Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "block-group.h"
   6#include "space-info.h"
   7#include "disk-io.h"
   8#include "free-space-cache.h"
   9#include "free-space-tree.h"
  10#include "volumes.h"
  11#include "transaction.h"
  12#include "ref-verify.h"
  13#include "sysfs.h"
  14#include "tree-log.h"
  15#include "delalloc-space.h"
  16#include "discard.h"
  17#include "raid56.h"
  18#include "zoned.h"
  19
  20/*
  21 * Return target flags in extended format or 0 if restripe for this chunk_type
  22 * is not in progress
  23 *
  24 * Should be called with balance_lock held
  25 */
  26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  27{
  28	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  29	u64 target = 0;
  30
  31	if (!bctl)
  32		return 0;
  33
  34	if (flags & BTRFS_BLOCK_GROUP_DATA &&
  35	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  36		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  37	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  38		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  39		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  40	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  41		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  42		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  43	}
  44
  45	return target;
  46}
  47
  48/*
  49 * @flags: available profiles in extended format (see ctree.h)
  50 *
  51 * Return reduced profile in chunk format.  If profile changing is in progress
  52 * (either running or paused) picks the target profile (if it's already
  53 * available), otherwise falls back to plain reducing.
  54 */
  55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
  56{
  57	u64 num_devices = fs_info->fs_devices->rw_devices;
  58	u64 target;
  59	u64 raid_type;
  60	u64 allowed = 0;
  61
  62	/*
  63	 * See if restripe for this chunk_type is in progress, if so try to
  64	 * reduce to the target profile
  65	 */
  66	spin_lock(&fs_info->balance_lock);
  67	target = get_restripe_target(fs_info, flags);
  68	if (target) {
  69		spin_unlock(&fs_info->balance_lock);
  70		return extended_to_chunk(target);
  71	}
  72	spin_unlock(&fs_info->balance_lock);
  73
  74	/* First, mask out the RAID levels which aren't possible */
  75	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  76		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  77			allowed |= btrfs_raid_array[raid_type].bg_flag;
  78	}
  79	allowed &= flags;
  80
  81	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
  82		allowed = BTRFS_BLOCK_GROUP_RAID6;
  83	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
  84		allowed = BTRFS_BLOCK_GROUP_RAID5;
  85	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
  86		allowed = BTRFS_BLOCK_GROUP_RAID10;
  87	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
  88		allowed = BTRFS_BLOCK_GROUP_RAID1;
  89	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
  90		allowed = BTRFS_BLOCK_GROUP_RAID0;
  91
  92	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
  93
  94	return extended_to_chunk(flags | allowed);
  95}
  96
  97u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
  98{
  99	unsigned seq;
 100	u64 flags;
 101
 102	do {
 103		flags = orig_flags;
 104		seq = read_seqbegin(&fs_info->profiles_lock);
 105
 106		if (flags & BTRFS_BLOCK_GROUP_DATA)
 107			flags |= fs_info->avail_data_alloc_bits;
 108		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 109			flags |= fs_info->avail_system_alloc_bits;
 110		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 111			flags |= fs_info->avail_metadata_alloc_bits;
 112	} while (read_seqretry(&fs_info->profiles_lock, seq));
 113
 114	return btrfs_reduce_alloc_profile(fs_info, flags);
 115}
 116
 117void btrfs_get_block_group(struct btrfs_block_group *cache)
 118{
 119	refcount_inc(&cache->refs);
 120}
 121
 122void btrfs_put_block_group(struct btrfs_block_group *cache)
 123{
 124	if (refcount_dec_and_test(&cache->refs)) {
 125		WARN_ON(cache->pinned > 0);
 126		WARN_ON(cache->reserved > 0);
 127
 128		/*
 129		 * A block_group shouldn't be on the discard_list anymore.
 130		 * Remove the block_group from the discard_list to prevent us
 131		 * from causing a panic due to NULL pointer dereference.
 132		 */
 133		if (WARN_ON(!list_empty(&cache->discard_list)))
 134			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
 135						  cache);
 136
 137		/*
 138		 * If not empty, someone is still holding mutex of
 139		 * full_stripe_lock, which can only be released by caller.
 140		 * And it will definitely cause use-after-free when caller
 141		 * tries to release full stripe lock.
 142		 *
 143		 * No better way to resolve, but only to warn.
 144		 */
 145		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 146		kfree(cache->free_space_ctl);
 147		kfree(cache);
 148	}
 149}
 150
 151/*
 152 * This adds the block group to the fs_info rb tree for the block group cache
 153 */
 154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 155				       struct btrfs_block_group *block_group)
 156{
 157	struct rb_node **p;
 158	struct rb_node *parent = NULL;
 159	struct btrfs_block_group *cache;
 160
 161	ASSERT(block_group->length != 0);
 162
 163	spin_lock(&info->block_group_cache_lock);
 164	p = &info->block_group_cache_tree.rb_node;
 165
 166	while (*p) {
 167		parent = *p;
 168		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
 169		if (block_group->start < cache->start) {
 170			p = &(*p)->rb_left;
 171		} else if (block_group->start > cache->start) {
 172			p = &(*p)->rb_right;
 173		} else {
 174			spin_unlock(&info->block_group_cache_lock);
 175			return -EEXIST;
 176		}
 177	}
 178
 179	rb_link_node(&block_group->cache_node, parent, p);
 180	rb_insert_color(&block_group->cache_node,
 181			&info->block_group_cache_tree);
 182
 183	if (info->first_logical_byte > block_group->start)
 184		info->first_logical_byte = block_group->start;
 185
 186	spin_unlock(&info->block_group_cache_lock);
 187
 188	return 0;
 189}
 190
 191/*
 192 * This will return the block group at or after bytenr if contains is 0, else
 193 * it will return the block group that contains the bytenr
 194 */
 195static struct btrfs_block_group *block_group_cache_tree_search(
 196		struct btrfs_fs_info *info, u64 bytenr, int contains)
 197{
 198	struct btrfs_block_group *cache, *ret = NULL;
 199	struct rb_node *n;
 200	u64 end, start;
 201
 202	spin_lock(&info->block_group_cache_lock);
 203	n = info->block_group_cache_tree.rb_node;
 204
 205	while (n) {
 206		cache = rb_entry(n, struct btrfs_block_group, cache_node);
 207		end = cache->start + cache->length - 1;
 208		start = cache->start;
 209
 210		if (bytenr < start) {
 211			if (!contains && (!ret || start < ret->start))
 212				ret = cache;
 213			n = n->rb_left;
 214		} else if (bytenr > start) {
 215			if (contains && bytenr <= end) {
 216				ret = cache;
 217				break;
 218			}
 219			n = n->rb_right;
 220		} else {
 221			ret = cache;
 222			break;
 223		}
 224	}
 225	if (ret) {
 226		btrfs_get_block_group(ret);
 227		if (bytenr == 0 && info->first_logical_byte > ret->start)
 228			info->first_logical_byte = ret->start;
 229	}
 230	spin_unlock(&info->block_group_cache_lock);
 231
 232	return ret;
 233}
 234
 235/*
 236 * Return the block group that starts at or after bytenr
 237 */
 238struct btrfs_block_group *btrfs_lookup_first_block_group(
 239		struct btrfs_fs_info *info, u64 bytenr)
 240{
 241	return block_group_cache_tree_search(info, bytenr, 0);
 242}
 243
 244/*
 245 * Return the block group that contains the given bytenr
 246 */
 247struct btrfs_block_group *btrfs_lookup_block_group(
 248		struct btrfs_fs_info *info, u64 bytenr)
 249{
 250	return block_group_cache_tree_search(info, bytenr, 1);
 251}
 252
 253struct btrfs_block_group *btrfs_next_block_group(
 254		struct btrfs_block_group *cache)
 255{
 256	struct btrfs_fs_info *fs_info = cache->fs_info;
 257	struct rb_node *node;
 258
 259	spin_lock(&fs_info->block_group_cache_lock);
 260
 261	/* If our block group was removed, we need a full search. */
 262	if (RB_EMPTY_NODE(&cache->cache_node)) {
 263		const u64 next_bytenr = cache->start + cache->length;
 264
 265		spin_unlock(&fs_info->block_group_cache_lock);
 266		btrfs_put_block_group(cache);
 267		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
 268	}
 269	node = rb_next(&cache->cache_node);
 270	btrfs_put_block_group(cache);
 271	if (node) {
 272		cache = rb_entry(node, struct btrfs_block_group, cache_node);
 273		btrfs_get_block_group(cache);
 274	} else
 275		cache = NULL;
 276	spin_unlock(&fs_info->block_group_cache_lock);
 277	return cache;
 278}
 279
 280bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 281{
 282	struct btrfs_block_group *bg;
 283	bool ret = true;
 284
 285	bg = btrfs_lookup_block_group(fs_info, bytenr);
 286	if (!bg)
 287		return false;
 288
 289	spin_lock(&bg->lock);
 290	if (bg->ro)
 291		ret = false;
 292	else
 293		atomic_inc(&bg->nocow_writers);
 294	spin_unlock(&bg->lock);
 295
 296	/* No put on block group, done by btrfs_dec_nocow_writers */
 297	if (!ret)
 298		btrfs_put_block_group(bg);
 299
 300	return ret;
 301}
 302
 303void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 304{
 305	struct btrfs_block_group *bg;
 306
 307	bg = btrfs_lookup_block_group(fs_info, bytenr);
 308	ASSERT(bg);
 309	if (atomic_dec_and_test(&bg->nocow_writers))
 310		wake_up_var(&bg->nocow_writers);
 311	/*
 312	 * Once for our lookup and once for the lookup done by a previous call
 313	 * to btrfs_inc_nocow_writers()
 314	 */
 315	btrfs_put_block_group(bg);
 316	btrfs_put_block_group(bg);
 317}
 318
 319void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
 320{
 321	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
 322}
 323
 324void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 325					const u64 start)
 326{
 327	struct btrfs_block_group *bg;
 328
 329	bg = btrfs_lookup_block_group(fs_info, start);
 330	ASSERT(bg);
 331	if (atomic_dec_and_test(&bg->reservations))
 332		wake_up_var(&bg->reservations);
 333	btrfs_put_block_group(bg);
 334}
 335
 336void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
 337{
 338	struct btrfs_space_info *space_info = bg->space_info;
 339
 340	ASSERT(bg->ro);
 341
 342	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 343		return;
 344
 345	/*
 346	 * Our block group is read only but before we set it to read only,
 347	 * some task might have had allocated an extent from it already, but it
 348	 * has not yet created a respective ordered extent (and added it to a
 349	 * root's list of ordered extents).
 350	 * Therefore wait for any task currently allocating extents, since the
 351	 * block group's reservations counter is incremented while a read lock
 352	 * on the groups' semaphore is held and decremented after releasing
 353	 * the read access on that semaphore and creating the ordered extent.
 354	 */
 355	down_write(&space_info->groups_sem);
 356	up_write(&space_info->groups_sem);
 357
 358	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
 359}
 360
 361struct btrfs_caching_control *btrfs_get_caching_control(
 362		struct btrfs_block_group *cache)
 363{
 364	struct btrfs_caching_control *ctl;
 365
 366	spin_lock(&cache->lock);
 367	if (!cache->caching_ctl) {
 368		spin_unlock(&cache->lock);
 369		return NULL;
 370	}
 371
 372	ctl = cache->caching_ctl;
 373	refcount_inc(&ctl->count);
 374	spin_unlock(&cache->lock);
 375	return ctl;
 376}
 377
 378void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
 379{
 380	if (refcount_dec_and_test(&ctl->count))
 381		kfree(ctl);
 382}
 383
 384/*
 385 * When we wait for progress in the block group caching, its because our
 386 * allocation attempt failed at least once.  So, we must sleep and let some
 387 * progress happen before we try again.
 388 *
 389 * This function will sleep at least once waiting for new free space to show
 390 * up, and then it will check the block group free space numbers for our min
 391 * num_bytes.  Another option is to have it go ahead and look in the rbtree for
 392 * a free extent of a given size, but this is a good start.
 393 *
 394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 395 * any of the information in this block group.
 396 */
 397void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
 398					   u64 num_bytes)
 399{
 400	struct btrfs_caching_control *caching_ctl;
 401
 402	caching_ctl = btrfs_get_caching_control(cache);
 403	if (!caching_ctl)
 404		return;
 405
 406	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
 407		   (cache->free_space_ctl->free_space >= num_bytes));
 408
 409	btrfs_put_caching_control(caching_ctl);
 410}
 411
 412int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
 413{
 414	struct btrfs_caching_control *caching_ctl;
 415	int ret = 0;
 416
 417	caching_ctl = btrfs_get_caching_control(cache);
 418	if (!caching_ctl)
 419		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 420
 421	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
 422	if (cache->cached == BTRFS_CACHE_ERROR)
 423		ret = -EIO;
 424	btrfs_put_caching_control(caching_ctl);
 425	return ret;
 426}
 427
 428static bool space_cache_v1_done(struct btrfs_block_group *cache)
 429{
 430	bool ret;
 431
 432	spin_lock(&cache->lock);
 433	ret = cache->cached != BTRFS_CACHE_FAST;
 434	spin_unlock(&cache->lock);
 435
 436	return ret;
 437}
 438
 439void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
 440				struct btrfs_caching_control *caching_ctl)
 441{
 442	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
 443}
 444
 445#ifdef CONFIG_BTRFS_DEBUG
 446static void fragment_free_space(struct btrfs_block_group *block_group)
 447{
 448	struct btrfs_fs_info *fs_info = block_group->fs_info;
 449	u64 start = block_group->start;
 450	u64 len = block_group->length;
 451	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 452		fs_info->nodesize : fs_info->sectorsize;
 453	u64 step = chunk << 1;
 454
 455	while (len > chunk) {
 456		btrfs_remove_free_space(block_group, start, chunk);
 457		start += step;
 458		if (len < step)
 459			len = 0;
 460		else
 461			len -= step;
 462	}
 463}
 464#endif
 465
 466/*
 467 * This is only called by btrfs_cache_block_group, since we could have freed
 468 * extents we need to check the pinned_extents for any extents that can't be
 469 * used yet since their free space will be released as soon as the transaction
 470 * commits.
 471 */
 472u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
 473{
 474	struct btrfs_fs_info *info = block_group->fs_info;
 475	u64 extent_start, extent_end, size, total_added = 0;
 476	int ret;
 477
 478	while (start < end) {
 479		ret = find_first_extent_bit(&info->excluded_extents, start,
 480					    &extent_start, &extent_end,
 481					    EXTENT_DIRTY | EXTENT_UPTODATE,
 482					    NULL);
 483		if (ret)
 484			break;
 485
 486		if (extent_start <= start) {
 487			start = extent_end + 1;
 488		} else if (extent_start > start && extent_start < end) {
 489			size = extent_start - start;
 490			total_added += size;
 491			ret = btrfs_add_free_space_async_trimmed(block_group,
 492								 start, size);
 493			BUG_ON(ret); /* -ENOMEM or logic error */
 494			start = extent_end + 1;
 495		} else {
 496			break;
 497		}
 498	}
 499
 500	if (start < end) {
 501		size = end - start;
 502		total_added += size;
 503		ret = btrfs_add_free_space_async_trimmed(block_group, start,
 504							 size);
 505		BUG_ON(ret); /* -ENOMEM or logic error */
 506	}
 507
 508	return total_added;
 509}
 510
 511static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 512{
 513	struct btrfs_block_group *block_group = caching_ctl->block_group;
 514	struct btrfs_fs_info *fs_info = block_group->fs_info;
 515	struct btrfs_root *extent_root = fs_info->extent_root;
 516	struct btrfs_path *path;
 517	struct extent_buffer *leaf;
 518	struct btrfs_key key;
 519	u64 total_found = 0;
 520	u64 last = 0;
 521	u32 nritems;
 522	int ret;
 523	bool wakeup = true;
 524
 525	path = btrfs_alloc_path();
 526	if (!path)
 527		return -ENOMEM;
 528
 529	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
 530
 531#ifdef CONFIG_BTRFS_DEBUG
 532	/*
 533	 * If we're fragmenting we don't want to make anybody think we can
 534	 * allocate from this block group until we've had a chance to fragment
 535	 * the free space.
 536	 */
 537	if (btrfs_should_fragment_free_space(block_group))
 538		wakeup = false;
 539#endif
 540	/*
 541	 * We don't want to deadlock with somebody trying to allocate a new
 542	 * extent for the extent root while also trying to search the extent
 543	 * root to add free space.  So we skip locking and search the commit
 544	 * root, since its read-only
 545	 */
 546	path->skip_locking = 1;
 547	path->search_commit_root = 1;
 548	path->reada = READA_FORWARD;
 549
 550	key.objectid = last;
 551	key.offset = 0;
 552	key.type = BTRFS_EXTENT_ITEM_KEY;
 553
 554next:
 555	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 556	if (ret < 0)
 557		goto out;
 558
 559	leaf = path->nodes[0];
 560	nritems = btrfs_header_nritems(leaf);
 561
 562	while (1) {
 563		if (btrfs_fs_closing(fs_info) > 1) {
 564			last = (u64)-1;
 565			break;
 566		}
 567
 568		if (path->slots[0] < nritems) {
 569			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 570		} else {
 571			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
 572			if (ret)
 573				break;
 574
 575			if (need_resched() ||
 576			    rwsem_is_contended(&fs_info->commit_root_sem)) {
 577				if (wakeup)
 578					caching_ctl->progress = last;
 579				btrfs_release_path(path);
 580				up_read(&fs_info->commit_root_sem);
 581				mutex_unlock(&caching_ctl->mutex);
 582				cond_resched();
 583				mutex_lock(&caching_ctl->mutex);
 584				down_read(&fs_info->commit_root_sem);
 585				goto next;
 586			}
 587
 588			ret = btrfs_next_leaf(extent_root, path);
 589			if (ret < 0)
 590				goto out;
 591			if (ret)
 592				break;
 593			leaf = path->nodes[0];
 594			nritems = btrfs_header_nritems(leaf);
 595			continue;
 596		}
 597
 598		if (key.objectid < last) {
 599			key.objectid = last;
 600			key.offset = 0;
 601			key.type = BTRFS_EXTENT_ITEM_KEY;
 602
 603			if (wakeup)
 604				caching_ctl->progress = last;
 605			btrfs_release_path(path);
 606			goto next;
 607		}
 608
 609		if (key.objectid < block_group->start) {
 610			path->slots[0]++;
 611			continue;
 612		}
 613
 614		if (key.objectid >= block_group->start + block_group->length)
 615			break;
 616
 617		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 618		    key.type == BTRFS_METADATA_ITEM_KEY) {
 619			total_found += add_new_free_space(block_group, last,
 620							  key.objectid);
 621			if (key.type == BTRFS_METADATA_ITEM_KEY)
 622				last = key.objectid +
 623					fs_info->nodesize;
 624			else
 625				last = key.objectid + key.offset;
 626
 627			if (total_found > CACHING_CTL_WAKE_UP) {
 628				total_found = 0;
 629				if (wakeup)
 630					wake_up(&caching_ctl->wait);
 631			}
 632		}
 633		path->slots[0]++;
 634	}
 635	ret = 0;
 636
 637	total_found += add_new_free_space(block_group, last,
 638				block_group->start + block_group->length);
 639	caching_ctl->progress = (u64)-1;
 640
 641out:
 642	btrfs_free_path(path);
 643	return ret;
 644}
 645
 646static noinline void caching_thread(struct btrfs_work *work)
 647{
 648	struct btrfs_block_group *block_group;
 649	struct btrfs_fs_info *fs_info;
 650	struct btrfs_caching_control *caching_ctl;
 651	int ret;
 652
 653	caching_ctl = container_of(work, struct btrfs_caching_control, work);
 654	block_group = caching_ctl->block_group;
 655	fs_info = block_group->fs_info;
 656
 657	mutex_lock(&caching_ctl->mutex);
 658	down_read(&fs_info->commit_root_sem);
 659
 660	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 661		ret = load_free_space_cache(block_group);
 662		if (ret == 1) {
 663			ret = 0;
 664			goto done;
 665		}
 666
 667		/*
 668		 * We failed to load the space cache, set ourselves to
 669		 * CACHE_STARTED and carry on.
 670		 */
 671		spin_lock(&block_group->lock);
 672		block_group->cached = BTRFS_CACHE_STARTED;
 673		spin_unlock(&block_group->lock);
 674		wake_up(&caching_ctl->wait);
 675	}
 676
 677	/*
 678	 * If we are in the transaction that populated the free space tree we
 679	 * can't actually cache from the free space tree as our commit root and
 680	 * real root are the same, so we could change the contents of the blocks
 681	 * while caching.  Instead do the slow caching in this case, and after
 682	 * the transaction has committed we will be safe.
 683	 */
 684	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
 685	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
 686		ret = load_free_space_tree(caching_ctl);
 687	else
 688		ret = load_extent_tree_free(caching_ctl);
 689done:
 690	spin_lock(&block_group->lock);
 691	block_group->caching_ctl = NULL;
 692	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 693	spin_unlock(&block_group->lock);
 694
 695#ifdef CONFIG_BTRFS_DEBUG
 696	if (btrfs_should_fragment_free_space(block_group)) {
 697		u64 bytes_used;
 698
 699		spin_lock(&block_group->space_info->lock);
 700		spin_lock(&block_group->lock);
 701		bytes_used = block_group->length - block_group->used;
 702		block_group->space_info->bytes_used += bytes_used >> 1;
 703		spin_unlock(&block_group->lock);
 704		spin_unlock(&block_group->space_info->lock);
 705		fragment_free_space(block_group);
 706	}
 707#endif
 708
 709	caching_ctl->progress = (u64)-1;
 710
 711	up_read(&fs_info->commit_root_sem);
 712	btrfs_free_excluded_extents(block_group);
 713	mutex_unlock(&caching_ctl->mutex);
 714
 715	wake_up(&caching_ctl->wait);
 716
 717	btrfs_put_caching_control(caching_ctl);
 718	btrfs_put_block_group(block_group);
 719}
 720
 721int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
 722{
 723	DEFINE_WAIT(wait);
 724	struct btrfs_fs_info *fs_info = cache->fs_info;
 725	struct btrfs_caching_control *caching_ctl = NULL;
 726	int ret = 0;
 727
 728	/* Allocator for zoned filesystems does not use the cache at all */
 729	if (btrfs_is_zoned(fs_info))
 730		return 0;
 731
 732	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 733	if (!caching_ctl)
 734		return -ENOMEM;
 735
 736	INIT_LIST_HEAD(&caching_ctl->list);
 737	mutex_init(&caching_ctl->mutex);
 738	init_waitqueue_head(&caching_ctl->wait);
 739	caching_ctl->block_group = cache;
 740	caching_ctl->progress = cache->start;
 741	refcount_set(&caching_ctl->count, 2);
 742	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
 743
 744	spin_lock(&cache->lock);
 745	if (cache->cached != BTRFS_CACHE_NO) {
 746		kfree(caching_ctl);
 747
 748		caching_ctl = cache->caching_ctl;
 749		if (caching_ctl)
 750			refcount_inc(&caching_ctl->count);
 751		spin_unlock(&cache->lock);
 752		goto out;
 753	}
 754	WARN_ON(cache->caching_ctl);
 755	cache->caching_ctl = caching_ctl;
 756	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 757		cache->cached = BTRFS_CACHE_FAST;
 758	else
 759		cache->cached = BTRFS_CACHE_STARTED;
 760	cache->has_caching_ctl = 1;
 761	spin_unlock(&cache->lock);
 762
 763	spin_lock(&fs_info->block_group_cache_lock);
 764	refcount_inc(&caching_ctl->count);
 765	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 766	spin_unlock(&fs_info->block_group_cache_lock);
 767
 768	btrfs_get_block_group(cache);
 769
 770	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 771out:
 772	if (load_cache_only && caching_ctl)
 773		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
 774	if (caching_ctl)
 775		btrfs_put_caching_control(caching_ctl);
 776
 777	return ret;
 778}
 779
 780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 781{
 782	u64 extra_flags = chunk_to_extended(flags) &
 783				BTRFS_EXTENDED_PROFILE_MASK;
 784
 785	write_seqlock(&fs_info->profiles_lock);
 786	if (flags & BTRFS_BLOCK_GROUP_DATA)
 787		fs_info->avail_data_alloc_bits &= ~extra_flags;
 788	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 789		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
 790	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 791		fs_info->avail_system_alloc_bits &= ~extra_flags;
 792	write_sequnlock(&fs_info->profiles_lock);
 793}
 794
 795/*
 796 * Clear incompat bits for the following feature(s):
 797 *
 798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
 799 *            in the whole filesystem
 800 *
 801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
 802 */
 803static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
 804{
 805	bool found_raid56 = false;
 806	bool found_raid1c34 = false;
 807
 808	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
 809	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
 810	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
 811		struct list_head *head = &fs_info->space_info;
 812		struct btrfs_space_info *sinfo;
 813
 814		list_for_each_entry_rcu(sinfo, head, list) {
 815			down_read(&sinfo->groups_sem);
 816			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
 817				found_raid56 = true;
 818			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
 819				found_raid56 = true;
 820			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
 821				found_raid1c34 = true;
 822			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
 823				found_raid1c34 = true;
 824			up_read(&sinfo->groups_sem);
 825		}
 826		if (!found_raid56)
 827			btrfs_clear_fs_incompat(fs_info, RAID56);
 828		if (!found_raid1c34)
 829			btrfs_clear_fs_incompat(fs_info, RAID1C34);
 830	}
 831}
 832
 833static int remove_block_group_item(struct btrfs_trans_handle *trans,
 834				   struct btrfs_path *path,
 835				   struct btrfs_block_group *block_group)
 836{
 837	struct btrfs_fs_info *fs_info = trans->fs_info;
 838	struct btrfs_root *root;
 839	struct btrfs_key key;
 840	int ret;
 841
 842	root = fs_info->extent_root;
 843	key.objectid = block_group->start;
 844	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 845	key.offset = block_group->length;
 846
 847	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 848	if (ret > 0)
 849		ret = -ENOENT;
 850	if (ret < 0)
 851		return ret;
 852
 853	ret = btrfs_del_item(trans, root, path);
 854	return ret;
 855}
 856
 857int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
 858			     u64 group_start, struct extent_map *em)
 859{
 860	struct btrfs_fs_info *fs_info = trans->fs_info;
 861	struct btrfs_path *path;
 862	struct btrfs_block_group *block_group;
 863	struct btrfs_free_cluster *cluster;
 864	struct inode *inode;
 865	struct kobject *kobj = NULL;
 866	int ret;
 867	int index;
 868	int factor;
 869	struct btrfs_caching_control *caching_ctl = NULL;
 870	bool remove_em;
 871	bool remove_rsv = false;
 872
 873	block_group = btrfs_lookup_block_group(fs_info, group_start);
 874	BUG_ON(!block_group);
 875	BUG_ON(!block_group->ro);
 876
 877	trace_btrfs_remove_block_group(block_group);
 878	/*
 879	 * Free the reserved super bytes from this block group before
 880	 * remove it.
 881	 */
 882	btrfs_free_excluded_extents(block_group);
 883	btrfs_free_ref_tree_range(fs_info, block_group->start,
 884				  block_group->length);
 885
 886	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 887	factor = btrfs_bg_type_to_factor(block_group->flags);
 888
 889	/* make sure this block group isn't part of an allocation cluster */
 890	cluster = &fs_info->data_alloc_cluster;
 891	spin_lock(&cluster->refill_lock);
 892	btrfs_return_cluster_to_free_space(block_group, cluster);
 893	spin_unlock(&cluster->refill_lock);
 894
 895	/*
 896	 * make sure this block group isn't part of a metadata
 897	 * allocation cluster
 898	 */
 899	cluster = &fs_info->meta_alloc_cluster;
 900	spin_lock(&cluster->refill_lock);
 901	btrfs_return_cluster_to_free_space(block_group, cluster);
 902	spin_unlock(&cluster->refill_lock);
 903
 904	btrfs_clear_treelog_bg(block_group);
 905
 906	path = btrfs_alloc_path();
 907	if (!path) {
 908		ret = -ENOMEM;
 909		goto out;
 910	}
 911
 912	/*
 913	 * get the inode first so any iput calls done for the io_list
 914	 * aren't the final iput (no unlinks allowed now)
 915	 */
 916	inode = lookup_free_space_inode(block_group, path);
 917
 918	mutex_lock(&trans->transaction->cache_write_mutex);
 919	/*
 920	 * Make sure our free space cache IO is done before removing the
 921	 * free space inode
 922	 */
 923	spin_lock(&trans->transaction->dirty_bgs_lock);
 924	if (!list_empty(&block_group->io_list)) {
 925		list_del_init(&block_group->io_list);
 926
 927		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
 928
 929		spin_unlock(&trans->transaction->dirty_bgs_lock);
 930		btrfs_wait_cache_io(trans, block_group, path);
 931		btrfs_put_block_group(block_group);
 932		spin_lock(&trans->transaction->dirty_bgs_lock);
 933	}
 934
 935	if (!list_empty(&block_group->dirty_list)) {
 936		list_del_init(&block_group->dirty_list);
 937		remove_rsv = true;
 938		btrfs_put_block_group(block_group);
 939	}
 940	spin_unlock(&trans->transaction->dirty_bgs_lock);
 941	mutex_unlock(&trans->transaction->cache_write_mutex);
 942
 943	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
 944	if (ret)
 945		goto out;
 946
 947	spin_lock(&fs_info->block_group_cache_lock);
 948	rb_erase(&block_group->cache_node,
 949		 &fs_info->block_group_cache_tree);
 950	RB_CLEAR_NODE(&block_group->cache_node);
 951
 952	/* Once for the block groups rbtree */
 953	btrfs_put_block_group(block_group);
 954
 955	if (fs_info->first_logical_byte == block_group->start)
 956		fs_info->first_logical_byte = (u64)-1;
 957	spin_unlock(&fs_info->block_group_cache_lock);
 958
 959	down_write(&block_group->space_info->groups_sem);
 960	/*
 961	 * we must use list_del_init so people can check to see if they
 962	 * are still on the list after taking the semaphore
 963	 */
 964	list_del_init(&block_group->list);
 965	if (list_empty(&block_group->space_info->block_groups[index])) {
 966		kobj = block_group->space_info->block_group_kobjs[index];
 967		block_group->space_info->block_group_kobjs[index] = NULL;
 968		clear_avail_alloc_bits(fs_info, block_group->flags);
 969	}
 970	up_write(&block_group->space_info->groups_sem);
 971	clear_incompat_bg_bits(fs_info, block_group->flags);
 972	if (kobj) {
 973		kobject_del(kobj);
 974		kobject_put(kobj);
 975	}
 976
 977	if (block_group->has_caching_ctl)
 978		caching_ctl = btrfs_get_caching_control(block_group);
 979	if (block_group->cached == BTRFS_CACHE_STARTED)
 980		btrfs_wait_block_group_cache_done(block_group);
 981	if (block_group->has_caching_ctl) {
 982		spin_lock(&fs_info->block_group_cache_lock);
 983		if (!caching_ctl) {
 984			struct btrfs_caching_control *ctl;
 985
 986			list_for_each_entry(ctl,
 987				    &fs_info->caching_block_groups, list)
 988				if (ctl->block_group == block_group) {
 989					caching_ctl = ctl;
 990					refcount_inc(&caching_ctl->count);
 991					break;
 992				}
 993		}
 994		if (caching_ctl)
 995			list_del_init(&caching_ctl->list);
 996		spin_unlock(&fs_info->block_group_cache_lock);
 997		if (caching_ctl) {
 998			/* Once for the caching bgs list and once for us. */
 999			btrfs_put_caching_control(caching_ctl);
1000			btrfs_put_caching_control(caching_ctl);
1001		}
1002	}
1003
1004	spin_lock(&trans->transaction->dirty_bgs_lock);
1005	WARN_ON(!list_empty(&block_group->dirty_list));
1006	WARN_ON(!list_empty(&block_group->io_list));
1007	spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009	btrfs_remove_free_space_cache(block_group);
1010
1011	spin_lock(&block_group->space_info->lock);
1012	list_del_init(&block_group->ro_list);
1013
1014	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015		WARN_ON(block_group->space_info->total_bytes
1016			< block_group->length);
1017		WARN_ON(block_group->space_info->bytes_readonly
1018			< block_group->length - block_group->zone_unusable);
1019		WARN_ON(block_group->space_info->bytes_zone_unusable
1020			< block_group->zone_unusable);
1021		WARN_ON(block_group->space_info->disk_total
1022			< block_group->length * factor);
1023	}
1024	block_group->space_info->total_bytes -= block_group->length;
1025	block_group->space_info->bytes_readonly -=
1026		(block_group->length - block_group->zone_unusable);
1027	block_group->space_info->bytes_zone_unusable -=
1028		block_group->zone_unusable;
1029	block_group->space_info->disk_total -= block_group->length * factor;
1030
1031	spin_unlock(&block_group->space_info->lock);
1032
1033	/*
1034	 * Remove the free space for the block group from the free space tree
1035	 * and the block group's item from the extent tree before marking the
1036	 * block group as removed. This is to prevent races with tasks that
1037	 * freeze and unfreeze a block group, this task and another task
1038	 * allocating a new block group - the unfreeze task ends up removing
1039	 * the block group's extent map before the task calling this function
1040	 * deletes the block group item from the extent tree, allowing for
1041	 * another task to attempt to create another block group with the same
1042	 * item key (and failing with -EEXIST and a transaction abort).
1043	 */
1044	ret = remove_block_group_free_space(trans, block_group);
1045	if (ret)
1046		goto out;
1047
1048	ret = remove_block_group_item(trans, path, block_group);
1049	if (ret < 0)
1050		goto out;
1051
1052	spin_lock(&block_group->lock);
1053	block_group->removed = 1;
1054	/*
1055	 * At this point trimming or scrub can't start on this block group,
1056	 * because we removed the block group from the rbtree
1057	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058	 * even if someone already got this block group before we removed it
1059	 * from the rbtree, they have already incremented block_group->frozen -
1060	 * if they didn't, for the trimming case they won't find any free space
1061	 * entries because we already removed them all when we called
1062	 * btrfs_remove_free_space_cache().
1063	 *
1064	 * And we must not remove the extent map from the fs_info->mapping_tree
1065	 * to prevent the same logical address range and physical device space
1066	 * ranges from being reused for a new block group. This is needed to
1067	 * avoid races with trimming and scrub.
1068	 *
1069	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070	 * completely transactionless, so while it is trimming a range the
1071	 * currently running transaction might finish and a new one start,
1072	 * allowing for new block groups to be created that can reuse the same
1073	 * physical device locations unless we take this special care.
1074	 *
1075	 * There may also be an implicit trim operation if the file system
1076	 * is mounted with -odiscard. The same protections must remain
1077	 * in place until the extents have been discarded completely when
1078	 * the transaction commit has completed.
1079	 */
1080	remove_em = (atomic_read(&block_group->frozen) == 0);
1081	spin_unlock(&block_group->lock);
1082
1083	if (remove_em) {
1084		struct extent_map_tree *em_tree;
1085
1086		em_tree = &fs_info->mapping_tree;
1087		write_lock(&em_tree->lock);
1088		remove_extent_mapping(em_tree, em);
1089		write_unlock(&em_tree->lock);
1090		/* once for the tree */
1091		free_extent_map(em);
1092	}
1093
1094out:
1095	/* Once for the lookup reference */
1096	btrfs_put_block_group(block_group);
1097	if (remove_rsv)
1098		btrfs_delayed_refs_rsv_release(fs_info, 1);
1099	btrfs_free_path(path);
1100	return ret;
1101}
1102
1103struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105{
1106	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107	struct extent_map *em;
1108	struct map_lookup *map;
1109	unsigned int num_items;
1110
1111	read_lock(&em_tree->lock);
1112	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113	read_unlock(&em_tree->lock);
1114	ASSERT(em && em->start == chunk_offset);
1115
1116	/*
1117	 * We need to reserve 3 + N units from the metadata space info in order
1118	 * to remove a block group (done at btrfs_remove_chunk() and at
1119	 * btrfs_remove_block_group()), which are used for:
1120	 *
1121	 * 1 unit for adding the free space inode's orphan (located in the tree
1122	 * of tree roots).
1123	 * 1 unit for deleting the block group item (located in the extent
1124	 * tree).
1125	 * 1 unit for deleting the free space item (located in tree of tree
1126	 * roots).
1127	 * N units for deleting N device extent items corresponding to each
1128	 * stripe (located in the device tree).
1129	 *
1130	 * In order to remove a block group we also need to reserve units in the
1131	 * system space info in order to update the chunk tree (update one or
1132	 * more device items and remove one chunk item), but this is done at
1133	 * btrfs_remove_chunk() through a call to check_system_chunk().
1134	 */
1135	map = em->map_lookup;
1136	num_items = 3 + map->num_stripes;
1137	free_extent_map(em);
1138
1139	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140							   num_items);
1141}
1142
1143/*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
1156static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157{
1158	struct btrfs_space_info *sinfo = cache->space_info;
1159	u64 num_bytes;
1160	int ret = -ENOSPC;
1161
1162	spin_lock(&sinfo->lock);
1163	spin_lock(&cache->lock);
1164
1165	if (cache->swap_extents) {
1166		ret = -ETXTBSY;
1167		goto out;
1168	}
1169
1170	if (cache->ro) {
1171		cache->ro++;
1172		ret = 0;
1173		goto out;
1174	}
1175
1176	num_bytes = cache->length - cache->reserved - cache->pinned -
1177		    cache->bytes_super - cache->zone_unusable - cache->used;
1178
1179	/*
1180	 * Data never overcommits, even in mixed mode, so do just the straight
1181	 * check of left over space in how much we have allocated.
1182	 */
1183	if (force) {
1184		ret = 0;
1185	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188		/*
1189		 * Here we make sure if we mark this bg RO, we still have enough
1190		 * free space as buffer.
1191		 */
1192		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193			ret = 0;
1194	} else {
1195		/*
1196		 * We overcommit metadata, so we need to do the
1197		 * btrfs_can_overcommit check here, and we need to pass in
1198		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199		 * leeway to allow us to mark this block group as read only.
1200		 */
1201		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202					 BTRFS_RESERVE_NO_FLUSH))
1203			ret = 0;
1204	}
1205
1206	if (!ret) {
1207		sinfo->bytes_readonly += num_bytes;
1208		if (btrfs_is_zoned(cache->fs_info)) {
1209			/* Migrate zone_unusable bytes to readonly */
1210			sinfo->bytes_readonly += cache->zone_unusable;
1211			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212			cache->zone_unusable = 0;
1213		}
1214		cache->ro++;
1215		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216	}
1217out:
1218	spin_unlock(&cache->lock);
1219	spin_unlock(&sinfo->lock);
1220	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221		btrfs_info(cache->fs_info,
1222			"unable to make block group %llu ro", cache->start);
1223		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224	}
1225	return ret;
1226}
1227
1228static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229				 struct btrfs_block_group *bg)
1230{
1231	struct btrfs_fs_info *fs_info = bg->fs_info;
1232	struct btrfs_transaction *prev_trans = NULL;
1233	const u64 start = bg->start;
1234	const u64 end = start + bg->length - 1;
1235	int ret;
1236
1237	spin_lock(&fs_info->trans_lock);
1238	if (trans->transaction->list.prev != &fs_info->trans_list) {
1239		prev_trans = list_last_entry(&trans->transaction->list,
1240					     struct btrfs_transaction, list);
1241		refcount_inc(&prev_trans->use_count);
1242	}
1243	spin_unlock(&fs_info->trans_lock);
1244
1245	/*
1246	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248	 * task might be running finish_extent_commit() for the previous
1249	 * transaction N - 1, and have seen a range belonging to the block
1250	 * group in pinned_extents before we were able to clear the whole block
1251	 * group range from pinned_extents. This means that task can lookup for
1252	 * the block group after we unpinned it from pinned_extents and removed
1253	 * it, leading to a BUG_ON() at unpin_extent_range().
1254	 */
1255	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256	if (prev_trans) {
1257		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258					EXTENT_DIRTY);
1259		if (ret)
1260			goto out;
1261	}
1262
1263	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264				EXTENT_DIRTY);
1265out:
1266	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267	if (prev_trans)
1268		btrfs_put_transaction(prev_trans);
1269
1270	return ret == 0;
1271}
1272
1273/*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
1277void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278{
1279	struct btrfs_block_group *block_group;
1280	struct btrfs_space_info *space_info;
1281	struct btrfs_trans_handle *trans;
1282	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283	int ret = 0;
1284
1285	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286		return;
1287
1288	/*
1289	 * Long running balances can keep us blocked here for eternity, so
1290	 * simply skip deletion if we're unable to get the mutex.
1291	 */
1292	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293		return;
1294
1295	spin_lock(&fs_info->unused_bgs_lock);
1296	while (!list_empty(&fs_info->unused_bgs)) {
1297		int trimming;
1298
1299		block_group = list_first_entry(&fs_info->unused_bgs,
1300					       struct btrfs_block_group,
1301					       bg_list);
1302		list_del_init(&block_group->bg_list);
1303
1304		space_info = block_group->space_info;
1305
1306		if (ret || btrfs_mixed_space_info(space_info)) {
1307			btrfs_put_block_group(block_group);
1308			continue;
1309		}
1310		spin_unlock(&fs_info->unused_bgs_lock);
1311
1312		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
1314		/* Don't want to race with allocators so take the groups_sem */
1315		down_write(&space_info->groups_sem);
1316
1317		/*
1318		 * Async discard moves the final block group discard to be prior
1319		 * to the unused_bgs code path.  Therefore, if it's not fully
1320		 * trimmed, punt it back to the async discard lists.
1321		 */
1322		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323		    !btrfs_is_free_space_trimmed(block_group)) {
1324			trace_btrfs_skip_unused_block_group(block_group);
1325			up_write(&space_info->groups_sem);
1326			/* Requeue if we failed because of async discard */
1327			btrfs_discard_queue_work(&fs_info->discard_ctl,
1328						 block_group);
1329			goto next;
1330		}
1331
1332		spin_lock(&block_group->lock);
1333		if (block_group->reserved || block_group->pinned ||
1334		    block_group->used || block_group->ro ||
1335		    list_is_singular(&block_group->list)) {
1336			/*
1337			 * We want to bail if we made new allocations or have
1338			 * outstanding allocations in this block group.  We do
1339			 * the ro check in case balance is currently acting on
1340			 * this block group.
1341			 */
1342			trace_btrfs_skip_unused_block_group(block_group);
1343			spin_unlock(&block_group->lock);
1344			up_write(&space_info->groups_sem);
1345			goto next;
1346		}
1347		spin_unlock(&block_group->lock);
1348
1349		/* We don't want to force the issue, only flip if it's ok. */
1350		ret = inc_block_group_ro(block_group, 0);
1351		up_write(&space_info->groups_sem);
1352		if (ret < 0) {
1353			ret = 0;
1354			goto next;
1355		}
1356
1357		/*
1358		 * Want to do this before we do anything else so we can recover
1359		 * properly if we fail to join the transaction.
1360		 */
1361		trans = btrfs_start_trans_remove_block_group(fs_info,
1362						     block_group->start);
1363		if (IS_ERR(trans)) {
1364			btrfs_dec_block_group_ro(block_group);
1365			ret = PTR_ERR(trans);
1366			goto next;
1367		}
1368
1369		/*
1370		 * We could have pending pinned extents for this block group,
1371		 * just delete them, we don't care about them anymore.
1372		 */
1373		if (!clean_pinned_extents(trans, block_group)) {
1374			btrfs_dec_block_group_ro(block_group);
1375			goto end_trans;
1376		}
1377
1378		/*
1379		 * At this point, the block_group is read only and should fail
1380		 * new allocations.  However, btrfs_finish_extent_commit() can
1381		 * cause this block_group to be placed back on the discard
1382		 * lists because now the block_group isn't fully discarded.
1383		 * Bail here and try again later after discarding everything.
1384		 */
1385		spin_lock(&fs_info->discard_ctl.lock);
1386		if (!list_empty(&block_group->discard_list)) {
1387			spin_unlock(&fs_info->discard_ctl.lock);
1388			btrfs_dec_block_group_ro(block_group);
1389			btrfs_discard_queue_work(&fs_info->discard_ctl,
1390						 block_group);
1391			goto end_trans;
1392		}
1393		spin_unlock(&fs_info->discard_ctl.lock);
1394
1395		/* Reset pinned so btrfs_put_block_group doesn't complain */
1396		spin_lock(&space_info->lock);
1397		spin_lock(&block_group->lock);
1398
1399		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400						     -block_group->pinned);
1401		space_info->bytes_readonly += block_group->pinned;
1402		block_group->pinned = 0;
1403
1404		spin_unlock(&block_group->lock);
1405		spin_unlock(&space_info->lock);
1406
1407		/*
1408		 * The normal path here is an unused block group is passed here,
1409		 * then trimming is handled in the transaction commit path.
1410		 * Async discard interposes before this to do the trimming
1411		 * before coming down the unused block group path as trimming
1412		 * will no longer be done later in the transaction commit path.
1413		 */
1414		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415			goto flip_async;
1416
1417		/*
1418		 * DISCARD can flip during remount. On zoned filesystems, we
1419		 * need to reset sequential-required zones.
1420		 */
1421		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422				btrfs_is_zoned(fs_info);
1423
1424		/* Implicit trim during transaction commit. */
1425		if (trimming)
1426			btrfs_freeze_block_group(block_group);
1427
1428		/*
1429		 * Btrfs_remove_chunk will abort the transaction if things go
1430		 * horribly wrong.
1431		 */
1432		ret = btrfs_remove_chunk(trans, block_group->start);
1433
1434		if (ret) {
1435			if (trimming)
1436				btrfs_unfreeze_block_group(block_group);
1437			goto end_trans;
1438		}
1439
1440		/*
1441		 * If we're not mounted with -odiscard, we can just forget
1442		 * about this block group. Otherwise we'll need to wait
1443		 * until transaction commit to do the actual discard.
1444		 */
1445		if (trimming) {
1446			spin_lock(&fs_info->unused_bgs_lock);
1447			/*
1448			 * A concurrent scrub might have added us to the list
1449			 * fs_info->unused_bgs, so use a list_move operation
1450			 * to add the block group to the deleted_bgs list.
1451			 */
1452			list_move(&block_group->bg_list,
1453				  &trans->transaction->deleted_bgs);
1454			spin_unlock(&fs_info->unused_bgs_lock);
1455			btrfs_get_block_group(block_group);
1456		}
1457end_trans:
1458		btrfs_end_transaction(trans);
1459next:
1460		btrfs_put_block_group(block_group);
1461		spin_lock(&fs_info->unused_bgs_lock);
1462	}
1463	spin_unlock(&fs_info->unused_bgs_lock);
1464	mutex_unlock(&fs_info->reclaim_bgs_lock);
1465	return;
1466
1467flip_async:
1468	btrfs_end_transaction(trans);
1469	mutex_unlock(&fs_info->reclaim_bgs_lock);
1470	btrfs_put_block_group(block_group);
1471	btrfs_discard_punt_unused_bgs_list(fs_info);
1472}
1473
1474void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475{
1476	struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478	spin_lock(&fs_info->unused_bgs_lock);
1479	if (list_empty(&bg->bg_list)) {
1480		btrfs_get_block_group(bg);
1481		trace_btrfs_add_unused_block_group(bg);
1482		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483	}
1484	spin_unlock(&fs_info->unused_bgs_lock);
1485}
1486
1487void btrfs_reclaim_bgs_work(struct work_struct *work)
1488{
1489	struct btrfs_fs_info *fs_info =
1490		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491	struct btrfs_block_group *bg;
1492	struct btrfs_space_info *space_info;
1493	LIST_HEAD(again_list);
1494
1495	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496		return;
1497
1498	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499		return;
1500
1501	/*
1502	 * Long running balances can keep us blocked here for eternity, so
1503	 * simply skip reclaim if we're unable to get the mutex.
1504	 */
1505	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1506		btrfs_exclop_finish(fs_info);
1507		return;
1508	}
1509
1510	spin_lock(&fs_info->unused_bgs_lock);
1511	while (!list_empty(&fs_info->reclaim_bgs)) {
1512		u64 zone_unusable;
1513		int ret = 0;
1514
1515		bg = list_first_entry(&fs_info->reclaim_bgs,
1516				      struct btrfs_block_group,
1517				      bg_list);
1518		list_del_init(&bg->bg_list);
1519
1520		space_info = bg->space_info;
1521		spin_unlock(&fs_info->unused_bgs_lock);
1522
1523		/* Don't race with allocators so take the groups_sem */
1524		down_write(&space_info->groups_sem);
1525
1526		spin_lock(&bg->lock);
1527		if (bg->reserved || bg->pinned || bg->ro) {
1528			/*
1529			 * We want to bail if we made new allocations or have
1530			 * outstanding allocations in this block group.  We do
1531			 * the ro check in case balance is currently acting on
1532			 * this block group.
1533			 */
1534			spin_unlock(&bg->lock);
1535			up_write(&space_info->groups_sem);
1536			goto next;
1537		}
1538		spin_unlock(&bg->lock);
1539
1540		/* Get out fast, in case we're unmounting the filesystem */
1541		if (btrfs_fs_closing(fs_info)) {
1542			up_write(&space_info->groups_sem);
1543			goto next;
1544		}
1545
1546		/*
1547		 * Cache the zone_unusable value before turning the block group
1548		 * to read only. As soon as the blog group is read only it's
1549		 * zone_unusable value gets moved to the block group's read-only
1550		 * bytes and isn't available for calculations anymore.
1551		 */
1552		zone_unusable = bg->zone_unusable;
1553		ret = inc_block_group_ro(bg, 0);
1554		up_write(&space_info->groups_sem);
1555		if (ret < 0)
1556			goto next;
1557
1558		btrfs_info(fs_info,
1559			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1560				bg->start, div_u64(bg->used * 100, bg->length),
1561				div64_u64(zone_unusable * 100, bg->length));
1562		trace_btrfs_reclaim_block_group(bg);
1563		ret = btrfs_relocate_chunk(fs_info, bg->start);
1564		if (ret && ret != -EAGAIN)
1565			btrfs_err(fs_info, "error relocating chunk %llu",
1566				  bg->start);
1567
1568next:
1569		spin_lock(&fs_info->unused_bgs_lock);
1570		if (ret == -EAGAIN && list_empty(&bg->bg_list))
1571			list_add_tail(&bg->bg_list, &again_list);
1572		else
1573			btrfs_put_block_group(bg);
1574	}
1575	list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1576	spin_unlock(&fs_info->unused_bgs_lock);
1577	mutex_unlock(&fs_info->reclaim_bgs_lock);
1578	btrfs_exclop_finish(fs_info);
1579}
1580
1581void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1582{
1583	spin_lock(&fs_info->unused_bgs_lock);
1584	if (!list_empty(&fs_info->reclaim_bgs))
1585		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1586	spin_unlock(&fs_info->unused_bgs_lock);
1587}
1588
1589void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1590{
1591	struct btrfs_fs_info *fs_info = bg->fs_info;
1592
1593	spin_lock(&fs_info->unused_bgs_lock);
1594	if (list_empty(&bg->bg_list)) {
1595		btrfs_get_block_group(bg);
1596		trace_btrfs_add_reclaim_block_group(bg);
1597		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1598	}
1599	spin_unlock(&fs_info->unused_bgs_lock);
1600}
1601
1602static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1603			   struct btrfs_path *path)
1604{
1605	struct extent_map_tree *em_tree;
1606	struct extent_map *em;
1607	struct btrfs_block_group_item bg;
1608	struct extent_buffer *leaf;
1609	int slot;
1610	u64 flags;
1611	int ret = 0;
1612
1613	slot = path->slots[0];
1614	leaf = path->nodes[0];
1615
1616	em_tree = &fs_info->mapping_tree;
1617	read_lock(&em_tree->lock);
1618	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1619	read_unlock(&em_tree->lock);
1620	if (!em) {
1621		btrfs_err(fs_info,
1622			  "logical %llu len %llu found bg but no related chunk",
1623			  key->objectid, key->offset);
1624		return -ENOENT;
1625	}
1626
1627	if (em->start != key->objectid || em->len != key->offset) {
1628		btrfs_err(fs_info,
1629			"block group %llu len %llu mismatch with chunk %llu len %llu",
1630			key->objectid, key->offset, em->start, em->len);
1631		ret = -EUCLEAN;
1632		goto out_free_em;
1633	}
1634
1635	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1636			   sizeof(bg));
1637	flags = btrfs_stack_block_group_flags(&bg) &
1638		BTRFS_BLOCK_GROUP_TYPE_MASK;
1639
1640	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1641		btrfs_err(fs_info,
1642"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1643			  key->objectid, key->offset, flags,
1644			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1645		ret = -EUCLEAN;
1646	}
1647
1648out_free_em:
1649	free_extent_map(em);
1650	return ret;
1651}
1652
1653static int find_first_block_group(struct btrfs_fs_info *fs_info,
1654				  struct btrfs_path *path,
1655				  struct btrfs_key *key)
1656{
1657	struct btrfs_root *root = fs_info->extent_root;
1658	int ret;
1659	struct btrfs_key found_key;
1660	struct extent_buffer *leaf;
1661	int slot;
1662
1663	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1664	if (ret < 0)
1665		return ret;
1666
1667	while (1) {
1668		slot = path->slots[0];
1669		leaf = path->nodes[0];
1670		if (slot >= btrfs_header_nritems(leaf)) {
1671			ret = btrfs_next_leaf(root, path);
1672			if (ret == 0)
1673				continue;
1674			if (ret < 0)
1675				goto out;
1676			break;
1677		}
1678		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1679
1680		if (found_key.objectid >= key->objectid &&
1681		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1682			ret = read_bg_from_eb(fs_info, &found_key, path);
1683			break;
1684		}
1685
1686		path->slots[0]++;
1687	}
1688out:
1689	return ret;
1690}
1691
1692static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1693{
1694	u64 extra_flags = chunk_to_extended(flags) &
1695				BTRFS_EXTENDED_PROFILE_MASK;
1696
1697	write_seqlock(&fs_info->profiles_lock);
1698	if (flags & BTRFS_BLOCK_GROUP_DATA)
1699		fs_info->avail_data_alloc_bits |= extra_flags;
1700	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1701		fs_info->avail_metadata_alloc_bits |= extra_flags;
1702	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1703		fs_info->avail_system_alloc_bits |= extra_flags;
1704	write_sequnlock(&fs_info->profiles_lock);
1705}
1706
1707/**
1708 * Map a physical disk address to a list of logical addresses
1709 *
1710 * @fs_info:       the filesystem
1711 * @chunk_start:   logical address of block group
1712 * @bdev:	   physical device to resolve, can be NULL to indicate any device
1713 * @physical:	   physical address to map to logical addresses
1714 * @logical:	   return array of logical addresses which map to @physical
1715 * @naddrs:	   length of @logical
1716 * @stripe_len:    size of IO stripe for the given block group
1717 *
1718 * Maps a particular @physical disk address to a list of @logical addresses.
1719 * Used primarily to exclude those portions of a block group that contain super
1720 * block copies.
1721 */
1722int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1723		     struct block_device *bdev, u64 physical, u64 **logical,
1724		     int *naddrs, int *stripe_len)
1725{
1726	struct extent_map *em;
1727	struct map_lookup *map;
1728	u64 *buf;
1729	u64 bytenr;
1730	u64 data_stripe_length;
1731	u64 io_stripe_size;
1732	int i, nr = 0;
1733	int ret = 0;
1734
1735	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1736	if (IS_ERR(em))
1737		return -EIO;
1738
1739	map = em->map_lookup;
1740	data_stripe_length = em->orig_block_len;
1741	io_stripe_size = map->stripe_len;
1742	chunk_start = em->start;
1743
1744	/* For RAID5/6 adjust to a full IO stripe length */
1745	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1746		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1747
1748	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1749	if (!buf) {
1750		ret = -ENOMEM;
1751		goto out;
1752	}
1753
1754	for (i = 0; i < map->num_stripes; i++) {
1755		bool already_inserted = false;
1756		u64 stripe_nr;
1757		u64 offset;
1758		int j;
1759
1760		if (!in_range(physical, map->stripes[i].physical,
1761			      data_stripe_length))
1762			continue;
1763
1764		if (bdev && map->stripes[i].dev->bdev != bdev)
1765			continue;
1766
1767		stripe_nr = physical - map->stripes[i].physical;
1768		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1769
1770		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1771			stripe_nr = stripe_nr * map->num_stripes + i;
1772			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1773		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1774			stripe_nr = stripe_nr * map->num_stripes + i;
1775		}
1776		/*
1777		 * The remaining case would be for RAID56, multiply by
1778		 * nr_data_stripes().  Alternatively, just use rmap_len below
1779		 * instead of map->stripe_len
1780		 */
1781
1782		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1783
1784		/* Ensure we don't add duplicate addresses */
1785		for (j = 0; j < nr; j++) {
1786			if (buf[j] == bytenr) {
1787				already_inserted = true;
1788				break;
1789			}
1790		}
1791
1792		if (!already_inserted)
1793			buf[nr++] = bytenr;
1794	}
1795
1796	*logical = buf;
1797	*naddrs = nr;
1798	*stripe_len = io_stripe_size;
1799out:
1800	free_extent_map(em);
1801	return ret;
1802}
1803
1804static int exclude_super_stripes(struct btrfs_block_group *cache)
1805{
1806	struct btrfs_fs_info *fs_info = cache->fs_info;
1807	const bool zoned = btrfs_is_zoned(fs_info);
1808	u64 bytenr;
1809	u64 *logical;
1810	int stripe_len;
1811	int i, nr, ret;
1812
1813	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1814		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1815		cache->bytes_super += stripe_len;
1816		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1817						stripe_len);
1818		if (ret)
1819			return ret;
1820	}
1821
1822	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1823		bytenr = btrfs_sb_offset(i);
1824		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1825				       bytenr, &logical, &nr, &stripe_len);
1826		if (ret)
1827			return ret;
1828
1829		/* Shouldn't have super stripes in sequential zones */
1830		if (zoned && nr) {
1831			btrfs_err(fs_info,
1832			"zoned: block group %llu must not contain super block",
1833				  cache->start);
1834			return -EUCLEAN;
1835		}
1836
1837		while (nr--) {
1838			u64 len = min_t(u64, stripe_len,
1839				cache->start + cache->length - logical[nr]);
1840
1841			cache->bytes_super += len;
1842			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1843							len);
1844			if (ret) {
1845				kfree(logical);
1846				return ret;
1847			}
1848		}
1849
1850		kfree(logical);
1851	}
1852	return 0;
1853}
1854
1855static void link_block_group(struct btrfs_block_group *cache)
1856{
1857	struct btrfs_space_info *space_info = cache->space_info;
1858	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1859
1860	down_write(&space_info->groups_sem);
1861	list_add_tail(&cache->list, &space_info->block_groups[index]);
1862	up_write(&space_info->groups_sem);
1863}
1864
1865static struct btrfs_block_group *btrfs_create_block_group_cache(
1866		struct btrfs_fs_info *fs_info, u64 start)
1867{
1868	struct btrfs_block_group *cache;
1869
1870	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1871	if (!cache)
1872		return NULL;
1873
1874	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1875					GFP_NOFS);
1876	if (!cache->free_space_ctl) {
1877		kfree(cache);
1878		return NULL;
1879	}
1880
1881	cache->start = start;
1882
1883	cache->fs_info = fs_info;
1884	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1885
1886	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1887
1888	refcount_set(&cache->refs, 1);
1889	spin_lock_init(&cache->lock);
1890	init_rwsem(&cache->data_rwsem);
1891	INIT_LIST_HEAD(&cache->list);
1892	INIT_LIST_HEAD(&cache->cluster_list);
1893	INIT_LIST_HEAD(&cache->bg_list);
1894	INIT_LIST_HEAD(&cache->ro_list);
1895	INIT_LIST_HEAD(&cache->discard_list);
1896	INIT_LIST_HEAD(&cache->dirty_list);
1897	INIT_LIST_HEAD(&cache->io_list);
1898	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1899	atomic_set(&cache->frozen, 0);
1900	mutex_init(&cache->free_space_lock);
1901	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1902
1903	return cache;
1904}
1905
1906/*
1907 * Iterate all chunks and verify that each of them has the corresponding block
1908 * group
1909 */
1910static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1911{
1912	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1913	struct extent_map *em;
1914	struct btrfs_block_group *bg;
1915	u64 start = 0;
1916	int ret = 0;
1917
1918	while (1) {
1919		read_lock(&map_tree->lock);
1920		/*
1921		 * lookup_extent_mapping will return the first extent map
1922		 * intersecting the range, so setting @len to 1 is enough to
1923		 * get the first chunk.
1924		 */
1925		em = lookup_extent_mapping(map_tree, start, 1);
1926		read_unlock(&map_tree->lock);
1927		if (!em)
1928			break;
1929
1930		bg = btrfs_lookup_block_group(fs_info, em->start);
1931		if (!bg) {
1932			btrfs_err(fs_info,
1933	"chunk start=%llu len=%llu doesn't have corresponding block group",
1934				     em->start, em->len);
1935			ret = -EUCLEAN;
1936			free_extent_map(em);
1937			break;
1938		}
1939		if (bg->start != em->start || bg->length != em->len ||
1940		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1941		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1942			btrfs_err(fs_info,
1943"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1944				em->start, em->len,
1945				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1946				bg->start, bg->length,
1947				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1948			ret = -EUCLEAN;
1949			free_extent_map(em);
1950			btrfs_put_block_group(bg);
1951			break;
1952		}
1953		start = em->start + em->len;
1954		free_extent_map(em);
1955		btrfs_put_block_group(bg);
1956	}
1957	return ret;
1958}
1959
1960static int read_one_block_group(struct btrfs_fs_info *info,
1961				struct btrfs_block_group_item *bgi,
1962				const struct btrfs_key *key,
1963				int need_clear)
1964{
1965	struct btrfs_block_group *cache;
1966	struct btrfs_space_info *space_info;
1967	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1968	int ret;
1969
1970	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1971
1972	cache = btrfs_create_block_group_cache(info, key->objectid);
1973	if (!cache)
1974		return -ENOMEM;
1975
1976	cache->length = key->offset;
1977	cache->used = btrfs_stack_block_group_used(bgi);
1978	cache->flags = btrfs_stack_block_group_flags(bgi);
1979
1980	set_free_space_tree_thresholds(cache);
1981
1982	if (need_clear) {
1983		/*
1984		 * When we mount with old space cache, we need to
1985		 * set BTRFS_DC_CLEAR and set dirty flag.
1986		 *
1987		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1988		 *    truncate the old free space cache inode and
1989		 *    setup a new one.
1990		 * b) Setting 'dirty flag' makes sure that we flush
1991		 *    the new space cache info onto disk.
1992		 */
1993		if (btrfs_test_opt(info, SPACE_CACHE))
1994			cache->disk_cache_state = BTRFS_DC_CLEAR;
1995	}
1996	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1997	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1998			btrfs_err(info,
1999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2000				  cache->start);
2001			ret = -EINVAL;
2002			goto error;
2003	}
2004
2005	ret = btrfs_load_block_group_zone_info(cache, false);
2006	if (ret) {
2007		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2008			  cache->start);
2009		goto error;
2010	}
2011
2012	/*
2013	 * We need to exclude the super stripes now so that the space info has
2014	 * super bytes accounted for, otherwise we'll think we have more space
2015	 * than we actually do.
2016	 */
2017	ret = exclude_super_stripes(cache);
2018	if (ret) {
2019		/* We may have excluded something, so call this just in case. */
2020		btrfs_free_excluded_extents(cache);
2021		goto error;
2022	}
2023
2024	/*
2025	 * For zoned filesystem, space after the allocation offset is the only
2026	 * free space for a block group. So, we don't need any caching work.
2027	 * btrfs_calc_zone_unusable() will set the amount of free space and
2028	 * zone_unusable space.
2029	 *
2030	 * For regular filesystem, check for two cases, either we are full, and
2031	 * therefore don't need to bother with the caching work since we won't
2032	 * find any space, or we are empty, and we can just add all the space
2033	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2034	 * in the full case.
2035	 */
2036	if (btrfs_is_zoned(info)) {
2037		btrfs_calc_zone_unusable(cache);
2038	} else if (cache->length == cache->used) {
2039		cache->last_byte_to_unpin = (u64)-1;
2040		cache->cached = BTRFS_CACHE_FINISHED;
2041		btrfs_free_excluded_extents(cache);
2042	} else if (cache->used == 0) {
2043		cache->last_byte_to_unpin = (u64)-1;
2044		cache->cached = BTRFS_CACHE_FINISHED;
2045		add_new_free_space(cache, cache->start,
2046				   cache->start + cache->length);
2047		btrfs_free_excluded_extents(cache);
2048	}
2049
2050	ret = btrfs_add_block_group_cache(info, cache);
2051	if (ret) {
2052		btrfs_remove_free_space_cache(cache);
2053		goto error;
2054	}
2055	trace_btrfs_add_block_group(info, cache, 0);
2056	btrfs_update_space_info(info, cache->flags, cache->length,
2057				cache->used, cache->bytes_super,
2058				cache->zone_unusable, &space_info);
2059
2060	cache->space_info = space_info;
2061
2062	link_block_group(cache);
2063
2064	set_avail_alloc_bits(info, cache->flags);
2065	if (btrfs_chunk_readonly(info, cache->start)) {
2066		inc_block_group_ro(cache, 1);
2067	} else if (cache->used == 0) {
2068		ASSERT(list_empty(&cache->bg_list));
2069		if (btrfs_test_opt(info, DISCARD_ASYNC))
2070			btrfs_discard_queue_work(&info->discard_ctl, cache);
2071		else
2072			btrfs_mark_bg_unused(cache);
2073	}
2074	return 0;
2075error:
2076	btrfs_put_block_group(cache);
2077	return ret;
2078}
2079
2080static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2081{
2082	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2083	struct btrfs_space_info *space_info;
2084	struct rb_node *node;
2085	int ret = 0;
2086
2087	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2088		struct extent_map *em;
2089		struct map_lookup *map;
2090		struct btrfs_block_group *bg;
2091
2092		em = rb_entry(node, struct extent_map, rb_node);
2093		map = em->map_lookup;
2094		bg = btrfs_create_block_group_cache(fs_info, em->start);
2095		if (!bg) {
2096			ret = -ENOMEM;
2097			break;
2098		}
2099
2100		/* Fill dummy cache as FULL */
2101		bg->length = em->len;
2102		bg->flags = map->type;
2103		bg->last_byte_to_unpin = (u64)-1;
2104		bg->cached = BTRFS_CACHE_FINISHED;
2105		bg->used = em->len;
2106		bg->flags = map->type;
2107		ret = btrfs_add_block_group_cache(fs_info, bg);
2108		if (ret) {
2109			btrfs_remove_free_space_cache(bg);
2110			btrfs_put_block_group(bg);
2111			break;
2112		}
2113		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2114					0, 0, &space_info);
2115		bg->space_info = space_info;
2116		link_block_group(bg);
2117
2118		set_avail_alloc_bits(fs_info, bg->flags);
2119	}
2120	if (!ret)
2121		btrfs_init_global_block_rsv(fs_info);
2122	return ret;
2123}
2124
2125int btrfs_read_block_groups(struct btrfs_fs_info *info)
2126{
2127	struct btrfs_path *path;
2128	int ret;
2129	struct btrfs_block_group *cache;
2130	struct btrfs_space_info *space_info;
2131	struct btrfs_key key;
2132	int need_clear = 0;
2133	u64 cache_gen;
2134
2135	if (!info->extent_root)
2136		return fill_dummy_bgs(info);
2137
2138	key.objectid = 0;
2139	key.offset = 0;
2140	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2141	path = btrfs_alloc_path();
2142	if (!path)
2143		return -ENOMEM;
2144
2145	cache_gen = btrfs_super_cache_generation(info->super_copy);
2146	if (btrfs_test_opt(info, SPACE_CACHE) &&
2147	    btrfs_super_generation(info->super_copy) != cache_gen)
2148		need_clear = 1;
2149	if (btrfs_test_opt(info, CLEAR_CACHE))
2150		need_clear = 1;
2151
2152	while (1) {
2153		struct btrfs_block_group_item bgi;
2154		struct extent_buffer *leaf;
2155		int slot;
2156
2157		ret = find_first_block_group(info, path, &key);
2158		if (ret > 0)
2159			break;
2160		if (ret != 0)
2161			goto error;
2162
2163		leaf = path->nodes[0];
2164		slot = path->slots[0];
2165
2166		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2167				   sizeof(bgi));
2168
2169		btrfs_item_key_to_cpu(leaf, &key, slot);
2170		btrfs_release_path(path);
2171		ret = read_one_block_group(info, &bgi, &key, need_clear);
2172		if (ret < 0)
2173			goto error;
2174		key.objectid += key.offset;
2175		key.offset = 0;
2176	}
2177	btrfs_release_path(path);
2178
2179	list_for_each_entry(space_info, &info->space_info, list) {
2180		int i;
2181
2182		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2183			if (list_empty(&space_info->block_groups[i]))
2184				continue;
2185			cache = list_first_entry(&space_info->block_groups[i],
2186						 struct btrfs_block_group,
2187						 list);
2188			btrfs_sysfs_add_block_group_type(cache);
2189		}
2190
2191		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2192		      (BTRFS_BLOCK_GROUP_RAID10 |
2193		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2194		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2195		       BTRFS_BLOCK_GROUP_DUP)))
2196			continue;
2197		/*
2198		 * Avoid allocating from un-mirrored block group if there are
2199		 * mirrored block groups.
2200		 */
2201		list_for_each_entry(cache,
2202				&space_info->block_groups[BTRFS_RAID_RAID0],
2203				list)
2204			inc_block_group_ro(cache, 1);
2205		list_for_each_entry(cache,
2206				&space_info->block_groups[BTRFS_RAID_SINGLE],
2207				list)
2208			inc_block_group_ro(cache, 1);
2209	}
2210
2211	btrfs_init_global_block_rsv(info);
2212	ret = check_chunk_block_group_mappings(info);
2213error:
2214	btrfs_free_path(path);
2215	return ret;
2216}
2217
2218/*
2219 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2220 * allocation.
2221 *
2222 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2223 * phases.
2224 */
2225static int insert_block_group_item(struct btrfs_trans_handle *trans,
2226				   struct btrfs_block_group *block_group)
2227{
2228	struct btrfs_fs_info *fs_info = trans->fs_info;
2229	struct btrfs_block_group_item bgi;
2230	struct btrfs_root *root;
2231	struct btrfs_key key;
2232
2233	spin_lock(&block_group->lock);
2234	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2235	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2236				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2237	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2238	key.objectid = block_group->start;
2239	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2240	key.offset = block_group->length;
2241	spin_unlock(&block_group->lock);
2242
2243	root = fs_info->extent_root;
2244	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2245}
2246
2247/*
2248 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2249 * chunk allocation.
2250 *
2251 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2252 * phases.
2253 */
2254void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2255{
2256	struct btrfs_fs_info *fs_info = trans->fs_info;
2257	struct btrfs_block_group *block_group;
2258	int ret = 0;
2259
2260	while (!list_empty(&trans->new_bgs)) {
2261		int index;
2262
2263		block_group = list_first_entry(&trans->new_bgs,
2264					       struct btrfs_block_group,
2265					       bg_list);
2266		if (ret)
2267			goto next;
2268
2269		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2270
2271		ret = insert_block_group_item(trans, block_group);
2272		if (ret)
2273			btrfs_abort_transaction(trans, ret);
2274		if (!block_group->chunk_item_inserted) {
2275			mutex_lock(&fs_info->chunk_mutex);
2276			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2277			mutex_unlock(&fs_info->chunk_mutex);
2278			if (ret)
2279				btrfs_abort_transaction(trans, ret);
2280		}
2281		ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2282					block_group->length);
2283		if (ret)
2284			btrfs_abort_transaction(trans, ret);
2285		add_block_group_free_space(trans, block_group);
2286
2287		/*
2288		 * If we restriped during balance, we may have added a new raid
2289		 * type, so now add the sysfs entries when it is safe to do so.
2290		 * We don't have to worry about locking here as it's handled in
2291		 * btrfs_sysfs_add_block_group_type.
2292		 */
2293		if (block_group->space_info->block_group_kobjs[index] == NULL)
2294			btrfs_sysfs_add_block_group_type(block_group);
2295
2296		/* Already aborted the transaction if it failed. */
2297next:
2298		btrfs_delayed_refs_rsv_release(fs_info, 1);
2299		list_del_init(&block_group->bg_list);
2300	}
2301	btrfs_trans_release_chunk_metadata(trans);
2302}
2303
2304struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2305						 u64 bytes_used, u64 type,
2306						 u64 chunk_offset, u64 size)
2307{
2308	struct btrfs_fs_info *fs_info = trans->fs_info;
2309	struct btrfs_block_group *cache;
2310	int ret;
2311
2312	btrfs_set_log_full_commit(trans);
2313
2314	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2315	if (!cache)
2316		return ERR_PTR(-ENOMEM);
2317
2318	cache->length = size;
2319	set_free_space_tree_thresholds(cache);
2320	cache->used = bytes_used;
2321	cache->flags = type;
2322	cache->last_byte_to_unpin = (u64)-1;
2323	cache->cached = BTRFS_CACHE_FINISHED;
2324	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2325		cache->needs_free_space = 1;
2326
2327	ret = btrfs_load_block_group_zone_info(cache, true);
2328	if (ret) {
2329		btrfs_put_block_group(cache);
2330		return ERR_PTR(ret);
2331	}
2332
2333	ret = exclude_super_stripes(cache);
2334	if (ret) {
2335		/* We may have excluded something, so call this just in case */
2336		btrfs_free_excluded_extents(cache);
2337		btrfs_put_block_group(cache);
2338		return ERR_PTR(ret);
2339	}
2340
2341	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2342
2343	btrfs_free_excluded_extents(cache);
2344
2345#ifdef CONFIG_BTRFS_DEBUG
2346	if (btrfs_should_fragment_free_space(cache)) {
2347		u64 new_bytes_used = size - bytes_used;
2348
2349		bytes_used += new_bytes_used >> 1;
2350		fragment_free_space(cache);
2351	}
2352#endif
2353	/*
2354	 * Ensure the corresponding space_info object is created and
2355	 * assigned to our block group. We want our bg to be added to the rbtree
2356	 * with its ->space_info set.
2357	 */
2358	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2359	ASSERT(cache->space_info);
2360
2361	ret = btrfs_add_block_group_cache(fs_info, cache);
2362	if (ret) {
2363		btrfs_remove_free_space_cache(cache);
2364		btrfs_put_block_group(cache);
2365		return ERR_PTR(ret);
2366	}
2367
2368	/*
2369	 * Now that our block group has its ->space_info set and is inserted in
2370	 * the rbtree, update the space info's counters.
2371	 */
2372	trace_btrfs_add_block_group(fs_info, cache, 1);
2373	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2374				cache->bytes_super, 0, &cache->space_info);
2375	btrfs_update_global_block_rsv(fs_info);
2376
2377	link_block_group(cache);
2378
2379	list_add_tail(&cache->bg_list, &trans->new_bgs);
2380	trans->delayed_ref_updates++;
2381	btrfs_update_delayed_refs_rsv(trans);
2382
2383	set_avail_alloc_bits(fs_info, type);
2384	return cache;
2385}
2386
2387/*
2388 * Mark one block group RO, can be called several times for the same block
2389 * group.
2390 *
2391 * @cache:		the destination block group
2392 * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2393 * 			ensure we still have some free space after marking this
2394 * 			block group RO.
2395 */
2396int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2397			     bool do_chunk_alloc)
2398{
2399	struct btrfs_fs_info *fs_info = cache->fs_info;
2400	struct btrfs_trans_handle *trans;
2401	u64 alloc_flags;
2402	int ret;
2403	bool dirty_bg_running;
2404
2405	do {
2406		trans = btrfs_join_transaction(fs_info->extent_root);
2407		if (IS_ERR(trans))
2408			return PTR_ERR(trans);
2409
2410		dirty_bg_running = false;
2411
2412		/*
2413		 * We're not allowed to set block groups readonly after the dirty
2414		 * block group cache has started writing.  If it already started,
2415		 * back off and let this transaction commit.
2416		 */
2417		mutex_lock(&fs_info->ro_block_group_mutex);
2418		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2419			u64 transid = trans->transid;
2420
2421			mutex_unlock(&fs_info->ro_block_group_mutex);
2422			btrfs_end_transaction(trans);
2423
2424			ret = btrfs_wait_for_commit(fs_info, transid);
2425			if (ret)
2426				return ret;
2427			dirty_bg_running = true;
2428		}
2429	} while (dirty_bg_running);
2430
2431	if (do_chunk_alloc) {
2432		/*
2433		 * If we are changing raid levels, try to allocate a
2434		 * corresponding block group with the new raid level.
2435		 */
2436		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2437		if (alloc_flags != cache->flags) {
2438			ret = btrfs_chunk_alloc(trans, alloc_flags,
2439						CHUNK_ALLOC_FORCE);
2440			/*
2441			 * ENOSPC is allowed here, we may have enough space
2442			 * already allocated at the new raid level to carry on
2443			 */
2444			if (ret == -ENOSPC)
2445				ret = 0;
2446			if (ret < 0)
2447				goto out;
2448		}
2449	}
2450
2451	ret = inc_block_group_ro(cache, 0);
2452	if (!do_chunk_alloc || ret == -ETXTBSY)
2453		goto unlock_out;
2454	if (!ret)
2455		goto out;
2456	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2457	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2458	if (ret < 0)
2459		goto out;
2460	ret = inc_block_group_ro(cache, 0);
2461	if (ret == -ETXTBSY)
2462		goto unlock_out;
2463out:
2464	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2465		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2466		mutex_lock(&fs_info->chunk_mutex);
2467		check_system_chunk(trans, alloc_flags);
2468		mutex_unlock(&fs_info->chunk_mutex);
2469	}
2470unlock_out:
2471	mutex_unlock(&fs_info->ro_block_group_mutex);
2472
2473	btrfs_end_transaction(trans);
2474	return ret;
2475}
2476
2477void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2478{
2479	struct btrfs_space_info *sinfo = cache->space_info;
2480	u64 num_bytes;
2481
2482	BUG_ON(!cache->ro);
2483
2484	spin_lock(&sinfo->lock);
2485	spin_lock(&cache->lock);
2486	if (!--cache->ro) {
2487		if (btrfs_is_zoned(cache->fs_info)) {
2488			/* Migrate zone_unusable bytes back */
2489			cache->zone_unusable = cache->alloc_offset - cache->used;
2490			sinfo->bytes_zone_unusable += cache->zone_unusable;
2491			sinfo->bytes_readonly -= cache->zone_unusable;
2492		}
2493		num_bytes = cache->length - cache->reserved -
2494			    cache->pinned - cache->bytes_super -
2495			    cache->zone_unusable - cache->used;
2496		sinfo->bytes_readonly -= num_bytes;
2497		list_del_init(&cache->ro_list);
2498	}
2499	spin_unlock(&cache->lock);
2500	spin_unlock(&sinfo->lock);
2501}
2502
2503static int update_block_group_item(struct btrfs_trans_handle *trans,
2504				   struct btrfs_path *path,
2505				   struct btrfs_block_group *cache)
2506{
2507	struct btrfs_fs_info *fs_info = trans->fs_info;
2508	int ret;
2509	struct btrfs_root *root = fs_info->extent_root;
2510	unsigned long bi;
2511	struct extent_buffer *leaf;
2512	struct btrfs_block_group_item bgi;
2513	struct btrfs_key key;
2514
2515	key.objectid = cache->start;
2516	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2517	key.offset = cache->length;
2518
2519	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520	if (ret) {
2521		if (ret > 0)
2522			ret = -ENOENT;
2523		goto fail;
2524	}
2525
2526	leaf = path->nodes[0];
2527	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2528	btrfs_set_stack_block_group_used(&bgi, cache->used);
2529	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2530			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2531	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2532	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2533	btrfs_mark_buffer_dirty(leaf);
2534fail:
2535	btrfs_release_path(path);
2536	return ret;
2537
2538}
2539
2540static int cache_save_setup(struct btrfs_block_group *block_group,
2541			    struct btrfs_trans_handle *trans,
2542			    struct btrfs_path *path)
2543{
2544	struct btrfs_fs_info *fs_info = block_group->fs_info;
2545	struct btrfs_root *root = fs_info->tree_root;
2546	struct inode *inode = NULL;
2547	struct extent_changeset *data_reserved = NULL;
2548	u64 alloc_hint = 0;
2549	int dcs = BTRFS_DC_ERROR;
2550	u64 cache_size = 0;
2551	int retries = 0;
2552	int ret = 0;
2553
2554	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2555		return 0;
2556
2557	/*
2558	 * If this block group is smaller than 100 megs don't bother caching the
2559	 * block group.
2560	 */
2561	if (block_group->length < (100 * SZ_1M)) {
2562		spin_lock(&block_group->lock);
2563		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2564		spin_unlock(&block_group->lock);
2565		return 0;
2566	}
2567
2568	if (TRANS_ABORTED(trans))
2569		return 0;
2570again:
2571	inode = lookup_free_space_inode(block_group, path);
2572	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2573		ret = PTR_ERR(inode);
2574		btrfs_release_path(path);
2575		goto out;
2576	}
2577
2578	if (IS_ERR(inode)) {
2579		BUG_ON(retries);
2580		retries++;
2581
2582		if (block_group->ro)
2583			goto out_free;
2584
2585		ret = create_free_space_inode(trans, block_group, path);
2586		if (ret)
2587			goto out_free;
2588		goto again;
2589	}
2590
2591	/*
2592	 * We want to set the generation to 0, that way if anything goes wrong
2593	 * from here on out we know not to trust this cache when we load up next
2594	 * time.
2595	 */
2596	BTRFS_I(inode)->generation = 0;
2597	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2598	if (ret) {
2599		/*
2600		 * So theoretically we could recover from this, simply set the
2601		 * super cache generation to 0 so we know to invalidate the
2602		 * cache, but then we'd have to keep track of the block groups
2603		 * that fail this way so we know we _have_ to reset this cache
2604		 * before the next commit or risk reading stale cache.  So to
2605		 * limit our exposure to horrible edge cases lets just abort the
2606		 * transaction, this only happens in really bad situations
2607		 * anyway.
2608		 */
2609		btrfs_abort_transaction(trans, ret);
2610		goto out_put;
2611	}
2612	WARN_ON(ret);
2613
2614	/* We've already setup this transaction, go ahead and exit */
2615	if (block_group->cache_generation == trans->transid &&
2616	    i_size_read(inode)) {
2617		dcs = BTRFS_DC_SETUP;
2618		goto out_put;
2619	}
2620
2621	if (i_size_read(inode) > 0) {
2622		ret = btrfs_check_trunc_cache_free_space(fs_info,
2623					&fs_info->global_block_rsv);
2624		if (ret)
2625			goto out_put;
2626
2627		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2628		if (ret)
2629			goto out_put;
2630	}
2631
2632	spin_lock(&block_group->lock);
2633	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2634	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2635		/*
2636		 * don't bother trying to write stuff out _if_
2637		 * a) we're not cached,
2638		 * b) we're with nospace_cache mount option,
2639		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2640		 */
2641		dcs = BTRFS_DC_WRITTEN;
2642		spin_unlock(&block_group->lock);
2643		goto out_put;
2644	}
2645	spin_unlock(&block_group->lock);
2646
2647	/*
2648	 * We hit an ENOSPC when setting up the cache in this transaction, just
2649	 * skip doing the setup, we've already cleared the cache so we're safe.
2650	 */
2651	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2652		ret = -ENOSPC;
2653		goto out_put;
2654	}
2655
2656	/*
2657	 * Try to preallocate enough space based on how big the block group is.
2658	 * Keep in mind this has to include any pinned space which could end up
2659	 * taking up quite a bit since it's not folded into the other space
2660	 * cache.
2661	 */
2662	cache_size = div_u64(block_group->length, SZ_256M);
2663	if (!cache_size)
2664		cache_size = 1;
2665
2666	cache_size *= 16;
2667	cache_size *= fs_info->sectorsize;
2668
2669	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2670					  cache_size);
2671	if (ret)
2672		goto out_put;
2673
2674	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2675					      cache_size, cache_size,
2676					      &alloc_hint);
2677	/*
2678	 * Our cache requires contiguous chunks so that we don't modify a bunch
2679	 * of metadata or split extents when writing the cache out, which means
2680	 * we can enospc if we are heavily fragmented in addition to just normal
2681	 * out of space conditions.  So if we hit this just skip setting up any
2682	 * other block groups for this transaction, maybe we'll unpin enough
2683	 * space the next time around.
2684	 */
2685	if (!ret)
2686		dcs = BTRFS_DC_SETUP;
2687	else if (ret == -ENOSPC)
2688		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2689
2690out_put:
2691	iput(inode);
2692out_free:
2693	btrfs_release_path(path);
2694out:
2695	spin_lock(&block_group->lock);
2696	if (!ret && dcs == BTRFS_DC_SETUP)
2697		block_group->cache_generation = trans->transid;
2698	block_group->disk_cache_state = dcs;
2699	spin_unlock(&block_group->lock);
2700
2701	extent_changeset_free(data_reserved);
2702	return ret;
2703}
2704
2705int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2706{
2707	struct btrfs_fs_info *fs_info = trans->fs_info;
2708	struct btrfs_block_group *cache, *tmp;
2709	struct btrfs_transaction *cur_trans = trans->transaction;
2710	struct btrfs_path *path;
2711
2712	if (list_empty(&cur_trans->dirty_bgs) ||
2713	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2714		return 0;
2715
2716	path = btrfs_alloc_path();
2717	if (!path)
2718		return -ENOMEM;
2719
2720	/* Could add new block groups, use _safe just in case */
2721	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2722				 dirty_list) {
2723		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2724			cache_save_setup(cache, trans, path);
2725	}
2726
2727	btrfs_free_path(path);
2728	return 0;
2729}
2730
2731/*
2732 * Transaction commit does final block group cache writeback during a critical
2733 * section where nothing is allowed to change the FS.  This is required in
2734 * order for the cache to actually match the block group, but can introduce a
2735 * lot of latency into the commit.
2736 *
2737 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2738 * There's a chance we'll have to redo some of it if the block group changes
2739 * again during the commit, but it greatly reduces the commit latency by
2740 * getting rid of the easy block groups while we're still allowing others to
2741 * join the commit.
2742 */
2743int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2744{
2745	struct btrfs_fs_info *fs_info = trans->fs_info;
2746	struct btrfs_block_group *cache;
2747	struct btrfs_transaction *cur_trans = trans->transaction;
2748	int ret = 0;
2749	int should_put;
2750	struct btrfs_path *path = NULL;
2751	LIST_HEAD(dirty);
2752	struct list_head *io = &cur_trans->io_bgs;
2753	int num_started = 0;
2754	int loops = 0;
2755
2756	spin_lock(&cur_trans->dirty_bgs_lock);
2757	if (list_empty(&cur_trans->dirty_bgs)) {
2758		spin_unlock(&cur_trans->dirty_bgs_lock);
2759		return 0;
2760	}
2761	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2762	spin_unlock(&cur_trans->dirty_bgs_lock);
2763
2764again:
2765	/* Make sure all the block groups on our dirty list actually exist */
2766	btrfs_create_pending_block_groups(trans);
2767
2768	if (!path) {
2769		path = btrfs_alloc_path();
2770		if (!path) {
2771			ret = -ENOMEM;
2772			goto out;
2773		}
2774	}
2775
2776	/*
2777	 * cache_write_mutex is here only to save us from balance or automatic
2778	 * removal of empty block groups deleting this block group while we are
2779	 * writing out the cache
2780	 */
2781	mutex_lock(&trans->transaction->cache_write_mutex);
2782	while (!list_empty(&dirty)) {
2783		bool drop_reserve = true;
2784
2785		cache = list_first_entry(&dirty, struct btrfs_block_group,
2786					 dirty_list);
2787		/*
2788		 * This can happen if something re-dirties a block group that
2789		 * is already under IO.  Just wait for it to finish and then do
2790		 * it all again
2791		 */
2792		if (!list_empty(&cache->io_list)) {
2793			list_del_init(&cache->io_list);
2794			btrfs_wait_cache_io(trans, cache, path);
2795			btrfs_put_block_group(cache);
2796		}
2797
2798
2799		/*
2800		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2801		 * it should update the cache_state.  Don't delete until after
2802		 * we wait.
2803		 *
2804		 * Since we're not running in the commit critical section
2805		 * we need the dirty_bgs_lock to protect from update_block_group
2806		 */
2807		spin_lock(&cur_trans->dirty_bgs_lock);
2808		list_del_init(&cache->dirty_list);
2809		spin_unlock(&cur_trans->dirty_bgs_lock);
2810
2811		should_put = 1;
2812
2813		cache_save_setup(cache, trans, path);
2814
2815		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2816			cache->io_ctl.inode = NULL;
2817			ret = btrfs_write_out_cache(trans, cache, path);
2818			if (ret == 0 && cache->io_ctl.inode) {
2819				num_started++;
2820				should_put = 0;
2821
2822				/*
2823				 * The cache_write_mutex is protecting the
2824				 * io_list, also refer to the definition of
2825				 * btrfs_transaction::io_bgs for more details
2826				 */
2827				list_add_tail(&cache->io_list, io);
2828			} else {
2829				/*
2830				 * If we failed to write the cache, the
2831				 * generation will be bad and life goes on
2832				 */
2833				ret = 0;
2834			}
2835		}
2836		if (!ret) {
2837			ret = update_block_group_item(trans, path, cache);
2838			/*
2839			 * Our block group might still be attached to the list
2840			 * of new block groups in the transaction handle of some
2841			 * other task (struct btrfs_trans_handle->new_bgs). This
2842			 * means its block group item isn't yet in the extent
2843			 * tree. If this happens ignore the error, as we will
2844			 * try again later in the critical section of the
2845			 * transaction commit.
2846			 */
2847			if (ret == -ENOENT) {
2848				ret = 0;
2849				spin_lock(&cur_trans->dirty_bgs_lock);
2850				if (list_empty(&cache->dirty_list)) {
2851					list_add_tail(&cache->dirty_list,
2852						      &cur_trans->dirty_bgs);
2853					btrfs_get_block_group(cache);
2854					drop_reserve = false;
2855				}
2856				spin_unlock(&cur_trans->dirty_bgs_lock);
2857			} else if (ret) {
2858				btrfs_abort_transaction(trans, ret);
2859			}
2860		}
2861
2862		/* If it's not on the io list, we need to put the block group */
2863		if (should_put)
2864			btrfs_put_block_group(cache);
2865		if (drop_reserve)
2866			btrfs_delayed_refs_rsv_release(fs_info, 1);
2867		/*
2868		 * Avoid blocking other tasks for too long. It might even save
2869		 * us from writing caches for block groups that are going to be
2870		 * removed.
2871		 */
2872		mutex_unlock(&trans->transaction->cache_write_mutex);
2873		if (ret)
2874			goto out;
2875		mutex_lock(&trans->transaction->cache_write_mutex);
2876	}
2877	mutex_unlock(&trans->transaction->cache_write_mutex);
2878
2879	/*
2880	 * Go through delayed refs for all the stuff we've just kicked off
2881	 * and then loop back (just once)
2882	 */
2883	if (!ret)
2884		ret = btrfs_run_delayed_refs(trans, 0);
2885	if (!ret && loops == 0) {
2886		loops++;
2887		spin_lock(&cur_trans->dirty_bgs_lock);
2888		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2889		/*
2890		 * dirty_bgs_lock protects us from concurrent block group
2891		 * deletes too (not just cache_write_mutex).
2892		 */
2893		if (!list_empty(&dirty)) {
2894			spin_unlock(&cur_trans->dirty_bgs_lock);
2895			goto again;
2896		}
2897		spin_unlock(&cur_trans->dirty_bgs_lock);
2898	}
2899out:
2900	if (ret < 0) {
2901		spin_lock(&cur_trans->dirty_bgs_lock);
2902		list_splice_init(&dirty, &cur_trans->dirty_bgs);
2903		spin_unlock(&cur_trans->dirty_bgs_lock);
2904		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2905	}
2906
2907	btrfs_free_path(path);
2908	return ret;
2909}
2910
2911int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2912{
2913	struct btrfs_fs_info *fs_info = trans->fs_info;
2914	struct btrfs_block_group *cache;
2915	struct btrfs_transaction *cur_trans = trans->transaction;
2916	int ret = 0;
2917	int should_put;
2918	struct btrfs_path *path;
2919	struct list_head *io = &cur_trans->io_bgs;
2920	int num_started = 0;
2921
2922	path = btrfs_alloc_path();
2923	if (!path)
2924		return -ENOMEM;
2925
2926	/*
2927	 * Even though we are in the critical section of the transaction commit,
2928	 * we can still have concurrent tasks adding elements to this
2929	 * transaction's list of dirty block groups. These tasks correspond to
2930	 * endio free space workers started when writeback finishes for a
2931	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2932	 * allocate new block groups as a result of COWing nodes of the root
2933	 * tree when updating the free space inode. The writeback for the space
2934	 * caches is triggered by an earlier call to
2935	 * btrfs_start_dirty_block_groups() and iterations of the following
2936	 * loop.
2937	 * Also we want to do the cache_save_setup first and then run the
2938	 * delayed refs to make sure we have the best chance at doing this all
2939	 * in one shot.
2940	 */
2941	spin_lock(&cur_trans->dirty_bgs_lock);
2942	while (!list_empty(&cur_trans->dirty_bgs)) {
2943		cache = list_first_entry(&cur_trans->dirty_bgs,
2944					 struct btrfs_block_group,
2945					 dirty_list);
2946
2947		/*
2948		 * This can happen if cache_save_setup re-dirties a block group
2949		 * that is already under IO.  Just wait for it to finish and
2950		 * then do it all again
2951		 */
2952		if (!list_empty(&cache->io_list)) {
2953			spin_unlock(&cur_trans->dirty_bgs_lock);
2954			list_del_init(&cache->io_list);
2955			btrfs_wait_cache_io(trans, cache, path);
2956			btrfs_put_block_group(cache);
2957			spin_lock(&cur_trans->dirty_bgs_lock);
2958		}
2959
2960		/*
2961		 * Don't remove from the dirty list until after we've waited on
2962		 * any pending IO
2963		 */
2964		list_del_init(&cache->dirty_list);
2965		spin_unlock(&cur_trans->dirty_bgs_lock);
2966		should_put = 1;
2967
2968		cache_save_setup(cache, trans, path);
2969
2970		if (!ret)
2971			ret = btrfs_run_delayed_refs(trans,
2972						     (unsigned long) -1);
2973
2974		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2975			cache->io_ctl.inode = NULL;
2976			ret = btrfs_write_out_cache(trans, cache, path);
2977			if (ret == 0 && cache->io_ctl.inode) {
2978				num_started++;
2979				should_put = 0;
2980				list_add_tail(&cache->io_list, io);
2981			} else {
2982				/*
2983				 * If we failed to write the cache, the
2984				 * generation will be bad and life goes on
2985				 */
2986				ret = 0;
2987			}
2988		}
2989		if (!ret) {
2990			ret = update_block_group_item(trans, path, cache);
2991			/*
2992			 * One of the free space endio workers might have
2993			 * created a new block group while updating a free space
2994			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2995			 * and hasn't released its transaction handle yet, in
2996			 * which case the new block group is still attached to
2997			 * its transaction handle and its creation has not
2998			 * finished yet (no block group item in the extent tree
2999			 * yet, etc). If this is the case, wait for all free
3000			 * space endio workers to finish and retry. This is a
3001			 * very rare case so no need for a more efficient and
3002			 * complex approach.
3003			 */
3004			if (ret == -ENOENT) {
3005				wait_event(cur_trans->writer_wait,
3006				   atomic_read(&cur_trans->num_writers) == 1);
3007				ret = update_block_group_item(trans, path, cache);
3008			}
3009			if (ret)
3010				btrfs_abort_transaction(trans, ret);
3011		}
3012
3013		/* If its not on the io list, we need to put the block group */
3014		if (should_put)
3015			btrfs_put_block_group(cache);
3016		btrfs_delayed_refs_rsv_release(fs_info, 1);
3017		spin_lock(&cur_trans->dirty_bgs_lock);
3018	}
3019	spin_unlock(&cur_trans->dirty_bgs_lock);
3020
3021	/*
3022	 * Refer to the definition of io_bgs member for details why it's safe
3023	 * to use it without any locking
3024	 */
3025	while (!list_empty(io)) {
3026		cache = list_first_entry(io, struct btrfs_block_group,
3027					 io_list);
3028		list_del_init(&cache->io_list);
3029		btrfs_wait_cache_io(trans, cache, path);
3030		btrfs_put_block_group(cache);
3031	}
3032
3033	btrfs_free_path(path);
3034	return ret;
3035}
3036
3037int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3038			     u64 bytenr, u64 num_bytes, int alloc)
3039{
3040	struct btrfs_fs_info *info = trans->fs_info;
3041	struct btrfs_block_group *cache = NULL;
3042	u64 total = num_bytes;
3043	u64 old_val;
3044	u64 byte_in_group;
3045	int factor;
3046	int ret = 0;
3047
3048	/* Block accounting for super block */
3049	spin_lock(&info->delalloc_root_lock);
3050	old_val = btrfs_super_bytes_used(info->super_copy);
3051	if (alloc)
3052		old_val += num_bytes;
3053	else
3054		old_val -= num_bytes;
3055	btrfs_set_super_bytes_used(info->super_copy, old_val);
3056	spin_unlock(&info->delalloc_root_lock);
3057
3058	while (total) {
3059		cache = btrfs_lookup_block_group(info, bytenr);
3060		if (!cache) {
3061			ret = -ENOENT;
3062			break;
3063		}
3064		factor = btrfs_bg_type_to_factor(cache->flags);
3065
3066		/*
3067		 * If this block group has free space cache written out, we
3068		 * need to make sure to load it if we are removing space.  This
3069		 * is because we need the unpinning stage to actually add the
3070		 * space back to the block group, otherwise we will leak space.
3071		 */
3072		if (!alloc && !btrfs_block_group_done(cache))
3073			btrfs_cache_block_group(cache, 1);
3074
3075		byte_in_group = bytenr - cache->start;
3076		WARN_ON(byte_in_group > cache->length);
3077
3078		spin_lock(&cache->space_info->lock);
3079		spin_lock(&cache->lock);
3080
3081		if (btrfs_test_opt(info, SPACE_CACHE) &&
3082		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3083			cache->disk_cache_state = BTRFS_DC_CLEAR;
3084
3085		old_val = cache->used;
3086		num_bytes = min(total, cache->length - byte_in_group);
3087		if (alloc) {
3088			old_val += num_bytes;
3089			cache->used = old_val;
3090			cache->reserved -= num_bytes;
3091			cache->space_info->bytes_reserved -= num_bytes;
3092			cache->space_info->bytes_used += num_bytes;
3093			cache->space_info->disk_used += num_bytes * factor;
3094			spin_unlock(&cache->lock);
3095			spin_unlock(&cache->space_info->lock);
3096		} else {
3097			old_val -= num_bytes;
3098			cache->used = old_val;
3099			cache->pinned += num_bytes;
3100			btrfs_space_info_update_bytes_pinned(info,
3101					cache->space_info, num_bytes);
3102			cache->space_info->bytes_used -= num_bytes;
3103			cache->space_info->disk_used -= num_bytes * factor;
3104			spin_unlock(&cache->lock);
3105			spin_unlock(&cache->space_info->lock);
3106
3107			set_extent_dirty(&trans->transaction->pinned_extents,
3108					 bytenr, bytenr + num_bytes - 1,
3109					 GFP_NOFS | __GFP_NOFAIL);
3110		}
3111
3112		spin_lock(&trans->transaction->dirty_bgs_lock);
3113		if (list_empty(&cache->dirty_list)) {
3114			list_add_tail(&cache->dirty_list,
3115				      &trans->transaction->dirty_bgs);
3116			trans->delayed_ref_updates++;
3117			btrfs_get_block_group(cache);
3118		}
3119		spin_unlock(&trans->transaction->dirty_bgs_lock);
3120
3121		/*
3122		 * No longer have used bytes in this block group, queue it for
3123		 * deletion. We do this after adding the block group to the
3124		 * dirty list to avoid races between cleaner kthread and space
3125		 * cache writeout.
3126		 */
3127		if (!alloc && old_val == 0) {
3128			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3129				btrfs_mark_bg_unused(cache);
3130		}
3131
3132		btrfs_put_block_group(cache);
3133		total -= num_bytes;
3134		bytenr += num_bytes;
3135	}
3136
3137	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3138	btrfs_update_delayed_refs_rsv(trans);
3139	return ret;
3140}
3141
3142/**
3143 * btrfs_add_reserved_bytes - update the block_group and space info counters
3144 * @cache:	The cache we are manipulating
3145 * @ram_bytes:  The number of bytes of file content, and will be same to
3146 *              @num_bytes except for the compress path.
3147 * @num_bytes:	The number of bytes in question
3148 * @delalloc:   The blocks are allocated for the delalloc write
3149 *
3150 * This is called by the allocator when it reserves space. If this is a
3151 * reservation and the block group has become read only we cannot make the
3152 * reservation and return -EAGAIN, otherwise this function always succeeds.
3153 */
3154int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3155			     u64 ram_bytes, u64 num_bytes, int delalloc)
3156{
3157	struct btrfs_space_info *space_info = cache->space_info;
3158	int ret = 0;
3159
3160	spin_lock(&space_info->lock);
3161	spin_lock(&cache->lock);
3162	if (cache->ro) {
3163		ret = -EAGAIN;
3164	} else {
3165		cache->reserved += num_bytes;
3166		space_info->bytes_reserved += num_bytes;
3167		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3168					      space_info->flags, num_bytes, 1);
3169		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3170						      space_info, -ram_bytes);
3171		if (delalloc)
3172			cache->delalloc_bytes += num_bytes;
3173
3174		/*
3175		 * Compression can use less space than we reserved, so wake
3176		 * tickets if that happens
3177		 */
3178		if (num_bytes < ram_bytes)
3179			btrfs_try_granting_tickets(cache->fs_info, space_info);
3180	}
3181	spin_unlock(&cache->lock);
3182	spin_unlock(&space_info->lock);
3183	return ret;
3184}
3185
3186/**
3187 * btrfs_free_reserved_bytes - update the block_group and space info counters
3188 * @cache:      The cache we are manipulating
3189 * @num_bytes:  The number of bytes in question
3190 * @delalloc:   The blocks are allocated for the delalloc write
3191 *
3192 * This is called by somebody who is freeing space that was never actually used
3193 * on disk.  For example if you reserve some space for a new leaf in transaction
3194 * A and before transaction A commits you free that leaf, you call this with
3195 * reserve set to 0 in order to clear the reservation.
3196 */
3197void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3198			       u64 num_bytes, int delalloc)
3199{
3200	struct btrfs_space_info *space_info = cache->space_info;
3201
3202	spin_lock(&space_info->lock);
3203	spin_lock(&cache->lock);
3204	if (cache->ro)
3205		space_info->bytes_readonly += num_bytes;
3206	cache->reserved -= num_bytes;
3207	space_info->bytes_reserved -= num_bytes;
3208	space_info->max_extent_size = 0;
3209
3210	if (delalloc)
3211		cache->delalloc_bytes -= num_bytes;
3212	spin_unlock(&cache->lock);
3213
3214	btrfs_try_granting_tickets(cache->fs_info, space_info);
3215	spin_unlock(&space_info->lock);
3216}
3217
3218static void force_metadata_allocation(struct btrfs_fs_info *info)
3219{
3220	struct list_head *head = &info->space_info;
3221	struct btrfs_space_info *found;
3222
3223	list_for_each_entry(found, head, list) {
3224		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3225			found->force_alloc = CHUNK_ALLOC_FORCE;
3226	}
3227}
3228
3229static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3230			      struct btrfs_space_info *sinfo, int force)
3231{
3232	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3233	u64 thresh;
3234
3235	if (force == CHUNK_ALLOC_FORCE)
3236		return 1;
3237
3238	/*
3239	 * in limited mode, we want to have some free space up to
3240	 * about 1% of the FS size.
3241	 */
3242	if (force == CHUNK_ALLOC_LIMITED) {
3243		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3244		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3245
3246		if (sinfo->total_bytes - bytes_used < thresh)
3247			return 1;
3248	}
3249
3250	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3251		return 0;
3252	return 1;
3253}
3254
3255int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3256{
3257	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3258
3259	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3260}
3261
3262static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3263{
3264	struct btrfs_block_group *bg;
3265	int ret;
3266
3267	/*
3268	 * Check if we have enough space in the system space info because we
3269	 * will need to update device items in the chunk btree and insert a new
3270	 * chunk item in the chunk btree as well. This will allocate a new
3271	 * system block group if needed.
3272	 */
3273	check_system_chunk(trans, flags);
3274
3275	bg = btrfs_alloc_chunk(trans, flags);
3276	if (IS_ERR(bg)) {
3277		ret = PTR_ERR(bg);
3278		goto out;
3279	}
3280
3281	/*
3282	 * If this is a system chunk allocation then stop right here and do not
3283	 * add the chunk item to the chunk btree. This is to prevent a deadlock
3284	 * because this system chunk allocation can be triggered while COWing
3285	 * some extent buffer of the chunk btree and while holding a lock on a
3286	 * parent extent buffer, in which case attempting to insert the chunk
3287	 * item (or update the device item) would result in a deadlock on that
3288	 * parent extent buffer. In this case defer the chunk btree updates to
3289	 * the second phase of chunk allocation and keep our reservation until
3290	 * the second phase completes.
3291	 *
3292	 * This is a rare case and can only be triggered by the very few cases
3293	 * we have where we need to touch the chunk btree outside chunk allocation
3294	 * and chunk removal. These cases are basically adding a device, removing
3295	 * a device or resizing a device.
3296	 */
3297	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3298		return 0;
3299
3300	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3301	/*
3302	 * Normally we are not expected to fail with -ENOSPC here, since we have
3303	 * previously reserved space in the system space_info and allocated one
3304	 * new system chunk if necessary. However there are two exceptions:
3305	 *
3306	 * 1) We may have enough free space in the system space_info but all the
3307	 *    existing system block groups have a profile which can not be used
3308	 *    for extent allocation.
3309	 *
3310	 *    This happens when mounting in degraded mode. For example we have a
3311	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3312	 *    using the other device in degraded mode. If we then allocate a chunk,
3313	 *    we may have enough free space in the existing system space_info, but
3314	 *    none of the block groups can be used for extent allocation since they
3315	 *    have a RAID1 profile, and because we are in degraded mode with a
3316	 *    single device, we are forced to allocate a new system chunk with a
3317	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3318	 *    block groups and check if they have a usable profile and enough space
3319	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3320	 *    try again after forcing allocation of a new system chunk. Like this
3321	 *    we avoid paying the cost of that search in normal circumstances, when
3322	 *    we were not mounted in degraded mode;
3323	 *
3324	 * 2) We had enough free space info the system space_info, and one suitable
3325	 *    block group to allocate from when we called check_system_chunk()
3326	 *    above. However right after we called it, the only system block group
3327	 *    with enough free space got turned into RO mode by a running scrub,
3328	 *    and in this case we have to allocate a new one and retry. We only
3329	 *    need do this allocate and retry once, since we have a transaction
3330	 *    handle and scrub uses the commit root to search for block groups.
3331	 */
3332	if (ret == -ENOSPC) {
3333		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3334		struct btrfs_block_group *sys_bg;
3335
3336		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3337		if (IS_ERR(sys_bg)) {
3338			ret = PTR_ERR(sys_bg);
3339			btrfs_abort_transaction(trans, ret);
3340			goto out;
3341		}
3342
3343		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3344		if (ret) {
3345			btrfs_abort_transaction(trans, ret);
3346			goto out;
3347		}
3348
3349		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3350		if (ret) {
3351			btrfs_abort_transaction(trans, ret);
3352			goto out;
3353		}
3354	} else if (ret) {
3355		btrfs_abort_transaction(trans, ret);
3356		goto out;
3357	}
3358out:
3359	btrfs_trans_release_chunk_metadata(trans);
3360
3361	return ret;
3362}
3363
3364/*
3365 * Chunk allocation is done in 2 phases:
3366 *
3367 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3368 *    the chunk, the chunk mapping, create its block group and add the items
3369 *    that belong in the chunk btree to it - more specifically, we need to
3370 *    update device items in the chunk btree and add a new chunk item to it.
3371 *
3372 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3373 *    group item to the extent btree and the device extent items to the devices
3374 *    btree.
3375 *
3376 * This is done to prevent deadlocks. For example when COWing a node from the
3377 * extent btree we are holding a write lock on the node's parent and if we
3378 * trigger chunk allocation and attempted to insert the new block group item
3379 * in the extent btree right way, we could deadlock because the path for the
3380 * insertion can include that parent node. At first glance it seems impossible
3381 * to trigger chunk allocation after starting a transaction since tasks should
3382 * reserve enough transaction units (metadata space), however while that is true
3383 * most of the time, chunk allocation may still be triggered for several reasons:
3384 *
3385 * 1) When reserving metadata, we check if there is enough free space in the
3386 *    metadata space_info and therefore don't trigger allocation of a new chunk.
3387 *    However later when the task actually tries to COW an extent buffer from
3388 *    the extent btree or from the device btree for example, it is forced to
3389 *    allocate a new block group (chunk) because the only one that had enough
3390 *    free space was just turned to RO mode by a running scrub for example (or
3391 *    device replace, block group reclaim thread, etc), so we can not use it
3392 *    for allocating an extent and end up being forced to allocate a new one;
3393 *
3394 * 2) Because we only check that the metadata space_info has enough free bytes,
3395 *    we end up not allocating a new metadata chunk in that case. However if
3396 *    the filesystem was mounted in degraded mode, none of the existing block
3397 *    groups might be suitable for extent allocation due to their incompatible
3398 *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3399 *    use a RAID1 profile, in degraded mode using a single device). In this case
3400 *    when the task attempts to COW some extent buffer of the extent btree for
3401 *    example, it will trigger allocation of a new metadata block group with a
3402 *    suitable profile (SINGLE profile in the example of the degraded mount of
3403 *    the RAID1 filesystem);
3404 *
3405 * 3) The task has reserved enough transaction units / metadata space, but when
3406 *    it attempts to COW an extent buffer from the extent or device btree for
3407 *    example, it does not find any free extent in any metadata block group,
3408 *    therefore forced to try to allocate a new metadata block group.
3409 *    This is because some other task allocated all available extents in the
3410 *    meanwhile - this typically happens with tasks that don't reserve space
3411 *    properly, either intentionally or as a bug. One example where this is
3412 *    done intentionally is fsync, as it does not reserve any transaction units
3413 *    and ends up allocating a variable number of metadata extents for log
3414 *    tree extent buffers.
3415 *
3416 * We also need this 2 phases setup when adding a device to a filesystem with
3417 * a seed device - we must create new metadata and system chunks without adding
3418 * any of the block group items to the chunk, extent and device btrees. If we
3419 * did not do it this way, we would get ENOSPC when attempting to update those
3420 * btrees, since all the chunks from the seed device are read-only.
3421 *
3422 * Phase 1 does the updates and insertions to the chunk btree because if we had
3423 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3424 * parallel, we risk having too many system chunks allocated by many tasks if
3425 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3426 * extreme case this leads to exhaustion of the system chunk array in the
3427 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3428 * and with RAID filesystems (so we have more device items in the chunk btree).
3429 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3430 * the system chunk array due to concurrent allocations") provides more details.
3431 *
3432 * For allocation of system chunks, we defer the updates and insertions into the
3433 * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
3434 * if the chunk allocation is triggered while COWing an extent buffer of the
3435 * chunk btree, we are holding a lock on the parent of that extent buffer and
3436 * doing the chunk btree updates and insertions can require locking that parent.
3437 * This is for the very few and rare cases where we update the chunk btree that
3438 * are not chunk allocation or chunk removal: adding a device, removing a device
3439 * or resizing a device.
3440 *
3441 * The reservation of system space, done through check_system_chunk(), as well
3442 * as all the updates and insertions into the chunk btree must be done while
3443 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3444 * an extent buffer from the chunks btree we never trigger allocation of a new
3445 * system chunk, which would result in a deadlock (trying to lock twice an
3446 * extent buffer of the chunk btree, first time before triggering the chunk
3447 * allocation and the second time during chunk allocation while attempting to
3448 * update the chunks btree). The system chunk array is also updated while holding
3449 * that mutex. The same logic applies to removing chunks - we must reserve system
3450 * space, update the chunk btree and the system chunk array in the superblock
3451 * while holding fs_info->chunk_mutex.
3452 *
3453 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3454 *
3455 * If @force is CHUNK_ALLOC_FORCE:
3456 *    - return 1 if it successfully allocates a chunk,
3457 *    - return errors including -ENOSPC otherwise.
3458 * If @force is NOT CHUNK_ALLOC_FORCE:
3459 *    - return 0 if it doesn't need to allocate a new chunk,
3460 *    - return 1 if it successfully allocates a chunk,
3461 *    - return errors including -ENOSPC otherwise.
3462 */
3463int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3464		      enum btrfs_chunk_alloc_enum force)
3465{
3466	struct btrfs_fs_info *fs_info = trans->fs_info;
3467	struct btrfs_space_info *space_info;
3468	bool wait_for_alloc = false;
3469	bool should_alloc = false;
3470	int ret = 0;
3471
3472	/* Don't re-enter if we're already allocating a chunk */
3473	if (trans->allocating_chunk)
3474		return -ENOSPC;
3475	/*
3476	 * If we are removing a chunk, don't re-enter or we would deadlock.
3477	 * System space reservation and system chunk allocation is done by the
3478	 * chunk remove operation (btrfs_remove_chunk()).
3479	 */
3480	if (trans->removing_chunk)
3481		return -ENOSPC;
3482
3483	space_info = btrfs_find_space_info(fs_info, flags);
3484	ASSERT(space_info);
3485
3486	do {
3487		spin_lock(&space_info->lock);
3488		if (force < space_info->force_alloc)
3489			force = space_info->force_alloc;
3490		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3491		if (space_info->full) {
3492			/* No more free physical space */
3493			if (should_alloc)
3494				ret = -ENOSPC;
3495			else
3496				ret = 0;
3497			spin_unlock(&space_info->lock);
3498			return ret;
3499		} else if (!should_alloc) {
3500			spin_unlock(&space_info->lock);
3501			return 0;
3502		} else if (space_info->chunk_alloc) {
3503			/*
3504			 * Someone is already allocating, so we need to block
3505			 * until this someone is finished and then loop to
3506			 * recheck if we should continue with our allocation
3507			 * attempt.
3508			 */
3509			wait_for_alloc = true;
3510			spin_unlock(&space_info->lock);
3511			mutex_lock(&fs_info->chunk_mutex);
3512			mutex_unlock(&fs_info->chunk_mutex);
3513		} else {
3514			/* Proceed with allocation */
3515			space_info->chunk_alloc = 1;
3516			wait_for_alloc = false;
3517			spin_unlock(&space_info->lock);
3518		}
3519
3520		cond_resched();
3521	} while (wait_for_alloc);
3522
3523	mutex_lock(&fs_info->chunk_mutex);
3524	trans->allocating_chunk = true;
3525
3526	/*
3527	 * If we have mixed data/metadata chunks we want to make sure we keep
3528	 * allocating mixed chunks instead of individual chunks.
3529	 */
3530	if (btrfs_mixed_space_info(space_info))
3531		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3532
3533	/*
3534	 * if we're doing a data chunk, go ahead and make sure that
3535	 * we keep a reasonable number of metadata chunks allocated in the
3536	 * FS as well.
3537	 */
3538	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3539		fs_info->data_chunk_allocations++;
3540		if (!(fs_info->data_chunk_allocations %
3541		      fs_info->metadata_ratio))
3542			force_metadata_allocation(fs_info);
3543	}
3544
3545	ret = do_chunk_alloc(trans, flags);
3546	trans->allocating_chunk = false;
3547
3548	spin_lock(&space_info->lock);
3549	if (ret < 0) {
3550		if (ret == -ENOSPC)
3551			space_info->full = 1;
3552		else
3553			goto out;
3554	} else {
3555		ret = 1;
3556		space_info->max_extent_size = 0;
3557	}
3558
3559	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3560out:
3561	space_info->chunk_alloc = 0;
3562	spin_unlock(&space_info->lock);
3563	mutex_unlock(&fs_info->chunk_mutex);
3564
3565	return ret;
3566}
3567
3568static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3569{
3570	u64 num_dev;
3571
3572	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3573	if (!num_dev)
3574		num_dev = fs_info->fs_devices->rw_devices;
3575
3576	return num_dev;
3577}
3578
3579/*
3580 * Reserve space in the system space for allocating or removing a chunk
3581 */
3582void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3583{
3584	struct btrfs_fs_info *fs_info = trans->fs_info;
3585	struct btrfs_space_info *info;
3586	u64 left;
3587	u64 thresh;
3588	int ret = 0;
3589	u64 num_devs;
3590
3591	/*
3592	 * Needed because we can end up allocating a system chunk and for an
3593	 * atomic and race free space reservation in the chunk block reserve.
3594	 */
3595	lockdep_assert_held(&fs_info->chunk_mutex);
3596
3597	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3598	spin_lock(&info->lock);
3599	left = info->total_bytes - btrfs_space_info_used(info, true);
3600	spin_unlock(&info->lock);
3601
3602	num_devs = get_profile_num_devs(fs_info, type);
3603
3604	/* num_devs device items to update and 1 chunk item to add or remove */
3605	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3606		btrfs_calc_insert_metadata_size(fs_info, 1);
3607
3608	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3609		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3610			   left, thresh, type);
3611		btrfs_dump_space_info(fs_info, info, 0, 0);
3612	}
3613
3614	if (left < thresh) {
3615		u64 flags = btrfs_system_alloc_profile(fs_info);
3616		struct btrfs_block_group *bg;
3617
3618		/*
3619		 * Ignore failure to create system chunk. We might end up not
3620		 * needing it, as we might not need to COW all nodes/leafs from
3621		 * the paths we visit in the chunk tree (they were already COWed
3622		 * or created in the current transaction for example).
3623		 *
3624		 * Also, if our caller is allocating a system chunk, do not
3625		 * attempt to insert the chunk item in the chunk btree, as we
3626		 * could deadlock on an extent buffer since our caller may be
3627		 * COWing an extent buffer from the chunk btree.
3628		 */
3629		bg = btrfs_alloc_chunk(trans, flags);
3630		if (IS_ERR(bg)) {
3631			ret = PTR_ERR(bg);
3632		} else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
3633			/*
3634			 * If we fail to add the chunk item here, we end up
3635			 * trying again at phase 2 of chunk allocation, at
3636			 * btrfs_create_pending_block_groups(). So ignore
3637			 * any error here.
3638			 */
3639			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3640		}
3641	}
3642
3643	if (!ret) {
3644		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3645					  &fs_info->chunk_block_rsv,
3646					  thresh, BTRFS_RESERVE_NO_FLUSH);
3647		if (!ret)
3648			trans->chunk_bytes_reserved += thresh;
3649	}
3650}
3651
3652void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3653{
3654	struct btrfs_block_group *block_group;
3655	u64 last = 0;
3656
3657	while (1) {
3658		struct inode *inode;
3659
3660		block_group = btrfs_lookup_first_block_group(info, last);
3661		while (block_group) {
3662			btrfs_wait_block_group_cache_done(block_group);
3663			spin_lock(&block_group->lock);
3664			if (block_group->iref)
3665				break;
3666			spin_unlock(&block_group->lock);
3667			block_group = btrfs_next_block_group(block_group);
3668		}
3669		if (!block_group) {
3670			if (last == 0)
3671				break;
3672			last = 0;
3673			continue;
3674		}
3675
3676		inode = block_group->inode;
3677		block_group->iref = 0;
3678		block_group->inode = NULL;
3679		spin_unlock(&block_group->lock);
3680		ASSERT(block_group->io_ctl.inode == NULL);
3681		iput(inode);
3682		last = block_group->start + block_group->length;
3683		btrfs_put_block_group(block_group);
3684	}
3685}
3686
3687/*
3688 * Must be called only after stopping all workers, since we could have block
3689 * group caching kthreads running, and therefore they could race with us if we
3690 * freed the block groups before stopping them.
3691 */
3692int btrfs_free_block_groups(struct btrfs_fs_info *info)
3693{
3694	struct btrfs_block_group *block_group;
3695	struct btrfs_space_info *space_info;
3696	struct btrfs_caching_control *caching_ctl;
3697	struct rb_node *n;
3698
3699	spin_lock(&info->block_group_cache_lock);
3700	while (!list_empty(&info->caching_block_groups)) {
3701		caching_ctl = list_entry(info->caching_block_groups.next,
3702					 struct btrfs_caching_control, list);
3703		list_del(&caching_ctl->list);
3704		btrfs_put_caching_control(caching_ctl);
3705	}
3706	spin_unlock(&info->block_group_cache_lock);
3707
3708	spin_lock(&info->unused_bgs_lock);
3709	while (!list_empty(&info->unused_bgs)) {
3710		block_group = list_first_entry(&info->unused_bgs,
3711					       struct btrfs_block_group,
3712					       bg_list);
3713		list_del_init(&block_group->bg_list);
3714		btrfs_put_block_group(block_group);
3715	}
3716	spin_unlock(&info->unused_bgs_lock);
3717
3718	spin_lock(&info->unused_bgs_lock);
3719	while (!list_empty(&info->reclaim_bgs)) {
3720		block_group = list_first_entry(&info->reclaim_bgs,
3721					       struct btrfs_block_group,
3722					       bg_list);
3723		list_del_init(&block_group->bg_list);
3724		btrfs_put_block_group(block_group);
3725	}
3726	spin_unlock(&info->unused_bgs_lock);
3727
3728	spin_lock(&info->block_group_cache_lock);
3729	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3730		block_group = rb_entry(n, struct btrfs_block_group,
3731				       cache_node);
3732		rb_erase(&block_group->cache_node,
3733			 &info->block_group_cache_tree);
3734		RB_CLEAR_NODE(&block_group->cache_node);
3735		spin_unlock(&info->block_group_cache_lock);
3736
3737		down_write(&block_group->space_info->groups_sem);
3738		list_del(&block_group->list);
3739		up_write(&block_group->space_info->groups_sem);
3740
3741		/*
3742		 * We haven't cached this block group, which means we could
3743		 * possibly have excluded extents on this block group.
3744		 */
3745		if (block_group->cached == BTRFS_CACHE_NO ||
3746		    block_group->cached == BTRFS_CACHE_ERROR)
3747			btrfs_free_excluded_extents(block_group);
3748
3749		btrfs_remove_free_space_cache(block_group);
3750		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3751		ASSERT(list_empty(&block_group->dirty_list));
3752		ASSERT(list_empty(&block_group->io_list));
3753		ASSERT(list_empty(&block_group->bg_list));
3754		ASSERT(refcount_read(&block_group->refs) == 1);
3755		ASSERT(block_group->swap_extents == 0);
3756		btrfs_put_block_group(block_group);
3757
3758		spin_lock(&info->block_group_cache_lock);
3759	}
3760	spin_unlock(&info->block_group_cache_lock);
3761
3762	btrfs_release_global_block_rsv(info);
3763
3764	while (!list_empty(&info->space_info)) {
3765		space_info = list_entry(info->space_info.next,
3766					struct btrfs_space_info,
3767					list);
3768
3769		/*
3770		 * Do not hide this behind enospc_debug, this is actually
3771		 * important and indicates a real bug if this happens.
3772		 */
3773		if (WARN_ON(space_info->bytes_pinned > 0 ||
3774			    space_info->bytes_reserved > 0 ||
3775			    space_info->bytes_may_use > 0))
3776			btrfs_dump_space_info(info, space_info, 0, 0);
3777		WARN_ON(space_info->reclaim_size > 0);
3778		list_del(&space_info->list);
3779		btrfs_sysfs_remove_space_info(space_info);
3780	}
3781	return 0;
3782}
3783
3784void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3785{
3786	atomic_inc(&cache->frozen);
3787}
3788
3789void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3790{
3791	struct btrfs_fs_info *fs_info = block_group->fs_info;
3792	struct extent_map_tree *em_tree;
3793	struct extent_map *em;
3794	bool cleanup;
3795
3796	spin_lock(&block_group->lock);
3797	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3798		   block_group->removed);
3799	spin_unlock(&block_group->lock);
3800
3801	if (cleanup) {
3802		em_tree = &fs_info->mapping_tree;
3803		write_lock(&em_tree->lock);
3804		em = lookup_extent_mapping(em_tree, block_group->start,
3805					   1);
3806		BUG_ON(!em); /* logic error, can't happen */
3807		remove_extent_mapping(em_tree, em);
3808		write_unlock(&em_tree->lock);
3809
3810		/* once for us and once for the tree */
3811		free_extent_map(em);
3812		free_extent_map(em);
3813
3814		/*
3815		 * We may have left one free space entry and other possible
3816		 * tasks trimming this block group have left 1 entry each one.
3817		 * Free them if any.
3818		 */
3819		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3820	}
3821}
3822
3823bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3824{
3825	bool ret = true;
3826
3827	spin_lock(&bg->lock);
3828	if (bg->ro)
3829		ret = false;
3830	else
3831		bg->swap_extents++;
3832	spin_unlock(&bg->lock);
3833
3834	return ret;
3835}
3836
3837void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3838{
3839	spin_lock(&bg->lock);
3840	ASSERT(!bg->ro);
3841	ASSERT(bg->swap_extents >= amount);
3842	bg->swap_extents -= amount;
3843	spin_unlock(&bg->lock);
3844}