Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * vrf.c: device driver to encapsulate a VRF space
   3 *
   4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   7 *
   8 * Based on dummy, team and ipvlan drivers
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 */
  15
 
  16#include <linux/module.h>
  17#include <linux/kernel.h>
  18#include <linux/netdevice.h>
  19#include <linux/etherdevice.h>
  20#include <linux/ip.h>
  21#include <linux/init.h>
  22#include <linux/moduleparam.h>
  23#include <linux/netfilter.h>
  24#include <linux/rtnetlink.h>
  25#include <net/rtnetlink.h>
  26#include <linux/u64_stats_sync.h>
  27#include <linux/hashtable.h>
 
  28
  29#include <linux/inetdevice.h>
  30#include <net/arp.h>
  31#include <net/ip.h>
  32#include <net/ip_fib.h>
  33#include <net/ip6_fib.h>
  34#include <net/ip6_route.h>
  35#include <net/route.h>
  36#include <net/addrconf.h>
  37#include <net/l3mdev.h>
  38#include <net/fib_rules.h>
  39#include <net/netns/generic.h>
  40
  41#define DRV_NAME	"vrf"
  42#define DRV_VERSION	"1.0"
  43
  44#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46static unsigned int vrf_net_id;
  47
 
 
 
 
 
 
 
 
 
  48struct net_vrf {
  49	struct rtable __rcu	*rth;
  50	struct rt6_info	__rcu	*rt6;
 
 
 
  51	u32                     tb_id;
 
 
 
  52};
  53
  54struct pcpu_dstats {
  55	u64			tx_pkts;
  56	u64			tx_bytes;
  57	u64			tx_drps;
  58	u64			rx_pkts;
  59	u64			rx_bytes;
  60	u64			rx_drps;
  61	struct u64_stats_sync	syncp;
  62};
  63
  64static void vrf_rx_stats(struct net_device *dev, int len)
  65{
  66	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  67
  68	u64_stats_update_begin(&dstats->syncp);
  69	dstats->rx_pkts++;
  70	dstats->rx_bytes += len;
  71	u64_stats_update_end(&dstats->syncp);
  72}
  73
  74static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  75{
  76	vrf_dev->stats.tx_errors++;
  77	kfree_skb(skb);
  78}
  79
  80static void vrf_get_stats64(struct net_device *dev,
  81			    struct rtnl_link_stats64 *stats)
  82{
  83	int i;
  84
  85	for_each_possible_cpu(i) {
  86		const struct pcpu_dstats *dstats;
  87		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  88		unsigned int start;
  89
  90		dstats = per_cpu_ptr(dev->dstats, i);
  91		do {
  92			start = u64_stats_fetch_begin_irq(&dstats->syncp);
  93			tbytes = dstats->tx_bytes;
  94			tpkts = dstats->tx_pkts;
  95			tdrops = dstats->tx_drps;
  96			rbytes = dstats->rx_bytes;
  97			rpkts = dstats->rx_pkts;
  98		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  99		stats->tx_bytes += tbytes;
 100		stats->tx_packets += tpkts;
 101		stats->tx_dropped += tdrops;
 102		stats->rx_bytes += rbytes;
 103		stats->rx_packets += rpkts;
 104	}
 105}
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/* by default VRF devices do not have a qdisc and are expected
 108 * to be created with only a single queue.
 109 */
 110static bool qdisc_tx_is_default(const struct net_device *dev)
 111{
 112	struct netdev_queue *txq;
 113	struct Qdisc *qdisc;
 114
 115	if (dev->num_tx_queues > 1)
 116		return false;
 117
 118	txq = netdev_get_tx_queue(dev, 0);
 119	qdisc = rcu_access_pointer(txq->qdisc);
 120
 121	return !qdisc->enqueue;
 122}
 123
 124/* Local traffic destined to local address. Reinsert the packet to rx
 125 * path, similar to loopback handling.
 126 */
 127static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 128			  struct dst_entry *dst)
 129{
 130	int len = skb->len;
 131
 132	skb_orphan(skb);
 133
 134	skb_dst_set(skb, dst);
 135
 136	/* set pkt_type to avoid skb hitting packet taps twice -
 137	 * once on Tx and again in Rx processing
 138	 */
 139	skb->pkt_type = PACKET_LOOPBACK;
 140
 141	skb->protocol = eth_type_trans(skb, dev);
 142
 143	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 144		vrf_rx_stats(dev, len);
 145	else
 146		this_cpu_inc(dev->dstats->rx_drps);
 147
 148	return NETDEV_TX_OK;
 149}
 150
 151#if IS_ENABLED(CONFIG_IPV6)
 152static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 153			     struct sk_buff *skb)
 154{
 155	int err;
 156
 157	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 158		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 159
 160	if (likely(err == 1))
 161		err = dst_output(net, sk, skb);
 162
 163	return err;
 164}
 165
 166static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 167					   struct net_device *dev)
 168{
 169	const struct ipv6hdr *iph = ipv6_hdr(skb);
 170	struct net *net = dev_net(skb->dev);
 171	struct flowi6 fl6 = {
 172		/* needed to match OIF rule */
 173		.flowi6_oif = dev->ifindex,
 174		.flowi6_iif = LOOPBACK_IFINDEX,
 175		.daddr = iph->daddr,
 176		.saddr = iph->saddr,
 177		.flowlabel = ip6_flowinfo(iph),
 178		.flowi6_mark = skb->mark,
 179		.flowi6_proto = iph->nexthdr,
 180		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
 181	};
 182	int ret = NET_XMIT_DROP;
 183	struct dst_entry *dst;
 184	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 185
 186	dst = ip6_route_output(net, NULL, &fl6);
 187	if (dst == dst_null)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188		goto err;
 189
 190	skb_dst_drop(skb);
 191
 192	/* if dst.dev is loopback or the VRF device again this is locally
 193	 * originated traffic destined to a local address. Short circuit
 194	 * to Rx path
 195	 */
 196	if (dst->dev == dev)
 197		return vrf_local_xmit(skb, dev, dst);
 198
 199	skb_dst_set(skb, dst);
 200
 201	/* strip the ethernet header added for pass through VRF device */
 202	__skb_pull(skb, skb_network_offset(skb));
 203
 204	ret = vrf_ip6_local_out(net, skb->sk, skb);
 205	if (unlikely(net_xmit_eval(ret)))
 206		dev->stats.tx_errors++;
 207	else
 208		ret = NET_XMIT_SUCCESS;
 209
 210	return ret;
 211err:
 212	vrf_tx_error(dev, skb);
 213	return NET_XMIT_DROP;
 214}
 215#else
 216static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 217					   struct net_device *dev)
 218{
 219	vrf_tx_error(dev, skb);
 220	return NET_XMIT_DROP;
 221}
 222#endif
 223
 224/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 225static int vrf_ip_local_out(struct net *net, struct sock *sk,
 226			    struct sk_buff *skb)
 227{
 228	int err;
 229
 230	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 231		      skb, NULL, skb_dst(skb)->dev, dst_output);
 232	if (likely(err == 1))
 233		err = dst_output(net, sk, skb);
 234
 235	return err;
 236}
 237
 238static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 239					   struct net_device *vrf_dev)
 240{
 241	struct iphdr *ip4h = ip_hdr(skb);
 242	int ret = NET_XMIT_DROP;
 243	struct flowi4 fl4 = {
 244		/* needed to match OIF rule */
 245		.flowi4_oif = vrf_dev->ifindex,
 246		.flowi4_iif = LOOPBACK_IFINDEX,
 247		.flowi4_tos = RT_TOS(ip4h->tos),
 248		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
 249		.flowi4_proto = ip4h->protocol,
 250		.daddr = ip4h->daddr,
 251		.saddr = ip4h->saddr,
 252	};
 253	struct net *net = dev_net(vrf_dev);
 254	struct rtable *rt;
 255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256	rt = ip_route_output_flow(net, &fl4, NULL);
 257	if (IS_ERR(rt))
 258		goto err;
 259
 260	skb_dst_drop(skb);
 261
 262	/* if dst.dev is loopback or the VRF device again this is locally
 263	 * originated traffic destined to a local address. Short circuit
 264	 * to Rx path
 265	 */
 266	if (rt->dst.dev == vrf_dev)
 267		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 268
 269	skb_dst_set(skb, &rt->dst);
 270
 271	/* strip the ethernet header added for pass through VRF device */
 272	__skb_pull(skb, skb_network_offset(skb));
 273
 274	if (!ip4h->saddr) {
 275		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 276					       RT_SCOPE_LINK);
 277	}
 278
 279	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 280	if (unlikely(net_xmit_eval(ret)))
 281		vrf_dev->stats.tx_errors++;
 282	else
 283		ret = NET_XMIT_SUCCESS;
 284
 285out:
 286	return ret;
 287err:
 288	vrf_tx_error(vrf_dev, skb);
 289	goto out;
 290}
 291
 292static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 293{
 294	switch (skb->protocol) {
 295	case htons(ETH_P_IP):
 296		return vrf_process_v4_outbound(skb, dev);
 297	case htons(ETH_P_IPV6):
 298		return vrf_process_v6_outbound(skb, dev);
 299	default:
 300		vrf_tx_error(dev, skb);
 301		return NET_XMIT_DROP;
 302	}
 303}
 304
 305static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 306{
 307	int len = skb->len;
 308	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 309
 310	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 311		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 312
 313		u64_stats_update_begin(&dstats->syncp);
 314		dstats->tx_pkts++;
 315		dstats->tx_bytes += len;
 316		u64_stats_update_end(&dstats->syncp);
 317	} else {
 318		this_cpu_inc(dev->dstats->tx_drps);
 319	}
 320
 321	return ret;
 322}
 323
 324static int vrf_finish_direct(struct net *net, struct sock *sk,
 325			     struct sk_buff *skb)
 326{
 327	struct net_device *vrf_dev = skb->dev;
 328
 329	if (!list_empty(&vrf_dev->ptype_all) &&
 330	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 331		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 332
 333		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 334		eth_zero_addr(eth->h_dest);
 335		eth->h_proto = skb->protocol;
 336
 337		rcu_read_lock_bh();
 338		dev_queue_xmit_nit(skb, vrf_dev);
 339		rcu_read_unlock_bh();
 340
 341		skb_pull(skb, ETH_HLEN);
 342	}
 343
 344	return 1;
 
 345}
 346
 347#if IS_ENABLED(CONFIG_IPV6)
 348/* modelled after ip6_finish_output2 */
 349static int vrf_finish_output6(struct net *net, struct sock *sk,
 350			      struct sk_buff *skb)
 351{
 352	struct dst_entry *dst = skb_dst(skb);
 353	struct net_device *dev = dst->dev;
 
 354	struct neighbour *neigh;
 355	struct in6_addr *nexthop;
 356	int ret;
 357
 358	nf_reset(skb);
 359
 360	skb->protocol = htons(ETH_P_IPV6);
 361	skb->dev = dev;
 362
 363	rcu_read_lock_bh();
 364	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 365	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 366	if (unlikely(!neigh))
 367		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 368	if (!IS_ERR(neigh)) {
 369		sock_confirm_neigh(skb, neigh);
 370		ret = neigh_output(neigh, skb);
 371		rcu_read_unlock_bh();
 372		return ret;
 373	}
 374	rcu_read_unlock_bh();
 375
 376	IP6_INC_STATS(dev_net(dst->dev),
 377		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 378	kfree_skb(skb);
 379	return -EINVAL;
 380}
 381
 382/* modelled after ip6_output */
 383static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 384{
 385	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 386			    net, sk, skb, NULL, skb_dst(skb)->dev,
 387			    vrf_finish_output6,
 388			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 389}
 390
 391/* set dst on skb to send packet to us via dev_xmit path. Allows
 392 * packet to go through device based features such as qdisc, netfilter
 393 * hooks and packet sockets with skb->dev set to vrf device.
 394 */
 395static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 396					    struct sk_buff *skb)
 397{
 398	struct net_vrf *vrf = netdev_priv(vrf_dev);
 399	struct dst_entry *dst = NULL;
 400	struct rt6_info *rt6;
 401
 402	rcu_read_lock();
 403
 404	rt6 = rcu_dereference(vrf->rt6);
 405	if (likely(rt6)) {
 406		dst = &rt6->dst;
 407		dst_hold(dst);
 408	}
 409
 410	rcu_read_unlock();
 411
 412	if (unlikely(!dst)) {
 413		vrf_tx_error(vrf_dev, skb);
 414		return NULL;
 415	}
 416
 417	skb_dst_drop(skb);
 418	skb_dst_set(skb, dst);
 419
 420	return skb;
 421}
 422
 
 
 
 
 
 
 
 
 423static int vrf_output6_direct(struct net *net, struct sock *sk,
 424			      struct sk_buff *skb)
 425{
 
 
 426	skb->protocol = htons(ETH_P_IPV6);
 427
 428	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 429			    net, sk, skb, NULL, skb->dev,
 430			    vrf_finish_direct,
 431			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 435					  struct sock *sk,
 436					  struct sk_buff *skb)
 437{
 438	struct net *net = dev_net(vrf_dev);
 439	int err;
 440
 441	skb->dev = vrf_dev;
 442
 443	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 444		      skb, NULL, vrf_dev, vrf_output6_direct);
 445
 446	if (likely(err == 1))
 447		err = vrf_output6_direct(net, sk, skb);
 448
 449	/* reset skb device */
 450	if (likely(err == 1))
 451		nf_reset(skb);
 452	else
 453		skb = NULL;
 454
 455	return skb;
 456}
 457
 458static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 459				   struct sock *sk,
 460				   struct sk_buff *skb)
 461{
 462	/* don't divert link scope packets */
 463	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 464		return skb;
 465
 466	if (qdisc_tx_is_default(vrf_dev))
 
 467		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 468
 469	return vrf_ip6_out_redirect(vrf_dev, skb);
 470}
 471
 472/* holding rtnl */
 473static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 474{
 475	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 476	struct net *net = dev_net(dev);
 477	struct dst_entry *dst;
 478
 479	RCU_INIT_POINTER(vrf->rt6, NULL);
 480	synchronize_rcu();
 481
 482	/* move dev in dst's to loopback so this VRF device can be deleted
 483	 * - based on dst_ifdown
 484	 */
 485	if (rt6) {
 486		dst = &rt6->dst;
 487		dev_put(dst->dev);
 488		dst->dev = net->loopback_dev;
 489		dev_hold(dst->dev);
 490		dst_release(dst);
 491	}
 492}
 493
 494static int vrf_rt6_create(struct net_device *dev)
 495{
 496	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
 497	struct net_vrf *vrf = netdev_priv(dev);
 498	struct net *net = dev_net(dev);
 499	struct fib6_table *rt6i_table;
 500	struct rt6_info *rt6;
 501	int rc = -ENOMEM;
 502
 503	/* IPv6 can be CONFIG enabled and then disabled runtime */
 504	if (!ipv6_mod_enabled())
 505		return 0;
 506
 507	rt6i_table = fib6_new_table(net, vrf->tb_id);
 508	if (!rt6i_table)
 509		goto out;
 510
 511	/* create a dst for routing packets out a VRF device */
 512	rt6 = ip6_dst_alloc(net, dev, flags);
 513	if (!rt6)
 514		goto out;
 515
 516	rt6->rt6i_table = rt6i_table;
 517	rt6->dst.output	= vrf_output6;
 518
 519	rcu_assign_pointer(vrf->rt6, rt6);
 520
 521	rc = 0;
 522out:
 523	return rc;
 524}
 525#else
 526static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 527				   struct sock *sk,
 528				   struct sk_buff *skb)
 529{
 530	return skb;
 531}
 532
 533static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 534{
 535}
 536
 537static int vrf_rt6_create(struct net_device *dev)
 538{
 539	return 0;
 540}
 541#endif
 542
 543/* modelled after ip_finish_output2 */
 544static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 545{
 546	struct dst_entry *dst = skb_dst(skb);
 547	struct rtable *rt = (struct rtable *)dst;
 548	struct net_device *dev = dst->dev;
 549	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 550	struct neighbour *neigh;
 551	u32 nexthop;
 552	int ret = -EINVAL;
 553
 554	nf_reset(skb);
 555
 556	/* Be paranoid, rather than too clever. */
 557	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 558		struct sk_buff *skb2;
 559
 560		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 561		if (!skb2) {
 562			ret = -ENOMEM;
 563			goto err;
 564		}
 565		if (skb->sk)
 566			skb_set_owner_w(skb2, skb->sk);
 567
 568		consume_skb(skb);
 569		skb = skb2;
 570	}
 571
 572	rcu_read_lock_bh();
 573
 574	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
 575	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
 576	if (unlikely(!neigh))
 577		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
 578	if (!IS_ERR(neigh)) {
 579		sock_confirm_neigh(skb, neigh);
 580		ret = neigh_output(neigh, skb);
 
 581		rcu_read_unlock_bh();
 582		return ret;
 583	}
 584
 585	rcu_read_unlock_bh();
 586err:
 587	vrf_tx_error(skb->dev, skb);
 588	return ret;
 589}
 590
 591static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 592{
 593	struct net_device *dev = skb_dst(skb)->dev;
 594
 595	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 596
 597	skb->dev = dev;
 598	skb->protocol = htons(ETH_P_IP);
 599
 600	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 601			    net, sk, skb, NULL, dev,
 602			    vrf_finish_output,
 603			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 604}
 605
 606/* set dst on skb to send packet to us via dev_xmit path. Allows
 607 * packet to go through device based features such as qdisc, netfilter
 608 * hooks and packet sockets with skb->dev set to vrf device.
 609 */
 610static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 611					   struct sk_buff *skb)
 612{
 613	struct net_vrf *vrf = netdev_priv(vrf_dev);
 614	struct dst_entry *dst = NULL;
 615	struct rtable *rth;
 616
 617	rcu_read_lock();
 618
 619	rth = rcu_dereference(vrf->rth);
 620	if (likely(rth)) {
 621		dst = &rth->dst;
 622		dst_hold(dst);
 623	}
 624
 625	rcu_read_unlock();
 626
 627	if (unlikely(!dst)) {
 628		vrf_tx_error(vrf_dev, skb);
 629		return NULL;
 630	}
 631
 632	skb_dst_drop(skb);
 633	skb_dst_set(skb, dst);
 634
 635	return skb;
 636}
 637
 
 
 
 
 
 
 
 
 638static int vrf_output_direct(struct net *net, struct sock *sk,
 639			     struct sk_buff *skb)
 640{
 
 
 641	skb->protocol = htons(ETH_P_IP);
 642
 643	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 644			    net, sk, skb, NULL, skb->dev,
 645			    vrf_finish_direct,
 646			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647}
 648
 649static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 650					 struct sock *sk,
 651					 struct sk_buff *skb)
 652{
 653	struct net *net = dev_net(vrf_dev);
 654	int err;
 655
 656	skb->dev = vrf_dev;
 657
 658	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 659		      skb, NULL, vrf_dev, vrf_output_direct);
 660
 661	if (likely(err == 1))
 662		err = vrf_output_direct(net, sk, skb);
 663
 664	/* reset skb device */
 665	if (likely(err == 1))
 666		nf_reset(skb);
 667	else
 668		skb = NULL;
 669
 670	return skb;
 671}
 672
 673static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 674				  struct sock *sk,
 675				  struct sk_buff *skb)
 676{
 677	/* don't divert multicast or local broadcast */
 678	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 679	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
 680		return skb;
 681
 682	if (qdisc_tx_is_default(vrf_dev))
 
 683		return vrf_ip_out_direct(vrf_dev, sk, skb);
 684
 685	return vrf_ip_out_redirect(vrf_dev, skb);
 686}
 687
 688/* called with rcu lock held */
 689static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 690				  struct sock *sk,
 691				  struct sk_buff *skb,
 692				  u16 proto)
 693{
 694	switch (proto) {
 695	case AF_INET:
 696		return vrf_ip_out(vrf_dev, sk, skb);
 697	case AF_INET6:
 698		return vrf_ip6_out(vrf_dev, sk, skb);
 699	}
 700
 701	return skb;
 702}
 703
 704/* holding rtnl */
 705static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 706{
 707	struct rtable *rth = rtnl_dereference(vrf->rth);
 708	struct net *net = dev_net(dev);
 709	struct dst_entry *dst;
 710
 711	RCU_INIT_POINTER(vrf->rth, NULL);
 712	synchronize_rcu();
 713
 714	/* move dev in dst's to loopback so this VRF device can be deleted
 715	 * - based on dst_ifdown
 716	 */
 717	if (rth) {
 718		dst = &rth->dst;
 719		dev_put(dst->dev);
 720		dst->dev = net->loopback_dev;
 721		dev_hold(dst->dev);
 722		dst_release(dst);
 723	}
 724}
 725
 726static int vrf_rtable_create(struct net_device *dev)
 727{
 728	struct net_vrf *vrf = netdev_priv(dev);
 729	struct rtable *rth;
 730
 731	if (!fib_new_table(dev_net(dev), vrf->tb_id))
 732		return -ENOMEM;
 733
 734	/* create a dst for routing packets out through a VRF device */
 735	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
 736	if (!rth)
 737		return -ENOMEM;
 738
 739	rth->dst.output	= vrf_output;
 740
 741	rcu_assign_pointer(vrf->rth, rth);
 742
 743	return 0;
 744}
 745
 746/**************************** device handling ********************/
 747
 748/* cycle interface to flush neighbor cache and move routes across tables */
 749static void cycle_netdev(struct net_device *dev)
 
 750{
 751	unsigned int flags = dev->flags;
 752	int ret;
 753
 754	if (!netif_running(dev))
 755		return;
 756
 757	ret = dev_change_flags(dev, flags & ~IFF_UP);
 758	if (ret >= 0)
 759		ret = dev_change_flags(dev, flags);
 760
 761	if (ret < 0) {
 762		netdev_err(dev,
 763			   "Failed to cycle device %s; route tables might be wrong!\n",
 764			   dev->name);
 765	}
 766}
 767
 768static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 769			    struct netlink_ext_ack *extack)
 770{
 771	int ret;
 772
 773	/* do not allow loopback device to be enslaved to a VRF.
 774	 * The vrf device acts as the loopback for the vrf.
 775	 */
 776	if (port_dev == dev_net(dev)->loopback_dev) {
 777		NL_SET_ERR_MSG(extack,
 778			       "Can not enslave loopback device to a VRF");
 779		return -EOPNOTSUPP;
 780	}
 781
 782	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
 783	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
 784	if (ret < 0)
 785		goto err;
 786
 787	cycle_netdev(port_dev);
 788
 789	return 0;
 790
 791err:
 792	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 793	return ret;
 794}
 795
 796static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 797			 struct netlink_ext_ack *extack)
 798{
 799	if (netif_is_l3_master(port_dev)) {
 800		NL_SET_ERR_MSG(extack,
 801			       "Can not enslave an L3 master device to a VRF");
 802		return -EINVAL;
 803	}
 804
 805	if (netif_is_l3_slave(port_dev))
 806		return -EINVAL;
 807
 808	return do_vrf_add_slave(dev, port_dev, extack);
 809}
 810
 811/* inverse of do_vrf_add_slave */
 812static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 813{
 814	netdev_upper_dev_unlink(port_dev, dev);
 815	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 816
 817	cycle_netdev(port_dev);
 818
 819	return 0;
 820}
 821
 822static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 823{
 824	return do_vrf_del_slave(dev, port_dev);
 825}
 826
 827static void vrf_dev_uninit(struct net_device *dev)
 828{
 829	struct net_vrf *vrf = netdev_priv(dev);
 830
 831	vrf_rtable_release(dev, vrf);
 832	vrf_rt6_release(dev, vrf);
 833
 834	free_percpu(dev->dstats);
 835	dev->dstats = NULL;
 836}
 837
 838static int vrf_dev_init(struct net_device *dev)
 839{
 840	struct net_vrf *vrf = netdev_priv(dev);
 841
 842	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
 843	if (!dev->dstats)
 844		goto out_nomem;
 845
 846	/* create the default dst which points back to us */
 847	if (vrf_rtable_create(dev) != 0)
 848		goto out_stats;
 849
 850	if (vrf_rt6_create(dev) != 0)
 851		goto out_rth;
 852
 853	dev->flags = IFF_MASTER | IFF_NOARP;
 854
 855	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
 856	dev->mtu = 64 * 1024;
 857
 858	/* similarly, oper state is irrelevant; set to up to avoid confusion */
 859	dev->operstate = IF_OPER_UP;
 860	netdev_lockdep_set_classes(dev);
 861	return 0;
 862
 863out_rth:
 864	vrf_rtable_release(dev, vrf);
 865out_stats:
 866	free_percpu(dev->dstats);
 867	dev->dstats = NULL;
 868out_nomem:
 869	return -ENOMEM;
 870}
 871
 872static const struct net_device_ops vrf_netdev_ops = {
 873	.ndo_init		= vrf_dev_init,
 874	.ndo_uninit		= vrf_dev_uninit,
 875	.ndo_start_xmit		= vrf_xmit,
 
 876	.ndo_get_stats64	= vrf_get_stats64,
 877	.ndo_add_slave		= vrf_add_slave,
 878	.ndo_del_slave		= vrf_del_slave,
 879};
 880
 881static u32 vrf_fib_table(const struct net_device *dev)
 882{
 883	struct net_vrf *vrf = netdev_priv(dev);
 884
 885	return vrf->tb_id;
 886}
 887
 888static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 889{
 890	kfree_skb(skb);
 891	return 0;
 892}
 893
 894static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
 895				      struct sk_buff *skb,
 896				      struct net_device *dev)
 897{
 898	struct net *net = dev_net(dev);
 899
 900	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
 901		skb = NULL;    /* kfree_skb(skb) handled by nf code */
 902
 903	return skb;
 904}
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906#if IS_ENABLED(CONFIG_IPV6)
 907/* neighbor handling is done with actual device; do not want
 908 * to flip skb->dev for those ndisc packets. This really fails
 909 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
 910 * a start.
 911 */
 912static bool ipv6_ndisc_frame(const struct sk_buff *skb)
 913{
 914	const struct ipv6hdr *iph = ipv6_hdr(skb);
 915	bool rc = false;
 916
 917	if (iph->nexthdr == NEXTHDR_ICMP) {
 918		const struct icmp6hdr *icmph;
 919		struct icmp6hdr _icmph;
 920
 921		icmph = skb_header_pointer(skb, sizeof(*iph),
 922					   sizeof(_icmph), &_icmph);
 923		if (!icmph)
 924			goto out;
 925
 926		switch (icmph->icmp6_type) {
 927		case NDISC_ROUTER_SOLICITATION:
 928		case NDISC_ROUTER_ADVERTISEMENT:
 929		case NDISC_NEIGHBOUR_SOLICITATION:
 930		case NDISC_NEIGHBOUR_ADVERTISEMENT:
 931		case NDISC_REDIRECT:
 932			rc = true;
 933			break;
 934		}
 935	}
 936
 937out:
 938	return rc;
 939}
 940
 941static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
 942					     const struct net_device *dev,
 943					     struct flowi6 *fl6,
 944					     int ifindex,
 945					     const struct sk_buff *skb,
 946					     int flags)
 947{
 948	struct net_vrf *vrf = netdev_priv(dev);
 949	struct fib6_table *table = NULL;
 950	struct rt6_info *rt6;
 951
 952	rcu_read_lock();
 953
 954	/* fib6_table does not have a refcnt and can not be freed */
 955	rt6 = rcu_dereference(vrf->rt6);
 956	if (likely(rt6))
 957		table = rt6->rt6i_table;
 958
 959	rcu_read_unlock();
 960
 961	if (!table)
 962		return NULL;
 963
 964	return ip6_pol_route(net, table, ifindex, fl6, skb, flags);
 965}
 966
 967static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
 968			      int ifindex)
 969{
 970	const struct ipv6hdr *iph = ipv6_hdr(skb);
 971	struct flowi6 fl6 = {
 972		.flowi6_iif     = ifindex,
 973		.flowi6_mark    = skb->mark,
 974		.flowi6_proto   = iph->nexthdr,
 975		.daddr          = iph->daddr,
 976		.saddr          = iph->saddr,
 977		.flowlabel      = ip6_flowinfo(iph),
 978	};
 979	struct net *net = dev_net(vrf_dev);
 980	struct rt6_info *rt6;
 981
 982	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
 983				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
 984	if (unlikely(!rt6))
 985		return;
 986
 987	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
 988		return;
 989
 990	skb_dst_set(skb, &rt6->dst);
 991}
 992
 993static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
 994				   struct sk_buff *skb)
 995{
 996	int orig_iif = skb->skb_iif;
 997	bool need_strict;
 
 998
 999	/* loopback traffic; do not push through packet taps again.
1000	 * Reset pkt_type for upper layers to process skb
 
 
 
 
1001	 */
1002	if (skb->pkt_type == PACKET_LOOPBACK) {
1003		skb->dev = vrf_dev;
1004		skb->skb_iif = vrf_dev->ifindex;
1005		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1006		skb->pkt_type = PACKET_HOST;
 
 
 
 
 
1007		goto out;
1008	}
1009
1010	/* if packet is NDISC or addressed to multicast or link-local
1011	 * then keep the ingress interface
1012	 */
1013	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1014	if (!ipv6_ndisc_frame(skb) && !need_strict) {
1015		vrf_rx_stats(vrf_dev, skb->len);
1016		skb->dev = vrf_dev;
1017		skb->skb_iif = vrf_dev->ifindex;
1018
1019		if (!list_empty(&vrf_dev->ptype_all)) {
1020			skb_push(skb, skb->mac_len);
1021			dev_queue_xmit_nit(skb, vrf_dev);
1022			skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
1023		}
1024
1025		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1026	}
1027
1028	if (need_strict)
1029		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1030
1031	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1032out:
1033	return skb;
1034}
1035
1036#else
1037static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1038				   struct sk_buff *skb)
1039{
1040	return skb;
1041}
1042#endif
1043
1044static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1045				  struct sk_buff *skb)
1046{
1047	skb->dev = vrf_dev;
1048	skb->skb_iif = vrf_dev->ifindex;
1049	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1050
 
 
1051	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1052		goto out;
1053
1054	/* loopback traffic; do not push through packet taps again.
1055	 * Reset pkt_type for upper layers to process skb
1056	 */
1057	if (skb->pkt_type == PACKET_LOOPBACK) {
1058		skb->pkt_type = PACKET_HOST;
1059		goto out;
1060	}
1061
1062	vrf_rx_stats(vrf_dev, skb->len);
1063
1064	if (!list_empty(&vrf_dev->ptype_all)) {
1065		skb_push(skb, skb->mac_len);
1066		dev_queue_xmit_nit(skb, vrf_dev);
1067		skb_pull(skb, skb->mac_len);
 
 
 
 
 
1068	}
1069
1070	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1071out:
1072	return skb;
1073}
1074
1075/* called with rcu lock held */
1076static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1077				  struct sk_buff *skb,
1078				  u16 proto)
1079{
1080	switch (proto) {
1081	case AF_INET:
1082		return vrf_ip_rcv(vrf_dev, skb);
1083	case AF_INET6:
1084		return vrf_ip6_rcv(vrf_dev, skb);
1085	}
1086
1087	return skb;
1088}
1089
1090#if IS_ENABLED(CONFIG_IPV6)
1091/* send to link-local or multicast address via interface enslaved to
1092 * VRF device. Force lookup to VRF table without changing flow struct
 
 
1093 */
1094static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1095					      struct flowi6 *fl6)
1096{
1097	struct net *net = dev_net(dev);
1098	int flags = RT6_LOOKUP_F_IFACE;
1099	struct dst_entry *dst = NULL;
1100	struct rt6_info *rt;
1101
1102	/* VRF device does not have a link-local address and
1103	 * sending packets to link-local or mcast addresses over
1104	 * a VRF device does not make sense
1105	 */
1106	if (fl6->flowi6_oif == dev->ifindex) {
1107		dst = &net->ipv6.ip6_null_entry->dst;
1108		dst_hold(dst);
1109		return dst;
1110	}
1111
1112	if (!ipv6_addr_any(&fl6->saddr))
1113		flags |= RT6_LOOKUP_F_HAS_SADDR;
1114
1115	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1116	if (rt)
1117		dst = &rt->dst;
1118
1119	return dst;
1120}
1121#endif
1122
1123static const struct l3mdev_ops vrf_l3mdev_ops = {
1124	.l3mdev_fib_table	= vrf_fib_table,
1125	.l3mdev_l3_rcv		= vrf_l3_rcv,
1126	.l3mdev_l3_out		= vrf_l3_out,
1127#if IS_ENABLED(CONFIG_IPV6)
1128	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1129#endif
1130};
1131
1132static void vrf_get_drvinfo(struct net_device *dev,
1133			    struct ethtool_drvinfo *info)
1134{
1135	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1136	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1137}
1138
1139static const struct ethtool_ops vrf_ethtool_ops = {
1140	.get_drvinfo	= vrf_get_drvinfo,
1141};
1142
1143static inline size_t vrf_fib_rule_nl_size(void)
1144{
1145	size_t sz;
1146
1147	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1148	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1149	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1150	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1151
1152	return sz;
1153}
1154
1155static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1156{
1157	struct fib_rule_hdr *frh;
1158	struct nlmsghdr *nlh;
1159	struct sk_buff *skb;
1160	int err;
1161
1162	if (family == AF_INET6 && !ipv6_mod_enabled())
 
1163		return 0;
1164
1165	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1166	if (!skb)
1167		return -ENOMEM;
1168
1169	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1170	if (!nlh)
1171		goto nla_put_failure;
1172
1173	/* rule only needs to appear once */
1174	nlh->nlmsg_flags |= NLM_F_EXCL;
1175
1176	frh = nlmsg_data(nlh);
1177	memset(frh, 0, sizeof(*frh));
1178	frh->family = family;
1179	frh->action = FR_ACT_TO_TBL;
1180
1181	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1182		goto nla_put_failure;
1183
1184	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1185		goto nla_put_failure;
1186
1187	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1188		goto nla_put_failure;
1189
1190	nlmsg_end(skb, nlh);
1191
1192	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1193	skb->sk = dev_net(dev)->rtnl;
1194	if (add_it) {
1195		err = fib_nl_newrule(skb, nlh, NULL);
1196		if (err == -EEXIST)
1197			err = 0;
1198	} else {
1199		err = fib_nl_delrule(skb, nlh, NULL);
1200		if (err == -ENOENT)
1201			err = 0;
1202	}
1203	nlmsg_free(skb);
1204
1205	return err;
1206
1207nla_put_failure:
1208	nlmsg_free(skb);
1209
1210	return -EMSGSIZE;
1211}
1212
1213static int vrf_add_fib_rules(const struct net_device *dev)
1214{
1215	int err;
1216
1217	err = vrf_fib_rule(dev, AF_INET,  true);
1218	if (err < 0)
1219		goto out_err;
1220
1221	err = vrf_fib_rule(dev, AF_INET6, true);
1222	if (err < 0)
1223		goto ipv6_err;
1224
1225#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1226	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1227	if (err < 0)
1228		goto ipmr_err;
1229#endif
1230
 
 
 
 
 
 
1231	return 0;
1232
 
 
 
 
 
1233#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1234ipmr_err:
1235	vrf_fib_rule(dev, AF_INET6,  false);
1236#endif
1237
1238ipv6_err:
1239	vrf_fib_rule(dev, AF_INET,  false);
1240
1241out_err:
1242	netdev_err(dev, "Failed to add FIB rules.\n");
1243	return err;
1244}
1245
1246static void vrf_setup(struct net_device *dev)
1247{
1248	ether_setup(dev);
1249
1250	/* Initialize the device structure. */
1251	dev->netdev_ops = &vrf_netdev_ops;
1252	dev->l3mdev_ops = &vrf_l3mdev_ops;
1253	dev->ethtool_ops = &vrf_ethtool_ops;
1254	dev->needs_free_netdev = true;
1255
1256	/* Fill in device structure with ethernet-generic values. */
1257	eth_hw_addr_random(dev);
1258
1259	/* don't acquire vrf device's netif_tx_lock when transmitting */
1260	dev->features |= NETIF_F_LLTX;
1261
1262	/* don't allow vrf devices to change network namespaces. */
1263	dev->features |= NETIF_F_NETNS_LOCAL;
1264
1265	/* does not make sense for a VLAN to be added to a vrf device */
1266	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1267
1268	/* enable offload features */
1269	dev->features   |= NETIF_F_GSO_SOFTWARE;
1270	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1271	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1272
1273	dev->hw_features = dev->features;
1274	dev->hw_enc_features = dev->features;
1275
1276	/* default to no qdisc; user can add if desired */
1277	dev->priv_flags |= IFF_NO_QUEUE;
 
 
 
 
 
 
 
 
 
 
1278}
1279
1280static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1281			struct netlink_ext_ack *extack)
1282{
1283	if (tb[IFLA_ADDRESS]) {
1284		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1285			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1286			return -EINVAL;
1287		}
1288		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1289			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1290			return -EADDRNOTAVAIL;
1291		}
1292	}
1293	return 0;
1294}
1295
1296static void vrf_dellink(struct net_device *dev, struct list_head *head)
1297{
1298	struct net_device *port_dev;
1299	struct list_head *iter;
1300
1301	netdev_for_each_lower_dev(dev, port_dev, iter)
1302		vrf_del_slave(dev, port_dev);
1303
 
 
1304	unregister_netdevice_queue(dev, head);
1305}
1306
1307static int vrf_newlink(struct net *src_net, struct net_device *dev,
1308		       struct nlattr *tb[], struct nlattr *data[],
1309		       struct netlink_ext_ack *extack)
1310{
1311	struct net_vrf *vrf = netdev_priv(dev);
 
1312	bool *add_fib_rules;
1313	struct net *net;
1314	int err;
1315
1316	if (!data || !data[IFLA_VRF_TABLE]) {
1317		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1318		return -EINVAL;
1319	}
1320
1321	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1322	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1323		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1324				    "Invalid VRF table id");
1325		return -EINVAL;
1326	}
1327
1328	dev->priv_flags |= IFF_L3MDEV_MASTER;
1329
1330	err = register_netdevice(dev);
1331	if (err)
1332		goto out;
1333
 
 
 
 
 
 
 
 
 
 
 
 
1334	net = dev_net(dev);
1335	add_fib_rules = net_generic(net, vrf_net_id);
 
 
1336	if (*add_fib_rules) {
1337		err = vrf_add_fib_rules(dev);
1338		if (err) {
 
1339			unregister_netdevice(dev);
1340			goto out;
1341		}
1342		*add_fib_rules = false;
1343	}
1344
1345out:
1346	return err;
1347}
1348
1349static size_t vrf_nl_getsize(const struct net_device *dev)
1350{
1351	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1352}
1353
1354static int vrf_fillinfo(struct sk_buff *skb,
1355			const struct net_device *dev)
1356{
1357	struct net_vrf *vrf = netdev_priv(dev);
1358
1359	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1360}
1361
1362static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1363				 const struct net_device *slave_dev)
1364{
1365	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1366}
1367
1368static int vrf_fill_slave_info(struct sk_buff *skb,
1369			       const struct net_device *vrf_dev,
1370			       const struct net_device *slave_dev)
1371{
1372	struct net_vrf *vrf = netdev_priv(vrf_dev);
1373
1374	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1375		return -EMSGSIZE;
1376
1377	return 0;
1378}
1379
1380static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1381	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1382};
1383
1384static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1385	.kind		= DRV_NAME,
1386	.priv_size	= sizeof(struct net_vrf),
1387
1388	.get_size	= vrf_nl_getsize,
1389	.policy		= vrf_nl_policy,
1390	.validate	= vrf_validate,
1391	.fill_info	= vrf_fillinfo,
1392
1393	.get_slave_size  = vrf_get_slave_size,
1394	.fill_slave_info = vrf_fill_slave_info,
1395
1396	.newlink	= vrf_newlink,
1397	.dellink	= vrf_dellink,
1398	.setup		= vrf_setup,
1399	.maxtype	= IFLA_VRF_MAX,
1400};
1401
1402static int vrf_device_event(struct notifier_block *unused,
1403			    unsigned long event, void *ptr)
1404{
1405	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1406
1407	/* only care about unregister events to drop slave references */
1408	if (event == NETDEV_UNREGISTER) {
1409		struct net_device *vrf_dev;
1410
1411		if (!netif_is_l3_slave(dev))
1412			goto out;
1413
1414		vrf_dev = netdev_master_upper_dev_get(dev);
1415		vrf_del_slave(vrf_dev, dev);
1416	}
1417out:
1418	return NOTIFY_DONE;
1419}
1420
1421static struct notifier_block vrf_notifier_block __read_mostly = {
1422	.notifier_call = vrf_device_event,
1423};
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425/* Initialize per network namespace state */
1426static int __net_init vrf_netns_init(struct net *net)
1427{
1428	bool *add_fib_rules = net_generic(net, vrf_net_id);
1429
1430	*add_fib_rules = true;
 
1431
1432	return 0;
 
 
 
 
 
1433}
1434
1435static struct pernet_operations vrf_net_ops __net_initdata = {
1436	.init = vrf_netns_init,
 
1437	.id   = &vrf_net_id,
1438	.size = sizeof(bool),
1439};
1440
1441static int __init vrf_init_module(void)
1442{
1443	int rc;
1444
1445	register_netdevice_notifier(&vrf_notifier_block);
1446
1447	rc = register_pernet_subsys(&vrf_net_ops);
1448	if (rc < 0)
1449		goto error;
1450
 
 
 
 
 
1451	rc = rtnl_link_register(&vrf_link_ops);
1452	if (rc < 0) {
1453		unregister_pernet_subsys(&vrf_net_ops);
1454		goto error;
1455	}
1456
1457	return 0;
 
 
 
 
 
 
 
1458
1459error:
1460	unregister_netdevice_notifier(&vrf_notifier_block);
1461	return rc;
1462}
1463
1464module_init(vrf_init_module);
1465MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1466MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1467MODULE_LICENSE("GPL");
1468MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1469MODULE_VERSION(DRV_VERSION);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
 
 
 
 
 
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/netns/generic.h>
  38
  39#define DRV_NAME	"vrf"
  40#define DRV_VERSION	"1.1"
  41
  42#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  43
  44#define HT_MAP_BITS	4
  45#define HASH_INITVAL	((u32)0xcafef00d)
  46
  47struct  vrf_map {
  48	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  49	spinlock_t vmap_lock;
  50
  51	/* shared_tables:
  52	 * count how many distinct tables do not comply with the strict mode
  53	 * requirement.
  54	 * shared_tables value must be 0 in order to enable the strict mode.
  55	 *
  56	 * example of the evolution of shared_tables:
  57	 *                                                        | time
  58	 * add  vrf0 --> table 100        shared_tables = 0       | t0
  59	 * add  vrf1 --> table 101        shared_tables = 0       | t1
  60	 * add  vrf2 --> table 100        shared_tables = 1       | t2
  61	 * add  vrf3 --> table 100        shared_tables = 1       | t3
  62	 * add  vrf4 --> table 101        shared_tables = 2       v t4
  63	 *
  64	 * shared_tables is a "step function" (or "staircase function")
  65	 * and it is increased by one when the second vrf is associated to a
  66	 * table.
  67	 *
  68	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  69	 *
  70	 * at t3, another dev (vrf3) is bound to the same table 100 but the
  71	 * value of shared_tables is still 1.
  72	 * This means that no matter how many new vrfs will register on the
  73	 * table 100, the shared_tables will not increase (considering only
  74	 * table 100).
  75	 *
  76	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  77	 *
  78	 * Looking at the value of shared_tables we can immediately know if
  79	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
  80	 * can be enforced iff shared_tables = 0.
  81	 *
  82	 * Conversely, shared_tables is decreased when a vrf is de-associated
  83	 * from a table with exactly two associated vrfs.
  84	 */
  85	u32 shared_tables;
  86
  87	bool strict_mode;
  88};
  89
  90struct vrf_map_elem {
  91	struct hlist_node hnode;
  92	struct list_head vrf_list;  /* VRFs registered to this table */
  93
  94	u32 table_id;
  95	int users;
  96	int ifindex;
  97};
  98
  99static unsigned int vrf_net_id;
 100
 101/* per netns vrf data */
 102struct netns_vrf {
 103	/* protected by rtnl lock */
 104	bool add_fib_rules;
 105
 106	struct vrf_map vmap;
 107	struct ctl_table_header	*ctl_hdr;
 108};
 109
 110struct net_vrf {
 111	struct rtable __rcu	*rth;
 112	struct rt6_info	__rcu	*rt6;
 113#if IS_ENABLED(CONFIG_IPV6)
 114	struct fib6_table	*fib6_table;
 115#endif
 116	u32                     tb_id;
 117
 118	struct list_head	me_list;   /* entry in vrf_map_elem */
 119	int			ifindex;
 120};
 121
 122struct pcpu_dstats {
 123	u64			tx_pkts;
 124	u64			tx_bytes;
 125	u64			tx_drps;
 126	u64			rx_pkts;
 127	u64			rx_bytes;
 128	u64			rx_drps;
 129	struct u64_stats_sync	syncp;
 130};
 131
 132static void vrf_rx_stats(struct net_device *dev, int len)
 133{
 134	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 135
 136	u64_stats_update_begin(&dstats->syncp);
 137	dstats->rx_pkts++;
 138	dstats->rx_bytes += len;
 139	u64_stats_update_end(&dstats->syncp);
 140}
 141
 142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 143{
 144	vrf_dev->stats.tx_errors++;
 145	kfree_skb(skb);
 146}
 147
 148static void vrf_get_stats64(struct net_device *dev,
 149			    struct rtnl_link_stats64 *stats)
 150{
 151	int i;
 152
 153	for_each_possible_cpu(i) {
 154		const struct pcpu_dstats *dstats;
 155		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 156		unsigned int start;
 157
 158		dstats = per_cpu_ptr(dev->dstats, i);
 159		do {
 160			start = u64_stats_fetch_begin_irq(&dstats->syncp);
 161			tbytes = dstats->tx_bytes;
 162			tpkts = dstats->tx_pkts;
 163			tdrops = dstats->tx_drps;
 164			rbytes = dstats->rx_bytes;
 165			rpkts = dstats->rx_pkts;
 166		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 167		stats->tx_bytes += tbytes;
 168		stats->tx_packets += tpkts;
 169		stats->tx_dropped += tdrops;
 170		stats->rx_bytes += rbytes;
 171		stats->rx_packets += rpkts;
 172	}
 173}
 174
 175static struct vrf_map *netns_vrf_map(struct net *net)
 176{
 177	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 178
 179	return &nn_vrf->vmap;
 180}
 181
 182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 183{
 184	return netns_vrf_map(dev_net(dev));
 185}
 186
 187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 188{
 189	struct list_head *me_head = &me->vrf_list;
 190	struct net_vrf *vrf;
 191
 192	if (list_empty(me_head))
 193		return -ENODEV;
 194
 195	vrf = list_first_entry(me_head, struct net_vrf, me_list);
 196
 197	return vrf->ifindex;
 198}
 199
 200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 201{
 202	struct vrf_map_elem *me;
 203
 204	me = kmalloc(sizeof(*me), flags);
 205	if (!me)
 206		return NULL;
 207
 208	return me;
 209}
 210
 211static void vrf_map_elem_free(struct vrf_map_elem *me)
 212{
 213	kfree(me);
 214}
 215
 216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 217			      int ifindex, int users)
 218{
 219	me->table_id = table_id;
 220	me->ifindex = ifindex;
 221	me->users = users;
 222	INIT_LIST_HEAD(&me->vrf_list);
 223}
 224
 225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 226						u32 table_id)
 227{
 228	struct vrf_map_elem *me;
 229	u32 key;
 230
 231	key = jhash_1word(table_id, HASH_INITVAL);
 232	hash_for_each_possible(vmap->ht, me, hnode, key) {
 233		if (me->table_id == table_id)
 234			return me;
 235	}
 236
 237	return NULL;
 238}
 239
 240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 241{
 242	u32 table_id = me->table_id;
 243	u32 key;
 244
 245	key = jhash_1word(table_id, HASH_INITVAL);
 246	hash_add(vmap->ht, &me->hnode, key);
 247}
 248
 249static void vrf_map_del_elem(struct vrf_map_elem *me)
 250{
 251	hash_del(&me->hnode);
 252}
 253
 254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 255{
 256	spin_lock(&vmap->vmap_lock);
 257}
 258
 259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 260{
 261	spin_unlock(&vmap->vmap_lock);
 262}
 263
 264/* called with rtnl lock held */
 265static int
 266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 267{
 268	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 269	struct net_vrf *vrf = netdev_priv(dev);
 270	struct vrf_map_elem *new_me, *me;
 271	u32 table_id = vrf->tb_id;
 272	bool free_new_me = false;
 273	int users;
 274	int res;
 275
 276	/* we pre-allocate elements used in the spin-locked section (so that we
 277	 * keep the spinlock as short as possible).
 278	 */
 279	new_me = vrf_map_elem_alloc(GFP_KERNEL);
 280	if (!new_me)
 281		return -ENOMEM;
 282
 283	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 284
 285	vrf_map_lock(vmap);
 286
 287	me = vrf_map_lookup_elem(vmap, table_id);
 288	if (!me) {
 289		me = new_me;
 290		vrf_map_add_elem(vmap, me);
 291		goto link_vrf;
 292	}
 293
 294	/* we already have an entry in the vrf_map, so it means there is (at
 295	 * least) a vrf registered on the specific table.
 296	 */
 297	free_new_me = true;
 298	if (vmap->strict_mode) {
 299		/* vrfs cannot share the same table */
 300		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 301		res = -EBUSY;
 302		goto unlock;
 303	}
 304
 305link_vrf:
 306	users = ++me->users;
 307	if (users == 2)
 308		++vmap->shared_tables;
 309
 310	list_add(&vrf->me_list, &me->vrf_list);
 311
 312	res = 0;
 313
 314unlock:
 315	vrf_map_unlock(vmap);
 316
 317	/* clean-up, if needed */
 318	if (free_new_me)
 319		vrf_map_elem_free(new_me);
 320
 321	return res;
 322}
 323
 324/* called with rtnl lock held */
 325static void vrf_map_unregister_dev(struct net_device *dev)
 326{
 327	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 328	struct net_vrf *vrf = netdev_priv(dev);
 329	u32 table_id = vrf->tb_id;
 330	struct vrf_map_elem *me;
 331	int users;
 332
 333	vrf_map_lock(vmap);
 334
 335	me = vrf_map_lookup_elem(vmap, table_id);
 336	if (!me)
 337		goto unlock;
 338
 339	list_del(&vrf->me_list);
 340
 341	users = --me->users;
 342	if (users == 1) {
 343		--vmap->shared_tables;
 344	} else if (users == 0) {
 345		vrf_map_del_elem(me);
 346
 347		/* no one will refer to this element anymore */
 348		vrf_map_elem_free(me);
 349	}
 350
 351unlock:
 352	vrf_map_unlock(vmap);
 353}
 354
 355/* return the vrf device index associated with the table_id */
 356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 357{
 358	struct vrf_map *vmap = netns_vrf_map(net);
 359	struct vrf_map_elem *me;
 360	int ifindex;
 361
 362	vrf_map_lock(vmap);
 363
 364	if (!vmap->strict_mode) {
 365		ifindex = -EPERM;
 366		goto unlock;
 367	}
 368
 369	me = vrf_map_lookup_elem(vmap, table_id);
 370	if (!me) {
 371		ifindex = -ENODEV;
 372		goto unlock;
 373	}
 374
 375	ifindex = vrf_map_elem_get_vrf_ifindex(me);
 376
 377unlock:
 378	vrf_map_unlock(vmap);
 379
 380	return ifindex;
 381}
 382
 383/* by default VRF devices do not have a qdisc and are expected
 384 * to be created with only a single queue.
 385 */
 386static bool qdisc_tx_is_default(const struct net_device *dev)
 387{
 388	struct netdev_queue *txq;
 389	struct Qdisc *qdisc;
 390
 391	if (dev->num_tx_queues > 1)
 392		return false;
 393
 394	txq = netdev_get_tx_queue(dev, 0);
 395	qdisc = rcu_access_pointer(txq->qdisc);
 396
 397	return !qdisc->enqueue;
 398}
 399
 400/* Local traffic destined to local address. Reinsert the packet to rx
 401 * path, similar to loopback handling.
 402 */
 403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 404			  struct dst_entry *dst)
 405{
 406	int len = skb->len;
 407
 408	skb_orphan(skb);
 409
 410	skb_dst_set(skb, dst);
 411
 412	/* set pkt_type to avoid skb hitting packet taps twice -
 413	 * once on Tx and again in Rx processing
 414	 */
 415	skb->pkt_type = PACKET_LOOPBACK;
 416
 417	skb->protocol = eth_type_trans(skb, dev);
 418
 419	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 420		vrf_rx_stats(dev, len);
 421	else
 422		this_cpu_inc(dev->dstats->rx_drps);
 423
 424	return NETDEV_TX_OK;
 425}
 426
 427#if IS_ENABLED(CONFIG_IPV6)
 428static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 429			     struct sk_buff *skb)
 430{
 431	int err;
 432
 433	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 434		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 435
 436	if (likely(err == 1))
 437		err = dst_output(net, sk, skb);
 438
 439	return err;
 440}
 441
 442static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 443					   struct net_device *dev)
 444{
 445	const struct ipv6hdr *iph;
 446	struct net *net = dev_net(skb->dev);
 447	struct flowi6 fl6;
 
 
 
 
 
 
 
 
 
 
 448	int ret = NET_XMIT_DROP;
 449	struct dst_entry *dst;
 450	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 451
 452	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 453		goto err;
 454
 455	iph = ipv6_hdr(skb);
 456
 457	memset(&fl6, 0, sizeof(fl6));
 458	/* needed to match OIF rule */
 459	fl6.flowi6_oif = dev->ifindex;
 460	fl6.flowi6_iif = LOOPBACK_IFINDEX;
 461	fl6.daddr = iph->daddr;
 462	fl6.saddr = iph->saddr;
 463	fl6.flowlabel = ip6_flowinfo(iph);
 464	fl6.flowi6_mark = skb->mark;
 465	fl6.flowi6_proto = iph->nexthdr;
 466	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 467
 468	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 469	if (IS_ERR(dst) || dst == dst_null)
 470		goto err;
 471
 472	skb_dst_drop(skb);
 473
 474	/* if dst.dev is the VRF device again this is locally originated traffic
 475	 * destined to a local address. Short circuit to Rx path.
 
 476	 */
 477	if (dst->dev == dev)
 478		return vrf_local_xmit(skb, dev, dst);
 479
 480	skb_dst_set(skb, dst);
 481
 482	/* strip the ethernet header added for pass through VRF device */
 483	__skb_pull(skb, skb_network_offset(skb));
 484
 485	ret = vrf_ip6_local_out(net, skb->sk, skb);
 486	if (unlikely(net_xmit_eval(ret)))
 487		dev->stats.tx_errors++;
 488	else
 489		ret = NET_XMIT_SUCCESS;
 490
 491	return ret;
 492err:
 493	vrf_tx_error(dev, skb);
 494	return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498					   struct net_device *dev)
 499{
 500	vrf_tx_error(dev, skb);
 501	return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507			    struct sk_buff *skb)
 508{
 509	int err;
 510
 511	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512		      skb, NULL, skb_dst(skb)->dev, dst_output);
 513	if (likely(err == 1))
 514		err = dst_output(net, sk, skb);
 515
 516	return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520					   struct net_device *vrf_dev)
 521{
 522	struct iphdr *ip4h;
 523	int ret = NET_XMIT_DROP;
 524	struct flowi4 fl4;
 
 
 
 
 
 
 
 
 
 525	struct net *net = dev_net(vrf_dev);
 526	struct rtable *rt;
 527
 528	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529		goto err;
 530
 531	ip4h = ip_hdr(skb);
 532
 533	memset(&fl4, 0, sizeof(fl4));
 534	/* needed to match OIF rule */
 535	fl4.flowi4_oif = vrf_dev->ifindex;
 536	fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537	fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539	fl4.flowi4_proto = ip4h->protocol;
 540	fl4.daddr = ip4h->daddr;
 541	fl4.saddr = ip4h->saddr;
 542
 543	rt = ip_route_output_flow(net, &fl4, NULL);
 544	if (IS_ERR(rt))
 545		goto err;
 546
 547	skb_dst_drop(skb);
 548
 549	/* if dst.dev is the VRF device again this is locally originated traffic
 550	 * destined to a local address. Short circuit to Rx path.
 
 551	 */
 552	if (rt->dst.dev == vrf_dev)
 553		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 554
 555	skb_dst_set(skb, &rt->dst);
 556
 557	/* strip the ethernet header added for pass through VRF device */
 558	__skb_pull(skb, skb_network_offset(skb));
 559
 560	if (!ip4h->saddr) {
 561		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 562					       RT_SCOPE_LINK);
 563	}
 564
 565	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 566	if (unlikely(net_xmit_eval(ret)))
 567		vrf_dev->stats.tx_errors++;
 568	else
 569		ret = NET_XMIT_SUCCESS;
 570
 571out:
 572	return ret;
 573err:
 574	vrf_tx_error(vrf_dev, skb);
 575	goto out;
 576}
 577
 578static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 579{
 580	switch (skb->protocol) {
 581	case htons(ETH_P_IP):
 582		return vrf_process_v4_outbound(skb, dev);
 583	case htons(ETH_P_IPV6):
 584		return vrf_process_v6_outbound(skb, dev);
 585	default:
 586		vrf_tx_error(dev, skb);
 587		return NET_XMIT_DROP;
 588	}
 589}
 590
 591static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 592{
 593	int len = skb->len;
 594	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 595
 596	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 597		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 598
 599		u64_stats_update_begin(&dstats->syncp);
 600		dstats->tx_pkts++;
 601		dstats->tx_bytes += len;
 602		u64_stats_update_end(&dstats->syncp);
 603	} else {
 604		this_cpu_inc(dev->dstats->tx_drps);
 605	}
 606
 607	return ret;
 608}
 609
 610static void vrf_finish_direct(struct sk_buff *skb)
 
 611{
 612	struct net_device *vrf_dev = skb->dev;
 613
 614	if (!list_empty(&vrf_dev->ptype_all) &&
 615	    likely(skb_headroom(skb) >= ETH_HLEN)) {
 616		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 617
 618		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 619		eth_zero_addr(eth->h_dest);
 620		eth->h_proto = skb->protocol;
 621
 622		rcu_read_lock_bh();
 623		dev_queue_xmit_nit(skb, vrf_dev);
 624		rcu_read_unlock_bh();
 625
 626		skb_pull(skb, ETH_HLEN);
 627	}
 628
 629	/* reset skb device */
 630	nf_reset_ct(skb);
 631}
 632
 633#if IS_ENABLED(CONFIG_IPV6)
 634/* modelled after ip6_finish_output2 */
 635static int vrf_finish_output6(struct net *net, struct sock *sk,
 636			      struct sk_buff *skb)
 637{
 638	struct dst_entry *dst = skb_dst(skb);
 639	struct net_device *dev = dst->dev;
 640	const struct in6_addr *nexthop;
 641	struct neighbour *neigh;
 
 642	int ret;
 643
 644	nf_reset_ct(skb);
 645
 646	skb->protocol = htons(ETH_P_IPV6);
 647	skb->dev = dev;
 648
 649	rcu_read_lock_bh();
 650	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 651	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 652	if (unlikely(!neigh))
 653		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 654	if (!IS_ERR(neigh)) {
 655		sock_confirm_neigh(skb, neigh);
 656		ret = neigh_output(neigh, skb, false);
 657		rcu_read_unlock_bh();
 658		return ret;
 659	}
 660	rcu_read_unlock_bh();
 661
 662	IP6_INC_STATS(dev_net(dst->dev),
 663		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 664	kfree_skb(skb);
 665	return -EINVAL;
 666}
 667
 668/* modelled after ip6_output */
 669static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 670{
 671	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 672			    net, sk, skb, NULL, skb_dst(skb)->dev,
 673			    vrf_finish_output6,
 674			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 675}
 676
 677/* set dst on skb to send packet to us via dev_xmit path. Allows
 678 * packet to go through device based features such as qdisc, netfilter
 679 * hooks and packet sockets with skb->dev set to vrf device.
 680 */
 681static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 682					    struct sk_buff *skb)
 683{
 684	struct net_vrf *vrf = netdev_priv(vrf_dev);
 685	struct dst_entry *dst = NULL;
 686	struct rt6_info *rt6;
 687
 688	rcu_read_lock();
 689
 690	rt6 = rcu_dereference(vrf->rt6);
 691	if (likely(rt6)) {
 692		dst = &rt6->dst;
 693		dst_hold(dst);
 694	}
 695
 696	rcu_read_unlock();
 697
 698	if (unlikely(!dst)) {
 699		vrf_tx_error(vrf_dev, skb);
 700		return NULL;
 701	}
 702
 703	skb_dst_drop(skb);
 704	skb_dst_set(skb, dst);
 705
 706	return skb;
 707}
 708
 709static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 710				     struct sk_buff *skb)
 711{
 712	vrf_finish_direct(skb);
 713
 714	return vrf_ip6_local_out(net, sk, skb);
 715}
 716
 717static int vrf_output6_direct(struct net *net, struct sock *sk,
 718			      struct sk_buff *skb)
 719{
 720	int err = 1;
 721
 722	skb->protocol = htons(ETH_P_IPV6);
 723
 724	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 725		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 726			      NULL, skb->dev, vrf_output6_direct_finish);
 727
 728	if (likely(err == 1))
 729		vrf_finish_direct(skb);
 730
 731	return err;
 732}
 733
 734static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 735				     struct sk_buff *skb)
 736{
 737	int err;
 738
 739	err = vrf_output6_direct(net, sk, skb);
 740	if (likely(err == 1))
 741		err = vrf_ip6_local_out(net, sk, skb);
 742
 743	return err;
 744}
 745
 746static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 747					  struct sock *sk,
 748					  struct sk_buff *skb)
 749{
 750	struct net *net = dev_net(vrf_dev);
 751	int err;
 752
 753	skb->dev = vrf_dev;
 754
 755	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 756		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 757
 758	if (likely(err == 1))
 759		err = vrf_output6_direct(net, sk, skb);
 760
 
 761	if (likely(err == 1))
 762		return skb;
 
 
 763
 764	return NULL;
 765}
 766
 767static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 768				   struct sock *sk,
 769				   struct sk_buff *skb)
 770{
 771	/* don't divert link scope packets */
 772	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 773		return skb;
 774
 775	if (qdisc_tx_is_default(vrf_dev) ||
 776	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 777		return vrf_ip6_out_direct(vrf_dev, sk, skb);
 778
 779	return vrf_ip6_out_redirect(vrf_dev, skb);
 780}
 781
 782/* holding rtnl */
 783static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 784{
 785	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 786	struct net *net = dev_net(dev);
 787	struct dst_entry *dst;
 788
 789	RCU_INIT_POINTER(vrf->rt6, NULL);
 790	synchronize_rcu();
 791
 792	/* move dev in dst's to loopback so this VRF device can be deleted
 793	 * - based on dst_ifdown
 794	 */
 795	if (rt6) {
 796		dst = &rt6->dst;
 797		dev_put(dst->dev);
 798		dst->dev = net->loopback_dev;
 799		dev_hold(dst->dev);
 800		dst_release(dst);
 801	}
 802}
 803
 804static int vrf_rt6_create(struct net_device *dev)
 805{
 806	int flags = DST_NOPOLICY | DST_NOXFRM;
 807	struct net_vrf *vrf = netdev_priv(dev);
 808	struct net *net = dev_net(dev);
 
 809	struct rt6_info *rt6;
 810	int rc = -ENOMEM;
 811
 812	/* IPv6 can be CONFIG enabled and then disabled runtime */
 813	if (!ipv6_mod_enabled())
 814		return 0;
 815
 816	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 817	if (!vrf->fib6_table)
 818		goto out;
 819
 820	/* create a dst for routing packets out a VRF device */
 821	rt6 = ip6_dst_alloc(net, dev, flags);
 822	if (!rt6)
 823		goto out;
 824
 
 825	rt6->dst.output	= vrf_output6;
 826
 827	rcu_assign_pointer(vrf->rt6, rt6);
 828
 829	rc = 0;
 830out:
 831	return rc;
 832}
 833#else
 834static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 835				   struct sock *sk,
 836				   struct sk_buff *skb)
 837{
 838	return skb;
 839}
 840
 841static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 842{
 843}
 844
 845static int vrf_rt6_create(struct net_device *dev)
 846{
 847	return 0;
 848}
 849#endif
 850
 851/* modelled after ip_finish_output2 */
 852static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 853{
 854	struct dst_entry *dst = skb_dst(skb);
 855	struct rtable *rt = (struct rtable *)dst;
 856	struct net_device *dev = dst->dev;
 857	unsigned int hh_len = LL_RESERVED_SPACE(dev);
 858	struct neighbour *neigh;
 859	bool is_v6gw = false;
 860	int ret = -EINVAL;
 861
 862	nf_reset_ct(skb);
 863
 864	/* Be paranoid, rather than too clever. */
 865	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 866		struct sk_buff *skb2;
 867
 868		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 869		if (!skb2) {
 870			ret = -ENOMEM;
 871			goto err;
 872		}
 873		if (skb->sk)
 874			skb_set_owner_w(skb2, skb->sk);
 875
 876		consume_skb(skb);
 877		skb = skb2;
 878	}
 879
 880	rcu_read_lock_bh();
 881
 882	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 
 
 
 883	if (!IS_ERR(neigh)) {
 884		sock_confirm_neigh(skb, neigh);
 885		/* if crossing protocols, can not use the cached header */
 886		ret = neigh_output(neigh, skb, is_v6gw);
 887		rcu_read_unlock_bh();
 888		return ret;
 889	}
 890
 891	rcu_read_unlock_bh();
 892err:
 893	vrf_tx_error(skb->dev, skb);
 894	return ret;
 895}
 896
 897static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 898{
 899	struct net_device *dev = skb_dst(skb)->dev;
 900
 901	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 902
 903	skb->dev = dev;
 904	skb->protocol = htons(ETH_P_IP);
 905
 906	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 907			    net, sk, skb, NULL, dev,
 908			    vrf_finish_output,
 909			    !(IPCB(skb)->flags & IPSKB_REROUTED));
 910}
 911
 912/* set dst on skb to send packet to us via dev_xmit path. Allows
 913 * packet to go through device based features such as qdisc, netfilter
 914 * hooks and packet sockets with skb->dev set to vrf device.
 915 */
 916static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 917					   struct sk_buff *skb)
 918{
 919	struct net_vrf *vrf = netdev_priv(vrf_dev);
 920	struct dst_entry *dst = NULL;
 921	struct rtable *rth;
 922
 923	rcu_read_lock();
 924
 925	rth = rcu_dereference(vrf->rth);
 926	if (likely(rth)) {
 927		dst = &rth->dst;
 928		dst_hold(dst);
 929	}
 930
 931	rcu_read_unlock();
 932
 933	if (unlikely(!dst)) {
 934		vrf_tx_error(vrf_dev, skb);
 935		return NULL;
 936	}
 937
 938	skb_dst_drop(skb);
 939	skb_dst_set(skb, dst);
 940
 941	return skb;
 942}
 943
 944static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 945				    struct sk_buff *skb)
 946{
 947	vrf_finish_direct(skb);
 948
 949	return vrf_ip_local_out(net, sk, skb);
 950}
 951
 952static int vrf_output_direct(struct net *net, struct sock *sk,
 953			     struct sk_buff *skb)
 954{
 955	int err = 1;
 956
 957	skb->protocol = htons(ETH_P_IP);
 958
 959	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 960		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 961			      NULL, skb->dev, vrf_output_direct_finish);
 962
 963	if (likely(err == 1))
 964		vrf_finish_direct(skb);
 965
 966	return err;
 967}
 968
 969static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 970				    struct sk_buff *skb)
 971{
 972	int err;
 973
 974	err = vrf_output_direct(net, sk, skb);
 975	if (likely(err == 1))
 976		err = vrf_ip_local_out(net, sk, skb);
 977
 978	return err;
 979}
 980
 981static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 982					 struct sock *sk,
 983					 struct sk_buff *skb)
 984{
 985	struct net *net = dev_net(vrf_dev);
 986	int err;
 987
 988	skb->dev = vrf_dev;
 989
 990	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 991		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 992
 993	if (likely(err == 1))
 994		err = vrf_output_direct(net, sk, skb);
 995
 
 996	if (likely(err == 1))
 997		return skb;
 
 
 998
 999	return NULL;
1000}
1001
1002static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1003				  struct sock *sk,
1004				  struct sk_buff *skb)
1005{
1006	/* don't divert multicast or local broadcast */
1007	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1008	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1009		return skb;
1010
1011	if (qdisc_tx_is_default(vrf_dev) ||
1012	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1013		return vrf_ip_out_direct(vrf_dev, sk, skb);
1014
1015	return vrf_ip_out_redirect(vrf_dev, skb);
1016}
1017
1018/* called with rcu lock held */
1019static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1020				  struct sock *sk,
1021				  struct sk_buff *skb,
1022				  u16 proto)
1023{
1024	switch (proto) {
1025	case AF_INET:
1026		return vrf_ip_out(vrf_dev, sk, skb);
1027	case AF_INET6:
1028		return vrf_ip6_out(vrf_dev, sk, skb);
1029	}
1030
1031	return skb;
1032}
1033
1034/* holding rtnl */
1035static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1036{
1037	struct rtable *rth = rtnl_dereference(vrf->rth);
1038	struct net *net = dev_net(dev);
1039	struct dst_entry *dst;
1040
1041	RCU_INIT_POINTER(vrf->rth, NULL);
1042	synchronize_rcu();
1043
1044	/* move dev in dst's to loopback so this VRF device can be deleted
1045	 * - based on dst_ifdown
1046	 */
1047	if (rth) {
1048		dst = &rth->dst;
1049		dev_put(dst->dev);
1050		dst->dev = net->loopback_dev;
1051		dev_hold(dst->dev);
1052		dst_release(dst);
1053	}
1054}
1055
1056static int vrf_rtable_create(struct net_device *dev)
1057{
1058	struct net_vrf *vrf = netdev_priv(dev);
1059	struct rtable *rth;
1060
1061	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1062		return -ENOMEM;
1063
1064	/* create a dst for routing packets out through a VRF device */
1065	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1066	if (!rth)
1067		return -ENOMEM;
1068
1069	rth->dst.output	= vrf_output;
1070
1071	rcu_assign_pointer(vrf->rth, rth);
1072
1073	return 0;
1074}
1075
1076/**************************** device handling ********************/
1077
1078/* cycle interface to flush neighbor cache and move routes across tables */
1079static void cycle_netdev(struct net_device *dev,
1080			 struct netlink_ext_ack *extack)
1081{
1082	unsigned int flags = dev->flags;
1083	int ret;
1084
1085	if (!netif_running(dev))
1086		return;
1087
1088	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1089	if (ret >= 0)
1090		ret = dev_change_flags(dev, flags, extack);
1091
1092	if (ret < 0) {
1093		netdev_err(dev,
1094			   "Failed to cycle device %s; route tables might be wrong!\n",
1095			   dev->name);
1096	}
1097}
1098
1099static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1100			    struct netlink_ext_ack *extack)
1101{
1102	int ret;
1103
1104	/* do not allow loopback device to be enslaved to a VRF.
1105	 * The vrf device acts as the loopback for the vrf.
1106	 */
1107	if (port_dev == dev_net(dev)->loopback_dev) {
1108		NL_SET_ERR_MSG(extack,
1109			       "Can not enslave loopback device to a VRF");
1110		return -EOPNOTSUPP;
1111	}
1112
1113	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1114	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1115	if (ret < 0)
1116		goto err;
1117
1118	cycle_netdev(port_dev, extack);
1119
1120	return 0;
1121
1122err:
1123	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1124	return ret;
1125}
1126
1127static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1128			 struct netlink_ext_ack *extack)
1129{
1130	if (netif_is_l3_master(port_dev)) {
1131		NL_SET_ERR_MSG(extack,
1132			       "Can not enslave an L3 master device to a VRF");
1133		return -EINVAL;
1134	}
1135
1136	if (netif_is_l3_slave(port_dev))
1137		return -EINVAL;
1138
1139	return do_vrf_add_slave(dev, port_dev, extack);
1140}
1141
1142/* inverse of do_vrf_add_slave */
1143static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1144{
1145	netdev_upper_dev_unlink(port_dev, dev);
1146	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1147
1148	cycle_netdev(port_dev, NULL);
1149
1150	return 0;
1151}
1152
1153static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1154{
1155	return do_vrf_del_slave(dev, port_dev);
1156}
1157
1158static void vrf_dev_uninit(struct net_device *dev)
1159{
1160	struct net_vrf *vrf = netdev_priv(dev);
1161
1162	vrf_rtable_release(dev, vrf);
1163	vrf_rt6_release(dev, vrf);
1164
1165	free_percpu(dev->dstats);
1166	dev->dstats = NULL;
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171	struct net_vrf *vrf = netdev_priv(dev);
1172
1173	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1174	if (!dev->dstats)
1175		goto out_nomem;
1176
1177	/* create the default dst which points back to us */
1178	if (vrf_rtable_create(dev) != 0)
1179		goto out_stats;
1180
1181	if (vrf_rt6_create(dev) != 0)
1182		goto out_rth;
1183
1184	dev->flags = IFF_MASTER | IFF_NOARP;
1185
 
 
 
1186	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1187	dev->operstate = IF_OPER_UP;
1188	netdev_lockdep_set_classes(dev);
1189	return 0;
1190
1191out_rth:
1192	vrf_rtable_release(dev, vrf);
1193out_stats:
1194	free_percpu(dev->dstats);
1195	dev->dstats = NULL;
1196out_nomem:
1197	return -ENOMEM;
1198}
1199
1200static const struct net_device_ops vrf_netdev_ops = {
1201	.ndo_init		= vrf_dev_init,
1202	.ndo_uninit		= vrf_dev_uninit,
1203	.ndo_start_xmit		= vrf_xmit,
1204	.ndo_set_mac_address	= eth_mac_addr,
1205	.ndo_get_stats64	= vrf_get_stats64,
1206	.ndo_add_slave		= vrf_add_slave,
1207	.ndo_del_slave		= vrf_del_slave,
1208};
1209
1210static u32 vrf_fib_table(const struct net_device *dev)
1211{
1212	struct net_vrf *vrf = netdev_priv(dev);
1213
1214	return vrf->tb_id;
1215}
1216
1217static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1218{
1219	kfree_skb(skb);
1220	return 0;
1221}
1222
1223static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1224				      struct sk_buff *skb,
1225				      struct net_device *dev)
1226{
1227	struct net *net = dev_net(dev);
1228
1229	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1230		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1231
1232	return skb;
1233}
1234
1235static int vrf_prepare_mac_header(struct sk_buff *skb,
1236				  struct net_device *vrf_dev, u16 proto)
1237{
1238	struct ethhdr *eth;
1239	int err;
1240
1241	/* in general, we do not know if there is enough space in the head of
1242	 * the packet for hosting the mac header.
1243	 */
1244	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1245	if (unlikely(err))
1246		/* no space in the skb head */
1247		return -ENOBUFS;
1248
1249	__skb_push(skb, ETH_HLEN);
1250	eth = (struct ethhdr *)skb->data;
1251
1252	skb_reset_mac_header(skb);
1253
1254	/* we set the ethernet destination and the source addresses to the
1255	 * address of the VRF device.
1256	 */
1257	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1258	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1259	eth->h_proto = htons(proto);
1260
1261	/* the destination address of the Ethernet frame corresponds to the
1262	 * address set on the VRF interface; therefore, the packet is intended
1263	 * to be processed locally.
1264	 */
1265	skb->protocol = eth->h_proto;
1266	skb->pkt_type = PACKET_HOST;
1267
1268	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1269
1270	skb_pull_inline(skb, ETH_HLEN);
1271
1272	return 0;
1273}
1274
1275/* prepare and add the mac header to the packet if it was not set previously.
1276 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1277 * If the mac header was already set, the original mac header is left
1278 * untouched and the function returns immediately.
1279 */
1280static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1281				       struct net_device *vrf_dev,
1282				       u16 proto)
1283{
1284	if (skb_mac_header_was_set(skb))
1285		return 0;
1286
1287	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1288}
1289
1290#if IS_ENABLED(CONFIG_IPV6)
1291/* neighbor handling is done with actual device; do not want
1292 * to flip skb->dev for those ndisc packets. This really fails
1293 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1294 * a start.
1295 */
1296static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1297{
1298	const struct ipv6hdr *iph = ipv6_hdr(skb);
1299	bool rc = false;
1300
1301	if (iph->nexthdr == NEXTHDR_ICMP) {
1302		const struct icmp6hdr *icmph;
1303		struct icmp6hdr _icmph;
1304
1305		icmph = skb_header_pointer(skb, sizeof(*iph),
1306					   sizeof(_icmph), &_icmph);
1307		if (!icmph)
1308			goto out;
1309
1310		switch (icmph->icmp6_type) {
1311		case NDISC_ROUTER_SOLICITATION:
1312		case NDISC_ROUTER_ADVERTISEMENT:
1313		case NDISC_NEIGHBOUR_SOLICITATION:
1314		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1315		case NDISC_REDIRECT:
1316			rc = true;
1317			break;
1318		}
1319	}
1320
1321out:
1322	return rc;
1323}
1324
1325static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1326					     const struct net_device *dev,
1327					     struct flowi6 *fl6,
1328					     int ifindex,
1329					     const struct sk_buff *skb,
1330					     int flags)
1331{
1332	struct net_vrf *vrf = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333
1334	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1335}
1336
1337static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1338			      int ifindex)
1339{
1340	const struct ipv6hdr *iph = ipv6_hdr(skb);
1341	struct flowi6 fl6 = {
1342		.flowi6_iif     = ifindex,
1343		.flowi6_mark    = skb->mark,
1344		.flowi6_proto   = iph->nexthdr,
1345		.daddr          = iph->daddr,
1346		.saddr          = iph->saddr,
1347		.flowlabel      = ip6_flowinfo(iph),
1348	};
1349	struct net *net = dev_net(vrf_dev);
1350	struct rt6_info *rt6;
1351
1352	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1353				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1354	if (unlikely(!rt6))
1355		return;
1356
1357	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1358		return;
1359
1360	skb_dst_set(skb, &rt6->dst);
1361}
1362
1363static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1364				   struct sk_buff *skb)
1365{
1366	int orig_iif = skb->skb_iif;
1367	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1368	bool is_ndisc = ipv6_ndisc_frame(skb);
1369
1370	nf_reset_ct(skb);
1371
1372	/* loopback, multicast & non-ND link-local traffic; do not push through
1373	 * packet taps again. Reset pkt_type for upper layers to process skb.
1374	 * For strict packets with a source LLA, determine the dst using the
1375	 * original ifindex.
1376	 */
1377	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1378		skb->dev = vrf_dev;
1379		skb->skb_iif = vrf_dev->ifindex;
1380		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1381
1382		if (skb->pkt_type == PACKET_LOOPBACK)
1383			skb->pkt_type = PACKET_HOST;
1384		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1385			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1386
1387		goto out;
1388	}
1389
1390	/* if packet is NDISC then keep the ingress interface */
1391	if (!is_ndisc) {
 
 
 
1392		vrf_rx_stats(vrf_dev, skb->len);
1393		skb->dev = vrf_dev;
1394		skb->skb_iif = vrf_dev->ifindex;
1395
1396		if (!list_empty(&vrf_dev->ptype_all)) {
1397			int err;
1398
1399			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1400							  ETH_P_IPV6);
1401			if (likely(!err)) {
1402				skb_push(skb, skb->mac_len);
1403				dev_queue_xmit_nit(skb, vrf_dev);
1404				skb_pull(skb, skb->mac_len);
1405			}
1406		}
1407
1408		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1409	}
1410
1411	if (need_strict)
1412		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1413
1414	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1415out:
1416	return skb;
1417}
1418
1419#else
1420static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1421				   struct sk_buff *skb)
1422{
1423	return skb;
1424}
1425#endif
1426
1427static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1428				  struct sk_buff *skb)
1429{
1430	skb->dev = vrf_dev;
1431	skb->skb_iif = vrf_dev->ifindex;
1432	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1433
1434	nf_reset_ct(skb);
1435
1436	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1437		goto out;
1438
1439	/* loopback traffic; do not push through packet taps again.
1440	 * Reset pkt_type for upper layers to process skb
1441	 */
1442	if (skb->pkt_type == PACKET_LOOPBACK) {
1443		skb->pkt_type = PACKET_HOST;
1444		goto out;
1445	}
1446
1447	vrf_rx_stats(vrf_dev, skb->len);
1448
1449	if (!list_empty(&vrf_dev->ptype_all)) {
1450		int err;
1451
1452		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1453		if (likely(!err)) {
1454			skb_push(skb, skb->mac_len);
1455			dev_queue_xmit_nit(skb, vrf_dev);
1456			skb_pull(skb, skb->mac_len);
1457		}
1458	}
1459
1460	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1461out:
1462	return skb;
1463}
1464
1465/* called with rcu lock held */
1466static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1467				  struct sk_buff *skb,
1468				  u16 proto)
1469{
1470	switch (proto) {
1471	case AF_INET:
1472		return vrf_ip_rcv(vrf_dev, skb);
1473	case AF_INET6:
1474		return vrf_ip6_rcv(vrf_dev, skb);
1475	}
1476
1477	return skb;
1478}
1479
1480#if IS_ENABLED(CONFIG_IPV6)
1481/* send to link-local or multicast address via interface enslaved to
1482 * VRF device. Force lookup to VRF table without changing flow struct
1483 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1484 * is taken on the dst by this function.
1485 */
1486static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1487					      struct flowi6 *fl6)
1488{
1489	struct net *net = dev_net(dev);
1490	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1491	struct dst_entry *dst = NULL;
1492	struct rt6_info *rt;
1493
1494	/* VRF device does not have a link-local address and
1495	 * sending packets to link-local or mcast addresses over
1496	 * a VRF device does not make sense
1497	 */
1498	if (fl6->flowi6_oif == dev->ifindex) {
1499		dst = &net->ipv6.ip6_null_entry->dst;
 
1500		return dst;
1501	}
1502
1503	if (!ipv6_addr_any(&fl6->saddr))
1504		flags |= RT6_LOOKUP_F_HAS_SADDR;
1505
1506	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1507	if (rt)
1508		dst = &rt->dst;
1509
1510	return dst;
1511}
1512#endif
1513
1514static const struct l3mdev_ops vrf_l3mdev_ops = {
1515	.l3mdev_fib_table	= vrf_fib_table,
1516	.l3mdev_l3_rcv		= vrf_l3_rcv,
1517	.l3mdev_l3_out		= vrf_l3_out,
1518#if IS_ENABLED(CONFIG_IPV6)
1519	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1520#endif
1521};
1522
1523static void vrf_get_drvinfo(struct net_device *dev,
1524			    struct ethtool_drvinfo *info)
1525{
1526	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1527	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1528}
1529
1530static const struct ethtool_ops vrf_ethtool_ops = {
1531	.get_drvinfo	= vrf_get_drvinfo,
1532};
1533
1534static inline size_t vrf_fib_rule_nl_size(void)
1535{
1536	size_t sz;
1537
1538	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1539	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1540	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1541	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1542
1543	return sz;
1544}
1545
1546static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1547{
1548	struct fib_rule_hdr *frh;
1549	struct nlmsghdr *nlh;
1550	struct sk_buff *skb;
1551	int err;
1552
1553	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1554	    !ipv6_mod_enabled())
1555		return 0;
1556
1557	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1558	if (!skb)
1559		return -ENOMEM;
1560
1561	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1562	if (!nlh)
1563		goto nla_put_failure;
1564
1565	/* rule only needs to appear once */
1566	nlh->nlmsg_flags |= NLM_F_EXCL;
1567
1568	frh = nlmsg_data(nlh);
1569	memset(frh, 0, sizeof(*frh));
1570	frh->family = family;
1571	frh->action = FR_ACT_TO_TBL;
1572
1573	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1574		goto nla_put_failure;
1575
1576	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1577		goto nla_put_failure;
1578
1579	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1580		goto nla_put_failure;
1581
1582	nlmsg_end(skb, nlh);
1583
1584	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1585	skb->sk = dev_net(dev)->rtnl;
1586	if (add_it) {
1587		err = fib_nl_newrule(skb, nlh, NULL);
1588		if (err == -EEXIST)
1589			err = 0;
1590	} else {
1591		err = fib_nl_delrule(skb, nlh, NULL);
1592		if (err == -ENOENT)
1593			err = 0;
1594	}
1595	nlmsg_free(skb);
1596
1597	return err;
1598
1599nla_put_failure:
1600	nlmsg_free(skb);
1601
1602	return -EMSGSIZE;
1603}
1604
1605static int vrf_add_fib_rules(const struct net_device *dev)
1606{
1607	int err;
1608
1609	err = vrf_fib_rule(dev, AF_INET,  true);
1610	if (err < 0)
1611		goto out_err;
1612
1613	err = vrf_fib_rule(dev, AF_INET6, true);
1614	if (err < 0)
1615		goto ipv6_err;
1616
1617#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1618	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1619	if (err < 0)
1620		goto ipmr_err;
1621#endif
1622
1623#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1624	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1625	if (err < 0)
1626		goto ip6mr_err;
1627#endif
1628
1629	return 0;
1630
1631#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1632ip6mr_err:
1633	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1634#endif
1635
1636#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1637ipmr_err:
1638	vrf_fib_rule(dev, AF_INET6,  false);
1639#endif
1640
1641ipv6_err:
1642	vrf_fib_rule(dev, AF_INET,  false);
1643
1644out_err:
1645	netdev_err(dev, "Failed to add FIB rules.\n");
1646	return err;
1647}
1648
1649static void vrf_setup(struct net_device *dev)
1650{
1651	ether_setup(dev);
1652
1653	/* Initialize the device structure. */
1654	dev->netdev_ops = &vrf_netdev_ops;
1655	dev->l3mdev_ops = &vrf_l3mdev_ops;
1656	dev->ethtool_ops = &vrf_ethtool_ops;
1657	dev->needs_free_netdev = true;
1658
1659	/* Fill in device structure with ethernet-generic values. */
1660	eth_hw_addr_random(dev);
1661
1662	/* don't acquire vrf device's netif_tx_lock when transmitting */
1663	dev->features |= NETIF_F_LLTX;
1664
1665	/* don't allow vrf devices to change network namespaces. */
1666	dev->features |= NETIF_F_NETNS_LOCAL;
1667
1668	/* does not make sense for a VLAN to be added to a vrf device */
1669	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1670
1671	/* enable offload features */
1672	dev->features   |= NETIF_F_GSO_SOFTWARE;
1673	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1674	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1675
1676	dev->hw_features = dev->features;
1677	dev->hw_enc_features = dev->features;
1678
1679	/* default to no qdisc; user can add if desired */
1680	dev->priv_flags |= IFF_NO_QUEUE;
1681	dev->priv_flags |= IFF_NO_RX_HANDLER;
1682	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1683
1684	/* VRF devices do not care about MTU, but if the MTU is set
1685	 * too low then the ipv4 and ipv6 protocols are disabled
1686	 * which breaks networking.
1687	 */
1688	dev->min_mtu = IPV6_MIN_MTU;
1689	dev->max_mtu = IP6_MAX_MTU;
1690	dev->mtu = dev->max_mtu;
1691}
1692
1693static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694			struct netlink_ext_ack *extack)
1695{
1696	if (tb[IFLA_ADDRESS]) {
1697		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699			return -EINVAL;
1700		}
1701		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703			return -EADDRNOTAVAIL;
1704		}
1705	}
1706	return 0;
1707}
1708
1709static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710{
1711	struct net_device *port_dev;
1712	struct list_head *iter;
1713
1714	netdev_for_each_lower_dev(dev, port_dev, iter)
1715		vrf_del_slave(dev, port_dev);
1716
1717	vrf_map_unregister_dev(dev);
1718
1719	unregister_netdevice_queue(dev, head);
1720}
1721
1722static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723		       struct nlattr *tb[], struct nlattr *data[],
1724		       struct netlink_ext_ack *extack)
1725{
1726	struct net_vrf *vrf = netdev_priv(dev);
1727	struct netns_vrf *nn_vrf;
1728	bool *add_fib_rules;
1729	struct net *net;
1730	int err;
1731
1732	if (!data || !data[IFLA_VRF_TABLE]) {
1733		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734		return -EINVAL;
1735	}
1736
1737	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740				    "Invalid VRF table id");
1741		return -EINVAL;
1742	}
1743
1744	dev->priv_flags |= IFF_L3MDEV_MASTER;
1745
1746	err = register_netdevice(dev);
1747	if (err)
1748		goto out;
1749
1750	/* mapping between table_id and vrf;
1751	 * note: such binding could not be done in the dev init function
1752	 * because dev->ifindex id is not available yet.
1753	 */
1754	vrf->ifindex = dev->ifindex;
1755
1756	err = vrf_map_register_dev(dev, extack);
1757	if (err) {
1758		unregister_netdevice(dev);
1759		goto out;
1760	}
1761
1762	net = dev_net(dev);
1763	nn_vrf = net_generic(net, vrf_net_id);
1764
1765	add_fib_rules = &nn_vrf->add_fib_rules;
1766	if (*add_fib_rules) {
1767		err = vrf_add_fib_rules(dev);
1768		if (err) {
1769			vrf_map_unregister_dev(dev);
1770			unregister_netdevice(dev);
1771			goto out;
1772		}
1773		*add_fib_rules = false;
1774	}
1775
1776out:
1777	return err;
1778}
1779
1780static size_t vrf_nl_getsize(const struct net_device *dev)
1781{
1782	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1783}
1784
1785static int vrf_fillinfo(struct sk_buff *skb,
1786			const struct net_device *dev)
1787{
1788	struct net_vrf *vrf = netdev_priv(dev);
1789
1790	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791}
1792
1793static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794				 const struct net_device *slave_dev)
1795{
1796	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1797}
1798
1799static int vrf_fill_slave_info(struct sk_buff *skb,
1800			       const struct net_device *vrf_dev,
1801			       const struct net_device *slave_dev)
1802{
1803	struct net_vrf *vrf = netdev_priv(vrf_dev);
1804
1805	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806		return -EMSGSIZE;
1807
1808	return 0;
1809}
1810
1811static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813};
1814
1815static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816	.kind		= DRV_NAME,
1817	.priv_size	= sizeof(struct net_vrf),
1818
1819	.get_size	= vrf_nl_getsize,
1820	.policy		= vrf_nl_policy,
1821	.validate	= vrf_validate,
1822	.fill_info	= vrf_fillinfo,
1823
1824	.get_slave_size  = vrf_get_slave_size,
1825	.fill_slave_info = vrf_fill_slave_info,
1826
1827	.newlink	= vrf_newlink,
1828	.dellink	= vrf_dellink,
1829	.setup		= vrf_setup,
1830	.maxtype	= IFLA_VRF_MAX,
1831};
1832
1833static int vrf_device_event(struct notifier_block *unused,
1834			    unsigned long event, void *ptr)
1835{
1836	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837
1838	/* only care about unregister events to drop slave references */
1839	if (event == NETDEV_UNREGISTER) {
1840		struct net_device *vrf_dev;
1841
1842		if (!netif_is_l3_slave(dev))
1843			goto out;
1844
1845		vrf_dev = netdev_master_upper_dev_get(dev);
1846		vrf_del_slave(vrf_dev, dev);
1847	}
1848out:
1849	return NOTIFY_DONE;
1850}
1851
1852static struct notifier_block vrf_notifier_block __read_mostly = {
1853	.notifier_call = vrf_device_event,
1854};
1855
1856static int vrf_map_init(struct vrf_map *vmap)
1857{
1858	spin_lock_init(&vmap->vmap_lock);
1859	hash_init(vmap->ht);
1860
1861	vmap->strict_mode = false;
1862
1863	return 0;
1864}
1865
1866#ifdef CONFIG_SYSCTL
1867static bool vrf_strict_mode(struct vrf_map *vmap)
1868{
1869	bool strict_mode;
1870
1871	vrf_map_lock(vmap);
1872	strict_mode = vmap->strict_mode;
1873	vrf_map_unlock(vmap);
1874
1875	return strict_mode;
1876}
1877
1878static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879{
1880	bool *cur_mode;
1881	int res = 0;
1882
1883	vrf_map_lock(vmap);
1884
1885	cur_mode = &vmap->strict_mode;
1886	if (*cur_mode == new_mode)
1887		goto unlock;
1888
1889	if (*cur_mode) {
1890		/* disable strict mode */
1891		*cur_mode = false;
1892	} else {
1893		if (vmap->shared_tables) {
1894			/* we cannot allow strict_mode because there are some
1895			 * vrfs that share one or more tables.
1896			 */
1897			res = -EBUSY;
1898			goto unlock;
1899		}
1900
1901		/* no tables are shared among vrfs, so we can go back
1902		 * to 1:1 association between a vrf with its table.
1903		 */
1904		*cur_mode = true;
1905	}
1906
1907unlock:
1908	vrf_map_unlock(vmap);
1909
1910	return res;
1911}
1912
1913static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914				    void *buffer, size_t *lenp, loff_t *ppos)
1915{
1916	struct net *net = (struct net *)table->extra1;
1917	struct vrf_map *vmap = netns_vrf_map(net);
1918	int proc_strict_mode = 0;
1919	struct ctl_table tmp = {
1920		.procname	= table->procname,
1921		.data		= &proc_strict_mode,
1922		.maxlen		= sizeof(int),
1923		.mode		= table->mode,
1924		.extra1		= SYSCTL_ZERO,
1925		.extra2		= SYSCTL_ONE,
1926	};
1927	int ret;
1928
1929	if (!write)
1930		proc_strict_mode = vrf_strict_mode(vmap);
1931
1932	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933
1934	if (write && ret == 0)
1935		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936
1937	return ret;
1938}
1939
1940static const struct ctl_table vrf_table[] = {
1941	{
1942		.procname	= "strict_mode",
1943		.data		= NULL,
1944		.maxlen		= sizeof(int),
1945		.mode		= 0644,
1946		.proc_handler	= vrf_shared_table_handler,
1947		/* set by the vrf_netns_init */
1948		.extra1		= NULL,
1949	},
1950	{ },
1951};
1952
1953static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954{
1955	struct ctl_table *table;
1956
1957	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958	if (!table)
1959		return -ENOMEM;
1960
1961	/* init the extra1 parameter with the reference to current netns */
1962	table[0].extra1 = net;
1963
1964	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1965	if (!nn_vrf->ctl_hdr) {
1966		kfree(table);
1967		return -ENOMEM;
1968	}
1969
1970	return 0;
1971}
1972
1973static void vrf_netns_exit_sysctl(struct net *net)
1974{
1975	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976	struct ctl_table *table;
1977
1978	table = nn_vrf->ctl_hdr->ctl_table_arg;
1979	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1980	kfree(table);
1981}
1982#else
1983static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984{
1985	return 0;
1986}
1987
1988static void vrf_netns_exit_sysctl(struct net *net)
1989{
1990}
1991#endif
1992
1993/* Initialize per network namespace state */
1994static int __net_init vrf_netns_init(struct net *net)
1995{
1996	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997
1998	nn_vrf->add_fib_rules = true;
1999	vrf_map_init(&nn_vrf->vmap);
2000
2001	return vrf_netns_init_sysctl(net, nn_vrf);
2002}
2003
2004static void __net_exit vrf_netns_exit(struct net *net)
2005{
2006	vrf_netns_exit_sysctl(net);
2007}
2008
2009static struct pernet_operations vrf_net_ops __net_initdata = {
2010	.init = vrf_netns_init,
2011	.exit = vrf_netns_exit,
2012	.id   = &vrf_net_id,
2013	.size = sizeof(struct netns_vrf),
2014};
2015
2016static int __init vrf_init_module(void)
2017{
2018	int rc;
2019
2020	register_netdevice_notifier(&vrf_notifier_block);
2021
2022	rc = register_pernet_subsys(&vrf_net_ops);
2023	if (rc < 0)
2024		goto error;
2025
2026	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027					  vrf_ifindex_lookup_by_table_id);
2028	if (rc < 0)
2029		goto unreg_pernet;
2030
2031	rc = rtnl_link_register(&vrf_link_ops);
2032	if (rc < 0)
2033		goto table_lookup_unreg;
 
 
2034
2035	return 0;
2036
2037table_lookup_unreg:
2038	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039				       vrf_ifindex_lookup_by_table_id);
2040
2041unreg_pernet:
2042	unregister_pernet_subsys(&vrf_net_ops);
2043
2044error:
2045	unregister_netdevice_notifier(&vrf_notifier_block);
2046	return rc;
2047}
2048
2049module_init(vrf_init_module);
2050MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052MODULE_LICENSE("GPL");
2053MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054MODULE_VERSION(DRV_VERSION);