Loading...
Note: File does not exist in v4.17.
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "block-group.h"
6#include "space-info.h"
7#include "disk-io.h"
8#include "free-space-cache.h"
9#include "free-space-tree.h"
10#include "volumes.h"
11#include "transaction.h"
12#include "ref-verify.h"
13#include "sysfs.h"
14#include "tree-log.h"
15#include "delalloc-space.h"
16#include "discard.h"
17#include "raid56.h"
18#include "zoned.h"
19
20/*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
26static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27{
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46}
47
48/*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
55static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56{
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
67 target = get_restripe_target(fs_info, flags);
68 if (target) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 spin_unlock(&fs_info->balance_lock);
73
74 /* First, mask out the RAID levels which aren't possible */
75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 }
79 allowed &= flags;
80
81 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 allowed = BTRFS_BLOCK_GROUP_RAID6;
83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 allowed = BTRFS_BLOCK_GROUP_RAID5;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 allowed = BTRFS_BLOCK_GROUP_RAID10;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 allowed = BTRFS_BLOCK_GROUP_RAID1;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94 return extended_to_chunk(flags | allowed);
95}
96
97u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98{
99 unsigned seq;
100 u64 flags;
101
102 do {
103 flags = orig_flags;
104 seq = read_seqbegin(&fs_info->profiles_lock);
105
106 if (flags & BTRFS_BLOCK_GROUP_DATA)
107 flags |= fs_info->avail_data_alloc_bits;
108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 flags |= fs_info->avail_system_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 flags |= fs_info->avail_metadata_alloc_bits;
112 } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114 return btrfs_reduce_alloc_profile(fs_info, flags);
115}
116
117void btrfs_get_block_group(struct btrfs_block_group *cache)
118{
119 refcount_inc(&cache->refs);
120}
121
122void btrfs_put_block_group(struct btrfs_block_group *cache)
123{
124 if (refcount_dec_and_test(&cache->refs)) {
125 WARN_ON(cache->pinned > 0);
126 WARN_ON(cache->reserved > 0);
127
128 /*
129 * A block_group shouldn't be on the discard_list anymore.
130 * Remove the block_group from the discard_list to prevent us
131 * from causing a panic due to NULL pointer dereference.
132 */
133 if (WARN_ON(!list_empty(&cache->discard_list)))
134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 cache);
136
137 /*
138 * If not empty, someone is still holding mutex of
139 * full_stripe_lock, which can only be released by caller.
140 * And it will definitely cause use-after-free when caller
141 * tries to release full stripe lock.
142 *
143 * No better way to resolve, but only to warn.
144 */
145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 kfree(cache->free_space_ctl);
147 kfree(cache);
148 }
149}
150
151/*
152 * This adds the block group to the fs_info rb tree for the block group cache
153 */
154static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group *block_group)
156{
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group *cache;
160
161 ASSERT(block_group->length != 0);
162
163 spin_lock(&info->block_group_cache_lock);
164 p = &info->block_group_cache_tree.rb_node;
165
166 while (*p) {
167 parent = *p;
168 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 if (block_group->start < cache->start) {
170 p = &(*p)->rb_left;
171 } else if (block_group->start > cache->start) {
172 p = &(*p)->rb_right;
173 } else {
174 spin_unlock(&info->block_group_cache_lock);
175 return -EEXIST;
176 }
177 }
178
179 rb_link_node(&block_group->cache_node, parent, p);
180 rb_insert_color(&block_group->cache_node,
181 &info->block_group_cache_tree);
182
183 if (info->first_logical_byte > block_group->start)
184 info->first_logical_byte = block_group->start;
185
186 spin_unlock(&info->block_group_cache_lock);
187
188 return 0;
189}
190
191/*
192 * This will return the block group at or after bytenr if contains is 0, else
193 * it will return the block group that contains the bytenr
194 */
195static struct btrfs_block_group *block_group_cache_tree_search(
196 struct btrfs_fs_info *info, u64 bytenr, int contains)
197{
198 struct btrfs_block_group *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 end = cache->start + cache->length - 1;
208 start = cache->start;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->start))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
227 if (bytenr == 0 && info->first_logical_byte > ret->start)
228 info->first_logical_byte = ret->start;
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233}
234
235/*
236 * Return the block group that starts at or after bytenr
237 */
238struct btrfs_block_group *btrfs_lookup_first_block_group(
239 struct btrfs_fs_info *info, u64 bytenr)
240{
241 return block_group_cache_tree_search(info, bytenr, 0);
242}
243
244/*
245 * Return the block group that contains the given bytenr
246 */
247struct btrfs_block_group *btrfs_lookup_block_group(
248 struct btrfs_fs_info *info, u64 bytenr)
249{
250 return block_group_cache_tree_search(info, bytenr, 1);
251}
252
253struct btrfs_block_group *btrfs_next_block_group(
254 struct btrfs_block_group *cache)
255{
256 struct btrfs_fs_info *fs_info = cache->fs_info;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->block_group_cache_lock);
260
261 /* If our block group was removed, we need a full search. */
262 if (RB_EMPTY_NODE(&cache->cache_node)) {
263 const u64 next_bytenr = cache->start + cache->length;
264
265 spin_unlock(&fs_info->block_group_cache_lock);
266 btrfs_put_block_group(cache);
267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 }
269 node = rb_next(&cache->cache_node);
270 btrfs_put_block_group(cache);
271 if (node) {
272 cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 btrfs_get_block_group(cache);
274 } else
275 cache = NULL;
276 spin_unlock(&fs_info->block_group_cache_lock);
277 return cache;
278}
279
280bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281{
282 struct btrfs_block_group *bg;
283 bool ret = true;
284
285 bg = btrfs_lookup_block_group(fs_info, bytenr);
286 if (!bg)
287 return false;
288
289 spin_lock(&bg->lock);
290 if (bg->ro)
291 ret = false;
292 else
293 atomic_inc(&bg->nocow_writers);
294 spin_unlock(&bg->lock);
295
296 /* No put on block group, done by btrfs_dec_nocow_writers */
297 if (!ret)
298 btrfs_put_block_group(bg);
299
300 return ret;
301}
302
303void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304{
305 struct btrfs_block_group *bg;
306
307 bg = btrfs_lookup_block_group(fs_info, bytenr);
308 ASSERT(bg);
309 if (atomic_dec_and_test(&bg->nocow_writers))
310 wake_up_var(&bg->nocow_writers);
311 /*
312 * Once for our lookup and once for the lookup done by a previous call
313 * to btrfs_inc_nocow_writers()
314 */
315 btrfs_put_block_group(bg);
316 btrfs_put_block_group(bg);
317}
318
319void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320{
321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322}
323
324void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 const u64 start)
326{
327 struct btrfs_block_group *bg;
328
329 bg = btrfs_lookup_block_group(fs_info, start);
330 ASSERT(bg);
331 if (atomic_dec_and_test(&bg->reservations))
332 wake_up_var(&bg->reservations);
333 btrfs_put_block_group(bg);
334}
335
336void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337{
338 struct btrfs_space_info *space_info = bg->space_info;
339
340 ASSERT(bg->ro);
341
342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 return;
344
345 /*
346 * Our block group is read only but before we set it to read only,
347 * some task might have had allocated an extent from it already, but it
348 * has not yet created a respective ordered extent (and added it to a
349 * root's list of ordered extents).
350 * Therefore wait for any task currently allocating extents, since the
351 * block group's reservations counter is incremented while a read lock
352 * on the groups' semaphore is held and decremented after releasing
353 * the read access on that semaphore and creating the ordered extent.
354 */
355 down_write(&space_info->groups_sem);
356 up_write(&space_info->groups_sem);
357
358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359}
360
361struct btrfs_caching_control *btrfs_get_caching_control(
362 struct btrfs_block_group *cache)
363{
364 struct btrfs_caching_control *ctl;
365
366 spin_lock(&cache->lock);
367 if (!cache->caching_ctl) {
368 spin_unlock(&cache->lock);
369 return NULL;
370 }
371
372 ctl = cache->caching_ctl;
373 refcount_inc(&ctl->count);
374 spin_unlock(&cache->lock);
375 return ctl;
376}
377
378void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379{
380 if (refcount_dec_and_test(&ctl->count))
381 kfree(ctl);
382}
383
384/*
385 * When we wait for progress in the block group caching, its because our
386 * allocation attempt failed at least once. So, we must sleep and let some
387 * progress happen before we try again.
388 *
389 * This function will sleep at least once waiting for new free space to show
390 * up, and then it will check the block group free space numbers for our min
391 * num_bytes. Another option is to have it go ahead and look in the rbtree for
392 * a free extent of a given size, but this is a good start.
393 *
394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395 * any of the information in this block group.
396 */
397void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 u64 num_bytes)
399{
400 struct btrfs_caching_control *caching_ctl;
401
402 caching_ctl = btrfs_get_caching_control(cache);
403 if (!caching_ctl)
404 return;
405
406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 (cache->free_space_ctl->free_space >= num_bytes));
408
409 btrfs_put_caching_control(caching_ctl);
410}
411
412int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413{
414 struct btrfs_caching_control *caching_ctl;
415 int ret = 0;
416
417 caching_ctl = btrfs_get_caching_control(cache);
418 if (!caching_ctl)
419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 if (cache->cached == BTRFS_CACHE_ERROR)
423 ret = -EIO;
424 btrfs_put_caching_control(caching_ctl);
425 return ret;
426}
427
428static bool space_cache_v1_done(struct btrfs_block_group *cache)
429{
430 bool ret;
431
432 spin_lock(&cache->lock);
433 ret = cache->cached != BTRFS_CACHE_FAST;
434 spin_unlock(&cache->lock);
435
436 return ret;
437}
438
439void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 struct btrfs_caching_control *caching_ctl)
441{
442 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443}
444
445#ifdef CONFIG_BTRFS_DEBUG
446static void fragment_free_space(struct btrfs_block_group *block_group)
447{
448 struct btrfs_fs_info *fs_info = block_group->fs_info;
449 u64 start = block_group->start;
450 u64 len = block_group->length;
451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 fs_info->nodesize : fs_info->sectorsize;
453 u64 step = chunk << 1;
454
455 while (len > chunk) {
456 btrfs_remove_free_space(block_group, start, chunk);
457 start += step;
458 if (len < step)
459 len = 0;
460 else
461 len -= step;
462 }
463}
464#endif
465
466/*
467 * This is only called by btrfs_cache_block_group, since we could have freed
468 * extents we need to check the pinned_extents for any extents that can't be
469 * used yet since their free space will be released as soon as the transaction
470 * commits.
471 */
472u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473{
474 struct btrfs_fs_info *info = block_group->fs_info;
475 u64 extent_start, extent_end, size, total_added = 0;
476 int ret;
477
478 while (start < end) {
479 ret = find_first_extent_bit(&info->excluded_extents, start,
480 &extent_start, &extent_end,
481 EXTENT_DIRTY | EXTENT_UPTODATE,
482 NULL);
483 if (ret)
484 break;
485
486 if (extent_start <= start) {
487 start = extent_end + 1;
488 } else if (extent_start > start && extent_start < end) {
489 size = extent_start - start;
490 total_added += size;
491 ret = btrfs_add_free_space_async_trimmed(block_group,
492 start, size);
493 BUG_ON(ret); /* -ENOMEM or logic error */
494 start = extent_end + 1;
495 } else {
496 break;
497 }
498 }
499
500 if (start < end) {
501 size = end - start;
502 total_added += size;
503 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 size);
505 BUG_ON(ret); /* -ENOMEM or logic error */
506 }
507
508 return total_added;
509}
510
511static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512{
513 struct btrfs_block_group *block_group = caching_ctl->block_group;
514 struct btrfs_fs_info *fs_info = block_group->fs_info;
515 struct btrfs_root *extent_root = fs_info->extent_root;
516 struct btrfs_path *path;
517 struct extent_buffer *leaf;
518 struct btrfs_key key;
519 u64 total_found = 0;
520 u64 last = 0;
521 u32 nritems;
522 int ret;
523 bool wakeup = true;
524
525 path = btrfs_alloc_path();
526 if (!path)
527 return -ENOMEM;
528
529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530
531#ifdef CONFIG_BTRFS_DEBUG
532 /*
533 * If we're fragmenting we don't want to make anybody think we can
534 * allocate from this block group until we've had a chance to fragment
535 * the free space.
536 */
537 if (btrfs_should_fragment_free_space(block_group))
538 wakeup = false;
539#endif
540 /*
541 * We don't want to deadlock with somebody trying to allocate a new
542 * extent for the extent root while also trying to search the extent
543 * root to add free space. So we skip locking and search the commit
544 * root, since its read-only
545 */
546 path->skip_locking = 1;
547 path->search_commit_root = 1;
548 path->reada = READA_FORWARD;
549
550 key.objectid = last;
551 key.offset = 0;
552 key.type = BTRFS_EXTENT_ITEM_KEY;
553
554next:
555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 if (ret < 0)
557 goto out;
558
559 leaf = path->nodes[0];
560 nritems = btrfs_header_nritems(leaf);
561
562 while (1) {
563 if (btrfs_fs_closing(fs_info) > 1) {
564 last = (u64)-1;
565 break;
566 }
567
568 if (path->slots[0] < nritems) {
569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 } else {
571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 if (ret)
573 break;
574
575 if (need_resched() ||
576 rwsem_is_contended(&fs_info->commit_root_sem)) {
577 if (wakeup)
578 caching_ctl->progress = last;
579 btrfs_release_path(path);
580 up_read(&fs_info->commit_root_sem);
581 mutex_unlock(&caching_ctl->mutex);
582 cond_resched();
583 mutex_lock(&caching_ctl->mutex);
584 down_read(&fs_info->commit_root_sem);
585 goto next;
586 }
587
588 ret = btrfs_next_leaf(extent_root, path);
589 if (ret < 0)
590 goto out;
591 if (ret)
592 break;
593 leaf = path->nodes[0];
594 nritems = btrfs_header_nritems(leaf);
595 continue;
596 }
597
598 if (key.objectid < last) {
599 key.objectid = last;
600 key.offset = 0;
601 key.type = BTRFS_EXTENT_ITEM_KEY;
602
603 if (wakeup)
604 caching_ctl->progress = last;
605 btrfs_release_path(path);
606 goto next;
607 }
608
609 if (key.objectid < block_group->start) {
610 path->slots[0]++;
611 continue;
612 }
613
614 if (key.objectid >= block_group->start + block_group->length)
615 break;
616
617 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 key.type == BTRFS_METADATA_ITEM_KEY) {
619 total_found += add_new_free_space(block_group, last,
620 key.objectid);
621 if (key.type == BTRFS_METADATA_ITEM_KEY)
622 last = key.objectid +
623 fs_info->nodesize;
624 else
625 last = key.objectid + key.offset;
626
627 if (total_found > CACHING_CTL_WAKE_UP) {
628 total_found = 0;
629 if (wakeup)
630 wake_up(&caching_ctl->wait);
631 }
632 }
633 path->slots[0]++;
634 }
635 ret = 0;
636
637 total_found += add_new_free_space(block_group, last,
638 block_group->start + block_group->length);
639 caching_ctl->progress = (u64)-1;
640
641out:
642 btrfs_free_path(path);
643 return ret;
644}
645
646static noinline void caching_thread(struct btrfs_work *work)
647{
648 struct btrfs_block_group *block_group;
649 struct btrfs_fs_info *fs_info;
650 struct btrfs_caching_control *caching_ctl;
651 int ret;
652
653 caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 block_group = caching_ctl->block_group;
655 fs_info = block_group->fs_info;
656
657 mutex_lock(&caching_ctl->mutex);
658 down_read(&fs_info->commit_root_sem);
659
660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 ret = load_free_space_cache(block_group);
662 if (ret == 1) {
663 ret = 0;
664 goto done;
665 }
666
667 /*
668 * We failed to load the space cache, set ourselves to
669 * CACHE_STARTED and carry on.
670 */
671 spin_lock(&block_group->lock);
672 block_group->cached = BTRFS_CACHE_STARTED;
673 spin_unlock(&block_group->lock);
674 wake_up(&caching_ctl->wait);
675 }
676
677 /*
678 * If we are in the transaction that populated the free space tree we
679 * can't actually cache from the free space tree as our commit root and
680 * real root are the same, so we could change the contents of the blocks
681 * while caching. Instead do the slow caching in this case, and after
682 * the transaction has committed we will be safe.
683 */
684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 ret = load_free_space_tree(caching_ctl);
687 else
688 ret = load_extent_tree_free(caching_ctl);
689done:
690 spin_lock(&block_group->lock);
691 block_group->caching_ctl = NULL;
692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 spin_unlock(&block_group->lock);
694
695#ifdef CONFIG_BTRFS_DEBUG
696 if (btrfs_should_fragment_free_space(block_group)) {
697 u64 bytes_used;
698
699 spin_lock(&block_group->space_info->lock);
700 spin_lock(&block_group->lock);
701 bytes_used = block_group->length - block_group->used;
702 block_group->space_info->bytes_used += bytes_used >> 1;
703 spin_unlock(&block_group->lock);
704 spin_unlock(&block_group->space_info->lock);
705 fragment_free_space(block_group);
706 }
707#endif
708
709 caching_ctl->progress = (u64)-1;
710
711 up_read(&fs_info->commit_root_sem);
712 btrfs_free_excluded_extents(block_group);
713 mutex_unlock(&caching_ctl->mutex);
714
715 wake_up(&caching_ctl->wait);
716
717 btrfs_put_caching_control(caching_ctl);
718 btrfs_put_block_group(block_group);
719}
720
721int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722{
723 DEFINE_WAIT(wait);
724 struct btrfs_fs_info *fs_info = cache->fs_info;
725 struct btrfs_caching_control *caching_ctl = NULL;
726 int ret = 0;
727
728 /* Allocator for zoned filesystems does not use the cache at all */
729 if (btrfs_is_zoned(fs_info))
730 return 0;
731
732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 if (!caching_ctl)
734 return -ENOMEM;
735
736 INIT_LIST_HEAD(&caching_ctl->list);
737 mutex_init(&caching_ctl->mutex);
738 init_waitqueue_head(&caching_ctl->wait);
739 caching_ctl->block_group = cache;
740 caching_ctl->progress = cache->start;
741 refcount_set(&caching_ctl->count, 2);
742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743
744 spin_lock(&cache->lock);
745 if (cache->cached != BTRFS_CACHE_NO) {
746 kfree(caching_ctl);
747
748 caching_ctl = cache->caching_ctl;
749 if (caching_ctl)
750 refcount_inc(&caching_ctl->count);
751 spin_unlock(&cache->lock);
752 goto out;
753 }
754 WARN_ON(cache->caching_ctl);
755 cache->caching_ctl = caching_ctl;
756 if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 cache->cached = BTRFS_CACHE_FAST;
758 else
759 cache->cached = BTRFS_CACHE_STARTED;
760 cache->has_caching_ctl = 1;
761 spin_unlock(&cache->lock);
762
763 spin_lock(&fs_info->block_group_cache_lock);
764 refcount_inc(&caching_ctl->count);
765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 spin_unlock(&fs_info->block_group_cache_lock);
767
768 btrfs_get_block_group(cache);
769
770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771out:
772 if (load_cache_only && caching_ctl)
773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 if (caching_ctl)
775 btrfs_put_caching_control(caching_ctl);
776
777 return ret;
778}
779
780static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781{
782 u64 extra_flags = chunk_to_extended(flags) &
783 BTRFS_EXTENDED_PROFILE_MASK;
784
785 write_seqlock(&fs_info->profiles_lock);
786 if (flags & BTRFS_BLOCK_GROUP_DATA)
787 fs_info->avail_data_alloc_bits &= ~extra_flags;
788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 fs_info->avail_system_alloc_bits &= ~extra_flags;
792 write_sequnlock(&fs_info->profiles_lock);
793}
794
795/*
796 * Clear incompat bits for the following feature(s):
797 *
798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799 * in the whole filesystem
800 *
801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802 */
803static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804{
805 bool found_raid56 = false;
806 bool found_raid1c34 = false;
807
808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 struct list_head *head = &fs_info->space_info;
812 struct btrfs_space_info *sinfo;
813
814 list_for_each_entry_rcu(sinfo, head, list) {
815 down_read(&sinfo->groups_sem);
816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 found_raid56 = true;
818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 found_raid56 = true;
820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 found_raid1c34 = true;
822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 found_raid1c34 = true;
824 up_read(&sinfo->groups_sem);
825 }
826 if (!found_raid56)
827 btrfs_clear_fs_incompat(fs_info, RAID56);
828 if (!found_raid1c34)
829 btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 }
831}
832
833static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_block_group *block_group)
836{
837 struct btrfs_fs_info *fs_info = trans->fs_info;
838 struct btrfs_root *root;
839 struct btrfs_key key;
840 int ret;
841
842 root = fs_info->extent_root;
843 key.objectid = block_group->start;
844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 key.offset = block_group->length;
846
847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 if (ret > 0)
849 ret = -ENOENT;
850 if (ret < 0)
851 return ret;
852
853 ret = btrfs_del_item(trans, root, path);
854 return ret;
855}
856
857int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 u64 group_start, struct extent_map *em)
859{
860 struct btrfs_fs_info *fs_info = trans->fs_info;
861 struct btrfs_path *path;
862 struct btrfs_block_group *block_group;
863 struct btrfs_free_cluster *cluster;
864 struct inode *inode;
865 struct kobject *kobj = NULL;
866 int ret;
867 int index;
868 int factor;
869 struct btrfs_caching_control *caching_ctl = NULL;
870 bool remove_em;
871 bool remove_rsv = false;
872
873 block_group = btrfs_lookup_block_group(fs_info, group_start);
874 BUG_ON(!block_group);
875 BUG_ON(!block_group->ro);
876
877 trace_btrfs_remove_block_group(block_group);
878 /*
879 * Free the reserved super bytes from this block group before
880 * remove it.
881 */
882 btrfs_free_excluded_extents(block_group);
883 btrfs_free_ref_tree_range(fs_info, block_group->start,
884 block_group->length);
885
886 index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 factor = btrfs_bg_type_to_factor(block_group->flags);
888
889 /* make sure this block group isn't part of an allocation cluster */
890 cluster = &fs_info->data_alloc_cluster;
891 spin_lock(&cluster->refill_lock);
892 btrfs_return_cluster_to_free_space(block_group, cluster);
893 spin_unlock(&cluster->refill_lock);
894
895 /*
896 * make sure this block group isn't part of a metadata
897 * allocation cluster
898 */
899 cluster = &fs_info->meta_alloc_cluster;
900 spin_lock(&cluster->refill_lock);
901 btrfs_return_cluster_to_free_space(block_group, cluster);
902 spin_unlock(&cluster->refill_lock);
903
904 btrfs_clear_treelog_bg(block_group);
905
906 path = btrfs_alloc_path();
907 if (!path) {
908 ret = -ENOMEM;
909 goto out;
910 }
911
912 /*
913 * get the inode first so any iput calls done for the io_list
914 * aren't the final iput (no unlinks allowed now)
915 */
916 inode = lookup_free_space_inode(block_group, path);
917
918 mutex_lock(&trans->transaction->cache_write_mutex);
919 /*
920 * Make sure our free space cache IO is done before removing the
921 * free space inode
922 */
923 spin_lock(&trans->transaction->dirty_bgs_lock);
924 if (!list_empty(&block_group->io_list)) {
925 list_del_init(&block_group->io_list);
926
927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929 spin_unlock(&trans->transaction->dirty_bgs_lock);
930 btrfs_wait_cache_io(trans, block_group, path);
931 btrfs_put_block_group(block_group);
932 spin_lock(&trans->transaction->dirty_bgs_lock);
933 }
934
935 if (!list_empty(&block_group->dirty_list)) {
936 list_del_init(&block_group->dirty_list);
937 remove_rsv = true;
938 btrfs_put_block_group(block_group);
939 }
940 spin_unlock(&trans->transaction->dirty_bgs_lock);
941 mutex_unlock(&trans->transaction->cache_write_mutex);
942
943 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 if (ret)
945 goto out;
946
947 spin_lock(&fs_info->block_group_cache_lock);
948 rb_erase(&block_group->cache_node,
949 &fs_info->block_group_cache_tree);
950 RB_CLEAR_NODE(&block_group->cache_node);
951
952 /* Once for the block groups rbtree */
953 btrfs_put_block_group(block_group);
954
955 if (fs_info->first_logical_byte == block_group->start)
956 fs_info->first_logical_byte = (u64)-1;
957 spin_unlock(&fs_info->block_group_cache_lock);
958
959 down_write(&block_group->space_info->groups_sem);
960 /*
961 * we must use list_del_init so people can check to see if they
962 * are still on the list after taking the semaphore
963 */
964 list_del_init(&block_group->list);
965 if (list_empty(&block_group->space_info->block_groups[index])) {
966 kobj = block_group->space_info->block_group_kobjs[index];
967 block_group->space_info->block_group_kobjs[index] = NULL;
968 clear_avail_alloc_bits(fs_info, block_group->flags);
969 }
970 up_write(&block_group->space_info->groups_sem);
971 clear_incompat_bg_bits(fs_info, block_group->flags);
972 if (kobj) {
973 kobject_del(kobj);
974 kobject_put(kobj);
975 }
976
977 if (block_group->has_caching_ctl)
978 caching_ctl = btrfs_get_caching_control(block_group);
979 if (block_group->cached == BTRFS_CACHE_STARTED)
980 btrfs_wait_block_group_cache_done(block_group);
981 if (block_group->has_caching_ctl) {
982 spin_lock(&fs_info->block_group_cache_lock);
983 if (!caching_ctl) {
984 struct btrfs_caching_control *ctl;
985
986 list_for_each_entry(ctl,
987 &fs_info->caching_block_groups, list)
988 if (ctl->block_group == block_group) {
989 caching_ctl = ctl;
990 refcount_inc(&caching_ctl->count);
991 break;
992 }
993 }
994 if (caching_ctl)
995 list_del_init(&caching_ctl->list);
996 spin_unlock(&fs_info->block_group_cache_lock);
997 if (caching_ctl) {
998 /* Once for the caching bgs list and once for us. */
999 btrfs_put_caching_control(caching_ctl);
1000 btrfs_put_caching_control(caching_ctl);
1001 }
1002 }
1003
1004 spin_lock(&trans->transaction->dirty_bgs_lock);
1005 WARN_ON(!list_empty(&block_group->dirty_list));
1006 WARN_ON(!list_empty(&block_group->io_list));
1007 spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009 btrfs_remove_free_space_cache(block_group);
1010
1011 spin_lock(&block_group->space_info->lock);
1012 list_del_init(&block_group->ro_list);
1013
1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 WARN_ON(block_group->space_info->total_bytes
1016 < block_group->length);
1017 WARN_ON(block_group->space_info->bytes_readonly
1018 < block_group->length - block_group->zone_unusable);
1019 WARN_ON(block_group->space_info->bytes_zone_unusable
1020 < block_group->zone_unusable);
1021 WARN_ON(block_group->space_info->disk_total
1022 < block_group->length * factor);
1023 }
1024 block_group->space_info->total_bytes -= block_group->length;
1025 block_group->space_info->bytes_readonly -=
1026 (block_group->length - block_group->zone_unusable);
1027 block_group->space_info->bytes_zone_unusable -=
1028 block_group->zone_unusable;
1029 block_group->space_info->disk_total -= block_group->length * factor;
1030
1031 spin_unlock(&block_group->space_info->lock);
1032
1033 /*
1034 * Remove the free space for the block group from the free space tree
1035 * and the block group's item from the extent tree before marking the
1036 * block group as removed. This is to prevent races with tasks that
1037 * freeze and unfreeze a block group, this task and another task
1038 * allocating a new block group - the unfreeze task ends up removing
1039 * the block group's extent map before the task calling this function
1040 * deletes the block group item from the extent tree, allowing for
1041 * another task to attempt to create another block group with the same
1042 * item key (and failing with -EEXIST and a transaction abort).
1043 */
1044 ret = remove_block_group_free_space(trans, block_group);
1045 if (ret)
1046 goto out;
1047
1048 ret = remove_block_group_item(trans, path, block_group);
1049 if (ret < 0)
1050 goto out;
1051
1052 spin_lock(&block_group->lock);
1053 block_group->removed = 1;
1054 /*
1055 * At this point trimming or scrub can't start on this block group,
1056 * because we removed the block group from the rbtree
1057 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 * even if someone already got this block group before we removed it
1059 * from the rbtree, they have already incremented block_group->frozen -
1060 * if they didn't, for the trimming case they won't find any free space
1061 * entries because we already removed them all when we called
1062 * btrfs_remove_free_space_cache().
1063 *
1064 * And we must not remove the extent map from the fs_info->mapping_tree
1065 * to prevent the same logical address range and physical device space
1066 * ranges from being reused for a new block group. This is needed to
1067 * avoid races with trimming and scrub.
1068 *
1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 * completely transactionless, so while it is trimming a range the
1071 * currently running transaction might finish and a new one start,
1072 * allowing for new block groups to be created that can reuse the same
1073 * physical device locations unless we take this special care.
1074 *
1075 * There may also be an implicit trim operation if the file system
1076 * is mounted with -odiscard. The same protections must remain
1077 * in place until the extents have been discarded completely when
1078 * the transaction commit has completed.
1079 */
1080 remove_em = (atomic_read(&block_group->frozen) == 0);
1081 spin_unlock(&block_group->lock);
1082
1083 if (remove_em) {
1084 struct extent_map_tree *em_tree;
1085
1086 em_tree = &fs_info->mapping_tree;
1087 write_lock(&em_tree->lock);
1088 remove_extent_mapping(em_tree, em);
1089 write_unlock(&em_tree->lock);
1090 /* once for the tree */
1091 free_extent_map(em);
1092 }
1093
1094out:
1095 /* Once for the lookup reference */
1096 btrfs_put_block_group(block_group);
1097 if (remove_rsv)
1098 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 btrfs_free_path(path);
1100 return ret;
1101}
1102
1103struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105{
1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 struct extent_map *em;
1108 struct map_lookup *map;
1109 unsigned int num_items;
1110
1111 read_lock(&em_tree->lock);
1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 read_unlock(&em_tree->lock);
1114 ASSERT(em && em->start == chunk_offset);
1115
1116 /*
1117 * We need to reserve 3 + N units from the metadata space info in order
1118 * to remove a block group (done at btrfs_remove_chunk() and at
1119 * btrfs_remove_block_group()), which are used for:
1120 *
1121 * 1 unit for adding the free space inode's orphan (located in the tree
1122 * of tree roots).
1123 * 1 unit for deleting the block group item (located in the extent
1124 * tree).
1125 * 1 unit for deleting the free space item (located in tree of tree
1126 * roots).
1127 * N units for deleting N device extent items corresponding to each
1128 * stripe (located in the device tree).
1129 *
1130 * In order to remove a block group we also need to reserve units in the
1131 * system space info in order to update the chunk tree (update one or
1132 * more device items and remove one chunk item), but this is done at
1133 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 */
1135 map = em->map_lookup;
1136 num_items = 3 + map->num_stripes;
1137 free_extent_map(em);
1138
1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 num_items);
1141}
1142
1143/*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
1156static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157{
1158 struct btrfs_space_info *sinfo = cache->space_info;
1159 u64 num_bytes;
1160 int ret = -ENOSPC;
1161
1162 spin_lock(&sinfo->lock);
1163 spin_lock(&cache->lock);
1164
1165 if (cache->swap_extents) {
1166 ret = -ETXTBSY;
1167 goto out;
1168 }
1169
1170 if (cache->ro) {
1171 cache->ro++;
1172 ret = 0;
1173 goto out;
1174 }
1175
1176 num_bytes = cache->length - cache->reserved - cache->pinned -
1177 cache->bytes_super - cache->zone_unusable - cache->used;
1178
1179 /*
1180 * Data never overcommits, even in mixed mode, so do just the straight
1181 * check of left over space in how much we have allocated.
1182 */
1183 if (force) {
1184 ret = 0;
1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188 /*
1189 * Here we make sure if we mark this bg RO, we still have enough
1190 * free space as buffer.
1191 */
1192 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 ret = 0;
1194 } else {
1195 /*
1196 * We overcommit metadata, so we need to do the
1197 * btrfs_can_overcommit check here, and we need to pass in
1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 * leeway to allow us to mark this block group as read only.
1200 */
1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 BTRFS_RESERVE_NO_FLUSH))
1203 ret = 0;
1204 }
1205
1206 if (!ret) {
1207 sinfo->bytes_readonly += num_bytes;
1208 if (btrfs_is_zoned(cache->fs_info)) {
1209 /* Migrate zone_unusable bytes to readonly */
1210 sinfo->bytes_readonly += cache->zone_unusable;
1211 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 cache->zone_unusable = 0;
1213 }
1214 cache->ro++;
1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 }
1217out:
1218 spin_unlock(&cache->lock);
1219 spin_unlock(&sinfo->lock);
1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 btrfs_info(cache->fs_info,
1222 "unable to make block group %llu ro", cache->start);
1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 }
1225 return ret;
1226}
1227
1228static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 struct btrfs_block_group *bg)
1230{
1231 struct btrfs_fs_info *fs_info = bg->fs_info;
1232 struct btrfs_transaction *prev_trans = NULL;
1233 const u64 start = bg->start;
1234 const u64 end = start + bg->length - 1;
1235 int ret;
1236
1237 spin_lock(&fs_info->trans_lock);
1238 if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 prev_trans = list_last_entry(&trans->transaction->list,
1240 struct btrfs_transaction, list);
1241 refcount_inc(&prev_trans->use_count);
1242 }
1243 spin_unlock(&fs_info->trans_lock);
1244
1245 /*
1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 * task might be running finish_extent_commit() for the previous
1249 * transaction N - 1, and have seen a range belonging to the block
1250 * group in pinned_extents before we were able to clear the whole block
1251 * group range from pinned_extents. This means that task can lookup for
1252 * the block group after we unpinned it from pinned_extents and removed
1253 * it, leading to a BUG_ON() at unpin_extent_range().
1254 */
1255 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 if (prev_trans) {
1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 EXTENT_DIRTY);
1259 if (ret)
1260 goto out;
1261 }
1262
1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 EXTENT_DIRTY);
1265out:
1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 if (prev_trans)
1268 btrfs_put_transaction(prev_trans);
1269
1270 return ret == 0;
1271}
1272
1273/*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
1277void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278{
1279 struct btrfs_block_group *block_group;
1280 struct btrfs_space_info *space_info;
1281 struct btrfs_trans_handle *trans;
1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 int ret = 0;
1284
1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 return;
1287
1288 /*
1289 * Long running balances can keep us blocked here for eternity, so
1290 * simply skip deletion if we're unable to get the mutex.
1291 */
1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 return;
1294
1295 spin_lock(&fs_info->unused_bgs_lock);
1296 while (!list_empty(&fs_info->unused_bgs)) {
1297 int trimming;
1298
1299 block_group = list_first_entry(&fs_info->unused_bgs,
1300 struct btrfs_block_group,
1301 bg_list);
1302 list_del_init(&block_group->bg_list);
1303
1304 space_info = block_group->space_info;
1305
1306 if (ret || btrfs_mixed_space_info(space_info)) {
1307 btrfs_put_block_group(block_group);
1308 continue;
1309 }
1310 spin_unlock(&fs_info->unused_bgs_lock);
1311
1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
1314 /* Don't want to race with allocators so take the groups_sem */
1315 down_write(&space_info->groups_sem);
1316
1317 /*
1318 * Async discard moves the final block group discard to be prior
1319 * to the unused_bgs code path. Therefore, if it's not fully
1320 * trimmed, punt it back to the async discard lists.
1321 */
1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 !btrfs_is_free_space_trimmed(block_group)) {
1324 trace_btrfs_skip_unused_block_group(block_group);
1325 up_write(&space_info->groups_sem);
1326 /* Requeue if we failed because of async discard */
1327 btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 block_group);
1329 goto next;
1330 }
1331
1332 spin_lock(&block_group->lock);
1333 if (block_group->reserved || block_group->pinned ||
1334 block_group->used || block_group->ro ||
1335 list_is_singular(&block_group->list)) {
1336 /*
1337 * We want to bail if we made new allocations or have
1338 * outstanding allocations in this block group. We do
1339 * the ro check in case balance is currently acting on
1340 * this block group.
1341 */
1342 trace_btrfs_skip_unused_block_group(block_group);
1343 spin_unlock(&block_group->lock);
1344 up_write(&space_info->groups_sem);
1345 goto next;
1346 }
1347 spin_unlock(&block_group->lock);
1348
1349 /* We don't want to force the issue, only flip if it's ok. */
1350 ret = inc_block_group_ro(block_group, 0);
1351 up_write(&space_info->groups_sem);
1352 if (ret < 0) {
1353 ret = 0;
1354 goto next;
1355 }
1356
1357 /*
1358 * Want to do this before we do anything else so we can recover
1359 * properly if we fail to join the transaction.
1360 */
1361 trans = btrfs_start_trans_remove_block_group(fs_info,
1362 block_group->start);
1363 if (IS_ERR(trans)) {
1364 btrfs_dec_block_group_ro(block_group);
1365 ret = PTR_ERR(trans);
1366 goto next;
1367 }
1368
1369 /*
1370 * We could have pending pinned extents for this block group,
1371 * just delete them, we don't care about them anymore.
1372 */
1373 if (!clean_pinned_extents(trans, block_group)) {
1374 btrfs_dec_block_group_ro(block_group);
1375 goto end_trans;
1376 }
1377
1378 /*
1379 * At this point, the block_group is read only and should fail
1380 * new allocations. However, btrfs_finish_extent_commit() can
1381 * cause this block_group to be placed back on the discard
1382 * lists because now the block_group isn't fully discarded.
1383 * Bail here and try again later after discarding everything.
1384 */
1385 spin_lock(&fs_info->discard_ctl.lock);
1386 if (!list_empty(&block_group->discard_list)) {
1387 spin_unlock(&fs_info->discard_ctl.lock);
1388 btrfs_dec_block_group_ro(block_group);
1389 btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 block_group);
1391 goto end_trans;
1392 }
1393 spin_unlock(&fs_info->discard_ctl.lock);
1394
1395 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396 spin_lock(&space_info->lock);
1397 spin_lock(&block_group->lock);
1398
1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 -block_group->pinned);
1401 space_info->bytes_readonly += block_group->pinned;
1402 block_group->pinned = 0;
1403
1404 spin_unlock(&block_group->lock);
1405 spin_unlock(&space_info->lock);
1406
1407 /*
1408 * The normal path here is an unused block group is passed here,
1409 * then trimming is handled in the transaction commit path.
1410 * Async discard interposes before this to do the trimming
1411 * before coming down the unused block group path as trimming
1412 * will no longer be done later in the transaction commit path.
1413 */
1414 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 goto flip_async;
1416
1417 /*
1418 * DISCARD can flip during remount. On zoned filesystems, we
1419 * need to reset sequential-required zones.
1420 */
1421 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 btrfs_is_zoned(fs_info);
1423
1424 /* Implicit trim during transaction commit. */
1425 if (trimming)
1426 btrfs_freeze_block_group(block_group);
1427
1428 /*
1429 * Btrfs_remove_chunk will abort the transaction if things go
1430 * horribly wrong.
1431 */
1432 ret = btrfs_remove_chunk(trans, block_group->start);
1433
1434 if (ret) {
1435 if (trimming)
1436 btrfs_unfreeze_block_group(block_group);
1437 goto end_trans;
1438 }
1439
1440 /*
1441 * If we're not mounted with -odiscard, we can just forget
1442 * about this block group. Otherwise we'll need to wait
1443 * until transaction commit to do the actual discard.
1444 */
1445 if (trimming) {
1446 spin_lock(&fs_info->unused_bgs_lock);
1447 /*
1448 * A concurrent scrub might have added us to the list
1449 * fs_info->unused_bgs, so use a list_move operation
1450 * to add the block group to the deleted_bgs list.
1451 */
1452 list_move(&block_group->bg_list,
1453 &trans->transaction->deleted_bgs);
1454 spin_unlock(&fs_info->unused_bgs_lock);
1455 btrfs_get_block_group(block_group);
1456 }
1457end_trans:
1458 btrfs_end_transaction(trans);
1459next:
1460 btrfs_put_block_group(block_group);
1461 spin_lock(&fs_info->unused_bgs_lock);
1462 }
1463 spin_unlock(&fs_info->unused_bgs_lock);
1464 mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 return;
1466
1467flip_async:
1468 btrfs_end_transaction(trans);
1469 mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 btrfs_put_block_group(block_group);
1471 btrfs_discard_punt_unused_bgs_list(fs_info);
1472}
1473
1474void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475{
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478 spin_lock(&fs_info->unused_bgs_lock);
1479 if (list_empty(&bg->bg_list)) {
1480 btrfs_get_block_group(bg);
1481 trace_btrfs_add_unused_block_group(bg);
1482 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 }
1484 spin_unlock(&fs_info->unused_bgs_lock);
1485}
1486
1487void btrfs_reclaim_bgs_work(struct work_struct *work)
1488{
1489 struct btrfs_fs_info *fs_info =
1490 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 struct btrfs_block_group *bg;
1492 struct btrfs_space_info *space_info;
1493 LIST_HEAD(again_list);
1494
1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 return;
1497
1498 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 return;
1500
1501 /*
1502 * Long running balances can keep us blocked here for eternity, so
1503 * simply skip reclaim if we're unable to get the mutex.
1504 */
1505 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1506 btrfs_exclop_finish(fs_info);
1507 return;
1508 }
1509
1510 spin_lock(&fs_info->unused_bgs_lock);
1511 while (!list_empty(&fs_info->reclaim_bgs)) {
1512 u64 zone_unusable;
1513 int ret = 0;
1514
1515 bg = list_first_entry(&fs_info->reclaim_bgs,
1516 struct btrfs_block_group,
1517 bg_list);
1518 list_del_init(&bg->bg_list);
1519
1520 space_info = bg->space_info;
1521 spin_unlock(&fs_info->unused_bgs_lock);
1522
1523 /* Don't race with allocators so take the groups_sem */
1524 down_write(&space_info->groups_sem);
1525
1526 spin_lock(&bg->lock);
1527 if (bg->reserved || bg->pinned || bg->ro) {
1528 /*
1529 * We want to bail if we made new allocations or have
1530 * outstanding allocations in this block group. We do
1531 * the ro check in case balance is currently acting on
1532 * this block group.
1533 */
1534 spin_unlock(&bg->lock);
1535 up_write(&space_info->groups_sem);
1536 goto next;
1537 }
1538 spin_unlock(&bg->lock);
1539
1540 /* Get out fast, in case we're unmounting the filesystem */
1541 if (btrfs_fs_closing(fs_info)) {
1542 up_write(&space_info->groups_sem);
1543 goto next;
1544 }
1545
1546 /*
1547 * Cache the zone_unusable value before turning the block group
1548 * to read only. As soon as the blog group is read only it's
1549 * zone_unusable value gets moved to the block group's read-only
1550 * bytes and isn't available for calculations anymore.
1551 */
1552 zone_unusable = bg->zone_unusable;
1553 ret = inc_block_group_ro(bg, 0);
1554 up_write(&space_info->groups_sem);
1555 if (ret < 0)
1556 goto next;
1557
1558 btrfs_info(fs_info,
1559 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1560 bg->start, div_u64(bg->used * 100, bg->length),
1561 div64_u64(zone_unusable * 100, bg->length));
1562 trace_btrfs_reclaim_block_group(bg);
1563 ret = btrfs_relocate_chunk(fs_info, bg->start);
1564 if (ret && ret != -EAGAIN)
1565 btrfs_err(fs_info, "error relocating chunk %llu",
1566 bg->start);
1567
1568next:
1569 spin_lock(&fs_info->unused_bgs_lock);
1570 if (ret == -EAGAIN && list_empty(&bg->bg_list))
1571 list_add_tail(&bg->bg_list, &again_list);
1572 else
1573 btrfs_put_block_group(bg);
1574 }
1575 list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1576 spin_unlock(&fs_info->unused_bgs_lock);
1577 mutex_unlock(&fs_info->reclaim_bgs_lock);
1578 btrfs_exclop_finish(fs_info);
1579}
1580
1581void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1582{
1583 spin_lock(&fs_info->unused_bgs_lock);
1584 if (!list_empty(&fs_info->reclaim_bgs))
1585 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1586 spin_unlock(&fs_info->unused_bgs_lock);
1587}
1588
1589void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1590{
1591 struct btrfs_fs_info *fs_info = bg->fs_info;
1592
1593 spin_lock(&fs_info->unused_bgs_lock);
1594 if (list_empty(&bg->bg_list)) {
1595 btrfs_get_block_group(bg);
1596 trace_btrfs_add_reclaim_block_group(bg);
1597 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1598 }
1599 spin_unlock(&fs_info->unused_bgs_lock);
1600}
1601
1602static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1603 struct btrfs_path *path)
1604{
1605 struct extent_map_tree *em_tree;
1606 struct extent_map *em;
1607 struct btrfs_block_group_item bg;
1608 struct extent_buffer *leaf;
1609 int slot;
1610 u64 flags;
1611 int ret = 0;
1612
1613 slot = path->slots[0];
1614 leaf = path->nodes[0];
1615
1616 em_tree = &fs_info->mapping_tree;
1617 read_lock(&em_tree->lock);
1618 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1619 read_unlock(&em_tree->lock);
1620 if (!em) {
1621 btrfs_err(fs_info,
1622 "logical %llu len %llu found bg but no related chunk",
1623 key->objectid, key->offset);
1624 return -ENOENT;
1625 }
1626
1627 if (em->start != key->objectid || em->len != key->offset) {
1628 btrfs_err(fs_info,
1629 "block group %llu len %llu mismatch with chunk %llu len %llu",
1630 key->objectid, key->offset, em->start, em->len);
1631 ret = -EUCLEAN;
1632 goto out_free_em;
1633 }
1634
1635 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1636 sizeof(bg));
1637 flags = btrfs_stack_block_group_flags(&bg) &
1638 BTRFS_BLOCK_GROUP_TYPE_MASK;
1639
1640 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1641 btrfs_err(fs_info,
1642"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1643 key->objectid, key->offset, flags,
1644 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1645 ret = -EUCLEAN;
1646 }
1647
1648out_free_em:
1649 free_extent_map(em);
1650 return ret;
1651}
1652
1653static int find_first_block_group(struct btrfs_fs_info *fs_info,
1654 struct btrfs_path *path,
1655 struct btrfs_key *key)
1656{
1657 struct btrfs_root *root = fs_info->extent_root;
1658 int ret;
1659 struct btrfs_key found_key;
1660 struct extent_buffer *leaf;
1661 int slot;
1662
1663 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1664 if (ret < 0)
1665 return ret;
1666
1667 while (1) {
1668 slot = path->slots[0];
1669 leaf = path->nodes[0];
1670 if (slot >= btrfs_header_nritems(leaf)) {
1671 ret = btrfs_next_leaf(root, path);
1672 if (ret == 0)
1673 continue;
1674 if (ret < 0)
1675 goto out;
1676 break;
1677 }
1678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1679
1680 if (found_key.objectid >= key->objectid &&
1681 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1682 ret = read_bg_from_eb(fs_info, &found_key, path);
1683 break;
1684 }
1685
1686 path->slots[0]++;
1687 }
1688out:
1689 return ret;
1690}
1691
1692static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1693{
1694 u64 extra_flags = chunk_to_extended(flags) &
1695 BTRFS_EXTENDED_PROFILE_MASK;
1696
1697 write_seqlock(&fs_info->profiles_lock);
1698 if (flags & BTRFS_BLOCK_GROUP_DATA)
1699 fs_info->avail_data_alloc_bits |= extra_flags;
1700 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1701 fs_info->avail_metadata_alloc_bits |= extra_flags;
1702 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1703 fs_info->avail_system_alloc_bits |= extra_flags;
1704 write_sequnlock(&fs_info->profiles_lock);
1705}
1706
1707/**
1708 * Map a physical disk address to a list of logical addresses
1709 *
1710 * @fs_info: the filesystem
1711 * @chunk_start: logical address of block group
1712 * @bdev: physical device to resolve, can be NULL to indicate any device
1713 * @physical: physical address to map to logical addresses
1714 * @logical: return array of logical addresses which map to @physical
1715 * @naddrs: length of @logical
1716 * @stripe_len: size of IO stripe for the given block group
1717 *
1718 * Maps a particular @physical disk address to a list of @logical addresses.
1719 * Used primarily to exclude those portions of a block group that contain super
1720 * block copies.
1721 */
1722int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1723 struct block_device *bdev, u64 physical, u64 **logical,
1724 int *naddrs, int *stripe_len)
1725{
1726 struct extent_map *em;
1727 struct map_lookup *map;
1728 u64 *buf;
1729 u64 bytenr;
1730 u64 data_stripe_length;
1731 u64 io_stripe_size;
1732 int i, nr = 0;
1733 int ret = 0;
1734
1735 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1736 if (IS_ERR(em))
1737 return -EIO;
1738
1739 map = em->map_lookup;
1740 data_stripe_length = em->orig_block_len;
1741 io_stripe_size = map->stripe_len;
1742 chunk_start = em->start;
1743
1744 /* For RAID5/6 adjust to a full IO stripe length */
1745 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1746 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1747
1748 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1749 if (!buf) {
1750 ret = -ENOMEM;
1751 goto out;
1752 }
1753
1754 for (i = 0; i < map->num_stripes; i++) {
1755 bool already_inserted = false;
1756 u64 stripe_nr;
1757 u64 offset;
1758 int j;
1759
1760 if (!in_range(physical, map->stripes[i].physical,
1761 data_stripe_length))
1762 continue;
1763
1764 if (bdev && map->stripes[i].dev->bdev != bdev)
1765 continue;
1766
1767 stripe_nr = physical - map->stripes[i].physical;
1768 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1769
1770 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1771 stripe_nr = stripe_nr * map->num_stripes + i;
1772 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1773 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1774 stripe_nr = stripe_nr * map->num_stripes + i;
1775 }
1776 /*
1777 * The remaining case would be for RAID56, multiply by
1778 * nr_data_stripes(). Alternatively, just use rmap_len below
1779 * instead of map->stripe_len
1780 */
1781
1782 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1783
1784 /* Ensure we don't add duplicate addresses */
1785 for (j = 0; j < nr; j++) {
1786 if (buf[j] == bytenr) {
1787 already_inserted = true;
1788 break;
1789 }
1790 }
1791
1792 if (!already_inserted)
1793 buf[nr++] = bytenr;
1794 }
1795
1796 *logical = buf;
1797 *naddrs = nr;
1798 *stripe_len = io_stripe_size;
1799out:
1800 free_extent_map(em);
1801 return ret;
1802}
1803
1804static int exclude_super_stripes(struct btrfs_block_group *cache)
1805{
1806 struct btrfs_fs_info *fs_info = cache->fs_info;
1807 const bool zoned = btrfs_is_zoned(fs_info);
1808 u64 bytenr;
1809 u64 *logical;
1810 int stripe_len;
1811 int i, nr, ret;
1812
1813 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1814 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1815 cache->bytes_super += stripe_len;
1816 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1817 stripe_len);
1818 if (ret)
1819 return ret;
1820 }
1821
1822 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1823 bytenr = btrfs_sb_offset(i);
1824 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1825 bytenr, &logical, &nr, &stripe_len);
1826 if (ret)
1827 return ret;
1828
1829 /* Shouldn't have super stripes in sequential zones */
1830 if (zoned && nr) {
1831 btrfs_err(fs_info,
1832 "zoned: block group %llu must not contain super block",
1833 cache->start);
1834 return -EUCLEAN;
1835 }
1836
1837 while (nr--) {
1838 u64 len = min_t(u64, stripe_len,
1839 cache->start + cache->length - logical[nr]);
1840
1841 cache->bytes_super += len;
1842 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1843 len);
1844 if (ret) {
1845 kfree(logical);
1846 return ret;
1847 }
1848 }
1849
1850 kfree(logical);
1851 }
1852 return 0;
1853}
1854
1855static void link_block_group(struct btrfs_block_group *cache)
1856{
1857 struct btrfs_space_info *space_info = cache->space_info;
1858 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1859
1860 down_write(&space_info->groups_sem);
1861 list_add_tail(&cache->list, &space_info->block_groups[index]);
1862 up_write(&space_info->groups_sem);
1863}
1864
1865static struct btrfs_block_group *btrfs_create_block_group_cache(
1866 struct btrfs_fs_info *fs_info, u64 start)
1867{
1868 struct btrfs_block_group *cache;
1869
1870 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1871 if (!cache)
1872 return NULL;
1873
1874 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1875 GFP_NOFS);
1876 if (!cache->free_space_ctl) {
1877 kfree(cache);
1878 return NULL;
1879 }
1880
1881 cache->start = start;
1882
1883 cache->fs_info = fs_info;
1884 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1885
1886 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1887
1888 refcount_set(&cache->refs, 1);
1889 spin_lock_init(&cache->lock);
1890 init_rwsem(&cache->data_rwsem);
1891 INIT_LIST_HEAD(&cache->list);
1892 INIT_LIST_HEAD(&cache->cluster_list);
1893 INIT_LIST_HEAD(&cache->bg_list);
1894 INIT_LIST_HEAD(&cache->ro_list);
1895 INIT_LIST_HEAD(&cache->discard_list);
1896 INIT_LIST_HEAD(&cache->dirty_list);
1897 INIT_LIST_HEAD(&cache->io_list);
1898 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1899 atomic_set(&cache->frozen, 0);
1900 mutex_init(&cache->free_space_lock);
1901 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1902
1903 return cache;
1904}
1905
1906/*
1907 * Iterate all chunks and verify that each of them has the corresponding block
1908 * group
1909 */
1910static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1911{
1912 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1913 struct extent_map *em;
1914 struct btrfs_block_group *bg;
1915 u64 start = 0;
1916 int ret = 0;
1917
1918 while (1) {
1919 read_lock(&map_tree->lock);
1920 /*
1921 * lookup_extent_mapping will return the first extent map
1922 * intersecting the range, so setting @len to 1 is enough to
1923 * get the first chunk.
1924 */
1925 em = lookup_extent_mapping(map_tree, start, 1);
1926 read_unlock(&map_tree->lock);
1927 if (!em)
1928 break;
1929
1930 bg = btrfs_lookup_block_group(fs_info, em->start);
1931 if (!bg) {
1932 btrfs_err(fs_info,
1933 "chunk start=%llu len=%llu doesn't have corresponding block group",
1934 em->start, em->len);
1935 ret = -EUCLEAN;
1936 free_extent_map(em);
1937 break;
1938 }
1939 if (bg->start != em->start || bg->length != em->len ||
1940 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1941 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1942 btrfs_err(fs_info,
1943"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1944 em->start, em->len,
1945 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1946 bg->start, bg->length,
1947 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1948 ret = -EUCLEAN;
1949 free_extent_map(em);
1950 btrfs_put_block_group(bg);
1951 break;
1952 }
1953 start = em->start + em->len;
1954 free_extent_map(em);
1955 btrfs_put_block_group(bg);
1956 }
1957 return ret;
1958}
1959
1960static int read_one_block_group(struct btrfs_fs_info *info,
1961 struct btrfs_block_group_item *bgi,
1962 const struct btrfs_key *key,
1963 int need_clear)
1964{
1965 struct btrfs_block_group *cache;
1966 struct btrfs_space_info *space_info;
1967 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1968 int ret;
1969
1970 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1971
1972 cache = btrfs_create_block_group_cache(info, key->objectid);
1973 if (!cache)
1974 return -ENOMEM;
1975
1976 cache->length = key->offset;
1977 cache->used = btrfs_stack_block_group_used(bgi);
1978 cache->flags = btrfs_stack_block_group_flags(bgi);
1979
1980 set_free_space_tree_thresholds(cache);
1981
1982 if (need_clear) {
1983 /*
1984 * When we mount with old space cache, we need to
1985 * set BTRFS_DC_CLEAR and set dirty flag.
1986 *
1987 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1988 * truncate the old free space cache inode and
1989 * setup a new one.
1990 * b) Setting 'dirty flag' makes sure that we flush
1991 * the new space cache info onto disk.
1992 */
1993 if (btrfs_test_opt(info, SPACE_CACHE))
1994 cache->disk_cache_state = BTRFS_DC_CLEAR;
1995 }
1996 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1997 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1998 btrfs_err(info,
1999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2000 cache->start);
2001 ret = -EINVAL;
2002 goto error;
2003 }
2004
2005 ret = btrfs_load_block_group_zone_info(cache, false);
2006 if (ret) {
2007 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2008 cache->start);
2009 goto error;
2010 }
2011
2012 /*
2013 * We need to exclude the super stripes now so that the space info has
2014 * super bytes accounted for, otherwise we'll think we have more space
2015 * than we actually do.
2016 */
2017 ret = exclude_super_stripes(cache);
2018 if (ret) {
2019 /* We may have excluded something, so call this just in case. */
2020 btrfs_free_excluded_extents(cache);
2021 goto error;
2022 }
2023
2024 /*
2025 * For zoned filesystem, space after the allocation offset is the only
2026 * free space for a block group. So, we don't need any caching work.
2027 * btrfs_calc_zone_unusable() will set the amount of free space and
2028 * zone_unusable space.
2029 *
2030 * For regular filesystem, check for two cases, either we are full, and
2031 * therefore don't need to bother with the caching work since we won't
2032 * find any space, or we are empty, and we can just add all the space
2033 * in and be done with it. This saves us _a_lot_ of time, particularly
2034 * in the full case.
2035 */
2036 if (btrfs_is_zoned(info)) {
2037 btrfs_calc_zone_unusable(cache);
2038 } else if (cache->length == cache->used) {
2039 cache->last_byte_to_unpin = (u64)-1;
2040 cache->cached = BTRFS_CACHE_FINISHED;
2041 btrfs_free_excluded_extents(cache);
2042 } else if (cache->used == 0) {
2043 cache->last_byte_to_unpin = (u64)-1;
2044 cache->cached = BTRFS_CACHE_FINISHED;
2045 add_new_free_space(cache, cache->start,
2046 cache->start + cache->length);
2047 btrfs_free_excluded_extents(cache);
2048 }
2049
2050 ret = btrfs_add_block_group_cache(info, cache);
2051 if (ret) {
2052 btrfs_remove_free_space_cache(cache);
2053 goto error;
2054 }
2055 trace_btrfs_add_block_group(info, cache, 0);
2056 btrfs_update_space_info(info, cache->flags, cache->length,
2057 cache->used, cache->bytes_super,
2058 cache->zone_unusable, &space_info);
2059
2060 cache->space_info = space_info;
2061
2062 link_block_group(cache);
2063
2064 set_avail_alloc_bits(info, cache->flags);
2065 if (btrfs_chunk_readonly(info, cache->start)) {
2066 inc_block_group_ro(cache, 1);
2067 } else if (cache->used == 0) {
2068 ASSERT(list_empty(&cache->bg_list));
2069 if (btrfs_test_opt(info, DISCARD_ASYNC))
2070 btrfs_discard_queue_work(&info->discard_ctl, cache);
2071 else
2072 btrfs_mark_bg_unused(cache);
2073 }
2074 return 0;
2075error:
2076 btrfs_put_block_group(cache);
2077 return ret;
2078}
2079
2080static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2081{
2082 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2083 struct btrfs_space_info *space_info;
2084 struct rb_node *node;
2085 int ret = 0;
2086
2087 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2088 struct extent_map *em;
2089 struct map_lookup *map;
2090 struct btrfs_block_group *bg;
2091
2092 em = rb_entry(node, struct extent_map, rb_node);
2093 map = em->map_lookup;
2094 bg = btrfs_create_block_group_cache(fs_info, em->start);
2095 if (!bg) {
2096 ret = -ENOMEM;
2097 break;
2098 }
2099
2100 /* Fill dummy cache as FULL */
2101 bg->length = em->len;
2102 bg->flags = map->type;
2103 bg->last_byte_to_unpin = (u64)-1;
2104 bg->cached = BTRFS_CACHE_FINISHED;
2105 bg->used = em->len;
2106 bg->flags = map->type;
2107 ret = btrfs_add_block_group_cache(fs_info, bg);
2108 if (ret) {
2109 btrfs_remove_free_space_cache(bg);
2110 btrfs_put_block_group(bg);
2111 break;
2112 }
2113 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2114 0, 0, &space_info);
2115 bg->space_info = space_info;
2116 link_block_group(bg);
2117
2118 set_avail_alloc_bits(fs_info, bg->flags);
2119 }
2120 if (!ret)
2121 btrfs_init_global_block_rsv(fs_info);
2122 return ret;
2123}
2124
2125int btrfs_read_block_groups(struct btrfs_fs_info *info)
2126{
2127 struct btrfs_path *path;
2128 int ret;
2129 struct btrfs_block_group *cache;
2130 struct btrfs_space_info *space_info;
2131 struct btrfs_key key;
2132 int need_clear = 0;
2133 u64 cache_gen;
2134
2135 if (!info->extent_root)
2136 return fill_dummy_bgs(info);
2137
2138 key.objectid = 0;
2139 key.offset = 0;
2140 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2141 path = btrfs_alloc_path();
2142 if (!path)
2143 return -ENOMEM;
2144
2145 cache_gen = btrfs_super_cache_generation(info->super_copy);
2146 if (btrfs_test_opt(info, SPACE_CACHE) &&
2147 btrfs_super_generation(info->super_copy) != cache_gen)
2148 need_clear = 1;
2149 if (btrfs_test_opt(info, CLEAR_CACHE))
2150 need_clear = 1;
2151
2152 while (1) {
2153 struct btrfs_block_group_item bgi;
2154 struct extent_buffer *leaf;
2155 int slot;
2156
2157 ret = find_first_block_group(info, path, &key);
2158 if (ret > 0)
2159 break;
2160 if (ret != 0)
2161 goto error;
2162
2163 leaf = path->nodes[0];
2164 slot = path->slots[0];
2165
2166 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2167 sizeof(bgi));
2168
2169 btrfs_item_key_to_cpu(leaf, &key, slot);
2170 btrfs_release_path(path);
2171 ret = read_one_block_group(info, &bgi, &key, need_clear);
2172 if (ret < 0)
2173 goto error;
2174 key.objectid += key.offset;
2175 key.offset = 0;
2176 }
2177 btrfs_release_path(path);
2178
2179 list_for_each_entry(space_info, &info->space_info, list) {
2180 int i;
2181
2182 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2183 if (list_empty(&space_info->block_groups[i]))
2184 continue;
2185 cache = list_first_entry(&space_info->block_groups[i],
2186 struct btrfs_block_group,
2187 list);
2188 btrfs_sysfs_add_block_group_type(cache);
2189 }
2190
2191 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2192 (BTRFS_BLOCK_GROUP_RAID10 |
2193 BTRFS_BLOCK_GROUP_RAID1_MASK |
2194 BTRFS_BLOCK_GROUP_RAID56_MASK |
2195 BTRFS_BLOCK_GROUP_DUP)))
2196 continue;
2197 /*
2198 * Avoid allocating from un-mirrored block group if there are
2199 * mirrored block groups.
2200 */
2201 list_for_each_entry(cache,
2202 &space_info->block_groups[BTRFS_RAID_RAID0],
2203 list)
2204 inc_block_group_ro(cache, 1);
2205 list_for_each_entry(cache,
2206 &space_info->block_groups[BTRFS_RAID_SINGLE],
2207 list)
2208 inc_block_group_ro(cache, 1);
2209 }
2210
2211 btrfs_init_global_block_rsv(info);
2212 ret = check_chunk_block_group_mappings(info);
2213error:
2214 btrfs_free_path(path);
2215 return ret;
2216}
2217
2218/*
2219 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2220 * allocation.
2221 *
2222 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2223 * phases.
2224 */
2225static int insert_block_group_item(struct btrfs_trans_handle *trans,
2226 struct btrfs_block_group *block_group)
2227{
2228 struct btrfs_fs_info *fs_info = trans->fs_info;
2229 struct btrfs_block_group_item bgi;
2230 struct btrfs_root *root;
2231 struct btrfs_key key;
2232
2233 spin_lock(&block_group->lock);
2234 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2235 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2236 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2237 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2238 key.objectid = block_group->start;
2239 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2240 key.offset = block_group->length;
2241 spin_unlock(&block_group->lock);
2242
2243 root = fs_info->extent_root;
2244 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2245}
2246
2247/*
2248 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2249 * chunk allocation.
2250 *
2251 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2252 * phases.
2253 */
2254void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2255{
2256 struct btrfs_fs_info *fs_info = trans->fs_info;
2257 struct btrfs_block_group *block_group;
2258 int ret = 0;
2259
2260 while (!list_empty(&trans->new_bgs)) {
2261 int index;
2262
2263 block_group = list_first_entry(&trans->new_bgs,
2264 struct btrfs_block_group,
2265 bg_list);
2266 if (ret)
2267 goto next;
2268
2269 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2270
2271 ret = insert_block_group_item(trans, block_group);
2272 if (ret)
2273 btrfs_abort_transaction(trans, ret);
2274 if (!block_group->chunk_item_inserted) {
2275 mutex_lock(&fs_info->chunk_mutex);
2276 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2277 mutex_unlock(&fs_info->chunk_mutex);
2278 if (ret)
2279 btrfs_abort_transaction(trans, ret);
2280 }
2281 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2282 block_group->length);
2283 if (ret)
2284 btrfs_abort_transaction(trans, ret);
2285 add_block_group_free_space(trans, block_group);
2286
2287 /*
2288 * If we restriped during balance, we may have added a new raid
2289 * type, so now add the sysfs entries when it is safe to do so.
2290 * We don't have to worry about locking here as it's handled in
2291 * btrfs_sysfs_add_block_group_type.
2292 */
2293 if (block_group->space_info->block_group_kobjs[index] == NULL)
2294 btrfs_sysfs_add_block_group_type(block_group);
2295
2296 /* Already aborted the transaction if it failed. */
2297next:
2298 btrfs_delayed_refs_rsv_release(fs_info, 1);
2299 list_del_init(&block_group->bg_list);
2300 }
2301 btrfs_trans_release_chunk_metadata(trans);
2302}
2303
2304struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2305 u64 bytes_used, u64 type,
2306 u64 chunk_offset, u64 size)
2307{
2308 struct btrfs_fs_info *fs_info = trans->fs_info;
2309 struct btrfs_block_group *cache;
2310 int ret;
2311
2312 btrfs_set_log_full_commit(trans);
2313
2314 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2315 if (!cache)
2316 return ERR_PTR(-ENOMEM);
2317
2318 cache->length = size;
2319 set_free_space_tree_thresholds(cache);
2320 cache->used = bytes_used;
2321 cache->flags = type;
2322 cache->last_byte_to_unpin = (u64)-1;
2323 cache->cached = BTRFS_CACHE_FINISHED;
2324 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2325 cache->needs_free_space = 1;
2326
2327 ret = btrfs_load_block_group_zone_info(cache, true);
2328 if (ret) {
2329 btrfs_put_block_group(cache);
2330 return ERR_PTR(ret);
2331 }
2332
2333 ret = exclude_super_stripes(cache);
2334 if (ret) {
2335 /* We may have excluded something, so call this just in case */
2336 btrfs_free_excluded_extents(cache);
2337 btrfs_put_block_group(cache);
2338 return ERR_PTR(ret);
2339 }
2340
2341 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2342
2343 btrfs_free_excluded_extents(cache);
2344
2345#ifdef CONFIG_BTRFS_DEBUG
2346 if (btrfs_should_fragment_free_space(cache)) {
2347 u64 new_bytes_used = size - bytes_used;
2348
2349 bytes_used += new_bytes_used >> 1;
2350 fragment_free_space(cache);
2351 }
2352#endif
2353 /*
2354 * Ensure the corresponding space_info object is created and
2355 * assigned to our block group. We want our bg to be added to the rbtree
2356 * with its ->space_info set.
2357 */
2358 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2359 ASSERT(cache->space_info);
2360
2361 ret = btrfs_add_block_group_cache(fs_info, cache);
2362 if (ret) {
2363 btrfs_remove_free_space_cache(cache);
2364 btrfs_put_block_group(cache);
2365 return ERR_PTR(ret);
2366 }
2367
2368 /*
2369 * Now that our block group has its ->space_info set and is inserted in
2370 * the rbtree, update the space info's counters.
2371 */
2372 trace_btrfs_add_block_group(fs_info, cache, 1);
2373 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2374 cache->bytes_super, 0, &cache->space_info);
2375 btrfs_update_global_block_rsv(fs_info);
2376
2377 link_block_group(cache);
2378
2379 list_add_tail(&cache->bg_list, &trans->new_bgs);
2380 trans->delayed_ref_updates++;
2381 btrfs_update_delayed_refs_rsv(trans);
2382
2383 set_avail_alloc_bits(fs_info, type);
2384 return cache;
2385}
2386
2387/*
2388 * Mark one block group RO, can be called several times for the same block
2389 * group.
2390 *
2391 * @cache: the destination block group
2392 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2393 * ensure we still have some free space after marking this
2394 * block group RO.
2395 */
2396int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2397 bool do_chunk_alloc)
2398{
2399 struct btrfs_fs_info *fs_info = cache->fs_info;
2400 struct btrfs_trans_handle *trans;
2401 u64 alloc_flags;
2402 int ret;
2403 bool dirty_bg_running;
2404
2405 do {
2406 trans = btrfs_join_transaction(fs_info->extent_root);
2407 if (IS_ERR(trans))
2408 return PTR_ERR(trans);
2409
2410 dirty_bg_running = false;
2411
2412 /*
2413 * We're not allowed to set block groups readonly after the dirty
2414 * block group cache has started writing. If it already started,
2415 * back off and let this transaction commit.
2416 */
2417 mutex_lock(&fs_info->ro_block_group_mutex);
2418 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2419 u64 transid = trans->transid;
2420
2421 mutex_unlock(&fs_info->ro_block_group_mutex);
2422 btrfs_end_transaction(trans);
2423
2424 ret = btrfs_wait_for_commit(fs_info, transid);
2425 if (ret)
2426 return ret;
2427 dirty_bg_running = true;
2428 }
2429 } while (dirty_bg_running);
2430
2431 if (do_chunk_alloc) {
2432 /*
2433 * If we are changing raid levels, try to allocate a
2434 * corresponding block group with the new raid level.
2435 */
2436 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2437 if (alloc_flags != cache->flags) {
2438 ret = btrfs_chunk_alloc(trans, alloc_flags,
2439 CHUNK_ALLOC_FORCE);
2440 /*
2441 * ENOSPC is allowed here, we may have enough space
2442 * already allocated at the new raid level to carry on
2443 */
2444 if (ret == -ENOSPC)
2445 ret = 0;
2446 if (ret < 0)
2447 goto out;
2448 }
2449 }
2450
2451 ret = inc_block_group_ro(cache, 0);
2452 if (!do_chunk_alloc || ret == -ETXTBSY)
2453 goto unlock_out;
2454 if (!ret)
2455 goto out;
2456 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2457 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2458 if (ret < 0)
2459 goto out;
2460 ret = inc_block_group_ro(cache, 0);
2461 if (ret == -ETXTBSY)
2462 goto unlock_out;
2463out:
2464 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2465 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2466 mutex_lock(&fs_info->chunk_mutex);
2467 check_system_chunk(trans, alloc_flags);
2468 mutex_unlock(&fs_info->chunk_mutex);
2469 }
2470unlock_out:
2471 mutex_unlock(&fs_info->ro_block_group_mutex);
2472
2473 btrfs_end_transaction(trans);
2474 return ret;
2475}
2476
2477void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2478{
2479 struct btrfs_space_info *sinfo = cache->space_info;
2480 u64 num_bytes;
2481
2482 BUG_ON(!cache->ro);
2483
2484 spin_lock(&sinfo->lock);
2485 spin_lock(&cache->lock);
2486 if (!--cache->ro) {
2487 if (btrfs_is_zoned(cache->fs_info)) {
2488 /* Migrate zone_unusable bytes back */
2489 cache->zone_unusable = cache->alloc_offset - cache->used;
2490 sinfo->bytes_zone_unusable += cache->zone_unusable;
2491 sinfo->bytes_readonly -= cache->zone_unusable;
2492 }
2493 num_bytes = cache->length - cache->reserved -
2494 cache->pinned - cache->bytes_super -
2495 cache->zone_unusable - cache->used;
2496 sinfo->bytes_readonly -= num_bytes;
2497 list_del_init(&cache->ro_list);
2498 }
2499 spin_unlock(&cache->lock);
2500 spin_unlock(&sinfo->lock);
2501}
2502
2503static int update_block_group_item(struct btrfs_trans_handle *trans,
2504 struct btrfs_path *path,
2505 struct btrfs_block_group *cache)
2506{
2507 struct btrfs_fs_info *fs_info = trans->fs_info;
2508 int ret;
2509 struct btrfs_root *root = fs_info->extent_root;
2510 unsigned long bi;
2511 struct extent_buffer *leaf;
2512 struct btrfs_block_group_item bgi;
2513 struct btrfs_key key;
2514
2515 key.objectid = cache->start;
2516 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2517 key.offset = cache->length;
2518
2519 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2520 if (ret) {
2521 if (ret > 0)
2522 ret = -ENOENT;
2523 goto fail;
2524 }
2525
2526 leaf = path->nodes[0];
2527 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2528 btrfs_set_stack_block_group_used(&bgi, cache->used);
2529 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2530 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2531 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2532 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2533 btrfs_mark_buffer_dirty(leaf);
2534fail:
2535 btrfs_release_path(path);
2536 return ret;
2537
2538}
2539
2540static int cache_save_setup(struct btrfs_block_group *block_group,
2541 struct btrfs_trans_handle *trans,
2542 struct btrfs_path *path)
2543{
2544 struct btrfs_fs_info *fs_info = block_group->fs_info;
2545 struct btrfs_root *root = fs_info->tree_root;
2546 struct inode *inode = NULL;
2547 struct extent_changeset *data_reserved = NULL;
2548 u64 alloc_hint = 0;
2549 int dcs = BTRFS_DC_ERROR;
2550 u64 cache_size = 0;
2551 int retries = 0;
2552 int ret = 0;
2553
2554 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2555 return 0;
2556
2557 /*
2558 * If this block group is smaller than 100 megs don't bother caching the
2559 * block group.
2560 */
2561 if (block_group->length < (100 * SZ_1M)) {
2562 spin_lock(&block_group->lock);
2563 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2564 spin_unlock(&block_group->lock);
2565 return 0;
2566 }
2567
2568 if (TRANS_ABORTED(trans))
2569 return 0;
2570again:
2571 inode = lookup_free_space_inode(block_group, path);
2572 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2573 ret = PTR_ERR(inode);
2574 btrfs_release_path(path);
2575 goto out;
2576 }
2577
2578 if (IS_ERR(inode)) {
2579 BUG_ON(retries);
2580 retries++;
2581
2582 if (block_group->ro)
2583 goto out_free;
2584
2585 ret = create_free_space_inode(trans, block_group, path);
2586 if (ret)
2587 goto out_free;
2588 goto again;
2589 }
2590
2591 /*
2592 * We want to set the generation to 0, that way if anything goes wrong
2593 * from here on out we know not to trust this cache when we load up next
2594 * time.
2595 */
2596 BTRFS_I(inode)->generation = 0;
2597 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2598 if (ret) {
2599 /*
2600 * So theoretically we could recover from this, simply set the
2601 * super cache generation to 0 so we know to invalidate the
2602 * cache, but then we'd have to keep track of the block groups
2603 * that fail this way so we know we _have_ to reset this cache
2604 * before the next commit or risk reading stale cache. So to
2605 * limit our exposure to horrible edge cases lets just abort the
2606 * transaction, this only happens in really bad situations
2607 * anyway.
2608 */
2609 btrfs_abort_transaction(trans, ret);
2610 goto out_put;
2611 }
2612 WARN_ON(ret);
2613
2614 /* We've already setup this transaction, go ahead and exit */
2615 if (block_group->cache_generation == trans->transid &&
2616 i_size_read(inode)) {
2617 dcs = BTRFS_DC_SETUP;
2618 goto out_put;
2619 }
2620
2621 if (i_size_read(inode) > 0) {
2622 ret = btrfs_check_trunc_cache_free_space(fs_info,
2623 &fs_info->global_block_rsv);
2624 if (ret)
2625 goto out_put;
2626
2627 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2628 if (ret)
2629 goto out_put;
2630 }
2631
2632 spin_lock(&block_group->lock);
2633 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2634 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2635 /*
2636 * don't bother trying to write stuff out _if_
2637 * a) we're not cached,
2638 * b) we're with nospace_cache mount option,
2639 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2640 */
2641 dcs = BTRFS_DC_WRITTEN;
2642 spin_unlock(&block_group->lock);
2643 goto out_put;
2644 }
2645 spin_unlock(&block_group->lock);
2646
2647 /*
2648 * We hit an ENOSPC when setting up the cache in this transaction, just
2649 * skip doing the setup, we've already cleared the cache so we're safe.
2650 */
2651 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2652 ret = -ENOSPC;
2653 goto out_put;
2654 }
2655
2656 /*
2657 * Try to preallocate enough space based on how big the block group is.
2658 * Keep in mind this has to include any pinned space which could end up
2659 * taking up quite a bit since it's not folded into the other space
2660 * cache.
2661 */
2662 cache_size = div_u64(block_group->length, SZ_256M);
2663 if (!cache_size)
2664 cache_size = 1;
2665
2666 cache_size *= 16;
2667 cache_size *= fs_info->sectorsize;
2668
2669 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2670 cache_size);
2671 if (ret)
2672 goto out_put;
2673
2674 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2675 cache_size, cache_size,
2676 &alloc_hint);
2677 /*
2678 * Our cache requires contiguous chunks so that we don't modify a bunch
2679 * of metadata or split extents when writing the cache out, which means
2680 * we can enospc if we are heavily fragmented in addition to just normal
2681 * out of space conditions. So if we hit this just skip setting up any
2682 * other block groups for this transaction, maybe we'll unpin enough
2683 * space the next time around.
2684 */
2685 if (!ret)
2686 dcs = BTRFS_DC_SETUP;
2687 else if (ret == -ENOSPC)
2688 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2689
2690out_put:
2691 iput(inode);
2692out_free:
2693 btrfs_release_path(path);
2694out:
2695 spin_lock(&block_group->lock);
2696 if (!ret && dcs == BTRFS_DC_SETUP)
2697 block_group->cache_generation = trans->transid;
2698 block_group->disk_cache_state = dcs;
2699 spin_unlock(&block_group->lock);
2700
2701 extent_changeset_free(data_reserved);
2702 return ret;
2703}
2704
2705int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2706{
2707 struct btrfs_fs_info *fs_info = trans->fs_info;
2708 struct btrfs_block_group *cache, *tmp;
2709 struct btrfs_transaction *cur_trans = trans->transaction;
2710 struct btrfs_path *path;
2711
2712 if (list_empty(&cur_trans->dirty_bgs) ||
2713 !btrfs_test_opt(fs_info, SPACE_CACHE))
2714 return 0;
2715
2716 path = btrfs_alloc_path();
2717 if (!path)
2718 return -ENOMEM;
2719
2720 /* Could add new block groups, use _safe just in case */
2721 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2722 dirty_list) {
2723 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2724 cache_save_setup(cache, trans, path);
2725 }
2726
2727 btrfs_free_path(path);
2728 return 0;
2729}
2730
2731/*
2732 * Transaction commit does final block group cache writeback during a critical
2733 * section where nothing is allowed to change the FS. This is required in
2734 * order for the cache to actually match the block group, but can introduce a
2735 * lot of latency into the commit.
2736 *
2737 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2738 * There's a chance we'll have to redo some of it if the block group changes
2739 * again during the commit, but it greatly reduces the commit latency by
2740 * getting rid of the easy block groups while we're still allowing others to
2741 * join the commit.
2742 */
2743int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2744{
2745 struct btrfs_fs_info *fs_info = trans->fs_info;
2746 struct btrfs_block_group *cache;
2747 struct btrfs_transaction *cur_trans = trans->transaction;
2748 int ret = 0;
2749 int should_put;
2750 struct btrfs_path *path = NULL;
2751 LIST_HEAD(dirty);
2752 struct list_head *io = &cur_trans->io_bgs;
2753 int num_started = 0;
2754 int loops = 0;
2755
2756 spin_lock(&cur_trans->dirty_bgs_lock);
2757 if (list_empty(&cur_trans->dirty_bgs)) {
2758 spin_unlock(&cur_trans->dirty_bgs_lock);
2759 return 0;
2760 }
2761 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2762 spin_unlock(&cur_trans->dirty_bgs_lock);
2763
2764again:
2765 /* Make sure all the block groups on our dirty list actually exist */
2766 btrfs_create_pending_block_groups(trans);
2767
2768 if (!path) {
2769 path = btrfs_alloc_path();
2770 if (!path) {
2771 ret = -ENOMEM;
2772 goto out;
2773 }
2774 }
2775
2776 /*
2777 * cache_write_mutex is here only to save us from balance or automatic
2778 * removal of empty block groups deleting this block group while we are
2779 * writing out the cache
2780 */
2781 mutex_lock(&trans->transaction->cache_write_mutex);
2782 while (!list_empty(&dirty)) {
2783 bool drop_reserve = true;
2784
2785 cache = list_first_entry(&dirty, struct btrfs_block_group,
2786 dirty_list);
2787 /*
2788 * This can happen if something re-dirties a block group that
2789 * is already under IO. Just wait for it to finish and then do
2790 * it all again
2791 */
2792 if (!list_empty(&cache->io_list)) {
2793 list_del_init(&cache->io_list);
2794 btrfs_wait_cache_io(trans, cache, path);
2795 btrfs_put_block_group(cache);
2796 }
2797
2798
2799 /*
2800 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2801 * it should update the cache_state. Don't delete until after
2802 * we wait.
2803 *
2804 * Since we're not running in the commit critical section
2805 * we need the dirty_bgs_lock to protect from update_block_group
2806 */
2807 spin_lock(&cur_trans->dirty_bgs_lock);
2808 list_del_init(&cache->dirty_list);
2809 spin_unlock(&cur_trans->dirty_bgs_lock);
2810
2811 should_put = 1;
2812
2813 cache_save_setup(cache, trans, path);
2814
2815 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2816 cache->io_ctl.inode = NULL;
2817 ret = btrfs_write_out_cache(trans, cache, path);
2818 if (ret == 0 && cache->io_ctl.inode) {
2819 num_started++;
2820 should_put = 0;
2821
2822 /*
2823 * The cache_write_mutex is protecting the
2824 * io_list, also refer to the definition of
2825 * btrfs_transaction::io_bgs for more details
2826 */
2827 list_add_tail(&cache->io_list, io);
2828 } else {
2829 /*
2830 * If we failed to write the cache, the
2831 * generation will be bad and life goes on
2832 */
2833 ret = 0;
2834 }
2835 }
2836 if (!ret) {
2837 ret = update_block_group_item(trans, path, cache);
2838 /*
2839 * Our block group might still be attached to the list
2840 * of new block groups in the transaction handle of some
2841 * other task (struct btrfs_trans_handle->new_bgs). This
2842 * means its block group item isn't yet in the extent
2843 * tree. If this happens ignore the error, as we will
2844 * try again later in the critical section of the
2845 * transaction commit.
2846 */
2847 if (ret == -ENOENT) {
2848 ret = 0;
2849 spin_lock(&cur_trans->dirty_bgs_lock);
2850 if (list_empty(&cache->dirty_list)) {
2851 list_add_tail(&cache->dirty_list,
2852 &cur_trans->dirty_bgs);
2853 btrfs_get_block_group(cache);
2854 drop_reserve = false;
2855 }
2856 spin_unlock(&cur_trans->dirty_bgs_lock);
2857 } else if (ret) {
2858 btrfs_abort_transaction(trans, ret);
2859 }
2860 }
2861
2862 /* If it's not on the io list, we need to put the block group */
2863 if (should_put)
2864 btrfs_put_block_group(cache);
2865 if (drop_reserve)
2866 btrfs_delayed_refs_rsv_release(fs_info, 1);
2867 /*
2868 * Avoid blocking other tasks for too long. It might even save
2869 * us from writing caches for block groups that are going to be
2870 * removed.
2871 */
2872 mutex_unlock(&trans->transaction->cache_write_mutex);
2873 if (ret)
2874 goto out;
2875 mutex_lock(&trans->transaction->cache_write_mutex);
2876 }
2877 mutex_unlock(&trans->transaction->cache_write_mutex);
2878
2879 /*
2880 * Go through delayed refs for all the stuff we've just kicked off
2881 * and then loop back (just once)
2882 */
2883 if (!ret)
2884 ret = btrfs_run_delayed_refs(trans, 0);
2885 if (!ret && loops == 0) {
2886 loops++;
2887 spin_lock(&cur_trans->dirty_bgs_lock);
2888 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2889 /*
2890 * dirty_bgs_lock protects us from concurrent block group
2891 * deletes too (not just cache_write_mutex).
2892 */
2893 if (!list_empty(&dirty)) {
2894 spin_unlock(&cur_trans->dirty_bgs_lock);
2895 goto again;
2896 }
2897 spin_unlock(&cur_trans->dirty_bgs_lock);
2898 }
2899out:
2900 if (ret < 0) {
2901 spin_lock(&cur_trans->dirty_bgs_lock);
2902 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2903 spin_unlock(&cur_trans->dirty_bgs_lock);
2904 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2905 }
2906
2907 btrfs_free_path(path);
2908 return ret;
2909}
2910
2911int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2912{
2913 struct btrfs_fs_info *fs_info = trans->fs_info;
2914 struct btrfs_block_group *cache;
2915 struct btrfs_transaction *cur_trans = trans->transaction;
2916 int ret = 0;
2917 int should_put;
2918 struct btrfs_path *path;
2919 struct list_head *io = &cur_trans->io_bgs;
2920 int num_started = 0;
2921
2922 path = btrfs_alloc_path();
2923 if (!path)
2924 return -ENOMEM;
2925
2926 /*
2927 * Even though we are in the critical section of the transaction commit,
2928 * we can still have concurrent tasks adding elements to this
2929 * transaction's list of dirty block groups. These tasks correspond to
2930 * endio free space workers started when writeback finishes for a
2931 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2932 * allocate new block groups as a result of COWing nodes of the root
2933 * tree when updating the free space inode. The writeback for the space
2934 * caches is triggered by an earlier call to
2935 * btrfs_start_dirty_block_groups() and iterations of the following
2936 * loop.
2937 * Also we want to do the cache_save_setup first and then run the
2938 * delayed refs to make sure we have the best chance at doing this all
2939 * in one shot.
2940 */
2941 spin_lock(&cur_trans->dirty_bgs_lock);
2942 while (!list_empty(&cur_trans->dirty_bgs)) {
2943 cache = list_first_entry(&cur_trans->dirty_bgs,
2944 struct btrfs_block_group,
2945 dirty_list);
2946
2947 /*
2948 * This can happen if cache_save_setup re-dirties a block group
2949 * that is already under IO. Just wait for it to finish and
2950 * then do it all again
2951 */
2952 if (!list_empty(&cache->io_list)) {
2953 spin_unlock(&cur_trans->dirty_bgs_lock);
2954 list_del_init(&cache->io_list);
2955 btrfs_wait_cache_io(trans, cache, path);
2956 btrfs_put_block_group(cache);
2957 spin_lock(&cur_trans->dirty_bgs_lock);
2958 }
2959
2960 /*
2961 * Don't remove from the dirty list until after we've waited on
2962 * any pending IO
2963 */
2964 list_del_init(&cache->dirty_list);
2965 spin_unlock(&cur_trans->dirty_bgs_lock);
2966 should_put = 1;
2967
2968 cache_save_setup(cache, trans, path);
2969
2970 if (!ret)
2971 ret = btrfs_run_delayed_refs(trans,
2972 (unsigned long) -1);
2973
2974 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2975 cache->io_ctl.inode = NULL;
2976 ret = btrfs_write_out_cache(trans, cache, path);
2977 if (ret == 0 && cache->io_ctl.inode) {
2978 num_started++;
2979 should_put = 0;
2980 list_add_tail(&cache->io_list, io);
2981 } else {
2982 /*
2983 * If we failed to write the cache, the
2984 * generation will be bad and life goes on
2985 */
2986 ret = 0;
2987 }
2988 }
2989 if (!ret) {
2990 ret = update_block_group_item(trans, path, cache);
2991 /*
2992 * One of the free space endio workers might have
2993 * created a new block group while updating a free space
2994 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2995 * and hasn't released its transaction handle yet, in
2996 * which case the new block group is still attached to
2997 * its transaction handle and its creation has not
2998 * finished yet (no block group item in the extent tree
2999 * yet, etc). If this is the case, wait for all free
3000 * space endio workers to finish and retry. This is a
3001 * very rare case so no need for a more efficient and
3002 * complex approach.
3003 */
3004 if (ret == -ENOENT) {
3005 wait_event(cur_trans->writer_wait,
3006 atomic_read(&cur_trans->num_writers) == 1);
3007 ret = update_block_group_item(trans, path, cache);
3008 }
3009 if (ret)
3010 btrfs_abort_transaction(trans, ret);
3011 }
3012
3013 /* If its not on the io list, we need to put the block group */
3014 if (should_put)
3015 btrfs_put_block_group(cache);
3016 btrfs_delayed_refs_rsv_release(fs_info, 1);
3017 spin_lock(&cur_trans->dirty_bgs_lock);
3018 }
3019 spin_unlock(&cur_trans->dirty_bgs_lock);
3020
3021 /*
3022 * Refer to the definition of io_bgs member for details why it's safe
3023 * to use it without any locking
3024 */
3025 while (!list_empty(io)) {
3026 cache = list_first_entry(io, struct btrfs_block_group,
3027 io_list);
3028 list_del_init(&cache->io_list);
3029 btrfs_wait_cache_io(trans, cache, path);
3030 btrfs_put_block_group(cache);
3031 }
3032
3033 btrfs_free_path(path);
3034 return ret;
3035}
3036
3037int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3038 u64 bytenr, u64 num_bytes, int alloc)
3039{
3040 struct btrfs_fs_info *info = trans->fs_info;
3041 struct btrfs_block_group *cache = NULL;
3042 u64 total = num_bytes;
3043 u64 old_val;
3044 u64 byte_in_group;
3045 int factor;
3046 int ret = 0;
3047
3048 /* Block accounting for super block */
3049 spin_lock(&info->delalloc_root_lock);
3050 old_val = btrfs_super_bytes_used(info->super_copy);
3051 if (alloc)
3052 old_val += num_bytes;
3053 else
3054 old_val -= num_bytes;
3055 btrfs_set_super_bytes_used(info->super_copy, old_val);
3056 spin_unlock(&info->delalloc_root_lock);
3057
3058 while (total) {
3059 cache = btrfs_lookup_block_group(info, bytenr);
3060 if (!cache) {
3061 ret = -ENOENT;
3062 break;
3063 }
3064 factor = btrfs_bg_type_to_factor(cache->flags);
3065
3066 /*
3067 * If this block group has free space cache written out, we
3068 * need to make sure to load it if we are removing space. This
3069 * is because we need the unpinning stage to actually add the
3070 * space back to the block group, otherwise we will leak space.
3071 */
3072 if (!alloc && !btrfs_block_group_done(cache))
3073 btrfs_cache_block_group(cache, 1);
3074
3075 byte_in_group = bytenr - cache->start;
3076 WARN_ON(byte_in_group > cache->length);
3077
3078 spin_lock(&cache->space_info->lock);
3079 spin_lock(&cache->lock);
3080
3081 if (btrfs_test_opt(info, SPACE_CACHE) &&
3082 cache->disk_cache_state < BTRFS_DC_CLEAR)
3083 cache->disk_cache_state = BTRFS_DC_CLEAR;
3084
3085 old_val = cache->used;
3086 num_bytes = min(total, cache->length - byte_in_group);
3087 if (alloc) {
3088 old_val += num_bytes;
3089 cache->used = old_val;
3090 cache->reserved -= num_bytes;
3091 cache->space_info->bytes_reserved -= num_bytes;
3092 cache->space_info->bytes_used += num_bytes;
3093 cache->space_info->disk_used += num_bytes * factor;
3094 spin_unlock(&cache->lock);
3095 spin_unlock(&cache->space_info->lock);
3096 } else {
3097 old_val -= num_bytes;
3098 cache->used = old_val;
3099 cache->pinned += num_bytes;
3100 btrfs_space_info_update_bytes_pinned(info,
3101 cache->space_info, num_bytes);
3102 cache->space_info->bytes_used -= num_bytes;
3103 cache->space_info->disk_used -= num_bytes * factor;
3104 spin_unlock(&cache->lock);
3105 spin_unlock(&cache->space_info->lock);
3106
3107 set_extent_dirty(&trans->transaction->pinned_extents,
3108 bytenr, bytenr + num_bytes - 1,
3109 GFP_NOFS | __GFP_NOFAIL);
3110 }
3111
3112 spin_lock(&trans->transaction->dirty_bgs_lock);
3113 if (list_empty(&cache->dirty_list)) {
3114 list_add_tail(&cache->dirty_list,
3115 &trans->transaction->dirty_bgs);
3116 trans->delayed_ref_updates++;
3117 btrfs_get_block_group(cache);
3118 }
3119 spin_unlock(&trans->transaction->dirty_bgs_lock);
3120
3121 /*
3122 * No longer have used bytes in this block group, queue it for
3123 * deletion. We do this after adding the block group to the
3124 * dirty list to avoid races between cleaner kthread and space
3125 * cache writeout.
3126 */
3127 if (!alloc && old_val == 0) {
3128 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3129 btrfs_mark_bg_unused(cache);
3130 }
3131
3132 btrfs_put_block_group(cache);
3133 total -= num_bytes;
3134 bytenr += num_bytes;
3135 }
3136
3137 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3138 btrfs_update_delayed_refs_rsv(trans);
3139 return ret;
3140}
3141
3142/**
3143 * btrfs_add_reserved_bytes - update the block_group and space info counters
3144 * @cache: The cache we are manipulating
3145 * @ram_bytes: The number of bytes of file content, and will be same to
3146 * @num_bytes except for the compress path.
3147 * @num_bytes: The number of bytes in question
3148 * @delalloc: The blocks are allocated for the delalloc write
3149 *
3150 * This is called by the allocator when it reserves space. If this is a
3151 * reservation and the block group has become read only we cannot make the
3152 * reservation and return -EAGAIN, otherwise this function always succeeds.
3153 */
3154int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3155 u64 ram_bytes, u64 num_bytes, int delalloc)
3156{
3157 struct btrfs_space_info *space_info = cache->space_info;
3158 int ret = 0;
3159
3160 spin_lock(&space_info->lock);
3161 spin_lock(&cache->lock);
3162 if (cache->ro) {
3163 ret = -EAGAIN;
3164 } else {
3165 cache->reserved += num_bytes;
3166 space_info->bytes_reserved += num_bytes;
3167 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3168 space_info->flags, num_bytes, 1);
3169 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3170 space_info, -ram_bytes);
3171 if (delalloc)
3172 cache->delalloc_bytes += num_bytes;
3173
3174 /*
3175 * Compression can use less space than we reserved, so wake
3176 * tickets if that happens
3177 */
3178 if (num_bytes < ram_bytes)
3179 btrfs_try_granting_tickets(cache->fs_info, space_info);
3180 }
3181 spin_unlock(&cache->lock);
3182 spin_unlock(&space_info->lock);
3183 return ret;
3184}
3185
3186/**
3187 * btrfs_free_reserved_bytes - update the block_group and space info counters
3188 * @cache: The cache we are manipulating
3189 * @num_bytes: The number of bytes in question
3190 * @delalloc: The blocks are allocated for the delalloc write
3191 *
3192 * This is called by somebody who is freeing space that was never actually used
3193 * on disk. For example if you reserve some space for a new leaf in transaction
3194 * A and before transaction A commits you free that leaf, you call this with
3195 * reserve set to 0 in order to clear the reservation.
3196 */
3197void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3198 u64 num_bytes, int delalloc)
3199{
3200 struct btrfs_space_info *space_info = cache->space_info;
3201
3202 spin_lock(&space_info->lock);
3203 spin_lock(&cache->lock);
3204 if (cache->ro)
3205 space_info->bytes_readonly += num_bytes;
3206 cache->reserved -= num_bytes;
3207 space_info->bytes_reserved -= num_bytes;
3208 space_info->max_extent_size = 0;
3209
3210 if (delalloc)
3211 cache->delalloc_bytes -= num_bytes;
3212 spin_unlock(&cache->lock);
3213
3214 btrfs_try_granting_tickets(cache->fs_info, space_info);
3215 spin_unlock(&space_info->lock);
3216}
3217
3218static void force_metadata_allocation(struct btrfs_fs_info *info)
3219{
3220 struct list_head *head = &info->space_info;
3221 struct btrfs_space_info *found;
3222
3223 list_for_each_entry(found, head, list) {
3224 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3225 found->force_alloc = CHUNK_ALLOC_FORCE;
3226 }
3227}
3228
3229static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3230 struct btrfs_space_info *sinfo, int force)
3231{
3232 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3233 u64 thresh;
3234
3235 if (force == CHUNK_ALLOC_FORCE)
3236 return 1;
3237
3238 /*
3239 * in limited mode, we want to have some free space up to
3240 * about 1% of the FS size.
3241 */
3242 if (force == CHUNK_ALLOC_LIMITED) {
3243 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3244 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3245
3246 if (sinfo->total_bytes - bytes_used < thresh)
3247 return 1;
3248 }
3249
3250 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3251 return 0;
3252 return 1;
3253}
3254
3255int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3256{
3257 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3258
3259 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3260}
3261
3262static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3263{
3264 struct btrfs_block_group *bg;
3265 int ret;
3266
3267 /*
3268 * Check if we have enough space in the system space info because we
3269 * will need to update device items in the chunk btree and insert a new
3270 * chunk item in the chunk btree as well. This will allocate a new
3271 * system block group if needed.
3272 */
3273 check_system_chunk(trans, flags);
3274
3275 bg = btrfs_alloc_chunk(trans, flags);
3276 if (IS_ERR(bg)) {
3277 ret = PTR_ERR(bg);
3278 goto out;
3279 }
3280
3281 /*
3282 * If this is a system chunk allocation then stop right here and do not
3283 * add the chunk item to the chunk btree. This is to prevent a deadlock
3284 * because this system chunk allocation can be triggered while COWing
3285 * some extent buffer of the chunk btree and while holding a lock on a
3286 * parent extent buffer, in which case attempting to insert the chunk
3287 * item (or update the device item) would result in a deadlock on that
3288 * parent extent buffer. In this case defer the chunk btree updates to
3289 * the second phase of chunk allocation and keep our reservation until
3290 * the second phase completes.
3291 *
3292 * This is a rare case and can only be triggered by the very few cases
3293 * we have where we need to touch the chunk btree outside chunk allocation
3294 * and chunk removal. These cases are basically adding a device, removing
3295 * a device or resizing a device.
3296 */
3297 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3298 return 0;
3299
3300 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3301 /*
3302 * Normally we are not expected to fail with -ENOSPC here, since we have
3303 * previously reserved space in the system space_info and allocated one
3304 * new system chunk if necessary. However there are two exceptions:
3305 *
3306 * 1) We may have enough free space in the system space_info but all the
3307 * existing system block groups have a profile which can not be used
3308 * for extent allocation.
3309 *
3310 * This happens when mounting in degraded mode. For example we have a
3311 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3312 * using the other device in degraded mode. If we then allocate a chunk,
3313 * we may have enough free space in the existing system space_info, but
3314 * none of the block groups can be used for extent allocation since they
3315 * have a RAID1 profile, and because we are in degraded mode with a
3316 * single device, we are forced to allocate a new system chunk with a
3317 * SINGLE profile. Making check_system_chunk() iterate over all system
3318 * block groups and check if they have a usable profile and enough space
3319 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3320 * try again after forcing allocation of a new system chunk. Like this
3321 * we avoid paying the cost of that search in normal circumstances, when
3322 * we were not mounted in degraded mode;
3323 *
3324 * 2) We had enough free space info the system space_info, and one suitable
3325 * block group to allocate from when we called check_system_chunk()
3326 * above. However right after we called it, the only system block group
3327 * with enough free space got turned into RO mode by a running scrub,
3328 * and in this case we have to allocate a new one and retry. We only
3329 * need do this allocate and retry once, since we have a transaction
3330 * handle and scrub uses the commit root to search for block groups.
3331 */
3332 if (ret == -ENOSPC) {
3333 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3334 struct btrfs_block_group *sys_bg;
3335
3336 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3337 if (IS_ERR(sys_bg)) {
3338 ret = PTR_ERR(sys_bg);
3339 btrfs_abort_transaction(trans, ret);
3340 goto out;
3341 }
3342
3343 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3344 if (ret) {
3345 btrfs_abort_transaction(trans, ret);
3346 goto out;
3347 }
3348
3349 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3350 if (ret) {
3351 btrfs_abort_transaction(trans, ret);
3352 goto out;
3353 }
3354 } else if (ret) {
3355 btrfs_abort_transaction(trans, ret);
3356 goto out;
3357 }
3358out:
3359 btrfs_trans_release_chunk_metadata(trans);
3360
3361 return ret;
3362}
3363
3364/*
3365 * Chunk allocation is done in 2 phases:
3366 *
3367 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3368 * the chunk, the chunk mapping, create its block group and add the items
3369 * that belong in the chunk btree to it - more specifically, we need to
3370 * update device items in the chunk btree and add a new chunk item to it.
3371 *
3372 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3373 * group item to the extent btree and the device extent items to the devices
3374 * btree.
3375 *
3376 * This is done to prevent deadlocks. For example when COWing a node from the
3377 * extent btree we are holding a write lock on the node's parent and if we
3378 * trigger chunk allocation and attempted to insert the new block group item
3379 * in the extent btree right way, we could deadlock because the path for the
3380 * insertion can include that parent node. At first glance it seems impossible
3381 * to trigger chunk allocation after starting a transaction since tasks should
3382 * reserve enough transaction units (metadata space), however while that is true
3383 * most of the time, chunk allocation may still be triggered for several reasons:
3384 *
3385 * 1) When reserving metadata, we check if there is enough free space in the
3386 * metadata space_info and therefore don't trigger allocation of a new chunk.
3387 * However later when the task actually tries to COW an extent buffer from
3388 * the extent btree or from the device btree for example, it is forced to
3389 * allocate a new block group (chunk) because the only one that had enough
3390 * free space was just turned to RO mode by a running scrub for example (or
3391 * device replace, block group reclaim thread, etc), so we can not use it
3392 * for allocating an extent and end up being forced to allocate a new one;
3393 *
3394 * 2) Because we only check that the metadata space_info has enough free bytes,
3395 * we end up not allocating a new metadata chunk in that case. However if
3396 * the filesystem was mounted in degraded mode, none of the existing block
3397 * groups might be suitable for extent allocation due to their incompatible
3398 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3399 * use a RAID1 profile, in degraded mode using a single device). In this case
3400 * when the task attempts to COW some extent buffer of the extent btree for
3401 * example, it will trigger allocation of a new metadata block group with a
3402 * suitable profile (SINGLE profile in the example of the degraded mount of
3403 * the RAID1 filesystem);
3404 *
3405 * 3) The task has reserved enough transaction units / metadata space, but when
3406 * it attempts to COW an extent buffer from the extent or device btree for
3407 * example, it does not find any free extent in any metadata block group,
3408 * therefore forced to try to allocate a new metadata block group.
3409 * This is because some other task allocated all available extents in the
3410 * meanwhile - this typically happens with tasks that don't reserve space
3411 * properly, either intentionally or as a bug. One example where this is
3412 * done intentionally is fsync, as it does not reserve any transaction units
3413 * and ends up allocating a variable number of metadata extents for log
3414 * tree extent buffers.
3415 *
3416 * We also need this 2 phases setup when adding a device to a filesystem with
3417 * a seed device - we must create new metadata and system chunks without adding
3418 * any of the block group items to the chunk, extent and device btrees. If we
3419 * did not do it this way, we would get ENOSPC when attempting to update those
3420 * btrees, since all the chunks from the seed device are read-only.
3421 *
3422 * Phase 1 does the updates and insertions to the chunk btree because if we had
3423 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3424 * parallel, we risk having too many system chunks allocated by many tasks if
3425 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3426 * extreme case this leads to exhaustion of the system chunk array in the
3427 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3428 * and with RAID filesystems (so we have more device items in the chunk btree).
3429 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3430 * the system chunk array due to concurrent allocations") provides more details.
3431 *
3432 * For allocation of system chunks, we defer the updates and insertions into the
3433 * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
3434 * if the chunk allocation is triggered while COWing an extent buffer of the
3435 * chunk btree, we are holding a lock on the parent of that extent buffer and
3436 * doing the chunk btree updates and insertions can require locking that parent.
3437 * This is for the very few and rare cases where we update the chunk btree that
3438 * are not chunk allocation or chunk removal: adding a device, removing a device
3439 * or resizing a device.
3440 *
3441 * The reservation of system space, done through check_system_chunk(), as well
3442 * as all the updates and insertions into the chunk btree must be done while
3443 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3444 * an extent buffer from the chunks btree we never trigger allocation of a new
3445 * system chunk, which would result in a deadlock (trying to lock twice an
3446 * extent buffer of the chunk btree, first time before triggering the chunk
3447 * allocation and the second time during chunk allocation while attempting to
3448 * update the chunks btree). The system chunk array is also updated while holding
3449 * that mutex. The same logic applies to removing chunks - we must reserve system
3450 * space, update the chunk btree and the system chunk array in the superblock
3451 * while holding fs_info->chunk_mutex.
3452 *
3453 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3454 *
3455 * If @force is CHUNK_ALLOC_FORCE:
3456 * - return 1 if it successfully allocates a chunk,
3457 * - return errors including -ENOSPC otherwise.
3458 * If @force is NOT CHUNK_ALLOC_FORCE:
3459 * - return 0 if it doesn't need to allocate a new chunk,
3460 * - return 1 if it successfully allocates a chunk,
3461 * - return errors including -ENOSPC otherwise.
3462 */
3463int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3464 enum btrfs_chunk_alloc_enum force)
3465{
3466 struct btrfs_fs_info *fs_info = trans->fs_info;
3467 struct btrfs_space_info *space_info;
3468 bool wait_for_alloc = false;
3469 bool should_alloc = false;
3470 int ret = 0;
3471
3472 /* Don't re-enter if we're already allocating a chunk */
3473 if (trans->allocating_chunk)
3474 return -ENOSPC;
3475 /*
3476 * If we are removing a chunk, don't re-enter or we would deadlock.
3477 * System space reservation and system chunk allocation is done by the
3478 * chunk remove operation (btrfs_remove_chunk()).
3479 */
3480 if (trans->removing_chunk)
3481 return -ENOSPC;
3482
3483 space_info = btrfs_find_space_info(fs_info, flags);
3484 ASSERT(space_info);
3485
3486 do {
3487 spin_lock(&space_info->lock);
3488 if (force < space_info->force_alloc)
3489 force = space_info->force_alloc;
3490 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3491 if (space_info->full) {
3492 /* No more free physical space */
3493 if (should_alloc)
3494 ret = -ENOSPC;
3495 else
3496 ret = 0;
3497 spin_unlock(&space_info->lock);
3498 return ret;
3499 } else if (!should_alloc) {
3500 spin_unlock(&space_info->lock);
3501 return 0;
3502 } else if (space_info->chunk_alloc) {
3503 /*
3504 * Someone is already allocating, so we need to block
3505 * until this someone is finished and then loop to
3506 * recheck if we should continue with our allocation
3507 * attempt.
3508 */
3509 wait_for_alloc = true;
3510 spin_unlock(&space_info->lock);
3511 mutex_lock(&fs_info->chunk_mutex);
3512 mutex_unlock(&fs_info->chunk_mutex);
3513 } else {
3514 /* Proceed with allocation */
3515 space_info->chunk_alloc = 1;
3516 wait_for_alloc = false;
3517 spin_unlock(&space_info->lock);
3518 }
3519
3520 cond_resched();
3521 } while (wait_for_alloc);
3522
3523 mutex_lock(&fs_info->chunk_mutex);
3524 trans->allocating_chunk = true;
3525
3526 /*
3527 * If we have mixed data/metadata chunks we want to make sure we keep
3528 * allocating mixed chunks instead of individual chunks.
3529 */
3530 if (btrfs_mixed_space_info(space_info))
3531 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3532
3533 /*
3534 * if we're doing a data chunk, go ahead and make sure that
3535 * we keep a reasonable number of metadata chunks allocated in the
3536 * FS as well.
3537 */
3538 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3539 fs_info->data_chunk_allocations++;
3540 if (!(fs_info->data_chunk_allocations %
3541 fs_info->metadata_ratio))
3542 force_metadata_allocation(fs_info);
3543 }
3544
3545 ret = do_chunk_alloc(trans, flags);
3546 trans->allocating_chunk = false;
3547
3548 spin_lock(&space_info->lock);
3549 if (ret < 0) {
3550 if (ret == -ENOSPC)
3551 space_info->full = 1;
3552 else
3553 goto out;
3554 } else {
3555 ret = 1;
3556 space_info->max_extent_size = 0;
3557 }
3558
3559 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3560out:
3561 space_info->chunk_alloc = 0;
3562 spin_unlock(&space_info->lock);
3563 mutex_unlock(&fs_info->chunk_mutex);
3564
3565 return ret;
3566}
3567
3568static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3569{
3570 u64 num_dev;
3571
3572 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3573 if (!num_dev)
3574 num_dev = fs_info->fs_devices->rw_devices;
3575
3576 return num_dev;
3577}
3578
3579/*
3580 * Reserve space in the system space for allocating or removing a chunk
3581 */
3582void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3583{
3584 struct btrfs_fs_info *fs_info = trans->fs_info;
3585 struct btrfs_space_info *info;
3586 u64 left;
3587 u64 thresh;
3588 int ret = 0;
3589 u64 num_devs;
3590
3591 /*
3592 * Needed because we can end up allocating a system chunk and for an
3593 * atomic and race free space reservation in the chunk block reserve.
3594 */
3595 lockdep_assert_held(&fs_info->chunk_mutex);
3596
3597 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3598 spin_lock(&info->lock);
3599 left = info->total_bytes - btrfs_space_info_used(info, true);
3600 spin_unlock(&info->lock);
3601
3602 num_devs = get_profile_num_devs(fs_info, type);
3603
3604 /* num_devs device items to update and 1 chunk item to add or remove */
3605 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3606 btrfs_calc_insert_metadata_size(fs_info, 1);
3607
3608 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3609 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3610 left, thresh, type);
3611 btrfs_dump_space_info(fs_info, info, 0, 0);
3612 }
3613
3614 if (left < thresh) {
3615 u64 flags = btrfs_system_alloc_profile(fs_info);
3616 struct btrfs_block_group *bg;
3617
3618 /*
3619 * Ignore failure to create system chunk. We might end up not
3620 * needing it, as we might not need to COW all nodes/leafs from
3621 * the paths we visit in the chunk tree (they were already COWed
3622 * or created in the current transaction for example).
3623 *
3624 * Also, if our caller is allocating a system chunk, do not
3625 * attempt to insert the chunk item in the chunk btree, as we
3626 * could deadlock on an extent buffer since our caller may be
3627 * COWing an extent buffer from the chunk btree.
3628 */
3629 bg = btrfs_alloc_chunk(trans, flags);
3630 if (IS_ERR(bg)) {
3631 ret = PTR_ERR(bg);
3632 } else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
3633 /*
3634 * If we fail to add the chunk item here, we end up
3635 * trying again at phase 2 of chunk allocation, at
3636 * btrfs_create_pending_block_groups(). So ignore
3637 * any error here.
3638 */
3639 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3640 }
3641 }
3642
3643 if (!ret) {
3644 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3645 &fs_info->chunk_block_rsv,
3646 thresh, BTRFS_RESERVE_NO_FLUSH);
3647 if (!ret)
3648 trans->chunk_bytes_reserved += thresh;
3649 }
3650}
3651
3652void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3653{
3654 struct btrfs_block_group *block_group;
3655 u64 last = 0;
3656
3657 while (1) {
3658 struct inode *inode;
3659
3660 block_group = btrfs_lookup_first_block_group(info, last);
3661 while (block_group) {
3662 btrfs_wait_block_group_cache_done(block_group);
3663 spin_lock(&block_group->lock);
3664 if (block_group->iref)
3665 break;
3666 spin_unlock(&block_group->lock);
3667 block_group = btrfs_next_block_group(block_group);
3668 }
3669 if (!block_group) {
3670 if (last == 0)
3671 break;
3672 last = 0;
3673 continue;
3674 }
3675
3676 inode = block_group->inode;
3677 block_group->iref = 0;
3678 block_group->inode = NULL;
3679 spin_unlock(&block_group->lock);
3680 ASSERT(block_group->io_ctl.inode == NULL);
3681 iput(inode);
3682 last = block_group->start + block_group->length;
3683 btrfs_put_block_group(block_group);
3684 }
3685}
3686
3687/*
3688 * Must be called only after stopping all workers, since we could have block
3689 * group caching kthreads running, and therefore they could race with us if we
3690 * freed the block groups before stopping them.
3691 */
3692int btrfs_free_block_groups(struct btrfs_fs_info *info)
3693{
3694 struct btrfs_block_group *block_group;
3695 struct btrfs_space_info *space_info;
3696 struct btrfs_caching_control *caching_ctl;
3697 struct rb_node *n;
3698
3699 spin_lock(&info->block_group_cache_lock);
3700 while (!list_empty(&info->caching_block_groups)) {
3701 caching_ctl = list_entry(info->caching_block_groups.next,
3702 struct btrfs_caching_control, list);
3703 list_del(&caching_ctl->list);
3704 btrfs_put_caching_control(caching_ctl);
3705 }
3706 spin_unlock(&info->block_group_cache_lock);
3707
3708 spin_lock(&info->unused_bgs_lock);
3709 while (!list_empty(&info->unused_bgs)) {
3710 block_group = list_first_entry(&info->unused_bgs,
3711 struct btrfs_block_group,
3712 bg_list);
3713 list_del_init(&block_group->bg_list);
3714 btrfs_put_block_group(block_group);
3715 }
3716 spin_unlock(&info->unused_bgs_lock);
3717
3718 spin_lock(&info->unused_bgs_lock);
3719 while (!list_empty(&info->reclaim_bgs)) {
3720 block_group = list_first_entry(&info->reclaim_bgs,
3721 struct btrfs_block_group,
3722 bg_list);
3723 list_del_init(&block_group->bg_list);
3724 btrfs_put_block_group(block_group);
3725 }
3726 spin_unlock(&info->unused_bgs_lock);
3727
3728 spin_lock(&info->block_group_cache_lock);
3729 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3730 block_group = rb_entry(n, struct btrfs_block_group,
3731 cache_node);
3732 rb_erase(&block_group->cache_node,
3733 &info->block_group_cache_tree);
3734 RB_CLEAR_NODE(&block_group->cache_node);
3735 spin_unlock(&info->block_group_cache_lock);
3736
3737 down_write(&block_group->space_info->groups_sem);
3738 list_del(&block_group->list);
3739 up_write(&block_group->space_info->groups_sem);
3740
3741 /*
3742 * We haven't cached this block group, which means we could
3743 * possibly have excluded extents on this block group.
3744 */
3745 if (block_group->cached == BTRFS_CACHE_NO ||
3746 block_group->cached == BTRFS_CACHE_ERROR)
3747 btrfs_free_excluded_extents(block_group);
3748
3749 btrfs_remove_free_space_cache(block_group);
3750 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3751 ASSERT(list_empty(&block_group->dirty_list));
3752 ASSERT(list_empty(&block_group->io_list));
3753 ASSERT(list_empty(&block_group->bg_list));
3754 ASSERT(refcount_read(&block_group->refs) == 1);
3755 ASSERT(block_group->swap_extents == 0);
3756 btrfs_put_block_group(block_group);
3757
3758 spin_lock(&info->block_group_cache_lock);
3759 }
3760 spin_unlock(&info->block_group_cache_lock);
3761
3762 btrfs_release_global_block_rsv(info);
3763
3764 while (!list_empty(&info->space_info)) {
3765 space_info = list_entry(info->space_info.next,
3766 struct btrfs_space_info,
3767 list);
3768
3769 /*
3770 * Do not hide this behind enospc_debug, this is actually
3771 * important and indicates a real bug if this happens.
3772 */
3773 if (WARN_ON(space_info->bytes_pinned > 0 ||
3774 space_info->bytes_reserved > 0 ||
3775 space_info->bytes_may_use > 0))
3776 btrfs_dump_space_info(info, space_info, 0, 0);
3777 WARN_ON(space_info->reclaim_size > 0);
3778 list_del(&space_info->list);
3779 btrfs_sysfs_remove_space_info(space_info);
3780 }
3781 return 0;
3782}
3783
3784void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3785{
3786 atomic_inc(&cache->frozen);
3787}
3788
3789void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3790{
3791 struct btrfs_fs_info *fs_info = block_group->fs_info;
3792 struct extent_map_tree *em_tree;
3793 struct extent_map *em;
3794 bool cleanup;
3795
3796 spin_lock(&block_group->lock);
3797 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3798 block_group->removed);
3799 spin_unlock(&block_group->lock);
3800
3801 if (cleanup) {
3802 em_tree = &fs_info->mapping_tree;
3803 write_lock(&em_tree->lock);
3804 em = lookup_extent_mapping(em_tree, block_group->start,
3805 1);
3806 BUG_ON(!em); /* logic error, can't happen */
3807 remove_extent_mapping(em_tree, em);
3808 write_unlock(&em_tree->lock);
3809
3810 /* once for us and once for the tree */
3811 free_extent_map(em);
3812 free_extent_map(em);
3813
3814 /*
3815 * We may have left one free space entry and other possible
3816 * tasks trimming this block group have left 1 entry each one.
3817 * Free them if any.
3818 */
3819 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3820 }
3821}
3822
3823bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3824{
3825 bool ret = true;
3826
3827 spin_lock(&bg->lock);
3828 if (bg->ro)
3829 ret = false;
3830 else
3831 bg->swap_extents++;
3832 spin_unlock(&bg->lock);
3833
3834 return ret;
3835}
3836
3837void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3838{
3839 spin_lock(&bg->lock);
3840 ASSERT(!bg->ro);
3841 ASSERT(bg->swap_extents >= amount);
3842 bg->swap_extents -= amount;
3843 spin_unlock(&bg->lock);
3844}