Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
  4 *
  5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
  6 */
  7
  8#include <linux/kernel.h>
  9#include <linux/clk.h>
 10#include <linux/iopoll.h>
 11#include <linux/clk-provider.h>
 12#include <linux/delay.h>
 13#include <linux/init.h>
 14#include <linux/mfd/syscon.h>
 15#include <linux/module.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/reset.h>
 20#include <linux/time64.h>
 21
 22#include <linux/phy/phy.h>
 23#include <linux/phy/phy-mipi-dphy.h>
 24
 25#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
 26
 27/*
 28 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
 29 * is the first address, the other from the bit4 to bit0 is the second address.
 30 * when you configure the registers, you must set both of them. The Clock Lane
 31 * and Data Lane use the same registers with the same second address, but the
 32 * first address is different.
 33 */
 34#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
 35#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
 36#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
 37					 SECOND_ADDRESS(second))
 38
 39/* Analog Register Part: reg00 */
 40#define BANDGAP_POWER_MASK			BIT(7)
 41#define BANDGAP_POWER_DOWN			BIT(7)
 42#define BANDGAP_POWER_ON			0
 43#define LANE_EN_MASK				GENMASK(6, 2)
 44#define LANE_EN_CK				BIT(6)
 45#define LANE_EN_3				BIT(5)
 46#define LANE_EN_2				BIT(4)
 47#define LANE_EN_1				BIT(3)
 48#define LANE_EN_0				BIT(2)
 49#define POWER_WORK_MASK				GENMASK(1, 0)
 50#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
 51#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
 52/* Analog Register Part: reg01 */
 53#define REG_SYNCRST_MASK			BIT(2)
 54#define REG_SYNCRST_RESET			BIT(2)
 55#define REG_SYNCRST_NORMAL			0
 56#define REG_LDOPD_MASK				BIT(1)
 57#define REG_LDOPD_POWER_DOWN			BIT(1)
 58#define REG_LDOPD_POWER_ON			0
 59#define REG_PLLPD_MASK				BIT(0)
 60#define REG_PLLPD_POWER_DOWN			BIT(0)
 61#define REG_PLLPD_POWER_ON			0
 62/* Analog Register Part: reg03 */
 63#define REG_FBDIV_HI_MASK			BIT(5)
 64#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
 65#define REG_PREDIV_MASK				GENMASK(4, 0)
 66#define REG_PREDIV(x)				UPDATE(x, 4, 0)
 67/* Analog Register Part: reg04 */
 68#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
 69#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
 70/* Analog Register Part: reg05 */
 71#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
 72#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
 73#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
 74#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 75/* Analog Register Part: reg06 */
 76#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
 77#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 78#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
 79#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 80/* Analog Register Part: reg07 */
 81#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
 82#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
 83#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
 84#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
 85/* Analog Register Part: reg08 */
 86#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
 87#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
 88#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
 89/* Digital Register Part: reg00 */
 90#define REG_DIG_RSTN_MASK			BIT(0)
 91#define REG_DIG_RSTN_NORMAL			BIT(0)
 92#define REG_DIG_RSTN_RESET			0
 93/* Digital Register Part: reg01 */
 94#define INVERT_TXCLKESC_MASK			BIT(1)
 95#define INVERT_TXCLKESC_ENABLE			BIT(1)
 96#define INVERT_TXCLKESC_DISABLE			0
 97#define INVERT_TXBYTECLKHS_MASK			BIT(0)
 98#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
 99#define INVERT_TXBYTECLKHS_DISABLE		0
100/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
101#define T_LPX_CNT_MASK				GENMASK(5, 0)
102#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
103/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
104#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
105#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
106/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
107#define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
108#define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
109/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
110#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
111#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
112/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
113#define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
114#define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
115/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
116#define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
117#define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
118/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
119#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
120#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
121#define LPDT_TX_PPI_SYNC_DISABLE		0
122#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
123#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
124/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
125#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
126#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
127/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
128#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
129#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
130/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
131#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
132#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
133/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
134#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
135#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
136/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
137#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
138#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
139/* LVDS Register Part: reg00 */
140#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
141#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
142#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
143/* LVDS Register Part: reg01 */
144#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
145#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
146#define LVDS_DIGITAL_INTERNAL_DISABLE		0
147/* LVDS Register Part: reg03 */
148#define MODE_ENABLE_MASK			GENMASK(2, 0)
149#define TTL_MODE_ENABLE				BIT(2)
150#define LVDS_MODE_ENABLE			BIT(1)
151#define MIPI_MODE_ENABLE			BIT(0)
152/* LVDS Register Part: reg0b */
153#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
154#define LVDS_DATA_LANE0_EN			BIT(7)
155#define LVDS_DATA_LANE1_EN			BIT(6)
156#define LVDS_DATA_LANE2_EN			BIT(5)
157#define LVDS_DATA_LANE3_EN			BIT(4)
158#define LVDS_CLK_LANE_EN			BIT(3)
159#define LVDS_PLL_POWER_MASK			BIT(2)
160#define LVDS_PLL_POWER_OFF			BIT(2)
161#define LVDS_PLL_POWER_ON			0
162#define LVDS_BANDGAP_POWER_MASK			BIT(0)
163#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
164#define LVDS_BANDGAP_POWER_ON			0
165
166#define DSI_PHY_RSTZ		0xa0
167#define PHY_ENABLECLK		BIT(2)
168#define DSI_PHY_STATUS		0xb0
169#define PHY_LOCK		BIT(0)
170
171struct inno_dsidphy {
172	struct device *dev;
173	struct clk *ref_clk;
174	struct clk *pclk_phy;
175	struct clk *pclk_host;
176	void __iomem *phy_base;
177	void __iomem *host_base;
178	struct reset_control *rst;
179	enum phy_mode mode;
180	struct phy_configure_opts_mipi_dphy dphy_cfg;
181
182	struct clk *pll_clk;
183	struct {
184		struct clk_hw hw;
185		u8 prediv;
186		u16 fbdiv;
187		unsigned long rate;
188	} pll;
189};
190
191enum {
192	REGISTER_PART_ANALOG,
193	REGISTER_PART_DIGITAL,
194	REGISTER_PART_CLOCK_LANE,
195	REGISTER_PART_DATA0_LANE,
196	REGISTER_PART_DATA1_LANE,
197	REGISTER_PART_DATA2_LANE,
198	REGISTER_PART_DATA3_LANE,
199	REGISTER_PART_LVDS,
200};
201
202static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
203{
204	return container_of(hw, struct inno_dsidphy, pll.hw);
205}
206
207static void phy_update_bits(struct inno_dsidphy *inno,
208			    u8 first, u8 second, u8 mask, u8 val)
209{
210	u32 reg = PHY_REG(first, second) << 2;
211	unsigned int tmp, orig;
212
213	orig = readl(inno->phy_base + reg);
214	tmp = orig & ~mask;
215	tmp |= val & mask;
216	writel(tmp, inno->phy_base + reg);
217}
218
219static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
220						unsigned long rate)
221{
222	unsigned long prate = clk_get_rate(inno->ref_clk);
223	unsigned long best_freq = 0;
224	unsigned long fref, fout;
225	u8 min_prediv, max_prediv;
226	u8 _prediv, best_prediv = 1;
227	u16 _fbdiv, best_fbdiv = 1;
228	u32 min_delta = UINT_MAX;
229
230	/*
231	 * The PLL output frequency can be calculated using a simple formula:
232	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
233	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
234	 */
235	fref = prate / 2;
236	if (rate > 1000000000UL)
237		fout = 1000000000UL;
238	else
239		fout = rate;
240
241	/* 5Mhz < Fref / prediv < 40MHz */
242	min_prediv = DIV_ROUND_UP(fref, 40000000);
243	max_prediv = fref / 5000000;
244
245	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
246		u64 tmp;
247		u32 delta;
248
249		tmp = (u64)fout * _prediv;
250		do_div(tmp, fref);
251		_fbdiv = tmp;
252
253		/*
254		 * The possible settings of feedback divider are
255		 * 12, 13, 14, 16, ~ 511
256		 */
257		if (_fbdiv == 15)
258			continue;
259
260		if (_fbdiv < 12 || _fbdiv > 511)
261			continue;
262
263		tmp = (u64)_fbdiv * fref;
264		do_div(tmp, _prediv);
265
266		delta = abs(fout - tmp);
267		if (!delta) {
268			best_prediv = _prediv;
269			best_fbdiv = _fbdiv;
270			best_freq = tmp;
271			break;
272		} else if (delta < min_delta) {
273			best_prediv = _prediv;
274			best_fbdiv = _fbdiv;
275			best_freq = tmp;
276			min_delta = delta;
277		}
278	}
279
280	if (best_freq) {
281		inno->pll.prediv = best_prediv;
282		inno->pll.fbdiv = best_fbdiv;
283		inno->pll.rate = best_freq;
284	}
285
286	return best_freq;
287}
288
289static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
290{
291	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
292	const struct {
293		unsigned long rate;
294		u8 hs_prepare;
295		u8 clk_lane_hs_zero;
296		u8 data_lane_hs_zero;
297		u8 hs_trail;
298	} timings[] = {
299		{ 110000000, 0x20, 0x16, 0x02, 0x22},
300		{ 150000000, 0x06, 0x16, 0x03, 0x45},
301		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
302		{ 250000000, 0x05, 0x17, 0x05, 0x16},
303		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
304		{ 400000000, 0x64, 0x19, 0x07, 0x33},
305		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
306		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
307		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
308		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
309		{1000000000, 0x09, 0x20, 0x09, 0x27},
310	};
311	u32 t_txbyteclkhs, t_txclkesc;
312	u32 txbyteclkhs, txclkesc, esc_clk_div;
313	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
314	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
315	unsigned int i;
316
317	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
318
319	/* Select MIPI mode */
320	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
321			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
322	/* Configure PLL */
323	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
324			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
325	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
326			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
327	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
328			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
329	/* Enable PLL and LDO */
330	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
331			REG_LDOPD_MASK | REG_PLLPD_MASK,
332			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
333	/* Reset analog */
334	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
335			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
336	udelay(1);
337	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
338			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
339	/* Reset digital */
340	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
341			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
342	udelay(1);
343	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
344			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
345
346	txbyteclkhs = inno->pll.rate / 8;
347	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
348
349	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
350	txclkesc = txbyteclkhs / esc_clk_div;
351	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
352
353	/*
354	 * The value of counter for HS Ths-exit
355	 * Ths-exit = Tpin_txbyteclkhs * value
356	 */
357	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
358	/*
359	 * The value of counter for HS Tclk-post
360	 * Tclk-post = Tpin_txbyteclkhs * value
361	 */
362	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
363	/*
364	 * The value of counter for HS Tclk-pre
365	 * Tclk-pre = Tpin_txbyteclkhs * value
366	 */
367	clk_pre = DIV_ROUND_UP(cfg->clk_pre, t_txbyteclkhs);
368
369	/*
370	 * The value of counter for HS Tlpx Time
371	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
372	 */
373	lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
374	if (lpx >= 2)
375		lpx -= 2;
376
377	/*
378	 * The value of counter for HS Tta-go
379	 * Tta-go for turnaround
380	 * Tta-go = Ttxclkesc * value
381	 */
382	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
383	/*
384	 * The value of counter for HS Tta-sure
385	 * Tta-sure for turnaround
386	 * Tta-sure = Ttxclkesc * value
387	 */
388	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
389	/*
390	 * The value of counter for HS Tta-wait
391	 * Tta-wait for turnaround
392	 * Tta-wait = Ttxclkesc * value
393	 */
394	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
395
396	for (i = 0; i < ARRAY_SIZE(timings); i++)
397		if (inno->pll.rate <= timings[i].rate)
398			break;
399
400	if (i == ARRAY_SIZE(timings))
401		--i;
402
403	hs_prepare = timings[i].hs_prepare;
404	hs_trail = timings[i].hs_trail;
405	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
406	data_lane_hs_zero = timings[i].data_lane_hs_zero;
407	wakeup = 0x3ff;
408
409	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
410		if (i == REGISTER_PART_CLOCK_LANE)
411			hs_zero = clk_lane_hs_zero;
412		else
413			hs_zero = data_lane_hs_zero;
414
415		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
416				T_LPX_CNT(lpx));
417		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
418				T_HS_PREPARE_CNT(hs_prepare));
419		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
420				T_HS_ZERO_CNT(hs_zero));
421		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
422				T_HS_TRAIL_CNT(hs_trail));
423		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
424				T_HS_EXIT_CNT(hs_exit));
425		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
426				T_CLK_POST_CNT(clk_post));
427		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
428				T_CLK_PRE_CNT(clk_pre));
429		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
430				T_WAKEUP_CNT_HI(wakeup >> 8));
431		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
432				T_WAKEUP_CNT_LO(wakeup));
433		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
434				T_TA_GO_CNT(ta_go));
435		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
436				T_TA_SURE_CNT(ta_sure));
437		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
438				T_TA_WAIT_CNT(ta_wait));
439	}
440
441	/* Enable all lanes on analog part */
442	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
443			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
444			LANE_EN_1 | LANE_EN_0);
445}
446
447static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
448{
449	u8 prediv = 2;
450	u16 fbdiv = 28;
451
452	/* Sample clock reverse direction */
453	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
454			SAMPLE_CLOCK_DIRECTION_MASK,
455			SAMPLE_CLOCK_DIRECTION_REVERSE);
456
457	/* Select LVDS mode */
458	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
459			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
460	/* Configure PLL */
461	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
462			REG_PREDIV_MASK, REG_PREDIV(prediv));
463	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
464			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
465	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
466			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
467	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
468	/* Enable PLL and Bandgap */
469	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
470			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
471			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
472
473	msleep(20);
474
475	/* Reset LVDS digital logic */
476	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
477			LVDS_DIGITAL_INTERNAL_RESET_MASK,
478			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
479	udelay(1);
480	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
481			LVDS_DIGITAL_INTERNAL_RESET_MASK,
482			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
483	/* Enable LVDS digital logic */
484	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
485			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
486			LVDS_DIGITAL_INTERNAL_ENABLE);
487	/* Enable LVDS analog driver */
488	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
489			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
490			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
491			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
492}
493
494static int inno_dsidphy_power_on(struct phy *phy)
495{
496	struct inno_dsidphy *inno = phy_get_drvdata(phy);
497
498	clk_prepare_enable(inno->pclk_phy);
499	clk_prepare_enable(inno->ref_clk);
500	pm_runtime_get_sync(inno->dev);
501
502	/* Bandgap power on */
503	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
504			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
505	/* Enable power work */
506	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
507			POWER_WORK_MASK, POWER_WORK_ENABLE);
508
509	switch (inno->mode) {
510	case PHY_MODE_MIPI_DPHY:
511		inno_dsidphy_mipi_mode_enable(inno);
512		break;
513	case PHY_MODE_LVDS:
514		inno_dsidphy_lvds_mode_enable(inno);
515		break;
516	default:
517		return -EINVAL;
518	}
519
520	return 0;
521}
522
523static int inno_dsidphy_power_off(struct phy *phy)
524{
525	struct inno_dsidphy *inno = phy_get_drvdata(phy);
526
527	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
528	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
529			REG_LDOPD_MASK | REG_PLLPD_MASK,
530			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
531	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
532			POWER_WORK_MASK, POWER_WORK_DISABLE);
533	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
534			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
535
536	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
537	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
538			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
539			LVDS_DIGITAL_INTERNAL_DISABLE);
540	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
541			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
542			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
543
544	pm_runtime_put(inno->dev);
545	clk_disable_unprepare(inno->ref_clk);
546	clk_disable_unprepare(inno->pclk_phy);
547
548	return 0;
549}
550
551static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
552				   int submode)
553{
554	struct inno_dsidphy *inno = phy_get_drvdata(phy);
555
556	switch (mode) {
557	case PHY_MODE_MIPI_DPHY:
558	case PHY_MODE_LVDS:
559		inno->mode = mode;
560		break;
561	default:
562		return -EINVAL;
563	}
564
565	return 0;
566}
567
568static int inno_dsidphy_configure(struct phy *phy,
569				  union phy_configure_opts *opts)
570{
571	struct inno_dsidphy *inno = phy_get_drvdata(phy);
572	int ret;
573
574	if (inno->mode != PHY_MODE_MIPI_DPHY)
575		return -EINVAL;
576
577	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
578	if (ret)
579		return ret;
580
581	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
582
583	return 0;
584}
585
586static const struct phy_ops inno_dsidphy_ops = {
587	.configure = inno_dsidphy_configure,
588	.set_mode = inno_dsidphy_set_mode,
589	.power_on = inno_dsidphy_power_on,
590	.power_off = inno_dsidphy_power_off,
591	.owner = THIS_MODULE,
592};
593
594static int inno_dsidphy_probe(struct platform_device *pdev)
595{
596	struct device *dev = &pdev->dev;
597	struct inno_dsidphy *inno;
598	struct phy_provider *phy_provider;
599	struct phy *phy;
600	int ret;
601
602	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
603	if (!inno)
604		return -ENOMEM;
605
606	inno->dev = dev;
607	platform_set_drvdata(pdev, inno);
608
609	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
610	if (IS_ERR(inno->phy_base))
611		return PTR_ERR(inno->phy_base);
612
613	inno->ref_clk = devm_clk_get(dev, "ref");
614	if (IS_ERR(inno->ref_clk)) {
615		ret = PTR_ERR(inno->ref_clk);
616		dev_err(dev, "failed to get ref clock: %d\n", ret);
617		return ret;
618	}
619
620	inno->pclk_phy = devm_clk_get(dev, "pclk");
621	if (IS_ERR(inno->pclk_phy)) {
622		ret = PTR_ERR(inno->pclk_phy);
623		dev_err(dev, "failed to get phy pclk: %d\n", ret);
624		return ret;
625	}
626
627	inno->rst = devm_reset_control_get(dev, "apb");
628	if (IS_ERR(inno->rst)) {
629		ret = PTR_ERR(inno->rst);
630		dev_err(dev, "failed to get system reset control: %d\n", ret);
631		return ret;
632	}
633
634	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
635	if (IS_ERR(phy)) {
636		ret = PTR_ERR(phy);
637		dev_err(dev, "failed to create phy: %d\n", ret);
638		return ret;
639	}
640
641	phy_set_drvdata(phy, inno);
642
643	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
644	if (IS_ERR(phy_provider)) {
645		ret = PTR_ERR(phy_provider);
646		dev_err(dev, "failed to register phy provider: %d\n", ret);
647		return ret;
648	}
649
650	pm_runtime_enable(dev);
651
652	return 0;
653}
654
655static int inno_dsidphy_remove(struct platform_device *pdev)
656{
657	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
658
659	pm_runtime_disable(inno->dev);
660
661	return 0;
662}
663
664static const struct of_device_id inno_dsidphy_of_match[] = {
665	{ .compatible = "rockchip,px30-dsi-dphy", },
666	{ .compatible = "rockchip,rk3128-dsi-dphy", },
667	{ .compatible = "rockchip,rk3368-dsi-dphy", },
668	{}
669};
670MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
671
672static struct platform_driver inno_dsidphy_driver = {
673	.driver = {
674		.name = "inno-dsidphy",
675		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
676	},
677	.probe = inno_dsidphy_probe,
678	.remove = inno_dsidphy_remove,
679};
680module_platform_driver(inno_dsidphy_driver);
681
682MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
683MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
684MODULE_LICENSE("GPL v2");