		list_del(&state->leak_list);
 103		kmem_cache_free(extent_state_cache, state);
 104	}
 
 
 
 
 
 
 
 
 105}
 106
 107#define btrfs_debug_check_extent_io_range(tree, start, end)		\
 108	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 110		struct extent_io_tree *tree, u64 start, u64 end)
 111{
 112	struct inode *inode = tree->private_data;
 113	u64 isize;
 114
 115	if (!inode || !is_data_inode(inode))
 116		return;
 117
 118	isize = i_size_read(inode);
 119	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 120		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 121		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 122			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 123	}
 124}
 125#else
 126#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
 127#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
 128#define btrfs_extent_state_leak_debug_check()	do {} while (0)
 129#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 130#endif
 131
 
 
 132struct tree_entry {
 133	u64 start;
 134	u64 end;
 135	struct rb_node rb_node;
 136};
 137
 138struct extent_page_data {
 139	struct btrfs_bio_ctrl bio_ctrl;
 
 140	/* tells writepage not to lock the state bits for this range
 141	 * it still does the unlocking
 142	 */
 143	unsigned int extent_locked:1;
 144
 145	/* tells the submit_bio code to use REQ_SYNC */
 146	unsigned int sync_io:1;
 147};
 148
 149static int add_extent_changeset(struct extent_state *state, u32 bits,
 150				 struct extent_changeset *changeset,
 151				 int set)
 152{
 153	int ret;
 154
 155	if (!changeset)
 156		return 0;
 157	if (set && (state->state & bits) == bits)
 158		return 0;
 159	if (!set && (state->state & bits) == 0)
 160		return 0;
 161	changeset->bytes_changed += state->end - state->start + 1;
 162	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 163			GFP_ATOMIC);
 164	return ret;
 165}
 166
 167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 168				unsigned long bio_flags)
 169{
 170	blk_status_t ret = 0;
 171	struct extent_io_tree *tree = bio->bi_private;
 172
 173	bio->bi_private = NULL;
 174
 175	if (is_data_inode(tree->private_data))
 176		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
 177					    bio_flags);
 178	else
 179		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
 180						mirror_num, bio_flags);
 181
 182	return blk_status_to_errno(ret);
 183}
 184
 185/* Cleanup unsubmitted bios */
 186static void end_write_bio(struct extent_page_data *epd, int ret)
 187{
 188	struct bio *bio = epd->bio_ctrl.bio;
 189
 190	if (bio) {
 191		bio->bi_status = errno_to_blk_status(ret);
 192		bio_endio(bio);
 193		epd->bio_ctrl.bio = NULL;
 194	}
 195}
 196
 197/*
 198 * Submit bio from extent page data via submit_one_bio
 199 *
 200 * Return 0 if everything is OK.
 201 * Return <0 for error.
 202 */
 203static int __must_check flush_write_bio(struct extent_page_data *epd)
 204{
 205	int ret = 0;
 206	struct bio *bio = epd->bio_ctrl.bio;
 207
 208	if (bio) {
 209		ret = submit_one_bio(bio, 0, 0);
 210		/*
 211		 * Clean up of epd->bio is handled by its endio function.
 212		 * And endio is either triggered by successful bio execution
 213		 * or the error handler of submit bio hook.
 214		 * So at this point, no matter what happened, we don't need
 215		 * to clean up epd->bio.
 216		 */
 217		epd->bio_ctrl.bio = NULL;
 218	}
 219	return ret;
 220}
 221
 222int __init extent_state_cache_init(void)
 223{
 224	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 225			sizeof(struct extent_state), 0,
 226			SLAB_MEM_SPREAD, NULL);
 227	if (!extent_state_cache)
 228		return -ENOMEM;
 229	return 0;
 230}
 231
 232int __init extent_io_init(void)
 233{
 234	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 235			sizeof(struct extent_buffer), 0,
 236			SLAB_MEM_SPREAD, NULL);
 237	if (!extent_buffer_cache)
 238		return -ENOMEM;
 239
 240	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 241			offsetof(struct btrfs_io_bio, bio),
 242			BIOSET_NEED_BVECS))
 
 243		goto free_buffer_cache;
 244
 245	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 246		goto free_bioset;
 247
 248	return 0;
 249
 250free_bioset:
 251	bioset_exit(&btrfs_bioset);
 
 252
 253free_buffer_cache:
 254	kmem_cache_destroy(extent_buffer_cache);
 255	extent_buffer_cache = NULL;
 256	return -ENOMEM;
 257}
 258
 259void __cold extent_state_cache_exit(void)
 260{
 261	btrfs_extent_state_leak_debug_check();
 262	kmem_cache_destroy(extent_state_cache);
 
 
 263}
 264
 265void __cold extent_io_exit(void)
 266{
 
 
 267	/*
 268	 * Make sure all delayed rcu free are flushed before we
 269	 * destroy caches.
 270	 */
 271	rcu_barrier();
 
 272	kmem_cache_destroy(extent_buffer_cache);
 273	bioset_exit(&btrfs_bioset);
 
 274}
 275
 276/*
 277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 279 * the tree lock and get the inode lock when setting delalloc.  These two things
 280 * are unrelated, so make a class for the file_extent_tree so we don't get the
 281 * two locking patterns mixed up.
 282 */
 283static struct lock_class_key file_extent_tree_class;
 284
 285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 286			 struct extent_io_tree *tree, unsigned int owner,
 287			 void *private_data)
 288{
 289	tree->fs_info = fs_info;
 290	tree->state = RB_ROOT;
 
 291	tree->dirty_bytes = 0;
 292	spin_lock_init(&tree->lock);
 293	tree->private_data = private_data;
 294	tree->owner = owner;
 295	if (owner == IO_TREE_INODE_FILE_EXTENT)
 296		lockdep_set_class(&tree->lock, &file_extent_tree_class);
 297}
 298
 299void extent_io_tree_release(struct extent_io_tree *tree)
 300{
 301	spin_lock(&tree->lock);
 302	/*
 303	 * Do a single barrier for the waitqueue_active check here, the state
 304	 * of the waitqueue should not change once extent_io_tree_release is
 305	 * called.
 306	 */
 307	smp_mb();
 308	while (!RB_EMPTY_ROOT(&tree->state)) {
 309		struct rb_node *node;
 310		struct extent_state *state;
 311
 312		node = rb_first(&tree->state);
 313		state = rb_entry(node, struct extent_state, rb_node);
 314		rb_erase(&state->rb_node, &tree->state);
 315		RB_CLEAR_NODE(&state->rb_node);
 316		/*
 317		 * btree io trees aren't supposed to have tasks waiting for
 318		 * changes in the flags of extent states ever.
 319		 */
 320		ASSERT(!waitqueue_active(&state->wq));
 321		free_extent_state(state);
 322
 323		cond_resched_lock(&tree->lock);
 324	}
 325	spin_unlock(&tree->lock);
 326}
 327
 328static struct extent_state *alloc_extent_state(gfp_t mask)
 329{
 330	struct extent_state *state;
 331
 332	/*
 333	 * The given mask might be not appropriate for the slab allocator,
 334	 * drop the unsupported bits
 335	 */
 336	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 337	state = kmem_cache_alloc(extent_state_cache, mask);
 338	if (!state)
 339		return state;
 340	state->state = 0;
 341	state->failrec = NULL;
 342	RB_CLEAR_NODE(&state->rb_node);
 343	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 344	refcount_set(&state->refs, 1);
 345	init_waitqueue_head(&state->wq);
 346	trace_alloc_extent_state(state, mask, _RET_IP_);
 347	return state;
 348}
 349
 350void free_extent_state(struct extent_state *state)
 351{
 352	if (!state)
 353		return;
 354	if (refcount_dec_and_test(&state->refs)) {
 355		WARN_ON(extent_state_in_tree(state));
 356		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 357		trace_free_extent_state(state, _RET_IP_);
 358		kmem_cache_free(extent_state_cache, state);
 359	}
 360}
 361
 362static struct rb_node *tree_insert(struct rb_root *root,
 363				   struct rb_node *search_start,
 364				   u64 offset,
 365				   struct rb_node *node,
 366				   struct rb_node ***p_in,
 367				   struct rb_node **parent_in)
 368{
 369	struct rb_node **p;
 370	struct rb_node *parent = NULL;
 371	struct tree_entry *entry;
 372
 373	if (p_in && parent_in) {
 374		p = *p_in;
 375		parent = *parent_in;
 376		goto do_insert;
 377	}
 378
 379	p = search_start ? &search_start : &root->rb_node;
 380	while (*p) {
 381		parent = *p;
 382		entry = rb_entry(parent, struct tree_entry, rb_node);
 383
 384		if (offset < entry->start)
 385			p = &(*p)->rb_left;
 386		else if (offset > entry->end)
 387			p = &(*p)->rb_right;
 388		else
 389			return parent;
 390	}
 391
 392do_insert:
 393	rb_link_node(node, parent, p);
 394	rb_insert_color(node, root);
 395	return NULL;
 396}
 397
 398/**
 399 * Search @tree for an entry that contains @offset. Such entry would have
 400 * entry->start <= offset && entry->end >= offset.
 401 *
 402 * @tree:       the tree to search
 403 * @offset:     offset that should fall within an entry in @tree
 404 * @next_ret:   pointer to the first entry whose range ends after @offset
 405 * @prev_ret:   pointer to the first entry whose range begins before @offset
 406 * @p_ret:      pointer where new node should be anchored (used when inserting an
 407 *	        entry in the tree)
 408 * @parent_ret: points to entry which would have been the parent of the entry,
 409 *               containing @offset
 410 *
 411 * This function returns a pointer to the entry that contains @offset byte
 412 * address. If no such entry exists, then NULL is returned and the other
 413 * pointer arguments to the function are filled, otherwise the found entry is
 414 * returned and other pointers are left untouched.
 415 */
 416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 
 417				      struct rb_node **next_ret,
 418				      struct rb_node **prev_ret,
 419				      struct rb_node ***p_ret,
 420				      struct rb_node **parent_ret)
 421{
 422	struct rb_root *root = &tree->state;
 423	struct rb_node **n = &root->rb_node;
 424	struct rb_node *prev = NULL;
 425	struct rb_node *orig_prev = NULL;
 426	struct tree_entry *entry;
 427	struct tree_entry *prev_entry = NULL;
 428
 429	while (*n) {
 430		prev = *n;
 431		entry = rb_entry(prev, struct tree_entry, rb_node);
 432		prev_entry = entry;
 433
 434		if (offset < entry->start)
 435			n = &(*n)->rb_left;
 436		else if (offset > entry->end)
 437			n = &(*n)->rb_right;
 438		else
 439			return *n;
 440	}
 441
 442	if (p_ret)
 443		*p_ret = n;
 444	if (parent_ret)
 445		*parent_ret = prev;
 446
 447	if (next_ret) {
 448		orig_prev = prev;
 449		while (prev && offset > prev_entry->end) {
 450			prev = rb_next(prev);
 451			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 452		}
 453		*next_ret = prev;
 454		prev = orig_prev;
 455	}
 456
 457	if (prev_ret) {
 458		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 459		while (prev && offset < prev_entry->start) {
 460			prev = rb_prev(prev);
 461			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 462		}
 463		*prev_ret = prev;
 464	}
 465	return NULL;
 466}
 467
 468static inline struct rb_node *
 469tree_search_for_insert(struct extent_io_tree *tree,
 470		       u64 offset,
 471		       struct rb_node ***p_ret,
 472		       struct rb_node **parent_ret)
 473{
 474	struct rb_node *next= NULL;
 475	struct rb_node *ret;
 476
 477	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 478	if (!ret)
 479		return next;
 480	return ret;
 481}
 482
 483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 484					  u64 offset)
 485{
 486	return tree_search_for_insert(tree, offset, NULL, NULL);
 487}
 488
 
 
 
 
 
 
 
 489/*
 490 * utility function to look for merge candidates inside a given range.
 491 * Any extents with matching state are merged together into a single
 492 * extent in the tree.  Extents with EXTENT_IO in their state field
 493 * are not merged because the end_io handlers need to be able to do
 494 * operations on them without sleeping (or doing allocations/splits).
 495 *
 496 * This should be called with the tree lock held.
 497 */
 498static void merge_state(struct extent_io_tree *tree,
 499		        struct extent_state *state)
 500{
 501	struct extent_state *other;
 502	struct rb_node *other_node;
 503
 504	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 505		return;
 506
 507	other_node = rb_prev(&state->rb_node);
 508	if (other_node) {
 509		other = rb_entry(other_node, struct extent_state, rb_node);
 510		if (other->end == state->start - 1 &&
 511		    other->state == state->state) {
 512			if (tree->private_data &&
 513			    is_data_inode(tree->private_data))
 514				btrfs_merge_delalloc_extent(tree->private_data,
 515							    state, other);
 516			state->start = other->start;
 517			rb_erase(&other->rb_node, &tree->state);
 518			RB_CLEAR_NODE(&other->rb_node);
 519			free_extent_state(other);
 520		}
 521	}
 522	other_node = rb_next(&state->rb_node);
 523	if (other_node) {
 524		other = rb_entry(other_node, struct extent_state, rb_node);
 525		if (other->start == state->end + 1 &&
 526		    other->state == state->state) {
 527			if (tree->private_data &&
 528			    is_data_inode(tree->private_data))
 529				btrfs_merge_delalloc_extent(tree->private_data,
 530							    state, other);
 531			state->end = other->end;
 532			rb_erase(&other->rb_node, &tree->state);
 533			RB_CLEAR_NODE(&other->rb_node);
 534			free_extent_state(other);
 535		}
 536	}
 537}
 538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539static void set_state_bits(struct extent_io_tree *tree,
 540			   struct extent_state *state, u32 *bits,
 541			   struct extent_changeset *changeset);
 542
 543/*
 544 * insert an extent_state struct into the tree.  'bits' are set on the
 545 * struct before it is inserted.
 546 *
 547 * This may return -EEXIST if the extent is already there, in which case the
 548 * state struct is freed.
 549 *
 550 * The tree lock is not taken internally.  This is a utility function and
 551 * probably isn't what you want to call (see set/clear_extent_bit).
 552 */
 553static int insert_state(struct extent_io_tree *tree,
 554			struct extent_state *state, u64 start, u64 end,
 555			struct rb_node ***p,
 556			struct rb_node **parent,
 557			u32 *bits, struct extent_changeset *changeset)
 558{
 559	struct rb_node *node;
 560
 561	if (end < start) {
 562		btrfs_err(tree->fs_info,
 563			"insert state: end < start %llu %llu", end, start);
 564		WARN_ON(1);
 565	}
 566	state->start = start;
 567	state->end = end;
 568
 569	set_state_bits(tree, state, bits, changeset);
 570
 571	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 572	if (node) {
 573		struct extent_state *found;
 574		found = rb_entry(node, struct extent_state, rb_node);
 575		btrfs_err(tree->fs_info,
 576		       "found node %llu %llu on insert of %llu %llu",
 577		       found->start, found->end, start, end);
 578		return -EEXIST;
 579	}
 580	merge_state(tree, state);
 581	return 0;
 582}
 583
 
 
 
 
 
 
 
 584/*
 585 * split a given extent state struct in two, inserting the preallocated
 586 * struct 'prealloc' as the newly created second half.  'split' indicates an
 587 * offset inside 'orig' where it should be split.
 588 *
 589 * Before calling,
 590 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 591 * are two extent state structs in the tree:
 592 * prealloc: [orig->start, split - 1]
 593 * orig: [ split, orig->end ]
 594 *
 595 * The tree locks are not taken by this function. They need to be held
 596 * by the caller.
 597 */
 598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 599		       struct extent_state *prealloc, u64 split)
 600{
 601	struct rb_node *node;
 602
 603	if (tree->private_data && is_data_inode(tree->private_data))
 604		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 605
 606	prealloc->start = orig->start;
 607	prealloc->end = split - 1;
 608	prealloc->state = orig->state;
 609	orig->start = split;
 610
 611	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 612			   &prealloc->rb_node, NULL, NULL);
 613	if (node) {
 614		free_extent_state(prealloc);
 615		return -EEXIST;
 616	}
 617	return 0;
 618}
 619
 620static struct extent_state *next_state(struct extent_state *state)
 621{
 622	struct rb_node *next = rb_next(&state->rb_node);
 623	if (next)
 624		return rb_entry(next, struct extent_state, rb_node);
 625	else
 626		return NULL;
 627}
 628
 629/*
 630 * utility function to clear some bits in an extent state struct.
 631 * it will optionally wake up anyone waiting on this state (wake == 1).
 632 *
 633 * If no bits are set on the state struct after clearing things, the
 634 * struct is freed and removed from the tree
 635 */
 636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 637					    struct extent_state *state,
 638					    u32 *bits, int wake,
 639					    struct extent_changeset *changeset)
 640{
 641	struct extent_state *next;
 642	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
 643	int ret;
 644
 645	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 646		u64 range = state->end - state->start + 1;
 647		WARN_ON(range > tree->dirty_bytes);
 648		tree->dirty_bytes -= range;
 649	}
 650
 651	if (tree->private_data && is_data_inode(tree->private_data))
 652		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 653
 654	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 655	BUG_ON(ret < 0);
 656	state->state &= ~bits_to_clear;
 657	if (wake)
 658		wake_up(&state->wq);
 659	if (state->state == 0) {
 660		next = next_state(state);
 661		if (extent_state_in_tree(state)) {
 662			rb_erase(&state->rb_node, &tree->state);
 663			RB_CLEAR_NODE(&state->rb_node);
 664			free_extent_state(state);
 665		} else {
 666			WARN_ON(1);
 667		}
 668	} else {
 669		merge_state(tree, state);
 670		next = next_state(state);
 671	}
 672	return next;
 673}
 674
 675static struct extent_state *
 676alloc_extent_state_atomic(struct extent_state *prealloc)
 677{
 678	if (!prealloc)
 679		prealloc = alloc_extent_state(GFP_ATOMIC);
 680
 681	return prealloc;
 682}
 683
 684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 685{
 686	btrfs_panic(tree->fs_info, err,
 687	"locking error: extent tree was modified by another thread while locked");
 688}
 689
 690/*
 691 * clear some bits on a range in the tree.  This may require splitting
 692 * or inserting elements in the tree, so the gfp mask is used to
 693 * indicate which allocations or sleeping are allowed.
 694 *
 695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 696 * the given range from the tree regardless of state (ie for truncate).
 697 *
 698 * the range [start, end] is inclusive.
 699 *
 700 * This takes the tree lock, and returns 0 on success and < 0 on error.
 701 */
 702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 703		       u32 bits, int wake, int delete,
 704		       struct extent_state **cached_state,
 705		       gfp_t mask, struct extent_changeset *changeset)
 706{
 707	struct extent_state *state;
 708	struct extent_state *cached;
 709	struct extent_state *prealloc = NULL;
 710	struct rb_node *node;
 711	u64 last_end;
 712	int err;
 713	int clear = 0;
 714
 715	btrfs_debug_check_extent_io_range(tree, start, end);
 716	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 717
 718	if (bits & EXTENT_DELALLOC)
 719		bits |= EXTENT_NORESERVE;
 720
 721	if (delete)
 722		bits |= ~EXTENT_CTLBITS;
 
 723
 724	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 725		clear = 1;
 726again:
 727	if (!prealloc && gfpflags_allow_blocking(mask)) {
 728		/*
 729		 * Don't care for allocation failure here because we might end
 730		 * up not needing the pre-allocated extent state at all, which
 731		 * is the case if we only have in the tree extent states that
 732		 * cover our input range and don't cover too any other range.
 733		 * If we end up needing a new extent state we allocate it later.
 734		 */
 735		prealloc = alloc_extent_state(mask);
 736	}
 737
 738	spin_lock(&tree->lock);
 739	if (cached_state) {
 740		cached = *cached_state;
 741
 742		if (clear) {
 743			*cached_state = NULL;
 744			cached_state = NULL;
 745		}
 746
 747		if (cached && extent_state_in_tree(cached) &&
 748		    cached->start <= start && cached->end > start) {
 749			if (clear)
 750				refcount_dec(&cached->refs);
 751			state = cached;
 752			goto hit_next;
 753		}
 754		if (clear)
 755			free_extent_state(cached);
 756	}
 757	/*
 758	 * this search will find the extents that end after
 759	 * our range starts
 760	 */
 761	node = tree_search(tree, start);
 762	if (!node)
 763		goto out;
 764	state = rb_entry(node, struct extent_state, rb_node);
 765hit_next:
 766	if (state->start > end)
 767		goto out;
 768	WARN_ON(state->end < start);
 769	last_end = state->end;
 770
 771	/* the state doesn't have the wanted bits, go ahead */
 772	if (!(state->state & bits)) {
 773		state = next_state(state);
 774		goto next;
 775	}
 776
 777	/*
 778	 *     | ---- desired range ---- |
 779	 *  | state | or
 780	 *  | ------------- state -------------- |
 781	 *
 782	 * We need to split the extent we found, and may flip
 783	 * bits on second half.
 784	 *
 785	 * If the extent we found extends past our range, we
 786	 * just split and search again.  It'll get split again
 787	 * the next time though.
 788	 *
 789	 * If the extent we found is inside our range, we clear
 790	 * the desired bit on it.
 791	 */
 792
 793	if (state->start < start) {
 794		prealloc = alloc_extent_state_atomic(prealloc);
 795		BUG_ON(!prealloc);
 796		err = split_state(tree, state, prealloc, start);
 797		if (err)
 798			extent_io_tree_panic(tree, err);
 799
 800		prealloc = NULL;
 801		if (err)
 802			goto out;
 803		if (state->end <= end) {
 804			state = clear_state_bit(tree, state, &bits, wake,
 805						changeset);
 806			goto next;
 807		}
 808		goto search_again;
 809	}
 810	/*
 811	 * | ---- desired range ---- |
 812	 *                        | state |
 813	 * We need to split the extent, and clear the bit
 814	 * on the first half
 815	 */
 816	if (state->start <= end && state->end > end) {
 817		prealloc = alloc_extent_state_atomic(prealloc);
 818		BUG_ON(!prealloc);
 819		err = split_state(tree, state, prealloc, end + 1);
 820		if (err)
 821			extent_io_tree_panic(tree, err);
 822
 823		if (wake)
 824			wake_up(&state->wq);
 825
 826		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 827
 828		prealloc = NULL;
 829		goto out;
 830	}
 831
 832	state = clear_state_bit(tree, state, &bits, wake, changeset);
 833next:
 834	if (last_end == (u64)-1)
 835		goto out;
 836	start = last_end + 1;
 837	if (start <= end && state && !need_resched())
 838		goto hit_next;
 839
 840search_again:
 841	if (start > end)
 842		goto out;
 843	spin_unlock(&tree->lock);
 844	if (gfpflags_allow_blocking(mask))
 845		cond_resched();
 846	goto again;
 847
 848out:
 849	spin_unlock(&tree->lock);
 850	if (prealloc)
 851		free_extent_state(prealloc);
 852
 853	return 0;
 854
 855}
 856
 857static void wait_on_state(struct extent_io_tree *tree,
 858			  struct extent_state *state)
 859		__releases(tree->lock)
 860		__acquires(tree->lock)
 861{
 862	DEFINE_WAIT(wait);
 863	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 864	spin_unlock(&tree->lock);
 865	schedule();
 866	spin_lock(&tree->lock);
 867	finish_wait(&state->wq, &wait);
 868}
 869
 870/*
 871 * waits for one or more bits to clear on a range in the state tree.
 872 * The range [start, end] is inclusive.
 873 * The tree lock is taken by this function
 874 */
 875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 876			    u32 bits)
 877{
 878	struct extent_state *state;
 879	struct rb_node *node;
 880
 881	btrfs_debug_check_extent_io_range(tree, start, end);
 882
 883	spin_lock(&tree->lock);
 884again:
 885	while (1) {
 886		/*
 887		 * this search will find all the extents that end after
 888		 * our range starts
 889		 */
 890		node = tree_search(tree, start);
 891process_node:
 892		if (!node)
 893			break;
 894
 895		state = rb_entry(node, struct extent_state, rb_node);
 896
 897		if (state->start > end)
 898			goto out;
 899
 900		if (state->state & bits) {
 901			start = state->start;
 902			refcount_inc(&state->refs);
 903			wait_on_state(tree, state);
 904			free_extent_state(state);
 905			goto again;
 906		}
 907		start = state->end + 1;
 908
 909		if (start > end)
 910			break;
 911
 912		if (!cond_resched_lock(&tree->lock)) {
 913			node = rb_next(node);
 914			goto process_node;
 915		}
 916	}
 917out:
 918	spin_unlock(&tree->lock);
 919}
 920
 921static void set_state_bits(struct extent_io_tree *tree,
 922			   struct extent_state *state,
 923			   u32 *bits, struct extent_changeset *changeset)
 924{
 925	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
 926	int ret;
 927
 928	if (tree->private_data && is_data_inode(tree->private_data))
 929		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 930
 931	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 932		u64 range = state->end - state->start + 1;
 933		tree->dirty_bytes += range;
 934	}
 935	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 936	BUG_ON(ret < 0);
 937	state->state |= bits_to_set;
 938}
 939
 940static void cache_state_if_flags(struct extent_state *state,
 941				 struct extent_state **cached_ptr,
 942				 unsigned flags)
 943{
 944	if (cached_ptr && !(*cached_ptr)) {
 945		if (!flags || (state->state & flags)) {
 946			*cached_ptr = state;
 947			refcount_inc(&state->refs);
 948		}
 949	}
 950}
 951
 952static void cache_state(struct extent_state *state,
 953			struct extent_state **cached_ptr)
 954{
 955	return cache_state_if_flags(state, cached_ptr,
 956				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 957}
 958
 959/*
 960 * set some bits on a range in the tree.  This may require allocations or
 961 * sleeping, so the gfp mask is used to indicate what is allowed.
 962 *
 963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 964 * part of the range already has the desired bits set.  The start of the
 965 * existing range is returned in failed_start in this case.
 966 *
 967 * [start, end] is inclusive This takes the tree lock.
 968 */
 969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
 970		   u32 exclusive_bits, u64 *failed_start,
 971		   struct extent_state **cached_state, gfp_t mask,
 972		   struct extent_changeset *changeset)
 
 
 973{
 974	struct extent_state *state;
 975	struct extent_state *prealloc = NULL;
 976	struct rb_node *node;
 977	struct rb_node **p;
 978	struct rb_node *parent;
 979	int err = 0;
 980	u64 last_start;
 981	u64 last_end;
 982
 983	btrfs_debug_check_extent_io_range(tree, start, end);
 984	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 985
 986	if (exclusive_bits)
 987		ASSERT(failed_start);
 988	else
 989		ASSERT(failed_start == NULL);
 990again:
 991	if (!prealloc && gfpflags_allow_blocking(mask)) {
 992		/*
 993		 * Don't care for allocation failure here because we might end
 994		 * up not needing the pre-allocated extent state at all, which
 995		 * is the case if we only have in the tree extent states that
 996		 * cover our input range and don't cover too any other range.
 997		 * If we end up needing a new extent state we allocate it later.
 998		 */
 999		prealloc = alloc_extent_state(mask);
1000	}
1001
1002	spin_lock(&tree->lock);
1003	if (cached_state && *cached_state) {
1004		state = *cached_state;
1005		if (state->start <= start && state->end > start &&
1006		    extent_state_in_tree(state)) {
1007			node = &state->rb_node;
1008			goto hit_next;
1009		}
1010	}
1011	/*
1012	 * this search will find all the extents that end after
1013	 * our range starts.
1014	 */
1015	node = tree_search_for_insert(tree, start, &p, &parent);
1016	if (!node) {
1017		prealloc = alloc_extent_state_atomic(prealloc);
1018		BUG_ON(!prealloc);
1019		err = insert_state(tree, prealloc, start, end,
1020				   &p, &parent, &bits, changeset);
1021		if (err)
1022			extent_io_tree_panic(tree, err);
1023
1024		cache_state(prealloc, cached_state);
1025		prealloc = NULL;
1026		goto out;
1027	}
1028	state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030	last_start = state->start;
1031	last_end = state->end;
1032
1033	/*
1034	 * | ---- desired range ---- |
1035	 * | state |
1036	 *
1037	 * Just lock what we found and keep going
1038	 */
1039	if (state->start == start && state->end <= end) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = state->start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		set_state_bits(tree, state, &bits, changeset);
1047		cache_state(state, cached_state);
1048		merge_state(tree, state);
1049		if (last_end == (u64)-1)
1050			goto out;
1051		start = last_end + 1;
1052		state = next_state(state);
1053		if (start < end && state && state->start == start &&
1054		    !need_resched())
1055			goto hit_next;
1056		goto search_again;
1057	}
1058
1059	/*
1060	 *     | ---- desired range ---- |
1061	 * | state |
1062	 *   or
1063	 * | ------------- state -------------- |
1064	 *
1065	 * We need to split the extent we found, and may flip bits on
1066	 * second half.
1067	 *
1068	 * If the extent we found extends past our
1069	 * range, we just split and search again.  It'll get split
1070	 * again the next time though.
1071	 *
1072	 * If the extent we found is inside our range, we set the
1073	 * desired bit on it.
1074	 */
1075	if (state->start < start) {
1076		if (state->state & exclusive_bits) {
1077			*failed_start = start;
1078			err = -EEXIST;
1079			goto out;
1080		}
1081
1082		/*
1083		 * If this extent already has all the bits we want set, then
1084		 * skip it, not necessary to split it or do anything with it.
1085		 */
1086		if ((state->state & bits) == bits) {
1087			start = state->end + 1;
1088			cache_state(state, cached_state);
1089			goto search_again;
1090		}
1091
1092		prealloc = alloc_extent_state_atomic(prealloc);
1093		BUG_ON(!prealloc);
1094		err = split_state(tree, state, prealloc, start);
1095		if (err)
1096			extent_io_tree_panic(tree, err);
1097
1098		prealloc = NULL;
1099		if (err)
1100			goto out;
1101		if (state->end <= end) {
1102			set_state_bits(tree, state, &bits, changeset);
1103			cache_state(state, cached_state);
1104			merge_state(tree, state);
1105			if (last_end == (u64)-1)
1106				goto out;
1107			start = last_end + 1;
1108			state = next_state(state);
1109			if (start < end && state && state->start == start &&
1110			    !need_resched())
1111				goto hit_next;
1112		}
1113		goto search_again;
1114	}
1115	/*
1116	 * | ---- desired range ---- |
1117	 *     | state | or               | state |
1118	 *
1119	 * There's a hole, we need to insert something in it and
1120	 * ignore the extent we found.
1121	 */
1122	if (state->start > start) {
1123		u64 this_end;
1124		if (end < last_start)
1125			this_end = end;
1126		else
1127			this_end = last_start - 1;
1128
1129		prealloc = alloc_extent_state_atomic(prealloc);
1130		BUG_ON(!prealloc);
1131
1132		/*
1133		 * Avoid to free 'prealloc' if it can be merged with
1134		 * the later extent.
1135		 */
1136		err = insert_state(tree, prealloc, start, this_end,
1137				   NULL, NULL, &bits, changeset);
1138		if (err)
1139			extent_io_tree_panic(tree, err);
1140
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		start = this_end + 1;
1144		goto search_again;
1145	}
1146	/*
1147	 * | ---- desired range ---- |
1148	 *                        | state |
1149	 * We need to split the extent, and set the bit
1150	 * on the first half
1151	 */
1152	if (state->start <= end && state->end > end) {
1153		if (state->state & exclusive_bits) {
1154			*failed_start = start;
1155			err = -EEXIST;
1156			goto out;
1157		}
1158
1159		prealloc = alloc_extent_state_atomic(prealloc);
1160		BUG_ON(!prealloc);
1161		err = split_state(tree, state, prealloc, end + 1);
1162		if (err)
1163			extent_io_tree_panic(tree, err);
1164
1165		set_state_bits(tree, prealloc, &bits, changeset);
1166		cache_state(prealloc, cached_state);
1167		merge_state(tree, prealloc);
1168		prealloc = NULL;
1169		goto out;
1170	}
1171
1172search_again:
1173	if (start > end)
1174		goto out;
1175	spin_unlock(&tree->lock);
1176	if (gfpflags_allow_blocking(mask))
1177		cond_resched();
1178	goto again;
1179
1180out:
1181	spin_unlock(&tree->lock);
1182	if (prealloc)
1183		free_extent_state(prealloc);
1184
1185	return err;
1186
1187}
1188
 
 
 
 
 
 
 
 
 
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * 			another
1192 * @tree:	the io tree to search
1193 * @start:	the start offset in bytes
1194 * @end:	the end offset in bytes (inclusive)
1195 * @bits:	the bits to set in this range
1196 * @clear_bits:	the bits to clear in this range
1197 * @cached_state:	state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range.  If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208		       u32 bits, u32 clear_bits,
1209		       struct extent_state **cached_state)
1210{
1211	struct extent_state *state;
1212	struct extent_state *prealloc = NULL;
1213	struct rb_node *node;
1214	struct rb_node **p;
1215	struct rb_node *parent;
1216	int err = 0;
1217	u64 last_start;
1218	u64 last_end;
1219	bool first_iteration = true;
1220
1221	btrfs_debug_check_extent_io_range(tree, start, end);
1222	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223				       clear_bits);
1224
1225again:
1226	if (!prealloc) {
1227		/*
1228		 * Best effort, don't worry if extent state allocation fails
1229		 * here for the first iteration. We might have a cached state
1230		 * that matches exactly the target range, in which case no
1231		 * extent state allocations are needed. We'll only know this
1232		 * after locking the tree.
1233		 */
1234		prealloc = alloc_extent_state(GFP_NOFS);
1235		if (!prealloc && !first_iteration)
1236			return -ENOMEM;
1237	}
1238
1239	spin_lock(&tree->lock);
1240	if (cached_state && *cached_state) {
1241		state = *cached_state;
1242		if (state->start <= start && state->end > start &&
1243		    extent_state_in_tree(state)) {
1244			node = &state->rb_node;
1245			goto hit_next;
1246		}
1247	}
1248
1249	/*
1250	 * this search will find all the extents that end after
1251	 * our range starts.
1252	 */
1253	node = tree_search_for_insert(tree, start, &p, &parent);
1254	if (!node) {
1255		prealloc = alloc_extent_state_atomic(prealloc);
1256		if (!prealloc) {
1257			err = -ENOMEM;
1258			goto out;
1259		}
1260		err = insert_state(tree, prealloc, start, end,
1261				   &p, &parent, &bits, NULL);
1262		if (err)
1263			extent_io_tree_panic(tree, err);
1264		cache_state(prealloc, cached_state);
1265		prealloc = NULL;
1266		goto out;
1267	}
1268	state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270	last_start = state->start;
1271	last_end = state->end;
1272
1273	/*
1274	 * | ---- desired range ---- |
1275	 * | state |
1276	 *
1277	 * Just lock what we found and keep going
1278	 */
1279	if (state->start == start && state->end <= end) {
1280		set_state_bits(tree, state, &bits, NULL);
1281		cache_state(state, cached_state);
1282		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283		if (last_end == (u64)-1)
1284			goto out;
1285		start = last_end + 1;
1286		if (start < end && state && state->start == start &&
1287		    !need_resched())
1288			goto hit_next;
1289		goto search_again;
1290	}
1291
1292	/*
1293	 *     | ---- desired range ---- |
1294	 * | state |
1295	 *   or
1296	 * | ------------- state -------------- |
1297	 *
1298	 * We need to split the extent we found, and may flip bits on
1299	 * second half.
1300	 *
1301	 * If the extent we found extends past our
1302	 * range, we just split and search again.  It'll get split
1303	 * again the next time though.
1304	 *
1305	 * If the extent we found is inside our range, we set the
1306	 * desired bit on it.
1307	 */
1308	if (state->start < start) {
1309		prealloc = alloc_extent_state_atomic(prealloc);
1310		if (!prealloc) {
1311			err = -ENOMEM;
1312			goto out;
1313		}
1314		err = split_state(tree, state, prealloc, start);
1315		if (err)
1316			extent_io_tree_panic(tree, err);
1317		prealloc = NULL;
1318		if (err)
1319			goto out;
1320		if (state->end <= end) {
1321			set_state_bits(tree, state, &bits, NULL);
1322			cache_state(state, cached_state);
1323			state = clear_state_bit(tree, state, &clear_bits, 0,
1324						NULL);
1325			if (last_end == (u64)-1)
1326				goto out;
1327			start = last_end + 1;
1328			if (start < end && state && state->start == start &&
1329			    !need_resched())
1330				goto hit_next;
1331		}
1332		goto search_again;
1333	}
1334	/*
1335	 * | ---- desired range ---- |
1336	 *     | state | or               | state |
1337	 *
1338	 * There's a hole, we need to insert something in it and
1339	 * ignore the extent we found.
1340	 */
1341	if (state->start > start) {
1342		u64 this_end;
1343		if (end < last_start)
1344			this_end = end;
1345		else
1346			this_end = last_start - 1;
1347
1348		prealloc = alloc_extent_state_atomic(prealloc);
1349		if (!prealloc) {
1350			err = -ENOMEM;
1351			goto out;
1352		}
1353
1354		/*
1355		 * Avoid to free 'prealloc' if it can be merged with
1356		 * the later extent.
1357		 */
1358		err = insert_state(tree, prealloc, start, this_end,
1359				   NULL, NULL, &bits, NULL);
1360		if (err)
1361			extent_io_tree_panic(tree, err);
1362		cache_state(prealloc, cached_state);
1363		prealloc = NULL;
1364		start = this_end + 1;
1365		goto search_again;
1366	}
1367	/*
1368	 * | ---- desired range ---- |
1369	 *                        | state |
1370	 * We need to split the extent, and set the bit
1371	 * on the first half
1372	 */
1373	if (state->start <= end && state->end > end) {
1374		prealloc = alloc_extent_state_atomic(prealloc);
1375		if (!prealloc) {
1376			err = -ENOMEM;
1377			goto out;
1378		}
1379
1380		err = split_state(tree, state, prealloc, end + 1);
1381		if (err)
1382			extent_io_tree_panic(tree, err);
1383
1384		set_state_bits(tree, prealloc, &bits, NULL);
1385		cache_state(prealloc, cached_state);
1386		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387		prealloc = NULL;
1388		goto out;
1389	}
1390
1391search_again:
1392	if (start > end)
1393		goto out;
1394	spin_unlock(&tree->lock);
1395	cond_resched();
1396	first_iteration = false;
1397	goto again;
1398
1399out:
1400	spin_unlock(&tree->lock);
1401	if (prealloc)
1402		free_extent_state(prealloc);
1403
1404	return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409			   u32 bits, struct extent_changeset *changeset)
1410{
1411	/*
1412	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414	 * either fail with -EEXIST or changeset will record the whole
1415	 * range.
1416	 */
1417	BUG_ON(bits & EXTENT_LOCKED);
1418
1419	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420			      changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424			   u32 bits)
1425{
1426	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427			      GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431		     u32 bits, int wake, int delete,
1432		     struct extent_state **cached)
1433{
1434	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435				  cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439		u32 bits, struct extent_changeset *changeset)
1440{
1441	/*
1442	 * Don't support EXTENT_LOCKED case, same reason as
1443	 * set_record_extent_bits().
1444	 */
1445	BUG_ON(bits & EXTENT_LOCKED);
1446
1447	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448				  changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456		     struct extent_state **cached_state)
1457{
1458	int err;
1459	u64 failed_start;
1460
1461	while (1) {
1462		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463				     EXTENT_LOCKED, &failed_start,
1464				     cached_state, GFP_NOFS, NULL);
1465		if (err == -EEXIST) {
1466			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467			start = failed_start;
1468		} else
1469			break;
1470		WARN_ON(start > end);
1471	}
1472	return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477	int err;
1478	u64 failed_start;
1479
1480	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481			     &failed_start, NULL, GFP_NOFS, NULL);
1482	if (err == -EEXIST) {
1483		if (failed_start > start)
1484			clear_extent_bit(tree, start, failed_start - 1,
1485					 EXTENT_LOCKED, 1, 0, NULL);
1486		return 0;
1487	}
1488	return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493	unsigned long index = start >> PAGE_SHIFT;
1494	unsigned long end_index = end >> PAGE_SHIFT;
1495	struct page *page;
1496
1497	while (index <= end_index) {
1498		page = find_get_page(inode->i_mapping, index);
1499		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500		clear_page_dirty_for_io(page);
1501		put_page(page);
1502		index++;
1503	}
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508	unsigned long index = start >> PAGE_SHIFT;
1509	unsigned long end_index = end >> PAGE_SHIFT;
1510	struct page *page;
1511
1512	while (index <= end_index) {
1513		page = find_get_page(inode->i_mapping, index);
1514		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515		__set_page_dirty_nobuffers(page);
1516		account_page_redirty(page);
1517		put_page(page);
1518		index++;
1519	}
1520}
1521
 
 
 
 
 
 
 
 
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it.  tree->lock must be held.  NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
 
1528{
1529	struct rb_node *node;
1530	struct extent_state *state;
1531
1532	/*
1533	 * this search will find all the extents that end after
1534	 * our range starts.
1535	 */
1536	node = tree_search(tree, start);
1537	if (!node)
1538		goto out;
1539
1540	while (1) {
1541		state = rb_entry(node, struct extent_state, rb_node);
1542		if (state->end >= start && (state->state & bits))
1543			return state;
1544
1545		node = rb_next(node);
1546		if (!node)
1547			break;
1548	}
1549out:
1550	return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562			  u64 *start_ret, u64 *end_ret, u32 bits,
1563			  struct extent_state **cached_state)
1564{
1565	struct extent_state *state;
 
1566	int ret = 1;
1567
1568	spin_lock(&tree->lock);
1569	if (cached_state && *cached_state) {
1570		state = *cached_state;
1571		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572			while ((state = next_state(state)) != NULL) {
 
 
 
1573				if (state->state & bits)
1574					goto got_it;
 
1575			}
1576			free_extent_state(*cached_state);
1577			*cached_state = NULL;
1578			goto out;
1579		}
1580		free_extent_state(*cached_state);
1581		*cached_state = NULL;
1582	}
1583
1584	state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586	if (state) {
1587		cache_state_if_flags(state, cached_state, 0);
1588		*start_ret = state->start;
1589		*end_ret = state->end;
1590		ret = 0;
1591	}
1592out:
1593	spin_unlock(&tree->lock);
1594	return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree:      io tree to check
1601 * @start:     offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret:   the final contiguous range of the bits that were set
1604 * @bits:      bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again.  During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits.  We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area.  The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614			       u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616	struct extent_state *state;
1617	int ret = 1;
1618
1619	spin_lock(&tree->lock);
1620	state = find_first_extent_bit_state(tree, start, bits);
1621	if (state) {
1622		*start_ret = state->start;
1623		*end_ret = state->end;
1624		while ((state = next_state(state)) != NULL) {
1625			if (state->start > (*end_ret + 1))
1626				break;
1627			*end_ret = state->end;
1628		}
1629		ret = 0;
1630	}
1631	spin_unlock(&tree->lock);
1632	return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree:      the tree to search
1640 * @start:     offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret:   records the end of the range (inclusive)
1643 * @bits:      the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651				 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653	struct extent_state *state;
1654	struct rb_node *node, *prev = NULL, *next;
1655
1656	spin_lock(&tree->lock);
1657
1658	/* Find first extent with bits cleared */
1659	while (1) {
1660		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661		if (!node && !next && !prev) {
1662			/*
1663			 * Tree is completely empty, send full range and let
1664			 * caller deal with it
1665			 */
1666			*start_ret = 0;
1667			*end_ret = -1;
1668			goto out;
1669		} else if (!node && !next) {
1670			/*
1671			 * We are past the last allocated chunk, set start at
1672			 * the end of the last extent.
1673			 */
1674			state = rb_entry(prev, struct extent_state, rb_node);
1675			*start_ret = state->end + 1;
1676			*end_ret = -1;
1677			goto out;
1678		} else if (!node) {
1679			node = next;
1680		}
1681		/*
1682		 * At this point 'node' either contains 'start' or start is
1683		 * before 'node'
1684		 */
1685		state = rb_entry(node, struct extent_state, rb_node);
1686
1687		if (in_range(start, state->start, state->end - state->start + 1)) {
1688			if (state->state & bits) {
1689				/*
1690				 * |--range with bits sets--|
1691				 *    |
1692				 *    start
1693				 */
1694				start = state->end + 1;
1695			} else {
1696				/*
1697				 * 'start' falls within a range that doesn't
1698				 * have the bits set, so take its start as
1699				 * the beginning of the desired range
1700				 *
1701				 * |--range with bits cleared----|
1702				 *      |
1703				 *      start
1704				 */
1705				*start_ret = state->start;
1706				break;
1707			}
1708		} else {
1709			/*
1710			 * |---prev range---|---hole/unset---|---node range---|
1711			 *                          |
1712			 *                        start
1713			 *
1714			 *                        or
1715			 *
1716			 * |---hole/unset--||--first node--|
1717			 * 0   |
1718			 *    start
1719			 */
1720			if (prev) {
1721				state = rb_entry(prev, struct extent_state,
1722						 rb_node);
1723				*start_ret = state->end + 1;
1724			} else {
1725				*start_ret = 0;
1726			}
1727			break;
1728		}
1729	}
1730
1731	/*
1732	 * Find the longest stretch from start until an entry which has the
1733	 * bits set
1734	 */
1735	while (1) {
1736		state = rb_entry(node, struct extent_state, rb_node);
1737		if (state->end >= start && !(state->state & bits)) {
1738			*end_ret = state->end;
1739		} else {
1740			*end_ret = state->start - 1;
1741			break;
1742		}
1743
1744		node = rb_next(node);
1745		if (!node)
1746			break;
1747	}
1748out:
1749	spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'.  start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759			       u64 *end, u64 max_bytes,
1760			       struct extent_state **cached_state)
1761{
1762	struct rb_node *node;
1763	struct extent_state *state;
1764	u64 cur_start = *start;
1765	bool found = false;
1766	u64 total_bytes = 0;
1767
1768	spin_lock(&tree->lock);
1769
1770	/*
1771	 * this search will find all the extents that end after
1772	 * our range starts.
1773	 */
1774	node = tree_search(tree, cur_start);
1775	if (!node) {
1776		*end = (u64)-1;
 
1777		goto out;
1778	}
1779
1780	while (1) {
1781		state = rb_entry(node, struct extent_state, rb_node);
1782		if (found && (state->start != cur_start ||
1783			      (state->state & EXTENT_BOUNDARY))) {
1784			goto out;
1785		}
1786		if (!(state->state & EXTENT_DELALLOC)) {
1787			if (!found)
1788				*end = state->end;
1789			goto out;
1790		}
1791		if (!found) {
1792			*start = state->start;
1793			*cached_state = state;
1794			refcount_inc(&state->refs);
1795		}
1796		found = true;
1797		*end = state->end;
1798		cur_start = state->end + 1;
1799		node = rb_next(node);
1800		total_bytes += state->end - state->start + 1;
1801		if (total_bytes >= max_bytes)
1802			break;
1803		if (!node)
1804			break;
1805	}
1806out:
1807	spin_unlock(&tree->lock);
1808	return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820			    struct address_space *mapping,
1821			    struct page *page, struct page *locked_page,
1822			    unsigned long page_ops, u64 start, u64 end)
1823{
1824	u32 len;
1825
1826	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827	len = end + 1 - start;
1828
1829	if (page_ops & PAGE_SET_ORDERED)
1830		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831	if (page_ops & PAGE_SET_ERROR)
1832		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833	if (page_ops & PAGE_START_WRITEBACK) {
1834		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836	}
1837	if (page_ops & PAGE_END_WRITEBACK)
1838		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840	if (page == locked_page)
1841		return 1;
1842
1843	if (page_ops & PAGE_LOCK) {
1844		int ret;
1845
1846		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847		if (ret)
1848			return ret;
1849		if (!PageDirty(page) || page->mapping != mapping) {
1850			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851			return -EAGAIN;
1852		}
1853	}
1854	if (page_ops & PAGE_UNLOCK)
1855		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856	return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860				  struct page *locked_page,
1861				  u64 start, u64 end, unsigned long page_ops,
1862				  u64 *processed_end)
1863{
1864	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865	pgoff_t start_index = start >> PAGE_SHIFT;
1866	pgoff_t end_index = end >> PAGE_SHIFT;
1867	pgoff_t index = start_index;
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_processed = 0;
1870	struct page *pages[16];
1871	int err = 0;
1872	int i;
1873
1874	if (page_ops & PAGE_LOCK) {
1875		ASSERT(page_ops == PAGE_LOCK);
1876		ASSERT(processed_end && *processed_end == start);
1877	}
1878
1879	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880		mapping_set_error(mapping, -EIO);
1881
1882	while (nr_pages > 0) {
1883		int found_pages;
1884
1885		found_pages = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (found_pages == 0) {
1889			/*
1890			 * Only if we're going to lock these pages, we can find
1891			 * nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < found_pages; i++) {
1899			int process_ret;
1900
1901			process_ret = process_one_page(fs_info, mapping,
1902					pages[i], locked_page, page_ops,
1903					start, end);
1904			if (process_ret < 0) {
1905				for (; i < found_pages; i++)
1906					put_page(pages[i]);
1907				err = -EAGAIN;
1908				goto out;
1909			}
1910			put_page(pages[i]);
1911			pages_processed++;
1912		}
1913		nr_pages -= found_pages;
1914		index += found_pages;
1915		cond_resched();
1916	}
1917out:
1918	if (err && processed_end) {
1919		/*
1920		 * Update @processed_end. I know this is awful since it has
1921		 * two different return value patterns (inclusive vs exclusive).
1922		 *
1923		 * But the exclusive pattern is necessary if @start is 0, or we
1924		 * underflow and check against processed_end won't work as
1925		 * expected.
1926		 */
1927		if (pages_processed)
1928			*processed_end = min(end,
1929			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930		else
1931			*processed_end = start;
1932	}
1933	return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937					   struct page *locked_page,
1938					   u64 start, u64 end)
1939{
1940	unsigned long index = start >> PAGE_SHIFT;
1941	unsigned long end_index = end >> PAGE_SHIFT;
1942
1943	ASSERT(locked_page);
1944	if (index == locked_page->index && end_index == index)
1945		return;
1946
1947	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948			       PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952					struct page *locked_page,
1953					u64 delalloc_start,
1954					u64 delalloc_end)
1955{
1956	unsigned long index = delalloc_start >> PAGE_SHIFT;
 
1957	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958	u64 processed_end = delalloc_start;
1959	int ret;
1960
1961	ASSERT(locked_page);
1962	if (index == locked_page->index && index == end_index)
1963		return 0;
1964
1965	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966				     delalloc_end, PAGE_LOCK, &processed_end);
1967	if (ret == -EAGAIN && processed_end > delalloc_start)
1968		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969				      processed_end);
1970	return ret;
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes.  @Start and @end are used to return the range,
1976 *
1977 * Return: true if we find something
1978 *         false if nothing was in the tree
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982				    struct page *locked_page, u64 *start,
1983				    u64 *end)
1984{
1985	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1987	u64 delalloc_start;
1988	u64 delalloc_end;
1989	bool found;
1990	struct extent_state *cached_state = NULL;
1991	int ret;
1992	int loops = 0;
1993
1994again:
1995	/* step one, find a bunch of delalloc bytes starting at start */
1996	delalloc_start = *start;
1997	delalloc_end = 0;
1998	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999					  max_bytes, &cached_state);
2000	if (!found || delalloc_end <= *start) {
2001		*start = delalloc_start;
2002		*end = delalloc_end;
2003		free_extent_state(cached_state);
2004		return false;
2005	}
2006
2007	/*
2008	 * start comes from the offset of locked_page.  We have to lock
2009	 * pages in order, so we can't process delalloc bytes before
2010	 * locked_page
2011	 */
2012	if (delalloc_start < *start)
2013		delalloc_start = *start;
2014
2015	/*
2016	 * make sure to limit the number of pages we try to lock down
2017	 */
2018	if (delalloc_end + 1 - delalloc_start > max_bytes)
2019		delalloc_end = delalloc_start + max_bytes - 1;
2020
2021	/* step two, lock all the pages after the page that has start */
2022	ret = lock_delalloc_pages(inode, locked_page,
2023				  delalloc_start, delalloc_end);
2024	ASSERT(!ret || ret == -EAGAIN);
2025	if (ret == -EAGAIN) {
2026		/* some of the pages are gone, lets avoid looping by
2027		 * shortening the size of the delalloc range we're searching
2028		 */
2029		free_extent_state(cached_state);
2030		cached_state = NULL;
2031		if (!loops) {
2032			max_bytes = PAGE_SIZE;
2033			loops = 1;
2034			goto again;
2035		} else {
2036			found = false;
2037			goto out_failed;
2038		}
2039	}
 
2040
2041	/* step three, lock the state bits for the whole range */
2042	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044	/* then test to make sure it is all still delalloc */
2045	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046			     EXTENT_DELALLOC, 1, cached_state);
2047	if (!ret) {
2048		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049				     &cached_state);
2050		__unlock_for_delalloc(inode, locked_page,
2051			      delalloc_start, delalloc_end);
2052		cond_resched();
2053		goto again;
2054	}
2055	free_extent_state(cached_state);
2056	*start = delalloc_start;
2057	*end = delalloc_end;
2058out_failed:
2059	return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063				  struct page *locked_page,
2064				  u32 clear_bits, unsigned long page_ops)
 
2065{
2066	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067
2068	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069			       start, end, page_ops, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached.  The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078		     u64 *start, u64 search_end, u64 max_bytes,
2079		     u32 bits, int contig)
2080{
2081	struct rb_node *node;
2082	struct extent_state *state;
2083	u64 cur_start = *start;
2084	u64 total_bytes = 0;
2085	u64 last = 0;
2086	int found = 0;
2087
2088	if (WARN_ON(search_end <= cur_start))
2089		return 0;
2090
2091	spin_lock(&tree->lock);
2092	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093		total_bytes = tree->dirty_bytes;
2094		goto out;
2095	}
2096	/*
2097	 * this search will find all the extents that end after
2098	 * our range starts.
2099	 */
2100	node = tree_search(tree, cur_start);
2101	if (!node)
2102		goto out;
2103
2104	while (1) {
2105		state = rb_entry(node, struct extent_state, rb_node);
2106		if (state->start > search_end)
2107			break;
2108		if (contig && found && state->start > last + 1)
2109			break;
2110		if (state->end >= cur_start && (state->state & bits) == bits) {
2111			total_bytes += min(search_end, state->end) + 1 -
2112				       max(cur_start, state->start);
2113			if (total_bytes >= max_bytes)
2114				break;
2115			if (!found) {
2116				*start = max(cur_start, state->start);
2117				found = 1;
2118			}
2119			last = state->end;
2120		} else if (contig && found) {
2121			break;
2122		}
2123		node = rb_next(node);
2124		if (!node)
2125			break;
2126	}
2127out:
2128	spin_unlock(&tree->lock);
2129	return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree.  If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137		      struct io_failure_record *failrec)
2138{
2139	struct rb_node *node;
2140	struct extent_state *state;
2141	int ret = 0;
2142
2143	spin_lock(&tree->lock);
2144	/*
2145	 * this search will find all the extents that end after
2146	 * our range starts.
2147	 */
2148	node = tree_search(tree, start);
2149	if (!node) {
2150		ret = -ENOENT;
2151		goto out;
2152	}
2153	state = rb_entry(node, struct extent_state, rb_node);
2154	if (state->start != start) {
2155		ret = -ENOENT;
2156		goto out;
2157	}
2158	state->failrec = failrec;
2159out:
2160	spin_unlock(&tree->lock);
2161	return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
 
2165{
2166	struct rb_node *node;
2167	struct extent_state *state;
2168	struct io_failure_record *failrec;
2169
2170	spin_lock(&tree->lock);
2171	/*
2172	 * this search will find all the extents that end after
2173	 * our range starts.
2174	 */
2175	node = tree_search(tree, start);
2176	if (!node) {
2177		failrec = ERR_PTR(-ENOENT);
2178		goto out;
2179	}
2180	state = rb_entry(node, struct extent_state, rb_node);
2181	if (state->start != start) {
2182		failrec = ERR_PTR(-ENOENT);
2183		goto out;
2184	}
2185
2186	failrec = state->failrec;
2187out:
2188	spin_unlock(&tree->lock);
2189	return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set.  Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199		   u32 bits, int filled, struct extent_state *cached)
2200{
2201	struct extent_state *state = NULL;
2202	struct rb_node *node;
2203	int bitset = 0;
2204
2205	spin_lock(&tree->lock);
2206	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207	    cached->end > start)
2208		node = &cached->rb_node;
2209	else
2210		node = tree_search(tree, start);
2211	while (node && start <= end) {
2212		state = rb_entry(node, struct extent_state, rb_node);
2213
2214		if (filled && state->start > start) {
2215			bitset = 0;
2216			break;
2217		}
2218
2219		if (state->start > end)
2220			break;
2221
2222		if (state->state & bits) {
2223			bitset = 1;
2224			if (!filled)
2225				break;
2226		} else if (filled) {
2227			bitset = 0;
2228			break;
2229		}
2230
2231		if (state->end == (u64)-1)
2232			break;
2233
2234		start = state->end + 1;
2235		if (start > end)
2236			break;
2237		node = rb_next(node);
2238		if (!node) {
2239			if (filled)
2240				bitset = 0;
2241			break;
2242		}
2243	}
2244	spin_unlock(&tree->lock);
2245	return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254	u64 start = page_offset(page);
2255	u64 end = start + PAGE_SIZE - 1;
2256	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257		SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261		    struct extent_io_tree *io_tree,
2262		    struct io_failure_record *rec)
2263{
2264	int ret;
2265	int err = 0;
2266
2267	set_state_failrec(failure_tree, rec->start, NULL);
2268	ret = clear_extent_bits(failure_tree, rec->start,
2269				rec->start + rec->len - 1,
2270				EXTENT_LOCKED | EXTENT_DIRTY);
2271	if (ret)
2272		err = ret;
2273
2274	ret = clear_extent_bits(io_tree, rec->start,
2275				rec->start + rec->len - 1,
2276				EXTENT_DAMAGED);
2277	if (ret && !err)
2278		err = ret;
2279
2280	kfree(rec);
2281	return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295		      u64 length, u64 logical, struct page *page,
2296		      unsigned int pg_offset, int mirror_num)
2297{
2298	struct bio *bio;
2299	struct btrfs_device *dev;
2300	u64 map_length = 0;
2301	u64 sector;
2302	struct btrfs_bio *bbio = NULL;
2303	int ret;
2304
2305	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306	BUG_ON(!mirror_num);
2307
2308	if (btrfs_is_zoned(fs_info))
2309		return btrfs_repair_one_zone(fs_info, logical);
2310
2311	bio = btrfs_io_bio_alloc(1);
2312	bio->bi_iter.bi_size = 0;
2313	map_length = length;
2314
2315	/*
2316	 * Avoid races with device replace and make sure our bbio has devices
2317	 * associated to its stripes that don't go away while we are doing the
2318	 * read repair operation.
2319	 */
2320	btrfs_bio_counter_inc_blocked(fs_info);
2321	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322		/*
2323		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324		 * to update all raid stripes, but here we just want to correct
2325		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326		 * stripe's dev and sector.
2327		 */
2328		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329				      &map_length, &bbio, 0);
2330		if (ret) {
2331			btrfs_bio_counter_dec(fs_info);
2332			bio_put(bio);
2333			return -EIO;
2334		}
2335		ASSERT(bbio->mirror_num == 1);
2336	} else {
2337		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338				      &map_length, &bbio, mirror_num);
2339		if (ret) {
2340			btrfs_bio_counter_dec(fs_info);
2341			bio_put(bio);
2342			return -EIO;
2343		}
2344		BUG_ON(mirror_num != bbio->mirror_num);
2345	}
2346
2347	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348	bio->bi_iter.bi_sector = sector;
2349	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350	btrfs_put_bbio(bbio);
2351	if (!dev || !dev->bdev ||
2352	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353		btrfs_bio_counter_dec(fs_info);
2354		bio_put(bio);
2355		return -EIO;
2356	}
2357	bio_set_dev(bio, dev->bdev);
2358	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359	bio_add_page(bio, page, length, pg_offset);
2360
2361	if (btrfsic_submit_bio_wait(bio)) {
2362		/* try to remap that extent elsewhere? */
2363		btrfs_bio_counter_dec(fs_info);
2364		bio_put(bio);
2365		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366		return -EIO;
2367	}
2368
2369	btrfs_info_rl_in_rcu(fs_info,
2370		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371				  ino, start,
2372				  rcu_str_deref(dev->name), sector);
2373	btrfs_bio_counter_dec(fs_info);
2374	bio_put(bio);
2375	return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
 
2379{
2380	struct btrfs_fs_info *fs_info = eb->fs_info;
2381	u64 start = eb->start;
2382	int i, num_pages = num_extent_pages(eb);
2383	int ret = 0;
2384
2385	if (sb_rdonly(fs_info->sb))
2386		return -EROFS;
2387
2388	for (i = 0; i < num_pages; i++) {
2389		struct page *p = eb->pages[i];
2390
2391		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392					start - page_offset(p), mirror_num);
2393		if (ret)
2394			break;
2395		start += PAGE_SIZE;
2396	}
2397
2398	return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406		     struct extent_io_tree *failure_tree,
2407		     struct extent_io_tree *io_tree, u64 start,
2408		     struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410	u64 private;
2411	struct io_failure_record *failrec;
2412	struct extent_state *state;
2413	int num_copies;
2414	int ret;
2415
2416	private = 0;
2417	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418			       EXTENT_DIRTY, 0);
2419	if (!ret)
2420		return 0;
2421
2422	failrec = get_state_failrec(failure_tree, start);
2423	if (IS_ERR(failrec))
2424		return 0;
2425
2426	BUG_ON(!failrec->this_mirror);
2427
 
 
 
 
 
 
 
2428	if (sb_rdonly(fs_info->sb))
2429		goto out;
2430
2431	spin_lock(&io_tree->lock);
2432	state = find_first_extent_bit_state(io_tree,
2433					    failrec->start,
2434					    EXTENT_LOCKED);
2435	spin_unlock(&io_tree->lock);
2436
2437	if (state && state->start <= failrec->start &&
2438	    state->end >= failrec->start + failrec->len - 1) {
2439		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440					      failrec->len);
2441		if (num_copies > 1)  {
2442			repair_io_failure(fs_info, ino, start, failrec->len,
2443					  failrec->logical, page, pg_offset,
2444					  failrec->failed_mirror);
2445		}
2446	}
2447
2448out:
2449	free_io_failure(failure_tree, io_tree, failrec);
2450
2451	return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463	struct io_failure_record *failrec;
2464	struct extent_state *state, *next;
2465
2466	if (RB_EMPTY_ROOT(&failure_tree->state))
2467		return;
2468
2469	spin_lock(&failure_tree->lock);
2470	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471	while (state) {
2472		if (state->start > end)
2473			break;
2474
2475		ASSERT(state->end <= end);
2476
2477		next = next_state(state);
2478
2479		failrec = state->failrec;
2480		free_extent_state(state);
2481		kfree(failrec);
2482
2483		state = next;
2484	}
2485	spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489							     u64 start)
2490{
2491	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492	struct io_failure_record *failrec;
2493	struct extent_map *em;
2494	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497	const u32 sectorsize = fs_info->sectorsize;
2498	int ret;
2499	u64 logical;
2500
2501	failrec = get_state_failrec(failure_tree, start);
2502	if (!IS_ERR(failrec)) {
2503		btrfs_debug(fs_info,
2504	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505			failrec->logical, failrec->start, failrec->len);
2506		/*
2507		 * when data can be on disk more than twice, add to failrec here
2508		 * (e.g. with a list for failed_mirror) to make
2509		 * clean_io_failure() clean all those errors at once.
2510		 */
2511
2512		return failrec;
2513	}
 
 
 
2514
2515	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516	if (!failrec)
2517		return ERR_PTR(-ENOMEM);
 
 
 
 
2518
2519	failrec->start = start;
2520	failrec->len = sectorsize;
2521	failrec->this_mirror = 0;
2522	failrec->bio_flags = 0;
2523
2524	read_lock(&em_tree->lock);
2525	em = lookup_extent_mapping(em_tree, start, failrec->len);
2526	if (!em) {
2527		read_unlock(&em_tree->lock);
2528		kfree(failrec);
2529		return ERR_PTR(-EIO);
2530	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532	if (em->start > start || em->start + em->len <= start) {
2533		free_extent_map(em);
2534		em = NULL;
2535	}
2536	read_unlock(&em_tree->lock);
2537	if (!em) {
2538		kfree(failrec);
2539		return ERR_PTR(-EIO);
2540	}
2541
2542	logical = start - em->start;
2543	logical = em->block_start + logical;
2544	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545		logical = em->block_start;
2546		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548	}
2549
2550	btrfs_debug(fs_info,
2551		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552		    logical, start, failrec->len);
2553
2554	failrec->logical = logical;
2555	free_extent_map(em);
2556
2557	/* Set the bits in the private failure tree */
2558	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559			      EXTENT_LOCKED | EXTENT_DIRTY);
2560	if (ret >= 0) {
2561		ret = set_state_failrec(failure_tree, start, failrec);
2562		/* Set the bits in the inode's tree */
2563		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564				      EXTENT_DAMAGED);
2565	} else if (ret < 0) {
2566		kfree(failrec);
2567		return ERR_PTR(ret);
2568	}
2569
2570	return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574				   struct io_failure_record *failrec,
2575				   int failed_mirror)
2576{
2577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578	int num_copies;
2579
2580	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581	if (num_copies == 1) {
2582		/*
2583		 * we only have a single copy of the data, so don't bother with
2584		 * all the retry and error correction code that follows. no
2585		 * matter what the error is, it is very likely to persist.
2586		 */
2587		btrfs_debug(fs_info,
2588			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589			num_copies, failrec->this_mirror, failed_mirror);
2590		return false;
2591	}
2592
2593	/* The failure record should only contain one sector */
2594	ASSERT(failrec->len == fs_info->sectorsize);
2595
2596	/*
2597	 * There are two premises:
2598	 * a) deliver good data to the caller
2599	 * b) correct the bad sectors on disk
2600	 *
2601	 * Since we're only doing repair for one sector, we only need to get
2602	 * a good copy of the failed sector and if we succeed, we have setup
2603	 * everything for repair_io_failure to do the rest for us.
2604	 */
2605	failrec->failed_mirror = failed_mirror;
2606	failrec->this_mirror++;
2607	if (failrec->this_mirror == failed_mirror)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608		failrec->this_mirror++;
 
 
 
2609
2610	if (failrec->this_mirror > num_copies) {
2611		btrfs_debug(fs_info,
2612			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613			num_copies, failrec->this_mirror, failed_mirror);
2614		return false;
2615	}
2616
2617	return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621			    struct bio *failed_bio, u32 bio_offset,
2622			    struct page *page, unsigned int pgoff,
2623			    u64 start, int failed_mirror,
2624			    submit_bio_hook_t *submit_bio_hook)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625{
2626	struct io_failure_record *failrec;
2627	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632	struct bio *repair_bio;
2633	struct btrfs_io_bio *repair_io_bio;
2634	blk_status_t status;
2635
2636	btrfs_debug(fs_info,
2637		   "repair read error: read error at %llu", start);
2638
2639	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641	failrec = btrfs_get_io_failure_record(inode, start);
2642	if (IS_ERR(failrec))
2643		return PTR_ERR(failrec);
2644
2645
2646	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
 
2647		free_io_failure(failure_tree, tree, failrec);
2648		return -EIO;
2649	}
2650
2651	repair_bio = btrfs_io_bio_alloc(1);
2652	repair_io_bio = btrfs_io_bio(repair_bio);
2653	repair_bio->bi_opf = REQ_OP_READ;
2654	repair_bio->bi_end_io = failed_bio->bi_end_io;
2655	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656	repair_bio->bi_private = failed_bio->bi_private;
2657
2658	if (failed_io_bio->csum) {
2659		const u32 csum_size = fs_info->csum_size;
2660
2661		repair_io_bio->csum = repair_io_bio->csum_inline;
2662		memcpy(repair_io_bio->csum,
2663		       failed_io_bio->csum + csum_size * icsum, csum_size);
2664	}
2665
2666	bio_add_page(repair_bio, page, failrec->len, pgoff);
2667	repair_io_bio->logical = failrec->start;
2668	repair_io_bio->iter = repair_bio->bi_iter;
2669
2670	btrfs_debug(btrfs_sb(inode->i_sb),
2671		    "repair read error: submitting new read to mirror %d",
2672		    failrec->this_mirror);
2673
2674	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675				 failrec->bio_flags);
2676	if (status) {
2677		free_io_failure(failure_tree, tree, failrec);
2678		bio_put(repair_bio);
 
2679	}
2680	return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687	ASSERT(page_offset(page) <= start &&
2688	       start + len <= page_offset(page) + PAGE_SIZE);
2689
2690	if (uptodate) {
2691		btrfs_page_set_uptodate(fs_info, page, start, len);
2692	} else {
2693		btrfs_page_clear_uptodate(fs_info, page, start, len);
2694		btrfs_page_set_error(fs_info, page, start, len);
2695	}
2696
2697	if (fs_info->sectorsize == PAGE_SIZE)
2698		unlock_page(page);
2699	else
2700		btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704				      struct bio *failed_bio, u32 bio_offset,
2705				      struct page *page, unsigned int pgoff,
2706				      u64 start, u64 end, int failed_mirror,
2707				      unsigned int error_bitmap,
2708				      submit_bio_hook_t *submit_bio_hook)
2709{
2710	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711	const u32 sectorsize = fs_info->sectorsize;
2712	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713	int error = 0;
2714	int i;
2715
2716	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718	/* We're here because we had some read errors or csum mismatch */
2719	ASSERT(error_bitmap);
2720
2721	/*
2722	 * We only get called on buffered IO, thus page must be mapped and bio
2723	 * must not be cloned.
2724	 */
2725	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727	/* Iterate through all the sectors in the range */
2728	for (i = 0; i < nr_bits; i++) {
2729		const unsigned int offset = i * sectorsize;
2730		struct extent_state *cached = NULL;
2731		bool uptodate = false;
2732		int ret;
2733
2734		if (!(error_bitmap & (1U << i))) {
2735			/*
2736			 * This sector has no error, just end the page read
2737			 * and unlock the range.
2738			 */
2739			uptodate = true;
2740			goto next;
2741		}
2742
2743		ret = btrfs_repair_one_sector(inode, failed_bio,
2744				bio_offset + offset,
2745				page, pgoff + offset, start + offset,
2746				failed_mirror, submit_bio_hook);
2747		if (!ret) {
2748			/*
2749			 * We have submitted the read repair, the page release
2750			 * will be handled by the endio function of the
2751			 * submitted repair bio.
2752			 * Thus we don't need to do any thing here.
2753			 */
2754			continue;
2755		}
2756		/*
2757		 * Repair failed, just record the error but still continue.
2758		 * Or the remaining sectors will not be properly unlocked.
2759		 */
2760		if (!error)
2761			error = ret;
2762next:
2763		end_page_read(page, uptodate, start + offset, sectorsize);
2764		if (uptodate)
2765			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766					start + offset,
2767					start + offset + sectorsize - 1,
2768					&cached, GFP_ATOMIC);
2769		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770				start + offset,
2771				start + offset + sectorsize - 1,
2772				&cached);
2773	}
2774	return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781	struct btrfs_inode *inode;
2782	int uptodate = (err == 0);
 
2783	int ret = 0;
2784
2785	ASSERT(page && page->mapping);
2786	inode = BTRFS_I(page->mapping->host);
2787	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
 
 
2788
2789	if (!uptodate) {
2790		ClearPageUptodate(page);
2791		SetPageError(page);
2792		ret = err < 0 ? err : -EIO;
2793		mapping_set_error(page->mapping, ret);
2794	}
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
2808	int error = blk_status_to_errno(bio->bi_status);
2809	struct bio_vec *bvec;
2810	u64 start;
2811	u64 end;
2812	struct bvec_iter_all iter_all;
2813	bool first_bvec = true;
2814
2815	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816	bio_for_each_segment_all(bvec, bio, iter_all) {
2817		struct page *page = bvec->bv_page;
2818		struct inode *inode = page->mapping->host;
2819		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820		const u32 sectorsize = fs_info->sectorsize;
2821
2822		/* Our read/write should always be sector aligned. */
2823		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824			btrfs_err(fs_info,
2825		"partial page write in btrfs with offset %u and length %u",
2826				  bvec->bv_offset, bvec->bv_len);
2827		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828			btrfs_info(fs_info,
2829		"incomplete page write with offset %u and length %u",
2830				   bvec->bv_offset, bvec->bv_len);
2831
2832		start = page_offset(page) + bvec->bv_offset;
2833		end = start + bvec->bv_len - 1;
2834
2835		if (first_bvec) {
2836			btrfs_record_physical_zoned(inode, start, bio);
2837			first_bvec = false;
2838		}
2839
 
 
 
2840		end_extent_writepage(page, error, start, end);
2841
2842		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843	}
2844
2845	bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855	struct btrfs_inode *inode;
2856	/* Start of the range in @inode */
2857	u64 start;
2858	/* End of the range in @inode */
2859	u64 end;
2860	bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875			      struct btrfs_inode *inode, u64 start, u64 end,
2876			      bool uptodate)
2877{
2878	struct extent_state *cached = NULL;
2879	struct extent_io_tree *tree;
2880
2881	/* The first extent, initialize @processed */
2882	if (!processed->inode)
2883		goto update;
2884
2885	/*
2886	 * Contiguous to processed extent, just uptodate the end.
2887	 *
2888	 * Several things to notice:
2889	 *
2890	 * - bio can be merged as long as on-disk bytenr is contiguous
2891	 *   This means we can have page belonging to other inodes, thus need to
2892	 *   check if the inode still matches.
2893	 * - bvec can contain range beyond current page for multi-page bvec
2894	 *   Thus we need to do processed->end + 1 >= start check
2895	 */
2896	if (processed->inode == inode && processed->uptodate == uptodate &&
2897	    processed->end + 1 >= start && end >= processed->end) {
2898		processed->end = end;
2899		return;
2900	}
2901
2902	tree = &processed->inode->io_tree;
2903	/*
2904	 * Now we don't have range contiguous to the processed range, release
2905	 * the processed range now.
2906	 */
2907	if (processed->uptodate && tree->track_uptodate)
2908		set_extent_uptodate(tree, processed->start, processed->end,
2909				    &cached, GFP_ATOMIC);
2910	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911				    &cached);
2912
2913update:
2914	/* Update processed to current range */
2915	processed->inode = inode;
2916	processed->start = start;
2917	processed->end = end;
2918	processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923	ASSERT(PageLocked(page));
2924	if (fs_info->sectorsize == PAGE_SIZE)
2925		return;
2926
2927	ASSERT(PagePrivate(page));
2928	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940	struct extent_buffer *eb;
2941
2942	/*
2943	 * For regular sectorsize, we can use page->private to grab extent
2944	 * buffer
2945	 */
2946	if (fs_info->sectorsize == PAGE_SIZE) {
2947		ASSERT(PagePrivate(page) && page->private);
2948		return (struct extent_buffer *)page->private;
2949	}
2950
2951	/* For subpage case, we need to lookup buffer radix tree */
2952	rcu_read_lock();
2953	eb = radix_tree_lookup(&fs_info->buffer_radix,
2954			       bytenr >> fs_info->sectorsize_bits);
2955	rcu_read_unlock();
2956	ASSERT(eb);
2957	return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973	struct bio_vec *bvec;
 
2974	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975	struct extent_io_tree *tree, *failure_tree;
2976	struct processed_extent processed = { 0 };
2977	/*
2978	 * The offset to the beginning of a bio, since one bio can never be
2979	 * larger than UINT_MAX, u32 here is enough.
2980	 */
2981	u32 bio_offset = 0;
2982	int mirror;
2983	int ret;
2984	struct bvec_iter_all iter_all;
2985
2986	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987	bio_for_each_segment_all(bvec, bio, iter_all) {
2988		bool uptodate = !bio->bi_status;
2989		struct page *page = bvec->bv_page;
2990		struct inode *inode = page->mapping->host;
2991		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992		const u32 sectorsize = fs_info->sectorsize;
2993		unsigned int error_bitmap = (unsigned int)-1;
2994		u64 start;
2995		u64 end;
2996		u32 len;
2997
2998		btrfs_debug(fs_info,
2999			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000			bio->bi_iter.bi_sector, bio->bi_status,
3001			io_bio->mirror_num);
3002		tree = &BTRFS_I(inode)->io_tree;
3003		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005		/*
3006		 * We always issue full-sector reads, but if some block in a
3007		 * page fails to read, blk_update_request() will advance
3008		 * bv_offset and adjust bv_len to compensate.  Print a warning
3009		 * for unaligned offsets, and an error if they don't add up to
3010		 * a full sector.
3011		 */
3012		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013			btrfs_err(fs_info,
3014		"partial page read in btrfs with offset %u and length %u",
3015				  bvec->bv_offset, bvec->bv_len);
3016		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017				     sectorsize))
3018			btrfs_info(fs_info,
3019		"incomplete page read with offset %u and length %u",
3020				   bvec->bv_offset, bvec->bv_len);
3021
3022		start = page_offset(page) + bvec->bv_offset;
3023		end = start + bvec->bv_len - 1;
3024		len = bvec->bv_len;
3025
3026		mirror = io_bio->mirror_num;
3027		if (likely(uptodate)) {
3028			if (is_data_inode(inode)) {
3029				error_bitmap = btrfs_verify_data_csum(io_bio,
3030						bio_offset, page, start, end);
3031				ret = error_bitmap;
3032			} else {
3033				ret = btrfs_validate_metadata_buffer(io_bio,
3034					page, start, end, mirror);
3035			}
3036			if (ret)
3037				uptodate = false;
3038			else
3039				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040						 failure_tree, tree, start,
3041						 page,
3042						 btrfs_ino(BTRFS_I(inode)), 0);
3043		}
3044
3045		if (likely(uptodate))
3046			goto readpage_ok;
3047
3048		if (is_data_inode(inode)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3049			/*
3050			 * btrfs_submit_read_repair() will handle all the good
3051			 * and bad sectors, we just continue to the next bvec.
 
3052			 */
3053			submit_read_repair(inode, bio, bio_offset, page,
3054					   start - page_offset(page), start,
3055					   end, mirror, error_bitmap,
3056					   btrfs_submit_data_bio);
3057
3058			ASSERT(bio_offset + len > bio_offset);
3059			bio_offset += len;
3060			continue;
3061		} else {
3062			struct extent_buffer *eb;
3063
3064			eb = find_extent_buffer_readpage(fs_info, page, start);
3065			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066			eb->read_mirror = mirror;
3067			atomic_dec(&eb->io_pages);
3068			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069					       &eb->bflags))
3070				btree_readahead_hook(eb, -EIO);
3071		}
3072readpage_ok:
3073		if (likely(uptodate)) {
3074			loff_t i_size = i_size_read(inode);
3075			pgoff_t end_index = i_size >> PAGE_SHIFT;
 
3076
3077			/*
3078			 * Zero out the remaining part if this range straddles
3079			 * i_size.
3080			 *
3081			 * Here we should only zero the range inside the bvec,
3082			 * not touch anything else.
3083			 *
3084			 * NOTE: i_size is exclusive while end is inclusive.
3085			 */
3086			if (page->index == end_index && i_size <= end) {
3087				u32 zero_start = max(offset_in_page(i_size),
3088						     offset_in_page(start));
3089
3090				zero_user_segment(page, zero_start,
3091						  offset_in_page(end) + 1);
 
 
 
 
 
3092			}
 
 
 
 
 
 
 
 
 
 
 
 
3093		}
3094		ASSERT(bio_offset + len > bio_offset);
3095		bio_offset += len;
3096
3097		/* Update page status and unlock */
3098		end_page_read(page, uptodate, start, len);
3099		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100					      start, end, uptodate);
3101	}
3102	/* Release the last extent */
3103	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104	btrfs_io_bio_free_csum(io_bio);
3105	bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114{
3115	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125	struct bio *bio;
3126
3127	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
 
3128	bio->bi_iter.bi_sector = first_byte >> 9;
3129	btrfs_io_bio_init(btrfs_io_bio(bio));
3130	return bio;
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
3134{
3135	struct btrfs_io_bio *btrfs_bio;
3136	struct bio *new;
3137
3138	/* Bio allocation backed by a bioset does not fail */
3139	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140	btrfs_bio = btrfs_io_bio(new);
3141	btrfs_io_bio_init(btrfs_bio);
3142	btrfs_bio->iter = bio->bi_iter;
3143	return new;
3144}
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148	struct bio *bio;
3149
3150	/* Bio allocation backed by a bioset does not fail */
3151	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152	btrfs_io_bio_init(btrfs_io_bio(bio));
3153	return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157{
3158	struct bio *bio;
3159	struct btrfs_io_bio *btrfs_bio;
3160
3161	/* this will never fail when it's backed by a bioset */
3162	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163	ASSERT(bio);
3164
3165	btrfs_bio = btrfs_io_bio(bio);
3166	btrfs_io_bio_init(btrfs_bio);
3167
3168	bio_trim(bio, offset >> 9, size >> 9);
3169	btrfs_bio->iter = bio->bi_iter;
3170	return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio:	destination bio
3177 * @page:	page to add to the bio
3178 * @disk_bytenr:  offset of the new bio or to check whether we are adding
3179 *                a contiguous page to the previous one
3180 * @pg_offset:	starting offset in the page
3181 * @size:	portion of page that we want to write
3182 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3183 * @bio_flags:	flags of the current bio to see if we can merge them
3184 * @return:	true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191			       struct page *page,
3192			       u64 disk_bytenr, unsigned int size,
3193			       unsigned int pg_offset,
3194			       unsigned long bio_flags)
3195{
3196	struct bio *bio = bio_ctrl->bio;
3197	u32 bio_size = bio->bi_iter.bi_size;
3198	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199	bool contig;
3200	int ret;
3201
3202	ASSERT(bio);
3203	/* The limit should be calculated when bio_ctrl->bio is allocated */
3204	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205	if (bio_ctrl->bio_flags != bio_flags)
3206		return false;
3207
3208	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209		contig = bio->bi_iter.bi_sector == sector;
3210	else
3211		contig = bio_end_sector(bio) == sector;
3212	if (!contig)
3213		return false;
3214
3215	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217		return false;
3218
3219	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
 
3221	else
3222		ret = bio_add_page(bio, page, size, pg_offset);
3223
3224	return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228			       struct btrfs_inode *inode)
3229{
3230	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231	struct btrfs_io_geometry geom;
3232	struct btrfs_ordered_extent *ordered;
3233	struct extent_map *em;
3234	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235	int ret;
3236
3237	/*
3238	 * Pages for compressed extent are never submitted to disk directly,
3239	 * thus it has no real boundary, just set them to U32_MAX.
3240	 *
3241	 * The split happens for real compressed bio, which happens in
3242	 * btrfs_submit_compressed_read/write().
3243	 */
3244	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245		bio_ctrl->len_to_oe_boundary = U32_MAX;
3246		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247		return 0;
3248	}
3249	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250	if (IS_ERR(em))
3251		return PTR_ERR(em);
3252	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253				    logical, &geom);
3254	free_extent_map(em);
3255	if (ret < 0) {
3256		return ret;
3257	}
3258	if (geom.len > U32_MAX)
3259		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260	else
3261		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263	if (!btrfs_is_zoned(fs_info) ||
3264	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265		bio_ctrl->len_to_oe_boundary = U32_MAX;
3266		return 0;
3267	}
3268
3269	ASSERT(fs_info->max_zone_append_size > 0);
3270	/* Ordered extent not yet created, so we're good */
3271	ordered = btrfs_lookup_ordered_extent(inode, logical);
3272	if (!ordered) {
3273		bio_ctrl->len_to_oe_boundary = U32_MAX;
3274		return 0;
3275	}
3276
3277	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279	btrfs_put_ordered_extent(ordered);
3280	return 0;
3281}
3282
3283/*
3284 * @opf:	bio REQ_OP_* and REQ_* flags as one value
 
3285 * @wbc:	optional writeback control for io accounting
3286 * @page:	page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size:	portion of page that we want to write to
3289 * @pg_offset:	offset of the new bio or to check whether we are adding
3290 *              a contiguous page to the previous one
 
 
 
3291 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func:     end_io callback for new bio
3293 * @mirror_num:	     desired mirror to read/write
3294 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3295 * @bio_flags:	flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298			      struct writeback_control *wbc,
3299			      struct btrfs_bio_ctrl *bio_ctrl,
3300			      struct page *page, u64 disk_bytenr,
3301			      size_t size, unsigned long pg_offset,
 
 
3302			      bio_end_io_t end_io_func,
3303			      int mirror_num,
 
3304			      unsigned long bio_flags,
3305			      bool force_bio_submit)
3306{
3307	int ret = 0;
3308	struct bio *bio;
3309	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311	struct extent_io_tree *tree = &inode->io_tree;
3312	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314	ASSERT(bio_ctrl);
3315
3316	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317	       pg_offset + size <= PAGE_SIZE);
3318	if (bio_ctrl->bio) {
3319		bio = bio_ctrl->bio;
3320		if (force_bio_submit ||
3321		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322					pg_offset, bio_flags)) {
3323			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324			bio_ctrl->bio = NULL;
3325			if (ret < 0)
 
 
 
 
 
 
 
 
3326				return ret;
 
 
3327		} else {
3328			if (wbc)
3329				wbc_account_cgroup_owner(wbc, page, io_size);
3330			return 0;
3331		}
3332	}
3333
3334	bio = btrfs_bio_alloc(disk_bytenr);
3335	bio_add_page(bio, page, io_size, pg_offset);
3336	bio->bi_end_io = end_io_func;
3337	bio->bi_private = tree;
3338	bio->bi_write_hint = page->mapping->host->i_write_hint;
3339	bio->bi_opf = opf;
3340	if (wbc) {
3341		struct block_device *bdev;
3342
3343		bdev = fs_info->fs_devices->latest_bdev;
3344		bio_set_dev(bio, bdev);
3345		wbc_init_bio(wbc, bio);
3346		wbc_account_cgroup_owner(wbc, page, io_size);
3347	}
3348	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349		struct btrfs_device *device;
3350
3351		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352		if (IS_ERR(device))
3353			return PTR_ERR(device);
3354
3355		btrfs_io_bio(bio)->device = device;
3356	}
3357
3358	bio_ctrl->bio = bio;
3359	bio_ctrl->bio_flags = bio_flags;
3360	ret = calc_bio_boundaries(bio_ctrl, inode);
3361
3362	return ret;
3363}
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366				     struct page *page,
3367				     struct btrfs_subpage *prealloc)
3368{
3369	struct btrfs_fs_info *fs_info = eb->fs_info;
3370	int ret = 0;
3371
3372	/*
3373	 * If the page is mapped to btree inode, we should hold the private
3374	 * lock to prevent race.
3375	 * For cloned or dummy extent buffers, their pages are not mapped and
3376	 * will not race with any other ebs.
3377	 */
3378	if (page->mapping)
3379		lockdep_assert_held(&page->mapping->private_lock);
3380
3381	if (fs_info->sectorsize == PAGE_SIZE) {
3382		if (!PagePrivate(page))
3383			attach_page_private(page, eb);
3384		else
3385			WARN_ON(page->private != (unsigned long)eb);
3386		return 0;
3387	}
3388
3389	/* Already mapped, just free prealloc */
3390	if (PagePrivate(page)) {
3391		btrfs_free_subpage(prealloc);
3392		return 0;
3393	}
3394
3395	if (prealloc)
3396		/* Has preallocated memory for subpage */
3397		attach_page_private(page, prealloc);
3398	else
3399		/* Do new allocation to attach subpage */
3400		ret = btrfs_attach_subpage(fs_info, page,
3401					   BTRFS_SUBPAGE_METADATA);
3402	return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
3407	struct btrfs_fs_info *fs_info;
3408
3409	ASSERT(page->mapping);
3410
3411	if (PagePrivate(page))
3412		return 0;
3413
3414	fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416	if (fs_info->sectorsize < PAGE_SIZE)
3417		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420	return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
3425	struct btrfs_fs_info *fs_info;
3426
3427	ASSERT(page->mapping);
3428
3429	if (!PagePrivate(page))
3430		return;
3431
3432	fs_info = btrfs_sb(page->mapping->host->i_sb);
3433	if (fs_info->sectorsize < PAGE_SIZE)
3434		return btrfs_detach_subpage(fs_info, page);
3435
3436	detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441		 u64 start, u64 len, struct extent_map **em_cached)
 
3442{
3443	struct extent_map *em;
3444
3445	if (em_cached && *em_cached) {
3446		em = *em_cached;
3447		if (extent_map_in_tree(em) && start >= em->start &&
3448		    start < extent_map_end(em)) {
3449			refcount_inc(&em->refs);
3450			return em;
3451		}
3452
3453		free_extent_map(em);
3454		*em_cached = NULL;
3455	}
3456
3457	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458	if (em_cached && !IS_ERR_OR_NULL(em)) {
3459		BUG_ON(*em_cached);
3460		refcount_inc(&em->refs);
3461		*em_cached = em;
3462	}
3463	return em;
3464}
3465/*
3466 * basic readpage implementation.  Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473		      struct btrfs_bio_ctrl *bio_ctrl,
3474		      unsigned int read_flags, u64 *prev_em_start)
 
 
 
 
3475{
3476	struct inode *inode = page->mapping->host;
3477	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478	u64 start = page_offset(page);
3479	const u64 end = start + PAGE_SIZE - 1;
3480	u64 cur = start;
3481	u64 extent_offset;
3482	u64 last_byte = i_size_read(inode);
3483	u64 block_start;
3484	u64 cur_end;
3485	struct extent_map *em;
 
3486	int ret = 0;
3487	int nr = 0;
3488	size_t pg_offset = 0;
3489	size_t iosize;
 
3490	size_t blocksize = inode->i_sb->s_blocksize;
3491	unsigned long this_bio_flag = 0;
3492	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494	ret = set_page_extent_mapped(page);
3495	if (ret < 0) {
3496		unlock_extent(tree, start, end);
3497		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498		unlock_page(page);
3499		goto out;
3500	}
3501
3502	if (!PageUptodate(page)) {
3503		if (cleancache_get_page(page) == 0) {
3504			BUG_ON(blocksize != PAGE_SIZE);
3505			unlock_extent(tree, start, end);
3506			unlock_page(page);
3507			goto out;
3508		}
3509	}
3510
3511	if (page->index == last_byte >> PAGE_SHIFT) {
3512		size_t zero_offset = offset_in_page(last_byte);
 
3513
3514		if (zero_offset) {
3515			iosize = PAGE_SIZE - zero_offset;
3516			memzero_page(page, zero_offset, iosize);
 
3517			flush_dcache_page(page);
 
3518		}
3519	}
3520	begin_page_read(fs_info, page);
3521	while (cur <= end) {
3522		bool force_bio_submit = false;
3523		u64 disk_bytenr;
3524
3525		if (cur >= last_byte) {
 
3526			struct extent_state *cached = NULL;
3527
3528			iosize = PAGE_SIZE - pg_offset;
3529			memzero_page(page, pg_offset, iosize);
 
3530			flush_dcache_page(page);
 
3531			set_extent_uptodate(tree, cur, cur + iosize - 1,
3532					    &cached, GFP_NOFS);
3533			unlock_extent_cached(tree, cur,
3534					     cur + iosize - 1, &cached);
3535			end_page_read(page, true, cur, iosize);
3536			break;
3537		}
3538		em = __get_extent_map(inode, page, pg_offset, cur,
3539				      end - cur + 1, em_cached);
3540		if (IS_ERR_OR_NULL(em)) {
 
3541			unlock_extent(tree, cur, end);
3542			end_page_read(page, false, cur, end + 1 - cur);
3543			break;
3544		}
3545		extent_offset = cur - em->start;
3546		BUG_ON(extent_map_end(em) <= cur);
3547		BUG_ON(end < cur);
3548
3549		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551			extent_set_compress_type(&this_bio_flag,
3552						 em->compress_type);
3553		}
3554
3555		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556		cur_end = min(extent_map_end(em) - 1, end);
3557		iosize = ALIGN(iosize, blocksize);
3558		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559			disk_bytenr = em->block_start;
3560		else
3561			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
3562		block_start = em->block_start;
3563		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564			block_start = EXTENT_MAP_HOLE;
3565
3566		/*
3567		 * If we have a file range that points to a compressed extent
3568		 * and it's followed by a consecutive file range that points
3569		 * to the same compressed extent (possibly with a different
3570		 * offset and/or length, so it either points to the whole extent
3571		 * or only part of it), we must make sure we do not submit a
3572		 * single bio to populate the pages for the 2 ranges because
3573		 * this makes the compressed extent read zero out the pages
3574		 * belonging to the 2nd range. Imagine the following scenario:
3575		 *
3576		 *  File layout
3577		 *  [0 - 8K]                     [8K - 24K]
3578		 *    |                               |
3579		 *    |                               |
3580		 * points to extent X,         points to extent X,
3581		 * offset 4K, length of 8K     offset 0, length 16K
3582		 *
3583		 * [extent X, compressed length = 4K uncompressed length = 16K]
3584		 *
3585		 * If the bio to read the compressed extent covers both ranges,
3586		 * it will decompress extent X into the pages belonging to the
3587		 * first range and then it will stop, zeroing out the remaining
3588		 * pages that belong to the other range that points to extent X.
3589		 * So here we make sure we submit 2 bios, one for the first
3590		 * range and another one for the third range. Both will target
3591		 * the same physical extent from disk, but we can't currently
3592		 * make the compressed bio endio callback populate the pages
3593		 * for both ranges because each compressed bio is tightly
3594		 * coupled with a single extent map, and each range can have
3595		 * an extent map with a different offset value relative to the
3596		 * uncompressed data of our extent and different lengths. This
3597		 * is a corner case so we prioritize correctness over
3598		 * non-optimal behavior (submitting 2 bios for the same extent).
3599		 */
3600		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601		    prev_em_start && *prev_em_start != (u64)-1 &&
3602		    *prev_em_start != em->start)
3603			force_bio_submit = true;
3604
3605		if (prev_em_start)
3606			*prev_em_start = em->start;
3607
3608		free_extent_map(em);
3609		em = NULL;
3610
3611		/* we've found a hole, just zero and go on */
3612		if (block_start == EXTENT_MAP_HOLE) {
 
3613			struct extent_state *cached = NULL;
3614
3615			memzero_page(page, pg_offset, iosize);
 
3616			flush_dcache_page(page);
 
3617
3618			set_extent_uptodate(tree, cur, cur + iosize - 1,
3619					    &cached, GFP_NOFS);
3620			unlock_extent_cached(tree, cur,
3621					     cur + iosize - 1, &cached);
3622			end_page_read(page, true, cur, iosize);
3623			cur = cur + iosize;
3624			pg_offset += iosize;
3625			continue;
3626		}
3627		/* the get_extent function already copied into the page */
3628		if (test_range_bit(tree, cur, cur_end,
3629				   EXTENT_UPTODATE, 1, NULL)) {
3630			check_page_uptodate(tree, page);
3631			unlock_extent(tree, cur, cur + iosize - 1);
3632			end_page_read(page, true, cur, iosize);
3633			cur = cur + iosize;
3634			pg_offset += iosize;
3635			continue;
3636		}
3637		/* we have an inline extent but it didn't get marked up
3638		 * to date.  Error out
3639		 */
3640		if (block_start == EXTENT_MAP_INLINE) {
 
3641			unlock_extent(tree, cur, cur + iosize - 1);
3642			end_page_read(page, false, cur, iosize);
3643			cur = cur + iosize;
3644			pg_offset += iosize;
3645			continue;
3646		}
3647
3648		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649					 bio_ctrl, page, disk_bytenr, iosize,
3650					 pg_offset,
3651					 end_bio_extent_readpage, 0,
 
3652					 this_bio_flag,
3653					 force_bio_submit);
3654		if (!ret) {
3655			nr++;
 
3656		} else {
 
3657			unlock_extent(tree, cur, cur + iosize - 1);
3658			end_page_read(page, false, cur, iosize);
3659			goto out;
3660		}
3661		cur = cur + iosize;
3662		pg_offset += iosize;
3663	}
3664out:
 
 
 
 
 
3665	return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669					u64 start, u64 end,
3670					struct extent_map **em_cached,
3671					struct btrfs_bio_ctrl *bio_ctrl,
3672					u64 *prev_em_start)
 
 
3673{
3674	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
 
3675	int index;
3676
3677	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
 
 
 
 
 
 
 
 
 
 
3678
3679	for (index = 0; index < nr_pages; index++) {
3680		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681				  REQ_RAHEAD, prev_em_start);
3682		put_page(pages[index]);
3683	}
3684}
3685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3686static void update_nr_written(struct writeback_control *wbc,
3687			      unsigned long nr_written)
3688{
3689	wbc->nr_to_write -= nr_written;
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent).  In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703		struct page *page, struct writeback_control *wbc,
3704		u64 delalloc_start, unsigned long *nr_written)
 
 
3705{
 
3706	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707	bool found;
3708	u64 delalloc_to_write = 0;
3709	u64 delalloc_end = 0;
3710	int ret;
3711	int page_started = 0;
3712
 
 
3713
3714	while (delalloc_end < page_end) {
3715		found = find_lock_delalloc_range(&inode->vfs_inode, page,
 
3716					       &delalloc_start,
3717					       &delalloc_end);
3718		if (!found) {
 
3719			delalloc_start = delalloc_end + 1;
3720			continue;
3721		}
3722		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723				delalloc_end, &page_started, nr_written, wbc);
 
 
 
 
3724		if (ret) {
3725			SetPageError(page);
3726			/*
3727			 * btrfs_run_delalloc_range should return < 0 for error
3728			 * but just in case, we use > 0 here meaning the IO is
3729			 * started, so we don't want to return > 0 unless
3730			 * things are going well.
3731			 */
3732			return ret < 0 ? ret : -EIO;
 
3733		}
3734		/*
3735		 * delalloc_end is already one less than the total length, so
3736		 * we don't subtract one from PAGE_SIZE
3737		 */
3738		delalloc_to_write += (delalloc_end - delalloc_start +
3739				      PAGE_SIZE) >> PAGE_SHIFT;
3740		delalloc_start = delalloc_end + 1;
3741	}
3742	if (wbc->nr_to_write < delalloc_to_write) {
3743		int thresh = 8192;
3744
3745		if (delalloc_to_write < thresh * 2)
3746			thresh = delalloc_to_write;
3747		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748					 thresh);
3749	}
3750
3751	/* did the fill delalloc function already unlock and start
3752	 * the IO?
3753	 */
3754	if (page_started) {
3755		/*
3756		 * we've unlocked the page, so we can't update
3757		 * the mapping's writeback index, just update
3758		 * nr_to_write.
3759		 */
3760		wbc->nr_to_write -= *nr_written;
3761		return 1;
3762	}
3763
3764	return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783				 struct page *page, u64 *start, u64 *end)
3784{
3785	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786	u64 orig_start = *start;
3787	/* Declare as unsigned long so we can use bitmap ops */
3788	unsigned long dirty_bitmap;
3789	unsigned long flags;
3790	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791	int range_start_bit = nbits;
3792	int range_end_bit;
3793
3794	/*
3795	 * For regular sector size == page size case, since one page only
3796	 * contains one sector, we return the page offset directly.
3797	 */
3798	if (fs_info->sectorsize == PAGE_SIZE) {
3799		*start = page_offset(page);
3800		*end = page_offset(page) + PAGE_SIZE;
3801		return;
3802	}
3803
3804	/* We should have the page locked, but just in case */
3805	spin_lock_irqsave(&subpage->lock, flags);
3806	dirty_bitmap = subpage->dirty_bitmap;
3807	spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810			       BTRFS_SUBPAGE_BITMAP_SIZE);
3811	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage.  This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824				 struct page *page,
3825				 struct writeback_control *wbc,
3826				 struct extent_page_data *epd,
3827				 loff_t i_size,
3828				 unsigned long nr_written,
3829				 int *nr_ret)
3830{
3831	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832	u64 start = page_offset(page);
3833	u64 end = start + PAGE_SIZE - 1;
 
3834	u64 cur = start;
3835	u64 extent_offset;
3836	u64 block_start;
 
3837	struct extent_map *em;
 
 
 
3838	int ret = 0;
3839	int nr = 0;
3840	u32 opf = REQ_OP_WRITE;
3841	const unsigned int write_flags = wbc_to_write_flags(wbc);
3842	bool compressed;
3843
3844	ret = btrfs_writepage_cow_fixup(page, start, end);
3845	if (ret) {
3846		/* Fixup worker will requeue */
3847		redirty_page_for_writepage(wbc, page);
3848		update_nr_written(wbc, nr_written);
3849		unlock_page(page);
3850		return 1;
 
 
 
 
 
 
 
3851	}
3852
3853	/*
3854	 * we don't want to touch the inode after unlocking the page,
3855	 * so we update the mapping writeback index now
3856	 */
3857	update_nr_written(wbc, nr_written + 1);
3858
 
 
 
 
 
 
 
 
 
 
3859	while (cur <= end) {
3860		u64 disk_bytenr;
3861		u64 em_end;
3862		u64 dirty_range_start = cur;
3863		u64 dirty_range_end;
3864		u32 iosize;
3865
3866		if (cur >= i_size) {
3867			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868							     end, 1);
 
3869			break;
3870		}
3871
3872		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873				     &dirty_range_end);
3874		if (cur < dirty_range_start) {
3875			cur = dirty_range_start;
3876			continue;
3877		}
3878
3879		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880		if (IS_ERR_OR_NULL(em)) {
3881			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882			ret = PTR_ERR_OR_ZERO(em);
3883			break;
3884		}
3885
3886		extent_offset = cur - em->start;
3887		em_end = extent_map_end(em);
3888		ASSERT(cur <= em_end);
3889		ASSERT(cur < end);
3890		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
 
 
3892		block_start = em->block_start;
3893		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894		disk_bytenr = em->block_start + extent_offset;
3895
3896		/*
3897		 * Note that em_end from extent_map_end() and dirty_range_end from
3898		 * find_next_dirty_byte() are all exclusive
3899		 */
3900		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902		if (btrfs_use_zone_append(inode, em->block_start))
3903			opf = REQ_OP_ZONE_APPEND;
3904
3905		free_extent_map(em);
3906		em = NULL;
3907
3908		/*
3909		 * compressed and inline extents are written through other
3910		 * paths in the FS
3911		 */
3912		if (compressed || block_start == EXTENT_MAP_HOLE ||
3913		    block_start == EXTENT_MAP_INLINE) {
3914			if (compressed)
 
 
 
 
 
 
 
 
 
 
 
 
 
3915				nr++;
3916			else
3917				btrfs_writepage_endio_finish_ordered(inode,
3918						page, cur, cur + iosize - 1, 1);
3919			cur += iosize;
 
3920			continue;
3921		}
3922
3923		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924		if (!PageWriteback(page)) {
3925			btrfs_err(inode->root->fs_info,
3926				   "page %lu not writeback, cur %llu end %llu",
3927			       page->index, cur, end);
3928		}
3929
3930		/*
3931		 * Although the PageDirty bit is cleared before entering this
3932		 * function, subpage dirty bit is not cleared.
3933		 * So clear subpage dirty bit here so next time we won't submit
3934		 * page for range already written to disk.
3935		 */
3936		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938		ret = submit_extent_page(opf | write_flags, wbc,
3939					 &epd->bio_ctrl, page,
3940					 disk_bytenr, iosize,
3941					 cur - page_offset(page),
3942					 end_bio_extent_writepage,
3943					 0, 0, false);
3944		if (ret) {
3945			btrfs_page_set_error(fs_info, page, cur, iosize);
3946			if (PageWriteback(page))
3947				btrfs_page_clear_writeback(fs_info, page, cur,
3948							   iosize);
3949		}
3950
3951		cur += iosize;
 
3952		nr++;
3953	}
 
3954	*nr_ret = nr;
3955	return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage.  extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback.  Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968			      struct extent_page_data *epd)
3969{
3970	struct inode *inode = page->mapping->host;
3971	u64 start = page_offset(page);
3972	u64 page_end = start + PAGE_SIZE - 1;
3973	int ret;
3974	int nr = 0;
3975	size_t pg_offset;
3976	loff_t i_size = i_size_read(inode);
3977	unsigned long end_index = i_size >> PAGE_SHIFT;
 
3978	unsigned long nr_written = 0;
3979
 
 
3980	trace___extent_writepage(page, inode, wbc);
3981
3982	WARN_ON(!PageLocked(page));
3983
3984	ClearPageError(page);
3985
3986	pg_offset = offset_in_page(i_size);
3987	if (page->index > end_index ||
3988	   (page->index == end_index && !pg_offset)) {
3989		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990		unlock_page(page);
3991		return 0;
3992	}
3993
3994	if (page->index == end_index) {
3995		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
 
 
 
 
 
3996		flush_dcache_page(page);
3997	}
3998
3999	ret = set_page_extent_mapped(page);
4000	if (ret < 0) {
4001		SetPageError(page);
 
 
 
 
 
4002		goto done;
4003	}
4004
4005	if (!epd->extent_locked) {
4006		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007					 &nr_written);
4008		if (ret == 1)
4009			return 0;
4010		if (ret)
4011			goto done;
4012	}
4013
4014	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015				    nr_written, &nr);
4016	if (ret == 1)
4017		return 0;
4018
4019done:
4020	if (nr == 0) {
4021		/* make sure the mapping tag for page dirty gets cleared */
4022		set_page_writeback(page);
4023		end_page_writeback(page);
4024	}
4025	if (PageError(page)) {
4026		ret = ret < 0 ? ret : -EIO;
4027		end_extent_writepage(page, ret, start, page_end);
4028	}
4029	unlock_page(page);
4030	ASSERT(ret <= 0);
4031	return ret;
 
 
 
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037		       TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043	smp_mb__after_atomic();
4044	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return  0 if the extent buffer doesn't need to be submitted.
4053 *           (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058			  struct extent_page_data *epd)
4059{
4060	struct btrfs_fs_info *fs_info = eb->fs_info;
4061	int i, num_pages, failed_page_nr;
4062	int flush = 0;
4063	int ret = 0;
4064
4065	if (!btrfs_try_tree_write_lock(eb)) {
4066		ret = flush_write_bio(epd);
4067		if (ret < 0)
4068			return ret;
4069		flush = 1;
 
4070		btrfs_tree_lock(eb);
4071	}
4072
4073	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074		btrfs_tree_unlock(eb);
4075		if (!epd->sync_io)
4076			return 0;
4077		if (!flush) {
4078			ret = flush_write_bio(epd);
4079			if (ret < 0)
4080				return ret;
4081			flush = 1;
4082		}
4083		while (1) {
4084			wait_on_extent_buffer_writeback(eb);
4085			btrfs_tree_lock(eb);
4086			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087				break;
4088			btrfs_tree_unlock(eb);
4089		}
4090	}
4091
4092	/*
4093	 * We need to do this to prevent races in people who check if the eb is
4094	 * under IO since we can end up having no IO bits set for a short period
4095	 * of time.
4096	 */
4097	spin_lock(&eb->refs_lock);
4098	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100		spin_unlock(&eb->refs_lock);
4101		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103					 -eb->len,
4104					 fs_info->dirty_metadata_batch);
4105		ret = 1;
4106	} else {
4107		spin_unlock(&eb->refs_lock);
4108	}
4109
4110	btrfs_tree_unlock(eb);
4111
4112	/*
4113	 * Either we don't need to submit any tree block, or we're submitting
4114	 * subpage eb.
4115	 * Subpage metadata doesn't use page locking at all, so we can skip
4116	 * the page locking.
4117	 */
4118	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119		return ret;
4120
4121	num_pages = num_extent_pages(eb);
4122	for (i = 0; i < num_pages; i++) {
4123		struct page *p = eb->pages[i];
4124
4125		if (!trylock_page(p)) {
4126			if (!flush) {
4127				int err;
4128
4129				err = flush_write_bio(epd);
4130				if (err < 0) {
4131					ret = err;
4132					failed_page_nr = i;
4133					goto err_unlock;
4134				}
4135				flush = 1;
4136			}
4137			lock_page(p);
4138		}
4139	}
4140
4141	return ret;
4142err_unlock:
4143	/* Unlock already locked pages */
4144	for (i = 0; i < failed_page_nr; i++)
4145		unlock_page(eb->pages[i]);
4146	/*
4147	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149	 * be made and undo everything done before.
4150	 */
4151	btrfs_tree_lock(eb);
4152	spin_lock(&eb->refs_lock);
4153	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154	end_extent_buffer_writeback(eb);
4155	spin_unlock(&eb->refs_lock);
4156	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157				 fs_info->dirty_metadata_batch);
4158	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159	btrfs_tree_unlock(eb);
4160	return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
 
 
 
 
 
 
 
4164{
4165	struct btrfs_fs_info *fs_info = eb->fs_info;
4166
4167	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169		return;
4170
4171	/*
4172	 * If we error out, we should add back the dirty_metadata_bytes
4173	 * to make it consistent.
4174	 */
4175	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176				 eb->len, fs_info->dirty_metadata_batch);
4177
4178	/*
4179	 * If writeback for a btree extent that doesn't belong to a log tree
4180	 * failed, increment the counter transaction->eb_write_errors.
4181	 * We do this because while the transaction is running and before it's
4182	 * committing (when we call filemap_fdata[write|wait]_range against
4183	 * the btree inode), we might have
4184	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185	 * returns an error or an error happens during writeback, when we're
4186	 * committing the transaction we wouldn't know about it, since the pages
4187	 * can be no longer dirty nor marked anymore for writeback (if a
4188	 * subsequent modification to the extent buffer didn't happen before the
4189	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190	 * able to find the pages tagged with SetPageError at transaction
4191	 * commit time. So if this happens we must abort the transaction,
4192	 * otherwise we commit a super block with btree roots that point to
4193	 * btree nodes/leafs whose content on disk is invalid - either garbage
4194	 * or the content of some node/leaf from a past generation that got
4195	 * cowed or deleted and is no longer valid.
4196	 *
4197	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198	 * not be enough - we need to distinguish between log tree extents vs
4199	 * non-log tree extents, and the next filemap_fdatawait_range() call
4200	 * will catch and clear such errors in the mapping - and that call might
4201	 * be from a log sync and not from a transaction commit. Also, checking
4202	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203	 * not done and would not be reliable - the eb might have been released
4204	 * from memory and reading it back again means that flag would not be
4205	 * set (since it's a runtime flag, not persisted on disk).
4206	 *
4207	 * Using the flags below in the btree inode also makes us achieve the
4208	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209	 * writeback for all dirty pages and before filemap_fdatawait_range()
4210	 * is called, the writeback for all dirty pages had already finished
4211	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212	 * filemap_fdatawait_range() would return success, as it could not know
4213	 * that writeback errors happened (the pages were no longer tagged for
4214	 * writeback).
4215	 */
4216	switch (eb->log_index) {
4217	case -1:
4218		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219		break;
4220	case 0:
4221		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222		break;
4223	case 1:
4224		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225		break;
4226	default:
4227		BUG(); /* unexpected, logic error */
4228	}
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236		struct btrfs_fs_info *fs_info, u64 start)
4237{
4238	struct extent_buffer *eb;
4239
4240	rcu_read_lock();
4241	eb = radix_tree_lookup(&fs_info->buffer_radix,
4242			       start >> fs_info->sectorsize_bits);
4243	if (eb && atomic_inc_not_zero(&eb->refs)) {
4244		rcu_read_unlock();
4245		return eb;
4246	}
4247	rcu_read_unlock();
4248	return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259	struct btrfs_fs_info *fs_info;
4260	struct bio_vec *bvec;
4261	struct bvec_iter_all iter_all;
4262
4263	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266	ASSERT(!bio_flagged(bio, BIO_CLONED));
4267	bio_for_each_segment_all(bvec, bio, iter_all) {
4268		struct page *page = bvec->bv_page;
4269		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271		u64 cur_bytenr = bvec_start;
4272
4273		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275		/* Iterate through all extent buffers in the range */
4276		while (cur_bytenr <= bvec_end) {
4277			struct extent_buffer *eb;
4278			int done;
4279
4280			/*
4281			 * Here we can't use find_extent_buffer(), as it may
4282			 * try to lock eb->refs_lock, which is not safe in endio
4283			 * context.
4284			 */
4285			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286			ASSERT(eb);
4287
4288			cur_bytenr = eb->start + eb->len;
4289
4290			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291			done = atomic_dec_and_test(&eb->io_pages);
4292			ASSERT(done);
4293
4294			if (bio->bi_status ||
4295			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296				ClearPageUptodate(page);
4297				set_btree_ioerr(page, eb);
4298			}
4299
4300			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301						      eb->len);
4302			end_extent_buffer_writeback(eb);
4303			/*
4304			 * free_extent_buffer() will grab spinlock which is not
4305			 * safe in endio context. Thus here we manually dec
4306			 * the ref.
4307			 */
4308			atomic_dec(&eb->refs);
4309		}
4310	}
4311	bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316	struct bio_vec *bvec;
4317	struct extent_buffer *eb;
4318	int done;
4319	struct bvec_iter_all iter_all;
4320
4321	ASSERT(!bio_flagged(bio, BIO_CLONED));
4322	bio_for_each_segment_all(bvec, bio, iter_all) {
4323		struct page *page = bvec->bv_page;
4324
4325		eb = (struct extent_buffer *)page->private;
4326		BUG_ON(!eb);
4327		done = atomic_dec_and_test(&eb->io_pages);
4328
4329		if (bio->bi_status ||
4330		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331			ClearPageUptodate(page);
4332			set_btree_ioerr(page, eb);
4333		}
4334
4335		end_page_writeback(page);
4336
4337		if (!done)
4338			continue;
4339
4340		end_extent_buffer_writeback(eb);
4341	}
4342
4343	bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
 
 
 
4347{
 
 
 
4348	u32 nritems;
4349	unsigned long start;
4350	unsigned long end;
 
 
4351
4352	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353	atomic_set(&eb->io_pages, num_extent_pages(eb));
 
4354
4355	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4356	nritems = btrfs_header_nritems(eb);
4357	if (btrfs_header_level(eb) > 0) {
4358		end = btrfs_node_key_ptr_offset(nritems);
 
4359		memzero_extent_buffer(eb, end, eb->len - end);
4360	} else {
4361		/*
4362		 * Leaf:
4363		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364		 */
4365		start = btrfs_item_nr_offset(nritems);
4366		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4367		memzero_extent_buffer(eb, start, end - start);
4368	}
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376				struct writeback_control *wbc,
4377				struct extent_page_data *epd)
4378{
4379	struct btrfs_fs_info *fs_info = eb->fs_info;
4380	struct page *page = eb->pages[0];
4381	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382	bool no_dirty_ebs = false;
4383	int ret;
4384
4385	prepare_eb_write(eb);
4386
4387	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4388	lock_page(page);
4389	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391	/* Check if this is the last dirty bit to update nr_written */
4392	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393							  eb->start, eb->len);
4394	if (no_dirty_ebs)
4395		clear_page_dirty_for_io(page);
4396
4397	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398			&epd->bio_ctrl, page, eb->start, eb->len,
4399			eb->start - page_offset(page),
4400			end_bio_subpage_eb_writepage, 0, 0, false);
4401	if (ret) {
4402		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403		set_btree_ioerr(page, eb);
4404		unlock_page(page);
4405
4406		if (atomic_dec_and_test(&eb->io_pages))
4407			end_extent_buffer_writeback(eb);
4408		return -EIO;
4409	}
4410	unlock_page(page);
4411	/*
4412	 * Submission finished without problem, if no range of the page is
4413	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4414	 */
4415	if (no_dirty_ebs)
4416		update_nr_written(wbc, 1);
4417	return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421			struct writeback_control *wbc,
4422			struct extent_page_data *epd)
4423{
4424	u64 disk_bytenr = eb->start;
4425	int i, num_pages;
4426	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427	int ret = 0;
4428
4429	prepare_eb_write(eb);
4430
4431	num_pages = num_extent_pages(eb);
4432	for (i = 0; i < num_pages; i++) {
4433		struct page *p = eb->pages[i];
4434
4435		clear_page_dirty_for_io(p);
4436		set_page_writeback(p);
4437		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438					 &epd->bio_ctrl, p, disk_bytenr,
4439					 PAGE_SIZE, 0,
4440					 end_bio_extent_buffer_writepage,
4441					 0, 0, false);
4442		if (ret) {
4443			set_btree_ioerr(p, eb);
4444			if (PageWriteback(p))
4445				end_page_writeback(p);
4446			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447				end_extent_buffer_writeback(eb);
4448			ret = -EIO;
4449			break;
4450		}
4451		disk_bytenr += PAGE_SIZE;
4452		update_nr_written(wbc, 1);
4453		unlock_page(p);
4454	}
4455
4456	if (unlikely(ret)) {
4457		for (; i < num_pages; i++) {
4458			struct page *p = eb->pages[i];
4459			clear_page_dirty_for_io(p);
4460			unlock_page(p);
4461		}
4462	}
4463
4464	return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 *   For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 *   We only flush bio if we may be unable to fit current extent buffers into
4476 *   current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482			     struct writeback_control *wbc,
4483			     struct extent_page_data *epd)
4484{
4485	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486	int submitted = 0;
4487	u64 page_start = page_offset(page);
4488	int bit_start = 0;
4489	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491	int ret;
4492
4493	/* Lock and write each dirty extent buffers in the range */
4494	while (bit_start < nbits) {
4495		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496		struct extent_buffer *eb;
4497		unsigned long flags;
4498		u64 start;
4499
4500		/*
4501		 * Take private lock to ensure the subpage won't be detached
4502		 * in the meantime.
4503		 */
4504		spin_lock(&page->mapping->private_lock);
4505		if (!PagePrivate(page)) {
4506			spin_unlock(&page->mapping->private_lock);
4507			break;
4508		}
4509		spin_lock_irqsave(&subpage->lock, flags);
4510		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4511			spin_unlock_irqrestore(&subpage->lock, flags);
4512			spin_unlock(&page->mapping->private_lock);
4513			bit_start++;
4514			continue;
4515		}
4516
4517		start = page_start + bit_start * fs_info->sectorsize;
4518		bit_start += sectors_per_node;
4519
4520		/*
4521		 * Here we just want to grab the eb without touching extra
4522		 * spin locks, so call find_extent_buffer_nolock().
4523		 */
4524		eb = find_extent_buffer_nolock(fs_info, start);
4525		spin_unlock_irqrestore(&subpage->lock, flags);
4526		spin_unlock(&page->mapping->private_lock);
4527
4528		/*
4529		 * The eb has already reached 0 refs thus find_extent_buffer()
4530		 * doesn't return it. We don't need to write back such eb
4531		 * anyway.
4532		 */
4533		if (!eb)
4534			continue;
4535
4536		ret = lock_extent_buffer_for_io(eb, epd);
4537		if (ret == 0) {
4538			free_extent_buffer(eb);
4539			continue;
4540		}
4541		if (ret < 0) {
4542			free_extent_buffer(eb);
4543			goto cleanup;
4544		}
4545		ret = write_one_subpage_eb(eb, wbc, epd);
4546		free_extent_buffer(eb);
4547		if (ret < 0)
4548			goto cleanup;
4549		submitted++;
4550	}
4551	return submitted;
4552
4553cleanup:
4554	/* We hit error, end bio for the submitted extent buffers */
4555	end_write_bio(epd, ret);
4556	return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page:	the page of one extent buffer
4563 * @eb_context:	to determine if we need to submit this page, if current page
4564 *		belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580			  struct extent_page_data *epd,
4581			  struct extent_buffer **eb_context)
4582{
4583	struct address_space *mapping = page->mapping;
4584	struct btrfs_block_group *cache = NULL;
4585	struct extent_buffer *eb;
4586	int ret;
4587
4588	if (!PagePrivate(page))
4589		return 0;
4590
4591	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592		return submit_eb_subpage(page, wbc, epd);
4593
4594	spin_lock(&mapping->private_lock);
4595	if (!PagePrivate(page)) {
4596		spin_unlock(&mapping->private_lock);
4597		return 0;
4598	}
4599
4600	eb = (struct extent_buffer *)page->private;
4601
4602	/*
4603	 * Shouldn't happen and normally this would be a BUG_ON but no point
4604	 * crashing the machine for something we can survive anyway.
4605	 */
4606	if (WARN_ON(!eb)) {
4607		spin_unlock(&mapping->private_lock);
4608		return 0;
4609	}
4610
4611	if (eb == *eb_context) {
4612		spin_unlock(&mapping->private_lock);
4613		return 0;
4614	}
4615	ret = atomic_inc_not_zero(&eb->refs);
4616	spin_unlock(&mapping->private_lock);
4617	if (!ret)
4618		return 0;
4619
4620	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621		/*
4622		 * If for_sync, this hole will be filled with
4623		 * trasnsaction commit.
4624		 */
4625		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626			ret = -EAGAIN;
4627		else
4628			ret = 0;
4629		free_extent_buffer(eb);
4630		return ret;
4631	}
4632
4633	*eb_context = eb;
4634
4635	ret = lock_extent_buffer_for_io(eb, epd);
4636	if (ret <= 0) {
4637		btrfs_revert_meta_write_pointer(cache, eb);
4638		if (cache)
4639			btrfs_put_block_group(cache);
4640		free_extent_buffer(eb);
4641		return ret;
4642	}
4643	if (cache)
4644		btrfs_put_block_group(cache);
4645	ret = write_one_eb(eb, wbc, epd);
4646	free_extent_buffer(eb);
4647	if (ret < 0)
4648		return ret;
4649	return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653				   struct writeback_control *wbc)
4654{
4655	struct extent_buffer *eb_context = NULL;
 
 
4656	struct extent_page_data epd = {
4657		.bio_ctrl = { 0 },
 
4658		.extent_locked = 0,
4659		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660	};
4661	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662	int ret = 0;
4663	int done = 0;
4664	int nr_to_write_done = 0;
4665	struct pagevec pvec;
4666	int nr_pages;
4667	pgoff_t index;
4668	pgoff_t end;		/* Inclusive */
4669	int scanned = 0;
4670	xa_mark_t tag;
4671
4672	pagevec_init(&pvec);
4673	if (wbc->range_cyclic) {
4674		index = mapping->writeback_index; /* Start from prev offset */
4675		end = -1;
4676		/*
4677		 * Start from the beginning does not need to cycle over the
4678		 * range, mark it as scanned.
4679		 */
4680		scanned = (index == 0);
4681	} else {
4682		index = wbc->range_start >> PAGE_SHIFT;
4683		end = wbc->range_end >> PAGE_SHIFT;
4684		scanned = 1;
4685	}
4686	if (wbc->sync_mode == WB_SYNC_ALL)
4687		tag = PAGECACHE_TAG_TOWRITE;
4688	else
4689		tag = PAGECACHE_TAG_DIRTY;
4690	btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692	if (wbc->sync_mode == WB_SYNC_ALL)
4693		tag_pages_for_writeback(mapping, index, end);
4694	while (!done && !nr_to_write_done && (index <= end) &&
4695	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696			tag))) {
4697		unsigned i;
4698
 
4699		for (i = 0; i < nr_pages; i++) {
4700			struct page *page = pvec.pages[i];
4701
4702			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703			if (ret == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4704				continue;
4705			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4706				done = 1;
 
4707				break;
4708			}
 
4709
4710			/*
4711			 * the filesystem may choose to bump up nr_to_write.
4712			 * We have to make sure to honor the new nr_to_write
4713			 * at any time
4714			 */
4715			nr_to_write_done = wbc->nr_to_write <= 0;
4716		}
4717		pagevec_release(&pvec);
4718		cond_resched();
4719	}
4720	if (!scanned && !done) {
4721		/*
4722		 * We hit the last page and there is more work to be done: wrap
4723		 * back to the start of the file
4724		 */
4725		scanned = 1;
4726		index = 0;
4727		goto retry;
4728	}
4729	if (ret < 0) {
4730		end_write_bio(&epd, ret);
4731		goto out;
4732	}
4733	/*
4734	 * If something went wrong, don't allow any metadata write bio to be
4735	 * submitted.
4736	 *
4737	 * This would prevent use-after-free if we had dirty pages not
4738	 * cleaned up, which can still happen by fuzzed images.
4739	 *
4740	 * - Bad extent tree
4741	 *   Allowing existing tree block to be allocated for other trees.
4742	 *
4743	 * - Log tree operations
4744	 *   Exiting tree blocks get allocated to log tree, bumps its
4745	 *   generation, then get cleaned in tree re-balance.
4746	 *   Such tree block will not be written back, since it's clean,
4747	 *   thus no WRITTEN flag set.
4748	 *   And after log writes back, this tree block is not traced by
4749	 *   any dirty extent_io_tree.
4750	 *
4751	 * - Offending tree block gets re-dirtied from its original owner
4752	 *   Since it has bumped generation, no WRITTEN flag, it can be
4753	 *   reused without COWing. This tree block will not be traced
4754	 *   by btrfs_transaction::dirty_pages.
4755	 *
4756	 *   Now such dirty tree block will not be cleaned by any dirty
4757	 *   extent io tree. Thus we don't want to submit such wild eb
4758	 *   if the fs already has error.
4759	 */
4760	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761		ret = flush_write_bio(&epd);
4762	} else {
4763		ret = -EROFS;
4764		end_write_bio(&epd, ret);
4765	}
4766out:
4767	btrfs_zoned_meta_io_unlock(fs_info);
4768	return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd:     holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them.  If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787			     struct writeback_control *wbc,
4788			     struct extent_page_data *epd)
4789{
4790	struct inode *inode = mapping->host;
4791	int ret = 0;
4792	int done = 0;
4793	int nr_to_write_done = 0;
4794	struct pagevec pvec;
4795	int nr_pages;
4796	pgoff_t index;
4797	pgoff_t end;		/* Inclusive */
4798	pgoff_t done_index;
4799	int range_whole = 0;
4800	int scanned = 0;
4801	xa_mark_t tag;
4802
4803	/*
4804	 * We have to hold onto the inode so that ordered extents can do their
4805	 * work when the IO finishes.  The alternative to this is failing to add
4806	 * an ordered extent if the igrab() fails there and that is a huge pain
4807	 * to deal with, so instead just hold onto the inode throughout the
4808	 * writepages operation.  If it fails here we are freeing up the inode
4809	 * anyway and we'd rather not waste our time writing out stuff that is
4810	 * going to be truncated anyway.
4811	 */
4812	if (!igrab(inode))
4813		return 0;
4814
4815	pagevec_init(&pvec);
4816	if (wbc->range_cyclic) {
4817		index = mapping->writeback_index; /* Start from prev offset */
4818		end = -1;
4819		/*
4820		 * Start from the beginning does not need to cycle over the
4821		 * range, mark it as scanned.
4822		 */
4823		scanned = (index == 0);
4824	} else {
4825		index = wbc->range_start >> PAGE_SHIFT;
4826		end = wbc->range_end >> PAGE_SHIFT;
4827		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828			range_whole = 1;
4829		scanned = 1;
4830	}
4831
4832	/*
4833	 * We do the tagged writepage as long as the snapshot flush bit is set
4834	 * and we are the first one who do the filemap_flush() on this inode.
4835	 *
4836	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837	 * not race in and drop the bit.
4838	 */
4839	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841			       &BTRFS_I(inode)->runtime_flags))
4842		wbc->tagged_writepages = 1;
4843
4844	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845		tag = PAGECACHE_TAG_TOWRITE;
4846	else
4847		tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850		tag_pages_for_writeback(mapping, index, end);
4851	done_index = index;
4852	while (!done && !nr_to_write_done && (index <= end) &&
4853			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854						&index, end, tag))) {
4855		unsigned i;
4856
 
4857		for (i = 0; i < nr_pages; i++) {
4858			struct page *page = pvec.pages[i];
4859
4860			done_index = page->index + 1;
4861			/*
4862			 * At this point we hold neither the i_pages lock nor
4863			 * the page lock: the page may be truncated or
4864			 * invalidated (changing page->mapping to NULL),
4865			 * or even swizzled back from swapper_space to
4866			 * tmpfs file mapping
4867			 */
4868			if (!trylock_page(page)) {
4869				ret = flush_write_bio(epd);
4870				BUG_ON(ret < 0);
4871				lock_page(page);
4872			}
4873
4874			if (unlikely(page->mapping != mapping)) {
4875				unlock_page(page);
4876				continue;
4877			}
4878
4879			if (wbc->sync_mode != WB_SYNC_NONE) {
4880				if (PageWriteback(page)) {
4881					ret = flush_write_bio(epd);
4882					BUG_ON(ret < 0);
4883				}
4884				wait_on_page_writeback(page);
4885			}
4886
4887			if (PageWriteback(page) ||
4888			    !clear_page_dirty_for_io(page)) {
4889				unlock_page(page);
4890				continue;
4891			}
4892
4893			ret = __extent_writepage(page, wbc, epd);
 
 
 
 
 
4894			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
4895				done = 1;
4896				break;
4897			}
4898
4899			/*
4900			 * the filesystem may choose to bump up nr_to_write.
4901			 * We have to make sure to honor the new nr_to_write
4902			 * at any time
4903			 */
4904			nr_to_write_done = wbc->nr_to_write <= 0;
4905		}
4906		pagevec_release(&pvec);
4907		cond_resched();
4908	}
4909	if (!scanned && !done) {
4910		/*
4911		 * We hit the last page and there is more work to be done: wrap
4912		 * back to the start of the file
4913		 */
4914		scanned = 1;
4915		index = 0;
4916
4917		/*
4918		 * If we're looping we could run into a page that is locked by a
4919		 * writer and that writer could be waiting on writeback for a
4920		 * page in our current bio, and thus deadlock, so flush the
4921		 * write bio here.
4922		 */
4923		ret = flush_write_bio(epd);
4924		if (!ret)
4925			goto retry;
4926	}
4927
4928	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929		mapping->writeback_index = done_index;
4930
4931	btrfs_add_delayed_iput(inode);
4932	return ret;
4933}
4934
 
 
 
 
 
 
 
 
 
 
 
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4936{
4937	int ret;
4938	struct extent_page_data epd = {
4939		.bio_ctrl = { 0 },
 
4940		.extent_locked = 0,
4941		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4942	};
4943
4944	ret = __extent_writepage(page, wbc, &epd);
4945	ASSERT(ret <= 0);
4946	if (ret < 0) {
4947		end_write_bio(&epd, ret);
4948		return ret;
4949	}
4950
4951	ret = flush_write_bio(&epd);
4952	ASSERT(ret <= 0);
4953	return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957			      int mode)
4958{
4959	int ret = 0;
4960	struct address_space *mapping = inode->i_mapping;
 
4961	struct page *page;
4962	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963		PAGE_SHIFT;
4964
4965	struct extent_page_data epd = {
4966		.bio_ctrl = { 0 },
 
4967		.extent_locked = 1,
4968		.sync_io = mode == WB_SYNC_ALL,
4969	};
4970	struct writeback_control wbc_writepages = {
4971		.sync_mode	= mode,
4972		.nr_to_write	= nr_pages * 2,
4973		.range_start	= start,
4974		.range_end	= end + 1,
4975		/* We're called from an async helper function */
4976		.punt_to_cgroup	= 1,
4977		.no_cgroup_owner = 1,
4978	};
4979
4980	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981	while (start <= end) {
4982		page = find_get_page(mapping, start >> PAGE_SHIFT);
4983		if (clear_page_dirty_for_io(page))
4984			ret = __extent_writepage(page, &wbc_writepages, &epd);
4985		else {
4986			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987					page, start, start + PAGE_SIZE - 1, 1);
 
 
4988			unlock_page(page);
4989		}
4990		put_page(page);
4991		start += PAGE_SIZE;
4992	}
4993
4994	ASSERT(ret <= 0);
4995	if (ret == 0)
4996		ret = flush_write_bio(&epd);
4997	else
4998		end_write_bio(&epd, ret);
4999
5000	wbc_detach_inode(&wbc_writepages);
5001	return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
 
5005		      struct writeback_control *wbc)
5006{
5007	int ret = 0;
5008	struct extent_page_data epd = {
5009		.bio_ctrl = { 0 },
 
5010		.extent_locked = 0,
5011		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012	};
5013
5014	ret = extent_write_cache_pages(mapping, wbc, &epd);
5015	ASSERT(ret <= 0);
5016	if (ret < 0) {
5017		end_write_bio(&epd, ret);
5018		return ret;
5019	}
5020	ret = flush_write_bio(&epd);
5021	return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
5025{
5026	struct btrfs_bio_ctrl bio_ctrl = { 0 };
 
 
 
 
5027	struct page *pagepool[16];
 
5028	struct extent_map *em_cached = NULL;
 
5029	u64 prev_em_start = (u64)-1;
5030	int nr;
5031
5032	while ((nr = readahead_page_batch(rac, pagepool))) {
5033		u64 contig_start = readahead_pos(rac);
5034		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5035
5036		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037				&em_cached, &bio_ctrl, &prev_em_start);
5038	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039
5040	if (em_cached)
5041		free_extent_map(em_cached);
5042
5043	if (bio_ctrl.bio) {
5044		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045			return;
5046	}
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055			  struct page *page, unsigned long offset)
5056{
5057	struct extent_state *cached_state = NULL;
5058	u64 start = page_offset(page);
5059	u64 end = start + PAGE_SIZE - 1;
5060	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062	/* This function is only called for the btree inode */
5063	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065	start += ALIGN(offset, blocksize);
5066	if (start > end)
5067		return 0;
5068
5069	lock_extent_bits(tree, start, end, &cached_state);
5070	wait_on_page_writeback(page);
5071
5072	/*
5073	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074	 * so here we only need to unlock the extent range to free any
5075	 * existing extent state.
5076	 */
5077	unlock_extent_cached(tree, start, end, &cached_state);
5078	return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
 
5087				    struct page *page, gfp_t mask)
5088{
5089	u64 start = page_offset(page);
5090	u64 end = start + PAGE_SIZE - 1;
5091	int ret = 1;
5092
5093	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
 
5094		ret = 0;
5095	} else {
5096		/*
5097		 * At this point we can safely clear everything except the
5098		 * locked bit, the nodatasum bit and the delalloc new bit.
5099		 * The delalloc new bit will be cleared by ordered extent
5100		 * completion.
5101		 */
5102		ret = __clear_extent_bit(tree, start, end,
5103			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104			 0, 0, NULL, mask, NULL);
5105
5106		/* if clear_extent_bit failed for enomem reasons,
5107		 * we can't allow the release to continue.
5108		 */
5109		if (ret < 0)
5110			ret = 0;
5111		else
5112			ret = 1;
5113	}
5114	return ret;
5115}
5116
5117/*
5118 * a helper for releasepage.  As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
5123{
5124	struct extent_map *em;
5125	u64 start = page_offset(page);
5126	u64 end = start + PAGE_SIZE - 1;
5127	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131	if (gfpflags_allow_blocking(mask) &&
5132	    page->mapping->host->i_size > SZ_16M) {
5133		u64 len;
5134		while (start <= end) {
5135			struct btrfs_fs_info *fs_info;
5136			u64 cur_gen;
5137
5138			len = end - start + 1;
5139			write_lock(&map->lock);
5140			em = lookup_extent_mapping(map, start, len);
5141			if (!em) {
5142				write_unlock(&map->lock);
5143				break;
5144			}
5145			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146			    em->start != start) {
5147				write_unlock(&map->lock);
5148				free_extent_map(em);
5149				break;
5150			}
5151			if (test_range_bit(tree, em->start,
5152					   extent_map_end(em) - 1,
5153					   EXTENT_LOCKED, 0, NULL))
5154				goto next;
5155			/*
5156			 * If it's not in the list of modified extents, used
5157			 * by a fast fsync, we can remove it. If it's being
5158			 * logged we can safely remove it since fsync took an
5159			 * extra reference on the em.
5160			 */
5161			if (list_empty(&em->list) ||
5162			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163				goto remove_em;
5164			/*
5165			 * If it's in the list of modified extents, remove it
5166			 * only if its generation is older then the current one,
5167			 * in which case we don't need it for a fast fsync.
5168			 * Otherwise don't remove it, we could be racing with an
5169			 * ongoing fast fsync that could miss the new extent.
5170			 */
5171			fs_info = btrfs_inode->root->fs_info;
5172			spin_lock(&fs_info->trans_lock);
5173			cur_gen = fs_info->generation;
5174			spin_unlock(&fs_info->trans_lock);
5175			if (em->generation >= cur_gen)
5176				goto next;
5177remove_em:
5178			/*
5179			 * We only remove extent maps that are not in the list of
5180			 * modified extents or that are in the list but with a
5181			 * generation lower then the current generation, so there
5182			 * is no need to set the full fsync flag on the inode (it
5183			 * hurts the fsync performance for workloads with a data
5184			 * size that exceeds or is close to the system's memory).
5185			 */
5186			remove_extent_mapping(map, em);
5187			/* once for the rb tree */
5188			free_extent_map(em);
5189next:
5190			start = extent_map_end(em);
5191			write_unlock(&map->lock);
5192
5193			/* once for us */
5194			free_extent_map(em);
5195
5196			cond_resched(); /* Allow large-extent preemption. */
5197		}
5198	}
5199	return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207						u64 offset, u64 last)
5208{
5209	u64 sectorsize = btrfs_inode_sectorsize(inode);
5210	struct extent_map *em;
5211	u64 len;
5212
5213	if (offset >= last)
5214		return NULL;
5215
5216	while (1) {
5217		len = last - offset;
5218		if (len == 0)
5219			break;
5220		len = ALIGN(len, sectorsize);
5221		em = btrfs_get_extent_fiemap(inode, offset, len);
 
5222		if (IS_ERR_OR_NULL(em))
5223			return em;
5224
5225		/* if this isn't a hole return it */
5226		if (em->block_start != EXTENT_MAP_HOLE)
5227			return em;
5228
5229		/* this is a hole, advance to the next extent */
5230		offset = extent_map_end(em);
5231		free_extent_map(em);
5232		if (offset >= last)
5233			break;
5234	}
5235	return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244	u64 offset;
5245	u64 phys;
5246	u64 len;
5247	u32 flags;
5248	bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262				struct fiemap_cache *cache,
5263				u64 offset, u64 phys, u64 len, u32 flags)
5264{
5265	int ret = 0;
5266
5267	if (!cache->cached)
5268		goto assign;
5269
5270	/*
5271	 * Sanity check, extent_fiemap() should have ensured that new
5272	 * fiemap extent won't overlap with cached one.
5273	 * Not recoverable.
5274	 *
5275	 * NOTE: Physical address can overlap, due to compression
5276	 */
5277	if (cache->offset + cache->len > offset) {
5278		WARN_ON(1);
5279		return -EINVAL;
5280	}
5281
5282	/*
5283	 * Only merges fiemap extents if
5284	 * 1) Their logical addresses are continuous
5285	 *
5286	 * 2) Their physical addresses are continuous
5287	 *    So truly compressed (physical size smaller than logical size)
5288	 *    extents won't get merged with each other
5289	 *
5290	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291	 *    So regular extent won't get merged with prealloc extent
5292	 */
5293	if (cache->offset + cache->len  == offset &&
5294	    cache->phys + cache->len == phys  &&
5295	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296			(flags & ~FIEMAP_EXTENT_LAST)) {
5297		cache->len += len;
5298		cache->flags |= flags;
5299		goto try_submit_last;
5300	}
5301
5302	/* Not mergeable, need to submit cached one */
5303	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304				      cache->len, cache->flags);
5305	cache->cached = false;
5306	if (ret)
5307		return ret;
5308assign:
5309	cache->cached = true;
5310	cache->offset = offset;
5311	cache->phys = phys;
5312	cache->len = len;
5313	cache->flags = flags;
5314try_submit_last:
5315	if (cache->flags & FIEMAP_EXTENT_LAST) {
5316		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317				cache->phys, cache->len, cache->flags);
5318		cache->cached = false;
5319	}
5320	return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0		      4k		    8k
5328 * |<- Fiemap range ->|
5329 * |<------------  First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
 
5335				  struct fiemap_cache *cache)
5336{
5337	int ret;
5338
5339	if (!cache->cached)
5340		return 0;
5341
5342	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343				      cache->len, cache->flags);
5344	cache->cached = false;
5345	if (ret > 0)
5346		ret = 0;
5347	return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351		  u64 start, u64 len)
5352{
5353	int ret = 0;
5354	u64 off;
5355	u64 max = start + len;
5356	u32 flags = 0;
5357	u32 found_type;
5358	u64 last;
5359	u64 last_for_get_extent = 0;
5360	u64 disko = 0;
5361	u64 isize = i_size_read(&inode->vfs_inode);
5362	struct btrfs_key found_key;
5363	struct extent_map *em = NULL;
5364	struct extent_state *cached_state = NULL;
5365	struct btrfs_path *path;
5366	struct btrfs_root *root = inode->root;
5367	struct fiemap_cache cache = { 0 };
5368	struct ulist *roots;
5369	struct ulist *tmp_ulist;
5370	int end = 0;
5371	u64 em_start = 0;
5372	u64 em_len = 0;
5373	u64 em_end = 0;
5374
5375	if (len == 0)
5376		return -EINVAL;
5377
5378	path = btrfs_alloc_path();
5379	if (!path)
5380		return -ENOMEM;
 
5381
5382	roots = ulist_alloc(GFP_KERNEL);
5383	tmp_ulist = ulist_alloc(GFP_KERNEL);
5384	if (!roots || !tmp_ulist) {
5385		ret = -ENOMEM;
5386		goto out_free_ulist;
5387	}
5388
5389	/*
5390	 * We can't initialize that to 'start' as this could miss extents due
5391	 * to extent item merging
5392	 */
5393	off = 0;
5394	start = round_down(start, btrfs_inode_sectorsize(inode));
5395	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396
5397	/*
5398	 * lookup the last file extent.  We're not using i_size here
5399	 * because there might be preallocation past i_size
5400	 */
5401	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402				       0);
5403	if (ret < 0) {
5404		goto out_free_ulist;
 
5405	} else {
5406		WARN_ON(!ret);
5407		if (ret == 1)
5408			ret = 0;
5409	}
5410
5411	path->slots[0]--;
5412	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413	found_type = found_key.type;
5414
5415	/* No extents, but there might be delalloc bits */
5416	if (found_key.objectid != btrfs_ino(inode) ||
5417	    found_type != BTRFS_EXTENT_DATA_KEY) {
5418		/* have to trust i_size as the end */
5419		last = (u64)-1;
5420		last_for_get_extent = isize;
5421	} else {
5422		/*
5423		 * remember the start of the last extent.  There are a
5424		 * bunch of different factors that go into the length of the
5425		 * extent, so its much less complex to remember where it started
5426		 */
5427		last = found_key.offset;
5428		last_for_get_extent = last + 1;
5429	}
5430	btrfs_release_path(path);
5431
5432	/*
5433	 * we might have some extents allocated but more delalloc past those
5434	 * extents.  so, we trust isize unless the start of the last extent is
5435	 * beyond isize
5436	 */
5437	if (last < isize) {
5438		last = (u64)-1;
5439		last_for_get_extent = isize;
5440	}
5441
5442	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443			 &cached_state);
5444
5445	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446	if (!em)
5447		goto out;
5448	if (IS_ERR(em)) {
5449		ret = PTR_ERR(em);
5450		goto out;
5451	}
5452
5453	while (!end) {
5454		u64 offset_in_extent = 0;
5455
5456		/* break if the extent we found is outside the range */
5457		if (em->start >= max || extent_map_end(em) < off)
5458			break;
5459
5460		/*
5461		 * get_extent may return an extent that starts before our
5462		 * requested range.  We have to make sure the ranges
5463		 * we return to fiemap always move forward and don't
5464		 * overlap, so adjust the offsets here
5465		 */
5466		em_start = max(em->start, off);
5467
5468		/*
5469		 * record the offset from the start of the extent
5470		 * for adjusting the disk offset below.  Only do this if the
5471		 * extent isn't compressed since our in ram offset may be past
5472		 * what we have actually allocated on disk.
5473		 */
5474		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475			offset_in_extent = em_start - em->start;
5476		em_end = extent_map_end(em);
5477		em_len = em_end - em_start;
 
5478		flags = 0;
5479		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480			disko = em->block_start + offset_in_extent;
5481		else
5482			disko = 0;
5483
5484		/*
5485		 * bump off for our next call to get_extent
5486		 */
5487		off = extent_map_end(em);
5488		if (off >= max)
5489			end = 1;
5490
5491		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492			end = 1;
5493			flags |= FIEMAP_EXTENT_LAST;
5494		} else if (em->block_start == EXTENT_MAP_INLINE) {
5495			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496				  FIEMAP_EXTENT_NOT_ALIGNED);
5497		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498			flags |= (FIEMAP_EXTENT_DELALLOC |
5499				  FIEMAP_EXTENT_UNKNOWN);
5500		} else if (fieinfo->fi_extents_max) {
5501			u64 bytenr = em->block_start -
5502				(em->start - em->orig_start);
5503
 
 
5504			/*
5505			 * As btrfs supports shared space, this information
5506			 * can be exported to userspace tools via
5507			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5508			 * then we're just getting a count and we can skip the
5509			 * lookup stuff.
5510			 */
5511			ret = btrfs_check_shared(root, btrfs_ino(inode),
5512						 bytenr, roots, tmp_ulist);
 
5513			if (ret < 0)
5514				goto out_free;
5515			if (ret)
5516				flags |= FIEMAP_EXTENT_SHARED;
5517			ret = 0;
5518		}
5519		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520			flags |= FIEMAP_EXTENT_ENCODED;
5521		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522			flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524		free_extent_map(em);
5525		em = NULL;
5526		if ((em_start >= last) || em_len == (u64)-1 ||
5527		   (last == (u64)-1 && isize <= em_end)) {
5528			flags |= FIEMAP_EXTENT_LAST;
5529			end = 1;
5530		}
5531
5532		/* now scan forward to see if this is really the last extent. */
5533		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534		if (IS_ERR(em)) {
5535			ret = PTR_ERR(em);
5536			goto out;
5537		}
5538		if (!em) {
5539			flags |= FIEMAP_EXTENT_LAST;
5540			end = 1;
5541		}
5542		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543					   em_len, flags);
5544		if (ret) {
5545			if (ret == 1)
5546				ret = 0;
5547			goto out_free;
5548		}
5549	}
5550out_free:
5551	if (!ret)
5552		ret = emit_last_fiemap_cache(fieinfo, &cache);
5553	free_extent_map(em);
5554out:
5555	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
 
5556			     &cached_state);
5557
5558out_free_ulist:
5559	btrfs_free_path(path);
5560	ulist_free(roots);
5561	ulist_free(tmp_ulist);
5562	return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
 
5567	kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572	return (atomic_read(&eb->io_pages) ||
5573		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
 
 
 
5578{
5579	struct btrfs_subpage *subpage;
 
 
5580
5581	lockdep_assert_held(&page->mapping->private_lock);
5582
5583	if (PagePrivate(page)) {
5584		subpage = (struct btrfs_subpage *)page->private;
5585		if (atomic_read(&subpage->eb_refs))
5586			return true;
5587		/*
5588		 * Even there is no eb refs here, we may still have
5589		 * end_page_read() call relying on page::private.
5590		 */
5591		if (atomic_read(&subpage->readers))
5592			return true;
5593	}
5594	return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599	struct btrfs_fs_info *fs_info = eb->fs_info;
5600	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602	/*
5603	 * For mapped eb, we're going to change the page private, which should
5604	 * be done under the private_lock.
5605	 */
5606	if (mapped)
5607		spin_lock(&page->mapping->private_lock);
5608
5609	if (!PagePrivate(page)) {
5610		if (mapped)
5611			spin_unlock(&page->mapping->private_lock);
5612		return;
5613	}
5614
5615	if (fs_info->sectorsize == PAGE_SIZE) {
5616		/*
5617		 * We do this since we'll remove the pages after we've
5618		 * removed the eb from the radix tree, so we could race
5619		 * and have this page now attached to the new eb.  So
5620		 * only clear page_private if it's still connected to
5621		 * this eb.
5622		 */
5623		if (PagePrivate(page) &&
5624		    page->private == (unsigned long)eb) {
5625			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626			BUG_ON(PageDirty(page));
5627			BUG_ON(PageWriteback(page));
5628			/*
5629			 * We need to make sure we haven't be attached
5630			 * to a new eb.
5631			 */
5632			detach_page_private(page);
 
 
 
5633		}
 
5634		if (mapped)
5635			spin_unlock(&page->mapping->private_lock);
5636		return;
5637	}
5638
5639	/*
5640	 * For subpage, we can have dummy eb with page private.  In this case,
5641	 * we can directly detach the private as such page is only attached to
5642	 * one dummy eb, no sharing.
5643	 */
5644	if (!mapped) {
5645		btrfs_detach_subpage(fs_info, page);
5646		return;
5647	}
5648
5649	btrfs_page_dec_eb_refs(fs_info, page);
5650
5651	/*
5652	 * We can only detach the page private if there are no other ebs in the
5653	 * page range and no unfinished IO.
5654	 */
5655	if (!page_range_has_eb(fs_info, page))
5656		btrfs_detach_subpage(fs_info, page);
5657
5658	spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664	int i;
5665	int num_pages;
5666
5667	ASSERT(!extent_buffer_under_io(eb));
5668
5669	num_pages = num_extent_pages(eb);
5670	for (i = 0; i < num_pages; i++) {
5671		struct page *page = eb->pages[i];
5672
5673		if (!page)
5674			continue;
5675
5676		detach_extent_buffer_page(eb, page);
5677
5678		/* One for when we allocated the page */
5679		put_page(page);
5680	}
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688	btrfs_release_extent_buffer_pages(eb);
5689	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690	__free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695		      unsigned long len)
5696{
5697	struct extent_buffer *eb = NULL;
5698
5699	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700	eb->start = start;
5701	eb->len = len;
5702	eb->fs_info = fs_info;
5703	eb->bflags = 0;
5704	init_rwsem(&eb->lock);
 
 
 
 
 
 
 
 
 
5705
5706	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707			     &fs_info->allocated_ebs);
5708	INIT_LIST_HEAD(&eb->release_list);
5709
5710	spin_lock_init(&eb->refs_lock);
5711	atomic_set(&eb->refs, 1);
5712	atomic_set(&eb->io_pages, 0);
5713
5714	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
5715
5716	return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721	int i;
5722	struct page *p;
5723	struct extent_buffer *new;
5724	int num_pages = num_extent_pages(src);
5725
5726	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727	if (new == NULL)
5728		return NULL;
5729
5730	/*
5731	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732	 * btrfs_release_extent_buffer() have different behavior for
5733	 * UNMAPPED subpage extent buffer.
5734	 */
5735	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737	for (i = 0; i < num_pages; i++) {
5738		int ret;
5739
5740		p = alloc_page(GFP_NOFS);
5741		if (!p) {
5742			btrfs_release_extent_buffer(new);
5743			return NULL;
5744		}
5745		ret = attach_extent_buffer_page(new, p, NULL);
5746		if (ret < 0) {
5747			put_page(p);
5748			btrfs_release_extent_buffer(new);
5749			return NULL;
5750		}
5751		WARN_ON(PageDirty(p));
 
5752		new->pages[i] = p;
5753		copy_page(page_address(p), page_address(src->pages[i]));
5754	}
5755	set_extent_buffer_uptodate(new);
 
 
5756
5757	return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761						  u64 start, unsigned long len)
5762{
5763	struct extent_buffer *eb;
5764	int num_pages;
5765	int i;
 
 
5766
5767	eb = __alloc_extent_buffer(fs_info, start, len);
5768	if (!eb)
5769		return NULL;
5770
5771	num_pages = num_extent_pages(eb);
5772	for (i = 0; i < num_pages; i++) {
5773		int ret;
5774
5775		eb->pages[i] = alloc_page(GFP_NOFS);
5776		if (!eb->pages[i])
5777			goto err;
5778		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779		if (ret < 0)
5780			goto err;
5781	}
5782	set_extent_buffer_uptodate(eb);
5783	btrfs_set_header_nritems(eb, 0);
5784	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786	return eb;
5787err:
5788	for (; i > 0; i--) {
5789		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790		__free_page(eb->pages[i - 1]);
5791	}
5792	__free_extent_buffer(eb);
5793	return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797						u64 start)
5798{
5799	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804	int refs;
5805	/*
5806	 * The TREE_REF bit is first set when the extent_buffer is added
5807	 * to the radix tree. It is also reset, if unset, when a new reference
5808	 * is created by find_extent_buffer.
5809	 *
5810	 * It is only cleared in two cases: freeing the last non-tree
5811	 * reference to the extent_buffer when its STALE bit is set or
5812	 * calling releasepage when the tree reference is the only reference.
 
5813	 *
5814	 * In both cases, care is taken to ensure that the extent_buffer's
5815	 * pages are not under io. However, releasepage can be concurrently
5816	 * called with creating new references, which is prone to race
5817	 * conditions between the calls to check_buffer_tree_ref in those
5818	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 
5819	 *
5820	 * The actual lifetime of the extent_buffer in the radix tree is
5821	 * adequately protected by the refcount, but the TREE_REF bit and
5822	 * its corresponding reference are not. To protect against this
5823	 * class of races, we call check_buffer_tree_ref from the codepaths
5824	 * which trigger io after they set eb->io_pages. Note that once io is
5825	 * initiated, TREE_REF can no longer be cleared, so that is the
5826	 * moment at which any such race is best fixed.
5827	 */
5828	refs = atomic_read(&eb->refs);
5829	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830		return;
5831
5832	spin_lock(&eb->refs_lock);
5833	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834		atomic_inc(&eb->refs);
5835	spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839		struct page *accessed)
5840{
5841	int num_pages, i;
5842
5843	check_buffer_tree_ref(eb);
5844
5845	num_pages = num_extent_pages(eb);
5846	for (i = 0; i < num_pages; i++) {
5847		struct page *p = eb->pages[i];
5848
5849		if (p != accessed)
5850			mark_page_accessed(p);
5851	}
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855					 u64 start)
5856{
5857	struct extent_buffer *eb;
5858
5859	eb = find_extent_buffer_nolock(fs_info, start);
5860	if (!eb)
5861		return NULL;
5862	/*
5863	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865	 * another task running free_extent_buffer() might have seen that flag
5866	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867	 * writeback flags not set) and it's still in the tree (flag
5868	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869	 * decrementing the extent buffer's reference count twice.  So here we
5870	 * could race and increment the eb's reference count, clear its stale
5871	 * flag, mark it as dirty and drop our reference before the other task
5872	 * finishes executing free_extent_buffer, which would later result in
5873	 * an attempt to free an extent buffer that is dirty.
5874	 */
5875	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876		spin_lock(&eb->refs_lock);
5877		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
5878	}
5879	mark_extent_buffer_accessed(eb, NULL);
5880	return eb;
 
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885					u64 start)
5886{
5887	struct extent_buffer *eb, *exists = NULL;
5888	int ret;
5889
5890	eb = find_extent_buffer(fs_info, start);
5891	if (eb)
5892		return eb;
5893	eb = alloc_dummy_extent_buffer(fs_info, start);
5894	if (!eb)
5895		return ERR_PTR(-ENOMEM);
5896	eb->fs_info = fs_info;
5897again:
5898	ret = radix_tree_preload(GFP_NOFS);
5899	if (ret) {
5900		exists = ERR_PTR(ret);
5901		goto free_eb;
5902	}
5903	spin_lock(&fs_info->buffer_lock);
5904	ret = radix_tree_insert(&fs_info->buffer_radix,
5905				start >> fs_info->sectorsize_bits, eb);
5906	spin_unlock(&fs_info->buffer_lock);
5907	radix_tree_preload_end();
5908	if (ret == -EEXIST) {
5909		exists = find_extent_buffer(fs_info, start);
5910		if (exists)
5911			goto free_eb;
5912		else
5913			goto again;
5914	}
5915	check_buffer_tree_ref(eb);
5916	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
 
 
 
 
 
 
 
5918	return eb;
5919free_eb:
5920	btrfs_release_extent_buffer(eb);
5921	return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926		struct btrfs_fs_info *fs_info, struct page *page)
5927{
5928	struct extent_buffer *exists;
5929
5930	/*
5931	 * For subpage case, we completely rely on radix tree to ensure we
5932	 * don't try to insert two ebs for the same bytenr.  So here we always
5933	 * return NULL and just continue.
5934	 */
5935	if (fs_info->sectorsize < PAGE_SIZE)
5936		return NULL;
5937
5938	/* Page not yet attached to an extent buffer */
5939	if (!PagePrivate(page))
5940		return NULL;
5941
5942	/*
5943	 * We could have already allocated an eb for this page and attached one
5944	 * so lets see if we can get a ref on the existing eb, and if we can we
5945	 * know it's good and we can just return that one, else we know we can
5946	 * just overwrite page->private.
5947	 */
5948	exists = (struct extent_buffer *)page->private;
5949	if (atomic_inc_not_zero(&exists->refs))
5950		return exists;
5951
5952	WARN_ON(PageDirty(page));
5953	detach_page_private(page);
5954	return NULL;
5955}
5956
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958					  u64 start, u64 owner_root, int level)
5959{
5960	unsigned long len = fs_info->nodesize;
5961	int num_pages;
5962	int i;
5963	unsigned long index = start >> PAGE_SHIFT;
5964	struct extent_buffer *eb;
5965	struct extent_buffer *exists = NULL;
5966	struct page *p;
5967	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5968	int uptodate = 1;
5969	int ret;
5970
5971	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972		btrfs_err(fs_info, "bad tree block start %llu", start);
5973		return ERR_PTR(-EINVAL);
5974	}
5975
5976#if BITS_PER_LONG == 32
5977	if (start >= MAX_LFS_FILESIZE) {
5978		btrfs_err_rl(fs_info,
5979		"extent buffer %llu is beyond 32bit page cache limit", start);
5980		btrfs_err_32bit_limit(fs_info);
5981		return ERR_PTR(-EOVERFLOW);
5982	}
5983	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984		btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987	if (fs_info->sectorsize < PAGE_SIZE &&
5988	    offset_in_page(start) + len > PAGE_SIZE) {
5989		btrfs_err(fs_info,
5990		"tree block crosses page boundary, start %llu nodesize %lu",
5991			  start, len);
5992		return ERR_PTR(-EINVAL);
5993	}
5994
5995	eb = find_extent_buffer(fs_info, start);
5996	if (eb)
5997		return eb;
5998
5999	eb = __alloc_extent_buffer(fs_info, start, len);
6000	if (!eb)
6001		return ERR_PTR(-ENOMEM);
6002	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004	num_pages = num_extent_pages(eb);
6005	for (i = 0; i < num_pages; i++, index++) {
6006		struct btrfs_subpage *prealloc = NULL;
6007
6008		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009		if (!p) {
6010			exists = ERR_PTR(-ENOMEM);
6011			goto free_eb;
6012		}
6013
6014		/*
6015		 * Preallocate page->private for subpage case, so that we won't
6016		 * allocate memory with private_lock hold.  The memory will be
6017		 * freed by attach_extent_buffer_page() or freed manually if
6018		 * we exit earlier.
6019		 *
6020		 * Although we have ensured one subpage eb can only have one
6021		 * page, but it may change in the future for 16K page size
6022		 * support, so we still preallocate the memory in the loop.
6023		 */
6024		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025					  BTRFS_SUBPAGE_METADATA);
6026		if (ret < 0) {
6027			unlock_page(p);
6028			put_page(p);
6029			exists = ERR_PTR(ret);
6030			goto free_eb;
6031		}
6032
6033		spin_lock(&mapping->private_lock);
6034		exists = grab_extent_buffer(fs_info, p);
6035		if (exists) {
6036			spin_unlock(&mapping->private_lock);
6037			unlock_page(p);
 
6038			put_page(p);
6039			mark_extent_buffer_accessed(exists, p);
6040			btrfs_free_subpage(prealloc);
6041			goto free_eb;
6042		}
6043		/* Should not fail, as we have preallocated the memory */
6044		ret = attach_extent_buffer_page(eb, p, prealloc);
6045		ASSERT(!ret);
6046		/*
6047		 * To inform we have extra eb under allocation, so that
6048		 * detach_extent_buffer_page() won't release the page private
6049		 * when the eb hasn't yet been inserted into radix tree.
6050		 *
6051		 * The ref will be decreased when the eb released the page, in
6052		 * detach_extent_buffer_page().
6053		 * Thus needs no special handling in error path.
6054		 */
6055		btrfs_page_inc_eb_refs(fs_info, p);
6056		spin_unlock(&mapping->private_lock);
6057
6058		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059		eb->pages[i] = p;
6060		if (!PageUptodate(p))
6061			uptodate = 0;
6062
6063		/*
6064		 * We can't unlock the pages just yet since the extent buffer
6065		 * hasn't been properly inserted in the radix tree, this
6066		 * opens a race with btree_releasepage which can free a page
6067		 * while we are still filling in all pages for the buffer and
6068		 * we could crash.
6069		 */
6070	}
6071	if (uptodate)
6072		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6073again:
6074	ret = radix_tree_preload(GFP_NOFS);
6075	if (ret) {
6076		exists = ERR_PTR(ret);
6077		goto free_eb;
6078	}
6079
6080	spin_lock(&fs_info->buffer_lock);
6081	ret = radix_tree_insert(&fs_info->buffer_radix,
6082				start >> fs_info->sectorsize_bits, eb);
6083	spin_unlock(&fs_info->buffer_lock);
6084	radix_tree_preload_end();
6085	if (ret == -EEXIST) {
6086		exists = find_extent_buffer(fs_info, start);
6087		if (exists)
6088			goto free_eb;
6089		else
6090			goto again;
6091	}
6092	/* add one reference for the tree */
6093	check_buffer_tree_ref(eb);
6094	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096	/*
6097	 * Now it's safe to unlock the pages because any calls to
6098	 * btree_releasepage will correctly detect that a page belongs to a
6099	 * live buffer and won't free them prematurely.
6100	 */
6101	for (i = 0; i < num_pages; i++)
6102		unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
6103	return eb;
6104
6105free_eb:
6106	WARN_ON(!atomic_dec_and_test(&eb->refs));
6107	for (i = 0; i < num_pages; i++) {
6108		if (eb->pages[i])
6109			unlock_page(eb->pages[i]);
6110	}
6111
6112	btrfs_release_extent_buffer(eb);
6113	return exists;
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118	struct extent_buffer *eb =
6119			container_of(head, struct extent_buffer, rcu_head);
6120
6121	__free_extent_buffer(eb);
6122}
6123
 
6124static int release_extent_buffer(struct extent_buffer *eb)
6125	__releases(&eb->refs_lock)
6126{
6127	lockdep_assert_held(&eb->refs_lock);
6128
6129	WARN_ON(atomic_read(&eb->refs) == 0);
6130	if (atomic_dec_and_test(&eb->refs)) {
6131		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132			struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134			spin_unlock(&eb->refs_lock);
6135
6136			spin_lock(&fs_info->buffer_lock);
6137			radix_tree_delete(&fs_info->buffer_radix,
6138					  eb->start >> fs_info->sectorsize_bits);
6139			spin_unlock(&fs_info->buffer_lock);
6140		} else {
6141			spin_unlock(&eb->refs_lock);
6142		}
6143
6144		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145		/* Should be safe to release our pages at this point */
6146		btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149			__free_extent_buffer(eb);
6150			return 1;
6151		}
6152#endif
6153		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154		return 1;
6155	}
6156	spin_unlock(&eb->refs_lock);
6157
6158	return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163	int refs;
6164	int old;
6165	if (!eb)
6166		return;
6167
6168	while (1) {
6169		refs = atomic_read(&eb->refs);
6170		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172			refs == 1))
6173			break;
6174		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175		if (old == refs)
6176			return;
6177	}
6178
6179	spin_lock(&eb->refs_lock);
6180	if (atomic_read(&eb->refs) == 2 &&
 
 
 
 
6181	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182	    !extent_buffer_under_io(eb) &&
6183	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184		atomic_dec(&eb->refs);
6185
6186	/*
6187	 * I know this is terrible, but it's temporary until we stop tracking
6188	 * the uptodate bits and such for the extent buffers.
6189	 */
6190	release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195	if (!eb)
6196		return;
6197
6198	spin_lock(&eb->refs_lock);
6199	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203		atomic_dec(&eb->refs);
6204	release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209	ASSERT(PageDirty(page));
6210	ASSERT(PageLocked(page));
6211	clear_page_dirty_for_io(page);
6212	xa_lock_irq(&page->mapping->i_pages);
6213	if (!PageDirty(page))
6214		__xa_clear_mark(&page->mapping->i_pages,
6215				page_index(page), PAGECACHE_TAG_DIRTY);
6216	xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221	struct btrfs_fs_info *fs_info = eb->fs_info;
6222	struct page *page = eb->pages[0];
6223	bool last;
6224
6225	/* btree_clear_page_dirty() needs page locked */
6226	lock_page(page);
6227	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228						  eb->len);
6229	if (last)
6230		btree_clear_page_dirty(page);
6231	unlock_page(page);
6232	WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6236{
6237	int i;
6238	int num_pages;
6239	struct page *page;
6240
6241	if (eb->fs_info->sectorsize < PAGE_SIZE)
6242		return clear_subpage_extent_buffer_dirty(eb);
6243
6244	num_pages = num_extent_pages(eb);
6245
6246	for (i = 0; i < num_pages; i++) {
6247		page = eb->pages[i];
6248		if (!PageDirty(page))
6249			continue;
 
6250		lock_page(page);
6251		btree_clear_page_dirty(page);
 
 
 
 
 
 
 
 
 
6252		ClearPageError(page);
6253		unlock_page(page);
6254	}
6255	WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260	int i;
6261	int num_pages;
6262	bool was_dirty;
6263
6264	check_buffer_tree_ref(eb);
6265
6266	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268	num_pages = num_extent_pages(eb);
6269	WARN_ON(atomic_read(&eb->refs) == 0);
6270	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271
6272	if (!was_dirty) {
6273		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274
6275		/*
6276		 * For subpage case, we can have other extent buffers in the
6277		 * same page, and in clear_subpage_extent_buffer_dirty() we
6278		 * have to clear page dirty without subpage lock held.
6279		 * This can cause race where our page gets dirty cleared after
6280		 * we just set it.
6281		 *
6282		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283		 * its page for other reasons, we can use page lock to prevent
6284		 * the above race.
6285		 */
6286		if (subpage)
6287			lock_page(eb->pages[0]);
6288		for (i = 0; i < num_pages; i++)
6289			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290					     eb->start, eb->len);
6291		if (subpage)
6292			unlock_page(eb->pages[0]);
6293	}
6294#ifdef CONFIG_BTRFS_DEBUG
6295	for (i = 0; i < num_pages; i++)
6296		ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299	return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304	struct btrfs_fs_info *fs_info = eb->fs_info;
6305	struct page *page;
6306	int num_pages;
6307	int i;
6308
6309	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310	num_pages = num_extent_pages(eb);
6311	for (i = 0; i < num_pages; i++) {
6312		page = eb->pages[i];
6313		if (page)
6314			btrfs_page_clear_uptodate(fs_info, page,
6315						  eb->start, eb->len);
6316	}
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321	struct btrfs_fs_info *fs_info = eb->fs_info;
6322	struct page *page;
6323	int num_pages;
6324	int i;
6325
6326	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327	num_pages = num_extent_pages(eb);
6328	for (i = 0; i < num_pages; i++) {
6329		page = eb->pages[i];
6330		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6331	}
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335				      int mirror_num)
6336{
6337	struct btrfs_fs_info *fs_info = eb->fs_info;
6338	struct extent_io_tree *io_tree;
6339	struct page *page = eb->pages[0];
6340	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341	int ret = 0;
6342
6343	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344	ASSERT(PagePrivate(page));
6345	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347	if (wait == WAIT_NONE) {
6348		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349			return -EAGAIN;
6350	} else {
6351		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352		if (ret < 0)
6353			return ret;
6354	}
6355
6356	ret = 0;
6357	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358	    PageUptodate(page) ||
6359	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362		return ret;
6363	}
6364
6365	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366	eb->read_mirror = 0;
6367	atomic_set(&eb->io_pages, 1);
6368	check_buffer_tree_ref(eb);
6369	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373				 page, eb->start, eb->len,
6374				 eb->start - page_offset(page),
6375				 end_bio_extent_readpage, mirror_num, 0,
6376				 true);
6377	if (ret) {
6378		/*
6379		 * In the endio function, if we hit something wrong we will
6380		 * increase the io_pages, so here we need to decrease it for
6381		 * error path.
6382		 */
6383		atomic_dec(&eb->io_pages);
6384	}
6385	if (bio_ctrl.bio) {
6386		int tmp;
6387
6388		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389		bio_ctrl.bio = NULL;
6390		if (tmp < 0)
6391			return tmp;
6392	}
6393	if (ret || wait != WAIT_COMPLETE)
6394		return ret;
6395
6396	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398		ret = -EIO;
6399	return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6403{
6404	int i;
6405	struct page *page;
6406	int err;
6407	int ret = 0;
6408	int locked_pages = 0;
6409	int all_uptodate = 1;
6410	int num_pages;
6411	unsigned long num_reads = 0;
6412	struct btrfs_bio_ctrl bio_ctrl = { 0 };
 
6413
6414	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415		return 0;
6416
6417	if (eb->fs_info->sectorsize < PAGE_SIZE)
6418		return read_extent_buffer_subpage(eb, wait, mirror_num);
6419
6420	num_pages = num_extent_pages(eb);
6421	for (i = 0; i < num_pages; i++) {
6422		page = eb->pages[i];
6423		if (wait == WAIT_NONE) {
6424			/*
6425			 * WAIT_NONE is only utilized by readahead. If we can't
6426			 * acquire the lock atomically it means either the eb
6427			 * is being read out or under modification.
6428			 * Either way the eb will be or has been cached,
6429			 * readahead can exit safely.
6430			 */
6431			if (!trylock_page(page))
6432				goto unlock_exit;
6433		} else {
6434			lock_page(page);
6435		}
6436		locked_pages++;
6437	}
6438	/*
6439	 * We need to firstly lock all pages to make sure that
6440	 * the uptodate bit of our pages won't be affected by
6441	 * clear_extent_buffer_uptodate().
6442	 */
6443	for (i = 0; i < num_pages; i++) {
6444		page = eb->pages[i];
6445		if (!PageUptodate(page)) {
6446			num_reads++;
6447			all_uptodate = 0;
6448		}
6449	}
6450
6451	if (all_uptodate) {
6452		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453		goto unlock_exit;
6454	}
6455
6456	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457	eb->read_mirror = 0;
6458	atomic_set(&eb->io_pages, num_reads);
6459	/*
6460	 * It is possible for releasepage to clear the TREE_REF bit before we
6461	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462	 */
6463	check_buffer_tree_ref(eb);
6464	for (i = 0; i < num_pages; i++) {
6465		page = eb->pages[i];
6466
6467		if (!PageUptodate(page)) {
6468			if (ret) {
6469				atomic_dec(&eb->io_pages);
6470				unlock_page(page);
6471				continue;
6472			}
6473
6474			ClearPageError(page);
6475			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476					 &bio_ctrl, page, page_offset(page),
6477					 PAGE_SIZE, 0, end_bio_extent_readpage,
6478					 mirror_num, 0, false);
6479			if (err) {
 
6480				/*
6481				 * We failed to submit the bio so it's the
6482				 * caller's responsibility to perform cleanup
6483				 * i.e unlock page/set error bit.
 
 
 
6484				 */
6485				ret = err;
6486				SetPageError(page);
6487				unlock_page(page);
6488				atomic_dec(&eb->io_pages);
6489			}
6490		} else {
6491			unlock_page(page);
6492		}
6493	}
6494
6495	if (bio_ctrl.bio) {
6496		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497		bio_ctrl.bio = NULL;
6498		if (err)
6499			return err;
6500	}
6501
6502	if (ret || wait != WAIT_COMPLETE)
6503		return ret;
6504
6505	for (i = 0; i < num_pages; i++) {
6506		page = eb->pages[i];
6507		wait_on_page_locked(page);
6508		if (!PageUptodate(page))
6509			ret = -EIO;
6510	}
6511
6512	return ret;
6513
6514unlock_exit:
6515	while (locked_pages > 0) {
6516		locked_pages--;
6517		page = eb->pages[locked_pages];
6518		unlock_page(page);
6519	}
6520	return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524			    unsigned long len)
6525{
6526	btrfs_warn(eb->fs_info,
6527		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528		eb->start, eb->len, start, len);
6529	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531	return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542				 unsigned long start, unsigned long len)
6543{
6544	unsigned long offset;
6545
6546	/* start, start + len should not go beyond eb->len nor overflow */
6547	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548		return report_eb_range(eb, start, len);
6549
6550	return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554			unsigned long start, unsigned long len)
6555{
6556	size_t cur;
6557	size_t offset;
6558	struct page *page;
6559	char *kaddr;
6560	char *dst = (char *)dstv;
6561	unsigned long i = get_eb_page_index(start);
 
6562
6563	if (check_eb_range(eb, start, len))
 
 
 
6564		return;
 
6565
6566	offset = get_eb_offset_in_page(eb, start);
6567
6568	while (len > 0) {
6569		page = eb->pages[i];
6570
6571		cur = min(len, (PAGE_SIZE - offset));
6572		kaddr = page_address(page);
6573		memcpy(dst, kaddr + offset, cur);
6574
6575		dst += cur;
6576		len -= cur;
6577		offset = 0;
6578		i++;
6579	}
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583				       void __user *dstv,
6584				       unsigned long start, unsigned long len)
6585{
6586	size_t cur;
6587	size_t offset;
6588	struct page *page;
6589	char *kaddr;
6590	char __user *dst = (char __user *)dstv;
6591	unsigned long i = get_eb_page_index(start);
 
6592	int ret = 0;
6593
6594	WARN_ON(start > eb->len);
6595	WARN_ON(start + len > eb->start + eb->len);
6596
6597	offset = get_eb_offset_in_page(eb, start);
6598
6599	while (len > 0) {
6600		page = eb->pages[i];
6601
6602		cur = min(len, (PAGE_SIZE - offset));
6603		kaddr = page_address(page);
6604		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605			ret = -EFAULT;
6606			break;
6607		}
6608
6609		dst += cur;
6610		len -= cur;
6611		offset = 0;
6612		i++;
6613	}
6614
6615	return ret;
6616}
6617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619			 unsigned long start, unsigned long len)
6620{
6621	size_t cur;
6622	size_t offset;
6623	struct page *page;
6624	char *kaddr;
6625	char *ptr = (char *)ptrv;
6626	unsigned long i = get_eb_page_index(start);
 
6627	int ret = 0;
6628
6629	if (check_eb_range(eb, start, len))
6630		return -EINVAL;
6631
6632	offset = get_eb_offset_in_page(eb, start);
6633
6634	while (len > 0) {
6635		page = eb->pages[i];
6636
6637		cur = min(len, (PAGE_SIZE - offset));
6638
6639		kaddr = page_address(page);
6640		ret = memcmp(ptr, kaddr + offset, cur);
6641		if (ret)
6642			break;
6643
6644		ptr += cur;
6645		len -= cur;
6646		offset = 0;
6647		i++;
6648	}
6649	return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659				    struct page *page)
6660{
6661	struct btrfs_fs_info *fs_info = eb->fs_info;
6662
6663	if (fs_info->sectorsize < PAGE_SIZE) {
6664		bool uptodate;
6665
6666		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667						       eb->start, eb->len);
6668		WARN_ON(!uptodate);
6669	} else {
6670		WARN_ON(!PageUptodate(page));
6671	}
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675		const void *srcv)
6676{
6677	char *kaddr;
6678
6679	assert_eb_page_uptodate(eb, eb->pages[0]);
6680	kaddr = page_address(eb->pages[0]) +
6681		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682						   chunk_tree_uuid));
6683	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688	char *kaddr;
6689
6690	assert_eb_page_uptodate(eb, eb->pages[0]);
6691	kaddr = page_address(eb->pages[0]) +
6692		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697			 unsigned long start, unsigned long len)
6698{
6699	size_t cur;
6700	size_t offset;
6701	struct page *page;
6702	char *kaddr;
6703	char *src = (char *)srcv;
6704	unsigned long i = get_eb_page_index(start);
 
6705
6706	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
 
6707
6708	if (check_eb_range(eb, start, len))
6709		return;
6710
6711	offset = get_eb_offset_in_page(eb, start);
6712
6713	while (len > 0) {
6714		page = eb->pages[i];
6715		assert_eb_page_uptodate(eb, page);
6716
6717		cur = min(len, PAGE_SIZE - offset);
6718		kaddr = page_address(page);
6719		memcpy(kaddr + offset, src, cur);
6720
6721		src += cur;
6722		len -= cur;
6723		offset = 0;
6724		i++;
6725	}
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729		unsigned long len)
6730{
6731	size_t cur;
6732	size_t offset;
6733	struct page *page;
6734	char *kaddr;
6735	unsigned long i = get_eb_page_index(start);
 
6736
6737	if (check_eb_range(eb, start, len))
6738		return;
6739
6740	offset = get_eb_offset_in_page(eb, start);
6741
6742	while (len > 0) {
6743		page = eb->pages[i];
6744		assert_eb_page_uptodate(eb, page);
6745
6746		cur = min(len, PAGE_SIZE - offset);
6747		kaddr = page_address(page);
6748		memset(kaddr + offset, 0, cur);
6749
6750		len -= cur;
6751		offset = 0;
6752		i++;
6753	}
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757			     const struct extent_buffer *src)
6758{
6759	int i;
6760	int num_pages;
6761
6762	ASSERT(dst->len == src->len);
6763
6764	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765		num_pages = num_extent_pages(dst);
6766		for (i = 0; i < num_pages; i++)
6767			copy_page(page_address(dst->pages[i]),
6768				  page_address(src->pages[i]));
6769	} else {
6770		size_t src_offset = get_eb_offset_in_page(src, 0);
6771		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774		memcpy(page_address(dst->pages[0]) + dst_offset,
6775		       page_address(src->pages[0]) + src_offset,
6776		       src->len);
6777	}
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781			const struct extent_buffer *src,
6782			unsigned long dst_offset, unsigned long src_offset,
6783			unsigned long len)
6784{
6785	u64 dst_len = dst->len;
6786	size_t cur;
6787	size_t offset;
6788	struct page *page;
6789	char *kaddr;
6790	unsigned long i = get_eb_page_index(dst_offset);
6791
6792	if (check_eb_range(dst, dst_offset, len) ||
6793	    check_eb_range(src, src_offset, len))
6794		return;
6795
6796	WARN_ON(src->len != dst_len);
6797
6798	offset = get_eb_offset_in_page(dst, dst_offset);
 
6799
6800	while (len > 0) {
6801		page = dst->pages[i];
6802		assert_eb_page_uptodate(dst, page);
6803
6804		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806		kaddr = page_address(page);
6807		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809		src_offset += cur;
6810		len -= cur;
6811		offset = 0;
6812		i++;
6813	}
6814}
6815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830				    unsigned long start, unsigned long nr,
6831				    unsigned long *page_index,
6832				    size_t *page_offset)
6833{
 
6834	size_t byte_offset = BIT_BYTE(nr);
6835	size_t offset;
6836
6837	/*
6838	 * The byte we want is the offset of the extent buffer + the offset of
6839	 * the bitmap item in the extent buffer + the offset of the byte in the
6840	 * bitmap item.
6841	 */
6842	offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844	*page_index = offset >> PAGE_SHIFT;
6845	*page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855			   unsigned long nr)
6856{
6857	u8 *kaddr;
6858	struct page *page;
6859	unsigned long i;
6860	size_t offset;
6861
6862	eb_bitmap_offset(eb, start, nr, &i, &offset);
6863	page = eb->pages[i];
6864	assert_eb_page_uptodate(eb, page);
6865	kaddr = page_address(page);
6866	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877			      unsigned long pos, unsigned long len)
6878{
6879	u8 *kaddr;
6880	struct page *page;
6881	unsigned long i;
6882	size_t offset;
6883	const unsigned int size = pos + len;
6884	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887	eb_bitmap_offset(eb, start, pos, &i, &offset);
6888	page = eb->pages[i];
6889	assert_eb_page_uptodate(eb, page);
6890	kaddr = page_address(page);
6891
6892	while (len >= bits_to_set) {
6893		kaddr[offset] |= mask_to_set;
6894		len -= bits_to_set;
6895		bits_to_set = BITS_PER_BYTE;
6896		mask_to_set = ~0;
6897		if (++offset >= PAGE_SIZE && len > 0) {
6898			offset = 0;
6899			page = eb->pages[++i];
6900			assert_eb_page_uptodate(eb, page);
6901			kaddr = page_address(page);
6902		}
6903	}
6904	if (len) {
6905		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906		kaddr[offset] |= mask_to_set;
6907	}
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919				unsigned long start, unsigned long pos,
6920				unsigned long len)
6921{
6922	u8 *kaddr;
6923	struct page *page;
6924	unsigned long i;
6925	size_t offset;
6926	const unsigned int size = pos + len;
6927	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930	eb_bitmap_offset(eb, start, pos, &i, &offset);
6931	page = eb->pages[i];
6932	assert_eb_page_uptodate(eb, page);
6933	kaddr = page_address(page);
6934
6935	while (len >= bits_to_clear) {
6936		kaddr[offset] &= ~mask_to_clear;
6937		len -= bits_to_clear;
6938		bits_to_clear = BITS_PER_BYTE;
6939		mask_to_clear = ~0;
6940		if (++offset >= PAGE_SIZE && len > 0) {
6941			offset = 0;
6942			page = eb->pages[++i];
6943			assert_eb_page_uptodate(eb, page);
6944			kaddr = page_address(page);
6945		}
6946	}
6947	if (len) {
6948		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949		kaddr[offset] &= ~mask_to_clear;
6950	}
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955	unsigned long distance = (src > dst) ? src - dst : dst - src;
6956	return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960		       unsigned long dst_off, unsigned long src_off,
6961		       unsigned long len)
6962{
6963	char *dst_kaddr = page_address(dst_page);
6964	char *src_kaddr;
6965	int must_memmove = 0;
6966
6967	if (dst_page != src_page) {
6968		src_kaddr = page_address(src_page);
6969	} else {
6970		src_kaddr = dst_kaddr;
6971		if (areas_overlap(src_off, dst_off, len))
6972			must_memmove = 1;
6973	}
6974
6975	if (must_memmove)
6976		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977	else
6978		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982			  unsigned long dst_offset, unsigned long src_offset,
6983			  unsigned long len)
6984{
 
6985	size_t cur;
6986	size_t dst_off_in_page;
6987	size_t src_off_in_page;
 
6988	unsigned long dst_i;
6989	unsigned long src_i;
6990
6991	if (check_eb_range(dst, dst_offset, len) ||
6992	    check_eb_range(dst, src_offset, len))
6993		return;
 
 
 
 
 
 
 
 
 
6994
6995	while (len > 0) {
6996		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
 
 
6998
6999		dst_i = get_eb_page_index(dst_offset);
7000		src_i = get_eb_page_index(src_offset);
7001
7002		cur = min(len, (unsigned long)(PAGE_SIZE -
7003					       src_off_in_page));
7004		cur = min_t(unsigned long, cur,
7005			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008			   dst_off_in_page, src_off_in_page, cur);
7009
7010		src_offset += cur;
7011		dst_offset += cur;
7012		len -= cur;
7013	}
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017			   unsigned long dst_offset, unsigned long src_offset,
7018			   unsigned long len)
7019{
 
7020	size_t cur;
7021	size_t dst_off_in_page;
7022	size_t src_off_in_page;
7023	unsigned long dst_end = dst_offset + len - 1;
7024	unsigned long src_end = src_offset + len - 1;
 
7025	unsigned long dst_i;
7026	unsigned long src_i;
7027
7028	if (check_eb_range(dst, dst_offset, len) ||
7029	    check_eb_range(dst, src_offset, len))
7030		return;
 
 
 
 
 
 
 
 
 
7031	if (dst_offset < src_offset) {
7032		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033		return;
7034	}
7035	while (len > 0) {
7036		dst_i = get_eb_page_index(dst_end);
7037		src_i = get_eb_page_index(src_end);
7038
7039		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040		src_off_in_page = get_eb_offset_in_page(dst, src_end);
 
 
7041
7042		cur = min_t(unsigned long, len, src_off_in_page + 1);
7043		cur = min(cur, dst_off_in_page + 1);
7044		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045			   dst_off_in_page - cur + 1,
7046			   src_off_in_page - cur + 1, cur);
7047
7048		dst_end -= cur;
7049		src_end -= cur;
7050		len -= cur;
7051	}
7052}
7053
7054static struct extent_buffer *get_next_extent_buffer(
7055		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058	struct extent_buffer *found = NULL;
7059	u64 page_start = page_offset(page);
7060	int ret;
7061	int i;
7062
7063	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065	lockdep_assert_held(&fs_info->buffer_lock);
7066
7067	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068			bytenr >> fs_info->sectorsize_bits,
7069			PAGE_SIZE / fs_info->nodesize);
7070	for (i = 0; i < ret; i++) {
7071		/* Already beyond page end */
7072		if (gang[i]->start >= page_start + PAGE_SIZE)
7073			break;
7074		/* Found one */
7075		if (gang[i]->start >= bytenr) {
7076			found = gang[i];
7077			break;
7078		}
7079	}
7080	return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086	u64 cur = page_offset(page);
7087	const u64 end = page_offset(page) + PAGE_SIZE;
7088	int ret;
7089
7090	while (cur < end) {
7091		struct extent_buffer *eb = NULL;
7092
7093		/*
7094		 * Unlike try_release_extent_buffer() which uses page->private
7095		 * to grab buffer, for subpage case we rely on radix tree, thus
7096		 * we need to ensure radix tree consistency.
7097		 *
7098		 * We also want an atomic snapshot of the radix tree, thus go
7099		 * with spinlock rather than RCU.
7100		 */
7101		spin_lock(&fs_info->buffer_lock);
7102		eb = get_next_extent_buffer(fs_info, page, cur);
7103		if (!eb) {
7104			/* No more eb in the page range after or at cur */
7105			spin_unlock(&fs_info->buffer_lock);
7106			break;
7107		}
7108		cur = eb->start + eb->len;
7109
7110		/*
7111		 * The same as try_release_extent_buffer(), to ensure the eb
7112		 * won't disappear out from under us.
7113		 */
7114		spin_lock(&eb->refs_lock);
7115		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116			spin_unlock(&eb->refs_lock);
7117			spin_unlock(&fs_info->buffer_lock);
7118			break;
7119		}
7120		spin_unlock(&fs_info->buffer_lock);
7121
7122		/*
7123		 * If tree ref isn't set then we know the ref on this eb is a
7124		 * real ref, so just return, this eb will likely be freed soon
7125		 * anyway.
7126		 */
7127		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128			spin_unlock(&eb->refs_lock);
7129			break;
7130		}
7131
7132		/*
7133		 * Here we don't care about the return value, we will always
7134		 * check the page private at the end.  And
7135		 * release_extent_buffer() will release the refs_lock.
7136		 */
7137		release_extent_buffer(eb);
7138	}
7139	/*
7140	 * Finally to check if we have cleared page private, as if we have
7141	 * released all ebs in the page, the page private should be cleared now.
7142	 */
7143	spin_lock(&page->mapping->private_lock);
7144	if (!PagePrivate(page))
7145		ret = 1;
7146	else
7147		ret = 0;
7148	spin_unlock(&page->mapping->private_lock);
7149	return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
7155	struct extent_buffer *eb;
7156
7157	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158		return try_release_subpage_extent_buffer(page);
7159
7160	/*
7161	 * We need to make sure nobody is changing page->private, as we rely on
7162	 * page->private as the pointer to extent buffer.
7163	 */
7164	spin_lock(&page->mapping->private_lock);
7165	if (!PagePrivate(page)) {
7166		spin_unlock(&page->mapping->private_lock);
7167		return 1;
7168	}
7169
7170	eb = (struct extent_buffer *)page->private;
7171	BUG_ON(!eb);
7172
7173	/*
7174	 * This is a little awful but should be ok, we need to make sure that
7175	 * the eb doesn't disappear out from under us while we're looking at
7176	 * this page.
7177	 */
7178	spin_lock(&eb->refs_lock);
7179	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180		spin_unlock(&eb->refs_lock);
7181		spin_unlock(&page->mapping->private_lock);
7182		return 0;
7183	}
7184	spin_unlock(&page->mapping->private_lock);
7185
7186	/*
7187	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188	 * so just return, this page will likely be freed soon anyway.
7189	 */
7190	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191		spin_unlock(&eb->refs_lock);
7192		return 0;
7193	}
7194
7195	return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
7200 * @fs_info:	the fs_info
7201 * @bytenr:	bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen:	generation for the uptodate check, can be 0
7204 * @level:	level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation.  If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211				u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
7213	struct extent_buffer *eb;
7214	int ret;
7215
7216	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217	if (IS_ERR(eb))
7218		return;
7219
7220	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221		free_extent_buffer(eb);
7222		return;
7223	}
7224
7225	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226	if (ret < 0)
7227		free_extent_buffer_stale(eb);
7228	else
7229		free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
7234 * @node:	parent node we're reading from
7235 * @slot:	slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242	btrfs_readahead_tree_block(node->fs_info,
7243				   btrfs_node_blockptr(node, slot),
7244				   btrfs_header_owner(node),
7245				   btrfs_node_ptr_generation(node, slot),
7246				   btrfs_header_level(node) - 1);
7247}