Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
  4 * Copyright (C) 2018-2021 Linaro Ltd.
  5 */
  6
  7#include <linux/types.h>
  8#include <linux/atomic.h>
  9#include <linux/bitfield.h>
 10#include <linux/device.h>
 11#include <linux/bug.h>
 12#include <linux/io.h>
 13#include <linux/firmware.h>
 14#include <linux/module.h>
 15#include <linux/of.h>
 16#include <linux/of_device.h>
 17#include <linux/of_address.h>
 18#include <linux/qcom_scm.h>
 19#include <linux/soc/qcom/mdt_loader.h>
 20
 21#include "ipa.h"
 22#include "ipa_clock.h"
 23#include "ipa_data.h"
 24#include "ipa_endpoint.h"
 25#include "ipa_resource.h"
 26#include "ipa_cmd.h"
 27#include "ipa_reg.h"
 28#include "ipa_mem.h"
 29#include "ipa_table.h"
 30#include "ipa_modem.h"
 31#include "ipa_uc.h"
 32#include "ipa_interrupt.h"
 33#include "gsi_trans.h"
 34#include "ipa_sysfs.h"
 35
 36/**
 37 * DOC: The IP Accelerator
 38 *
 39 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
 40 * networking component found in many Qualcomm SoCs.  The IPA is connected
 41 * to the application processor (AP), but is also connected (and partially
 42 * controlled by) other "execution environments" (EEs), such as a modem.
 43 *
 44 * The IPA is the conduit between the AP and the modem that carries network
 45 * traffic.  This driver presents a network interface representing the
 46 * connection of the modem to external (e.g. LTE) networks.
 47 *
 48 * The IPA provides protocol checksum calculation, offloading this work
 49 * from the AP.  The IPA offers additional functionality, including routing,
 50 * filtering, and NAT support, but that more advanced functionality is not
 51 * currently supported.  Despite that, some resources--including routing
 52 * tables and filter tables--are defined in this driver because they must
 53 * be initialized even when the advanced hardware features are not used.
 54 *
 55 * There are two distinct layers that implement the IPA hardware, and this
 56 * is reflected in the organization of the driver.  The generic software
 57 * interface (GSI) is an integral component of the IPA, providing a
 58 * well-defined communication layer between the AP subsystem and the IPA
 59 * core.  The GSI implements a set of "channels" used for communication
 60 * between the AP and the IPA.
 61 *
 62 * The IPA layer uses GSI channels to implement its "endpoints".  And while
 63 * a GSI channel carries data between the AP and the IPA, a pair of IPA
 64 * endpoints is used to carry traffic between two EEs.  Specifically, the main
 65 * modem network interface is implemented by two pairs of endpoints:  a TX
 66 * endpoint on the AP coupled with an RX endpoint on the modem; and another
 67 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
 68 */
 69
 70/* The name of the GSI firmware file relative to /lib/firmware */
 71#define IPA_FW_PATH_DEFAULT	"ipa_fws.mdt"
 72#define IPA_PAS_ID		15
 73
 74/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
 75#define DPL_TIMESTAMP_SHIFT	14	/* ~1.172 kHz, ~853 usec per tick */
 76#define TAG_TIMESTAMP_SHIFT	14
 77#define NAT_TIMESTAMP_SHIFT	24	/* ~1.144 Hz, ~874 msec per tick */
 78
 79/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
 80#define IPA_XO_CLOCK_DIVIDER	192	/* 1 is subtracted where used */
 81
 82/**
 83 * ipa_suspend_handler() - Handle the suspend IPA interrupt
 84 * @ipa:	IPA pointer
 85 * @irq_id:	IPA interrupt type (unused)
 86 *
 87 * If an RX endpoint is in suspend state, and the IPA has a packet
 88 * destined for that endpoint, the IPA generates a SUSPEND interrupt
 89 * to inform the AP that it should resume the endpoint.  If we get
 90 * one of these interrupts we just resume everything.
 91 */
 92static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
 93{
 94	/* Just report the event, and let system resume handle the rest.
 95	 * More than one endpoint could signal this; if so, ignore
 96	 * all but the first.
 97	 */
 98	if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags))
 99		pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
100
101	/* Acknowledge/clear the suspend interrupt on all endpoints */
102	ipa_interrupt_suspend_clear_all(ipa->interrupt);
103}
104
105/**
106 * ipa_setup() - Set up IPA hardware
107 * @ipa:	IPA pointer
108 *
109 * Perform initialization that requires issuing immediate commands on
110 * the command TX endpoint.  If the modem is doing GSI firmware load
111 * and initialization, this function will be called when an SMP2P
112 * interrupt has been signaled by the modem.  Otherwise it will be
113 * called from ipa_probe() after GSI firmware has been successfully
114 * loaded, authenticated, and started by Trust Zone.
115 */
116int ipa_setup(struct ipa *ipa)
117{
118	struct ipa_endpoint *exception_endpoint;
119	struct ipa_endpoint *command_endpoint;
120	struct device *dev = &ipa->pdev->dev;
121	int ret;
122
123	ret = gsi_setup(&ipa->gsi);
124	if (ret)
125		return ret;
126
127	ipa->interrupt = ipa_interrupt_setup(ipa);
128	if (IS_ERR(ipa->interrupt)) {
129		ret = PTR_ERR(ipa->interrupt);
130		goto err_gsi_teardown;
131	}
132	ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND,
133			  ipa_suspend_handler);
134
135	ipa_uc_setup(ipa);
136
137	ret = device_init_wakeup(dev, true);
138	if (ret)
139		goto err_uc_teardown;
140
141	ipa_endpoint_setup(ipa);
142
143	/* We need to use the AP command TX endpoint to perform other
144	 * initialization, so we enable first.
145	 */
146	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
147	ret = ipa_endpoint_enable_one(command_endpoint);
148	if (ret)
149		goto err_endpoint_teardown;
150
151	ret = ipa_mem_setup(ipa);	/* No matching teardown required */
152	if (ret)
153		goto err_command_disable;
154
155	ret = ipa_table_setup(ipa);	/* No matching teardown required */
156	if (ret)
157		goto err_command_disable;
158
159	/* Enable the exception handling endpoint, and tell the hardware
160	 * to use it by default.
161	 */
162	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
163	ret = ipa_endpoint_enable_one(exception_endpoint);
164	if (ret)
165		goto err_command_disable;
166
167	ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
168
169	/* We're all set.  Now prepare for communication with the modem */
170	ret = ipa_modem_setup(ipa);
171	if (ret)
172		goto err_default_route_clear;
173
174	ipa->setup_complete = true;
175
176	dev_info(dev, "IPA driver setup completed successfully\n");
177
178	return 0;
179
180err_default_route_clear:
181	ipa_endpoint_default_route_clear(ipa);
182	ipa_endpoint_disable_one(exception_endpoint);
183err_command_disable:
184	ipa_endpoint_disable_one(command_endpoint);
185err_endpoint_teardown:
186	ipa_endpoint_teardown(ipa);
187	(void)device_init_wakeup(dev, false);
188err_uc_teardown:
189	ipa_uc_teardown(ipa);
190	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
191	ipa_interrupt_teardown(ipa->interrupt);
192err_gsi_teardown:
193	gsi_teardown(&ipa->gsi);
194
195	return ret;
196}
197
198/**
199 * ipa_teardown() - Inverse of ipa_setup()
200 * @ipa:	IPA pointer
201 */
202static void ipa_teardown(struct ipa *ipa)
203{
204	struct ipa_endpoint *exception_endpoint;
205	struct ipa_endpoint *command_endpoint;
206
207	ipa_modem_teardown(ipa);
208	ipa_endpoint_default_route_clear(ipa);
209	exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
210	ipa_endpoint_disable_one(exception_endpoint);
211	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
212	ipa_endpoint_disable_one(command_endpoint);
213	ipa_endpoint_teardown(ipa);
214	(void)device_init_wakeup(&ipa->pdev->dev, false);
215	ipa_uc_teardown(ipa);
216	ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND);
217	ipa_interrupt_teardown(ipa->interrupt);
218	gsi_teardown(&ipa->gsi);
219}
220
221/* Configure bus access behavior for IPA components */
222static void ipa_hardware_config_comp(struct ipa *ipa)
223{
224	u32 val;
225
226	/* Nothing to configure prior to IPA v4.0 */
227	if (ipa->version < IPA_VERSION_4_0)
228		return;
229
230	val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
231
232	if (ipa->version == IPA_VERSION_4_0) {
233		val &= ~IPA_QMB_SELECT_CONS_EN_FMASK;
234		val &= ~IPA_QMB_SELECT_PROD_EN_FMASK;
235		val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK;
236	} else if (ipa->version < IPA_VERSION_4_5) {
237		val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK;
238	} else {
239		/* For IPA v4.5 IPA_FULL_FLUSH_WAIT_RSC_CLOSE_EN is 0 */
240	}
241
242	val |= GSI_MULTI_INORDER_RD_DIS_FMASK;
243	val |= GSI_MULTI_INORDER_WR_DIS_FMASK;
244
245	iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET);
246}
247
248/* Configure DDR and (possibly) PCIe max read/write QSB values */
249static void
250ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
251{
252	const struct ipa_qsb_data *data0;
253	const struct ipa_qsb_data *data1;
254	u32 val;
255
256	/* assert(data->qsb_count > 0); */
257	/* assert(data->qsb_count < 3); */
258
259	/* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
260	data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
261	if (data->qsb_count > 1)
262		data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
263
264	/* Max outstanding write accesses for QSB masters */
265	val = u32_encode_bits(data0->max_writes, GEN_QMB_0_MAX_WRITES_FMASK);
266	if (data->qsb_count > 1)
267		val |= u32_encode_bits(data1->max_writes,
268				       GEN_QMB_1_MAX_WRITES_FMASK);
269	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET);
270
271	/* Max outstanding read accesses for QSB masters */
272	val = u32_encode_bits(data0->max_reads, GEN_QMB_0_MAX_READS_FMASK);
273	if (ipa->version >= IPA_VERSION_4_0)
274		val |= u32_encode_bits(data0->max_reads_beats,
275				       GEN_QMB_0_MAX_READS_BEATS_FMASK);
276	if (data->qsb_count > 1) {
277		val |= u32_encode_bits(data1->max_reads,
278				       GEN_QMB_1_MAX_READS_FMASK);
279		if (ipa->version >= IPA_VERSION_4_0)
280			val |= u32_encode_bits(data1->max_reads_beats,
281					       GEN_QMB_1_MAX_READS_BEATS_FMASK);
282	}
283	iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET);
284}
285
286/* The internal inactivity timer clock is used for the aggregation timer */
287#define TIMER_FREQUENCY	32000		/* 32 KHz inactivity timer clock */
288
289/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
290 * field to represent the given number of microseconds.  The value is one
291 * less than the number of timer ticks in the requested period.  0 is not
292 * a valid granularity value.
293 */
294static u32 ipa_aggr_granularity_val(u32 usec)
295{
296	/* assert(usec != 0); */
297
298	return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
299}
300
301/* IPA uses unified Qtime starting at IPA v4.5, implementing various
302 * timestamps and timers independent of the IPA core clock rate.  The
303 * Qtimer is based on a 56-bit timestamp incremented at each tick of
304 * a 19.2 MHz SoC crystal oscillator (XO clock).
305 *
306 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
307 * timestamp is achieved by shifting the Qtimer timestamp value right
308 * some number of bits to produce the low-order bits of the coarser
309 * granularity timestamp.
310 *
311 * For timers, a common timer clock is derived from the XO clock using
312 * a divider (we use 192, to produce a 100kHz timer clock).  From
313 * this common clock, three "pulse generators" are used to produce
314 * timer ticks at a configurable frequency.  IPA timers (such as
315 * those used for aggregation or head-of-line block handling) now
316 * define their period based on one of these pulse generators.
317 */
318static void ipa_qtime_config(struct ipa *ipa)
319{
320	u32 val;
321
322	/* Timer clock divider must be disabled when we change the rate */
323	iowrite32(0, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
324
325	/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
326	val = u32_encode_bits(DPL_TIMESTAMP_SHIFT, DPL_TIMESTAMP_LSB_FMASK);
327	val |= u32_encode_bits(1, DPL_TIMESTAMP_SEL_FMASK);
328	/* Configure tag and NAT Qtime timestamp resolution as well */
329	val |= u32_encode_bits(TAG_TIMESTAMP_SHIFT, TAG_TIMESTAMP_LSB_FMASK);
330	val |= u32_encode_bits(NAT_TIMESTAMP_SHIFT, NAT_TIMESTAMP_LSB_FMASK);
331	iowrite32(val, ipa->reg_virt + IPA_REG_QTIME_TIMESTAMP_CFG_OFFSET);
332
333	/* Set granularity of pulse generators used for other timers */
334	val = u32_encode_bits(IPA_GRAN_100_US, GRAN_0_FMASK);
335	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_1_FMASK);
336	val |= u32_encode_bits(IPA_GRAN_1_MS, GRAN_2_FMASK);
337	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_PULSE_GRAN_CFG_OFFSET);
338
339	/* Actual divider is 1 more than value supplied here */
340	val = u32_encode_bits(IPA_XO_CLOCK_DIVIDER - 1, DIV_VALUE_FMASK);
341	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
342
343	/* Divider value is set; re-enable the common timer clock divider */
344	val |= u32_encode_bits(1, DIV_ENABLE_FMASK);
345	iowrite32(val, ipa->reg_virt + IPA_REG_TIMERS_XO_CLK_DIV_CFG_OFFSET);
346}
347
348static void ipa_idle_indication_cfg(struct ipa *ipa,
349				    u32 enter_idle_debounce_thresh,
350				    bool const_non_idle_enable)
351{
352	u32 offset;
353	u32 val;
354
355	val = u32_encode_bits(enter_idle_debounce_thresh,
356			      ENTER_IDLE_DEBOUNCE_THRESH_FMASK);
357	if (const_non_idle_enable)
358		val |= CONST_NON_IDLE_ENABLE_FMASK;
359
360	offset = ipa_reg_idle_indication_cfg_offset(ipa->version);
361	iowrite32(val, ipa->reg_virt + offset);
362}
363
364/**
365 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
366 * @ipa:	IPA pointer
367 *
368 * Configures when the IPA signals it is idle to the global clock
369 * controller, which can respond by scalling down the clock to
370 * save power.
371 */
372static void ipa_hardware_dcd_config(struct ipa *ipa)
373{
374	/* Recommended values for IPA 3.5 and later according to IPA HPG */
375	ipa_idle_indication_cfg(ipa, 256, false);
376}
377
378static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
379{
380	/* Power-on reset values */
381	ipa_idle_indication_cfg(ipa, 0, true);
382}
383
384/**
385 * ipa_hardware_config() - Primitive hardware initialization
386 * @ipa:	IPA pointer
387 * @data:	IPA configuration data
388 */
389static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
390{
391	enum ipa_version version = ipa->version;
392	u32 granularity;
393	u32 val;
394
395	/* IPA v4.5+ has no backward compatibility register */
396	if (version < IPA_VERSION_4_5) {
397		val = data->backward_compat;
398		iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET);
399	}
400
401	/* Implement some hardware workarounds */
402	if (version >= IPA_VERSION_4_0 && version < IPA_VERSION_4_5) {
403		/* Disable PA mask to allow HOLB drop */
404		val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
405		val &= ~PA_MASK_EN_FMASK;
406		iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET);
407
408		/* Enable open global clocks in the CLKON configuration */
409		val = GLOBAL_FMASK | GLOBAL_2X_CLK_FMASK;
410	} else if (version == IPA_VERSION_3_1) {
411		val = MISC_FMASK;	/* Disable MISC clock gating */
412	} else {
413		val = 0;		/* No CLKON configuration needed */
414	}
415	if (val)
416		iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET);
417
418	ipa_hardware_config_comp(ipa);
419
420	/* Configure system bus limits */
421	ipa_hardware_config_qsb(ipa, data);
422
423	if (version < IPA_VERSION_4_5) {
424		/* Configure aggregation timer granularity */
425		granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
426		val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK);
427		iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET);
428	} else {
429		ipa_qtime_config(ipa);
430	}
431
432	/* IPA v4.2 does not support hashed tables, so disable them */
433	if (version == IPA_VERSION_4_2) {
434		u32 offset = ipa_reg_filt_rout_hash_en_offset(version);
435
436		iowrite32(0, ipa->reg_virt + offset);
437	}
438
439	/* Enable dynamic clock division */
440	ipa_hardware_dcd_config(ipa);
441}
442
443/**
444 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
445 * @ipa:	IPA pointer
446 *
447 * This restores the power-on reset values (even if they aren't different)
448 */
449static void ipa_hardware_deconfig(struct ipa *ipa)
450{
451	/* Mostly we just leave things as we set them. */
452	ipa_hardware_dcd_deconfig(ipa);
453}
454
455/**
456 * ipa_config() - Configure IPA hardware
457 * @ipa:	IPA pointer
458 * @data:	IPA configuration data
459 *
460 * Perform initialization requiring IPA clock to be enabled.
461 */
462static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
463{
464	int ret;
465
466	/* Get a clock reference to allow initialization.  This reference
467	 * is held after initialization completes, and won't get dropped
468	 * unless/until a system suspend request arrives.
469	 */
470	ipa_clock_get(ipa);
471
472	ipa_hardware_config(ipa, data);
473
474	ret = ipa_endpoint_config(ipa);
475	if (ret)
476		goto err_hardware_deconfig;
477
478	ret = ipa_mem_config(ipa);
479	if (ret)
480		goto err_endpoint_deconfig;
481
482	ipa_table_config(ipa);		/* No deconfig required */
483
484	/* Assign resource limitation to each group; no deconfig required */
485	ret = ipa_resource_config(ipa, data->resource_data);
486	if (ret)
487		goto err_mem_deconfig;
488
489	ret = ipa_modem_config(ipa);
490	if (ret)
491		goto err_mem_deconfig;
492
493	return 0;
494
495err_mem_deconfig:
496	ipa_mem_deconfig(ipa);
497err_endpoint_deconfig:
498	ipa_endpoint_deconfig(ipa);
499err_hardware_deconfig:
500	ipa_hardware_deconfig(ipa);
501	ipa_clock_put(ipa);
502
503	return ret;
504}
505
506/**
507 * ipa_deconfig() - Inverse of ipa_config()
508 * @ipa:	IPA pointer
509 */
510static void ipa_deconfig(struct ipa *ipa)
511{
512	ipa_modem_deconfig(ipa);
513	ipa_mem_deconfig(ipa);
514	ipa_endpoint_deconfig(ipa);
515	ipa_hardware_deconfig(ipa);
516	ipa_clock_put(ipa);
517}
518
519static int ipa_firmware_load(struct device *dev)
520{
521	const struct firmware *fw;
522	struct device_node *node;
523	struct resource res;
524	phys_addr_t phys;
525	const char *path;
526	ssize_t size;
527	void *virt;
528	int ret;
529
530	node = of_parse_phandle(dev->of_node, "memory-region", 0);
531	if (!node) {
532		dev_err(dev, "DT error getting \"memory-region\" property\n");
533		return -EINVAL;
534	}
535
536	ret = of_address_to_resource(node, 0, &res);
537	of_node_put(node);
538	if (ret) {
539		dev_err(dev, "error %d getting \"memory-region\" resource\n",
540			ret);
541		return ret;
542	}
543
544	/* Use name from DTB if specified; use default for *any* error */
545	ret = of_property_read_string(dev->of_node, "firmware-name", &path);
546	if (ret) {
547		dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
548			ret);
549		path = IPA_FW_PATH_DEFAULT;
550	}
551
552	ret = request_firmware(&fw, path, dev);
553	if (ret) {
554		dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
555		return ret;
556	}
557
558	phys = res.start;
559	size = (size_t)resource_size(&res);
560	virt = memremap(phys, size, MEMREMAP_WC);
561	if (!virt) {
562		dev_err(dev, "unable to remap firmware memory\n");
563		ret = -ENOMEM;
564		goto out_release_firmware;
565	}
566
567	ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
568	if (ret)
569		dev_err(dev, "error %d loading \"%s\"\n", ret, path);
570	else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
571		dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
572
573	memunmap(virt);
574out_release_firmware:
575	release_firmware(fw);
576
577	return ret;
578}
579
580static const struct of_device_id ipa_match[] = {
581	{
582		.compatible	= "qcom,msm8998-ipa",
583		.data		= &ipa_data_v3_1,
584	},
585	{
586		.compatible	= "qcom,sdm845-ipa",
587		.data		= &ipa_data_v3_5_1,
588	},
589	{
590		.compatible	= "qcom,sc7180-ipa",
591		.data		= &ipa_data_v4_2,
592	},
593	{
594		.compatible	= "qcom,sdx55-ipa",
595		.data		= &ipa_data_v4_5,
596	},
597	{
598		.compatible	= "qcom,sm8350-ipa",
599		.data		= &ipa_data_v4_9,
600	},
601	{
602		.compatible	= "qcom,sc7280-ipa",
603		.data		= &ipa_data_v4_11,
604	},
605	{ },
606};
607MODULE_DEVICE_TABLE(of, ipa_match);
608
609/* Check things that can be validated at build time.  This just
610 * groups these things BUILD_BUG_ON() calls don't clutter the rest
611 * of the code.
612 * */
613static void ipa_validate_build(void)
614{
615#ifdef IPA_VALIDATE
616	/* At one time we assumed a 64-bit build, allowing some do_div()
617	 * calls to be replaced by simple division or modulo operations.
618	 * We currently only perform divide and modulo operations on u32,
619	 * u16, or size_t objects, and of those only size_t has any chance
620	 * of being a 64-bit value.  (It should be guaranteed 32 bits wide
621	 * on a 32-bit build, but there is no harm in verifying that.)
622	 */
623	BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
624
625	/* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
626	BUILD_BUG_ON(GSI_EE_AP != 0);
627
628	/* There's no point if we have no channels or event rings */
629	BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
630	BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
631
632	/* GSI hardware design limits */
633	BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
634	BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
635
636	/* The number of TREs in a transaction is limited by the channel's
637	 * TLV FIFO size.  A transaction structure uses 8-bit fields
638	 * to represents the number of TREs it has allocated and used.
639	 */
640	BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
641
642	/* This is used as a divisor */
643	BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
644
645	/* Aggregation granularity value can't be 0, and must fit */
646	BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
647	BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) >
648			field_max(AGGR_GRANULARITY_FMASK));
649#endif /* IPA_VALIDATE */
650}
651
652static bool ipa_version_valid(enum ipa_version version)
653{
654	switch (version) {
655	case IPA_VERSION_3_0:
656	case IPA_VERSION_3_1:
657	case IPA_VERSION_3_5:
658	case IPA_VERSION_3_5_1:
659	case IPA_VERSION_4_0:
660	case IPA_VERSION_4_1:
661	case IPA_VERSION_4_2:
662	case IPA_VERSION_4_5:
663	case IPA_VERSION_4_7:
664	case IPA_VERSION_4_9:
665	case IPA_VERSION_4_11:
666		return true;
667
668	default:
669		return false;
670	}
671}
672
673/**
674 * ipa_probe() - IPA platform driver probe function
675 * @pdev:	Platform device pointer
676 *
677 * Return:	0 if successful, or a negative error code (possibly
678 *		EPROBE_DEFER)
679 *
680 * This is the main entry point for the IPA driver.  Initialization proceeds
681 * in several stages:
682 *   - The "init" stage involves activities that can be initialized without
683 *     access to the IPA hardware.
684 *   - The "config" stage requires the IPA clock to be active so IPA registers
685 *     can be accessed, but does not require the use of IPA immediate commands.
686 *   - The "setup" stage uses IPA immediate commands, and so requires the GSI
687 *     layer to be initialized.
688 *
689 * A Boolean Device Tree "modem-init" property determines whether GSI
690 * initialization will be performed by the AP (Trust Zone) or the modem.
691 * If the AP does GSI initialization, the setup phase is entered after
692 * this has completed successfully.  Otherwise the modem initializes
693 * the GSI layer and signals it has finished by sending an SMP2P interrupt
694 * to the AP; this triggers the start if IPA setup.
695 */
696static int ipa_probe(struct platform_device *pdev)
697{
698	struct device *dev = &pdev->dev;
699	const struct ipa_data *data;
700	struct ipa_clock *clock;
701	bool modem_init;
702	struct ipa *ipa;
703	int ret;
704
705	ipa_validate_build();
706
707	/* Get configuration data early; needed for clock initialization */
708	data = of_device_get_match_data(dev);
709	if (!data) {
710		dev_err(dev, "matched hardware not supported\n");
711		return -ENODEV;
712	}
713
714	if (!ipa_version_valid(data->version)) {
715		dev_err(dev, "invalid IPA version\n");
716		return -EINVAL;
717	}
718
719	/* If we need Trust Zone, make sure it's available */
720	modem_init = of_property_read_bool(dev->of_node, "modem-init");
721	if (!modem_init)
722		if (!qcom_scm_is_available())
723			return -EPROBE_DEFER;
724
725	/* The clock and interconnects might not be ready when we're
726	 * probed, so might return -EPROBE_DEFER.
727	 */
728	clock = ipa_clock_init(dev, data->clock_data);
729	if (IS_ERR(clock))
730		return PTR_ERR(clock);
731
732	/* No more EPROBE_DEFER.  Allocate and initialize the IPA structure */
733	ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
734	if (!ipa) {
735		ret = -ENOMEM;
736		goto err_clock_exit;
737	}
738
739	ipa->pdev = pdev;
740	dev_set_drvdata(dev, ipa);
741	ipa->clock = clock;
742	ipa->version = data->version;
743	init_completion(&ipa->completion);
744
745	ret = ipa_reg_init(ipa);
746	if (ret)
747		goto err_kfree_ipa;
748
749	ret = ipa_mem_init(ipa, data->mem_data);
750	if (ret)
751		goto err_reg_exit;
752
753	ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
754		       data->endpoint_data);
755	if (ret)
756		goto err_mem_exit;
757
758	/* Result is a non-zero mask of endpoints that support filtering */
759	ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count,
760					    data->endpoint_data);
761	if (!ipa->filter_map) {
762		ret = -EINVAL;
763		goto err_gsi_exit;
764	}
765
766	ret = ipa_table_init(ipa);
767	if (ret)
768		goto err_endpoint_exit;
769
770	ret = ipa_modem_init(ipa, modem_init);
771	if (ret)
772		goto err_table_exit;
773
774	ret = ipa_config(ipa, data);
775	if (ret)
776		goto err_modem_exit;
777
778	dev_info(dev, "IPA driver initialized");
779
780	/* If the modem is doing early initialization, it will trigger a
781	 * call to ipa_setup() call when it has finished.  In that case
782	 * we're done here.
783	 */
784	if (modem_init)
785		return 0;
786
787	/* Otherwise we need to load the firmware and have Trust Zone validate
788	 * and install it.  If that succeeds we can proceed with setup.
789	 */
790	ret = ipa_firmware_load(dev);
791	if (ret)
792		goto err_deconfig;
793
794	ret = ipa_setup(ipa);
795	if (ret)
796		goto err_deconfig;
797
798	return 0;
799
800err_deconfig:
801	ipa_deconfig(ipa);
802err_modem_exit:
803	ipa_modem_exit(ipa);
804err_table_exit:
805	ipa_table_exit(ipa);
806err_endpoint_exit:
807	ipa_endpoint_exit(ipa);
808err_gsi_exit:
809	gsi_exit(&ipa->gsi);
810err_mem_exit:
811	ipa_mem_exit(ipa);
812err_reg_exit:
813	ipa_reg_exit(ipa);
814err_kfree_ipa:
815	kfree(ipa);
816err_clock_exit:
817	ipa_clock_exit(clock);
818
819	return ret;
820}
821
822static int ipa_remove(struct platform_device *pdev)
823{
824	struct ipa *ipa = dev_get_drvdata(&pdev->dev);
825	struct ipa_clock *clock = ipa->clock;
826	int ret;
827
828	if (ipa->setup_complete) {
829		ret = ipa_modem_stop(ipa);
830		/* If starting or stopping is in progress, try once more */
831		if (ret == -EBUSY) {
832			usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
833			ret = ipa_modem_stop(ipa);
834		}
835		if (ret)
836			return ret;
837
838		ipa_teardown(ipa);
839	}
840
841	ipa_deconfig(ipa);
842	ipa_modem_exit(ipa);
843	ipa_table_exit(ipa);
844	ipa_endpoint_exit(ipa);
845	gsi_exit(&ipa->gsi);
846	ipa_mem_exit(ipa);
847	ipa_reg_exit(ipa);
848	kfree(ipa);
849	ipa_clock_exit(clock);
850
851	return 0;
852}
853
854static void ipa_shutdown(struct platform_device *pdev)
855{
856	int ret;
857
858	ret = ipa_remove(pdev);
859	if (ret)
860		dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
861}
862
863/**
864 * ipa_suspend() - Power management system suspend callback
865 * @dev:	IPA device structure
866 *
867 * Return:	Always returns zero
868 *
869 * Called by the PM framework when a system suspend operation is invoked.
870 * Suspends endpoints and releases the clock reference held to keep
871 * the IPA clock running until this point.
872 */
873static int ipa_suspend(struct device *dev)
874{
875	struct ipa *ipa = dev_get_drvdata(dev);
876
877	/* When a suspended RX endpoint has a packet ready to receive, we
878	 * get an IPA SUSPEND interrupt.  We trigger a system resume in
879	 * that case, but only on the first such interrupt since suspend.
880	 */
881	__clear_bit(IPA_FLAG_RESUMED, ipa->flags);
882
883	ipa_endpoint_suspend(ipa);
884
885	ipa_clock_put(ipa);
886
887	return 0;
888}
889
890/**
891 * ipa_resume() - Power management system resume callback
892 * @dev:	IPA device structure
893 *
894 * Return:	Always returns 0
895 *
896 * Called by the PM framework when a system resume operation is invoked.
897 * Takes an IPA clock reference to keep the clock running until suspend,
898 * and resumes endpoints.
899 */
900static int ipa_resume(struct device *dev)
901{
902	struct ipa *ipa = dev_get_drvdata(dev);
903
904	/* This clock reference will keep the IPA out of suspend
905	 * until we get a power management suspend request.
906	 */
907	ipa_clock_get(ipa);
908
909	ipa_endpoint_resume(ipa);
910
911	return 0;
912}
913
914static const struct dev_pm_ops ipa_pm_ops = {
915	.suspend	= ipa_suspend,
916	.resume		= ipa_resume,
917};
918
919static const struct attribute_group *ipa_attribute_groups[] = {
920	&ipa_attribute_group,
921	&ipa_feature_attribute_group,
922	&ipa_modem_attribute_group,
923	NULL,
924};
925
926static struct platform_driver ipa_driver = {
927	.probe		= ipa_probe,
928	.remove		= ipa_remove,
929	.shutdown	= ipa_shutdown,
930	.driver	= {
931		.name		= "ipa",
932		.pm		= &ipa_pm_ops,
933		.of_match_table	= ipa_match,
934		.dev_groups	= ipa_attribute_groups,
935	},
936};
937
938module_platform_driver(ipa_driver);
939
940MODULE_LICENSE("GPL v2");
941MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");