Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent_map.h"
18#include "ctree.h"
19#include "btrfs_inode.h"
20#include "volumes.h"
21#include "check-integrity.h"
22#include "locking.h"
23#include "rcu-string.h"
24#include "backref.h"
25#include "disk-io.h"
26
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
29static struct bio_set *btrfs_bioset;
30
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
36#ifdef CONFIG_BTRFS_DEBUG
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
39
40static DEFINE_SPINLOCK(leak_lock);
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
86
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91{
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95}
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101#endif
102
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121};
122
123static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139}
140
141static void flush_write_bio(struct extent_page_data *epd);
142
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149}
150
151int __init extent_io_init(void)
152{
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188}
189
190void __cold extent_io_exit(void)
191{
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207{
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213}
214
215static struct extent_state *alloc_extent_state(gfp_t mask)
216{
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235}
236
237void free_extent_state(struct extent_state *state)
238{
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
248
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255{
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290{
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342{
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350}
351
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363}
364
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407}
408
409static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411{
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418{
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421}
422
423static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442{
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470}
471
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
516/*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527{
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530 int ret;
531
532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
537 clear_state_cb(tree, state, bits);
538 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
539 BUG_ON(ret < 0);
540 state->state &= ~bits_to_clear;
541 if (wake)
542 wake_up(&state->wq);
543 if (state->state == 0) {
544 next = next_state(state);
545 if (extent_state_in_tree(state)) {
546 rb_erase(&state->rb_node, &tree->state);
547 RB_CLEAR_NODE(&state->rb_node);
548 free_extent_state(state);
549 } else {
550 WARN_ON(1);
551 }
552 } else {
553 merge_state(tree, state);
554 next = next_state(state);
555 }
556 return next;
557}
558
559static struct extent_state *
560alloc_extent_state_atomic(struct extent_state *prealloc)
561{
562 if (!prealloc)
563 prealloc = alloc_extent_state(GFP_ATOMIC);
564
565 return prealloc;
566}
567
568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
569{
570 btrfs_panic(tree_fs_info(tree), err,
571 "Locking error: Extent tree was modified by another thread while locked.");
572}
573
574/*
575 * clear some bits on a range in the tree. This may require splitting
576 * or inserting elements in the tree, so the gfp mask is used to
577 * indicate which allocations or sleeping are allowed.
578 *
579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
580 * the given range from the tree regardless of state (ie for truncate).
581 *
582 * the range [start, end] is inclusive.
583 *
584 * This takes the tree lock, and returns 0 on success and < 0 on error.
585 */
586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
587 unsigned bits, int wake, int delete,
588 struct extent_state **cached_state,
589 gfp_t mask, struct extent_changeset *changeset)
590{
591 struct extent_state *state;
592 struct extent_state *cached;
593 struct extent_state *prealloc = NULL;
594 struct rb_node *node;
595 u64 last_end;
596 int err;
597 int clear = 0;
598
599 btrfs_debug_check_extent_io_range(tree, start, end);
600
601 if (bits & EXTENT_DELALLOC)
602 bits |= EXTENT_NORESERVE;
603
604 if (delete)
605 bits |= ~EXTENT_CTLBITS;
606 bits |= EXTENT_FIRST_DELALLOC;
607
608 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 clear = 1;
610again:
611 if (!prealloc && gfpflags_allow_blocking(mask)) {
612 /*
613 * Don't care for allocation failure here because we might end
614 * up not needing the pre-allocated extent state at all, which
615 * is the case if we only have in the tree extent states that
616 * cover our input range and don't cover too any other range.
617 * If we end up needing a new extent state we allocate it later.
618 */
619 prealloc = alloc_extent_state(mask);
620 }
621
622 spin_lock(&tree->lock);
623 if (cached_state) {
624 cached = *cached_state;
625
626 if (clear) {
627 *cached_state = NULL;
628 cached_state = NULL;
629 }
630
631 if (cached && extent_state_in_tree(cached) &&
632 cached->start <= start && cached->end > start) {
633 if (clear)
634 refcount_dec(&cached->refs);
635 state = cached;
636 goto hit_next;
637 }
638 if (clear)
639 free_extent_state(cached);
640 }
641 /*
642 * this search will find the extents that end after
643 * our range starts
644 */
645 node = tree_search(tree, start);
646 if (!node)
647 goto out;
648 state = rb_entry(node, struct extent_state, rb_node);
649hit_next:
650 if (state->start > end)
651 goto out;
652 WARN_ON(state->end < start);
653 last_end = state->end;
654
655 /* the state doesn't have the wanted bits, go ahead */
656 if (!(state->state & bits)) {
657 state = next_state(state);
658 goto next;
659 }
660
661 /*
662 * | ---- desired range ---- |
663 * | state | or
664 * | ------------- state -------------- |
665 *
666 * We need to split the extent we found, and may flip
667 * bits on second half.
668 *
669 * If the extent we found extends past our range, we
670 * just split and search again. It'll get split again
671 * the next time though.
672 *
673 * If the extent we found is inside our range, we clear
674 * the desired bit on it.
675 */
676
677 if (state->start < start) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, start);
681 if (err)
682 extent_io_tree_panic(tree, err);
683
684 prealloc = NULL;
685 if (err)
686 goto out;
687 if (state->end <= end) {
688 state = clear_state_bit(tree, state, &bits, wake,
689 changeset);
690 goto next;
691 }
692 goto search_again;
693 }
694 /*
695 * | ---- desired range ---- |
696 * | state |
697 * We need to split the extent, and clear the bit
698 * on the first half
699 */
700 if (state->start <= end && state->end > end) {
701 prealloc = alloc_extent_state_atomic(prealloc);
702 BUG_ON(!prealloc);
703 err = split_state(tree, state, prealloc, end + 1);
704 if (err)
705 extent_io_tree_panic(tree, err);
706
707 if (wake)
708 wake_up(&state->wq);
709
710 clear_state_bit(tree, prealloc, &bits, wake, changeset);
711
712 prealloc = NULL;
713 goto out;
714 }
715
716 state = clear_state_bit(tree, state, &bits, wake, changeset);
717next:
718 if (last_end == (u64)-1)
719 goto out;
720 start = last_end + 1;
721 if (start <= end && state && !need_resched())
722 goto hit_next;
723
724search_again:
725 if (start > end)
726 goto out;
727 spin_unlock(&tree->lock);
728 if (gfpflags_allow_blocking(mask))
729 cond_resched();
730 goto again;
731
732out:
733 spin_unlock(&tree->lock);
734 if (prealloc)
735 free_extent_state(prealloc);
736
737 return 0;
738
739}
740
741static void wait_on_state(struct extent_io_tree *tree,
742 struct extent_state *state)
743 __releases(tree->lock)
744 __acquires(tree->lock)
745{
746 DEFINE_WAIT(wait);
747 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
748 spin_unlock(&tree->lock);
749 schedule();
750 spin_lock(&tree->lock);
751 finish_wait(&state->wq, &wait);
752}
753
754/*
755 * waits for one or more bits to clear on a range in the state tree.
756 * The range [start, end] is inclusive.
757 * The tree lock is taken by this function
758 */
759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 unsigned long bits)
761{
762 struct extent_state *state;
763 struct rb_node *node;
764
765 btrfs_debug_check_extent_io_range(tree, start, end);
766
767 spin_lock(&tree->lock);
768again:
769 while (1) {
770 /*
771 * this search will find all the extents that end after
772 * our range starts
773 */
774 node = tree_search(tree, start);
775process_node:
776 if (!node)
777 break;
778
779 state = rb_entry(node, struct extent_state, rb_node);
780
781 if (state->start > end)
782 goto out;
783
784 if (state->state & bits) {
785 start = state->start;
786 refcount_inc(&state->refs);
787 wait_on_state(tree, state);
788 free_extent_state(state);
789 goto again;
790 }
791 start = state->end + 1;
792
793 if (start > end)
794 break;
795
796 if (!cond_resched_lock(&tree->lock)) {
797 node = rb_next(node);
798 goto process_node;
799 }
800 }
801out:
802 spin_unlock(&tree->lock);
803}
804
805static void set_state_bits(struct extent_io_tree *tree,
806 struct extent_state *state,
807 unsigned *bits, struct extent_changeset *changeset)
808{
809 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
810 int ret;
811
812 set_state_cb(tree, state, bits);
813 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
814 u64 range = state->end - state->start + 1;
815 tree->dirty_bytes += range;
816 }
817 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
818 BUG_ON(ret < 0);
819 state->state |= bits_to_set;
820}
821
822static void cache_state_if_flags(struct extent_state *state,
823 struct extent_state **cached_ptr,
824 unsigned flags)
825{
826 if (cached_ptr && !(*cached_ptr)) {
827 if (!flags || (state->state & flags)) {
828 *cached_ptr = state;
829 refcount_inc(&state->refs);
830 }
831 }
832}
833
834static void cache_state(struct extent_state *state,
835 struct extent_state **cached_ptr)
836{
837 return cache_state_if_flags(state, cached_ptr,
838 EXTENT_IOBITS | EXTENT_BOUNDARY);
839}
840
841/*
842 * set some bits on a range in the tree. This may require allocations or
843 * sleeping, so the gfp mask is used to indicate what is allowed.
844 *
845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
846 * part of the range already has the desired bits set. The start of the
847 * existing range is returned in failed_start in this case.
848 *
849 * [start, end] is inclusive This takes the tree lock.
850 */
851
852static int __must_check
853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
854 unsigned bits, unsigned exclusive_bits,
855 u64 *failed_start, struct extent_state **cached_state,
856 gfp_t mask, struct extent_changeset *changeset)
857{
858 struct extent_state *state;
859 struct extent_state *prealloc = NULL;
860 struct rb_node *node;
861 struct rb_node **p;
862 struct rb_node *parent;
863 int err = 0;
864 u64 last_start;
865 u64 last_end;
866
867 btrfs_debug_check_extent_io_range(tree, start, end);
868
869 bits |= EXTENT_FIRST_DELALLOC;
870again:
871 if (!prealloc && gfpflags_allow_blocking(mask)) {
872 /*
873 * Don't care for allocation failure here because we might end
874 * up not needing the pre-allocated extent state at all, which
875 * is the case if we only have in the tree extent states that
876 * cover our input range and don't cover too any other range.
877 * If we end up needing a new extent state we allocate it later.
878 */
879 prealloc = alloc_extent_state(mask);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042search_again:
1043 if (start > end)
1044 goto out;
1045 spin_unlock(&tree->lock);
1046 if (gfpflags_allow_blocking(mask))
1047 cond_resched();
1048 goto again;
1049
1050out:
1051 spin_unlock(&tree->lock);
1052 if (prealloc)
1053 free_extent_state(prealloc);
1054
1055 return err;
1056
1057}
1058
1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060 unsigned bits, u64 * failed_start,
1061 struct extent_state **cached_state, gfp_t mask)
1062{
1063 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064 cached_state, mask, NULL);
1065}
1066
1067
1068/**
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * another
1071 * @tree: the io tree to search
1072 * @start: the start offset in bytes
1073 * @end: the end offset in bytes (inclusive)
1074 * @bits: the bits to set in this range
1075 * @clear_bits: the bits to clear in this range
1076 * @cached_state: state that we're going to cache
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 *
1084 * All allocations are done with GFP_NOFS.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state)
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102again:
1103 if (!prealloc) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(GFP_NOFS);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268search_again:
1269 if (start > end)
1270 goto out;
1271 spin_unlock(&tree->lock);
1272 cond_resched();
1273 first_iteration = false;
1274 goto again;
1275
1276out:
1277 spin_unlock(&tree->lock);
1278 if (prealloc)
1279 free_extent_state(prealloc);
1280
1281 return err;
1282}
1283
1284/* wrappers around set/clear extent bit */
1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286 unsigned bits, struct extent_changeset *changeset)
1287{
1288 /*
1289 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 * either fail with -EEXIST or changeset will record the whole
1292 * range.
1293 */
1294 BUG_ON(bits & EXTENT_LOCKED);
1295
1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297 changeset);
1298}
1299
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned bits, int wake, int delete,
1302 struct extent_state **cached)
1303{
1304 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305 cached, GFP_NOFS, NULL);
1306}
1307
1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, struct extent_changeset *changeset)
1310{
1311 /*
1312 * Don't support EXTENT_LOCKED case, same reason as
1313 * set_record_extent_bits().
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318 changeset);
1319}
1320
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326 struct extent_state **cached_state)
1327{
1328 int err;
1329 u64 failed_start;
1330
1331 while (1) {
1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333 EXTENT_LOCKED, &failed_start,
1334 cached_state, GFP_NOFS, NULL);
1335 if (err == -EEXIST) {
1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 start = failed_start;
1338 } else
1339 break;
1340 WARN_ON(start > end);
1341 }
1342 return err;
1343}
1344
1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346{
1347 int err;
1348 u64 failed_start;
1349
1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351 &failed_start, NULL, GFP_NOFS, NULL);
1352 if (err == -EEXIST) {
1353 if (failed_start > start)
1354 clear_extent_bit(tree, start, failed_start - 1,
1355 EXTENT_LOCKED, 1, 0, NULL);
1356 return 0;
1357 }
1358 return 1;
1359}
1360
1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362{
1363 unsigned long index = start >> PAGE_SHIFT;
1364 unsigned long end_index = end >> PAGE_SHIFT;
1365 struct page *page;
1366
1367 while (index <= end_index) {
1368 page = find_get_page(inode->i_mapping, index);
1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 clear_page_dirty_for_io(page);
1371 put_page(page);
1372 index++;
1373 }
1374}
1375
1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378 unsigned long index = start >> PAGE_SHIFT;
1379 unsigned long end_index = end >> PAGE_SHIFT;
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 __set_page_dirty_nobuffers(page);
1386 account_page_redirty(page);
1387 put_page(page);
1388 index++;
1389 }
1390}
1391
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396{
1397 tree->ops->set_range_writeback(tree->private_data, start, end);
1398}
1399
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it. tree->lock must be held. NULL will returned if
1402 * nothing was found after 'start'
1403 */
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
1406 u64 start, unsigned bits)
1407{
1408 struct rb_node *node;
1409 struct extent_state *state;
1410
1411 /*
1412 * this search will find all the extents that end after
1413 * our range starts.
1414 */
1415 node = tree_search(tree, start);
1416 if (!node)
1417 goto out;
1418
1419 while (1) {
1420 state = rb_entry(node, struct extent_state, rb_node);
1421 if (state->end >= start && (state->state & bits))
1422 return state;
1423
1424 node = rb_next(node);
1425 if (!node)
1426 break;
1427 }
1428out:
1429 return NULL;
1430}
1431
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
1437 * If nothing was found, 1 is returned. If found something, return 0.
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440 u64 *start_ret, u64 *end_ret, unsigned bits,
1441 struct extent_state **cached_state)
1442{
1443 struct extent_state *state;
1444 struct rb_node *n;
1445 int ret = 1;
1446
1447 spin_lock(&tree->lock);
1448 if (cached_state && *cached_state) {
1449 state = *cached_state;
1450 if (state->end == start - 1 && extent_state_in_tree(state)) {
1451 n = rb_next(&state->rb_node);
1452 while (n) {
1453 state = rb_entry(n, struct extent_state,
1454 rb_node);
1455 if (state->state & bits)
1456 goto got_it;
1457 n = rb_next(n);
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 goto out;
1462 }
1463 free_extent_state(*cached_state);
1464 *cached_state = NULL;
1465 }
1466
1467 state = find_first_extent_bit_state(tree, start, bits);
1468got_it:
1469 if (state) {
1470 cache_state_if_flags(state, cached_state, 0);
1471 *start_ret = state->start;
1472 *end_ret = state->end;
1473 ret = 0;
1474 }
1475out:
1476 spin_unlock(&tree->lock);
1477 return ret;
1478}
1479
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'. start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487 u64 *start, u64 *end, u64 max_bytes,
1488 struct extent_state **cached_state)
1489{
1490 struct rb_node *node;
1491 struct extent_state *state;
1492 u64 cur_start = *start;
1493 u64 found = 0;
1494 u64 total_bytes = 0;
1495
1496 spin_lock(&tree->lock);
1497
1498 /*
1499 * this search will find all the extents that end after
1500 * our range starts.
1501 */
1502 node = tree_search(tree, cur_start);
1503 if (!node) {
1504 if (!found)
1505 *end = (u64)-1;
1506 goto out;
1507 }
1508
1509 while (1) {
1510 state = rb_entry(node, struct extent_state, rb_node);
1511 if (found && (state->start != cur_start ||
1512 (state->state & EXTENT_BOUNDARY))) {
1513 goto out;
1514 }
1515 if (!(state->state & EXTENT_DELALLOC)) {
1516 if (!found)
1517 *end = state->end;
1518 goto out;
1519 }
1520 if (!found) {
1521 *start = state->start;
1522 *cached_state = state;
1523 refcount_inc(&state->refs);
1524 }
1525 found++;
1526 *end = state->end;
1527 cur_start = state->end + 1;
1528 node = rb_next(node);
1529 total_bytes += state->end - state->start + 1;
1530 if (total_bytes >= max_bytes)
1531 break;
1532 if (!node)
1533 break;
1534 }
1535out:
1536 spin_unlock(&tree->lock);
1537 return found;
1538}
1539
1540static int __process_pages_contig(struct address_space *mapping,
1541 struct page *locked_page,
1542 pgoff_t start_index, pgoff_t end_index,
1543 unsigned long page_ops, pgoff_t *index_ret);
1544
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
1548{
1549 unsigned long index = start >> PAGE_SHIFT;
1550 unsigned long end_index = end >> PAGE_SHIFT;
1551
1552 ASSERT(locked_page);
1553 if (index == locked_page->index && end_index == index)
1554 return;
1555
1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 PAGE_UNLOCK, NULL);
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561 struct page *locked_page,
1562 u64 delalloc_start,
1563 u64 delalloc_end)
1564{
1565 unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 unsigned long index_ret = index;
1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 int ret;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && index == end_index)
1572 return 0;
1573
1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 end_index, PAGE_LOCK, &index_ret);
1576 if (ret == -EAGAIN)
1577 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 (u64)index_ret << PAGE_SHIFT);
1579 return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'. start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
1587 */
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589 struct extent_io_tree *tree,
1590 struct page *locked_page, u64 *start,
1591 u64 *end, u64 max_bytes)
1592{
1593 u64 delalloc_start;
1594 u64 delalloc_end;
1595 u64 found;
1596 struct extent_state *cached_state = NULL;
1597 int ret;
1598 int loops = 0;
1599
1600again:
1601 /* step one, find a bunch of delalloc bytes starting at start */
1602 delalloc_start = *start;
1603 delalloc_end = 0;
1604 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605 max_bytes, &cached_state);
1606 if (!found || delalloc_end <= *start) {
1607 *start = delalloc_start;
1608 *end = delalloc_end;
1609 free_extent_state(cached_state);
1610 return 0;
1611 }
1612
1613 /*
1614 * start comes from the offset of locked_page. We have to lock
1615 * pages in order, so we can't process delalloc bytes before
1616 * locked_page
1617 */
1618 if (delalloc_start < *start)
1619 delalloc_start = *start;
1620
1621 /*
1622 * make sure to limit the number of pages we try to lock down
1623 */
1624 if (delalloc_end + 1 - delalloc_start > max_bytes)
1625 delalloc_end = delalloc_start + max_bytes - 1;
1626
1627 /* step two, lock all the pages after the page that has start */
1628 ret = lock_delalloc_pages(inode, locked_page,
1629 delalloc_start, delalloc_end);
1630 if (ret == -EAGAIN) {
1631 /* some of the pages are gone, lets avoid looping by
1632 * shortening the size of the delalloc range we're searching
1633 */
1634 free_extent_state(cached_state);
1635 cached_state = NULL;
1636 if (!loops) {
1637 max_bytes = PAGE_SIZE;
1638 loops = 1;
1639 goto again;
1640 } else {
1641 found = 0;
1642 goto out_failed;
1643 }
1644 }
1645 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646
1647 /* step three, lock the state bits for the whole range */
1648 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649
1650 /* then test to make sure it is all still delalloc */
1651 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652 EXTENT_DELALLOC, 1, cached_state);
1653 if (!ret) {
1654 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655 &cached_state);
1656 __unlock_for_delalloc(inode, locked_page,
1657 delalloc_start, delalloc_end);
1658 cond_resched();
1659 goto again;
1660 }
1661 free_extent_state(cached_state);
1662 *start = delalloc_start;
1663 *end = delalloc_end;
1664out_failed:
1665 return found;
1666}
1667
1668static int __process_pages_contig(struct address_space *mapping,
1669 struct page *locked_page,
1670 pgoff_t start_index, pgoff_t end_index,
1671 unsigned long page_ops, pgoff_t *index_ret)
1672{
1673 unsigned long nr_pages = end_index - start_index + 1;
1674 unsigned long pages_locked = 0;
1675 pgoff_t index = start_index;
1676 struct page *pages[16];
1677 unsigned ret;
1678 int err = 0;
1679 int i;
1680
1681 if (page_ops & PAGE_LOCK) {
1682 ASSERT(page_ops == PAGE_LOCK);
1683 ASSERT(index_ret && *index_ret == start_index);
1684 }
1685
1686 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687 mapping_set_error(mapping, -EIO);
1688
1689 while (nr_pages > 0) {
1690 ret = find_get_pages_contig(mapping, index,
1691 min_t(unsigned long,
1692 nr_pages, ARRAY_SIZE(pages)), pages);
1693 if (ret == 0) {
1694 /*
1695 * Only if we're going to lock these pages,
1696 * can we find nothing at @index.
1697 */
1698 ASSERT(page_ops & PAGE_LOCK);
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702
1703 for (i = 0; i < ret; i++) {
1704 if (page_ops & PAGE_SET_PRIVATE2)
1705 SetPagePrivate2(pages[i]);
1706
1707 if (pages[i] == locked_page) {
1708 put_page(pages[i]);
1709 pages_locked++;
1710 continue;
1711 }
1712 if (page_ops & PAGE_CLEAR_DIRTY)
1713 clear_page_dirty_for_io(pages[i]);
1714 if (page_ops & PAGE_SET_WRITEBACK)
1715 set_page_writeback(pages[i]);
1716 if (page_ops & PAGE_SET_ERROR)
1717 SetPageError(pages[i]);
1718 if (page_ops & PAGE_END_WRITEBACK)
1719 end_page_writeback(pages[i]);
1720 if (page_ops & PAGE_UNLOCK)
1721 unlock_page(pages[i]);
1722 if (page_ops & PAGE_LOCK) {
1723 lock_page(pages[i]);
1724 if (!PageDirty(pages[i]) ||
1725 pages[i]->mapping != mapping) {
1726 unlock_page(pages[i]);
1727 put_page(pages[i]);
1728 err = -EAGAIN;
1729 goto out;
1730 }
1731 }
1732 put_page(pages[i]);
1733 pages_locked++;
1734 }
1735 nr_pages -= ret;
1736 index += ret;
1737 cond_resched();
1738 }
1739out:
1740 if (err && index_ret)
1741 *index_ret = start_index + pages_locked - 1;
1742 return err;
1743}
1744
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746 u64 delalloc_end, struct page *locked_page,
1747 unsigned clear_bits,
1748 unsigned long page_ops)
1749{
1750 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751 NULL);
1752
1753 __process_pages_contig(inode->i_mapping, locked_page,
1754 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755 page_ops, NULL);
1756}
1757
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached. The total number found is returned.
1762 */
1763u64 count_range_bits(struct extent_io_tree *tree,
1764 u64 *start, u64 search_end, u64 max_bytes,
1765 unsigned bits, int contig)
1766{
1767 struct rb_node *node;
1768 struct extent_state *state;
1769 u64 cur_start = *start;
1770 u64 total_bytes = 0;
1771 u64 last = 0;
1772 int found = 0;
1773
1774 if (WARN_ON(search_end <= cur_start))
1775 return 0;
1776
1777 spin_lock(&tree->lock);
1778 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779 total_bytes = tree->dirty_bytes;
1780 goto out;
1781 }
1782 /*
1783 * this search will find all the extents that end after
1784 * our range starts.
1785 */
1786 node = tree_search(tree, cur_start);
1787 if (!node)
1788 goto out;
1789
1790 while (1) {
1791 state = rb_entry(node, struct extent_state, rb_node);
1792 if (state->start > search_end)
1793 break;
1794 if (contig && found && state->start > last + 1)
1795 break;
1796 if (state->end >= cur_start && (state->state & bits) == bits) {
1797 total_bytes += min(search_end, state->end) + 1 -
1798 max(cur_start, state->start);
1799 if (total_bytes >= max_bytes)
1800 break;
1801 if (!found) {
1802 *start = max(cur_start, state->start);
1803 found = 1;
1804 }
1805 last = state->end;
1806 } else if (contig && found) {
1807 break;
1808 }
1809 node = rb_next(node);
1810 if (!node)
1811 break;
1812 }
1813out:
1814 spin_unlock(&tree->lock);
1815 return total_bytes;
1816}
1817
1818/*
1819 * set the private field for a given byte offset in the tree. If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823 struct io_failure_record *failrec)
1824{
1825 struct rb_node *node;
1826 struct extent_state *state;
1827 int ret = 0;
1828
1829 spin_lock(&tree->lock);
1830 /*
1831 * this search will find all the extents that end after
1832 * our range starts.
1833 */
1834 node = tree_search(tree, start);
1835 if (!node) {
1836 ret = -ENOENT;
1837 goto out;
1838 }
1839 state = rb_entry(node, struct extent_state, rb_node);
1840 if (state->start != start) {
1841 ret = -ENOENT;
1842 goto out;
1843 }
1844 state->failrec = failrec;
1845out:
1846 spin_unlock(&tree->lock);
1847 return ret;
1848}
1849
1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851 struct io_failure_record **failrec)
1852{
1853 struct rb_node *node;
1854 struct extent_state *state;
1855 int ret = 0;
1856
1857 spin_lock(&tree->lock);
1858 /*
1859 * this search will find all the extents that end after
1860 * our range starts.
1861 */
1862 node = tree_search(tree, start);
1863 if (!node) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state = rb_entry(node, struct extent_state, rb_node);
1868 if (state->start != start) {
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 *failrec = state->failrec;
1873out:
1874 spin_unlock(&tree->lock);
1875 return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
1881 * has the bits set. Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885 unsigned bits, int filled, struct extent_state *cached)
1886{
1887 struct extent_state *state = NULL;
1888 struct rb_node *node;
1889 int bitset = 0;
1890
1891 spin_lock(&tree->lock);
1892 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893 cached->end > start)
1894 node = &cached->rb_node;
1895 else
1896 node = tree_search(tree, start);
1897 while (node && start <= end) {
1898 state = rb_entry(node, struct extent_state, rb_node);
1899
1900 if (filled && state->start > start) {
1901 bitset = 0;
1902 break;
1903 }
1904
1905 if (state->start > end)
1906 break;
1907
1908 if (state->state & bits) {
1909 bitset = 1;
1910 if (!filled)
1911 break;
1912 } else if (filled) {
1913 bitset = 0;
1914 break;
1915 }
1916
1917 if (state->end == (u64)-1)
1918 break;
1919
1920 start = state->end + 1;
1921 if (start > end)
1922 break;
1923 node = rb_next(node);
1924 if (!node) {
1925 if (filled)
1926 bitset = 0;
1927 break;
1928 }
1929 }
1930 spin_unlock(&tree->lock);
1931 return bitset;
1932}
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939{
1940 u64 start = page_offset(page);
1941 u64 end = start + PAGE_SIZE - 1;
1942 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943 SetPageUptodate(page);
1944}
1945
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947 struct extent_io_tree *io_tree,
1948 struct io_failure_record *rec)
1949{
1950 int ret;
1951 int err = 0;
1952
1953 set_state_failrec(failure_tree, rec->start, NULL);
1954 ret = clear_extent_bits(failure_tree, rec->start,
1955 rec->start + rec->len - 1,
1956 EXTENT_LOCKED | EXTENT_DIRTY);
1957 if (ret)
1958 err = ret;
1959
1960 ret = clear_extent_bits(io_tree, rec->start,
1961 rec->start + rec->len - 1,
1962 EXTENT_DAMAGED);
1963 if (ret && !err)
1964 err = ret;
1965
1966 kfree(rec);
1967 return err;
1968}
1969
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
1975 * to avoid any synchronization issues, wait for the data after writing, which
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981 u64 length, u64 logical, struct page *page,
1982 unsigned int pg_offset, int mirror_num)
1983{
1984 struct bio *bio;
1985 struct btrfs_device *dev;
1986 u64 map_length = 0;
1987 u64 sector;
1988 struct btrfs_bio *bbio = NULL;
1989 int ret;
1990
1991 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992 BUG_ON(!mirror_num);
1993
1994 bio = btrfs_io_bio_alloc(1);
1995 bio->bi_iter.bi_size = 0;
1996 map_length = length;
1997
1998 /*
1999 * Avoid races with device replace and make sure our bbio has devices
2000 * associated to its stripes that don't go away while we are doing the
2001 * read repair operation.
2002 */
2003 btrfs_bio_counter_inc_blocked(fs_info);
2004 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005 /*
2006 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007 * to update all raid stripes, but here we just want to correct
2008 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009 * stripe's dev and sector.
2010 */
2011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012 &map_length, &bbio, 0);
2013 if (ret) {
2014 btrfs_bio_counter_dec(fs_info);
2015 bio_put(bio);
2016 return -EIO;
2017 }
2018 ASSERT(bbio->mirror_num == 1);
2019 } else {
2020 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021 &map_length, &bbio, mirror_num);
2022 if (ret) {
2023 btrfs_bio_counter_dec(fs_info);
2024 bio_put(bio);
2025 return -EIO;
2026 }
2027 BUG_ON(mirror_num != bbio->mirror_num);
2028 }
2029
2030 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031 bio->bi_iter.bi_sector = sector;
2032 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033 btrfs_put_bbio(bbio);
2034 if (!dev || !dev->bdev ||
2035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036 btrfs_bio_counter_dec(fs_info);
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 bio_set_dev(bio, dev->bdev);
2041 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042 bio_add_page(bio, page, length, pg_offset);
2043
2044 if (btrfsic_submit_bio_wait(bio)) {
2045 /* try to remap that extent elsewhere? */
2046 btrfs_bio_counter_dec(fs_info);
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 ino, start,
2055 rcu_str_deref(dev->name), sector);
2056 btrfs_bio_counter_dec(fs_info);
2057 bio_put(bio);
2058 return 0;
2059}
2060
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_buffer *eb, int mirror_num)
2063{
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 int ret = 0;
2067
2068 if (sb_rdonly(fs_info->sb))
2069 return -EROFS;
2070
2071 for (i = 0; i < num_pages; i++) {
2072 struct page *p = eb->pages[i];
2073
2074 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_SIZE;
2079 }
2080
2081 return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089 struct extent_io_tree *failure_tree,
2090 struct extent_io_tree *io_tree, u64 start,
2091 struct page *page, u64 ino, unsigned int pg_offset)
2092{
2093 u64 private;
2094 struct io_failure_record *failrec;
2095 struct extent_state *state;
2096 int num_copies;
2097 int ret;
2098
2099 private = 0;
2100 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101 EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_failrec(failure_tree, start, &failrec);
2106 if (ret)
2107 return 0;
2108
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 btrfs_debug(fs_info,
2114 "clean_io_failure: freeing dummy error at %llu",
2115 failrec->start);
2116 goto out;
2117 }
2118 if (sb_rdonly(fs_info->sb))
2119 goto out;
2120
2121 spin_lock(&io_tree->lock);
2122 state = find_first_extent_bit_state(io_tree,
2123 failrec->start,
2124 EXTENT_LOCKED);
2125 spin_unlock(&io_tree->lock);
2126
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
2131 if (num_copies > 1) {
2132 repair_io_failure(fs_info, ino, start, failrec->len,
2133 failrec->logical, page, pg_offset,
2134 failrec->failed_mirror);
2135 }
2136 }
2137
2138out:
2139 free_io_failure(failure_tree, io_tree, failrec);
2140
2141 return 0;
2142}
2143
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151{
2152 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
2169 failrec = state->failrec;
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176}
2177
2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 struct io_failure_record **failrec_ret)
2180{
2181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182 struct io_failure_record *failrec;
2183 struct extent_map *em;
2184 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2187 int ret;
2188 u64 logical;
2189
2190 ret = get_state_failrec(failure_tree, start, &failrec);
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2195
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2201
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2208 }
2209
2210 if (em->start > start || em->start + em->len <= start) {
2211 free_extent_map(em);
2212 em = NULL;
2213 }
2214 read_unlock(&em_tree->lock);
2215 if (!em) {
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2227 }
2228
2229 btrfs_debug(fs_info,
2230 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231 logical, start, failrec->len);
2232
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
2238 EXTENT_LOCKED | EXTENT_DIRTY);
2239 if (ret >= 0)
2240 ret = set_state_failrec(failure_tree, start, failrec);
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244 if (ret < 0) {
2245 kfree(failrec);
2246 return ret;
2247 }
2248 } else {
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
2253 /*
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2257 */
2258 }
2259
2260 *failrec_ret = failrec;
2261
2262 return 0;
2263}
2264
2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266 struct io_failure_record *failrec, int failed_mirror)
2267{
2268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269 int num_copies;
2270
2271 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2272 if (num_copies == 1) {
2273 /*
2274 * we only have a single copy of the data, so don't bother with
2275 * all the retry and error correction code that follows. no
2276 * matter what the error is, it is very likely to persist.
2277 */
2278 btrfs_debug(fs_info,
2279 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280 num_copies, failrec->this_mirror, failed_mirror);
2281 return false;
2282 }
2283
2284 /*
2285 * there are two premises:
2286 * a) deliver good data to the caller
2287 * b) correct the bad sectors on disk
2288 */
2289 if (failed_bio_pages > 1) {
2290 /*
2291 * to fulfill b), we need to know the exact failing sectors, as
2292 * we don't want to rewrite any more than the failed ones. thus,
2293 * we need separate read requests for the failed bio
2294 *
2295 * if the following BUG_ON triggers, our validation request got
2296 * merged. we need separate requests for our algorithm to work.
2297 */
2298 BUG_ON(failrec->in_validation);
2299 failrec->in_validation = 1;
2300 failrec->this_mirror = failed_mirror;
2301 } else {
2302 /*
2303 * we're ready to fulfill a) and b) alongside. get a good copy
2304 * of the failed sector and if we succeed, we have setup
2305 * everything for repair_io_failure to do the rest for us.
2306 */
2307 if (failrec->in_validation) {
2308 BUG_ON(failrec->this_mirror != failed_mirror);
2309 failrec->in_validation = 0;
2310 failrec->this_mirror = 0;
2311 }
2312 failrec->failed_mirror = failed_mirror;
2313 failrec->this_mirror++;
2314 if (failrec->this_mirror == failed_mirror)
2315 failrec->this_mirror++;
2316 }
2317
2318 if (failrec->this_mirror > num_copies) {
2319 btrfs_debug(fs_info,
2320 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321 num_copies, failrec->this_mirror, failed_mirror);
2322 return false;
2323 }
2324
2325 return true;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
2332 bio_end_io_t *endio_func, void *data)
2333{
2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 struct bio *bio;
2336 struct btrfs_io_bio *btrfs_failed_bio;
2337 struct btrfs_io_bio *btrfs_bio;
2338
2339 bio = btrfs_io_bio_alloc(1);
2340 bio->bi_end_io = endio_func;
2341 bio->bi_iter.bi_sector = failrec->logical >> 9;
2342 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343 bio->bi_iter.bi_size = 0;
2344 bio->bi_private = data;
2345
2346 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 if (btrfs_failed_bio->csum) {
2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350 btrfs_bio = btrfs_io_bio(bio);
2351 btrfs_bio->csum = btrfs_bio->csum_inline;
2352 icsum *= csum_size;
2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354 csum_size);
2355 }
2356
2357 bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359 return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2372 int failed_mirror)
2373{
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378 struct bio *bio;
2379 int read_mode = 0;
2380 blk_status_t status;
2381 int ret;
2382 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2383
2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391 failed_mirror)) {
2392 free_io_failure(failure_tree, tree, failrec);
2393 return -EIO;
2394 }
2395
2396 if (failed_bio_pages > 1)
2397 read_mode |= REQ_FAILFAST_DEV;
2398
2399 phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 start - page_offset(page),
2402 (int)phy_offset, failed_bio->bi_end_io,
2403 NULL);
2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2405
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (status) {
2413 free_io_failure(failure_tree, tree, failrec);
2414 bio_put(bio);
2415 ret = blk_status_to_errno(status);
2416 }
2417
2418 return ret;
2419}
2420
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
2427 int ret = 0;
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431 if (tree->ops && tree->ops->writepage_end_io_hook)
2432 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433 uptodate);
2434
2435 if (!uptodate) {
2436 ClearPageUptodate(page);
2437 SetPageError(page);
2438 ret = err < 0 ? err : -EIO;
2439 mapping_set_error(page->mapping, ret);
2440 }
2441}
2442
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
2452static void end_bio_extent_writepage(struct bio *bio)
2453{
2454 int error = blk_status_to_errno(bio->bi_status);
2455 struct bio_vec *bvec;
2456 u64 start;
2457 u64 end;
2458 int i;
2459
2460 ASSERT(!bio_flagged(bio, BIO_CLONED));
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463 struct inode *inode = page->mapping->host;
2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473 btrfs_err(fs_info,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(fs_info,
2478 "incomplete page write in btrfs with offset %u and length %u",
2479 bvec->bv_offset, bvec->bv_len);
2480 }
2481
2482 start = page_offset(page);
2483 end = start + bvec->bv_offset + bvec->bv_len - 1;
2484
2485 end_extent_writepage(page, error, start, end);
2486 end_page_writeback(page);
2487 }
2488
2489 bio_put(bio);
2490}
2491
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494 int uptodate)
2495{
2496 struct extent_state *cached = NULL;
2497 u64 end = start + len - 1;
2498
2499 if (uptodate && tree->track_uptodate)
2500 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501 unlock_extent_cached_atomic(tree, start, end, &cached);
2502}
2503
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
2515static void end_bio_extent_readpage(struct bio *bio)
2516{
2517 struct bio_vec *bvec;
2518 int uptodate = !bio->bi_status;
2519 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520 struct extent_io_tree *tree, *failure_tree;
2521 u64 offset = 0;
2522 u64 start;
2523 u64 end;
2524 u64 len;
2525 u64 extent_start = 0;
2526 u64 extent_len = 0;
2527 int mirror;
2528 int ret;
2529 int i;
2530
2531 ASSERT(!bio_flagged(bio, BIO_CLONED));
2532 bio_for_each_segment_all(bvec, bio, i) {
2533 struct page *page = bvec->bv_page;
2534 struct inode *inode = page->mapping->host;
2535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536
2537 btrfs_debug(fs_info,
2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 io_bio->mirror_num);
2541 tree = &BTRFS_I(inode)->io_tree;
2542 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 btrfs_err(fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(fs_info,
2556 "incomplete page read in btrfs with offset %u and length %u",
2557 bvec->bv_offset, bvec->bv_len);
2558 }
2559
2560 start = page_offset(page);
2561 end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 len = bvec->bv_len;
2563
2564 mirror = io_bio->mirror_num;
2565 if (likely(uptodate && tree->ops)) {
2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 page, start, end,
2568 mirror);
2569 if (ret)
2570 uptodate = 0;
2571 else
2572 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 failure_tree, tree, start,
2574 page,
2575 btrfs_ino(BTRFS_I(inode)), 0);
2576 }
2577
2578 if (likely(uptodate))
2579 goto readpage_ok;
2580
2581 if (tree->ops) {
2582 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583 if (ret == -EAGAIN) {
2584 /*
2585 * Data inode's readpage_io_failed_hook() always
2586 * returns -EAGAIN.
2587 *
2588 * The generic bio_readpage_error handles errors
2589 * the following way: If possible, new read
2590 * requests are created and submitted and will
2591 * end up in end_bio_extent_readpage as well (if
2592 * we're lucky, not in the !uptodate case). In
2593 * that case it returns 0 and we just go on with
2594 * the next page in our bio. If it can't handle
2595 * the error it will return -EIO and we remain
2596 * responsible for that page.
2597 */
2598 ret = bio_readpage_error(bio, offset, page,
2599 start, end, mirror);
2600 if (ret == 0) {
2601 uptodate = !bio->bi_status;
2602 offset += len;
2603 continue;
2604 }
2605 }
2606
2607 /*
2608 * metadata's readpage_io_failed_hook() always returns
2609 * -EIO and fixes nothing. -EIO is also returned if
2610 * data inode error could not be fixed.
2611 */
2612 ASSERT(ret == -EIO);
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2660 bio_put(bio);
2661}
2662
2663/*
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
2667 */
2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2669{
2670 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
2672
2673/*
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
2677 */
2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679{
2680 struct bio *bio;
2681
2682 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683 bio_set_dev(bio, bdev);
2684 bio->bi_iter.bi_sector = first_byte >> 9;
2685 btrfs_io_bio_init(btrfs_io_bio(bio));
2686 return bio;
2687}
2688
2689struct bio *btrfs_bio_clone(struct bio *bio)
2690{
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 /* Bio allocation backed by a bioset does not fail */
2695 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_io_bio_init(btrfs_bio);
2698 btrfs_bio->iter = bio->bi_iter;
2699 return new;
2700}
2701
2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2703{
2704 struct bio *bio;
2705
2706 /* Bio allocation backed by a bioset does not fail */
2707 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708 btrfs_io_bio_init(btrfs_io_bio(bio));
2709 return bio;
2710}
2711
2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713{
2714 struct bio *bio;
2715 struct btrfs_io_bio *btrfs_bio;
2716
2717 /* this will never fail when it's backed by a bioset */
2718 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719 ASSERT(bio);
2720
2721 btrfs_bio = btrfs_io_bio(bio);
2722 btrfs_io_bio_init(btrfs_bio);
2723
2724 bio_trim(bio, offset >> 9, size >> 9);
2725 btrfs_bio->iter = bio->bi_iter;
2726 return bio;
2727}
2728
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730 unsigned long bio_flags)
2731{
2732 blk_status_t ret = 0;
2733 struct bio_vec *bvec = bio_last_bvec_all(bio);
2734 struct page *page = bvec->bv_page;
2735 struct extent_io_tree *tree = bio->bi_private;
2736 u64 start;
2737
2738 start = page_offset(page) + bvec->bv_offset;
2739
2740 bio->bi_private = NULL;
2741
2742 if (tree->ops)
2743 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2744 mirror_num, bio_flags, start);
2745 else
2746 btrfsic_submit_bio(bio);
2747
2748 return blk_status_to_errno(ret);
2749}
2750
2751/*
2752 * @opf: bio REQ_OP_* and REQ_* flags as one value
2753 * @tree: tree so we can call our merge_bio hook
2754 * @wbc: optional writeback control for io accounting
2755 * @page: page to add to the bio
2756 * @pg_offset: offset of the new bio or to check whether we are adding
2757 * a contiguous page to the previous one
2758 * @size: portion of page that we want to write
2759 * @offset: starting offset in the page
2760 * @bdev: attach newly created bios to this bdev
2761 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2762 * @end_io_func: end_io callback for new bio
2763 * @mirror_num: desired mirror to read/write
2764 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2765 * @bio_flags: flags of the current bio to see if we can merge them
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768 struct writeback_control *wbc,
2769 struct page *page, u64 offset,
2770 size_t size, unsigned long pg_offset,
2771 struct block_device *bdev,
2772 struct bio **bio_ret,
2773 bio_end_io_t end_io_func,
2774 int mirror_num,
2775 unsigned long prev_bio_flags,
2776 unsigned long bio_flags,
2777 bool force_bio_submit)
2778{
2779 int ret = 0;
2780 struct bio *bio;
2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 sector_t sector = offset >> 9;
2783
2784 ASSERT(bio_ret);
2785
2786 if (*bio_ret) {
2787 bool contig;
2788 bool can_merge = true;
2789
2790 bio = *bio_ret;
2791 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792 contig = bio->bi_iter.bi_sector == sector;
2793 else
2794 contig = bio_end_sector(bio) == sector;
2795
2796 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797 page_size, bio, bio_flags))
2798 can_merge = false;
2799
2800 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801 force_bio_submit ||
2802 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2804 if (ret < 0) {
2805 *bio_ret = NULL;
2806 return ret;
2807 }
2808 bio = NULL;
2809 } else {
2810 if (wbc)
2811 wbc_account_io(wbc, page, page_size);
2812 return 0;
2813 }
2814 }
2815
2816 bio = btrfs_bio_alloc(bdev, offset);
2817 bio_add_page(bio, page, page_size, pg_offset);
2818 bio->bi_end_io = end_io_func;
2819 bio->bi_private = tree;
2820 bio->bi_write_hint = page->mapping->host->i_write_hint;
2821 bio->bi_opf = opf;
2822 if (wbc) {
2823 wbc_init_bio(wbc, bio);
2824 wbc_account_io(wbc, page, page_size);
2825 }
2826
2827 *bio_ret = bio;
2828
2829 return ret;
2830}
2831
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833 struct page *page)
2834{
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
2837 get_page(page);
2838 set_page_private(page, (unsigned long)eb);
2839 } else {
2840 WARN_ON(page->private != (unsigned long)eb);
2841 }
2842}
2843
2844void set_page_extent_mapped(struct page *page)
2845{
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
2848 get_page(page);
2849 set_page_private(page, EXTENT_PAGE_PRIVATE);
2850 }
2851}
2852
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855 u64 start, u64 len, get_extent_t *get_extent,
2856 struct extent_map **em_cached)
2857{
2858 struct extent_map *em;
2859
2860 if (em_cached && *em_cached) {
2861 em = *em_cached;
2862 if (extent_map_in_tree(em) && start >= em->start &&
2863 start < extent_map_end(em)) {
2864 refcount_inc(&em->refs);
2865 return em;
2866 }
2867
2868 free_extent_map(em);
2869 *em_cached = NULL;
2870 }
2871
2872 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873 if (em_cached && !IS_ERR_OR_NULL(em)) {
2874 BUG_ON(*em_cached);
2875 refcount_inc(&em->refs);
2876 *em_cached = em;
2877 }
2878 return em;
2879}
2880/*
2881 * basic readpage implementation. Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
2884 * XXX JDM: This needs looking at to ensure proper page locking
2885 * return 0 on success, otherwise return error
2886 */
2887static int __do_readpage(struct extent_io_tree *tree,
2888 struct page *page,
2889 get_extent_t *get_extent,
2890 struct extent_map **em_cached,
2891 struct bio **bio, int mirror_num,
2892 unsigned long *bio_flags, unsigned int read_flags,
2893 u64 *prev_em_start)
2894{
2895 struct inode *inode = page->mapping->host;
2896 u64 start = page_offset(page);
2897 const u64 end = start + PAGE_SIZE - 1;
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 cur_end;
2903 struct extent_map *em;
2904 struct block_device *bdev;
2905 int ret = 0;
2906 int nr = 0;
2907 size_t pg_offset = 0;
2908 size_t iosize;
2909 size_t disk_io_size;
2910 size_t blocksize = inode->i_sb->s_blocksize;
2911 unsigned long this_bio_flag = 0;
2912
2913 set_page_extent_mapped(page);
2914
2915 if (!PageUptodate(page)) {
2916 if (cleancache_get_page(page) == 0) {
2917 BUG_ON(blocksize != PAGE_SIZE);
2918 unlock_extent(tree, start, end);
2919 goto out;
2920 }
2921 }
2922
2923 if (page->index == last_byte >> PAGE_SHIFT) {
2924 char *userpage;
2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926
2927 if (zero_offset) {
2928 iosize = PAGE_SIZE - zero_offset;
2929 userpage = kmap_atomic(page);
2930 memset(userpage + zero_offset, 0, iosize);
2931 flush_dcache_page(page);
2932 kunmap_atomic(userpage);
2933 }
2934 }
2935 while (cur <= end) {
2936 bool force_bio_submit = false;
2937 u64 offset;
2938
2939 if (cur >= last_byte) {
2940 char *userpage;
2941 struct extent_state *cached = NULL;
2942
2943 iosize = PAGE_SIZE - pg_offset;
2944 userpage = kmap_atomic(page);
2945 memset(userpage + pg_offset, 0, iosize);
2946 flush_dcache_page(page);
2947 kunmap_atomic(userpage);
2948 set_extent_uptodate(tree, cur, cur + iosize - 1,
2949 &cached, GFP_NOFS);
2950 unlock_extent_cached(tree, cur,
2951 cur + iosize - 1, &cached);
2952 break;
2953 }
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2957 SetPageError(page);
2958 unlock_extent(tree, cur, end);
2959 break;
2960 }
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
2970
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 offset = em->block_start;
2977 } else {
2978 offset = em->block_start + extent_offset;
2979 disk_io_size = iosize;
2980 }
2981 bdev = em->bdev;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
3034 struct extent_state *cached = NULL;
3035
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 &cached, GFP_NOFS);
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1, &cached);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070 page, offset, disk_io_size,
3071 pg_offset, bdev, bio,
3072 end_bio_extent_readpage, mirror_num,
3073 *bio_flags,
3074 this_bio_flag,
3075 force_bio_submit);
3076 if (!ret) {
3077 nr++;
3078 *bio_flags = this_bio_flag;
3079 } else {
3080 SetPageError(page);
3081 unlock_extent(tree, cur, cur + iosize - 1);
3082 goto out;
3083 }
3084 cur = cur + iosize;
3085 pg_offset += iosize;
3086 }
3087out:
3088 if (!nr) {
3089 if (!PageError(page))
3090 SetPageUptodate(page);
3091 unlock_page(page);
3092 }
3093 return ret;
3094}
3095
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097 struct page *pages[], int nr_pages,
3098 u64 start, u64 end,
3099 struct extent_map **em_cached,
3100 struct bio **bio,
3101 unsigned long *bio_flags,
3102 u64 *prev_em_start)
3103{
3104 struct inode *inode;
3105 struct btrfs_ordered_extent *ordered;
3106 int index;
3107
3108 inode = pages[0]->mapping->host;
3109 while (1) {
3110 lock_extent(tree, start, end);
3111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112 end - start + 1);
3113 if (!ordered)
3114 break;
3115 unlock_extent(tree, start, end);
3116 btrfs_start_ordered_extent(inode, ordered, 1);
3117 btrfs_put_ordered_extent(ordered);
3118 }
3119
3120 for (index = 0; index < nr_pages; index++) {
3121 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122 bio, 0, bio_flags, 0, prev_em_start);
3123 put_page(pages[index]);
3124 }
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128 struct page *pages[],
3129 int nr_pages,
3130 struct extent_map **em_cached,
3131 struct bio **bio, unsigned long *bio_flags,
3132 u64 *prev_em_start)
3133{
3134 u64 start = 0;
3135 u64 end = 0;
3136 u64 page_start;
3137 int index;
3138 int first_index = 0;
3139
3140 for (index = 0; index < nr_pages; index++) {
3141 page_start = page_offset(pages[index]);
3142 if (!end) {
3143 start = page_start;
3144 end = start + PAGE_SIZE - 1;
3145 first_index = index;
3146 } else if (end + 1 == page_start) {
3147 end += PAGE_SIZE;
3148 } else {
3149 __do_contiguous_readpages(tree, &pages[first_index],
3150 index - first_index, start,
3151 end, em_cached,
3152 bio, bio_flags,
3153 prev_em_start);
3154 start = page_start;
3155 end = start + PAGE_SIZE - 1;
3156 first_index = index;
3157 }
3158 }
3159
3160 if (end)
3161 __do_contiguous_readpages(tree, &pages[first_index],
3162 index - first_index, start,
3163 end, em_cached, bio,
3164 bio_flags, prev_em_start);
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
3171 unsigned long *bio_flags,
3172 unsigned int read_flags)
3173{
3174 struct inode *inode = page->mapping->host;
3175 struct btrfs_ordered_extent *ordered;
3176 u64 start = page_offset(page);
3177 u64 end = start + PAGE_SIZE - 1;
3178 int ret;
3179
3180 while (1) {
3181 lock_extent(tree, start, end);
3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183 PAGE_SIZE);
3184 if (!ordered)
3185 break;
3186 unlock_extent(tree, start, end);
3187 btrfs_start_ordered_extent(inode, ordered, 1);
3188 btrfs_put_ordered_extent(ordered);
3189 }
3190
3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192 bio_flags, read_flags, NULL);
3193 return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197 get_extent_t *get_extent, int mirror_num)
3198{
3199 struct bio *bio = NULL;
3200 unsigned long bio_flags = 0;
3201 int ret;
3202
3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204 &bio_flags, 0);
3205 if (bio)
3206 ret = submit_one_bio(bio, mirror_num, bio_flags);
3207 return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211 unsigned long nr_written)
3212{
3213 wbc->nr_to_write -= nr_written;
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent). In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 struct page *page, struct writeback_control *wbc,
3228 struct extent_page_data *epd,
3229 u64 delalloc_start,
3230 unsigned long *nr_written)
3231{
3232 struct extent_io_tree *tree = epd->tree;
3233 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234 u64 nr_delalloc;
3235 u64 delalloc_to_write = 0;
3236 u64 delalloc_end = 0;
3237 int ret;
3238 int page_started = 0;
3239
3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 return 0;
3242
3243 while (delalloc_end < page_end) {
3244 nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 page,
3246 &delalloc_start,
3247 &delalloc_end,
3248 BTRFS_MAX_EXTENT_SIZE);
3249 if (nr_delalloc == 0) {
3250 delalloc_start = delalloc_end + 1;
3251 continue;
3252 }
3253 ret = tree->ops->fill_delalloc(inode, page,
3254 delalloc_start,
3255 delalloc_end,
3256 &page_started,
3257 nr_written, wbc);
3258 /* File system has been set read-only */
3259 if (ret) {
3260 SetPageError(page);
3261 /* fill_delalloc should be return < 0 for error
3262 * but just in case, we use > 0 here meaning the
3263 * IO is started, so we don't want to return > 0
3264 * unless things are going well.
3265 */
3266 ret = ret < 0 ? ret : -EIO;
3267 goto done;
3268 }
3269 /*
3270 * delalloc_end is already one less than the total length, so
3271 * we don't subtract one from PAGE_SIZE
3272 */
3273 delalloc_to_write += (delalloc_end - delalloc_start +
3274 PAGE_SIZE) >> PAGE_SHIFT;
3275 delalloc_start = delalloc_end + 1;
3276 }
3277 if (wbc->nr_to_write < delalloc_to_write) {
3278 int thresh = 8192;
3279
3280 if (delalloc_to_write < thresh * 2)
3281 thresh = delalloc_to_write;
3282 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 thresh);
3284 }
3285
3286 /* did the fill delalloc function already unlock and start
3287 * the IO?
3288 */
3289 if (page_started) {
3290 /*
3291 * we've unlocked the page, so we can't update
3292 * the mapping's writeback index, just update
3293 * nr_to_write.
3294 */
3295 wbc->nr_to_write -= *nr_written;
3296 return 1;
3297 }
3298
3299 ret = 0;
3300
3301done:
3302 return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage. This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 struct page *page,
3315 struct writeback_control *wbc,
3316 struct extent_page_data *epd,
3317 loff_t i_size,
3318 unsigned long nr_written,
3319 unsigned int write_flags, int *nr_ret)
3320{
3321 struct extent_io_tree *tree = epd->tree;
3322 u64 start = page_offset(page);
3323 u64 page_end = start + PAGE_SIZE - 1;
3324 u64 end;
3325 u64 cur = start;
3326 u64 extent_offset;
3327 u64 block_start;
3328 u64 iosize;
3329 struct extent_map *em;
3330 struct block_device *bdev;
3331 size_t pg_offset = 0;
3332 size_t blocksize;
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
3336
3337 if (tree->ops && tree->ops->writepage_start_hook) {
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
3346
3347 update_nr_written(wbc, nr_written);
3348 unlock_page(page);
3349 return 1;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371 u64 offset;
3372
3373 if (cur >= i_size) {
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
3377 break;
3378 }
3379 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380 end - cur + 1, 1);
3381 if (IS_ERR_OR_NULL(em)) {
3382 SetPageError(page);
3383 ret = PTR_ERR_OR_ZERO(em);
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
3390 BUG_ON(end < cur);
3391 iosize = min(em_end - cur, end - cur + 1);
3392 iosize = ALIGN(iosize, blocksize);
3393 offset = em->block_start + extent_offset;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 free_extent_map(em);
3398 em = NULL;
3399
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 block_start == EXTENT_MAP_INLINE) {
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
3424 pg_offset += iosize;
3425 continue;
3426 }
3427
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
3433 }
3434
3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436 page, offset, iosize, pg_offset,
3437 bdev, &epd->bio,
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
3440 if (ret) {
3441 SetPageError(page);
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
3445
3446 cur = cur + iosize;
3447 pg_offset += iosize;
3448 nr++;
3449 }
3450done:
3451 *nr_ret = nr;
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 struct extent_page_data *epd)
3463{
3464 struct inode *inode = page->mapping->host;
3465 u64 start = page_offset(page);
3466 u64 page_end = start + PAGE_SIZE - 1;
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
3471 unsigned long end_index = i_size >> PAGE_SHIFT;
3472 unsigned int write_flags = 0;
3473 unsigned long nr_written = 0;
3474
3475 write_flags = wbc_to_write_flags(wbc);
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
3526 unlock_page(page);
3527 return ret;
3528
3529done_unlocked:
3530 return 0;
3531}
3532
3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534{
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
3537}
3538
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
3567 btrfs_tree_unlock(eb);
3568 }
3569 }
3570
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 spin_unlock(&eb->refs_lock);
3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
3584 ret = 1;
3585 } else {
3586 spin_unlock(&eb->refs_lock);
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
3596 struct page *p = eb->pages[i];
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 smp_mb__after_atomic();
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 break;
3667 case 0:
3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 break;
3670 case 1:
3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676}
3677
3678static void end_bio_extent_buffer_writepage(struct bio *bio)
3679{
3680 struct bio_vec *bvec;
3681 struct extent_buffer *eb;
3682 int i, done;
3683
3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 bio_for_each_segment_all(bvec, bio, i) {
3686 struct page *page = bvec->bv_page;
3687
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
3692 if (bio->bi_status ||
3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 ClearPageUptodate(page);
3695 set_btree_ioerr(page);
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
3704 }
3705
3706 bio_put(bio);
3707}
3708
3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713{
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 u64 offset = eb->start;
3717 u32 nritems;
3718 unsigned long i, num_pages;
3719 unsigned long start, end;
3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721 int ret = 0;
3722
3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
3726
3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 nritems = btrfs_header_nritems(eb);
3729 if (btrfs_header_level(eb) > 0) {
3730 end = btrfs_node_key_ptr_offset(nritems);
3731
3732 memzero_extent_buffer(eb, end, eb->len - end);
3733 } else {
3734 /*
3735 * leaf:
3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 */
3738 start = btrfs_item_nr_offset(nritems);
3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740 memzero_extent_buffer(eb, start, end - start);
3741 }
3742
3743 for (i = 0; i < num_pages; i++) {
3744 struct page *p = eb->pages[i];
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749 p, offset, PAGE_SIZE, 0, bdev,
3750 &epd->bio,
3751 end_bio_extent_buffer_writepage,
3752 0, 0, 0, false);
3753 if (ret) {
3754 set_btree_ioerr(p);
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
3762 offset += PAGE_SIZE;
3763 update_nr_written(wbc, 1);
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
3769 struct page *p = eb->pages[i];
3770 clear_page_dirty_for_io(p);
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818 tag))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 spin_lock(&mapping->private_lock);
3829 if (!PagePrivate(page)) {
3830 spin_unlock(&mapping->private_lock);
3831 continue;
3832 }
3833
3834 eb = (struct extent_buffer *)page->private;
3835
3836 /*
3837 * Shouldn't happen and normally this would be a BUG_ON
3838 * but no sense in crashing the users box for something
3839 * we can survive anyway.
3840 */
3841 if (WARN_ON(!eb)) {
3842 spin_unlock(&mapping->private_lock);
3843 continue;
3844 }
3845
3846 if (eb == prev_eb) {
3847 spin_unlock(&mapping->private_lock);
3848 continue;
3849 }
3850
3851 ret = atomic_inc_not_zero(&eb->refs);
3852 spin_unlock(&mapping->private_lock);
3853 if (!ret)
3854 continue;
3855
3856 prev_eb = eb;
3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 if (!ret) {
3859 free_extent_buffer(eb);
3860 continue;
3861 }
3862
3863 ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 if (ret) {
3865 done = 1;
3866 free_extent_buffer(eb);
3867 break;
3868 }
3869 free_extent_buffer(eb);
3870
3871 /*
3872 * the filesystem may choose to bump up nr_to_write.
3873 * We have to make sure to honor the new nr_to_write
3874 * at any time
3875 */
3876 nr_to_write_done = wbc->nr_to_write <= 0;
3877 }
3878 pagevec_release(&pvec);
3879 cond_resched();
3880 }
3881 if (!scanned && !done) {
3882 /*
3883 * We hit the last page and there is more work to be done: wrap
3884 * back to the start of the file
3885 */
3886 scanned = 1;
3887 index = 0;
3888 goto retry;
3889 }
3890 flush_write_bio(&epd);
3891 return ret;
3892}
3893
3894/**
3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @data: data passed to __extent_writepage function
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them. If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
3908static int extent_write_cache_pages(struct address_space *mapping,
3909 struct writeback_control *wbc,
3910 struct extent_page_data *epd)
3911{
3912 struct inode *inode = mapping->host;
3913 int ret = 0;
3914 int done = 0;
3915 int nr_to_write_done = 0;
3916 struct pagevec pvec;
3917 int nr_pages;
3918 pgoff_t index;
3919 pgoff_t end; /* Inclusive */
3920 pgoff_t done_index;
3921 int range_whole = 0;
3922 int scanned = 0;
3923 int tag;
3924
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 range_whole = 1;
3946 scanned = 1;
3947 }
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag = PAGECACHE_TAG_TOWRITE;
3950 else
3951 tag = PAGECACHE_TAG_DIRTY;
3952retry:
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag_pages_for_writeback(mapping, index, end);
3955 done_index = index;
3956 while (!done && !nr_to_write_done && (index <= end) &&
3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 &index, end, tag))) {
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
3965 done_index = page->index;
3966 /*
3967 * At this point we hold neither the i_pages lock nor
3968 * the page lock: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL),
3970 * or even swizzled back from swapper_space to
3971 * tmpfs file mapping
3972 */
3973 if (!trylock_page(page)) {
3974 flush_write_bio(epd);
3975 lock_page(page);
3976 }
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
3983 if (wbc->sync_mode != WB_SYNC_NONE) {
3984 if (PageWriteback(page))
3985 flush_write_bio(epd);
3986 wait_on_page_writeback(page);
3987 }
3988
3989 if (PageWriteback(page) ||
3990 !clear_page_dirty_for_io(page)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 ret = __extent_writepage(page, wbc, epd);
3996
3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 unlock_page(page);
3999 ret = 0;
4000 }
4001 if (ret < 0) {
4002 /*
4003 * done_index is set past this page,
4004 * so media errors will not choke
4005 * background writeout for the entire
4006 * file. This has consequences for
4007 * range_cyclic semantics (ie. it may
4008 * not be suitable for data integrity
4009 * writeout).
4010 */
4011 done_index = page->index + 1;
4012 done = 1;
4013 break;
4014 }
4015
4016 /*
4017 * the filesystem may choose to bump up nr_to_write.
4018 * We have to make sure to honor the new nr_to_write
4019 * at any time
4020 */
4021 nr_to_write_done = wbc->nr_to_write <= 0;
4022 }
4023 pagevec_release(&pvec);
4024 cond_resched();
4025 }
4026 if (!scanned && !done) {
4027 /*
4028 * We hit the last page and there is more work to be done: wrap
4029 * back to the start of the file
4030 */
4031 scanned = 1;
4032 index = 0;
4033 goto retry;
4034 }
4035
4036 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037 mapping->writeback_index = done_index;
4038
4039 btrfs_add_delayed_iput(inode);
4040 return ret;
4041}
4042
4043static void flush_write_bio(struct extent_page_data *epd)
4044{
4045 if (epd->bio) {
4046 int ret;
4047
4048 ret = submit_one_bio(epd->bio, 0, 0);
4049 BUG_ON(ret < 0); /* -ENOMEM */
4050 epd->bio = NULL;
4051 }
4052}
4053
4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4055{
4056 int ret;
4057 struct extent_page_data epd = {
4058 .bio = NULL,
4059 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4060 .extent_locked = 0,
4061 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4062 };
4063
4064 ret = __extent_writepage(page, wbc, &epd);
4065
4066 flush_write_bio(&epd);
4067 return ret;
4068}
4069
4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4071 int mode)
4072{
4073 int ret = 0;
4074 struct address_space *mapping = inode->i_mapping;
4075 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076 struct page *page;
4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 PAGE_SHIFT;
4079
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .extent_locked = 1,
4084 .sync_io = mode == WB_SYNC_ALL,
4085 };
4086 struct writeback_control wbc_writepages = {
4087 .sync_mode = mode,
4088 .nr_to_write = nr_pages * 2,
4089 .range_start = start,
4090 .range_end = end + 1,
4091 };
4092
4093 while (start <= end) {
4094 page = find_get_page(mapping, start >> PAGE_SHIFT);
4095 if (clear_page_dirty_for_io(page))
4096 ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 else {
4098 if (tree->ops && tree->ops->writepage_end_io_hook)
4099 tree->ops->writepage_end_io_hook(page, start,
4100 start + PAGE_SIZE - 1,
4101 NULL, 1);
4102 unlock_page(page);
4103 }
4104 put_page(page);
4105 start += PAGE_SIZE;
4106 }
4107
4108 flush_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113 struct address_space *mapping,
4114 struct writeback_control *wbc)
4115{
4116 int ret = 0;
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
4120 .extent_locked = 0,
4121 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4122 };
4123
4124 ret = extent_write_cache_pages(mapping, wbc, &epd);
4125 flush_write_bio(&epd);
4126 return ret;
4127}
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130 struct address_space *mapping,
4131 struct list_head *pages, unsigned nr_pages)
4132{
4133 struct bio *bio = NULL;
4134 unsigned page_idx;
4135 unsigned long bio_flags = 0;
4136 struct page *pagepool[16];
4137 struct page *page;
4138 struct extent_map *em_cached = NULL;
4139 int nr = 0;
4140 u64 prev_em_start = (u64)-1;
4141
4142 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143 page = list_entry(pages->prev, struct page, lru);
4144
4145 prefetchw(&page->flags);
4146 list_del(&page->lru);
4147 if (add_to_page_cache_lru(page, mapping,
4148 page->index,
4149 readahead_gfp_mask(mapping))) {
4150 put_page(page);
4151 continue;
4152 }
4153
4154 pagepool[nr++] = page;
4155 if (nr < ARRAY_SIZE(pagepool))
4156 continue;
4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 &bio_flags, &prev_em_start);
4159 nr = 0;
4160 }
4161 if (nr)
4162 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163 &bio_flags, &prev_em_start);
4164
4165 if (em_cached)
4166 free_extent_map(em_cached);
4167
4168 BUG_ON(!list_empty(pages));
4169 if (bio)
4170 return submit_one_bio(bio, 0, bio_flags);
4171 return 0;
4172}
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180 struct page *page, unsigned long offset)
4181{
4182 struct extent_state *cached_state = NULL;
4183 u64 start = page_offset(page);
4184 u64 end = start + PAGE_SIZE - 1;
4185 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
4187 start += ALIGN(offset, blocksize);
4188 if (start > end)
4189 return 0;
4190
4191 lock_extent_bits(tree, start, end, &cached_state);
4192 wait_on_page_writeback(page);
4193 clear_extent_bit(tree, start, end,
4194 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195 EXTENT_DO_ACCOUNTING,
4196 1, 1, &cached_state);
4197 return 0;
4198}
4199
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
4205static int try_release_extent_state(struct extent_map_tree *map,
4206 struct extent_io_tree *tree,
4207 struct page *page, gfp_t mask)
4208{
4209 u64 start = page_offset(page);
4210 u64 end = start + PAGE_SIZE - 1;
4211 int ret = 1;
4212
4213 if (test_range_bit(tree, start, end,
4214 EXTENT_IOBITS, 0, NULL))
4215 ret = 0;
4216 else {
4217 /*
4218 * at this point we can safely clear everything except the
4219 * locked bit and the nodatasum bit
4220 */
4221 ret = __clear_extent_bit(tree, start, end,
4222 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223 0, 0, NULL, mask, NULL);
4224
4225 /* if clear_extent_bit failed for enomem reasons,
4226 * we can't allow the release to continue.
4227 */
4228 if (ret < 0)
4229 ret = 0;
4230 else
4231 ret = 1;
4232 }
4233 return ret;
4234}
4235
4236/*
4237 * a helper for releasepage. As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
4242 struct extent_io_tree *tree, struct page *page,
4243 gfp_t mask)
4244{
4245 struct extent_map *em;
4246 u64 start = page_offset(page);
4247 u64 end = start + PAGE_SIZE - 1;
4248
4249 if (gfpflags_allow_blocking(mask) &&
4250 page->mapping->host->i_size > SZ_16M) {
4251 u64 len;
4252 while (start <= end) {
4253 len = end - start + 1;
4254 write_lock(&map->lock);
4255 em = lookup_extent_mapping(map, start, len);
4256 if (!em) {
4257 write_unlock(&map->lock);
4258 break;
4259 }
4260 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261 em->start != start) {
4262 write_unlock(&map->lock);
4263 free_extent_map(em);
4264 break;
4265 }
4266 if (!test_range_bit(tree, em->start,
4267 extent_map_end(em) - 1,
4268 EXTENT_LOCKED | EXTENT_WRITEBACK,
4269 0, NULL)) {
4270 remove_extent_mapping(map, em);
4271 /* once for the rb tree */
4272 free_extent_map(em);
4273 }
4274 start = extent_map_end(em);
4275 write_unlock(&map->lock);
4276
4277 /* once for us */
4278 free_extent_map(em);
4279 }
4280 }
4281 return try_release_extent_state(map, tree, page, mask);
4282}
4283
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289 u64 offset, u64 last)
4290{
4291 u64 sectorsize = btrfs_inode_sectorsize(inode);
4292 struct extent_map *em;
4293 u64 len;
4294
4295 if (offset >= last)
4296 return NULL;
4297
4298 while (1) {
4299 len = last - offset;
4300 if (len == 0)
4301 break;
4302 len = ALIGN(len, sectorsize);
4303 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304 len, 0);
4305 if (IS_ERR_OR_NULL(em))
4306 return em;
4307
4308 /* if this isn't a hole return it */
4309 if (em->block_start != EXTENT_MAP_HOLE)
4310 return em;
4311
4312 /* this is a hole, advance to the next extent */
4313 offset = extent_map_end(em);
4314 free_extent_map(em);
4315 if (offset >= last)
4316 break;
4317 }
4318 return NULL;
4319}
4320
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327 u64 offset;
4328 u64 phys;
4329 u64 len;
4330 u32 flags;
4331 bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345 struct fiemap_cache *cache,
4346 u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348 int ret = 0;
4349
4350 if (!cache->cached)
4351 goto assign;
4352
4353 /*
4354 * Sanity check, extent_fiemap() should have ensured that new
4355 * fiemap extent won't overlap with cahced one.
4356 * Not recoverable.
4357 *
4358 * NOTE: Physical address can overlap, due to compression
4359 */
4360 if (cache->offset + cache->len > offset) {
4361 WARN_ON(1);
4362 return -EINVAL;
4363 }
4364
4365 /*
4366 * Only merges fiemap extents if
4367 * 1) Their logical addresses are continuous
4368 *
4369 * 2) Their physical addresses are continuous
4370 * So truly compressed (physical size smaller than logical size)
4371 * extents won't get merged with each other
4372 *
4373 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374 * So regular extent won't get merged with prealloc extent
4375 */
4376 if (cache->offset + cache->len == offset &&
4377 cache->phys + cache->len == phys &&
4378 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379 (flags & ~FIEMAP_EXTENT_LAST)) {
4380 cache->len += len;
4381 cache->flags |= flags;
4382 goto try_submit_last;
4383 }
4384
4385 /* Not mergeable, need to submit cached one */
4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 cache->len, cache->flags);
4388 cache->cached = false;
4389 if (ret)
4390 return ret;
4391assign:
4392 cache->cached = true;
4393 cache->offset = offset;
4394 cache->phys = phys;
4395 cache->len = len;
4396 cache->flags = flags;
4397try_submit_last:
4398 if (cache->flags & FIEMAP_EXTENT_LAST) {
4399 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400 cache->phys, cache->len, cache->flags);
4401 cache->cached = false;
4402 }
4403 return ret;
4404}
4405
4406/*
4407 * Emit last fiemap cache
4408 *
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0 4k 8k
4411 * |<- Fiemap range ->|
4412 * |<------------ First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4416 */
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418 struct fiemap_extent_info *fieinfo,
4419 struct fiemap_cache *cache)
4420{
4421 int ret;
4422
4423 if (!cache->cached)
4424 return 0;
4425
4426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427 cache->len, cache->flags);
4428 cache->cached = false;
4429 if (ret > 0)
4430 ret = 0;
4431 return ret;
4432}
4433
4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435 __u64 start, __u64 len)
4436{
4437 int ret = 0;
4438 u64 off = start;
4439 u64 max = start + len;
4440 u32 flags = 0;
4441 u32 found_type;
4442 u64 last;
4443 u64 last_for_get_extent = 0;
4444 u64 disko = 0;
4445 u64 isize = i_size_read(inode);
4446 struct btrfs_key found_key;
4447 struct extent_map *em = NULL;
4448 struct extent_state *cached_state = NULL;
4449 struct btrfs_path *path;
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct fiemap_cache cache = { 0 };
4452 int end = 0;
4453 u64 em_start = 0;
4454 u64 em_len = 0;
4455 u64 em_end = 0;
4456
4457 if (len == 0)
4458 return -EINVAL;
4459
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463 path->leave_spinning = 1;
4464
4465 start = round_down(start, btrfs_inode_sectorsize(inode));
4466 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467
4468 /*
4469 * lookup the last file extent. We're not using i_size here
4470 * because there might be preallocation past i_size
4471 */
4472 ret = btrfs_lookup_file_extent(NULL, root, path,
4473 btrfs_ino(BTRFS_I(inode)), -1, 0);
4474 if (ret < 0) {
4475 btrfs_free_path(path);
4476 return ret;
4477 } else {
4478 WARN_ON(!ret);
4479 if (ret == 1)
4480 ret = 0;
4481 }
4482
4483 path->slots[0]--;
4484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485 found_type = found_key.type;
4486
4487 /* No extents, but there might be delalloc bits */
4488 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489 found_type != BTRFS_EXTENT_DATA_KEY) {
4490 /* have to trust i_size as the end */
4491 last = (u64)-1;
4492 last_for_get_extent = isize;
4493 } else {
4494 /*
4495 * remember the start of the last extent. There are a
4496 * bunch of different factors that go into the length of the
4497 * extent, so its much less complex to remember where it started
4498 */
4499 last = found_key.offset;
4500 last_for_get_extent = last + 1;
4501 }
4502 btrfs_release_path(path);
4503
4504 /*
4505 * we might have some extents allocated but more delalloc past those
4506 * extents. so, we trust isize unless the start of the last extent is
4507 * beyond isize
4508 */
4509 if (last < isize) {
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 }
4513
4514 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515 &cached_state);
4516
4517 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4518 if (!em)
4519 goto out;
4520 if (IS_ERR(em)) {
4521 ret = PTR_ERR(em);
4522 goto out;
4523 }
4524
4525 while (!end) {
4526 u64 offset_in_extent = 0;
4527
4528 /* break if the extent we found is outside the range */
4529 if (em->start >= max || extent_map_end(em) < off)
4530 break;
4531
4532 /*
4533 * get_extent may return an extent that starts before our
4534 * requested range. We have to make sure the ranges
4535 * we return to fiemap always move forward and don't
4536 * overlap, so adjust the offsets here
4537 */
4538 em_start = max(em->start, off);
4539
4540 /*
4541 * record the offset from the start of the extent
4542 * for adjusting the disk offset below. Only do this if the
4543 * extent isn't compressed since our in ram offset may be past
4544 * what we have actually allocated on disk.
4545 */
4546 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547 offset_in_extent = em_start - em->start;
4548 em_end = extent_map_end(em);
4549 em_len = em_end - em_start;
4550 disko = 0;
4551 flags = 0;
4552
4553 /*
4554 * bump off for our next call to get_extent
4555 */
4556 off = extent_map_end(em);
4557 if (off >= max)
4558 end = 1;
4559
4560 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561 end = 1;
4562 flags |= FIEMAP_EXTENT_LAST;
4563 } else if (em->block_start == EXTENT_MAP_INLINE) {
4564 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565 FIEMAP_EXTENT_NOT_ALIGNED);
4566 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567 flags |= (FIEMAP_EXTENT_DELALLOC |
4568 FIEMAP_EXTENT_UNKNOWN);
4569 } else if (fieinfo->fi_extents_max) {
4570 u64 bytenr = em->block_start -
4571 (em->start - em->orig_start);
4572
4573 disko = em->block_start + offset_in_extent;
4574
4575 /*
4576 * As btrfs supports shared space, this information
4577 * can be exported to userspace tools via
4578 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4579 * then we're just getting a count and we can skip the
4580 * lookup stuff.
4581 */
4582 ret = btrfs_check_shared(root,
4583 btrfs_ino(BTRFS_I(inode)),
4584 bytenr);
4585 if (ret < 0)
4586 goto out_free;
4587 if (ret)
4588 flags |= FIEMAP_EXTENT_SHARED;
4589 ret = 0;
4590 }
4591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592 flags |= FIEMAP_EXTENT_ENCODED;
4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594 flags |= FIEMAP_EXTENT_UNWRITTEN;
4595
4596 free_extent_map(em);
4597 em = NULL;
4598 if ((em_start >= last) || em_len == (u64)-1 ||
4599 (last == (u64)-1 && isize <= em_end)) {
4600 flags |= FIEMAP_EXTENT_LAST;
4601 end = 1;
4602 }
4603
4604 /* now scan forward to see if this is really the last extent. */
4605 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4606 if (IS_ERR(em)) {
4607 ret = PTR_ERR(em);
4608 goto out;
4609 }
4610 if (!em) {
4611 flags |= FIEMAP_EXTENT_LAST;
4612 end = 1;
4613 }
4614 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615 em_len, flags);
4616 if (ret) {
4617 if (ret == 1)
4618 ret = 0;
4619 goto out_free;
4620 }
4621 }
4622out_free:
4623 if (!ret)
4624 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625 free_extent_map(em);
4626out:
4627 btrfs_free_path(path);
4628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629 &cached_state);
4630 return ret;
4631}
4632
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
4635 btrfs_leak_debug_del(&eb->leak_list);
4636 kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
4639int extent_buffer_under_io(struct extent_buffer *eb)
4640{
4641 return (atomic_read(&eb->io_pages) ||
4642 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650{
4651 unsigned long index;
4652 struct page *page;
4653 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655 BUG_ON(extent_buffer_under_io(eb));
4656
4657 index = num_extent_pages(eb->start, eb->len);
4658 if (index == 0)
4659 return;
4660
4661 do {
4662 index--;
4663 page = eb->pages[index];
4664 if (!page)
4665 continue;
4666 if (mapped)
4667 spin_lock(&page->mapping->private_lock);
4668 /*
4669 * We do this since we'll remove the pages after we've
4670 * removed the eb from the radix tree, so we could race
4671 * and have this page now attached to the new eb. So
4672 * only clear page_private if it's still connected to
4673 * this eb.
4674 */
4675 if (PagePrivate(page) &&
4676 page->private == (unsigned long)eb) {
4677 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678 BUG_ON(PageDirty(page));
4679 BUG_ON(PageWriteback(page));
4680 /*
4681 * We need to make sure we haven't be attached
4682 * to a new eb.
4683 */
4684 ClearPagePrivate(page);
4685 set_page_private(page, 0);
4686 /* One for the page private */
4687 put_page(page);
4688 }
4689
4690 if (mapped)
4691 spin_unlock(&page->mapping->private_lock);
4692
4693 /* One for when we allocated the page */
4694 put_page(page);
4695 } while (index != 0);
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
4703 btrfs_release_extent_buffer_page(eb);
4704 __free_extent_buffer(eb);
4705}
4706
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709 unsigned long len)
4710{
4711 struct extent_buffer *eb = NULL;
4712
4713 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714 eb->start = start;
4715 eb->len = len;
4716 eb->fs_info = fs_info;
4717 eb->bflags = 0;
4718 rwlock_init(&eb->lock);
4719 atomic_set(&eb->write_locks, 0);
4720 atomic_set(&eb->read_locks, 0);
4721 atomic_set(&eb->blocking_readers, 0);
4722 atomic_set(&eb->blocking_writers, 0);
4723 atomic_set(&eb->spinning_readers, 0);
4724 atomic_set(&eb->spinning_writers, 0);
4725 eb->lock_nested = 0;
4726 init_waitqueue_head(&eb->write_lock_wq);
4727 init_waitqueue_head(&eb->read_lock_wq);
4728
4729 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730
4731 spin_lock_init(&eb->refs_lock);
4732 atomic_set(&eb->refs, 1);
4733 atomic_set(&eb->io_pages, 0);
4734
4735 /*
4736 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 */
4738 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741
4742 return eb;
4743}
4744
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747 unsigned long i;
4748 struct page *p;
4749 struct extent_buffer *new;
4750 unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
4752 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753 if (new == NULL)
4754 return NULL;
4755
4756 for (i = 0; i < num_pages; i++) {
4757 p = alloc_page(GFP_NOFS);
4758 if (!p) {
4759 btrfs_release_extent_buffer(new);
4760 return NULL;
4761 }
4762 attach_extent_buffer_page(new, p);
4763 WARN_ON(PageDirty(p));
4764 SetPageUptodate(p);
4765 new->pages[i] = p;
4766 copy_page(page_address(p), page_address(src->pages[i]));
4767 }
4768
4769 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772 return new;
4773}
4774
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776 u64 start, unsigned long len)
4777{
4778 struct extent_buffer *eb;
4779 unsigned long num_pages;
4780 unsigned long i;
4781
4782 num_pages = num_extent_pages(start, len);
4783
4784 eb = __alloc_extent_buffer(fs_info, start, len);
4785 if (!eb)
4786 return NULL;
4787
4788 for (i = 0; i < num_pages; i++) {
4789 eb->pages[i] = alloc_page(GFP_NOFS);
4790 if (!eb->pages[i])
4791 goto err;
4792 }
4793 set_extent_buffer_uptodate(eb);
4794 btrfs_set_header_nritems(eb, 0);
4795 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797 return eb;
4798err:
4799 for (; i > 0; i--)
4800 __free_page(eb->pages[i - 1]);
4801 __free_extent_buffer(eb);
4802 return NULL;
4803}
4804
4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806 u64 start)
4807{
4808 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4809}
4810
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
4813 int refs;
4814 /* the ref bit is tricky. We have to make sure it is set
4815 * if we have the buffer dirty. Otherwise the
4816 * code to free a buffer can end up dropping a dirty
4817 * page
4818 *
4819 * Once the ref bit is set, it won't go away while the
4820 * buffer is dirty or in writeback, and it also won't
4821 * go away while we have the reference count on the
4822 * eb bumped.
4823 *
4824 * We can't just set the ref bit without bumping the
4825 * ref on the eb because free_extent_buffer might
4826 * see the ref bit and try to clear it. If this happens
4827 * free_extent_buffer might end up dropping our original
4828 * ref by mistake and freeing the page before we are able
4829 * to add one more ref.
4830 *
4831 * So bump the ref count first, then set the bit. If someone
4832 * beat us to it, drop the ref we added.
4833 */
4834 refs = atomic_read(&eb->refs);
4835 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 return;
4837
4838 spin_lock(&eb->refs_lock);
4839 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840 atomic_inc(&eb->refs);
4841 spin_unlock(&eb->refs_lock);
4842}
4843
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845 struct page *accessed)
4846{
4847 unsigned long num_pages, i;
4848
4849 check_buffer_tree_ref(eb);
4850
4851 num_pages = num_extent_pages(eb->start, eb->len);
4852 for (i = 0; i < num_pages; i++) {
4853 struct page *p = eb->pages[i];
4854
4855 if (p != accessed)
4856 mark_page_accessed(p);
4857 }
4858}
4859
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861 u64 start)
4862{
4863 struct extent_buffer *eb;
4864
4865 rcu_read_lock();
4866 eb = radix_tree_lookup(&fs_info->buffer_radix,
4867 start >> PAGE_SHIFT);
4868 if (eb && atomic_inc_not_zero(&eb->refs)) {
4869 rcu_read_unlock();
4870 /*
4871 * Lock our eb's refs_lock to avoid races with
4872 * free_extent_buffer. When we get our eb it might be flagged
4873 * with EXTENT_BUFFER_STALE and another task running
4874 * free_extent_buffer might have seen that flag set,
4875 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876 * writeback flags not set) and it's still in the tree (flag
4877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878 * of decrementing the extent buffer's reference count twice.
4879 * So here we could race and increment the eb's reference count,
4880 * clear its stale flag, mark it as dirty and drop our reference
4881 * before the other task finishes executing free_extent_buffer,
4882 * which would later result in an attempt to free an extent
4883 * buffer that is dirty.
4884 */
4885 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886 spin_lock(&eb->refs_lock);
4887 spin_unlock(&eb->refs_lock);
4888 }
4889 mark_extent_buffer_accessed(eb, NULL);
4890 return eb;
4891 }
4892 rcu_read_unlock();
4893
4894 return NULL;
4895}
4896
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899 u64 start)
4900{
4901 struct extent_buffer *eb, *exists = NULL;
4902 int ret;
4903
4904 eb = find_extent_buffer(fs_info, start);
4905 if (eb)
4906 return eb;
4907 eb = alloc_dummy_extent_buffer(fs_info, start);
4908 if (!eb)
4909 return NULL;
4910 eb->fs_info = fs_info;
4911again:
4912 ret = radix_tree_preload(GFP_NOFS);
4913 if (ret)
4914 goto free_eb;
4915 spin_lock(&fs_info->buffer_lock);
4916 ret = radix_tree_insert(&fs_info->buffer_radix,
4917 start >> PAGE_SHIFT, eb);
4918 spin_unlock(&fs_info->buffer_lock);
4919 radix_tree_preload_end();
4920 if (ret == -EEXIST) {
4921 exists = find_extent_buffer(fs_info, start);
4922 if (exists)
4923 goto free_eb;
4924 else
4925 goto again;
4926 }
4927 check_buffer_tree_ref(eb);
4928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930 /*
4931 * We will free dummy extent buffer's if they come into
4932 * free_extent_buffer with a ref count of 2, but if we are using this we
4933 * want the buffers to stay in memory until we're done with them, so
4934 * bump the ref count again.
4935 */
4936 atomic_inc(&eb->refs);
4937 return eb;
4938free_eb:
4939 btrfs_release_extent_buffer(eb);
4940 return exists;
4941}
4942#endif
4943
4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945 u64 start)
4946{
4947 unsigned long len = fs_info->nodesize;
4948 unsigned long num_pages = num_extent_pages(start, len);
4949 unsigned long i;
4950 unsigned long index = start >> PAGE_SHIFT;
4951 struct extent_buffer *eb;
4952 struct extent_buffer *exists = NULL;
4953 struct page *p;
4954 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955 int uptodate = 1;
4956 int ret;
4957
4958 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959 btrfs_err(fs_info, "bad tree block start %llu", start);
4960 return ERR_PTR(-EINVAL);
4961 }
4962
4963 eb = find_extent_buffer(fs_info, start);
4964 if (eb)
4965 return eb;
4966
4967 eb = __alloc_extent_buffer(fs_info, start, len);
4968 if (!eb)
4969 return ERR_PTR(-ENOMEM);
4970
4971 for (i = 0; i < num_pages; i++, index++) {
4972 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973 if (!p) {
4974 exists = ERR_PTR(-ENOMEM);
4975 goto free_eb;
4976 }
4977
4978 spin_lock(&mapping->private_lock);
4979 if (PagePrivate(p)) {
4980 /*
4981 * We could have already allocated an eb for this page
4982 * and attached one so lets see if we can get a ref on
4983 * the existing eb, and if we can we know it's good and
4984 * we can just return that one, else we know we can just
4985 * overwrite page->private.
4986 */
4987 exists = (struct extent_buffer *)p->private;
4988 if (atomic_inc_not_zero(&exists->refs)) {
4989 spin_unlock(&mapping->private_lock);
4990 unlock_page(p);
4991 put_page(p);
4992 mark_extent_buffer_accessed(exists, p);
4993 goto free_eb;
4994 }
4995 exists = NULL;
4996
4997 /*
4998 * Do this so attach doesn't complain and we need to
4999 * drop the ref the old guy had.
5000 */
5001 ClearPagePrivate(p);
5002 WARN_ON(PageDirty(p));
5003 put_page(p);
5004 }
5005 attach_extent_buffer_page(eb, p);
5006 spin_unlock(&mapping->private_lock);
5007 WARN_ON(PageDirty(p));
5008 eb->pages[i] = p;
5009 if (!PageUptodate(p))
5010 uptodate = 0;
5011
5012 /*
5013 * see below about how we avoid a nasty race with release page
5014 * and why we unlock later
5015 */
5016 }
5017 if (uptodate)
5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019again:
5020 ret = radix_tree_preload(GFP_NOFS);
5021 if (ret) {
5022 exists = ERR_PTR(ret);
5023 goto free_eb;
5024 }
5025
5026 spin_lock(&fs_info->buffer_lock);
5027 ret = radix_tree_insert(&fs_info->buffer_radix,
5028 start >> PAGE_SHIFT, eb);
5029 spin_unlock(&fs_info->buffer_lock);
5030 radix_tree_preload_end();
5031 if (ret == -EEXIST) {
5032 exists = find_extent_buffer(fs_info, start);
5033 if (exists)
5034 goto free_eb;
5035 else
5036 goto again;
5037 }
5038 /* add one reference for the tree */
5039 check_buffer_tree_ref(eb);
5040 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041
5042 /*
5043 * there is a race where release page may have
5044 * tried to find this extent buffer in the radix
5045 * but failed. It will tell the VM it is safe to
5046 * reclaim the, and it will clear the page private bit.
5047 * We must make sure to set the page private bit properly
5048 * after the extent buffer is in the radix tree so
5049 * it doesn't get lost
5050 */
5051 SetPageChecked(eb->pages[0]);
5052 for (i = 1; i < num_pages; i++) {
5053 p = eb->pages[i];
5054 ClearPageChecked(p);
5055 unlock_page(p);
5056 }
5057 unlock_page(eb->pages[0]);
5058 return eb;
5059
5060free_eb:
5061 WARN_ON(!atomic_dec_and_test(&eb->refs));
5062 for (i = 0; i < num_pages; i++) {
5063 if (eb->pages[i])
5064 unlock_page(eb->pages[i]);
5065 }
5066
5067 btrfs_release_extent_buffer(eb);
5068 return exists;
5069}
5070
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073 struct extent_buffer *eb =
5074 container_of(head, struct extent_buffer, rcu_head);
5075
5076 __free_extent_buffer(eb);
5077}
5078
5079/* Expects to have eb->eb_lock already held */
5080static int release_extent_buffer(struct extent_buffer *eb)
5081{
5082 WARN_ON(atomic_read(&eb->refs) == 0);
5083 if (atomic_dec_and_test(&eb->refs)) {
5084 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085 struct btrfs_fs_info *fs_info = eb->fs_info;
5086
5087 spin_unlock(&eb->refs_lock);
5088
5089 spin_lock(&fs_info->buffer_lock);
5090 radix_tree_delete(&fs_info->buffer_radix,
5091 eb->start >> PAGE_SHIFT);
5092 spin_unlock(&fs_info->buffer_lock);
5093 } else {
5094 spin_unlock(&eb->refs_lock);
5095 }
5096
5097 /* Should be safe to release our pages at this point */
5098 btrfs_release_extent_buffer_page(eb);
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101 __free_extent_buffer(eb);
5102 return 1;
5103 }
5104#endif
5105 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106 return 1;
5107 }
5108 spin_unlock(&eb->refs_lock);
5109
5110 return 0;
5111}
5112
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
5115 int refs;
5116 int old;
5117 if (!eb)
5118 return;
5119
5120 while (1) {
5121 refs = atomic_read(&eb->refs);
5122 if (refs <= 3)
5123 break;
5124 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125 if (old == refs)
5126 return;
5127 }
5128
5129 spin_lock(&eb->refs_lock);
5130 if (atomic_read(&eb->refs) == 2 &&
5131 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132 atomic_dec(&eb->refs);
5133
5134 if (atomic_read(&eb->refs) == 2 &&
5135 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136 !extent_buffer_under_io(eb) &&
5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 atomic_dec(&eb->refs);
5139
5140 /*
5141 * I know this is terrible, but it's temporary until we stop tracking
5142 * the uptodate bits and such for the extent buffers.
5143 */
5144 release_extent_buffer(eb);
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149 if (!eb)
5150 return;
5151
5152 spin_lock(&eb->refs_lock);
5153 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
5155 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157 atomic_dec(&eb->refs);
5158 release_extent_buffer(eb);
5159}
5160
5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162{
5163 unsigned long i;
5164 unsigned long num_pages;
5165 struct page *page;
5166
5167 num_pages = num_extent_pages(eb->start, eb->len);
5168
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 if (!PageDirty(page))
5172 continue;
5173
5174 lock_page(page);
5175 WARN_ON(!PagePrivate(page));
5176
5177 clear_page_dirty_for_io(page);
5178 xa_lock_irq(&page->mapping->i_pages);
5179 if (!PageDirty(page)) {
5180 radix_tree_tag_clear(&page->mapping->i_pages,
5181 page_index(page),
5182 PAGECACHE_TAG_DIRTY);
5183 }
5184 xa_unlock_irq(&page->mapping->i_pages);
5185 ClearPageError(page);
5186 unlock_page(page);
5187 }
5188 WARN_ON(atomic_read(&eb->refs) == 0);
5189}
5190
5191int set_extent_buffer_dirty(struct extent_buffer *eb)
5192{
5193 unsigned long i;
5194 unsigned long num_pages;
5195 int was_dirty = 0;
5196
5197 check_buffer_tree_ref(eb);
5198
5199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200
5201 num_pages = num_extent_pages(eb->start, eb->len);
5202 WARN_ON(atomic_read(&eb->refs) == 0);
5203 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
5205 for (i = 0; i < num_pages; i++)
5206 set_page_dirty(eb->pages[i]);
5207 return was_dirty;
5208}
5209
5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211{
5212 unsigned long i;
5213 struct page *page;
5214 unsigned long num_pages;
5215
5216 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217 num_pages = num_extent_pages(eb->start, eb->len);
5218 for (i = 0; i < num_pages; i++) {
5219 page = eb->pages[i];
5220 if (page)
5221 ClearPageUptodate(page);
5222 }
5223}
5224
5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226{
5227 unsigned long i;
5228 struct page *page;
5229 unsigned long num_pages;
5230
5231 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232 num_pages = num_extent_pages(eb->start, eb->len);
5233 for (i = 0; i < num_pages; i++) {
5234 page = eb->pages[i];
5235 SetPageUptodate(page);
5236 }
5237}
5238
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
5240 struct extent_buffer *eb, int wait, int mirror_num)
5241{
5242 unsigned long i;
5243 struct page *page;
5244 int err;
5245 int ret = 0;
5246 int locked_pages = 0;
5247 int all_uptodate = 1;
5248 unsigned long num_pages;
5249 unsigned long num_reads = 0;
5250 struct bio *bio = NULL;
5251 unsigned long bio_flags = 0;
5252
5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254 return 0;
5255
5256 num_pages = num_extent_pages(eb->start, eb->len);
5257 for (i = 0; i < num_pages; i++) {
5258 page = eb->pages[i];
5259 if (wait == WAIT_NONE) {
5260 if (!trylock_page(page))
5261 goto unlock_exit;
5262 } else {
5263 lock_page(page);
5264 }
5265 locked_pages++;
5266 }
5267 /*
5268 * We need to firstly lock all pages to make sure that
5269 * the uptodate bit of our pages won't be affected by
5270 * clear_extent_buffer_uptodate().
5271 */
5272 for (i = 0; i < num_pages; i++) {
5273 page = eb->pages[i];
5274 if (!PageUptodate(page)) {
5275 num_reads++;
5276 all_uptodate = 0;
5277 }
5278 }
5279
5280 if (all_uptodate) {
5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 goto unlock_exit;
5283 }
5284
5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286 eb->read_mirror = 0;
5287 atomic_set(&eb->io_pages, num_reads);
5288 for (i = 0; i < num_pages; i++) {
5289 page = eb->pages[i];
5290
5291 if (!PageUptodate(page)) {
5292 if (ret) {
5293 atomic_dec(&eb->io_pages);
5294 unlock_page(page);
5295 continue;
5296 }
5297
5298 ClearPageError(page);
5299 err = __extent_read_full_page(tree, page,
5300 btree_get_extent, &bio,
5301 mirror_num, &bio_flags,
5302 REQ_META);
5303 if (err) {
5304 ret = err;
5305 /*
5306 * We use &bio in above __extent_read_full_page,
5307 * so we ensure that if it returns error, the
5308 * current page fails to add itself to bio and
5309 * it's been unlocked.
5310 *
5311 * We must dec io_pages by ourselves.
5312 */
5313 atomic_dec(&eb->io_pages);
5314 }
5315 } else {
5316 unlock_page(page);
5317 }
5318 }
5319
5320 if (bio) {
5321 err = submit_one_bio(bio, mirror_num, bio_flags);
5322 if (err)
5323 return err;
5324 }
5325
5326 if (ret || wait != WAIT_COMPLETE)
5327 return ret;
5328
5329 for (i = 0; i < num_pages; i++) {
5330 page = eb->pages[i];
5331 wait_on_page_locked(page);
5332 if (!PageUptodate(page))
5333 ret = -EIO;
5334 }
5335
5336 return ret;
5337
5338unlock_exit:
5339 while (locked_pages > 0) {
5340 locked_pages--;
5341 page = eb->pages[locked_pages];
5342 unlock_page(page);
5343 }
5344 return ret;
5345}
5346
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 unsigned long start, unsigned long len)
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *dst = (char *)dstv;
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357
5358 if (start + len > eb->len) {
5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 eb->start, eb->len, start, len);
5361 memset(dst, 0, len);
5362 return;
5363 }
5364
5365 offset = (start_offset + start) & (PAGE_SIZE - 1);
5366
5367 while (len > 0) {
5368 page = eb->pages[i];
5369
5370 cur = min(len, (PAGE_SIZE - offset));
5371 kaddr = page_address(page);
5372 memcpy(dst, kaddr + offset, cur);
5373
5374 dst += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379}
5380
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 void __user *dstv,
5383 unsigned long start, unsigned long len)
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char __user *dst = (char __user *)dstv;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 int ret = 0;
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
5398
5399 while (len > 0) {
5400 page = eb->pages[i];
5401
5402 cur = min(len, (PAGE_SIZE - offset));
5403 kaddr = page_address(page);
5404 if (copy_to_user(dst, kaddr + offset, cur)) {
5405 ret = -EFAULT;
5406 break;
5407 }
5408
5409 dst += cur;
5410 len -= cur;
5411 offset = 0;
5412 i++;
5413 }
5414
5415 return ret;
5416}
5417
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424 unsigned long start, unsigned long min_len,
5425 char **map, unsigned long *map_start,
5426 unsigned long *map_len)
5427{
5428 size_t offset = start & (PAGE_SIZE - 1);
5429 char *kaddr;
5430 struct page *p;
5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
5434 PAGE_SHIFT;
5435
5436 if (start + min_len > eb->len) {
5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 eb->start, eb->len, start, min_len);
5439 return -EINVAL;
5440 }
5441
5442 if (i != end_i)
5443 return 1;
5444
5445 if (i == 0) {
5446 offset = start_offset;
5447 *map_start = 0;
5448 } else {
5449 offset = 0;
5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451 }
5452
5453 p = eb->pages[i];
5454 kaddr = page_address(p);
5455 *map = kaddr + offset;
5456 *map_len = PAGE_SIZE - offset;
5457 return 0;
5458}
5459
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start, unsigned long len)
5462{
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
5475 offset = (start_offset + start) & (PAGE_SIZE - 1);
5476
5477 while (len > 0) {
5478 page = eb->pages[i];
5479
5480 cur = min(len, (PAGE_SIZE - offset));
5481
5482 kaddr = page_address(page);
5483 ret = memcmp(ptr, kaddr + offset, cur);
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493}
5494
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 const void *srcv)
5497{
5498 char *kaddr;
5499
5500 WARN_ON(!PageUptodate(eb->pages[0]));
5501 kaddr = page_address(eb->pages[0]);
5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508 char *kaddr;
5509
5510 WARN_ON(!PageUptodate(eb->pages[0]));
5511 kaddr = page_address(eb->pages[0]);
5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 BTRFS_FSID_SIZE);
5514}
5515
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 unsigned long start, unsigned long len)
5518{
5519 size_t cur;
5520 size_t offset;
5521 struct page *page;
5522 char *kaddr;
5523 char *src = (char *)srcv;
5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
5531
5532 while (len > 0) {
5533 page = eb->pages[i];
5534 WARN_ON(!PageUptodate(page));
5535
5536 cur = min(len, PAGE_SIZE - offset);
5537 kaddr = page_address(page);
5538 memcpy(kaddr + offset, src, cur);
5539
5540 src += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545}
5546
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 unsigned long len)
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556
5557 WARN_ON(start > eb->len);
5558 WARN_ON(start + len > eb->start + eb->len);
5559
5560 offset = (start_offset + start) & (PAGE_SIZE - 1);
5561
5562 while (len > 0) {
5563 page = eb->pages[i];
5564 WARN_ON(!PageUptodate(page));
5565
5566 cur = min(len, PAGE_SIZE - offset);
5567 kaddr = page_address(page);
5568 memset(kaddr + offset, 0, cur);
5569
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574}
5575
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577 struct extent_buffer *src)
5578{
5579 int i;
5580 unsigned num_pages;
5581
5582 ASSERT(dst->len == src->len);
5583
5584 num_pages = num_extent_pages(dst->start, dst->len);
5585 for (i = 0; i < num_pages; i++)
5586 copy_page(page_address(dst->pages[i]),
5587 page_address(src->pages[i]));
5588}
5589
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 unsigned long dst_offset, unsigned long src_offset,
5592 unsigned long len)
5593{
5594 u64 dst_len = dst->len;
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5601
5602 WARN_ON(src->len != dst_len);
5603
5604 offset = (start_offset + dst_offset) &
5605 (PAGE_SIZE - 1);
5606
5607 while (len > 0) {
5608 page = dst->pages[i];
5609 WARN_ON(!PageUptodate(page));
5610
5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612
5613 kaddr = page_address(page);
5614 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615
5616 src_offset += cur;
5617 len -= cur;
5618 offset = 0;
5619 i++;
5620 }
5621}
5622
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625 u8 *p = map + BIT_BYTE(start);
5626 const unsigned int size = start + len;
5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630 while (len - bits_to_set >= 0) {
5631 *p |= mask_to_set;
5632 len -= bits_to_set;
5633 bits_to_set = BITS_PER_BYTE;
5634 mask_to_set = ~0;
5635 p++;
5636 }
5637 if (len) {
5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 *p |= mask_to_set;
5640 }
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_clear >= 0) {
5651 *p &= ~mask_to_clear;
5652 len -= bits_to_clear;
5653 bits_to_clear = BITS_PER_BYTE;
5654 mask_to_clear = ~0;
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 *p &= ~mask_to_clear;
5660 }
5661}
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 unsigned long start, unsigned long nr,
5678 unsigned long *page_index,
5679 size_t *page_offset)
5680{
5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682 size_t byte_offset = BIT_BYTE(nr);
5683 size_t offset;
5684
5685 /*
5686 * The byte we want is the offset of the extent buffer + the offset of
5687 * the bitmap item in the extent buffer + the offset of the byte in the
5688 * bitmap item.
5689 */
5690 offset = start_offset + start + byte_offset;
5691
5692 *page_index = offset >> PAGE_SHIFT;
5693 *page_offset = offset & (PAGE_SIZE - 1);
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 unsigned long nr)
5704{
5705 u8 *kaddr;
5706 struct page *page;
5707 unsigned long i;
5708 size_t offset;
5709
5710 eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 page = eb->pages[i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 unsigned long pos, unsigned long len)
5726{
5727 u8 *kaddr;
5728 struct page *page;
5729 unsigned long i;
5730 size_t offset;
5731 const unsigned int size = pos + len;
5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734
5735 eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 page = eb->pages[i];
5737 WARN_ON(!PageUptodate(page));
5738 kaddr = page_address(page);
5739
5740 while (len >= bits_to_set) {
5741 kaddr[offset] |= mask_to_set;
5742 len -= bits_to_set;
5743 bits_to_set = BITS_PER_BYTE;
5744 mask_to_set = ~0;
5745 if (++offset >= PAGE_SIZE && len > 0) {
5746 offset = 0;
5747 page = eb->pages[++i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 }
5751 }
5752 if (len) {
5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 kaddr[offset] |= mask_to_set;
5755 }
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 unsigned long pos, unsigned long len)
5768{
5769 u8 *kaddr;
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773 const unsigned int size = pos + len;
5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776
5777 eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 page = eb->pages[i];
5779 WARN_ON(!PageUptodate(page));
5780 kaddr = page_address(page);
5781
5782 while (len >= bits_to_clear) {
5783 kaddr[offset] &= ~mask_to_clear;
5784 len -= bits_to_clear;
5785 bits_to_clear = BITS_PER_BYTE;
5786 mask_to_clear = ~0;
5787 if (++offset >= PAGE_SIZE && len > 0) {
5788 offset = 0;
5789 page = eb->pages[++i];
5790 WARN_ON(!PageUptodate(page));
5791 kaddr = page_address(page);
5792 }
5793 }
5794 if (len) {
5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 kaddr[offset] &= ~mask_to_clear;
5797 }
5798}
5799
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802 unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 return distance < len;
5804}
5805
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807 unsigned long dst_off, unsigned long src_off,
5808 unsigned long len)
5809{
5810 char *dst_kaddr = page_address(dst_page);
5811 char *src_kaddr;
5812 int must_memmove = 0;
5813
5814 if (dst_page != src_page) {
5815 src_kaddr = page_address(src_page);
5816 } else {
5817 src_kaddr = dst_kaddr;
5818 if (areas_overlap(src_off, dst_off, len))
5819 must_memmove = 1;
5820 }
5821
5822 if (must_memmove)
5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 else
5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 unsigned long src_offset, unsigned long len)
5830{
5831 struct btrfs_fs_info *fs_info = dst->fs_info;
5832 size_t cur;
5833 size_t dst_off_in_page;
5834 size_t src_off_in_page;
5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836 unsigned long dst_i;
5837 unsigned long src_i;
5838
5839 if (src_offset + len > dst->len) {
5840 btrfs_err(fs_info,
5841 "memmove bogus src_offset %lu move len %lu dst len %lu",
5842 src_offset, len, dst->len);
5843 BUG_ON(1);
5844 }
5845 if (dst_offset + len > dst->len) {
5846 btrfs_err(fs_info,
5847 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 dst_offset, len, dst->len);
5849 BUG_ON(1);
5850 }
5851
5852 while (len > 0) {
5853 dst_off_in_page = (start_offset + dst_offset) &
5854 (PAGE_SIZE - 1);
5855 src_off_in_page = (start_offset + src_offset) &
5856 (PAGE_SIZE - 1);
5857
5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860
5861 cur = min(len, (unsigned long)(PAGE_SIZE -
5862 src_off_in_page));
5863 cur = min_t(unsigned long, cur,
5864 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5865
5866 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867 dst_off_in_page, src_off_in_page, cur);
5868
5869 src_offset += cur;
5870 dst_offset += cur;
5871 len -= cur;
5872 }
5873}
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
5878 struct btrfs_fs_info *fs_info = dst->fs_info;
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
5882 unsigned long dst_end = dst_offset + len - 1;
5883 unsigned long src_end = src_offset + len - 1;
5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
5889 btrfs_err(fs_info,
5890 "memmove bogus src_offset %lu move len %lu len %lu",
5891 src_offset, len, dst->len);
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
5895 btrfs_err(fs_info,
5896 "memmove bogus dst_offset %lu move len %lu len %lu",
5897 dst_offset, len, dst->len);
5898 BUG_ON(1);
5899 }
5900 if (dst_offset < src_offset) {
5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 return;
5903 }
5904 while (len > 0) {
5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907
5908 dst_off_in_page = (start_offset + dst_end) &
5909 (PAGE_SIZE - 1);
5910 src_off_in_page = (start_offset + src_end) &
5911 (PAGE_SIZE - 1);
5912
5913 cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 cur = min(cur, dst_off_in_page + 1);
5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916 dst_off_in_page - cur + 1,
5917 src_off_in_page - cur + 1, cur);
5918
5919 dst_end -= cur;
5920 src_end -= cur;
5921 len -= cur;
5922 }
5923}
5924
5925int try_release_extent_buffer(struct page *page)
5926{
5927 struct extent_buffer *eb;
5928
5929 /*
5930 * We need to make sure nobody is attaching this page to an eb right
5931 * now.
5932 */
5933 spin_lock(&page->mapping->private_lock);
5934 if (!PagePrivate(page)) {
5935 spin_unlock(&page->mapping->private_lock);
5936 return 1;
5937 }
5938
5939 eb = (struct extent_buffer *)page->private;
5940 BUG_ON(!eb);
5941
5942 /*
5943 * This is a little awful but should be ok, we need to make sure that
5944 * the eb doesn't disappear out from under us while we're looking at
5945 * this page.
5946 */
5947 spin_lock(&eb->refs_lock);
5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949 spin_unlock(&eb->refs_lock);
5950 spin_unlock(&page->mapping->private_lock);
5951 return 0;
5952 }
5953 spin_unlock(&page->mapping->private_lock);
5954
5955 /*
5956 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 * so just return, this page will likely be freed soon anyway.
5958 */
5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 spin_unlock(&eb->refs_lock);
5961 return 0;
5962 }
5963
5964 return release_extent_buffer(eb);
5965}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "misc.h"
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "volumes.h"
23#include "check-integrity.h"
24#include "locking.h"
25#include "rcu-string.h"
26#include "backref.h"
27#include "disk-io.h"
28#include "subpage.h"
29#include "zoned.h"
30#include "block-group.h"
31
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
34static struct bio_set btrfs_bioset;
35
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
41#ifdef CONFIG_BTRFS_DEBUG
42static LIST_HEAD(states);
43static DEFINE_SPINLOCK(leak_lock);
44
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
48{
49 unsigned long flags;
50
51 spin_lock_irqsave(lock, flags);
52 list_add(new, head);
53 spin_unlock_irqrestore(lock, flags);
54}
55
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
58{
59 unsigned long flags;
60
61 spin_lock_irqsave(lock, flags);
62 list_del(entry);
63 spin_unlock_irqrestore(lock, flags);
64}
65
66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
67{
68 struct extent_buffer *eb;
69 unsigned long flags;
70
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
101 refcount_read(&state->refs));
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
105}
106
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
110 struct extent_io_tree *tree, u64 start, u64 end)
111{
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
124}
125#else
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
128#define btrfs_extent_state_leak_debug_check() do {} while (0)
129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
130#endif
131
132struct tree_entry {
133 u64 start;
134 u64 end;
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
139 struct btrfs_bio_ctrl bio_ctrl;
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
143 unsigned int extent_locked:1;
144
145 /* tells the submit_bio code to use REQ_SYNC */
146 unsigned int sync_io:1;
147};
148
149static int add_extent_changeset(struct extent_state *state, u32 bits,
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
156 return 0;
157 if (set && (state->state & bits) == bits)
158 return 0;
159 if (!set && (state->state & bits) == 0)
160 return 0;
161 changeset->bytes_changed += state->end - state->start + 1;
162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
163 GFP_ATOMIC);
164 return ret;
165}
166
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
169{
170 blk_status_t ret = 0;
171 struct extent_io_tree *tree = bio->bi_private;
172
173 bio->bi_private = NULL;
174
175 if (is_data_inode(tree->private_data))
176 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
177 bio_flags);
178 else
179 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
180 mirror_num, bio_flags);
181
182 return blk_status_to_errno(ret);
183}
184
185/* Cleanup unsubmitted bios */
186static void end_write_bio(struct extent_page_data *epd, int ret)
187{
188 struct bio *bio = epd->bio_ctrl.bio;
189
190 if (bio) {
191 bio->bi_status = errno_to_blk_status(ret);
192 bio_endio(bio);
193 epd->bio_ctrl.bio = NULL;
194 }
195}
196
197/*
198 * Submit bio from extent page data via submit_one_bio
199 *
200 * Return 0 if everything is OK.
201 * Return <0 for error.
202 */
203static int __must_check flush_write_bio(struct extent_page_data *epd)
204{
205 int ret = 0;
206 struct bio *bio = epd->bio_ctrl.bio;
207
208 if (bio) {
209 ret = submit_one_bio(bio, 0, 0);
210 /*
211 * Clean up of epd->bio is handled by its endio function.
212 * And endio is either triggered by successful bio execution
213 * or the error handler of submit bio hook.
214 * So at this point, no matter what happened, we don't need
215 * to clean up epd->bio.
216 */
217 epd->bio_ctrl.bio = NULL;
218 }
219 return ret;
220}
221
222int __init extent_state_cache_init(void)
223{
224 extent_state_cache = kmem_cache_create("btrfs_extent_state",
225 sizeof(struct extent_state), 0,
226 SLAB_MEM_SPREAD, NULL);
227 if (!extent_state_cache)
228 return -ENOMEM;
229 return 0;
230}
231
232int __init extent_io_init(void)
233{
234 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
235 sizeof(struct extent_buffer), 0,
236 SLAB_MEM_SPREAD, NULL);
237 if (!extent_buffer_cache)
238 return -ENOMEM;
239
240 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
241 offsetof(struct btrfs_io_bio, bio),
242 BIOSET_NEED_BVECS))
243 goto free_buffer_cache;
244
245 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
246 goto free_bioset;
247
248 return 0;
249
250free_bioset:
251 bioset_exit(&btrfs_bioset);
252
253free_buffer_cache:
254 kmem_cache_destroy(extent_buffer_cache);
255 extent_buffer_cache = NULL;
256 return -ENOMEM;
257}
258
259void __cold extent_state_cache_exit(void)
260{
261 btrfs_extent_state_leak_debug_check();
262 kmem_cache_destroy(extent_state_cache);
263}
264
265void __cold extent_io_exit(void)
266{
267 /*
268 * Make sure all delayed rcu free are flushed before we
269 * destroy caches.
270 */
271 rcu_barrier();
272 kmem_cache_destroy(extent_buffer_cache);
273 bioset_exit(&btrfs_bioset);
274}
275
276/*
277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
279 * the tree lock and get the inode lock when setting delalloc. These two things
280 * are unrelated, so make a class for the file_extent_tree so we don't get the
281 * two locking patterns mixed up.
282 */
283static struct lock_class_key file_extent_tree_class;
284
285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
286 struct extent_io_tree *tree, unsigned int owner,
287 void *private_data)
288{
289 tree->fs_info = fs_info;
290 tree->state = RB_ROOT;
291 tree->dirty_bytes = 0;
292 spin_lock_init(&tree->lock);
293 tree->private_data = private_data;
294 tree->owner = owner;
295 if (owner == IO_TREE_INODE_FILE_EXTENT)
296 lockdep_set_class(&tree->lock, &file_extent_tree_class);
297}
298
299void extent_io_tree_release(struct extent_io_tree *tree)
300{
301 spin_lock(&tree->lock);
302 /*
303 * Do a single barrier for the waitqueue_active check here, the state
304 * of the waitqueue should not change once extent_io_tree_release is
305 * called.
306 */
307 smp_mb();
308 while (!RB_EMPTY_ROOT(&tree->state)) {
309 struct rb_node *node;
310 struct extent_state *state;
311
312 node = rb_first(&tree->state);
313 state = rb_entry(node, struct extent_state, rb_node);
314 rb_erase(&state->rb_node, &tree->state);
315 RB_CLEAR_NODE(&state->rb_node);
316 /*
317 * btree io trees aren't supposed to have tasks waiting for
318 * changes in the flags of extent states ever.
319 */
320 ASSERT(!waitqueue_active(&state->wq));
321 free_extent_state(state);
322
323 cond_resched_lock(&tree->lock);
324 }
325 spin_unlock(&tree->lock);
326}
327
328static struct extent_state *alloc_extent_state(gfp_t mask)
329{
330 struct extent_state *state;
331
332 /*
333 * The given mask might be not appropriate for the slab allocator,
334 * drop the unsupported bits
335 */
336 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
337 state = kmem_cache_alloc(extent_state_cache, mask);
338 if (!state)
339 return state;
340 state->state = 0;
341 state->failrec = NULL;
342 RB_CLEAR_NODE(&state->rb_node);
343 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
344 refcount_set(&state->refs, 1);
345 init_waitqueue_head(&state->wq);
346 trace_alloc_extent_state(state, mask, _RET_IP_);
347 return state;
348}
349
350void free_extent_state(struct extent_state *state)
351{
352 if (!state)
353 return;
354 if (refcount_dec_and_test(&state->refs)) {
355 WARN_ON(extent_state_in_tree(state));
356 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
357 trace_free_extent_state(state, _RET_IP_);
358 kmem_cache_free(extent_state_cache, state);
359 }
360}
361
362static struct rb_node *tree_insert(struct rb_root *root,
363 struct rb_node *search_start,
364 u64 offset,
365 struct rb_node *node,
366 struct rb_node ***p_in,
367 struct rb_node **parent_in)
368{
369 struct rb_node **p;
370 struct rb_node *parent = NULL;
371 struct tree_entry *entry;
372
373 if (p_in && parent_in) {
374 p = *p_in;
375 parent = *parent_in;
376 goto do_insert;
377 }
378
379 p = search_start ? &search_start : &root->rb_node;
380 while (*p) {
381 parent = *p;
382 entry = rb_entry(parent, struct tree_entry, rb_node);
383
384 if (offset < entry->start)
385 p = &(*p)->rb_left;
386 else if (offset > entry->end)
387 p = &(*p)->rb_right;
388 else
389 return parent;
390 }
391
392do_insert:
393 rb_link_node(node, parent, p);
394 rb_insert_color(node, root);
395 return NULL;
396}
397
398/**
399 * Search @tree for an entry that contains @offset. Such entry would have
400 * entry->start <= offset && entry->end >= offset.
401 *
402 * @tree: the tree to search
403 * @offset: offset that should fall within an entry in @tree
404 * @next_ret: pointer to the first entry whose range ends after @offset
405 * @prev_ret: pointer to the first entry whose range begins before @offset
406 * @p_ret: pointer where new node should be anchored (used when inserting an
407 * entry in the tree)
408 * @parent_ret: points to entry which would have been the parent of the entry,
409 * containing @offset
410 *
411 * This function returns a pointer to the entry that contains @offset byte
412 * address. If no such entry exists, then NULL is returned and the other
413 * pointer arguments to the function are filled, otherwise the found entry is
414 * returned and other pointers are left untouched.
415 */
416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
417 struct rb_node **next_ret,
418 struct rb_node **prev_ret,
419 struct rb_node ***p_ret,
420 struct rb_node **parent_ret)
421{
422 struct rb_root *root = &tree->state;
423 struct rb_node **n = &root->rb_node;
424 struct rb_node *prev = NULL;
425 struct rb_node *orig_prev = NULL;
426 struct tree_entry *entry;
427 struct tree_entry *prev_entry = NULL;
428
429 while (*n) {
430 prev = *n;
431 entry = rb_entry(prev, struct tree_entry, rb_node);
432 prev_entry = entry;
433
434 if (offset < entry->start)
435 n = &(*n)->rb_left;
436 else if (offset > entry->end)
437 n = &(*n)->rb_right;
438 else
439 return *n;
440 }
441
442 if (p_ret)
443 *p_ret = n;
444 if (parent_ret)
445 *parent_ret = prev;
446
447 if (next_ret) {
448 orig_prev = prev;
449 while (prev && offset > prev_entry->end) {
450 prev = rb_next(prev);
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 }
453 *next_ret = prev;
454 prev = orig_prev;
455 }
456
457 if (prev_ret) {
458 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
459 while (prev && offset < prev_entry->start) {
460 prev = rb_prev(prev);
461 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 }
463 *prev_ret = prev;
464 }
465 return NULL;
466}
467
468static inline struct rb_node *
469tree_search_for_insert(struct extent_io_tree *tree,
470 u64 offset,
471 struct rb_node ***p_ret,
472 struct rb_node **parent_ret)
473{
474 struct rb_node *next= NULL;
475 struct rb_node *ret;
476
477 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
478 if (!ret)
479 return next;
480 return ret;
481}
482
483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
484 u64 offset)
485{
486 return tree_search_for_insert(tree, offset, NULL, NULL);
487}
488
489/*
490 * utility function to look for merge candidates inside a given range.
491 * Any extents with matching state are merged together into a single
492 * extent in the tree. Extents with EXTENT_IO in their state field
493 * are not merged because the end_io handlers need to be able to do
494 * operations on them without sleeping (or doing allocations/splits).
495 *
496 * This should be called with the tree lock held.
497 */
498static void merge_state(struct extent_io_tree *tree,
499 struct extent_state *state)
500{
501 struct extent_state *other;
502 struct rb_node *other_node;
503
504 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
505 return;
506
507 other_node = rb_prev(&state->rb_node);
508 if (other_node) {
509 other = rb_entry(other_node, struct extent_state, rb_node);
510 if (other->end == state->start - 1 &&
511 other->state == state->state) {
512 if (tree->private_data &&
513 is_data_inode(tree->private_data))
514 btrfs_merge_delalloc_extent(tree->private_data,
515 state, other);
516 state->start = other->start;
517 rb_erase(&other->rb_node, &tree->state);
518 RB_CLEAR_NODE(&other->rb_node);
519 free_extent_state(other);
520 }
521 }
522 other_node = rb_next(&state->rb_node);
523 if (other_node) {
524 other = rb_entry(other_node, struct extent_state, rb_node);
525 if (other->start == state->end + 1 &&
526 other->state == state->state) {
527 if (tree->private_data &&
528 is_data_inode(tree->private_data))
529 btrfs_merge_delalloc_extent(tree->private_data,
530 state, other);
531 state->end = other->end;
532 rb_erase(&other->rb_node, &tree->state);
533 RB_CLEAR_NODE(&other->rb_node);
534 free_extent_state(other);
535 }
536 }
537}
538
539static void set_state_bits(struct extent_io_tree *tree,
540 struct extent_state *state, u32 *bits,
541 struct extent_changeset *changeset);
542
543/*
544 * insert an extent_state struct into the tree. 'bits' are set on the
545 * struct before it is inserted.
546 *
547 * This may return -EEXIST if the extent is already there, in which case the
548 * state struct is freed.
549 *
550 * The tree lock is not taken internally. This is a utility function and
551 * probably isn't what you want to call (see set/clear_extent_bit).
552 */
553static int insert_state(struct extent_io_tree *tree,
554 struct extent_state *state, u64 start, u64 end,
555 struct rb_node ***p,
556 struct rb_node **parent,
557 u32 *bits, struct extent_changeset *changeset)
558{
559 struct rb_node *node;
560
561 if (end < start) {
562 btrfs_err(tree->fs_info,
563 "insert state: end < start %llu %llu", end, start);
564 WARN_ON(1);
565 }
566 state->start = start;
567 state->end = end;
568
569 set_state_bits(tree, state, bits, changeset);
570
571 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
572 if (node) {
573 struct extent_state *found;
574 found = rb_entry(node, struct extent_state, rb_node);
575 btrfs_err(tree->fs_info,
576 "found node %llu %llu on insert of %llu %llu",
577 found->start, found->end, start, end);
578 return -EEXIST;
579 }
580 merge_state(tree, state);
581 return 0;
582}
583
584/*
585 * split a given extent state struct in two, inserting the preallocated
586 * struct 'prealloc' as the newly created second half. 'split' indicates an
587 * offset inside 'orig' where it should be split.
588 *
589 * Before calling,
590 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
591 * are two extent state structs in the tree:
592 * prealloc: [orig->start, split - 1]
593 * orig: [ split, orig->end ]
594 *
595 * The tree locks are not taken by this function. They need to be held
596 * by the caller.
597 */
598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
599 struct extent_state *prealloc, u64 split)
600{
601 struct rb_node *node;
602
603 if (tree->private_data && is_data_inode(tree->private_data))
604 btrfs_split_delalloc_extent(tree->private_data, orig, split);
605
606 prealloc->start = orig->start;
607 prealloc->end = split - 1;
608 prealloc->state = orig->state;
609 orig->start = split;
610
611 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
612 &prealloc->rb_node, NULL, NULL);
613 if (node) {
614 free_extent_state(prealloc);
615 return -EEXIST;
616 }
617 return 0;
618}
619
620static struct extent_state *next_state(struct extent_state *state)
621{
622 struct rb_node *next = rb_next(&state->rb_node);
623 if (next)
624 return rb_entry(next, struct extent_state, rb_node);
625 else
626 return NULL;
627}
628
629/*
630 * utility function to clear some bits in an extent state struct.
631 * it will optionally wake up anyone waiting on this state (wake == 1).
632 *
633 * If no bits are set on the state struct after clearing things, the
634 * struct is freed and removed from the tree
635 */
636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
637 struct extent_state *state,
638 u32 *bits, int wake,
639 struct extent_changeset *changeset)
640{
641 struct extent_state *next;
642 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
643 int ret;
644
645 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
646 u64 range = state->end - state->start + 1;
647 WARN_ON(range > tree->dirty_bytes);
648 tree->dirty_bytes -= range;
649 }
650
651 if (tree->private_data && is_data_inode(tree->private_data))
652 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
653
654 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
655 BUG_ON(ret < 0);
656 state->state &= ~bits_to_clear;
657 if (wake)
658 wake_up(&state->wq);
659 if (state->state == 0) {
660 next = next_state(state);
661 if (extent_state_in_tree(state)) {
662 rb_erase(&state->rb_node, &tree->state);
663 RB_CLEAR_NODE(&state->rb_node);
664 free_extent_state(state);
665 } else {
666 WARN_ON(1);
667 }
668 } else {
669 merge_state(tree, state);
670 next = next_state(state);
671 }
672 return next;
673}
674
675static struct extent_state *
676alloc_extent_state_atomic(struct extent_state *prealloc)
677{
678 if (!prealloc)
679 prealloc = alloc_extent_state(GFP_ATOMIC);
680
681 return prealloc;
682}
683
684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
685{
686 btrfs_panic(tree->fs_info, err,
687 "locking error: extent tree was modified by another thread while locked");
688}
689
690/*
691 * clear some bits on a range in the tree. This may require splitting
692 * or inserting elements in the tree, so the gfp mask is used to
693 * indicate which allocations or sleeping are allowed.
694 *
695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
696 * the given range from the tree regardless of state (ie for truncate).
697 *
698 * the range [start, end] is inclusive.
699 *
700 * This takes the tree lock, and returns 0 on success and < 0 on error.
701 */
702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
703 u32 bits, int wake, int delete,
704 struct extent_state **cached_state,
705 gfp_t mask, struct extent_changeset *changeset)
706{
707 struct extent_state *state;
708 struct extent_state *cached;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 u64 last_end;
712 int err;
713 int clear = 0;
714
715 btrfs_debug_check_extent_io_range(tree, start, end);
716 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
717
718 if (bits & EXTENT_DELALLOC)
719 bits |= EXTENT_NORESERVE;
720
721 if (delete)
722 bits |= ~EXTENT_CTLBITS;
723
724 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
725 clear = 1;
726again:
727 if (!prealloc && gfpflags_allow_blocking(mask)) {
728 /*
729 * Don't care for allocation failure here because we might end
730 * up not needing the pre-allocated extent state at all, which
731 * is the case if we only have in the tree extent states that
732 * cover our input range and don't cover too any other range.
733 * If we end up needing a new extent state we allocate it later.
734 */
735 prealloc = alloc_extent_state(mask);
736 }
737
738 spin_lock(&tree->lock);
739 if (cached_state) {
740 cached = *cached_state;
741
742 if (clear) {
743 *cached_state = NULL;
744 cached_state = NULL;
745 }
746
747 if (cached && extent_state_in_tree(cached) &&
748 cached->start <= start && cached->end > start) {
749 if (clear)
750 refcount_dec(&cached->refs);
751 state = cached;
752 goto hit_next;
753 }
754 if (clear)
755 free_extent_state(cached);
756 }
757 /*
758 * this search will find the extents that end after
759 * our range starts
760 */
761 node = tree_search(tree, start);
762 if (!node)
763 goto out;
764 state = rb_entry(node, struct extent_state, rb_node);
765hit_next:
766 if (state->start > end)
767 goto out;
768 WARN_ON(state->end < start);
769 last_end = state->end;
770
771 /* the state doesn't have the wanted bits, go ahead */
772 if (!(state->state & bits)) {
773 state = next_state(state);
774 goto next;
775 }
776
777 /*
778 * | ---- desired range ---- |
779 * | state | or
780 * | ------------- state -------------- |
781 *
782 * We need to split the extent we found, and may flip
783 * bits on second half.
784 *
785 * If the extent we found extends past our range, we
786 * just split and search again. It'll get split again
787 * the next time though.
788 *
789 * If the extent we found is inside our range, we clear
790 * the desired bit on it.
791 */
792
793 if (state->start < start) {
794 prealloc = alloc_extent_state_atomic(prealloc);
795 BUG_ON(!prealloc);
796 err = split_state(tree, state, prealloc, start);
797 if (err)
798 extent_io_tree_panic(tree, err);
799
800 prealloc = NULL;
801 if (err)
802 goto out;
803 if (state->end <= end) {
804 state = clear_state_bit(tree, state, &bits, wake,
805 changeset);
806 goto next;
807 }
808 goto search_again;
809 }
810 /*
811 * | ---- desired range ---- |
812 * | state |
813 * We need to split the extent, and clear the bit
814 * on the first half
815 */
816 if (state->start <= end && state->end > end) {
817 prealloc = alloc_extent_state_atomic(prealloc);
818 BUG_ON(!prealloc);
819 err = split_state(tree, state, prealloc, end + 1);
820 if (err)
821 extent_io_tree_panic(tree, err);
822
823 if (wake)
824 wake_up(&state->wq);
825
826 clear_state_bit(tree, prealloc, &bits, wake, changeset);
827
828 prealloc = NULL;
829 goto out;
830 }
831
832 state = clear_state_bit(tree, state, &bits, wake, changeset);
833next:
834 if (last_end == (u64)-1)
835 goto out;
836 start = last_end + 1;
837 if (start <= end && state && !need_resched())
838 goto hit_next;
839
840search_again:
841 if (start > end)
842 goto out;
843 spin_unlock(&tree->lock);
844 if (gfpflags_allow_blocking(mask))
845 cond_resched();
846 goto again;
847
848out:
849 spin_unlock(&tree->lock);
850 if (prealloc)
851 free_extent_state(prealloc);
852
853 return 0;
854
855}
856
857static void wait_on_state(struct extent_io_tree *tree,
858 struct extent_state *state)
859 __releases(tree->lock)
860 __acquires(tree->lock)
861{
862 DEFINE_WAIT(wait);
863 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
864 spin_unlock(&tree->lock);
865 schedule();
866 spin_lock(&tree->lock);
867 finish_wait(&state->wq, &wait);
868}
869
870/*
871 * waits for one or more bits to clear on a range in the state tree.
872 * The range [start, end] is inclusive.
873 * The tree lock is taken by this function
874 */
875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
876 u32 bits)
877{
878 struct extent_state *state;
879 struct rb_node *node;
880
881 btrfs_debug_check_extent_io_range(tree, start, end);
882
883 spin_lock(&tree->lock);
884again:
885 while (1) {
886 /*
887 * this search will find all the extents that end after
888 * our range starts
889 */
890 node = tree_search(tree, start);
891process_node:
892 if (!node)
893 break;
894
895 state = rb_entry(node, struct extent_state, rb_node);
896
897 if (state->start > end)
898 goto out;
899
900 if (state->state & bits) {
901 start = state->start;
902 refcount_inc(&state->refs);
903 wait_on_state(tree, state);
904 free_extent_state(state);
905 goto again;
906 }
907 start = state->end + 1;
908
909 if (start > end)
910 break;
911
912 if (!cond_resched_lock(&tree->lock)) {
913 node = rb_next(node);
914 goto process_node;
915 }
916 }
917out:
918 spin_unlock(&tree->lock);
919}
920
921static void set_state_bits(struct extent_io_tree *tree,
922 struct extent_state *state,
923 u32 *bits, struct extent_changeset *changeset)
924{
925 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
926 int ret;
927
928 if (tree->private_data && is_data_inode(tree->private_data))
929 btrfs_set_delalloc_extent(tree->private_data, state, bits);
930
931 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
932 u64 range = state->end - state->start + 1;
933 tree->dirty_bytes += range;
934 }
935 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
936 BUG_ON(ret < 0);
937 state->state |= bits_to_set;
938}
939
940static void cache_state_if_flags(struct extent_state *state,
941 struct extent_state **cached_ptr,
942 unsigned flags)
943{
944 if (cached_ptr && !(*cached_ptr)) {
945 if (!flags || (state->state & flags)) {
946 *cached_ptr = state;
947 refcount_inc(&state->refs);
948 }
949 }
950}
951
952static void cache_state(struct extent_state *state,
953 struct extent_state **cached_ptr)
954{
955 return cache_state_if_flags(state, cached_ptr,
956 EXTENT_LOCKED | EXTENT_BOUNDARY);
957}
958
959/*
960 * set some bits on a range in the tree. This may require allocations or
961 * sleeping, so the gfp mask is used to indicate what is allowed.
962 *
963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
964 * part of the range already has the desired bits set. The start of the
965 * existing range is returned in failed_start in this case.
966 *
967 * [start, end] is inclusive This takes the tree lock.
968 */
969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
970 u32 exclusive_bits, u64 *failed_start,
971 struct extent_state **cached_state, gfp_t mask,
972 struct extent_changeset *changeset)
973{
974 struct extent_state *state;
975 struct extent_state *prealloc = NULL;
976 struct rb_node *node;
977 struct rb_node **p;
978 struct rb_node *parent;
979 int err = 0;
980 u64 last_start;
981 u64 last_end;
982
983 btrfs_debug_check_extent_io_range(tree, start, end);
984 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
985
986 if (exclusive_bits)
987 ASSERT(failed_start);
988 else
989 ASSERT(failed_start == NULL);
990again:
991 if (!prealloc && gfpflags_allow_blocking(mask)) {
992 /*
993 * Don't care for allocation failure here because we might end
994 * up not needing the pre-allocated extent state at all, which
995 * is the case if we only have in the tree extent states that
996 * cover our input range and don't cover too any other range.
997 * If we end up needing a new extent state we allocate it later.
998 */
999 prealloc = alloc_extent_state(mask);
1000 }
1001
1002 spin_lock(&tree->lock);
1003 if (cached_state && *cached_state) {
1004 state = *cached_state;
1005 if (state->start <= start && state->end > start &&
1006 extent_state_in_tree(state)) {
1007 node = &state->rb_node;
1008 goto hit_next;
1009 }
1010 }
1011 /*
1012 * this search will find all the extents that end after
1013 * our range starts.
1014 */
1015 node = tree_search_for_insert(tree, start, &p, &parent);
1016 if (!node) {
1017 prealloc = alloc_extent_state_atomic(prealloc);
1018 BUG_ON(!prealloc);
1019 err = insert_state(tree, prealloc, start, end,
1020 &p, &parent, &bits, changeset);
1021 if (err)
1022 extent_io_tree_panic(tree, err);
1023
1024 cache_state(prealloc, cached_state);
1025 prealloc = NULL;
1026 goto out;
1027 }
1028 state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030 last_start = state->start;
1031 last_end = state->end;
1032
1033 /*
1034 * | ---- desired range ---- |
1035 * | state |
1036 *
1037 * Just lock what we found and keep going
1038 */
1039 if (state->start == start && state->end <= end) {
1040 if (state->state & exclusive_bits) {
1041 *failed_start = state->start;
1042 err = -EEXIST;
1043 goto out;
1044 }
1045
1046 set_state_bits(tree, state, &bits, changeset);
1047 cache_state(state, cached_state);
1048 merge_state(tree, state);
1049 if (last_end == (u64)-1)
1050 goto out;
1051 start = last_end + 1;
1052 state = next_state(state);
1053 if (start < end && state && state->start == start &&
1054 !need_resched())
1055 goto hit_next;
1056 goto search_again;
1057 }
1058
1059 /*
1060 * | ---- desired range ---- |
1061 * | state |
1062 * or
1063 * | ------------- state -------------- |
1064 *
1065 * We need to split the extent we found, and may flip bits on
1066 * second half.
1067 *
1068 * If the extent we found extends past our
1069 * range, we just split and search again. It'll get split
1070 * again the next time though.
1071 *
1072 * If the extent we found is inside our range, we set the
1073 * desired bit on it.
1074 */
1075 if (state->start < start) {
1076 if (state->state & exclusive_bits) {
1077 *failed_start = start;
1078 err = -EEXIST;
1079 goto out;
1080 }
1081
1082 /*
1083 * If this extent already has all the bits we want set, then
1084 * skip it, not necessary to split it or do anything with it.
1085 */
1086 if ((state->state & bits) == bits) {
1087 start = state->end + 1;
1088 cache_state(state, cached_state);
1089 goto search_again;
1090 }
1091
1092 prealloc = alloc_extent_state_atomic(prealloc);
1093 BUG_ON(!prealloc);
1094 err = split_state(tree, state, prealloc, start);
1095 if (err)
1096 extent_io_tree_panic(tree, err);
1097
1098 prealloc = NULL;
1099 if (err)
1100 goto out;
1101 if (state->end <= end) {
1102 set_state_bits(tree, state, &bits, changeset);
1103 cache_state(state, cached_state);
1104 merge_state(tree, state);
1105 if (last_end == (u64)-1)
1106 goto out;
1107 start = last_end + 1;
1108 state = next_state(state);
1109 if (start < end && state && state->start == start &&
1110 !need_resched())
1111 goto hit_next;
1112 }
1113 goto search_again;
1114 }
1115 /*
1116 * | ---- desired range ---- |
1117 * | state | or | state |
1118 *
1119 * There's a hole, we need to insert something in it and
1120 * ignore the extent we found.
1121 */
1122 if (state->start > start) {
1123 u64 this_end;
1124 if (end < last_start)
1125 this_end = end;
1126 else
1127 this_end = last_start - 1;
1128
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 BUG_ON(!prealloc);
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
1136 err = insert_state(tree, prealloc, start, this_end,
1137 NULL, NULL, &bits, changeset);
1138 if (err)
1139 extent_io_tree_panic(tree, err);
1140
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 start = this_end + 1;
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1151 */
1152 if (state->start <= end && state->end > end) {
1153 if (state->state & exclusive_bits) {
1154 *failed_start = start;
1155 err = -EEXIST;
1156 goto out;
1157 }
1158
1159 prealloc = alloc_extent_state_atomic(prealloc);
1160 BUG_ON(!prealloc);
1161 err = split_state(tree, state, prealloc, end + 1);
1162 if (err)
1163 extent_io_tree_panic(tree, err);
1164
1165 set_state_bits(tree, prealloc, &bits, changeset);
1166 cache_state(prealloc, cached_state);
1167 merge_state(tree, prealloc);
1168 prealloc = NULL;
1169 goto out;
1170 }
1171
1172search_again:
1173 if (start > end)
1174 goto out;
1175 spin_unlock(&tree->lock);
1176 if (gfpflags_allow_blocking(mask))
1177 cond_resched();
1178 goto again;
1179
1180out:
1181 spin_unlock(&tree->lock);
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
1187}
1188
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * another
1192 * @tree: the io tree to search
1193 * @start: the start offset in bytes
1194 * @end: the end offset in bytes (inclusive)
1195 * @bits: the bits to set in this range
1196 * @clear_bits: the bits to clear in this range
1197 * @cached_state: state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range. If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits. This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208 u32 bits, u32 clear_bits,
1209 struct extent_state **cached_state)
1210{
1211 struct extent_state *state;
1212 struct extent_state *prealloc = NULL;
1213 struct rb_node *node;
1214 struct rb_node **p;
1215 struct rb_node *parent;
1216 int err = 0;
1217 u64 last_start;
1218 u64 last_end;
1219 bool first_iteration = true;
1220
1221 btrfs_debug_check_extent_io_range(tree, start, end);
1222 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 clear_bits);
1224
1225again:
1226 if (!prealloc) {
1227 /*
1228 * Best effort, don't worry if extent state allocation fails
1229 * here for the first iteration. We might have a cached state
1230 * that matches exactly the target range, in which case no
1231 * extent state allocations are needed. We'll only know this
1232 * after locking the tree.
1233 */
1234 prealloc = alloc_extent_state(GFP_NOFS);
1235 if (!prealloc && !first_iteration)
1236 return -ENOMEM;
1237 }
1238
1239 spin_lock(&tree->lock);
1240 if (cached_state && *cached_state) {
1241 state = *cached_state;
1242 if (state->start <= start && state->end > start &&
1243 extent_state_in_tree(state)) {
1244 node = &state->rb_node;
1245 goto hit_next;
1246 }
1247 }
1248
1249 /*
1250 * this search will find all the extents that end after
1251 * our range starts.
1252 */
1253 node = tree_search_for_insert(tree, start, &p, &parent);
1254 if (!node) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
1260 err = insert_state(tree, prealloc, start, end,
1261 &p, &parent, &bits, NULL);
1262 if (err)
1263 extent_io_tree_panic(tree, err);
1264 cache_state(prealloc, cached_state);
1265 prealloc = NULL;
1266 goto out;
1267 }
1268 state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270 last_start = state->start;
1271 last_end = state->end;
1272
1273 /*
1274 * | ---- desired range ---- |
1275 * | state |
1276 *
1277 * Just lock what we found and keep going
1278 */
1279 if (state->start == start && state->end <= end) {
1280 set_state_bits(tree, state, &bits, NULL);
1281 cache_state(state, cached_state);
1282 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283 if (last_end == (u64)-1)
1284 goto out;
1285 start = last_end + 1;
1286 if (start < end && state && state->start == start &&
1287 !need_resched())
1288 goto hit_next;
1289 goto search_again;
1290 }
1291
1292 /*
1293 * | ---- desired range ---- |
1294 * | state |
1295 * or
1296 * | ------------- state -------------- |
1297 *
1298 * We need to split the extent we found, and may flip bits on
1299 * second half.
1300 *
1301 * If the extent we found extends past our
1302 * range, we just split and search again. It'll get split
1303 * again the next time though.
1304 *
1305 * If the extent we found is inside our range, we set the
1306 * desired bit on it.
1307 */
1308 if (state->start < start) {
1309 prealloc = alloc_extent_state_atomic(prealloc);
1310 if (!prealloc) {
1311 err = -ENOMEM;
1312 goto out;
1313 }
1314 err = split_state(tree, state, prealloc, start);
1315 if (err)
1316 extent_io_tree_panic(tree, err);
1317 prealloc = NULL;
1318 if (err)
1319 goto out;
1320 if (state->end <= end) {
1321 set_state_bits(tree, state, &bits, NULL);
1322 cache_state(state, cached_state);
1323 state = clear_state_bit(tree, state, &clear_bits, 0,
1324 NULL);
1325 if (last_end == (u64)-1)
1326 goto out;
1327 start = last_end + 1;
1328 if (start < end && state && state->start == start &&
1329 !need_resched())
1330 goto hit_next;
1331 }
1332 goto search_again;
1333 }
1334 /*
1335 * | ---- desired range ---- |
1336 * | state | or | state |
1337 *
1338 * There's a hole, we need to insert something in it and
1339 * ignore the extent we found.
1340 */
1341 if (state->start > start) {
1342 u64 this_end;
1343 if (end < last_start)
1344 this_end = end;
1345 else
1346 this_end = last_start - 1;
1347
1348 prealloc = alloc_extent_state_atomic(prealloc);
1349 if (!prealloc) {
1350 err = -ENOMEM;
1351 goto out;
1352 }
1353
1354 /*
1355 * Avoid to free 'prealloc' if it can be merged with
1356 * the later extent.
1357 */
1358 err = insert_state(tree, prealloc, start, this_end,
1359 NULL, NULL, &bits, NULL);
1360 if (err)
1361 extent_io_tree_panic(tree, err);
1362 cache_state(prealloc, cached_state);
1363 prealloc = NULL;
1364 start = this_end + 1;
1365 goto search_again;
1366 }
1367 /*
1368 * | ---- desired range ---- |
1369 * | state |
1370 * We need to split the extent, and set the bit
1371 * on the first half
1372 */
1373 if (state->start <= end && state->end > end) {
1374 prealloc = alloc_extent_state_atomic(prealloc);
1375 if (!prealloc) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
1379
1380 err = split_state(tree, state, prealloc, end + 1);
1381 if (err)
1382 extent_io_tree_panic(tree, err);
1383
1384 set_state_bits(tree, prealloc, &bits, NULL);
1385 cache_state(prealloc, cached_state);
1386 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387 prealloc = NULL;
1388 goto out;
1389 }
1390
1391search_again:
1392 if (start > end)
1393 goto out;
1394 spin_unlock(&tree->lock);
1395 cond_resched();
1396 first_iteration = false;
1397 goto again;
1398
1399out:
1400 spin_unlock(&tree->lock);
1401 if (prealloc)
1402 free_extent_state(prealloc);
1403
1404 return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409 u32 bits, struct extent_changeset *changeset)
1410{
1411 /*
1412 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 * either fail with -EEXIST or changeset will record the whole
1415 * range.
1416 */
1417 BUG_ON(bits & EXTENT_LOCKED);
1418
1419 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424 u32 bits)
1425{
1426 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431 u32 bits, int wake, int delete,
1432 struct extent_state **cached)
1433{
1434 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435 cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439 u32 bits, struct extent_changeset *changeset)
1440{
1441 /*
1442 * Don't support EXTENT_LOCKED case, same reason as
1443 * set_record_extent_bits().
1444 */
1445 BUG_ON(bits & EXTENT_LOCKED);
1446
1447 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448 changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456 struct extent_state **cached_state)
1457{
1458 int err;
1459 u64 failed_start;
1460
1461 while (1) {
1462 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 EXTENT_LOCKED, &failed_start,
1464 cached_state, GFP_NOFS, NULL);
1465 if (err == -EEXIST) {
1466 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 start = failed_start;
1468 } else
1469 break;
1470 WARN_ON(start > end);
1471 }
1472 return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477 int err;
1478 u64 failed_start;
1479
1480 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 &failed_start, NULL, GFP_NOFS, NULL);
1482 if (err == -EEXIST) {
1483 if (failed_start > start)
1484 clear_extent_bit(tree, start, failed_start - 1,
1485 EXTENT_LOCKED, 1, 0, NULL);
1486 return 0;
1487 }
1488 return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493 unsigned long index = start >> PAGE_SHIFT;
1494 unsigned long end_index = end >> PAGE_SHIFT;
1495 struct page *page;
1496
1497 while (index <= end_index) {
1498 page = find_get_page(inode->i_mapping, index);
1499 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 clear_page_dirty_for_io(page);
1501 put_page(page);
1502 index++;
1503 }
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508 unsigned long index = start >> PAGE_SHIFT;
1509 unsigned long end_index = end >> PAGE_SHIFT;
1510 struct page *page;
1511
1512 while (index <= end_index) {
1513 page = find_get_page(inode->i_mapping, index);
1514 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515 __set_page_dirty_nobuffers(page);
1516 account_page_redirty(page);
1517 put_page(page);
1518 index++;
1519 }
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it. tree->lock must be held. NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1528{
1529 struct rb_node *node;
1530 struct extent_state *state;
1531
1532 /*
1533 * this search will find all the extents that end after
1534 * our range starts.
1535 */
1536 node = tree_search(tree, start);
1537 if (!node)
1538 goto out;
1539
1540 while (1) {
1541 state = rb_entry(node, struct extent_state, rb_node);
1542 if (state->end >= start && (state->state & bits))
1543 return state;
1544
1545 node = rb_next(node);
1546 if (!node)
1547 break;
1548 }
1549out:
1550 return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562 u64 *start_ret, u64 *end_ret, u32 bits,
1563 struct extent_state **cached_state)
1564{
1565 struct extent_state *state;
1566 int ret = 1;
1567
1568 spin_lock(&tree->lock);
1569 if (cached_state && *cached_state) {
1570 state = *cached_state;
1571 if (state->end == start - 1 && extent_state_in_tree(state)) {
1572 while ((state = next_state(state)) != NULL) {
1573 if (state->state & bits)
1574 goto got_it;
1575 }
1576 free_extent_state(*cached_state);
1577 *cached_state = NULL;
1578 goto out;
1579 }
1580 free_extent_state(*cached_state);
1581 *cached_state = NULL;
1582 }
1583
1584 state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586 if (state) {
1587 cache_state_if_flags(state, cached_state, 0);
1588 *start_ret = state->start;
1589 *end_ret = state->end;
1590 ret = 0;
1591 }
1592out:
1593 spin_unlock(&tree->lock);
1594 return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree: io tree to check
1601 * @start: offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret: the final contiguous range of the bits that were set
1604 * @bits: bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again. During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits. We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area. The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614 u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616 struct extent_state *state;
1617 int ret = 1;
1618
1619 spin_lock(&tree->lock);
1620 state = find_first_extent_bit_state(tree, start, bits);
1621 if (state) {
1622 *start_ret = state->start;
1623 *end_ret = state->end;
1624 while ((state = next_state(state)) != NULL) {
1625 if (state->start > (*end_ret + 1))
1626 break;
1627 *end_ret = state->end;
1628 }
1629 ret = 0;
1630 }
1631 spin_unlock(&tree->lock);
1632 return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree: the tree to search
1640 * @start: offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret: records the end of the range (inclusive)
1643 * @bits: the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653 struct extent_state *state;
1654 struct rb_node *node, *prev = NULL, *next;
1655
1656 spin_lock(&tree->lock);
1657
1658 /* Find first extent with bits cleared */
1659 while (1) {
1660 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661 if (!node && !next && !prev) {
1662 /*
1663 * Tree is completely empty, send full range and let
1664 * caller deal with it
1665 */
1666 *start_ret = 0;
1667 *end_ret = -1;
1668 goto out;
1669 } else if (!node && !next) {
1670 /*
1671 * We are past the last allocated chunk, set start at
1672 * the end of the last extent.
1673 */
1674 state = rb_entry(prev, struct extent_state, rb_node);
1675 *start_ret = state->end + 1;
1676 *end_ret = -1;
1677 goto out;
1678 } else if (!node) {
1679 node = next;
1680 }
1681 /*
1682 * At this point 'node' either contains 'start' or start is
1683 * before 'node'
1684 */
1685 state = rb_entry(node, struct extent_state, rb_node);
1686
1687 if (in_range(start, state->start, state->end - state->start + 1)) {
1688 if (state->state & bits) {
1689 /*
1690 * |--range with bits sets--|
1691 * |
1692 * start
1693 */
1694 start = state->end + 1;
1695 } else {
1696 /*
1697 * 'start' falls within a range that doesn't
1698 * have the bits set, so take its start as
1699 * the beginning of the desired range
1700 *
1701 * |--range with bits cleared----|
1702 * |
1703 * start
1704 */
1705 *start_ret = state->start;
1706 break;
1707 }
1708 } else {
1709 /*
1710 * |---prev range---|---hole/unset---|---node range---|
1711 * |
1712 * start
1713 *
1714 * or
1715 *
1716 * |---hole/unset--||--first node--|
1717 * 0 |
1718 * start
1719 */
1720 if (prev) {
1721 state = rb_entry(prev, struct extent_state,
1722 rb_node);
1723 *start_ret = state->end + 1;
1724 } else {
1725 *start_ret = 0;
1726 }
1727 break;
1728 }
1729 }
1730
1731 /*
1732 * Find the longest stretch from start until an entry which has the
1733 * bits set
1734 */
1735 while (1) {
1736 state = rb_entry(node, struct extent_state, rb_node);
1737 if (state->end >= start && !(state->state & bits)) {
1738 *end_ret = state->end;
1739 } else {
1740 *end_ret = state->start - 1;
1741 break;
1742 }
1743
1744 node = rb_next(node);
1745 if (!node)
1746 break;
1747 }
1748out:
1749 spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'. start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759 u64 *end, u64 max_bytes,
1760 struct extent_state **cached_state)
1761{
1762 struct rb_node *node;
1763 struct extent_state *state;
1764 u64 cur_start = *start;
1765 bool found = false;
1766 u64 total_bytes = 0;
1767
1768 spin_lock(&tree->lock);
1769
1770 /*
1771 * this search will find all the extents that end after
1772 * our range starts.
1773 */
1774 node = tree_search(tree, cur_start);
1775 if (!node) {
1776 *end = (u64)-1;
1777 goto out;
1778 }
1779
1780 while (1) {
1781 state = rb_entry(node, struct extent_state, rb_node);
1782 if (found && (state->start != cur_start ||
1783 (state->state & EXTENT_BOUNDARY))) {
1784 goto out;
1785 }
1786 if (!(state->state & EXTENT_DELALLOC)) {
1787 if (!found)
1788 *end = state->end;
1789 goto out;
1790 }
1791 if (!found) {
1792 *start = state->start;
1793 *cached_state = state;
1794 refcount_inc(&state->refs);
1795 }
1796 found = true;
1797 *end = state->end;
1798 cur_start = state->end + 1;
1799 node = rb_next(node);
1800 total_bytes += state->end - state->start + 1;
1801 if (total_bytes >= max_bytes)
1802 break;
1803 if (!node)
1804 break;
1805 }
1806out:
1807 spin_unlock(&tree->lock);
1808 return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820 struct address_space *mapping,
1821 struct page *page, struct page *locked_page,
1822 unsigned long page_ops, u64 start, u64 end)
1823{
1824 u32 len;
1825
1826 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827 len = end + 1 - start;
1828
1829 if (page_ops & PAGE_SET_ORDERED)
1830 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831 if (page_ops & PAGE_SET_ERROR)
1832 btrfs_page_clamp_set_error(fs_info, page, start, len);
1833 if (page_ops & PAGE_START_WRITEBACK) {
1834 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836 }
1837 if (page_ops & PAGE_END_WRITEBACK)
1838 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840 if (page == locked_page)
1841 return 1;
1842
1843 if (page_ops & PAGE_LOCK) {
1844 int ret;
1845
1846 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847 if (ret)
1848 return ret;
1849 if (!PageDirty(page) || page->mapping != mapping) {
1850 btrfs_page_end_writer_lock(fs_info, page, start, len);
1851 return -EAGAIN;
1852 }
1853 }
1854 if (page_ops & PAGE_UNLOCK)
1855 btrfs_page_end_writer_lock(fs_info, page, start, len);
1856 return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860 struct page *locked_page,
1861 u64 start, u64 end, unsigned long page_ops,
1862 u64 *processed_end)
1863{
1864 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865 pgoff_t start_index = start >> PAGE_SHIFT;
1866 pgoff_t end_index = end >> PAGE_SHIFT;
1867 pgoff_t index = start_index;
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_processed = 0;
1870 struct page *pages[16];
1871 int err = 0;
1872 int i;
1873
1874 if (page_ops & PAGE_LOCK) {
1875 ASSERT(page_ops == PAGE_LOCK);
1876 ASSERT(processed_end && *processed_end == start);
1877 }
1878
1879 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880 mapping_set_error(mapping, -EIO);
1881
1882 while (nr_pages > 0) {
1883 int found_pages;
1884
1885 found_pages = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (found_pages == 0) {
1889 /*
1890 * Only if we're going to lock these pages, we can find
1891 * nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < found_pages; i++) {
1899 int process_ret;
1900
1901 process_ret = process_one_page(fs_info, mapping,
1902 pages[i], locked_page, page_ops,
1903 start, end);
1904 if (process_ret < 0) {
1905 for (; i < found_pages; i++)
1906 put_page(pages[i]);
1907 err = -EAGAIN;
1908 goto out;
1909 }
1910 put_page(pages[i]);
1911 pages_processed++;
1912 }
1913 nr_pages -= found_pages;
1914 index += found_pages;
1915 cond_resched();
1916 }
1917out:
1918 if (err && processed_end) {
1919 /*
1920 * Update @processed_end. I know this is awful since it has
1921 * two different return value patterns (inclusive vs exclusive).
1922 *
1923 * But the exclusive pattern is necessary if @start is 0, or we
1924 * underflow and check against processed_end won't work as
1925 * expected.
1926 */
1927 if (pages_processed)
1928 *processed_end = min(end,
1929 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930 else
1931 *processed_end = start;
1932 }
1933 return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937 struct page *locked_page,
1938 u64 start, u64 end)
1939{
1940 unsigned long index = start >> PAGE_SHIFT;
1941 unsigned long end_index = end >> PAGE_SHIFT;
1942
1943 ASSERT(locked_page);
1944 if (index == locked_page->index && end_index == index)
1945 return;
1946
1947 __process_pages_contig(inode->i_mapping, locked_page, start, end,
1948 PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952 struct page *locked_page,
1953 u64 delalloc_start,
1954 u64 delalloc_end)
1955{
1956 unsigned long index = delalloc_start >> PAGE_SHIFT;
1957 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958 u64 processed_end = delalloc_start;
1959 int ret;
1960
1961 ASSERT(locked_page);
1962 if (index == locked_page->index && index == end_index)
1963 return 0;
1964
1965 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966 delalloc_end, PAGE_LOCK, &processed_end);
1967 if (ret == -EAGAIN && processed_end > delalloc_start)
1968 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1969 processed_end);
1970 return ret;
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes. @Start and @end are used to return the range,
1976 *
1977 * Return: true if we find something
1978 * false if nothing was in the tree
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982 struct page *locked_page, u64 *start,
1983 u64 *end)
1984{
1985 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1987 u64 delalloc_start;
1988 u64 delalloc_end;
1989 bool found;
1990 struct extent_state *cached_state = NULL;
1991 int ret;
1992 int loops = 0;
1993
1994again:
1995 /* step one, find a bunch of delalloc bytes starting at start */
1996 delalloc_start = *start;
1997 delalloc_end = 0;
1998 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999 max_bytes, &cached_state);
2000 if (!found || delalloc_end <= *start) {
2001 *start = delalloc_start;
2002 *end = delalloc_end;
2003 free_extent_state(cached_state);
2004 return false;
2005 }
2006
2007 /*
2008 * start comes from the offset of locked_page. We have to lock
2009 * pages in order, so we can't process delalloc bytes before
2010 * locked_page
2011 */
2012 if (delalloc_start < *start)
2013 delalloc_start = *start;
2014
2015 /*
2016 * make sure to limit the number of pages we try to lock down
2017 */
2018 if (delalloc_end + 1 - delalloc_start > max_bytes)
2019 delalloc_end = delalloc_start + max_bytes - 1;
2020
2021 /* step two, lock all the pages after the page that has start */
2022 ret = lock_delalloc_pages(inode, locked_page,
2023 delalloc_start, delalloc_end);
2024 ASSERT(!ret || ret == -EAGAIN);
2025 if (ret == -EAGAIN) {
2026 /* some of the pages are gone, lets avoid looping by
2027 * shortening the size of the delalloc range we're searching
2028 */
2029 free_extent_state(cached_state);
2030 cached_state = NULL;
2031 if (!loops) {
2032 max_bytes = PAGE_SIZE;
2033 loops = 1;
2034 goto again;
2035 } else {
2036 found = false;
2037 goto out_failed;
2038 }
2039 }
2040
2041 /* step three, lock the state bits for the whole range */
2042 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044 /* then test to make sure it is all still delalloc */
2045 ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046 EXTENT_DELALLOC, 1, cached_state);
2047 if (!ret) {
2048 unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049 &cached_state);
2050 __unlock_for_delalloc(inode, locked_page,
2051 delalloc_start, delalloc_end);
2052 cond_resched();
2053 goto again;
2054 }
2055 free_extent_state(cached_state);
2056 *start = delalloc_start;
2057 *end = delalloc_end;
2058out_failed:
2059 return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063 struct page *locked_page,
2064 u32 clear_bits, unsigned long page_ops)
2065{
2066 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067
2068 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069 start, end, page_ops, NULL);
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached. The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078 u64 *start, u64 search_end, u64 max_bytes,
2079 u32 bits, int contig)
2080{
2081 struct rb_node *node;
2082 struct extent_state *state;
2083 u64 cur_start = *start;
2084 u64 total_bytes = 0;
2085 u64 last = 0;
2086 int found = 0;
2087
2088 if (WARN_ON(search_end <= cur_start))
2089 return 0;
2090
2091 spin_lock(&tree->lock);
2092 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093 total_bytes = tree->dirty_bytes;
2094 goto out;
2095 }
2096 /*
2097 * this search will find all the extents that end after
2098 * our range starts.
2099 */
2100 node = tree_search(tree, cur_start);
2101 if (!node)
2102 goto out;
2103
2104 while (1) {
2105 state = rb_entry(node, struct extent_state, rb_node);
2106 if (state->start > search_end)
2107 break;
2108 if (contig && found && state->start > last + 1)
2109 break;
2110 if (state->end >= cur_start && (state->state & bits) == bits) {
2111 total_bytes += min(search_end, state->end) + 1 -
2112 max(cur_start, state->start);
2113 if (total_bytes >= max_bytes)
2114 break;
2115 if (!found) {
2116 *start = max(cur_start, state->start);
2117 found = 1;
2118 }
2119 last = state->end;
2120 } else if (contig && found) {
2121 break;
2122 }
2123 node = rb_next(node);
2124 if (!node)
2125 break;
2126 }
2127out:
2128 spin_unlock(&tree->lock);
2129 return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree. If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137 struct io_failure_record *failrec)
2138{
2139 struct rb_node *node;
2140 struct extent_state *state;
2141 int ret = 0;
2142
2143 spin_lock(&tree->lock);
2144 /*
2145 * this search will find all the extents that end after
2146 * our range starts.
2147 */
2148 node = tree_search(tree, start);
2149 if (!node) {
2150 ret = -ENOENT;
2151 goto out;
2152 }
2153 state = rb_entry(node, struct extent_state, rb_node);
2154 if (state->start != start) {
2155 ret = -ENOENT;
2156 goto out;
2157 }
2158 state->failrec = failrec;
2159out:
2160 spin_unlock(&tree->lock);
2161 return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165{
2166 struct rb_node *node;
2167 struct extent_state *state;
2168 struct io_failure_record *failrec;
2169
2170 spin_lock(&tree->lock);
2171 /*
2172 * this search will find all the extents that end after
2173 * our range starts.
2174 */
2175 node = tree_search(tree, start);
2176 if (!node) {
2177 failrec = ERR_PTR(-ENOENT);
2178 goto out;
2179 }
2180 state = rb_entry(node, struct extent_state, rb_node);
2181 if (state->start != start) {
2182 failrec = ERR_PTR(-ENOENT);
2183 goto out;
2184 }
2185
2186 failrec = state->failrec;
2187out:
2188 spin_unlock(&tree->lock);
2189 return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set. Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199 u32 bits, int filled, struct extent_state *cached)
2200{
2201 struct extent_state *state = NULL;
2202 struct rb_node *node;
2203 int bitset = 0;
2204
2205 spin_lock(&tree->lock);
2206 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207 cached->end > start)
2208 node = &cached->rb_node;
2209 else
2210 node = tree_search(tree, start);
2211 while (node && start <= end) {
2212 state = rb_entry(node, struct extent_state, rb_node);
2213
2214 if (filled && state->start > start) {
2215 bitset = 0;
2216 break;
2217 }
2218
2219 if (state->start > end)
2220 break;
2221
2222 if (state->state & bits) {
2223 bitset = 1;
2224 if (!filled)
2225 break;
2226 } else if (filled) {
2227 bitset = 0;
2228 break;
2229 }
2230
2231 if (state->end == (u64)-1)
2232 break;
2233
2234 start = state->end + 1;
2235 if (start > end)
2236 break;
2237 node = rb_next(node);
2238 if (!node) {
2239 if (filled)
2240 bitset = 0;
2241 break;
2242 }
2243 }
2244 spin_unlock(&tree->lock);
2245 return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254 u64 start = page_offset(page);
2255 u64 end = start + PAGE_SIZE - 1;
2256 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257 SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261 struct extent_io_tree *io_tree,
2262 struct io_failure_record *rec)
2263{
2264 int ret;
2265 int err = 0;
2266
2267 set_state_failrec(failure_tree, rec->start, NULL);
2268 ret = clear_extent_bits(failure_tree, rec->start,
2269 rec->start + rec->len - 1,
2270 EXTENT_LOCKED | EXTENT_DIRTY);
2271 if (ret)
2272 err = ret;
2273
2274 ret = clear_extent_bits(io_tree, rec->start,
2275 rec->start + rec->len - 1,
2276 EXTENT_DAMAGED);
2277 if (ret && !err)
2278 err = ret;
2279
2280 kfree(rec);
2281 return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295 u64 length, u64 logical, struct page *page,
2296 unsigned int pg_offset, int mirror_num)
2297{
2298 struct bio *bio;
2299 struct btrfs_device *dev;
2300 u64 map_length = 0;
2301 u64 sector;
2302 struct btrfs_bio *bbio = NULL;
2303 int ret;
2304
2305 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306 BUG_ON(!mirror_num);
2307
2308 if (btrfs_is_zoned(fs_info))
2309 return btrfs_repair_one_zone(fs_info, logical);
2310
2311 bio = btrfs_io_bio_alloc(1);
2312 bio->bi_iter.bi_size = 0;
2313 map_length = length;
2314
2315 /*
2316 * Avoid races with device replace and make sure our bbio has devices
2317 * associated to its stripes that don't go away while we are doing the
2318 * read repair operation.
2319 */
2320 btrfs_bio_counter_inc_blocked(fs_info);
2321 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322 /*
2323 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324 * to update all raid stripes, but here we just want to correct
2325 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326 * stripe's dev and sector.
2327 */
2328 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329 &map_length, &bbio, 0);
2330 if (ret) {
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return -EIO;
2334 }
2335 ASSERT(bbio->mirror_num == 1);
2336 } else {
2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338 &map_length, &bbio, mirror_num);
2339 if (ret) {
2340 btrfs_bio_counter_dec(fs_info);
2341 bio_put(bio);
2342 return -EIO;
2343 }
2344 BUG_ON(mirror_num != bbio->mirror_num);
2345 }
2346
2347 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348 bio->bi_iter.bi_sector = sector;
2349 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350 btrfs_put_bbio(bbio);
2351 if (!dev || !dev->bdev ||
2352 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353 btrfs_bio_counter_dec(fs_info);
2354 bio_put(bio);
2355 return -EIO;
2356 }
2357 bio_set_dev(bio, dev->bdev);
2358 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359 bio_add_page(bio, page, length, pg_offset);
2360
2361 if (btrfsic_submit_bio_wait(bio)) {
2362 /* try to remap that extent elsewhere? */
2363 btrfs_bio_counter_dec(fs_info);
2364 bio_put(bio);
2365 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366 return -EIO;
2367 }
2368
2369 btrfs_info_rl_in_rcu(fs_info,
2370 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371 ino, start,
2372 rcu_str_deref(dev->name), sector);
2373 btrfs_bio_counter_dec(fs_info);
2374 bio_put(bio);
2375 return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379{
2380 struct btrfs_fs_info *fs_info = eb->fs_info;
2381 u64 start = eb->start;
2382 int i, num_pages = num_extent_pages(eb);
2383 int ret = 0;
2384
2385 if (sb_rdonly(fs_info->sb))
2386 return -EROFS;
2387
2388 for (i = 0; i < num_pages; i++) {
2389 struct page *p = eb->pages[i];
2390
2391 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392 start - page_offset(p), mirror_num);
2393 if (ret)
2394 break;
2395 start += PAGE_SIZE;
2396 }
2397
2398 return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406 struct extent_io_tree *failure_tree,
2407 struct extent_io_tree *io_tree, u64 start,
2408 struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410 u64 private;
2411 struct io_failure_record *failrec;
2412 struct extent_state *state;
2413 int num_copies;
2414 int ret;
2415
2416 private = 0;
2417 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418 EXTENT_DIRTY, 0);
2419 if (!ret)
2420 return 0;
2421
2422 failrec = get_state_failrec(failure_tree, start);
2423 if (IS_ERR(failrec))
2424 return 0;
2425
2426 BUG_ON(!failrec->this_mirror);
2427
2428 if (sb_rdonly(fs_info->sb))
2429 goto out;
2430
2431 spin_lock(&io_tree->lock);
2432 state = find_first_extent_bit_state(io_tree,
2433 failrec->start,
2434 EXTENT_LOCKED);
2435 spin_unlock(&io_tree->lock);
2436
2437 if (state && state->start <= failrec->start &&
2438 state->end >= failrec->start + failrec->len - 1) {
2439 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440 failrec->len);
2441 if (num_copies > 1) {
2442 repair_io_failure(fs_info, ino, start, failrec->len,
2443 failrec->logical, page, pg_offset,
2444 failrec->failed_mirror);
2445 }
2446 }
2447
2448out:
2449 free_io_failure(failure_tree, io_tree, failrec);
2450
2451 return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463 struct io_failure_record *failrec;
2464 struct extent_state *state, *next;
2465
2466 if (RB_EMPTY_ROOT(&failure_tree->state))
2467 return;
2468
2469 spin_lock(&failure_tree->lock);
2470 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471 while (state) {
2472 if (state->start > end)
2473 break;
2474
2475 ASSERT(state->end <= end);
2476
2477 next = next_state(state);
2478
2479 failrec = state->failrec;
2480 free_extent_state(state);
2481 kfree(failrec);
2482
2483 state = next;
2484 }
2485 spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489 u64 start)
2490{
2491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492 struct io_failure_record *failrec;
2493 struct extent_map *em;
2494 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497 const u32 sectorsize = fs_info->sectorsize;
2498 int ret;
2499 u64 logical;
2500
2501 failrec = get_state_failrec(failure_tree, start);
2502 if (!IS_ERR(failrec)) {
2503 btrfs_debug(fs_info,
2504 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505 failrec->logical, failrec->start, failrec->len);
2506 /*
2507 * when data can be on disk more than twice, add to failrec here
2508 * (e.g. with a list for failed_mirror) to make
2509 * clean_io_failure() clean all those errors at once.
2510 */
2511
2512 return failrec;
2513 }
2514
2515 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516 if (!failrec)
2517 return ERR_PTR(-ENOMEM);
2518
2519 failrec->start = start;
2520 failrec->len = sectorsize;
2521 failrec->this_mirror = 0;
2522 failrec->bio_flags = 0;
2523
2524 read_lock(&em_tree->lock);
2525 em = lookup_extent_mapping(em_tree, start, failrec->len);
2526 if (!em) {
2527 read_unlock(&em_tree->lock);
2528 kfree(failrec);
2529 return ERR_PTR(-EIO);
2530 }
2531
2532 if (em->start > start || em->start + em->len <= start) {
2533 free_extent_map(em);
2534 em = NULL;
2535 }
2536 read_unlock(&em_tree->lock);
2537 if (!em) {
2538 kfree(failrec);
2539 return ERR_PTR(-EIO);
2540 }
2541
2542 logical = start - em->start;
2543 logical = em->block_start + logical;
2544 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545 logical = em->block_start;
2546 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548 }
2549
2550 btrfs_debug(fs_info,
2551 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552 logical, start, failrec->len);
2553
2554 failrec->logical = logical;
2555 free_extent_map(em);
2556
2557 /* Set the bits in the private failure tree */
2558 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559 EXTENT_LOCKED | EXTENT_DIRTY);
2560 if (ret >= 0) {
2561 ret = set_state_failrec(failure_tree, start, failrec);
2562 /* Set the bits in the inode's tree */
2563 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564 EXTENT_DAMAGED);
2565 } else if (ret < 0) {
2566 kfree(failrec);
2567 return ERR_PTR(ret);
2568 }
2569
2570 return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574 struct io_failure_record *failrec,
2575 int failed_mirror)
2576{
2577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578 int num_copies;
2579
2580 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581 if (num_copies == 1) {
2582 /*
2583 * we only have a single copy of the data, so don't bother with
2584 * all the retry and error correction code that follows. no
2585 * matter what the error is, it is very likely to persist.
2586 */
2587 btrfs_debug(fs_info,
2588 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589 num_copies, failrec->this_mirror, failed_mirror);
2590 return false;
2591 }
2592
2593 /* The failure record should only contain one sector */
2594 ASSERT(failrec->len == fs_info->sectorsize);
2595
2596 /*
2597 * There are two premises:
2598 * a) deliver good data to the caller
2599 * b) correct the bad sectors on disk
2600 *
2601 * Since we're only doing repair for one sector, we only need to get
2602 * a good copy of the failed sector and if we succeed, we have setup
2603 * everything for repair_io_failure to do the rest for us.
2604 */
2605 failrec->failed_mirror = failed_mirror;
2606 failrec->this_mirror++;
2607 if (failrec->this_mirror == failed_mirror)
2608 failrec->this_mirror++;
2609
2610 if (failrec->this_mirror > num_copies) {
2611 btrfs_debug(fs_info,
2612 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613 num_copies, failrec->this_mirror, failed_mirror);
2614 return false;
2615 }
2616
2617 return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621 struct bio *failed_bio, u32 bio_offset,
2622 struct page *page, unsigned int pgoff,
2623 u64 start, int failed_mirror,
2624 submit_bio_hook_t *submit_bio_hook)
2625{
2626 struct io_failure_record *failrec;
2627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631 const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632 struct bio *repair_bio;
2633 struct btrfs_io_bio *repair_io_bio;
2634 blk_status_t status;
2635
2636 btrfs_debug(fs_info,
2637 "repair read error: read error at %llu", start);
2638
2639 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641 failrec = btrfs_get_io_failure_record(inode, start);
2642 if (IS_ERR(failrec))
2643 return PTR_ERR(failrec);
2644
2645
2646 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647 free_io_failure(failure_tree, tree, failrec);
2648 return -EIO;
2649 }
2650
2651 repair_bio = btrfs_io_bio_alloc(1);
2652 repair_io_bio = btrfs_io_bio(repair_bio);
2653 repair_bio->bi_opf = REQ_OP_READ;
2654 repair_bio->bi_end_io = failed_bio->bi_end_io;
2655 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656 repair_bio->bi_private = failed_bio->bi_private;
2657
2658 if (failed_io_bio->csum) {
2659 const u32 csum_size = fs_info->csum_size;
2660
2661 repair_io_bio->csum = repair_io_bio->csum_inline;
2662 memcpy(repair_io_bio->csum,
2663 failed_io_bio->csum + csum_size * icsum, csum_size);
2664 }
2665
2666 bio_add_page(repair_bio, page, failrec->len, pgoff);
2667 repair_io_bio->logical = failrec->start;
2668 repair_io_bio->iter = repair_bio->bi_iter;
2669
2670 btrfs_debug(btrfs_sb(inode->i_sb),
2671 "repair read error: submitting new read to mirror %d",
2672 failrec->this_mirror);
2673
2674 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675 failrec->bio_flags);
2676 if (status) {
2677 free_io_failure(failure_tree, tree, failrec);
2678 bio_put(repair_bio);
2679 }
2680 return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687 ASSERT(page_offset(page) <= start &&
2688 start + len <= page_offset(page) + PAGE_SIZE);
2689
2690 if (uptodate) {
2691 btrfs_page_set_uptodate(fs_info, page, start, len);
2692 } else {
2693 btrfs_page_clear_uptodate(fs_info, page, start, len);
2694 btrfs_page_set_error(fs_info, page, start, len);
2695 }
2696
2697 if (fs_info->sectorsize == PAGE_SIZE)
2698 unlock_page(page);
2699 else
2700 btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704 struct bio *failed_bio, u32 bio_offset,
2705 struct page *page, unsigned int pgoff,
2706 u64 start, u64 end, int failed_mirror,
2707 unsigned int error_bitmap,
2708 submit_bio_hook_t *submit_bio_hook)
2709{
2710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711 const u32 sectorsize = fs_info->sectorsize;
2712 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713 int error = 0;
2714 int i;
2715
2716 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718 /* We're here because we had some read errors or csum mismatch */
2719 ASSERT(error_bitmap);
2720
2721 /*
2722 * We only get called on buffered IO, thus page must be mapped and bio
2723 * must not be cloned.
2724 */
2725 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727 /* Iterate through all the sectors in the range */
2728 for (i = 0; i < nr_bits; i++) {
2729 const unsigned int offset = i * sectorsize;
2730 struct extent_state *cached = NULL;
2731 bool uptodate = false;
2732 int ret;
2733
2734 if (!(error_bitmap & (1U << i))) {
2735 /*
2736 * This sector has no error, just end the page read
2737 * and unlock the range.
2738 */
2739 uptodate = true;
2740 goto next;
2741 }
2742
2743 ret = btrfs_repair_one_sector(inode, failed_bio,
2744 bio_offset + offset,
2745 page, pgoff + offset, start + offset,
2746 failed_mirror, submit_bio_hook);
2747 if (!ret) {
2748 /*
2749 * We have submitted the read repair, the page release
2750 * will be handled by the endio function of the
2751 * submitted repair bio.
2752 * Thus we don't need to do any thing here.
2753 */
2754 continue;
2755 }
2756 /*
2757 * Repair failed, just record the error but still continue.
2758 * Or the remaining sectors will not be properly unlocked.
2759 */
2760 if (!error)
2761 error = ret;
2762next:
2763 end_page_read(page, uptodate, start + offset, sectorsize);
2764 if (uptodate)
2765 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766 start + offset,
2767 start + offset + sectorsize - 1,
2768 &cached, GFP_ATOMIC);
2769 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770 start + offset,
2771 start + offset + sectorsize - 1,
2772 &cached);
2773 }
2774 return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781 struct btrfs_inode *inode;
2782 int uptodate = (err == 0);
2783 int ret = 0;
2784
2785 ASSERT(page && page->mapping);
2786 inode = BTRFS_I(page->mapping->host);
2787 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788
2789 if (!uptodate) {
2790 ClearPageUptodate(page);
2791 SetPageError(page);
2792 ret = err < 0 ? err : -EIO;
2793 mapping_set_error(page->mapping, ret);
2794 }
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
2808 int error = blk_status_to_errno(bio->bi_status);
2809 struct bio_vec *bvec;
2810 u64 start;
2811 u64 end;
2812 struct bvec_iter_all iter_all;
2813 bool first_bvec = true;
2814
2815 ASSERT(!bio_flagged(bio, BIO_CLONED));
2816 bio_for_each_segment_all(bvec, bio, iter_all) {
2817 struct page *page = bvec->bv_page;
2818 struct inode *inode = page->mapping->host;
2819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820 const u32 sectorsize = fs_info->sectorsize;
2821
2822 /* Our read/write should always be sector aligned. */
2823 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824 btrfs_err(fs_info,
2825 "partial page write in btrfs with offset %u and length %u",
2826 bvec->bv_offset, bvec->bv_len);
2827 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828 btrfs_info(fs_info,
2829 "incomplete page write with offset %u and length %u",
2830 bvec->bv_offset, bvec->bv_len);
2831
2832 start = page_offset(page) + bvec->bv_offset;
2833 end = start + bvec->bv_len - 1;
2834
2835 if (first_bvec) {
2836 btrfs_record_physical_zoned(inode, start, bio);
2837 first_bvec = false;
2838 }
2839
2840 end_extent_writepage(page, error, start, end);
2841
2842 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843 }
2844
2845 bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855 struct btrfs_inode *inode;
2856 /* Start of the range in @inode */
2857 u64 start;
2858 /* End of the range in @inode */
2859 u64 end;
2860 bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875 struct btrfs_inode *inode, u64 start, u64 end,
2876 bool uptodate)
2877{
2878 struct extent_state *cached = NULL;
2879 struct extent_io_tree *tree;
2880
2881 /* The first extent, initialize @processed */
2882 if (!processed->inode)
2883 goto update;
2884
2885 /*
2886 * Contiguous to processed extent, just uptodate the end.
2887 *
2888 * Several things to notice:
2889 *
2890 * - bio can be merged as long as on-disk bytenr is contiguous
2891 * This means we can have page belonging to other inodes, thus need to
2892 * check if the inode still matches.
2893 * - bvec can contain range beyond current page for multi-page bvec
2894 * Thus we need to do processed->end + 1 >= start check
2895 */
2896 if (processed->inode == inode && processed->uptodate == uptodate &&
2897 processed->end + 1 >= start && end >= processed->end) {
2898 processed->end = end;
2899 return;
2900 }
2901
2902 tree = &processed->inode->io_tree;
2903 /*
2904 * Now we don't have range contiguous to the processed range, release
2905 * the processed range now.
2906 */
2907 if (processed->uptodate && tree->track_uptodate)
2908 set_extent_uptodate(tree, processed->start, processed->end,
2909 &cached, GFP_ATOMIC);
2910 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911 &cached);
2912
2913update:
2914 /* Update processed to current range */
2915 processed->inode = inode;
2916 processed->start = start;
2917 processed->end = end;
2918 processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923 ASSERT(PageLocked(page));
2924 if (fs_info->sectorsize == PAGE_SIZE)
2925 return;
2926
2927 ASSERT(PagePrivate(page));
2928 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940 struct extent_buffer *eb;
2941
2942 /*
2943 * For regular sectorsize, we can use page->private to grab extent
2944 * buffer
2945 */
2946 if (fs_info->sectorsize == PAGE_SIZE) {
2947 ASSERT(PagePrivate(page) && page->private);
2948 return (struct extent_buffer *)page->private;
2949 }
2950
2951 /* For subpage case, we need to lookup buffer radix tree */
2952 rcu_read_lock();
2953 eb = radix_tree_lookup(&fs_info->buffer_radix,
2954 bytenr >> fs_info->sectorsize_bits);
2955 rcu_read_unlock();
2956 ASSERT(eb);
2957 return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973 struct bio_vec *bvec;
2974 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975 struct extent_io_tree *tree, *failure_tree;
2976 struct processed_extent processed = { 0 };
2977 /*
2978 * The offset to the beginning of a bio, since one bio can never be
2979 * larger than UINT_MAX, u32 here is enough.
2980 */
2981 u32 bio_offset = 0;
2982 int mirror;
2983 int ret;
2984 struct bvec_iter_all iter_all;
2985
2986 ASSERT(!bio_flagged(bio, BIO_CLONED));
2987 bio_for_each_segment_all(bvec, bio, iter_all) {
2988 bool uptodate = !bio->bi_status;
2989 struct page *page = bvec->bv_page;
2990 struct inode *inode = page->mapping->host;
2991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992 const u32 sectorsize = fs_info->sectorsize;
2993 unsigned int error_bitmap = (unsigned int)-1;
2994 u64 start;
2995 u64 end;
2996 u32 len;
2997
2998 btrfs_debug(fs_info,
2999 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000 bio->bi_iter.bi_sector, bio->bi_status,
3001 io_bio->mirror_num);
3002 tree = &BTRFS_I(inode)->io_tree;
3003 failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005 /*
3006 * We always issue full-sector reads, but if some block in a
3007 * page fails to read, blk_update_request() will advance
3008 * bv_offset and adjust bv_len to compensate. Print a warning
3009 * for unaligned offsets, and an error if they don't add up to
3010 * a full sector.
3011 */
3012 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013 btrfs_err(fs_info,
3014 "partial page read in btrfs with offset %u and length %u",
3015 bvec->bv_offset, bvec->bv_len);
3016 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017 sectorsize))
3018 btrfs_info(fs_info,
3019 "incomplete page read with offset %u and length %u",
3020 bvec->bv_offset, bvec->bv_len);
3021
3022 start = page_offset(page) + bvec->bv_offset;
3023 end = start + bvec->bv_len - 1;
3024 len = bvec->bv_len;
3025
3026 mirror = io_bio->mirror_num;
3027 if (likely(uptodate)) {
3028 if (is_data_inode(inode)) {
3029 error_bitmap = btrfs_verify_data_csum(io_bio,
3030 bio_offset, page, start, end);
3031 ret = error_bitmap;
3032 } else {
3033 ret = btrfs_validate_metadata_buffer(io_bio,
3034 page, start, end, mirror);
3035 }
3036 if (ret)
3037 uptodate = false;
3038 else
3039 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040 failure_tree, tree, start,
3041 page,
3042 btrfs_ino(BTRFS_I(inode)), 0);
3043 }
3044
3045 if (likely(uptodate))
3046 goto readpage_ok;
3047
3048 if (is_data_inode(inode)) {
3049 /*
3050 * btrfs_submit_read_repair() will handle all the good
3051 * and bad sectors, we just continue to the next bvec.
3052 */
3053 submit_read_repair(inode, bio, bio_offset, page,
3054 start - page_offset(page), start,
3055 end, mirror, error_bitmap,
3056 btrfs_submit_data_bio);
3057
3058 ASSERT(bio_offset + len > bio_offset);
3059 bio_offset += len;
3060 continue;
3061 } else {
3062 struct extent_buffer *eb;
3063
3064 eb = find_extent_buffer_readpage(fs_info, page, start);
3065 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066 eb->read_mirror = mirror;
3067 atomic_dec(&eb->io_pages);
3068 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069 &eb->bflags))
3070 btree_readahead_hook(eb, -EIO);
3071 }
3072readpage_ok:
3073 if (likely(uptodate)) {
3074 loff_t i_size = i_size_read(inode);
3075 pgoff_t end_index = i_size >> PAGE_SHIFT;
3076
3077 /*
3078 * Zero out the remaining part if this range straddles
3079 * i_size.
3080 *
3081 * Here we should only zero the range inside the bvec,
3082 * not touch anything else.
3083 *
3084 * NOTE: i_size is exclusive while end is inclusive.
3085 */
3086 if (page->index == end_index && i_size <= end) {
3087 u32 zero_start = max(offset_in_page(i_size),
3088 offset_in_page(start));
3089
3090 zero_user_segment(page, zero_start,
3091 offset_in_page(end) + 1);
3092 }
3093 }
3094 ASSERT(bio_offset + len > bio_offset);
3095 bio_offset += len;
3096
3097 /* Update page status and unlock */
3098 end_page_read(page, uptodate, start, len);
3099 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100 start, end, uptodate);
3101 }
3102 /* Release the last extent */
3103 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104 btrfs_io_bio_free_csum(io_bio);
3105 bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114{
3115 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125 struct bio *bio;
3126
3127 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128 bio->bi_iter.bi_sector = first_byte >> 9;
3129 btrfs_io_bio_init(btrfs_io_bio(bio));
3130 return bio;
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
3134{
3135 struct btrfs_io_bio *btrfs_bio;
3136 struct bio *new;
3137
3138 /* Bio allocation backed by a bioset does not fail */
3139 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140 btrfs_bio = btrfs_io_bio(new);
3141 btrfs_io_bio_init(btrfs_bio);
3142 btrfs_bio->iter = bio->bi_iter;
3143 return new;
3144}
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148 struct bio *bio;
3149
3150 /* Bio allocation backed by a bioset does not fail */
3151 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152 btrfs_io_bio_init(btrfs_io_bio(bio));
3153 return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157{
3158 struct bio *bio;
3159 struct btrfs_io_bio *btrfs_bio;
3160
3161 /* this will never fail when it's backed by a bioset */
3162 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163 ASSERT(bio);
3164
3165 btrfs_bio = btrfs_io_bio(bio);
3166 btrfs_io_bio_init(btrfs_bio);
3167
3168 bio_trim(bio, offset >> 9, size >> 9);
3169 btrfs_bio->iter = bio->bi_iter;
3170 return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio: destination bio
3177 * @page: page to add to the bio
3178 * @disk_bytenr: offset of the new bio or to check whether we are adding
3179 * a contiguous page to the previous one
3180 * @pg_offset: starting offset in the page
3181 * @size: portion of page that we want to write
3182 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3183 * @bio_flags: flags of the current bio to see if we can merge them
3184 * @return: true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191 struct page *page,
3192 u64 disk_bytenr, unsigned int size,
3193 unsigned int pg_offset,
3194 unsigned long bio_flags)
3195{
3196 struct bio *bio = bio_ctrl->bio;
3197 u32 bio_size = bio->bi_iter.bi_size;
3198 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199 bool contig;
3200 int ret;
3201
3202 ASSERT(bio);
3203 /* The limit should be calculated when bio_ctrl->bio is allocated */
3204 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205 if (bio_ctrl->bio_flags != bio_flags)
3206 return false;
3207
3208 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209 contig = bio->bi_iter.bi_sector == sector;
3210 else
3211 contig = bio_end_sector(bio) == sector;
3212 if (!contig)
3213 return false;
3214
3215 if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216 bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217 return false;
3218
3219 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220 ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221 else
3222 ret = bio_add_page(bio, page, size, pg_offset);
3223
3224 return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228 struct btrfs_inode *inode)
3229{
3230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231 struct btrfs_io_geometry geom;
3232 struct btrfs_ordered_extent *ordered;
3233 struct extent_map *em;
3234 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235 int ret;
3236
3237 /*
3238 * Pages for compressed extent are never submitted to disk directly,
3239 * thus it has no real boundary, just set them to U32_MAX.
3240 *
3241 * The split happens for real compressed bio, which happens in
3242 * btrfs_submit_compressed_read/write().
3243 */
3244 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245 bio_ctrl->len_to_oe_boundary = U32_MAX;
3246 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247 return 0;
3248 }
3249 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250 if (IS_ERR(em))
3251 return PTR_ERR(em);
3252 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253 logical, &geom);
3254 free_extent_map(em);
3255 if (ret < 0) {
3256 return ret;
3257 }
3258 if (geom.len > U32_MAX)
3259 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260 else
3261 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263 if (!btrfs_is_zoned(fs_info) ||
3264 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265 bio_ctrl->len_to_oe_boundary = U32_MAX;
3266 return 0;
3267 }
3268
3269 ASSERT(fs_info->max_zone_append_size > 0);
3270 /* Ordered extent not yet created, so we're good */
3271 ordered = btrfs_lookup_ordered_extent(inode, logical);
3272 if (!ordered) {
3273 bio_ctrl->len_to_oe_boundary = U32_MAX;
3274 return 0;
3275 }
3276
3277 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279 btrfs_put_ordered_extent(ordered);
3280 return 0;
3281}
3282
3283/*
3284 * @opf: bio REQ_OP_* and REQ_* flags as one value
3285 * @wbc: optional writeback control for io accounting
3286 * @page: page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size: portion of page that we want to write to
3289 * @pg_offset: offset of the new bio or to check whether we are adding
3290 * a contiguous page to the previous one
3291 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func: end_io callback for new bio
3293 * @mirror_num: desired mirror to read/write
3294 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3295 * @bio_flags: flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298 struct writeback_control *wbc,
3299 struct btrfs_bio_ctrl *bio_ctrl,
3300 struct page *page, u64 disk_bytenr,
3301 size_t size, unsigned long pg_offset,
3302 bio_end_io_t end_io_func,
3303 int mirror_num,
3304 unsigned long bio_flags,
3305 bool force_bio_submit)
3306{
3307 int ret = 0;
3308 struct bio *bio;
3309 size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311 struct extent_io_tree *tree = &inode->io_tree;
3312 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314 ASSERT(bio_ctrl);
3315
3316 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317 pg_offset + size <= PAGE_SIZE);
3318 if (bio_ctrl->bio) {
3319 bio = bio_ctrl->bio;
3320 if (force_bio_submit ||
3321 !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322 pg_offset, bio_flags)) {
3323 ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324 bio_ctrl->bio = NULL;
3325 if (ret < 0)
3326 return ret;
3327 } else {
3328 if (wbc)
3329 wbc_account_cgroup_owner(wbc, page, io_size);
3330 return 0;
3331 }
3332 }
3333
3334 bio = btrfs_bio_alloc(disk_bytenr);
3335 bio_add_page(bio, page, io_size, pg_offset);
3336 bio->bi_end_io = end_io_func;
3337 bio->bi_private = tree;
3338 bio->bi_write_hint = page->mapping->host->i_write_hint;
3339 bio->bi_opf = opf;
3340 if (wbc) {
3341 struct block_device *bdev;
3342
3343 bdev = fs_info->fs_devices->latest_bdev;
3344 bio_set_dev(bio, bdev);
3345 wbc_init_bio(wbc, bio);
3346 wbc_account_cgroup_owner(wbc, page, io_size);
3347 }
3348 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349 struct btrfs_device *device;
3350
3351 device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352 if (IS_ERR(device))
3353 return PTR_ERR(device);
3354
3355 btrfs_io_bio(bio)->device = device;
3356 }
3357
3358 bio_ctrl->bio = bio;
3359 bio_ctrl->bio_flags = bio_flags;
3360 ret = calc_bio_boundaries(bio_ctrl, inode);
3361
3362 return ret;
3363}
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366 struct page *page,
3367 struct btrfs_subpage *prealloc)
3368{
3369 struct btrfs_fs_info *fs_info = eb->fs_info;
3370 int ret = 0;
3371
3372 /*
3373 * If the page is mapped to btree inode, we should hold the private
3374 * lock to prevent race.
3375 * For cloned or dummy extent buffers, their pages are not mapped and
3376 * will not race with any other ebs.
3377 */
3378 if (page->mapping)
3379 lockdep_assert_held(&page->mapping->private_lock);
3380
3381 if (fs_info->sectorsize == PAGE_SIZE) {
3382 if (!PagePrivate(page))
3383 attach_page_private(page, eb);
3384 else
3385 WARN_ON(page->private != (unsigned long)eb);
3386 return 0;
3387 }
3388
3389 /* Already mapped, just free prealloc */
3390 if (PagePrivate(page)) {
3391 btrfs_free_subpage(prealloc);
3392 return 0;
3393 }
3394
3395 if (prealloc)
3396 /* Has preallocated memory for subpage */
3397 attach_page_private(page, prealloc);
3398 else
3399 /* Do new allocation to attach subpage */
3400 ret = btrfs_attach_subpage(fs_info, page,
3401 BTRFS_SUBPAGE_METADATA);
3402 return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
3407 struct btrfs_fs_info *fs_info;
3408
3409 ASSERT(page->mapping);
3410
3411 if (PagePrivate(page))
3412 return 0;
3413
3414 fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416 if (fs_info->sectorsize < PAGE_SIZE)
3417 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420 return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
3425 struct btrfs_fs_info *fs_info;
3426
3427 ASSERT(page->mapping);
3428
3429 if (!PagePrivate(page))
3430 return;
3431
3432 fs_info = btrfs_sb(page->mapping->host->i_sb);
3433 if (fs_info->sectorsize < PAGE_SIZE)
3434 return btrfs_detach_subpage(fs_info, page);
3435
3436 detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441 u64 start, u64 len, struct extent_map **em_cached)
3442{
3443 struct extent_map *em;
3444
3445 if (em_cached && *em_cached) {
3446 em = *em_cached;
3447 if (extent_map_in_tree(em) && start >= em->start &&
3448 start < extent_map_end(em)) {
3449 refcount_inc(&em->refs);
3450 return em;
3451 }
3452
3453 free_extent_map(em);
3454 *em_cached = NULL;
3455 }
3456
3457 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458 if (em_cached && !IS_ERR_OR_NULL(em)) {
3459 BUG_ON(*em_cached);
3460 refcount_inc(&em->refs);
3461 *em_cached = em;
3462 }
3463 return em;
3464}
3465/*
3466 * basic readpage implementation. Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473 struct btrfs_bio_ctrl *bio_ctrl,
3474 unsigned int read_flags, u64 *prev_em_start)
3475{
3476 struct inode *inode = page->mapping->host;
3477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478 u64 start = page_offset(page);
3479 const u64 end = start + PAGE_SIZE - 1;
3480 u64 cur = start;
3481 u64 extent_offset;
3482 u64 last_byte = i_size_read(inode);
3483 u64 block_start;
3484 u64 cur_end;
3485 struct extent_map *em;
3486 int ret = 0;
3487 int nr = 0;
3488 size_t pg_offset = 0;
3489 size_t iosize;
3490 size_t blocksize = inode->i_sb->s_blocksize;
3491 unsigned long this_bio_flag = 0;
3492 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494 ret = set_page_extent_mapped(page);
3495 if (ret < 0) {
3496 unlock_extent(tree, start, end);
3497 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498 unlock_page(page);
3499 goto out;
3500 }
3501
3502 if (!PageUptodate(page)) {
3503 if (cleancache_get_page(page) == 0) {
3504 BUG_ON(blocksize != PAGE_SIZE);
3505 unlock_extent(tree, start, end);
3506 unlock_page(page);
3507 goto out;
3508 }
3509 }
3510
3511 if (page->index == last_byte >> PAGE_SHIFT) {
3512 size_t zero_offset = offset_in_page(last_byte);
3513
3514 if (zero_offset) {
3515 iosize = PAGE_SIZE - zero_offset;
3516 memzero_page(page, zero_offset, iosize);
3517 flush_dcache_page(page);
3518 }
3519 }
3520 begin_page_read(fs_info, page);
3521 while (cur <= end) {
3522 bool force_bio_submit = false;
3523 u64 disk_bytenr;
3524
3525 if (cur >= last_byte) {
3526 struct extent_state *cached = NULL;
3527
3528 iosize = PAGE_SIZE - pg_offset;
3529 memzero_page(page, pg_offset, iosize);
3530 flush_dcache_page(page);
3531 set_extent_uptodate(tree, cur, cur + iosize - 1,
3532 &cached, GFP_NOFS);
3533 unlock_extent_cached(tree, cur,
3534 cur + iosize - 1, &cached);
3535 end_page_read(page, true, cur, iosize);
3536 break;
3537 }
3538 em = __get_extent_map(inode, page, pg_offset, cur,
3539 end - cur + 1, em_cached);
3540 if (IS_ERR_OR_NULL(em)) {
3541 unlock_extent(tree, cur, end);
3542 end_page_read(page, false, cur, end + 1 - cur);
3543 break;
3544 }
3545 extent_offset = cur - em->start;
3546 BUG_ON(extent_map_end(em) <= cur);
3547 BUG_ON(end < cur);
3548
3549 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551 extent_set_compress_type(&this_bio_flag,
3552 em->compress_type);
3553 }
3554
3555 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556 cur_end = min(extent_map_end(em) - 1, end);
3557 iosize = ALIGN(iosize, blocksize);
3558 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559 disk_bytenr = em->block_start;
3560 else
3561 disk_bytenr = em->block_start + extent_offset;
3562 block_start = em->block_start;
3563 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564 block_start = EXTENT_MAP_HOLE;
3565
3566 /*
3567 * If we have a file range that points to a compressed extent
3568 * and it's followed by a consecutive file range that points
3569 * to the same compressed extent (possibly with a different
3570 * offset and/or length, so it either points to the whole extent
3571 * or only part of it), we must make sure we do not submit a
3572 * single bio to populate the pages for the 2 ranges because
3573 * this makes the compressed extent read zero out the pages
3574 * belonging to the 2nd range. Imagine the following scenario:
3575 *
3576 * File layout
3577 * [0 - 8K] [8K - 24K]
3578 * | |
3579 * | |
3580 * points to extent X, points to extent X,
3581 * offset 4K, length of 8K offset 0, length 16K
3582 *
3583 * [extent X, compressed length = 4K uncompressed length = 16K]
3584 *
3585 * If the bio to read the compressed extent covers both ranges,
3586 * it will decompress extent X into the pages belonging to the
3587 * first range and then it will stop, zeroing out the remaining
3588 * pages that belong to the other range that points to extent X.
3589 * So here we make sure we submit 2 bios, one for the first
3590 * range and another one for the third range. Both will target
3591 * the same physical extent from disk, but we can't currently
3592 * make the compressed bio endio callback populate the pages
3593 * for both ranges because each compressed bio is tightly
3594 * coupled with a single extent map, and each range can have
3595 * an extent map with a different offset value relative to the
3596 * uncompressed data of our extent and different lengths. This
3597 * is a corner case so we prioritize correctness over
3598 * non-optimal behavior (submitting 2 bios for the same extent).
3599 */
3600 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601 prev_em_start && *prev_em_start != (u64)-1 &&
3602 *prev_em_start != em->start)
3603 force_bio_submit = true;
3604
3605 if (prev_em_start)
3606 *prev_em_start = em->start;
3607
3608 free_extent_map(em);
3609 em = NULL;
3610
3611 /* we've found a hole, just zero and go on */
3612 if (block_start == EXTENT_MAP_HOLE) {
3613 struct extent_state *cached = NULL;
3614
3615 memzero_page(page, pg_offset, iosize);
3616 flush_dcache_page(page);
3617
3618 set_extent_uptodate(tree, cur, cur + iosize - 1,
3619 &cached, GFP_NOFS);
3620 unlock_extent_cached(tree, cur,
3621 cur + iosize - 1, &cached);
3622 end_page_read(page, true, cur, iosize);
3623 cur = cur + iosize;
3624 pg_offset += iosize;
3625 continue;
3626 }
3627 /* the get_extent function already copied into the page */
3628 if (test_range_bit(tree, cur, cur_end,
3629 EXTENT_UPTODATE, 1, NULL)) {
3630 check_page_uptodate(tree, page);
3631 unlock_extent(tree, cur, cur + iosize - 1);
3632 end_page_read(page, true, cur, iosize);
3633 cur = cur + iosize;
3634 pg_offset += iosize;
3635 continue;
3636 }
3637 /* we have an inline extent but it didn't get marked up
3638 * to date. Error out
3639 */
3640 if (block_start == EXTENT_MAP_INLINE) {
3641 unlock_extent(tree, cur, cur + iosize - 1);
3642 end_page_read(page, false, cur, iosize);
3643 cur = cur + iosize;
3644 pg_offset += iosize;
3645 continue;
3646 }
3647
3648 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649 bio_ctrl, page, disk_bytenr, iosize,
3650 pg_offset,
3651 end_bio_extent_readpage, 0,
3652 this_bio_flag,
3653 force_bio_submit);
3654 if (!ret) {
3655 nr++;
3656 } else {
3657 unlock_extent(tree, cur, cur + iosize - 1);
3658 end_page_read(page, false, cur, iosize);
3659 goto out;
3660 }
3661 cur = cur + iosize;
3662 pg_offset += iosize;
3663 }
3664out:
3665 return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669 u64 start, u64 end,
3670 struct extent_map **em_cached,
3671 struct btrfs_bio_ctrl *bio_ctrl,
3672 u64 *prev_em_start)
3673{
3674 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675 int index;
3676
3677 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678
3679 for (index = 0; index < nr_pages; index++) {
3680 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681 REQ_RAHEAD, prev_em_start);
3682 put_page(pages[index]);
3683 }
3684}
3685
3686static void update_nr_written(struct writeback_control *wbc,
3687 unsigned long nr_written)
3688{
3689 wbc->nr_to_write -= nr_written;
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent). In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703 struct page *page, struct writeback_control *wbc,
3704 u64 delalloc_start, unsigned long *nr_written)
3705{
3706 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707 bool found;
3708 u64 delalloc_to_write = 0;
3709 u64 delalloc_end = 0;
3710 int ret;
3711 int page_started = 0;
3712
3713
3714 while (delalloc_end < page_end) {
3715 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716 &delalloc_start,
3717 &delalloc_end);
3718 if (!found) {
3719 delalloc_start = delalloc_end + 1;
3720 continue;
3721 }
3722 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723 delalloc_end, &page_started, nr_written, wbc);
3724 if (ret) {
3725 SetPageError(page);
3726 /*
3727 * btrfs_run_delalloc_range should return < 0 for error
3728 * but just in case, we use > 0 here meaning the IO is
3729 * started, so we don't want to return > 0 unless
3730 * things are going well.
3731 */
3732 return ret < 0 ? ret : -EIO;
3733 }
3734 /*
3735 * delalloc_end is already one less than the total length, so
3736 * we don't subtract one from PAGE_SIZE
3737 */
3738 delalloc_to_write += (delalloc_end - delalloc_start +
3739 PAGE_SIZE) >> PAGE_SHIFT;
3740 delalloc_start = delalloc_end + 1;
3741 }
3742 if (wbc->nr_to_write < delalloc_to_write) {
3743 int thresh = 8192;
3744
3745 if (delalloc_to_write < thresh * 2)
3746 thresh = delalloc_to_write;
3747 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748 thresh);
3749 }
3750
3751 /* did the fill delalloc function already unlock and start
3752 * the IO?
3753 */
3754 if (page_started) {
3755 /*
3756 * we've unlocked the page, so we can't update
3757 * the mapping's writeback index, just update
3758 * nr_to_write.
3759 */
3760 wbc->nr_to_write -= *nr_written;
3761 return 1;
3762 }
3763
3764 return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783 struct page *page, u64 *start, u64 *end)
3784{
3785 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786 u64 orig_start = *start;
3787 /* Declare as unsigned long so we can use bitmap ops */
3788 unsigned long dirty_bitmap;
3789 unsigned long flags;
3790 int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791 int range_start_bit = nbits;
3792 int range_end_bit;
3793
3794 /*
3795 * For regular sector size == page size case, since one page only
3796 * contains one sector, we return the page offset directly.
3797 */
3798 if (fs_info->sectorsize == PAGE_SIZE) {
3799 *start = page_offset(page);
3800 *end = page_offset(page) + PAGE_SIZE;
3801 return;
3802 }
3803
3804 /* We should have the page locked, but just in case */
3805 spin_lock_irqsave(&subpage->lock, flags);
3806 dirty_bitmap = subpage->dirty_bitmap;
3807 spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809 bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810 BTRFS_SUBPAGE_BITMAP_SIZE);
3811 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage. This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824 struct page *page,
3825 struct writeback_control *wbc,
3826 struct extent_page_data *epd,
3827 loff_t i_size,
3828 unsigned long nr_written,
3829 int *nr_ret)
3830{
3831 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832 u64 start = page_offset(page);
3833 u64 end = start + PAGE_SIZE - 1;
3834 u64 cur = start;
3835 u64 extent_offset;
3836 u64 block_start;
3837 struct extent_map *em;
3838 int ret = 0;
3839 int nr = 0;
3840 u32 opf = REQ_OP_WRITE;
3841 const unsigned int write_flags = wbc_to_write_flags(wbc);
3842 bool compressed;
3843
3844 ret = btrfs_writepage_cow_fixup(page, start, end);
3845 if (ret) {
3846 /* Fixup worker will requeue */
3847 redirty_page_for_writepage(wbc, page);
3848 update_nr_written(wbc, nr_written);
3849 unlock_page(page);
3850 return 1;
3851 }
3852
3853 /*
3854 * we don't want to touch the inode after unlocking the page,
3855 * so we update the mapping writeback index now
3856 */
3857 update_nr_written(wbc, nr_written + 1);
3858
3859 while (cur <= end) {
3860 u64 disk_bytenr;
3861 u64 em_end;
3862 u64 dirty_range_start = cur;
3863 u64 dirty_range_end;
3864 u32 iosize;
3865
3866 if (cur >= i_size) {
3867 btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868 end, 1);
3869 break;
3870 }
3871
3872 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873 &dirty_range_end);
3874 if (cur < dirty_range_start) {
3875 cur = dirty_range_start;
3876 continue;
3877 }
3878
3879 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880 if (IS_ERR_OR_NULL(em)) {
3881 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882 ret = PTR_ERR_OR_ZERO(em);
3883 break;
3884 }
3885
3886 extent_offset = cur - em->start;
3887 em_end = extent_map_end(em);
3888 ASSERT(cur <= em_end);
3889 ASSERT(cur < end);
3890 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3892 block_start = em->block_start;
3893 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894 disk_bytenr = em->block_start + extent_offset;
3895
3896 /*
3897 * Note that em_end from extent_map_end() and dirty_range_end from
3898 * find_next_dirty_byte() are all exclusive
3899 */
3900 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902 if (btrfs_use_zone_append(inode, em->block_start))
3903 opf = REQ_OP_ZONE_APPEND;
3904
3905 free_extent_map(em);
3906 em = NULL;
3907
3908 /*
3909 * compressed and inline extents are written through other
3910 * paths in the FS
3911 */
3912 if (compressed || block_start == EXTENT_MAP_HOLE ||
3913 block_start == EXTENT_MAP_INLINE) {
3914 if (compressed)
3915 nr++;
3916 else
3917 btrfs_writepage_endio_finish_ordered(inode,
3918 page, cur, cur + iosize - 1, 1);
3919 cur += iosize;
3920 continue;
3921 }
3922
3923 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924 if (!PageWriteback(page)) {
3925 btrfs_err(inode->root->fs_info,
3926 "page %lu not writeback, cur %llu end %llu",
3927 page->index, cur, end);
3928 }
3929
3930 /*
3931 * Although the PageDirty bit is cleared before entering this
3932 * function, subpage dirty bit is not cleared.
3933 * So clear subpage dirty bit here so next time we won't submit
3934 * page for range already written to disk.
3935 */
3936 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938 ret = submit_extent_page(opf | write_flags, wbc,
3939 &epd->bio_ctrl, page,
3940 disk_bytenr, iosize,
3941 cur - page_offset(page),
3942 end_bio_extent_writepage,
3943 0, 0, false);
3944 if (ret) {
3945 btrfs_page_set_error(fs_info, page, cur, iosize);
3946 if (PageWriteback(page))
3947 btrfs_page_clear_writeback(fs_info, page, cur,
3948 iosize);
3949 }
3950
3951 cur += iosize;
3952 nr++;
3953 }
3954 *nr_ret = nr;
3955 return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage. extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback. Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968 struct extent_page_data *epd)
3969{
3970 struct inode *inode = page->mapping->host;
3971 u64 start = page_offset(page);
3972 u64 page_end = start + PAGE_SIZE - 1;
3973 int ret;
3974 int nr = 0;
3975 size_t pg_offset;
3976 loff_t i_size = i_size_read(inode);
3977 unsigned long end_index = i_size >> PAGE_SHIFT;
3978 unsigned long nr_written = 0;
3979
3980 trace___extent_writepage(page, inode, wbc);
3981
3982 WARN_ON(!PageLocked(page));
3983
3984 ClearPageError(page);
3985
3986 pg_offset = offset_in_page(i_size);
3987 if (page->index > end_index ||
3988 (page->index == end_index && !pg_offset)) {
3989 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990 unlock_page(page);
3991 return 0;
3992 }
3993
3994 if (page->index == end_index) {
3995 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3996 flush_dcache_page(page);
3997 }
3998
3999 ret = set_page_extent_mapped(page);
4000 if (ret < 0) {
4001 SetPageError(page);
4002 goto done;
4003 }
4004
4005 if (!epd->extent_locked) {
4006 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007 &nr_written);
4008 if (ret == 1)
4009 return 0;
4010 if (ret)
4011 goto done;
4012 }
4013
4014 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015 nr_written, &nr);
4016 if (ret == 1)
4017 return 0;
4018
4019done:
4020 if (nr == 0) {
4021 /* make sure the mapping tag for page dirty gets cleared */
4022 set_page_writeback(page);
4023 end_page_writeback(page);
4024 }
4025 if (PageError(page)) {
4026 ret = ret < 0 ? ret : -EIO;
4027 end_extent_writepage(page, ret, start, page_end);
4028 }
4029 unlock_page(page);
4030 ASSERT(ret <= 0);
4031 return ret;
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037 TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043 smp_mb__after_atomic();
4044 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return 0 if the extent buffer doesn't need to be submitted.
4053 * (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058 struct extent_page_data *epd)
4059{
4060 struct btrfs_fs_info *fs_info = eb->fs_info;
4061 int i, num_pages, failed_page_nr;
4062 int flush = 0;
4063 int ret = 0;
4064
4065 if (!btrfs_try_tree_write_lock(eb)) {
4066 ret = flush_write_bio(epd);
4067 if (ret < 0)
4068 return ret;
4069 flush = 1;
4070 btrfs_tree_lock(eb);
4071 }
4072
4073 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074 btrfs_tree_unlock(eb);
4075 if (!epd->sync_io)
4076 return 0;
4077 if (!flush) {
4078 ret = flush_write_bio(epd);
4079 if (ret < 0)
4080 return ret;
4081 flush = 1;
4082 }
4083 while (1) {
4084 wait_on_extent_buffer_writeback(eb);
4085 btrfs_tree_lock(eb);
4086 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087 break;
4088 btrfs_tree_unlock(eb);
4089 }
4090 }
4091
4092 /*
4093 * We need to do this to prevent races in people who check if the eb is
4094 * under IO since we can end up having no IO bits set for a short period
4095 * of time.
4096 */
4097 spin_lock(&eb->refs_lock);
4098 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100 spin_unlock(&eb->refs_lock);
4101 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103 -eb->len,
4104 fs_info->dirty_metadata_batch);
4105 ret = 1;
4106 } else {
4107 spin_unlock(&eb->refs_lock);
4108 }
4109
4110 btrfs_tree_unlock(eb);
4111
4112 /*
4113 * Either we don't need to submit any tree block, or we're submitting
4114 * subpage eb.
4115 * Subpage metadata doesn't use page locking at all, so we can skip
4116 * the page locking.
4117 */
4118 if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119 return ret;
4120
4121 num_pages = num_extent_pages(eb);
4122 for (i = 0; i < num_pages; i++) {
4123 struct page *p = eb->pages[i];
4124
4125 if (!trylock_page(p)) {
4126 if (!flush) {
4127 int err;
4128
4129 err = flush_write_bio(epd);
4130 if (err < 0) {
4131 ret = err;
4132 failed_page_nr = i;
4133 goto err_unlock;
4134 }
4135 flush = 1;
4136 }
4137 lock_page(p);
4138 }
4139 }
4140
4141 return ret;
4142err_unlock:
4143 /* Unlock already locked pages */
4144 for (i = 0; i < failed_page_nr; i++)
4145 unlock_page(eb->pages[i]);
4146 /*
4147 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149 * be made and undo everything done before.
4150 */
4151 btrfs_tree_lock(eb);
4152 spin_lock(&eb->refs_lock);
4153 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154 end_extent_buffer_writeback(eb);
4155 spin_unlock(&eb->refs_lock);
4156 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157 fs_info->dirty_metadata_batch);
4158 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159 btrfs_tree_unlock(eb);
4160 return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164{
4165 struct btrfs_fs_info *fs_info = eb->fs_info;
4166
4167 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169 return;
4170
4171 /*
4172 * If we error out, we should add back the dirty_metadata_bytes
4173 * to make it consistent.
4174 */
4175 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176 eb->len, fs_info->dirty_metadata_batch);
4177
4178 /*
4179 * If writeback for a btree extent that doesn't belong to a log tree
4180 * failed, increment the counter transaction->eb_write_errors.
4181 * We do this because while the transaction is running and before it's
4182 * committing (when we call filemap_fdata[write|wait]_range against
4183 * the btree inode), we might have
4184 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185 * returns an error or an error happens during writeback, when we're
4186 * committing the transaction we wouldn't know about it, since the pages
4187 * can be no longer dirty nor marked anymore for writeback (if a
4188 * subsequent modification to the extent buffer didn't happen before the
4189 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190 * able to find the pages tagged with SetPageError at transaction
4191 * commit time. So if this happens we must abort the transaction,
4192 * otherwise we commit a super block with btree roots that point to
4193 * btree nodes/leafs whose content on disk is invalid - either garbage
4194 * or the content of some node/leaf from a past generation that got
4195 * cowed or deleted and is no longer valid.
4196 *
4197 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198 * not be enough - we need to distinguish between log tree extents vs
4199 * non-log tree extents, and the next filemap_fdatawait_range() call
4200 * will catch and clear such errors in the mapping - and that call might
4201 * be from a log sync and not from a transaction commit. Also, checking
4202 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203 * not done and would not be reliable - the eb might have been released
4204 * from memory and reading it back again means that flag would not be
4205 * set (since it's a runtime flag, not persisted on disk).
4206 *
4207 * Using the flags below in the btree inode also makes us achieve the
4208 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209 * writeback for all dirty pages and before filemap_fdatawait_range()
4210 * is called, the writeback for all dirty pages had already finished
4211 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212 * filemap_fdatawait_range() would return success, as it could not know
4213 * that writeback errors happened (the pages were no longer tagged for
4214 * writeback).
4215 */
4216 switch (eb->log_index) {
4217 case -1:
4218 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219 break;
4220 case 0:
4221 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222 break;
4223 case 1:
4224 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225 break;
4226 default:
4227 BUG(); /* unexpected, logic error */
4228 }
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236 struct btrfs_fs_info *fs_info, u64 start)
4237{
4238 struct extent_buffer *eb;
4239
4240 rcu_read_lock();
4241 eb = radix_tree_lookup(&fs_info->buffer_radix,
4242 start >> fs_info->sectorsize_bits);
4243 if (eb && atomic_inc_not_zero(&eb->refs)) {
4244 rcu_read_unlock();
4245 return eb;
4246 }
4247 rcu_read_unlock();
4248 return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259 struct btrfs_fs_info *fs_info;
4260 struct bio_vec *bvec;
4261 struct bvec_iter_all iter_all;
4262
4263 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266 ASSERT(!bio_flagged(bio, BIO_CLONED));
4267 bio_for_each_segment_all(bvec, bio, iter_all) {
4268 struct page *page = bvec->bv_page;
4269 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271 u64 cur_bytenr = bvec_start;
4272
4273 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275 /* Iterate through all extent buffers in the range */
4276 while (cur_bytenr <= bvec_end) {
4277 struct extent_buffer *eb;
4278 int done;
4279
4280 /*
4281 * Here we can't use find_extent_buffer(), as it may
4282 * try to lock eb->refs_lock, which is not safe in endio
4283 * context.
4284 */
4285 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286 ASSERT(eb);
4287
4288 cur_bytenr = eb->start + eb->len;
4289
4290 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291 done = atomic_dec_and_test(&eb->io_pages);
4292 ASSERT(done);
4293
4294 if (bio->bi_status ||
4295 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296 ClearPageUptodate(page);
4297 set_btree_ioerr(page, eb);
4298 }
4299
4300 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301 eb->len);
4302 end_extent_buffer_writeback(eb);
4303 /*
4304 * free_extent_buffer() will grab spinlock which is not
4305 * safe in endio context. Thus here we manually dec
4306 * the ref.
4307 */
4308 atomic_dec(&eb->refs);
4309 }
4310 }
4311 bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316 struct bio_vec *bvec;
4317 struct extent_buffer *eb;
4318 int done;
4319 struct bvec_iter_all iter_all;
4320
4321 ASSERT(!bio_flagged(bio, BIO_CLONED));
4322 bio_for_each_segment_all(bvec, bio, iter_all) {
4323 struct page *page = bvec->bv_page;
4324
4325 eb = (struct extent_buffer *)page->private;
4326 BUG_ON(!eb);
4327 done = atomic_dec_and_test(&eb->io_pages);
4328
4329 if (bio->bi_status ||
4330 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331 ClearPageUptodate(page);
4332 set_btree_ioerr(page, eb);
4333 }
4334
4335 end_page_writeback(page);
4336
4337 if (!done)
4338 continue;
4339
4340 end_extent_buffer_writeback(eb);
4341 }
4342
4343 bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
4347{
4348 u32 nritems;
4349 unsigned long start;
4350 unsigned long end;
4351
4352 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353 atomic_set(&eb->io_pages, num_extent_pages(eb));
4354
4355 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4356 nritems = btrfs_header_nritems(eb);
4357 if (btrfs_header_level(eb) > 0) {
4358 end = btrfs_node_key_ptr_offset(nritems);
4359 memzero_extent_buffer(eb, end, eb->len - end);
4360 } else {
4361 /*
4362 * Leaf:
4363 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364 */
4365 start = btrfs_item_nr_offset(nritems);
4366 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4367 memzero_extent_buffer(eb, start, end - start);
4368 }
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376 struct writeback_control *wbc,
4377 struct extent_page_data *epd)
4378{
4379 struct btrfs_fs_info *fs_info = eb->fs_info;
4380 struct page *page = eb->pages[0];
4381 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382 bool no_dirty_ebs = false;
4383 int ret;
4384
4385 prepare_eb_write(eb);
4386
4387 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4388 lock_page(page);
4389 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391 /* Check if this is the last dirty bit to update nr_written */
4392 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393 eb->start, eb->len);
4394 if (no_dirty_ebs)
4395 clear_page_dirty_for_io(page);
4396
4397 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398 &epd->bio_ctrl, page, eb->start, eb->len,
4399 eb->start - page_offset(page),
4400 end_bio_subpage_eb_writepage, 0, 0, false);
4401 if (ret) {
4402 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403 set_btree_ioerr(page, eb);
4404 unlock_page(page);
4405
4406 if (atomic_dec_and_test(&eb->io_pages))
4407 end_extent_buffer_writeback(eb);
4408 return -EIO;
4409 }
4410 unlock_page(page);
4411 /*
4412 * Submission finished without problem, if no range of the page is
4413 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4414 */
4415 if (no_dirty_ebs)
4416 update_nr_written(wbc, 1);
4417 return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421 struct writeback_control *wbc,
4422 struct extent_page_data *epd)
4423{
4424 u64 disk_bytenr = eb->start;
4425 int i, num_pages;
4426 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427 int ret = 0;
4428
4429 prepare_eb_write(eb);
4430
4431 num_pages = num_extent_pages(eb);
4432 for (i = 0; i < num_pages; i++) {
4433 struct page *p = eb->pages[i];
4434
4435 clear_page_dirty_for_io(p);
4436 set_page_writeback(p);
4437 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438 &epd->bio_ctrl, p, disk_bytenr,
4439 PAGE_SIZE, 0,
4440 end_bio_extent_buffer_writepage,
4441 0, 0, false);
4442 if (ret) {
4443 set_btree_ioerr(p, eb);
4444 if (PageWriteback(p))
4445 end_page_writeback(p);
4446 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447 end_extent_buffer_writeback(eb);
4448 ret = -EIO;
4449 break;
4450 }
4451 disk_bytenr += PAGE_SIZE;
4452 update_nr_written(wbc, 1);
4453 unlock_page(p);
4454 }
4455
4456 if (unlikely(ret)) {
4457 for (; i < num_pages; i++) {
4458 struct page *p = eb->pages[i];
4459 clear_page_dirty_for_io(p);
4460 unlock_page(p);
4461 }
4462 }
4463
4464 return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 * For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 * We only flush bio if we may be unable to fit current extent buffers into
4476 * current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482 struct writeback_control *wbc,
4483 struct extent_page_data *epd)
4484{
4485 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486 int submitted = 0;
4487 u64 page_start = page_offset(page);
4488 int bit_start = 0;
4489 const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491 int ret;
4492
4493 /* Lock and write each dirty extent buffers in the range */
4494 while (bit_start < nbits) {
4495 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496 struct extent_buffer *eb;
4497 unsigned long flags;
4498 u64 start;
4499
4500 /*
4501 * Take private lock to ensure the subpage won't be detached
4502 * in the meantime.
4503 */
4504 spin_lock(&page->mapping->private_lock);
4505 if (!PagePrivate(page)) {
4506 spin_unlock(&page->mapping->private_lock);
4507 break;
4508 }
4509 spin_lock_irqsave(&subpage->lock, flags);
4510 if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4511 spin_unlock_irqrestore(&subpage->lock, flags);
4512 spin_unlock(&page->mapping->private_lock);
4513 bit_start++;
4514 continue;
4515 }
4516
4517 start = page_start + bit_start * fs_info->sectorsize;
4518 bit_start += sectors_per_node;
4519
4520 /*
4521 * Here we just want to grab the eb without touching extra
4522 * spin locks, so call find_extent_buffer_nolock().
4523 */
4524 eb = find_extent_buffer_nolock(fs_info, start);
4525 spin_unlock_irqrestore(&subpage->lock, flags);
4526 spin_unlock(&page->mapping->private_lock);
4527
4528 /*
4529 * The eb has already reached 0 refs thus find_extent_buffer()
4530 * doesn't return it. We don't need to write back such eb
4531 * anyway.
4532 */
4533 if (!eb)
4534 continue;
4535
4536 ret = lock_extent_buffer_for_io(eb, epd);
4537 if (ret == 0) {
4538 free_extent_buffer(eb);
4539 continue;
4540 }
4541 if (ret < 0) {
4542 free_extent_buffer(eb);
4543 goto cleanup;
4544 }
4545 ret = write_one_subpage_eb(eb, wbc, epd);
4546 free_extent_buffer(eb);
4547 if (ret < 0)
4548 goto cleanup;
4549 submitted++;
4550 }
4551 return submitted;
4552
4553cleanup:
4554 /* We hit error, end bio for the submitted extent buffers */
4555 end_write_bio(epd, ret);
4556 return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page: the page of one extent buffer
4563 * @eb_context: to determine if we need to submit this page, if current page
4564 * belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580 struct extent_page_data *epd,
4581 struct extent_buffer **eb_context)
4582{
4583 struct address_space *mapping = page->mapping;
4584 struct btrfs_block_group *cache = NULL;
4585 struct extent_buffer *eb;
4586 int ret;
4587
4588 if (!PagePrivate(page))
4589 return 0;
4590
4591 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592 return submit_eb_subpage(page, wbc, epd);
4593
4594 spin_lock(&mapping->private_lock);
4595 if (!PagePrivate(page)) {
4596 spin_unlock(&mapping->private_lock);
4597 return 0;
4598 }
4599
4600 eb = (struct extent_buffer *)page->private;
4601
4602 /*
4603 * Shouldn't happen and normally this would be a BUG_ON but no point
4604 * crashing the machine for something we can survive anyway.
4605 */
4606 if (WARN_ON(!eb)) {
4607 spin_unlock(&mapping->private_lock);
4608 return 0;
4609 }
4610
4611 if (eb == *eb_context) {
4612 spin_unlock(&mapping->private_lock);
4613 return 0;
4614 }
4615 ret = atomic_inc_not_zero(&eb->refs);
4616 spin_unlock(&mapping->private_lock);
4617 if (!ret)
4618 return 0;
4619
4620 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621 /*
4622 * If for_sync, this hole will be filled with
4623 * trasnsaction commit.
4624 */
4625 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626 ret = -EAGAIN;
4627 else
4628 ret = 0;
4629 free_extent_buffer(eb);
4630 return ret;
4631 }
4632
4633 *eb_context = eb;
4634
4635 ret = lock_extent_buffer_for_io(eb, epd);
4636 if (ret <= 0) {
4637 btrfs_revert_meta_write_pointer(cache, eb);
4638 if (cache)
4639 btrfs_put_block_group(cache);
4640 free_extent_buffer(eb);
4641 return ret;
4642 }
4643 if (cache)
4644 btrfs_put_block_group(cache);
4645 ret = write_one_eb(eb, wbc, epd);
4646 free_extent_buffer(eb);
4647 if (ret < 0)
4648 return ret;
4649 return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653 struct writeback_control *wbc)
4654{
4655 struct extent_buffer *eb_context = NULL;
4656 struct extent_page_data epd = {
4657 .bio_ctrl = { 0 },
4658 .extent_locked = 0,
4659 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660 };
4661 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662 int ret = 0;
4663 int done = 0;
4664 int nr_to_write_done = 0;
4665 struct pagevec pvec;
4666 int nr_pages;
4667 pgoff_t index;
4668 pgoff_t end; /* Inclusive */
4669 int scanned = 0;
4670 xa_mark_t tag;
4671
4672 pagevec_init(&pvec);
4673 if (wbc->range_cyclic) {
4674 index = mapping->writeback_index; /* Start from prev offset */
4675 end = -1;
4676 /*
4677 * Start from the beginning does not need to cycle over the
4678 * range, mark it as scanned.
4679 */
4680 scanned = (index == 0);
4681 } else {
4682 index = wbc->range_start >> PAGE_SHIFT;
4683 end = wbc->range_end >> PAGE_SHIFT;
4684 scanned = 1;
4685 }
4686 if (wbc->sync_mode == WB_SYNC_ALL)
4687 tag = PAGECACHE_TAG_TOWRITE;
4688 else
4689 tag = PAGECACHE_TAG_DIRTY;
4690 btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692 if (wbc->sync_mode == WB_SYNC_ALL)
4693 tag_pages_for_writeback(mapping, index, end);
4694 while (!done && !nr_to_write_done && (index <= end) &&
4695 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696 tag))) {
4697 unsigned i;
4698
4699 for (i = 0; i < nr_pages; i++) {
4700 struct page *page = pvec.pages[i];
4701
4702 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703 if (ret == 0)
4704 continue;
4705 if (ret < 0) {
4706 done = 1;
4707 break;
4708 }
4709
4710 /*
4711 * the filesystem may choose to bump up nr_to_write.
4712 * We have to make sure to honor the new nr_to_write
4713 * at any time
4714 */
4715 nr_to_write_done = wbc->nr_to_write <= 0;
4716 }
4717 pagevec_release(&pvec);
4718 cond_resched();
4719 }
4720 if (!scanned && !done) {
4721 /*
4722 * We hit the last page and there is more work to be done: wrap
4723 * back to the start of the file
4724 */
4725 scanned = 1;
4726 index = 0;
4727 goto retry;
4728 }
4729 if (ret < 0) {
4730 end_write_bio(&epd, ret);
4731 goto out;
4732 }
4733 /*
4734 * If something went wrong, don't allow any metadata write bio to be
4735 * submitted.
4736 *
4737 * This would prevent use-after-free if we had dirty pages not
4738 * cleaned up, which can still happen by fuzzed images.
4739 *
4740 * - Bad extent tree
4741 * Allowing existing tree block to be allocated for other trees.
4742 *
4743 * - Log tree operations
4744 * Exiting tree blocks get allocated to log tree, bumps its
4745 * generation, then get cleaned in tree re-balance.
4746 * Such tree block will not be written back, since it's clean,
4747 * thus no WRITTEN flag set.
4748 * And after log writes back, this tree block is not traced by
4749 * any dirty extent_io_tree.
4750 *
4751 * - Offending tree block gets re-dirtied from its original owner
4752 * Since it has bumped generation, no WRITTEN flag, it can be
4753 * reused without COWing. This tree block will not be traced
4754 * by btrfs_transaction::dirty_pages.
4755 *
4756 * Now such dirty tree block will not be cleaned by any dirty
4757 * extent io tree. Thus we don't want to submit such wild eb
4758 * if the fs already has error.
4759 */
4760 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761 ret = flush_write_bio(&epd);
4762 } else {
4763 ret = -EROFS;
4764 end_write_bio(&epd, ret);
4765 }
4766out:
4767 btrfs_zoned_meta_io_unlock(fs_info);
4768 return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd: holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them. If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787 struct writeback_control *wbc,
4788 struct extent_page_data *epd)
4789{
4790 struct inode *inode = mapping->host;
4791 int ret = 0;
4792 int done = 0;
4793 int nr_to_write_done = 0;
4794 struct pagevec pvec;
4795 int nr_pages;
4796 pgoff_t index;
4797 pgoff_t end; /* Inclusive */
4798 pgoff_t done_index;
4799 int range_whole = 0;
4800 int scanned = 0;
4801 xa_mark_t tag;
4802
4803 /*
4804 * We have to hold onto the inode so that ordered extents can do their
4805 * work when the IO finishes. The alternative to this is failing to add
4806 * an ordered extent if the igrab() fails there and that is a huge pain
4807 * to deal with, so instead just hold onto the inode throughout the
4808 * writepages operation. If it fails here we are freeing up the inode
4809 * anyway and we'd rather not waste our time writing out stuff that is
4810 * going to be truncated anyway.
4811 */
4812 if (!igrab(inode))
4813 return 0;
4814
4815 pagevec_init(&pvec);
4816 if (wbc->range_cyclic) {
4817 index = mapping->writeback_index; /* Start from prev offset */
4818 end = -1;
4819 /*
4820 * Start from the beginning does not need to cycle over the
4821 * range, mark it as scanned.
4822 */
4823 scanned = (index == 0);
4824 } else {
4825 index = wbc->range_start >> PAGE_SHIFT;
4826 end = wbc->range_end >> PAGE_SHIFT;
4827 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828 range_whole = 1;
4829 scanned = 1;
4830 }
4831
4832 /*
4833 * We do the tagged writepage as long as the snapshot flush bit is set
4834 * and we are the first one who do the filemap_flush() on this inode.
4835 *
4836 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837 * not race in and drop the bit.
4838 */
4839 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841 &BTRFS_I(inode)->runtime_flags))
4842 wbc->tagged_writepages = 1;
4843
4844 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845 tag = PAGECACHE_TAG_TOWRITE;
4846 else
4847 tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850 tag_pages_for_writeback(mapping, index, end);
4851 done_index = index;
4852 while (!done && !nr_to_write_done && (index <= end) &&
4853 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854 &index, end, tag))) {
4855 unsigned i;
4856
4857 for (i = 0; i < nr_pages; i++) {
4858 struct page *page = pvec.pages[i];
4859
4860 done_index = page->index + 1;
4861 /*
4862 * At this point we hold neither the i_pages lock nor
4863 * the page lock: the page may be truncated or
4864 * invalidated (changing page->mapping to NULL),
4865 * or even swizzled back from swapper_space to
4866 * tmpfs file mapping
4867 */
4868 if (!trylock_page(page)) {
4869 ret = flush_write_bio(epd);
4870 BUG_ON(ret < 0);
4871 lock_page(page);
4872 }
4873
4874 if (unlikely(page->mapping != mapping)) {
4875 unlock_page(page);
4876 continue;
4877 }
4878
4879 if (wbc->sync_mode != WB_SYNC_NONE) {
4880 if (PageWriteback(page)) {
4881 ret = flush_write_bio(epd);
4882 BUG_ON(ret < 0);
4883 }
4884 wait_on_page_writeback(page);
4885 }
4886
4887 if (PageWriteback(page) ||
4888 !clear_page_dirty_for_io(page)) {
4889 unlock_page(page);
4890 continue;
4891 }
4892
4893 ret = __extent_writepage(page, wbc, epd);
4894 if (ret < 0) {
4895 done = 1;
4896 break;
4897 }
4898
4899 /*
4900 * the filesystem may choose to bump up nr_to_write.
4901 * We have to make sure to honor the new nr_to_write
4902 * at any time
4903 */
4904 nr_to_write_done = wbc->nr_to_write <= 0;
4905 }
4906 pagevec_release(&pvec);
4907 cond_resched();
4908 }
4909 if (!scanned && !done) {
4910 /*
4911 * We hit the last page and there is more work to be done: wrap
4912 * back to the start of the file
4913 */
4914 scanned = 1;
4915 index = 0;
4916
4917 /*
4918 * If we're looping we could run into a page that is locked by a
4919 * writer and that writer could be waiting on writeback for a
4920 * page in our current bio, and thus deadlock, so flush the
4921 * write bio here.
4922 */
4923 ret = flush_write_bio(epd);
4924 if (!ret)
4925 goto retry;
4926 }
4927
4928 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929 mapping->writeback_index = done_index;
4930
4931 btrfs_add_delayed_iput(inode);
4932 return ret;
4933}
4934
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4936{
4937 int ret;
4938 struct extent_page_data epd = {
4939 .bio_ctrl = { 0 },
4940 .extent_locked = 0,
4941 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4942 };
4943
4944 ret = __extent_writepage(page, wbc, &epd);
4945 ASSERT(ret <= 0);
4946 if (ret < 0) {
4947 end_write_bio(&epd, ret);
4948 return ret;
4949 }
4950
4951 ret = flush_write_bio(&epd);
4952 ASSERT(ret <= 0);
4953 return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957 int mode)
4958{
4959 int ret = 0;
4960 struct address_space *mapping = inode->i_mapping;
4961 struct page *page;
4962 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963 PAGE_SHIFT;
4964
4965 struct extent_page_data epd = {
4966 .bio_ctrl = { 0 },
4967 .extent_locked = 1,
4968 .sync_io = mode == WB_SYNC_ALL,
4969 };
4970 struct writeback_control wbc_writepages = {
4971 .sync_mode = mode,
4972 .nr_to_write = nr_pages * 2,
4973 .range_start = start,
4974 .range_end = end + 1,
4975 /* We're called from an async helper function */
4976 .punt_to_cgroup = 1,
4977 .no_cgroup_owner = 1,
4978 };
4979
4980 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981 while (start <= end) {
4982 page = find_get_page(mapping, start >> PAGE_SHIFT);
4983 if (clear_page_dirty_for_io(page))
4984 ret = __extent_writepage(page, &wbc_writepages, &epd);
4985 else {
4986 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987 page, start, start + PAGE_SIZE - 1, 1);
4988 unlock_page(page);
4989 }
4990 put_page(page);
4991 start += PAGE_SIZE;
4992 }
4993
4994 ASSERT(ret <= 0);
4995 if (ret == 0)
4996 ret = flush_write_bio(&epd);
4997 else
4998 end_write_bio(&epd, ret);
4999
5000 wbc_detach_inode(&wbc_writepages);
5001 return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
5005 struct writeback_control *wbc)
5006{
5007 int ret = 0;
5008 struct extent_page_data epd = {
5009 .bio_ctrl = { 0 },
5010 .extent_locked = 0,
5011 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012 };
5013
5014 ret = extent_write_cache_pages(mapping, wbc, &epd);
5015 ASSERT(ret <= 0);
5016 if (ret < 0) {
5017 end_write_bio(&epd, ret);
5018 return ret;
5019 }
5020 ret = flush_write_bio(&epd);
5021 return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
5025{
5026 struct btrfs_bio_ctrl bio_ctrl = { 0 };
5027 struct page *pagepool[16];
5028 struct extent_map *em_cached = NULL;
5029 u64 prev_em_start = (u64)-1;
5030 int nr;
5031
5032 while ((nr = readahead_page_batch(rac, pagepool))) {
5033 u64 contig_start = readahead_pos(rac);
5034 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5035
5036 contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037 &em_cached, &bio_ctrl, &prev_em_start);
5038 }
5039
5040 if (em_cached)
5041 free_extent_map(em_cached);
5042
5043 if (bio_ctrl.bio) {
5044 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045 return;
5046 }
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055 struct page *page, unsigned long offset)
5056{
5057 struct extent_state *cached_state = NULL;
5058 u64 start = page_offset(page);
5059 u64 end = start + PAGE_SIZE - 1;
5060 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062 /* This function is only called for the btree inode */
5063 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065 start += ALIGN(offset, blocksize);
5066 if (start > end)
5067 return 0;
5068
5069 lock_extent_bits(tree, start, end, &cached_state);
5070 wait_on_page_writeback(page);
5071
5072 /*
5073 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074 * so here we only need to unlock the extent range to free any
5075 * existing extent state.
5076 */
5077 unlock_extent_cached(tree, start, end, &cached_state);
5078 return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
5087 struct page *page, gfp_t mask)
5088{
5089 u64 start = page_offset(page);
5090 u64 end = start + PAGE_SIZE - 1;
5091 int ret = 1;
5092
5093 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094 ret = 0;
5095 } else {
5096 /*
5097 * At this point we can safely clear everything except the
5098 * locked bit, the nodatasum bit and the delalloc new bit.
5099 * The delalloc new bit will be cleared by ordered extent
5100 * completion.
5101 */
5102 ret = __clear_extent_bit(tree, start, end,
5103 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104 0, 0, NULL, mask, NULL);
5105
5106 /* if clear_extent_bit failed for enomem reasons,
5107 * we can't allow the release to continue.
5108 */
5109 if (ret < 0)
5110 ret = 0;
5111 else
5112 ret = 1;
5113 }
5114 return ret;
5115}
5116
5117/*
5118 * a helper for releasepage. As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
5123{
5124 struct extent_map *em;
5125 u64 start = page_offset(page);
5126 u64 end = start + PAGE_SIZE - 1;
5127 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129 struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131 if (gfpflags_allow_blocking(mask) &&
5132 page->mapping->host->i_size > SZ_16M) {
5133 u64 len;
5134 while (start <= end) {
5135 struct btrfs_fs_info *fs_info;
5136 u64 cur_gen;
5137
5138 len = end - start + 1;
5139 write_lock(&map->lock);
5140 em = lookup_extent_mapping(map, start, len);
5141 if (!em) {
5142 write_unlock(&map->lock);
5143 break;
5144 }
5145 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146 em->start != start) {
5147 write_unlock(&map->lock);
5148 free_extent_map(em);
5149 break;
5150 }
5151 if (test_range_bit(tree, em->start,
5152 extent_map_end(em) - 1,
5153 EXTENT_LOCKED, 0, NULL))
5154 goto next;
5155 /*
5156 * If it's not in the list of modified extents, used
5157 * by a fast fsync, we can remove it. If it's being
5158 * logged we can safely remove it since fsync took an
5159 * extra reference on the em.
5160 */
5161 if (list_empty(&em->list) ||
5162 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163 goto remove_em;
5164 /*
5165 * If it's in the list of modified extents, remove it
5166 * only if its generation is older then the current one,
5167 * in which case we don't need it for a fast fsync.
5168 * Otherwise don't remove it, we could be racing with an
5169 * ongoing fast fsync that could miss the new extent.
5170 */
5171 fs_info = btrfs_inode->root->fs_info;
5172 spin_lock(&fs_info->trans_lock);
5173 cur_gen = fs_info->generation;
5174 spin_unlock(&fs_info->trans_lock);
5175 if (em->generation >= cur_gen)
5176 goto next;
5177remove_em:
5178 /*
5179 * We only remove extent maps that are not in the list of
5180 * modified extents or that are in the list but with a
5181 * generation lower then the current generation, so there
5182 * is no need to set the full fsync flag on the inode (it
5183 * hurts the fsync performance for workloads with a data
5184 * size that exceeds or is close to the system's memory).
5185 */
5186 remove_extent_mapping(map, em);
5187 /* once for the rb tree */
5188 free_extent_map(em);
5189next:
5190 start = extent_map_end(em);
5191 write_unlock(&map->lock);
5192
5193 /* once for us */
5194 free_extent_map(em);
5195
5196 cond_resched(); /* Allow large-extent preemption. */
5197 }
5198 }
5199 return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207 u64 offset, u64 last)
5208{
5209 u64 sectorsize = btrfs_inode_sectorsize(inode);
5210 struct extent_map *em;
5211 u64 len;
5212
5213 if (offset >= last)
5214 return NULL;
5215
5216 while (1) {
5217 len = last - offset;
5218 if (len == 0)
5219 break;
5220 len = ALIGN(len, sectorsize);
5221 em = btrfs_get_extent_fiemap(inode, offset, len);
5222 if (IS_ERR_OR_NULL(em))
5223 return em;
5224
5225 /* if this isn't a hole return it */
5226 if (em->block_start != EXTENT_MAP_HOLE)
5227 return em;
5228
5229 /* this is a hole, advance to the next extent */
5230 offset = extent_map_end(em);
5231 free_extent_map(em);
5232 if (offset >= last)
5233 break;
5234 }
5235 return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244 u64 offset;
5245 u64 phys;
5246 u64 len;
5247 u32 flags;
5248 bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262 struct fiemap_cache *cache,
5263 u64 offset, u64 phys, u64 len, u32 flags)
5264{
5265 int ret = 0;
5266
5267 if (!cache->cached)
5268 goto assign;
5269
5270 /*
5271 * Sanity check, extent_fiemap() should have ensured that new
5272 * fiemap extent won't overlap with cached one.
5273 * Not recoverable.
5274 *
5275 * NOTE: Physical address can overlap, due to compression
5276 */
5277 if (cache->offset + cache->len > offset) {
5278 WARN_ON(1);
5279 return -EINVAL;
5280 }
5281
5282 /*
5283 * Only merges fiemap extents if
5284 * 1) Their logical addresses are continuous
5285 *
5286 * 2) Their physical addresses are continuous
5287 * So truly compressed (physical size smaller than logical size)
5288 * extents won't get merged with each other
5289 *
5290 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291 * So regular extent won't get merged with prealloc extent
5292 */
5293 if (cache->offset + cache->len == offset &&
5294 cache->phys + cache->len == phys &&
5295 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296 (flags & ~FIEMAP_EXTENT_LAST)) {
5297 cache->len += len;
5298 cache->flags |= flags;
5299 goto try_submit_last;
5300 }
5301
5302 /* Not mergeable, need to submit cached one */
5303 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304 cache->len, cache->flags);
5305 cache->cached = false;
5306 if (ret)
5307 return ret;
5308assign:
5309 cache->cached = true;
5310 cache->offset = offset;
5311 cache->phys = phys;
5312 cache->len = len;
5313 cache->flags = flags;
5314try_submit_last:
5315 if (cache->flags & FIEMAP_EXTENT_LAST) {
5316 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317 cache->phys, cache->len, cache->flags);
5318 cache->cached = false;
5319 }
5320 return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0 4k 8k
5328 * |<- Fiemap range ->|
5329 * |<------------ First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335 struct fiemap_cache *cache)
5336{
5337 int ret;
5338
5339 if (!cache->cached)
5340 return 0;
5341
5342 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343 cache->len, cache->flags);
5344 cache->cached = false;
5345 if (ret > 0)
5346 ret = 0;
5347 return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351 u64 start, u64 len)
5352{
5353 int ret = 0;
5354 u64 off;
5355 u64 max = start + len;
5356 u32 flags = 0;
5357 u32 found_type;
5358 u64 last;
5359 u64 last_for_get_extent = 0;
5360 u64 disko = 0;
5361 u64 isize = i_size_read(&inode->vfs_inode);
5362 struct btrfs_key found_key;
5363 struct extent_map *em = NULL;
5364 struct extent_state *cached_state = NULL;
5365 struct btrfs_path *path;
5366 struct btrfs_root *root = inode->root;
5367 struct fiemap_cache cache = { 0 };
5368 struct ulist *roots;
5369 struct ulist *tmp_ulist;
5370 int end = 0;
5371 u64 em_start = 0;
5372 u64 em_len = 0;
5373 u64 em_end = 0;
5374
5375 if (len == 0)
5376 return -EINVAL;
5377
5378 path = btrfs_alloc_path();
5379 if (!path)
5380 return -ENOMEM;
5381
5382 roots = ulist_alloc(GFP_KERNEL);
5383 tmp_ulist = ulist_alloc(GFP_KERNEL);
5384 if (!roots || !tmp_ulist) {
5385 ret = -ENOMEM;
5386 goto out_free_ulist;
5387 }
5388
5389 /*
5390 * We can't initialize that to 'start' as this could miss extents due
5391 * to extent item merging
5392 */
5393 off = 0;
5394 start = round_down(start, btrfs_inode_sectorsize(inode));
5395 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396
5397 /*
5398 * lookup the last file extent. We're not using i_size here
5399 * because there might be preallocation past i_size
5400 */
5401 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402 0);
5403 if (ret < 0) {
5404 goto out_free_ulist;
5405 } else {
5406 WARN_ON(!ret);
5407 if (ret == 1)
5408 ret = 0;
5409 }
5410
5411 path->slots[0]--;
5412 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413 found_type = found_key.type;
5414
5415 /* No extents, but there might be delalloc bits */
5416 if (found_key.objectid != btrfs_ino(inode) ||
5417 found_type != BTRFS_EXTENT_DATA_KEY) {
5418 /* have to trust i_size as the end */
5419 last = (u64)-1;
5420 last_for_get_extent = isize;
5421 } else {
5422 /*
5423 * remember the start of the last extent. There are a
5424 * bunch of different factors that go into the length of the
5425 * extent, so its much less complex to remember where it started
5426 */
5427 last = found_key.offset;
5428 last_for_get_extent = last + 1;
5429 }
5430 btrfs_release_path(path);
5431
5432 /*
5433 * we might have some extents allocated but more delalloc past those
5434 * extents. so, we trust isize unless the start of the last extent is
5435 * beyond isize
5436 */
5437 if (last < isize) {
5438 last = (u64)-1;
5439 last_for_get_extent = isize;
5440 }
5441
5442 lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443 &cached_state);
5444
5445 em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446 if (!em)
5447 goto out;
5448 if (IS_ERR(em)) {
5449 ret = PTR_ERR(em);
5450 goto out;
5451 }
5452
5453 while (!end) {
5454 u64 offset_in_extent = 0;
5455
5456 /* break if the extent we found is outside the range */
5457 if (em->start >= max || extent_map_end(em) < off)
5458 break;
5459
5460 /*
5461 * get_extent may return an extent that starts before our
5462 * requested range. We have to make sure the ranges
5463 * we return to fiemap always move forward and don't
5464 * overlap, so adjust the offsets here
5465 */
5466 em_start = max(em->start, off);
5467
5468 /*
5469 * record the offset from the start of the extent
5470 * for adjusting the disk offset below. Only do this if the
5471 * extent isn't compressed since our in ram offset may be past
5472 * what we have actually allocated on disk.
5473 */
5474 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475 offset_in_extent = em_start - em->start;
5476 em_end = extent_map_end(em);
5477 em_len = em_end - em_start;
5478 flags = 0;
5479 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480 disko = em->block_start + offset_in_extent;
5481 else
5482 disko = 0;
5483
5484 /*
5485 * bump off for our next call to get_extent
5486 */
5487 off = extent_map_end(em);
5488 if (off >= max)
5489 end = 1;
5490
5491 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492 end = 1;
5493 flags |= FIEMAP_EXTENT_LAST;
5494 } else if (em->block_start == EXTENT_MAP_INLINE) {
5495 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496 FIEMAP_EXTENT_NOT_ALIGNED);
5497 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498 flags |= (FIEMAP_EXTENT_DELALLOC |
5499 FIEMAP_EXTENT_UNKNOWN);
5500 } else if (fieinfo->fi_extents_max) {
5501 u64 bytenr = em->block_start -
5502 (em->start - em->orig_start);
5503
5504 /*
5505 * As btrfs supports shared space, this information
5506 * can be exported to userspace tools via
5507 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5508 * then we're just getting a count and we can skip the
5509 * lookup stuff.
5510 */
5511 ret = btrfs_check_shared(root, btrfs_ino(inode),
5512 bytenr, roots, tmp_ulist);
5513 if (ret < 0)
5514 goto out_free;
5515 if (ret)
5516 flags |= FIEMAP_EXTENT_SHARED;
5517 ret = 0;
5518 }
5519 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520 flags |= FIEMAP_EXTENT_ENCODED;
5521 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522 flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524 free_extent_map(em);
5525 em = NULL;
5526 if ((em_start >= last) || em_len == (u64)-1 ||
5527 (last == (u64)-1 && isize <= em_end)) {
5528 flags |= FIEMAP_EXTENT_LAST;
5529 end = 1;
5530 }
5531
5532 /* now scan forward to see if this is really the last extent. */
5533 em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534 if (IS_ERR(em)) {
5535 ret = PTR_ERR(em);
5536 goto out;
5537 }
5538 if (!em) {
5539 flags |= FIEMAP_EXTENT_LAST;
5540 end = 1;
5541 }
5542 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543 em_len, flags);
5544 if (ret) {
5545 if (ret == 1)
5546 ret = 0;
5547 goto out_free;
5548 }
5549 }
5550out_free:
5551 if (!ret)
5552 ret = emit_last_fiemap_cache(fieinfo, &cache);
5553 free_extent_map(em);
5554out:
5555 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556 &cached_state);
5557
5558out_free_ulist:
5559 btrfs_free_path(path);
5560 ulist_free(roots);
5561 ulist_free(tmp_ulist);
5562 return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
5567 kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572 return (atomic_read(&eb->io_pages) ||
5573 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5578{
5579 struct btrfs_subpage *subpage;
5580
5581 lockdep_assert_held(&page->mapping->private_lock);
5582
5583 if (PagePrivate(page)) {
5584 subpage = (struct btrfs_subpage *)page->private;
5585 if (atomic_read(&subpage->eb_refs))
5586 return true;
5587 /*
5588 * Even there is no eb refs here, we may still have
5589 * end_page_read() call relying on page::private.
5590 */
5591 if (atomic_read(&subpage->readers))
5592 return true;
5593 }
5594 return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599 struct btrfs_fs_info *fs_info = eb->fs_info;
5600 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602 /*
5603 * For mapped eb, we're going to change the page private, which should
5604 * be done under the private_lock.
5605 */
5606 if (mapped)
5607 spin_lock(&page->mapping->private_lock);
5608
5609 if (!PagePrivate(page)) {
5610 if (mapped)
5611 spin_unlock(&page->mapping->private_lock);
5612 return;
5613 }
5614
5615 if (fs_info->sectorsize == PAGE_SIZE) {
5616 /*
5617 * We do this since we'll remove the pages after we've
5618 * removed the eb from the radix tree, so we could race
5619 * and have this page now attached to the new eb. So
5620 * only clear page_private if it's still connected to
5621 * this eb.
5622 */
5623 if (PagePrivate(page) &&
5624 page->private == (unsigned long)eb) {
5625 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626 BUG_ON(PageDirty(page));
5627 BUG_ON(PageWriteback(page));
5628 /*
5629 * We need to make sure we haven't be attached
5630 * to a new eb.
5631 */
5632 detach_page_private(page);
5633 }
5634 if (mapped)
5635 spin_unlock(&page->mapping->private_lock);
5636 return;
5637 }
5638
5639 /*
5640 * For subpage, we can have dummy eb with page private. In this case,
5641 * we can directly detach the private as such page is only attached to
5642 * one dummy eb, no sharing.
5643 */
5644 if (!mapped) {
5645 btrfs_detach_subpage(fs_info, page);
5646 return;
5647 }
5648
5649 btrfs_page_dec_eb_refs(fs_info, page);
5650
5651 /*
5652 * We can only detach the page private if there are no other ebs in the
5653 * page range and no unfinished IO.
5654 */
5655 if (!page_range_has_eb(fs_info, page))
5656 btrfs_detach_subpage(fs_info, page);
5657
5658 spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664 int i;
5665 int num_pages;
5666
5667 ASSERT(!extent_buffer_under_io(eb));
5668
5669 num_pages = num_extent_pages(eb);
5670 for (i = 0; i < num_pages; i++) {
5671 struct page *page = eb->pages[i];
5672
5673 if (!page)
5674 continue;
5675
5676 detach_extent_buffer_page(eb, page);
5677
5678 /* One for when we allocated the page */
5679 put_page(page);
5680 }
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688 btrfs_release_extent_buffer_pages(eb);
5689 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690 __free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695 unsigned long len)
5696{
5697 struct extent_buffer *eb = NULL;
5698
5699 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700 eb->start = start;
5701 eb->len = len;
5702 eb->fs_info = fs_info;
5703 eb->bflags = 0;
5704 init_rwsem(&eb->lock);
5705
5706 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707 &fs_info->allocated_ebs);
5708 INIT_LIST_HEAD(&eb->release_list);
5709
5710 spin_lock_init(&eb->refs_lock);
5711 atomic_set(&eb->refs, 1);
5712 atomic_set(&eb->io_pages, 0);
5713
5714 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5715
5716 return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721 int i;
5722 struct page *p;
5723 struct extent_buffer *new;
5724 int num_pages = num_extent_pages(src);
5725
5726 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727 if (new == NULL)
5728 return NULL;
5729
5730 /*
5731 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732 * btrfs_release_extent_buffer() have different behavior for
5733 * UNMAPPED subpage extent buffer.
5734 */
5735 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737 for (i = 0; i < num_pages; i++) {
5738 int ret;
5739
5740 p = alloc_page(GFP_NOFS);
5741 if (!p) {
5742 btrfs_release_extent_buffer(new);
5743 return NULL;
5744 }
5745 ret = attach_extent_buffer_page(new, p, NULL);
5746 if (ret < 0) {
5747 put_page(p);
5748 btrfs_release_extent_buffer(new);
5749 return NULL;
5750 }
5751 WARN_ON(PageDirty(p));
5752 new->pages[i] = p;
5753 copy_page(page_address(p), page_address(src->pages[i]));
5754 }
5755 set_extent_buffer_uptodate(new);
5756
5757 return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761 u64 start, unsigned long len)
5762{
5763 struct extent_buffer *eb;
5764 int num_pages;
5765 int i;
5766
5767 eb = __alloc_extent_buffer(fs_info, start, len);
5768 if (!eb)
5769 return NULL;
5770
5771 num_pages = num_extent_pages(eb);
5772 for (i = 0; i < num_pages; i++) {
5773 int ret;
5774
5775 eb->pages[i] = alloc_page(GFP_NOFS);
5776 if (!eb->pages[i])
5777 goto err;
5778 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779 if (ret < 0)
5780 goto err;
5781 }
5782 set_extent_buffer_uptodate(eb);
5783 btrfs_set_header_nritems(eb, 0);
5784 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786 return eb;
5787err:
5788 for (; i > 0; i--) {
5789 detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790 __free_page(eb->pages[i - 1]);
5791 }
5792 __free_extent_buffer(eb);
5793 return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797 u64 start)
5798{
5799 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804 int refs;
5805 /*
5806 * The TREE_REF bit is first set when the extent_buffer is added
5807 * to the radix tree. It is also reset, if unset, when a new reference
5808 * is created by find_extent_buffer.
5809 *
5810 * It is only cleared in two cases: freeing the last non-tree
5811 * reference to the extent_buffer when its STALE bit is set or
5812 * calling releasepage when the tree reference is the only reference.
5813 *
5814 * In both cases, care is taken to ensure that the extent_buffer's
5815 * pages are not under io. However, releasepage can be concurrently
5816 * called with creating new references, which is prone to race
5817 * conditions between the calls to check_buffer_tree_ref in those
5818 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5819 *
5820 * The actual lifetime of the extent_buffer in the radix tree is
5821 * adequately protected by the refcount, but the TREE_REF bit and
5822 * its corresponding reference are not. To protect against this
5823 * class of races, we call check_buffer_tree_ref from the codepaths
5824 * which trigger io after they set eb->io_pages. Note that once io is
5825 * initiated, TREE_REF can no longer be cleared, so that is the
5826 * moment at which any such race is best fixed.
5827 */
5828 refs = atomic_read(&eb->refs);
5829 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830 return;
5831
5832 spin_lock(&eb->refs_lock);
5833 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834 atomic_inc(&eb->refs);
5835 spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839 struct page *accessed)
5840{
5841 int num_pages, i;
5842
5843 check_buffer_tree_ref(eb);
5844
5845 num_pages = num_extent_pages(eb);
5846 for (i = 0; i < num_pages; i++) {
5847 struct page *p = eb->pages[i];
5848
5849 if (p != accessed)
5850 mark_page_accessed(p);
5851 }
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855 u64 start)
5856{
5857 struct extent_buffer *eb;
5858
5859 eb = find_extent_buffer_nolock(fs_info, start);
5860 if (!eb)
5861 return NULL;
5862 /*
5863 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865 * another task running free_extent_buffer() might have seen that flag
5866 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867 * writeback flags not set) and it's still in the tree (flag
5868 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869 * decrementing the extent buffer's reference count twice. So here we
5870 * could race and increment the eb's reference count, clear its stale
5871 * flag, mark it as dirty and drop our reference before the other task
5872 * finishes executing free_extent_buffer, which would later result in
5873 * an attempt to free an extent buffer that is dirty.
5874 */
5875 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876 spin_lock(&eb->refs_lock);
5877 spin_unlock(&eb->refs_lock);
5878 }
5879 mark_extent_buffer_accessed(eb, NULL);
5880 return eb;
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885 u64 start)
5886{
5887 struct extent_buffer *eb, *exists = NULL;
5888 int ret;
5889
5890 eb = find_extent_buffer(fs_info, start);
5891 if (eb)
5892 return eb;
5893 eb = alloc_dummy_extent_buffer(fs_info, start);
5894 if (!eb)
5895 return ERR_PTR(-ENOMEM);
5896 eb->fs_info = fs_info;
5897again:
5898 ret = radix_tree_preload(GFP_NOFS);
5899 if (ret) {
5900 exists = ERR_PTR(ret);
5901 goto free_eb;
5902 }
5903 spin_lock(&fs_info->buffer_lock);
5904 ret = radix_tree_insert(&fs_info->buffer_radix,
5905 start >> fs_info->sectorsize_bits, eb);
5906 spin_unlock(&fs_info->buffer_lock);
5907 radix_tree_preload_end();
5908 if (ret == -EEXIST) {
5909 exists = find_extent_buffer(fs_info, start);
5910 if (exists)
5911 goto free_eb;
5912 else
5913 goto again;
5914 }
5915 check_buffer_tree_ref(eb);
5916 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
5918 return eb;
5919free_eb:
5920 btrfs_release_extent_buffer(eb);
5921 return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926 struct btrfs_fs_info *fs_info, struct page *page)
5927{
5928 struct extent_buffer *exists;
5929
5930 /*
5931 * For subpage case, we completely rely on radix tree to ensure we
5932 * don't try to insert two ebs for the same bytenr. So here we always
5933 * return NULL and just continue.
5934 */
5935 if (fs_info->sectorsize < PAGE_SIZE)
5936 return NULL;
5937
5938 /* Page not yet attached to an extent buffer */
5939 if (!PagePrivate(page))
5940 return NULL;
5941
5942 /*
5943 * We could have already allocated an eb for this page and attached one
5944 * so lets see if we can get a ref on the existing eb, and if we can we
5945 * know it's good and we can just return that one, else we know we can
5946 * just overwrite page->private.
5947 */
5948 exists = (struct extent_buffer *)page->private;
5949 if (atomic_inc_not_zero(&exists->refs))
5950 return exists;
5951
5952 WARN_ON(PageDirty(page));
5953 detach_page_private(page);
5954 return NULL;
5955}
5956
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958 u64 start, u64 owner_root, int level)
5959{
5960 unsigned long len = fs_info->nodesize;
5961 int num_pages;
5962 int i;
5963 unsigned long index = start >> PAGE_SHIFT;
5964 struct extent_buffer *eb;
5965 struct extent_buffer *exists = NULL;
5966 struct page *p;
5967 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5968 int uptodate = 1;
5969 int ret;
5970
5971 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972 btrfs_err(fs_info, "bad tree block start %llu", start);
5973 return ERR_PTR(-EINVAL);
5974 }
5975
5976#if BITS_PER_LONG == 32
5977 if (start >= MAX_LFS_FILESIZE) {
5978 btrfs_err_rl(fs_info,
5979 "extent buffer %llu is beyond 32bit page cache limit", start);
5980 btrfs_err_32bit_limit(fs_info);
5981 return ERR_PTR(-EOVERFLOW);
5982 }
5983 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984 btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987 if (fs_info->sectorsize < PAGE_SIZE &&
5988 offset_in_page(start) + len > PAGE_SIZE) {
5989 btrfs_err(fs_info,
5990 "tree block crosses page boundary, start %llu nodesize %lu",
5991 start, len);
5992 return ERR_PTR(-EINVAL);
5993 }
5994
5995 eb = find_extent_buffer(fs_info, start);
5996 if (eb)
5997 return eb;
5998
5999 eb = __alloc_extent_buffer(fs_info, start, len);
6000 if (!eb)
6001 return ERR_PTR(-ENOMEM);
6002 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004 num_pages = num_extent_pages(eb);
6005 for (i = 0; i < num_pages; i++, index++) {
6006 struct btrfs_subpage *prealloc = NULL;
6007
6008 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009 if (!p) {
6010 exists = ERR_PTR(-ENOMEM);
6011 goto free_eb;
6012 }
6013
6014 /*
6015 * Preallocate page->private for subpage case, so that we won't
6016 * allocate memory with private_lock hold. The memory will be
6017 * freed by attach_extent_buffer_page() or freed manually if
6018 * we exit earlier.
6019 *
6020 * Although we have ensured one subpage eb can only have one
6021 * page, but it may change in the future for 16K page size
6022 * support, so we still preallocate the memory in the loop.
6023 */
6024 ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025 BTRFS_SUBPAGE_METADATA);
6026 if (ret < 0) {
6027 unlock_page(p);
6028 put_page(p);
6029 exists = ERR_PTR(ret);
6030 goto free_eb;
6031 }
6032
6033 spin_lock(&mapping->private_lock);
6034 exists = grab_extent_buffer(fs_info, p);
6035 if (exists) {
6036 spin_unlock(&mapping->private_lock);
6037 unlock_page(p);
6038 put_page(p);
6039 mark_extent_buffer_accessed(exists, p);
6040 btrfs_free_subpage(prealloc);
6041 goto free_eb;
6042 }
6043 /* Should not fail, as we have preallocated the memory */
6044 ret = attach_extent_buffer_page(eb, p, prealloc);
6045 ASSERT(!ret);
6046 /*
6047 * To inform we have extra eb under allocation, so that
6048 * detach_extent_buffer_page() won't release the page private
6049 * when the eb hasn't yet been inserted into radix tree.
6050 *
6051 * The ref will be decreased when the eb released the page, in
6052 * detach_extent_buffer_page().
6053 * Thus needs no special handling in error path.
6054 */
6055 btrfs_page_inc_eb_refs(fs_info, p);
6056 spin_unlock(&mapping->private_lock);
6057
6058 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059 eb->pages[i] = p;
6060 if (!PageUptodate(p))
6061 uptodate = 0;
6062
6063 /*
6064 * We can't unlock the pages just yet since the extent buffer
6065 * hasn't been properly inserted in the radix tree, this
6066 * opens a race with btree_releasepage which can free a page
6067 * while we are still filling in all pages for the buffer and
6068 * we could crash.
6069 */
6070 }
6071 if (uptodate)
6072 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6073again:
6074 ret = radix_tree_preload(GFP_NOFS);
6075 if (ret) {
6076 exists = ERR_PTR(ret);
6077 goto free_eb;
6078 }
6079
6080 spin_lock(&fs_info->buffer_lock);
6081 ret = radix_tree_insert(&fs_info->buffer_radix,
6082 start >> fs_info->sectorsize_bits, eb);
6083 spin_unlock(&fs_info->buffer_lock);
6084 radix_tree_preload_end();
6085 if (ret == -EEXIST) {
6086 exists = find_extent_buffer(fs_info, start);
6087 if (exists)
6088 goto free_eb;
6089 else
6090 goto again;
6091 }
6092 /* add one reference for the tree */
6093 check_buffer_tree_ref(eb);
6094 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096 /*
6097 * Now it's safe to unlock the pages because any calls to
6098 * btree_releasepage will correctly detect that a page belongs to a
6099 * live buffer and won't free them prematurely.
6100 */
6101 for (i = 0; i < num_pages; i++)
6102 unlock_page(eb->pages[i]);
6103 return eb;
6104
6105free_eb:
6106 WARN_ON(!atomic_dec_and_test(&eb->refs));
6107 for (i = 0; i < num_pages; i++) {
6108 if (eb->pages[i])
6109 unlock_page(eb->pages[i]);
6110 }
6111
6112 btrfs_release_extent_buffer(eb);
6113 return exists;
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118 struct extent_buffer *eb =
6119 container_of(head, struct extent_buffer, rcu_head);
6120
6121 __free_extent_buffer(eb);
6122}
6123
6124static int release_extent_buffer(struct extent_buffer *eb)
6125 __releases(&eb->refs_lock)
6126{
6127 lockdep_assert_held(&eb->refs_lock);
6128
6129 WARN_ON(atomic_read(&eb->refs) == 0);
6130 if (atomic_dec_and_test(&eb->refs)) {
6131 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132 struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134 spin_unlock(&eb->refs_lock);
6135
6136 spin_lock(&fs_info->buffer_lock);
6137 radix_tree_delete(&fs_info->buffer_radix,
6138 eb->start >> fs_info->sectorsize_bits);
6139 spin_unlock(&fs_info->buffer_lock);
6140 } else {
6141 spin_unlock(&eb->refs_lock);
6142 }
6143
6144 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145 /* Should be safe to release our pages at this point */
6146 btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149 __free_extent_buffer(eb);
6150 return 1;
6151 }
6152#endif
6153 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154 return 1;
6155 }
6156 spin_unlock(&eb->refs_lock);
6157
6158 return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163 int refs;
6164 int old;
6165 if (!eb)
6166 return;
6167
6168 while (1) {
6169 refs = atomic_read(&eb->refs);
6170 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172 refs == 1))
6173 break;
6174 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175 if (old == refs)
6176 return;
6177 }
6178
6179 spin_lock(&eb->refs_lock);
6180 if (atomic_read(&eb->refs) == 2 &&
6181 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182 !extent_buffer_under_io(eb) &&
6183 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184 atomic_dec(&eb->refs);
6185
6186 /*
6187 * I know this is terrible, but it's temporary until we stop tracking
6188 * the uptodate bits and such for the extent buffers.
6189 */
6190 release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195 if (!eb)
6196 return;
6197
6198 spin_lock(&eb->refs_lock);
6199 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203 atomic_dec(&eb->refs);
6204 release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209 ASSERT(PageDirty(page));
6210 ASSERT(PageLocked(page));
6211 clear_page_dirty_for_io(page);
6212 xa_lock_irq(&page->mapping->i_pages);
6213 if (!PageDirty(page))
6214 __xa_clear_mark(&page->mapping->i_pages,
6215 page_index(page), PAGECACHE_TAG_DIRTY);
6216 xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221 struct btrfs_fs_info *fs_info = eb->fs_info;
6222 struct page *page = eb->pages[0];
6223 bool last;
6224
6225 /* btree_clear_page_dirty() needs page locked */
6226 lock_page(page);
6227 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228 eb->len);
6229 if (last)
6230 btree_clear_page_dirty(page);
6231 unlock_page(page);
6232 WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6236{
6237 int i;
6238 int num_pages;
6239 struct page *page;
6240
6241 if (eb->fs_info->sectorsize < PAGE_SIZE)
6242 return clear_subpage_extent_buffer_dirty(eb);
6243
6244 num_pages = num_extent_pages(eb);
6245
6246 for (i = 0; i < num_pages; i++) {
6247 page = eb->pages[i];
6248 if (!PageDirty(page))
6249 continue;
6250 lock_page(page);
6251 btree_clear_page_dirty(page);
6252 ClearPageError(page);
6253 unlock_page(page);
6254 }
6255 WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260 int i;
6261 int num_pages;
6262 bool was_dirty;
6263
6264 check_buffer_tree_ref(eb);
6265
6266 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268 num_pages = num_extent_pages(eb);
6269 WARN_ON(atomic_read(&eb->refs) == 0);
6270 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271
6272 if (!was_dirty) {
6273 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274
6275 /*
6276 * For subpage case, we can have other extent buffers in the
6277 * same page, and in clear_subpage_extent_buffer_dirty() we
6278 * have to clear page dirty without subpage lock held.
6279 * This can cause race where our page gets dirty cleared after
6280 * we just set it.
6281 *
6282 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283 * its page for other reasons, we can use page lock to prevent
6284 * the above race.
6285 */
6286 if (subpage)
6287 lock_page(eb->pages[0]);
6288 for (i = 0; i < num_pages; i++)
6289 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290 eb->start, eb->len);
6291 if (subpage)
6292 unlock_page(eb->pages[0]);
6293 }
6294#ifdef CONFIG_BTRFS_DEBUG
6295 for (i = 0; i < num_pages; i++)
6296 ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299 return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304 struct btrfs_fs_info *fs_info = eb->fs_info;
6305 struct page *page;
6306 int num_pages;
6307 int i;
6308
6309 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310 num_pages = num_extent_pages(eb);
6311 for (i = 0; i < num_pages; i++) {
6312 page = eb->pages[i];
6313 if (page)
6314 btrfs_page_clear_uptodate(fs_info, page,
6315 eb->start, eb->len);
6316 }
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321 struct btrfs_fs_info *fs_info = eb->fs_info;
6322 struct page *page;
6323 int num_pages;
6324 int i;
6325
6326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327 num_pages = num_extent_pages(eb);
6328 for (i = 0; i < num_pages; i++) {
6329 page = eb->pages[i];
6330 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6331 }
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335 int mirror_num)
6336{
6337 struct btrfs_fs_info *fs_info = eb->fs_info;
6338 struct extent_io_tree *io_tree;
6339 struct page *page = eb->pages[0];
6340 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341 int ret = 0;
6342
6343 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344 ASSERT(PagePrivate(page));
6345 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347 if (wait == WAIT_NONE) {
6348 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349 return -EAGAIN;
6350 } else {
6351 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352 if (ret < 0)
6353 return ret;
6354 }
6355
6356 ret = 0;
6357 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358 PageUptodate(page) ||
6359 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362 return ret;
6363 }
6364
6365 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366 eb->read_mirror = 0;
6367 atomic_set(&eb->io_pages, 1);
6368 check_buffer_tree_ref(eb);
6369 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373 page, eb->start, eb->len,
6374 eb->start - page_offset(page),
6375 end_bio_extent_readpage, mirror_num, 0,
6376 true);
6377 if (ret) {
6378 /*
6379 * In the endio function, if we hit something wrong we will
6380 * increase the io_pages, so here we need to decrease it for
6381 * error path.
6382 */
6383 atomic_dec(&eb->io_pages);
6384 }
6385 if (bio_ctrl.bio) {
6386 int tmp;
6387
6388 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389 bio_ctrl.bio = NULL;
6390 if (tmp < 0)
6391 return tmp;
6392 }
6393 if (ret || wait != WAIT_COMPLETE)
6394 return ret;
6395
6396 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398 ret = -EIO;
6399 return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6403{
6404 int i;
6405 struct page *page;
6406 int err;
6407 int ret = 0;
6408 int locked_pages = 0;
6409 int all_uptodate = 1;
6410 int num_pages;
6411 unsigned long num_reads = 0;
6412 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6413
6414 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415 return 0;
6416
6417 if (eb->fs_info->sectorsize < PAGE_SIZE)
6418 return read_extent_buffer_subpage(eb, wait, mirror_num);
6419
6420 num_pages = num_extent_pages(eb);
6421 for (i = 0; i < num_pages; i++) {
6422 page = eb->pages[i];
6423 if (wait == WAIT_NONE) {
6424 /*
6425 * WAIT_NONE is only utilized by readahead. If we can't
6426 * acquire the lock atomically it means either the eb
6427 * is being read out or under modification.
6428 * Either way the eb will be or has been cached,
6429 * readahead can exit safely.
6430 */
6431 if (!trylock_page(page))
6432 goto unlock_exit;
6433 } else {
6434 lock_page(page);
6435 }
6436 locked_pages++;
6437 }
6438 /*
6439 * We need to firstly lock all pages to make sure that
6440 * the uptodate bit of our pages won't be affected by
6441 * clear_extent_buffer_uptodate().
6442 */
6443 for (i = 0; i < num_pages; i++) {
6444 page = eb->pages[i];
6445 if (!PageUptodate(page)) {
6446 num_reads++;
6447 all_uptodate = 0;
6448 }
6449 }
6450
6451 if (all_uptodate) {
6452 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453 goto unlock_exit;
6454 }
6455
6456 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457 eb->read_mirror = 0;
6458 atomic_set(&eb->io_pages, num_reads);
6459 /*
6460 * It is possible for releasepage to clear the TREE_REF bit before we
6461 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462 */
6463 check_buffer_tree_ref(eb);
6464 for (i = 0; i < num_pages; i++) {
6465 page = eb->pages[i];
6466
6467 if (!PageUptodate(page)) {
6468 if (ret) {
6469 atomic_dec(&eb->io_pages);
6470 unlock_page(page);
6471 continue;
6472 }
6473
6474 ClearPageError(page);
6475 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476 &bio_ctrl, page, page_offset(page),
6477 PAGE_SIZE, 0, end_bio_extent_readpage,
6478 mirror_num, 0, false);
6479 if (err) {
6480 /*
6481 * We failed to submit the bio so it's the
6482 * caller's responsibility to perform cleanup
6483 * i.e unlock page/set error bit.
6484 */
6485 ret = err;
6486 SetPageError(page);
6487 unlock_page(page);
6488 atomic_dec(&eb->io_pages);
6489 }
6490 } else {
6491 unlock_page(page);
6492 }
6493 }
6494
6495 if (bio_ctrl.bio) {
6496 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497 bio_ctrl.bio = NULL;
6498 if (err)
6499 return err;
6500 }
6501
6502 if (ret || wait != WAIT_COMPLETE)
6503 return ret;
6504
6505 for (i = 0; i < num_pages; i++) {
6506 page = eb->pages[i];
6507 wait_on_page_locked(page);
6508 if (!PageUptodate(page))
6509 ret = -EIO;
6510 }
6511
6512 return ret;
6513
6514unlock_exit:
6515 while (locked_pages > 0) {
6516 locked_pages--;
6517 page = eb->pages[locked_pages];
6518 unlock_page(page);
6519 }
6520 return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524 unsigned long len)
6525{
6526 btrfs_warn(eb->fs_info,
6527 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528 eb->start, eb->len, start, len);
6529 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531 return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542 unsigned long start, unsigned long len)
6543{
6544 unsigned long offset;
6545
6546 /* start, start + len should not go beyond eb->len nor overflow */
6547 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548 return report_eb_range(eb, start, len);
6549
6550 return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554 unsigned long start, unsigned long len)
6555{
6556 size_t cur;
6557 size_t offset;
6558 struct page *page;
6559 char *kaddr;
6560 char *dst = (char *)dstv;
6561 unsigned long i = get_eb_page_index(start);
6562
6563 if (check_eb_range(eb, start, len))
6564 return;
6565
6566 offset = get_eb_offset_in_page(eb, start);
6567
6568 while (len > 0) {
6569 page = eb->pages[i];
6570
6571 cur = min(len, (PAGE_SIZE - offset));
6572 kaddr = page_address(page);
6573 memcpy(dst, kaddr + offset, cur);
6574
6575 dst += cur;
6576 len -= cur;
6577 offset = 0;
6578 i++;
6579 }
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583 void __user *dstv,
6584 unsigned long start, unsigned long len)
6585{
6586 size_t cur;
6587 size_t offset;
6588 struct page *page;
6589 char *kaddr;
6590 char __user *dst = (char __user *)dstv;
6591 unsigned long i = get_eb_page_index(start);
6592 int ret = 0;
6593
6594 WARN_ON(start > eb->len);
6595 WARN_ON(start + len > eb->start + eb->len);
6596
6597 offset = get_eb_offset_in_page(eb, start);
6598
6599 while (len > 0) {
6600 page = eb->pages[i];
6601
6602 cur = min(len, (PAGE_SIZE - offset));
6603 kaddr = page_address(page);
6604 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605 ret = -EFAULT;
6606 break;
6607 }
6608
6609 dst += cur;
6610 len -= cur;
6611 offset = 0;
6612 i++;
6613 }
6614
6615 return ret;
6616}
6617
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619 unsigned long start, unsigned long len)
6620{
6621 size_t cur;
6622 size_t offset;
6623 struct page *page;
6624 char *kaddr;
6625 char *ptr = (char *)ptrv;
6626 unsigned long i = get_eb_page_index(start);
6627 int ret = 0;
6628
6629 if (check_eb_range(eb, start, len))
6630 return -EINVAL;
6631
6632 offset = get_eb_offset_in_page(eb, start);
6633
6634 while (len > 0) {
6635 page = eb->pages[i];
6636
6637 cur = min(len, (PAGE_SIZE - offset));
6638
6639 kaddr = page_address(page);
6640 ret = memcmp(ptr, kaddr + offset, cur);
6641 if (ret)
6642 break;
6643
6644 ptr += cur;
6645 len -= cur;
6646 offset = 0;
6647 i++;
6648 }
6649 return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659 struct page *page)
6660{
6661 struct btrfs_fs_info *fs_info = eb->fs_info;
6662
6663 if (fs_info->sectorsize < PAGE_SIZE) {
6664 bool uptodate;
6665
6666 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667 eb->start, eb->len);
6668 WARN_ON(!uptodate);
6669 } else {
6670 WARN_ON(!PageUptodate(page));
6671 }
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675 const void *srcv)
6676{
6677 char *kaddr;
6678
6679 assert_eb_page_uptodate(eb, eb->pages[0]);
6680 kaddr = page_address(eb->pages[0]) +
6681 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682 chunk_tree_uuid));
6683 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688 char *kaddr;
6689
6690 assert_eb_page_uptodate(eb, eb->pages[0]);
6691 kaddr = page_address(eb->pages[0]) +
6692 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697 unsigned long start, unsigned long len)
6698{
6699 size_t cur;
6700 size_t offset;
6701 struct page *page;
6702 char *kaddr;
6703 char *src = (char *)srcv;
6704 unsigned long i = get_eb_page_index(start);
6705
6706 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6707
6708 if (check_eb_range(eb, start, len))
6709 return;
6710
6711 offset = get_eb_offset_in_page(eb, start);
6712
6713 while (len > 0) {
6714 page = eb->pages[i];
6715 assert_eb_page_uptodate(eb, page);
6716
6717 cur = min(len, PAGE_SIZE - offset);
6718 kaddr = page_address(page);
6719 memcpy(kaddr + offset, src, cur);
6720
6721 src += cur;
6722 len -= cur;
6723 offset = 0;
6724 i++;
6725 }
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729 unsigned long len)
6730{
6731 size_t cur;
6732 size_t offset;
6733 struct page *page;
6734 char *kaddr;
6735 unsigned long i = get_eb_page_index(start);
6736
6737 if (check_eb_range(eb, start, len))
6738 return;
6739
6740 offset = get_eb_offset_in_page(eb, start);
6741
6742 while (len > 0) {
6743 page = eb->pages[i];
6744 assert_eb_page_uptodate(eb, page);
6745
6746 cur = min(len, PAGE_SIZE - offset);
6747 kaddr = page_address(page);
6748 memset(kaddr + offset, 0, cur);
6749
6750 len -= cur;
6751 offset = 0;
6752 i++;
6753 }
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757 const struct extent_buffer *src)
6758{
6759 int i;
6760 int num_pages;
6761
6762 ASSERT(dst->len == src->len);
6763
6764 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765 num_pages = num_extent_pages(dst);
6766 for (i = 0; i < num_pages; i++)
6767 copy_page(page_address(dst->pages[i]),
6768 page_address(src->pages[i]));
6769 } else {
6770 size_t src_offset = get_eb_offset_in_page(src, 0);
6771 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774 memcpy(page_address(dst->pages[0]) + dst_offset,
6775 page_address(src->pages[0]) + src_offset,
6776 src->len);
6777 }
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781 const struct extent_buffer *src,
6782 unsigned long dst_offset, unsigned long src_offset,
6783 unsigned long len)
6784{
6785 u64 dst_len = dst->len;
6786 size_t cur;
6787 size_t offset;
6788 struct page *page;
6789 char *kaddr;
6790 unsigned long i = get_eb_page_index(dst_offset);
6791
6792 if (check_eb_range(dst, dst_offset, len) ||
6793 check_eb_range(src, src_offset, len))
6794 return;
6795
6796 WARN_ON(src->len != dst_len);
6797
6798 offset = get_eb_offset_in_page(dst, dst_offset);
6799
6800 while (len > 0) {
6801 page = dst->pages[i];
6802 assert_eb_page_uptodate(dst, page);
6803
6804 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806 kaddr = page_address(page);
6807 read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809 src_offset += cur;
6810 len -= cur;
6811 offset = 0;
6812 i++;
6813 }
6814}
6815
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830 unsigned long start, unsigned long nr,
6831 unsigned long *page_index,
6832 size_t *page_offset)
6833{
6834 size_t byte_offset = BIT_BYTE(nr);
6835 size_t offset;
6836
6837 /*
6838 * The byte we want is the offset of the extent buffer + the offset of
6839 * the bitmap item in the extent buffer + the offset of the byte in the
6840 * bitmap item.
6841 */
6842 offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844 *page_index = offset >> PAGE_SHIFT;
6845 *page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855 unsigned long nr)
6856{
6857 u8 *kaddr;
6858 struct page *page;
6859 unsigned long i;
6860 size_t offset;
6861
6862 eb_bitmap_offset(eb, start, nr, &i, &offset);
6863 page = eb->pages[i];
6864 assert_eb_page_uptodate(eb, page);
6865 kaddr = page_address(page);
6866 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877 unsigned long pos, unsigned long len)
6878{
6879 u8 *kaddr;
6880 struct page *page;
6881 unsigned long i;
6882 size_t offset;
6883 const unsigned int size = pos + len;
6884 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887 eb_bitmap_offset(eb, start, pos, &i, &offset);
6888 page = eb->pages[i];
6889 assert_eb_page_uptodate(eb, page);
6890 kaddr = page_address(page);
6891
6892 while (len >= bits_to_set) {
6893 kaddr[offset] |= mask_to_set;
6894 len -= bits_to_set;
6895 bits_to_set = BITS_PER_BYTE;
6896 mask_to_set = ~0;
6897 if (++offset >= PAGE_SIZE && len > 0) {
6898 offset = 0;
6899 page = eb->pages[++i];
6900 assert_eb_page_uptodate(eb, page);
6901 kaddr = page_address(page);
6902 }
6903 }
6904 if (len) {
6905 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906 kaddr[offset] |= mask_to_set;
6907 }
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919 unsigned long start, unsigned long pos,
6920 unsigned long len)
6921{
6922 u8 *kaddr;
6923 struct page *page;
6924 unsigned long i;
6925 size_t offset;
6926 const unsigned int size = pos + len;
6927 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930 eb_bitmap_offset(eb, start, pos, &i, &offset);
6931 page = eb->pages[i];
6932 assert_eb_page_uptodate(eb, page);
6933 kaddr = page_address(page);
6934
6935 while (len >= bits_to_clear) {
6936 kaddr[offset] &= ~mask_to_clear;
6937 len -= bits_to_clear;
6938 bits_to_clear = BITS_PER_BYTE;
6939 mask_to_clear = ~0;
6940 if (++offset >= PAGE_SIZE && len > 0) {
6941 offset = 0;
6942 page = eb->pages[++i];
6943 assert_eb_page_uptodate(eb, page);
6944 kaddr = page_address(page);
6945 }
6946 }
6947 if (len) {
6948 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949 kaddr[offset] &= ~mask_to_clear;
6950 }
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955 unsigned long distance = (src > dst) ? src - dst : dst - src;
6956 return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960 unsigned long dst_off, unsigned long src_off,
6961 unsigned long len)
6962{
6963 char *dst_kaddr = page_address(dst_page);
6964 char *src_kaddr;
6965 int must_memmove = 0;
6966
6967 if (dst_page != src_page) {
6968 src_kaddr = page_address(src_page);
6969 } else {
6970 src_kaddr = dst_kaddr;
6971 if (areas_overlap(src_off, dst_off, len))
6972 must_memmove = 1;
6973 }
6974
6975 if (must_memmove)
6976 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977 else
6978 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982 unsigned long dst_offset, unsigned long src_offset,
6983 unsigned long len)
6984{
6985 size_t cur;
6986 size_t dst_off_in_page;
6987 size_t src_off_in_page;
6988 unsigned long dst_i;
6989 unsigned long src_i;
6990
6991 if (check_eb_range(dst, dst_offset, len) ||
6992 check_eb_range(dst, src_offset, len))
6993 return;
6994
6995 while (len > 0) {
6996 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998
6999 dst_i = get_eb_page_index(dst_offset);
7000 src_i = get_eb_page_index(src_offset);
7001
7002 cur = min(len, (unsigned long)(PAGE_SIZE -
7003 src_off_in_page));
7004 cur = min_t(unsigned long, cur,
7005 (unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008 dst_off_in_page, src_off_in_page, cur);
7009
7010 src_offset += cur;
7011 dst_offset += cur;
7012 len -= cur;
7013 }
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017 unsigned long dst_offset, unsigned long src_offset,
7018 unsigned long len)
7019{
7020 size_t cur;
7021 size_t dst_off_in_page;
7022 size_t src_off_in_page;
7023 unsigned long dst_end = dst_offset + len - 1;
7024 unsigned long src_end = src_offset + len - 1;
7025 unsigned long dst_i;
7026 unsigned long src_i;
7027
7028 if (check_eb_range(dst, dst_offset, len) ||
7029 check_eb_range(dst, src_offset, len))
7030 return;
7031 if (dst_offset < src_offset) {
7032 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033 return;
7034 }
7035 while (len > 0) {
7036 dst_i = get_eb_page_index(dst_end);
7037 src_i = get_eb_page_index(src_end);
7038
7039 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040 src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041
7042 cur = min_t(unsigned long, len, src_off_in_page + 1);
7043 cur = min(cur, dst_off_in_page + 1);
7044 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045 dst_off_in_page - cur + 1,
7046 src_off_in_page - cur + 1, cur);
7047
7048 dst_end -= cur;
7049 src_end -= cur;
7050 len -= cur;
7051 }
7052}
7053
7054static struct extent_buffer *get_next_extent_buffer(
7055 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058 struct extent_buffer *found = NULL;
7059 u64 page_start = page_offset(page);
7060 int ret;
7061 int i;
7062
7063 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065 lockdep_assert_held(&fs_info->buffer_lock);
7066
7067 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068 bytenr >> fs_info->sectorsize_bits,
7069 PAGE_SIZE / fs_info->nodesize);
7070 for (i = 0; i < ret; i++) {
7071 /* Already beyond page end */
7072 if (gang[i]->start >= page_start + PAGE_SIZE)
7073 break;
7074 /* Found one */
7075 if (gang[i]->start >= bytenr) {
7076 found = gang[i];
7077 break;
7078 }
7079 }
7080 return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086 u64 cur = page_offset(page);
7087 const u64 end = page_offset(page) + PAGE_SIZE;
7088 int ret;
7089
7090 while (cur < end) {
7091 struct extent_buffer *eb = NULL;
7092
7093 /*
7094 * Unlike try_release_extent_buffer() which uses page->private
7095 * to grab buffer, for subpage case we rely on radix tree, thus
7096 * we need to ensure radix tree consistency.
7097 *
7098 * We also want an atomic snapshot of the radix tree, thus go
7099 * with spinlock rather than RCU.
7100 */
7101 spin_lock(&fs_info->buffer_lock);
7102 eb = get_next_extent_buffer(fs_info, page, cur);
7103 if (!eb) {
7104 /* No more eb in the page range after or at cur */
7105 spin_unlock(&fs_info->buffer_lock);
7106 break;
7107 }
7108 cur = eb->start + eb->len;
7109
7110 /*
7111 * The same as try_release_extent_buffer(), to ensure the eb
7112 * won't disappear out from under us.
7113 */
7114 spin_lock(&eb->refs_lock);
7115 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116 spin_unlock(&eb->refs_lock);
7117 spin_unlock(&fs_info->buffer_lock);
7118 break;
7119 }
7120 spin_unlock(&fs_info->buffer_lock);
7121
7122 /*
7123 * If tree ref isn't set then we know the ref on this eb is a
7124 * real ref, so just return, this eb will likely be freed soon
7125 * anyway.
7126 */
7127 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128 spin_unlock(&eb->refs_lock);
7129 break;
7130 }
7131
7132 /*
7133 * Here we don't care about the return value, we will always
7134 * check the page private at the end. And
7135 * release_extent_buffer() will release the refs_lock.
7136 */
7137 release_extent_buffer(eb);
7138 }
7139 /*
7140 * Finally to check if we have cleared page private, as if we have
7141 * released all ebs in the page, the page private should be cleared now.
7142 */
7143 spin_lock(&page->mapping->private_lock);
7144 if (!PagePrivate(page))
7145 ret = 1;
7146 else
7147 ret = 0;
7148 spin_unlock(&page->mapping->private_lock);
7149 return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
7155 struct extent_buffer *eb;
7156
7157 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158 return try_release_subpage_extent_buffer(page);
7159
7160 /*
7161 * We need to make sure nobody is changing page->private, as we rely on
7162 * page->private as the pointer to extent buffer.
7163 */
7164 spin_lock(&page->mapping->private_lock);
7165 if (!PagePrivate(page)) {
7166 spin_unlock(&page->mapping->private_lock);
7167 return 1;
7168 }
7169
7170 eb = (struct extent_buffer *)page->private;
7171 BUG_ON(!eb);
7172
7173 /*
7174 * This is a little awful but should be ok, we need to make sure that
7175 * the eb doesn't disappear out from under us while we're looking at
7176 * this page.
7177 */
7178 spin_lock(&eb->refs_lock);
7179 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180 spin_unlock(&eb->refs_lock);
7181 spin_unlock(&page->mapping->private_lock);
7182 return 0;
7183 }
7184 spin_unlock(&page->mapping->private_lock);
7185
7186 /*
7187 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188 * so just return, this page will likely be freed soon anyway.
7189 */
7190 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191 spin_unlock(&eb->refs_lock);
7192 return 0;
7193 }
7194
7195 return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
7200 * @fs_info: the fs_info
7201 * @bytenr: bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen: generation for the uptodate check, can be 0
7204 * @level: level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation. If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211 u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
7213 struct extent_buffer *eb;
7214 int ret;
7215
7216 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217 if (IS_ERR(eb))
7218 return;
7219
7220 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221 free_extent_buffer(eb);
7222 return;
7223 }
7224
7225 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226 if (ret < 0)
7227 free_extent_buffer_stale(eb);
7228 else
7229 free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
7234 * @node: parent node we're reading from
7235 * @slot: slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242 btrfs_readahead_tree_block(node->fs_info,
7243 btrfs_node_blockptr(node, slot),
7244 btrfs_header_owner(node),
7245 btrfs_node_ptr_generation(node, slot),
7246 btrfs_header_level(node) - 1);
7247}