Loading...
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/init.h>
23#include <linux/atomic.h>
24#include <linux/module.h>
25#include <linux/highmem.h>
26#include <linux/device.h>
27#include <linux/io.h>
28#include <linux/delay.h>
29#include <linux/netdevice.h>
30#include <linux/inetdevice.h>
31#include <linux/etherdevice.h>
32#include <linux/skbuff.h>
33#include <linux/if_vlan.h>
34#include <linux/in.h>
35#include <linux/slab.h>
36#include <linux/rtnetlink.h>
37#include <linux/netpoll.h>
38#include <linux/reciprocal_div.h>
39
40#include <net/arp.h>
41#include <net/route.h>
42#include <net/sock.h>
43#include <net/pkt_sched.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46
47#include "hyperv_net.h"
48
49#define RING_SIZE_MIN 64
50#define RETRY_US_LO 5000
51#define RETRY_US_HI 10000
52#define RETRY_MAX 2000 /* >10 sec */
53
54#define LINKCHANGE_INT (2 * HZ)
55#define VF_TAKEOVER_INT (HZ / 10)
56
57static unsigned int ring_size __ro_after_init = 128;
58module_param(ring_size, uint, 0444);
59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60unsigned int netvsc_ring_bytes __ro_after_init;
61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
62
63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66 NETIF_MSG_TX_ERR;
67
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72static void netvsc_change_rx_flags(struct net_device *net, int change)
73{
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76 int inc;
77
78 if (!vf_netdev)
79 return;
80
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
84 }
85
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
89 }
90}
91
92static void netvsc_set_rx_mode(struct net_device *net)
93{
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
97
98 rcu_read_lock();
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100 if (vf_netdev) {
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
103 }
104
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
106 if (nvdev)
107 rndis_filter_update(nvdev);
108 rcu_read_unlock();
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state)
130 netif_carrier_on(net);
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static int netvsc_close(struct net_device *net)
185{
186 struct net_device_context *net_device_ctx = netdev_priv(net);
187 struct net_device *vf_netdev
188 = rtnl_dereference(net_device_ctx->vf_netdev);
189 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
190 int ret;
191
192 netif_tx_disable(net);
193
194 /* No need to close rndis filter if it is removed already */
195 if (!nvdev)
196 return 0;
197
198 ret = rndis_filter_close(nvdev);
199 if (ret != 0) {
200 netdev_err(net, "unable to close device (ret %d).\n", ret);
201 return ret;
202 }
203
204 ret = netvsc_wait_until_empty(nvdev);
205 if (ret)
206 netdev_err(net, "Ring buffer not empty after closing rndis\n");
207
208 if (vf_netdev)
209 dev_close(vf_netdev);
210
211 return ret;
212}
213
214static inline void *init_ppi_data(struct rndis_message *msg,
215 u32 ppi_size, u32 pkt_type)
216{
217 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
218 struct rndis_per_packet_info *ppi;
219
220 rndis_pkt->data_offset += ppi_size;
221 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
222 + rndis_pkt->per_pkt_info_len;
223
224 ppi->size = ppi_size;
225 ppi->type = pkt_type;
226 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
227
228 rndis_pkt->per_pkt_info_len += ppi_size;
229
230 return ppi + 1;
231}
232
233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
234 * packets. We can use ethtool to change UDP hash level when necessary.
235 */
236static inline u32 netvsc_get_hash(
237 struct sk_buff *skb,
238 const struct net_device_context *ndc)
239{
240 struct flow_keys flow;
241 u32 hash, pkt_proto = 0;
242 static u32 hashrnd __read_mostly;
243
244 net_get_random_once(&hashrnd, sizeof(hashrnd));
245
246 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
247 return 0;
248
249 switch (flow.basic.ip_proto) {
250 case IPPROTO_TCP:
251 if (flow.basic.n_proto == htons(ETH_P_IP))
252 pkt_proto = HV_TCP4_L4HASH;
253 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
254 pkt_proto = HV_TCP6_L4HASH;
255
256 break;
257
258 case IPPROTO_UDP:
259 if (flow.basic.n_proto == htons(ETH_P_IP))
260 pkt_proto = HV_UDP4_L4HASH;
261 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
262 pkt_proto = HV_UDP6_L4HASH;
263
264 break;
265 }
266
267 if (pkt_proto & ndc->l4_hash) {
268 return skb_get_hash(skb);
269 } else {
270 if (flow.basic.n_proto == htons(ETH_P_IP))
271 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
272 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
273 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
274 else
275 hash = 0;
276
277 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
278 }
279
280 return hash;
281}
282
283static inline int netvsc_get_tx_queue(struct net_device *ndev,
284 struct sk_buff *skb, int old_idx)
285{
286 const struct net_device_context *ndc = netdev_priv(ndev);
287 struct sock *sk = skb->sk;
288 int q_idx;
289
290 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
291 (VRSS_SEND_TAB_SIZE - 1)];
292
293 /* If queue index changed record the new value */
294 if (q_idx != old_idx &&
295 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
296 sk_tx_queue_set(sk, q_idx);
297
298 return q_idx;
299}
300
301/*
302 * Select queue for transmit.
303 *
304 * If a valid queue has already been assigned, then use that.
305 * Otherwise compute tx queue based on hash and the send table.
306 *
307 * This is basically similar to default (__netdev_pick_tx) with the added step
308 * of using the host send_table when no other queue has been assigned.
309 *
310 * TODO support XPS - but get_xps_queue not exported
311 */
312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
313{
314 int q_idx = sk_tx_queue_get(skb->sk);
315
316 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
317 /* If forwarding a packet, we use the recorded queue when
318 * available for better cache locality.
319 */
320 if (skb_rx_queue_recorded(skb))
321 q_idx = skb_get_rx_queue(skb);
322 else
323 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
324 }
325
326 return q_idx;
327}
328
329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
330 void *accel_priv,
331 select_queue_fallback_t fallback)
332{
333 struct net_device_context *ndc = netdev_priv(ndev);
334 struct net_device *vf_netdev;
335 u16 txq;
336
337 rcu_read_lock();
338 vf_netdev = rcu_dereference(ndc->vf_netdev);
339 if (vf_netdev) {
340 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
341
342 if (vf_ops->ndo_select_queue)
343 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
344 accel_priv, fallback);
345 else
346 txq = fallback(vf_netdev, skb);
347
348 /* Record the queue selected by VF so that it can be
349 * used for common case where VF has more queues than
350 * the synthetic device.
351 */
352 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
353 } else {
354 txq = netvsc_pick_tx(ndev, skb);
355 }
356 rcu_read_unlock();
357
358 while (unlikely(txq >= ndev->real_num_tx_queues))
359 txq -= ndev->real_num_tx_queues;
360
361 return txq;
362}
363
364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
365 struct hv_page_buffer *pb)
366{
367 int j = 0;
368
369 /* Deal with compund pages by ignoring unused part
370 * of the page.
371 */
372 page += (offset >> PAGE_SHIFT);
373 offset &= ~PAGE_MASK;
374
375 while (len > 0) {
376 unsigned long bytes;
377
378 bytes = PAGE_SIZE - offset;
379 if (bytes > len)
380 bytes = len;
381 pb[j].pfn = page_to_pfn(page);
382 pb[j].offset = offset;
383 pb[j].len = bytes;
384
385 offset += bytes;
386 len -= bytes;
387
388 if (offset == PAGE_SIZE && len) {
389 page++;
390 offset = 0;
391 j++;
392 }
393 }
394
395 return j + 1;
396}
397
398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
399 struct hv_netvsc_packet *packet,
400 struct hv_page_buffer *pb)
401{
402 u32 slots_used = 0;
403 char *data = skb->data;
404 int frags = skb_shinfo(skb)->nr_frags;
405 int i;
406
407 /* The packet is laid out thus:
408 * 1. hdr: RNDIS header and PPI
409 * 2. skb linear data
410 * 3. skb fragment data
411 */
412 slots_used += fill_pg_buf(virt_to_page(hdr),
413 offset_in_page(hdr),
414 len, &pb[slots_used]);
415
416 packet->rmsg_size = len;
417 packet->rmsg_pgcnt = slots_used;
418
419 slots_used += fill_pg_buf(virt_to_page(data),
420 offset_in_page(data),
421 skb_headlen(skb), &pb[slots_used]);
422
423 for (i = 0; i < frags; i++) {
424 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
425
426 slots_used += fill_pg_buf(skb_frag_page(frag),
427 frag->page_offset,
428 skb_frag_size(frag), &pb[slots_used]);
429 }
430 return slots_used;
431}
432
433static int count_skb_frag_slots(struct sk_buff *skb)
434{
435 int i, frags = skb_shinfo(skb)->nr_frags;
436 int pages = 0;
437
438 for (i = 0; i < frags; i++) {
439 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
440 unsigned long size = skb_frag_size(frag);
441 unsigned long offset = frag->page_offset;
442
443 /* Skip unused frames from start of page */
444 offset &= ~PAGE_MASK;
445 pages += PFN_UP(offset + size);
446 }
447 return pages;
448}
449
450static int netvsc_get_slots(struct sk_buff *skb)
451{
452 char *data = skb->data;
453 unsigned int offset = offset_in_page(data);
454 unsigned int len = skb_headlen(skb);
455 int slots;
456 int frag_slots;
457
458 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
459 frag_slots = count_skb_frag_slots(skb);
460 return slots + frag_slots;
461}
462
463static u32 net_checksum_info(struct sk_buff *skb)
464{
465 if (skb->protocol == htons(ETH_P_IP)) {
466 struct iphdr *ip = ip_hdr(skb);
467
468 if (ip->protocol == IPPROTO_TCP)
469 return TRANSPORT_INFO_IPV4_TCP;
470 else if (ip->protocol == IPPROTO_UDP)
471 return TRANSPORT_INFO_IPV4_UDP;
472 } else {
473 struct ipv6hdr *ip6 = ipv6_hdr(skb);
474
475 if (ip6->nexthdr == IPPROTO_TCP)
476 return TRANSPORT_INFO_IPV6_TCP;
477 else if (ip6->nexthdr == IPPROTO_UDP)
478 return TRANSPORT_INFO_IPV6_UDP;
479 }
480
481 return TRANSPORT_INFO_NOT_IP;
482}
483
484/* Send skb on the slave VF device. */
485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
486 struct sk_buff *skb)
487{
488 struct net_device_context *ndev_ctx = netdev_priv(net);
489 unsigned int len = skb->len;
490 int rc;
491
492 skb->dev = vf_netdev;
493 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
494
495 rc = dev_queue_xmit(skb);
496 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
497 struct netvsc_vf_pcpu_stats *pcpu_stats
498 = this_cpu_ptr(ndev_ctx->vf_stats);
499
500 u64_stats_update_begin(&pcpu_stats->syncp);
501 pcpu_stats->tx_packets++;
502 pcpu_stats->tx_bytes += len;
503 u64_stats_update_end(&pcpu_stats->syncp);
504 } else {
505 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
506 }
507
508 return rc;
509}
510
511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
512{
513 struct net_device_context *net_device_ctx = netdev_priv(net);
514 struct hv_netvsc_packet *packet = NULL;
515 int ret;
516 unsigned int num_data_pgs;
517 struct rndis_message *rndis_msg;
518 struct net_device *vf_netdev;
519 u32 rndis_msg_size;
520 u32 hash;
521 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
522
523 /* if VF is present and up then redirect packets
524 * already called with rcu_read_lock_bh
525 */
526 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
527 if (vf_netdev && netif_running(vf_netdev) &&
528 !netpoll_tx_running(net))
529 return netvsc_vf_xmit(net, vf_netdev, skb);
530
531 /* We will atmost need two pages to describe the rndis
532 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
533 * of pages in a single packet. If skb is scattered around
534 * more pages we try linearizing it.
535 */
536
537 num_data_pgs = netvsc_get_slots(skb) + 2;
538
539 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
540 ++net_device_ctx->eth_stats.tx_scattered;
541
542 if (skb_linearize(skb))
543 goto no_memory;
544
545 num_data_pgs = netvsc_get_slots(skb) + 2;
546 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
547 ++net_device_ctx->eth_stats.tx_too_big;
548 goto drop;
549 }
550 }
551
552 /*
553 * Place the rndis header in the skb head room and
554 * the skb->cb will be used for hv_netvsc_packet
555 * structure.
556 */
557 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
558 if (ret)
559 goto no_memory;
560
561 /* Use the skb control buffer for building up the packet */
562 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
563 FIELD_SIZEOF(struct sk_buff, cb));
564 packet = (struct hv_netvsc_packet *)skb->cb;
565
566 packet->q_idx = skb_get_queue_mapping(skb);
567
568 packet->total_data_buflen = skb->len;
569 packet->total_bytes = skb->len;
570 packet->total_packets = 1;
571
572 rndis_msg = (struct rndis_message *)skb->head;
573
574 /* Add the rndis header */
575 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
576 rndis_msg->msg_len = packet->total_data_buflen;
577
578 rndis_msg->msg.pkt = (struct rndis_packet) {
579 .data_offset = sizeof(struct rndis_packet),
580 .data_len = packet->total_data_buflen,
581 .per_pkt_info_offset = sizeof(struct rndis_packet),
582 };
583
584 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
585
586 hash = skb_get_hash_raw(skb);
587 if (hash != 0 && net->real_num_tx_queues > 1) {
588 u32 *hash_info;
589
590 rndis_msg_size += NDIS_HASH_PPI_SIZE;
591 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
592 NBL_HASH_VALUE);
593 *hash_info = hash;
594 }
595
596 if (skb_vlan_tag_present(skb)) {
597 struct ndis_pkt_8021q_info *vlan;
598
599 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
600 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
601 IEEE_8021Q_INFO);
602
603 vlan->value = 0;
604 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
605 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
606 VLAN_PRIO_SHIFT;
607 }
608
609 if (skb_is_gso(skb)) {
610 struct ndis_tcp_lso_info *lso_info;
611
612 rndis_msg_size += NDIS_LSO_PPI_SIZE;
613 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
614 TCP_LARGESEND_PKTINFO);
615
616 lso_info->value = 0;
617 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
618 if (skb->protocol == htons(ETH_P_IP)) {
619 lso_info->lso_v2_transmit.ip_version =
620 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
621 ip_hdr(skb)->tot_len = 0;
622 ip_hdr(skb)->check = 0;
623 tcp_hdr(skb)->check =
624 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
625 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
626 } else {
627 lso_info->lso_v2_transmit.ip_version =
628 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
629 ipv6_hdr(skb)->payload_len = 0;
630 tcp_hdr(skb)->check =
631 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
632 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
633 }
634 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
635 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
636 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
637 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
638 struct ndis_tcp_ip_checksum_info *csum_info;
639
640 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
641 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
642 TCPIP_CHKSUM_PKTINFO);
643
644 csum_info->value = 0;
645 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
646
647 if (skb->protocol == htons(ETH_P_IP)) {
648 csum_info->transmit.is_ipv4 = 1;
649
650 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
651 csum_info->transmit.tcp_checksum = 1;
652 else
653 csum_info->transmit.udp_checksum = 1;
654 } else {
655 csum_info->transmit.is_ipv6 = 1;
656
657 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
658 csum_info->transmit.tcp_checksum = 1;
659 else
660 csum_info->transmit.udp_checksum = 1;
661 }
662 } else {
663 /* Can't do offload of this type of checksum */
664 if (skb_checksum_help(skb))
665 goto drop;
666 }
667 }
668
669 /* Start filling in the page buffers with the rndis hdr */
670 rndis_msg->msg_len += rndis_msg_size;
671 packet->total_data_buflen = rndis_msg->msg_len;
672 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
673 skb, packet, pb);
674
675 /* timestamp packet in software */
676 skb_tx_timestamp(skb);
677
678 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
679 if (likely(ret == 0))
680 return NETDEV_TX_OK;
681
682 if (ret == -EAGAIN) {
683 ++net_device_ctx->eth_stats.tx_busy;
684 return NETDEV_TX_BUSY;
685 }
686
687 if (ret == -ENOSPC)
688 ++net_device_ctx->eth_stats.tx_no_space;
689
690drop:
691 dev_kfree_skb_any(skb);
692 net->stats.tx_dropped++;
693
694 return NETDEV_TX_OK;
695
696no_memory:
697 ++net_device_ctx->eth_stats.tx_no_memory;
698 goto drop;
699}
700
701/*
702 * netvsc_linkstatus_callback - Link up/down notification
703 */
704void netvsc_linkstatus_callback(struct net_device *net,
705 struct rndis_message *resp)
706{
707 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
708 struct net_device_context *ndev_ctx = netdev_priv(net);
709 struct netvsc_reconfig *event;
710 unsigned long flags;
711
712 /* Update the physical link speed when changing to another vSwitch */
713 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
714 u32 speed;
715
716 speed = *(u32 *)((void *)indicate
717 + indicate->status_buf_offset) / 10000;
718 ndev_ctx->speed = speed;
719 return;
720 }
721
722 /* Handle these link change statuses below */
723 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
724 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
725 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
726 return;
727
728 if (net->reg_state != NETREG_REGISTERED)
729 return;
730
731 event = kzalloc(sizeof(*event), GFP_ATOMIC);
732 if (!event)
733 return;
734 event->event = indicate->status;
735
736 spin_lock_irqsave(&ndev_ctx->lock, flags);
737 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
738 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
739
740 schedule_delayed_work(&ndev_ctx->dwork, 0);
741}
742
743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
744 struct napi_struct *napi,
745 const struct ndis_tcp_ip_checksum_info *csum_info,
746 const struct ndis_pkt_8021q_info *vlan,
747 void *data, u32 buflen)
748{
749 struct sk_buff *skb;
750
751 skb = napi_alloc_skb(napi, buflen);
752 if (!skb)
753 return skb;
754
755 /*
756 * Copy to skb. This copy is needed here since the memory pointed by
757 * hv_netvsc_packet cannot be deallocated
758 */
759 skb_put_data(skb, data, buflen);
760
761 skb->protocol = eth_type_trans(skb, net);
762
763 /* skb is already created with CHECKSUM_NONE */
764 skb_checksum_none_assert(skb);
765
766 /*
767 * In Linux, the IP checksum is always checked.
768 * Do L4 checksum offload if enabled and present.
769 */
770 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
771 if (csum_info->receive.tcp_checksum_succeeded ||
772 csum_info->receive.udp_checksum_succeeded)
773 skb->ip_summed = CHECKSUM_UNNECESSARY;
774 }
775
776 if (vlan) {
777 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
778
779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
780 vlan_tci);
781 }
782
783 return skb;
784}
785
786/*
787 * netvsc_recv_callback - Callback when we receive a packet from the
788 * "wire" on the specified device.
789 */
790int netvsc_recv_callback(struct net_device *net,
791 struct netvsc_device *net_device,
792 struct vmbus_channel *channel,
793 void *data, u32 len,
794 const struct ndis_tcp_ip_checksum_info *csum_info,
795 const struct ndis_pkt_8021q_info *vlan)
796{
797 struct net_device_context *net_device_ctx = netdev_priv(net);
798 u16 q_idx = channel->offermsg.offer.sub_channel_index;
799 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
800 struct sk_buff *skb;
801 struct netvsc_stats *rx_stats;
802
803 if (net->reg_state != NETREG_REGISTERED)
804 return NVSP_STAT_FAIL;
805
806 /* Allocate a skb - TODO direct I/O to pages? */
807 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
808 csum_info, vlan, data, len);
809 if (unlikely(!skb)) {
810 ++net_device_ctx->eth_stats.rx_no_memory;
811 rcu_read_unlock();
812 return NVSP_STAT_FAIL;
813 }
814
815 skb_record_rx_queue(skb, q_idx);
816
817 /*
818 * Even if injecting the packet, record the statistics
819 * on the synthetic device because modifying the VF device
820 * statistics will not work correctly.
821 */
822 rx_stats = &nvchan->rx_stats;
823 u64_stats_update_begin(&rx_stats->syncp);
824 rx_stats->packets++;
825 rx_stats->bytes += len;
826
827 if (skb->pkt_type == PACKET_BROADCAST)
828 ++rx_stats->broadcast;
829 else if (skb->pkt_type == PACKET_MULTICAST)
830 ++rx_stats->multicast;
831 u64_stats_update_end(&rx_stats->syncp);
832
833 napi_gro_receive(&nvchan->napi, skb);
834 return NVSP_STAT_SUCCESS;
835}
836
837static void netvsc_get_drvinfo(struct net_device *net,
838 struct ethtool_drvinfo *info)
839{
840 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
841 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
842}
843
844static void netvsc_get_channels(struct net_device *net,
845 struct ethtool_channels *channel)
846{
847 struct net_device_context *net_device_ctx = netdev_priv(net);
848 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849
850 if (nvdev) {
851 channel->max_combined = nvdev->max_chn;
852 channel->combined_count = nvdev->num_chn;
853 }
854}
855
856static int netvsc_detach(struct net_device *ndev,
857 struct netvsc_device *nvdev)
858{
859 struct net_device_context *ndev_ctx = netdev_priv(ndev);
860 struct hv_device *hdev = ndev_ctx->device_ctx;
861 int ret;
862
863 /* Don't try continuing to try and setup sub channels */
864 if (cancel_work_sync(&nvdev->subchan_work))
865 nvdev->num_chn = 1;
866
867 /* If device was up (receiving) then shutdown */
868 if (netif_running(ndev)) {
869 netif_tx_disable(ndev);
870
871 ret = rndis_filter_close(nvdev);
872 if (ret) {
873 netdev_err(ndev,
874 "unable to close device (ret %d).\n", ret);
875 return ret;
876 }
877
878 ret = netvsc_wait_until_empty(nvdev);
879 if (ret) {
880 netdev_err(ndev,
881 "Ring buffer not empty after closing rndis\n");
882 return ret;
883 }
884 }
885
886 netif_device_detach(ndev);
887
888 rndis_filter_device_remove(hdev, nvdev);
889
890 return 0;
891}
892
893static int netvsc_attach(struct net_device *ndev,
894 struct netvsc_device_info *dev_info)
895{
896 struct net_device_context *ndev_ctx = netdev_priv(ndev);
897 struct hv_device *hdev = ndev_ctx->device_ctx;
898 struct netvsc_device *nvdev;
899 struct rndis_device *rdev;
900 int ret;
901
902 nvdev = rndis_filter_device_add(hdev, dev_info);
903 if (IS_ERR(nvdev))
904 return PTR_ERR(nvdev);
905
906 /* Note: enable and attach happen when sub-channels setup */
907
908 netif_carrier_off(ndev);
909
910 if (netif_running(ndev)) {
911 ret = rndis_filter_open(nvdev);
912 if (ret)
913 return ret;
914
915 rdev = nvdev->extension;
916 if (!rdev->link_state)
917 netif_carrier_on(ndev);
918 }
919
920 return 0;
921}
922
923static int netvsc_set_channels(struct net_device *net,
924 struct ethtool_channels *channels)
925{
926 struct net_device_context *net_device_ctx = netdev_priv(net);
927 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
928 unsigned int orig, count = channels->combined_count;
929 struct netvsc_device_info device_info;
930 int ret;
931
932 /* We do not support separate count for rx, tx, or other */
933 if (count == 0 ||
934 channels->rx_count || channels->tx_count || channels->other_count)
935 return -EINVAL;
936
937 if (!nvdev || nvdev->destroy)
938 return -ENODEV;
939
940 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
941 return -EINVAL;
942
943 if (count > nvdev->max_chn)
944 return -EINVAL;
945
946 orig = nvdev->num_chn;
947
948 memset(&device_info, 0, sizeof(device_info));
949 device_info.num_chn = count;
950 device_info.send_sections = nvdev->send_section_cnt;
951 device_info.send_section_size = nvdev->send_section_size;
952 device_info.recv_sections = nvdev->recv_section_cnt;
953 device_info.recv_section_size = nvdev->recv_section_size;
954
955 ret = netvsc_detach(net, nvdev);
956 if (ret)
957 return ret;
958
959 ret = netvsc_attach(net, &device_info);
960 if (ret) {
961 device_info.num_chn = orig;
962 if (netvsc_attach(net, &device_info))
963 netdev_err(net, "restoring channel setting failed\n");
964 }
965
966 return ret;
967}
968
969static bool
970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
971{
972 struct ethtool_link_ksettings diff1 = *cmd;
973 struct ethtool_link_ksettings diff2 = {};
974
975 diff1.base.speed = 0;
976 diff1.base.duplex = 0;
977 /* advertising and cmd are usually set */
978 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
979 diff1.base.cmd = 0;
980 /* We set port to PORT_OTHER */
981 diff2.base.port = PORT_OTHER;
982
983 return !memcmp(&diff1, &diff2, sizeof(diff1));
984}
985
986static void netvsc_init_settings(struct net_device *dev)
987{
988 struct net_device_context *ndc = netdev_priv(dev);
989
990 ndc->l4_hash = HV_DEFAULT_L4HASH;
991
992 ndc->speed = SPEED_UNKNOWN;
993 ndc->duplex = DUPLEX_FULL;
994}
995
996static int netvsc_get_link_ksettings(struct net_device *dev,
997 struct ethtool_link_ksettings *cmd)
998{
999 struct net_device_context *ndc = netdev_priv(dev);
1000
1001 cmd->base.speed = ndc->speed;
1002 cmd->base.duplex = ndc->duplex;
1003 cmd->base.port = PORT_OTHER;
1004
1005 return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009 const struct ethtool_link_ksettings *cmd)
1010{
1011 struct net_device_context *ndc = netdev_priv(dev);
1012 u32 speed;
1013
1014 speed = cmd->base.speed;
1015 if (!ethtool_validate_speed(speed) ||
1016 !ethtool_validate_duplex(cmd->base.duplex) ||
1017 !netvsc_validate_ethtool_ss_cmd(cmd))
1018 return -EINVAL;
1019
1020 ndc->speed = speed;
1021 ndc->duplex = cmd->base.duplex;
1022
1023 return 0;
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028 struct net_device_context *ndevctx = netdev_priv(ndev);
1029 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031 int orig_mtu = ndev->mtu;
1032 struct netvsc_device_info device_info;
1033 int ret = 0;
1034
1035 if (!nvdev || nvdev->destroy)
1036 return -ENODEV;
1037
1038 /* Change MTU of underlying VF netdev first. */
1039 if (vf_netdev) {
1040 ret = dev_set_mtu(vf_netdev, mtu);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 memset(&device_info, 0, sizeof(device_info));
1046 device_info.num_chn = nvdev->num_chn;
1047 device_info.send_sections = nvdev->send_section_cnt;
1048 device_info.send_section_size = nvdev->send_section_size;
1049 device_info.recv_sections = nvdev->recv_section_cnt;
1050 device_info.recv_section_size = nvdev->recv_section_size;
1051
1052 ret = netvsc_detach(ndev, nvdev);
1053 if (ret)
1054 goto rollback_vf;
1055
1056 ndev->mtu = mtu;
1057
1058 ret = netvsc_attach(ndev, &device_info);
1059 if (ret)
1060 goto rollback;
1061
1062 return 0;
1063
1064rollback:
1065 /* Attempt rollback to original MTU */
1066 ndev->mtu = orig_mtu;
1067
1068 if (netvsc_attach(ndev, &device_info))
1069 netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071 if (vf_netdev)
1072 dev_set_mtu(vf_netdev, orig_mtu);
1073
1074 return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078 struct netvsc_vf_pcpu_stats *tot)
1079{
1080 struct net_device_context *ndev_ctx = netdev_priv(net);
1081 int i;
1082
1083 memset(tot, 0, sizeof(*tot));
1084
1085 for_each_possible_cpu(i) {
1086 const struct netvsc_vf_pcpu_stats *stats
1087 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1088 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089 unsigned int start;
1090
1091 do {
1092 start = u64_stats_fetch_begin_irq(&stats->syncp);
1093 rx_packets = stats->rx_packets;
1094 tx_packets = stats->tx_packets;
1095 rx_bytes = stats->rx_bytes;
1096 tx_bytes = stats->tx_bytes;
1097 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099 tot->rx_packets += rx_packets;
1100 tot->tx_packets += tx_packets;
1101 tot->rx_bytes += rx_bytes;
1102 tot->tx_bytes += tx_bytes;
1103 tot->tx_dropped += stats->tx_dropped;
1104 }
1105}
1106
1107static void netvsc_get_stats64(struct net_device *net,
1108 struct rtnl_link_stats64 *t)
1109{
1110 struct net_device_context *ndev_ctx = netdev_priv(net);
1111 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112 struct netvsc_vf_pcpu_stats vf_tot;
1113 int i;
1114
1115 if (!nvdev)
1116 return;
1117
1118 netdev_stats_to_stats64(t, &net->stats);
1119
1120 netvsc_get_vf_stats(net, &vf_tot);
1121 t->rx_packets += vf_tot.rx_packets;
1122 t->tx_packets += vf_tot.tx_packets;
1123 t->rx_bytes += vf_tot.rx_bytes;
1124 t->tx_bytes += vf_tot.tx_bytes;
1125 t->tx_dropped += vf_tot.tx_dropped;
1126
1127 for (i = 0; i < nvdev->num_chn; i++) {
1128 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129 const struct netvsc_stats *stats;
1130 u64 packets, bytes, multicast;
1131 unsigned int start;
1132
1133 stats = &nvchan->tx_stats;
1134 do {
1135 start = u64_stats_fetch_begin_irq(&stats->syncp);
1136 packets = stats->packets;
1137 bytes = stats->bytes;
1138 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140 t->tx_bytes += bytes;
1141 t->tx_packets += packets;
1142
1143 stats = &nvchan->rx_stats;
1144 do {
1145 start = u64_stats_fetch_begin_irq(&stats->syncp);
1146 packets = stats->packets;
1147 bytes = stats->bytes;
1148 multicast = stats->multicast + stats->broadcast;
1149 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151 t->rx_bytes += bytes;
1152 t->rx_packets += packets;
1153 t->multicast += multicast;
1154 }
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159 struct net_device_context *ndc = netdev_priv(ndev);
1160 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 struct sockaddr *addr = p;
1163 int err;
1164
1165 err = eth_prepare_mac_addr_change(ndev, p);
1166 if (err)
1167 return err;
1168
1169 if (!nvdev)
1170 return -ENODEV;
1171
1172 if (vf_netdev) {
1173 err = dev_set_mac_address(vf_netdev, addr);
1174 if (err)
1175 return err;
1176 }
1177
1178 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179 if (!err) {
1180 eth_commit_mac_addr_change(ndev, p);
1181 } else if (vf_netdev) {
1182 /* rollback change on VF */
1183 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184 dev_set_mac_address(vf_netdev, addr);
1185 }
1186
1187 return err;
1188}
1189
1190static const struct {
1191 char name[ETH_GSTRING_LEN];
1192 u16 offset;
1193} netvsc_stats[] = {
1194 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204}, vf_stats[] = {
1205 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220 struct net_device_context *ndc = netdev_priv(dev);
1221 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223 if (!nvdev)
1224 return -ENODEV;
1225
1226 switch (string_set) {
1227 case ETH_SS_STATS:
1228 return NETVSC_GLOBAL_STATS_LEN
1229 + NETVSC_VF_STATS_LEN
1230 + NETVSC_QUEUE_STATS_LEN(nvdev);
1231 default:
1232 return -EINVAL;
1233 }
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237 struct ethtool_stats *stats, u64 *data)
1238{
1239 struct net_device_context *ndc = netdev_priv(dev);
1240 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241 const void *nds = &ndc->eth_stats;
1242 const struct netvsc_stats *qstats;
1243 struct netvsc_vf_pcpu_stats sum;
1244 unsigned int start;
1245 u64 packets, bytes;
1246 int i, j;
1247
1248 if (!nvdev)
1249 return;
1250
1251 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254 netvsc_get_vf_stats(dev, &sum);
1255 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258 for (j = 0; j < nvdev->num_chn; j++) {
1259 qstats = &nvdev->chan_table[j].tx_stats;
1260
1261 do {
1262 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263 packets = qstats->packets;
1264 bytes = qstats->bytes;
1265 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266 data[i++] = packets;
1267 data[i++] = bytes;
1268
1269 qstats = &nvdev->chan_table[j].rx_stats;
1270 do {
1271 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272 packets = qstats->packets;
1273 bytes = qstats->bytes;
1274 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275 data[i++] = packets;
1276 data[i++] = bytes;
1277 }
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282 struct net_device_context *ndc = netdev_priv(dev);
1283 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284 u8 *p = data;
1285 int i;
1286
1287 if (!nvdev)
1288 return;
1289
1290 switch (stringset) {
1291 case ETH_SS_STATS:
1292 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294 p += ETH_GSTRING_LEN;
1295 }
1296
1297 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299 p += ETH_GSTRING_LEN;
1300 }
1301
1302 for (i = 0; i < nvdev->num_chn; i++) {
1303 sprintf(p, "tx_queue_%u_packets", i);
1304 p += ETH_GSTRING_LEN;
1305 sprintf(p, "tx_queue_%u_bytes", i);
1306 p += ETH_GSTRING_LEN;
1307 sprintf(p, "rx_queue_%u_packets", i);
1308 p += ETH_GSTRING_LEN;
1309 sprintf(p, "rx_queue_%u_bytes", i);
1310 p += ETH_GSTRING_LEN;
1311 }
1312
1313 break;
1314 }
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319 struct ethtool_rxnfc *info)
1320{
1321 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323 info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325 switch (info->flow_type) {
1326 case TCP_V4_FLOW:
1327 if (ndc->l4_hash & HV_TCP4_L4HASH)
1328 info->data |= l4_flag;
1329
1330 break;
1331
1332 case TCP_V6_FLOW:
1333 if (ndc->l4_hash & HV_TCP6_L4HASH)
1334 info->data |= l4_flag;
1335
1336 break;
1337
1338 case UDP_V4_FLOW:
1339 if (ndc->l4_hash & HV_UDP4_L4HASH)
1340 info->data |= l4_flag;
1341
1342 break;
1343
1344 case UDP_V6_FLOW:
1345 if (ndc->l4_hash & HV_UDP6_L4HASH)
1346 info->data |= l4_flag;
1347
1348 break;
1349
1350 case IPV4_FLOW:
1351 case IPV6_FLOW:
1352 break;
1353 default:
1354 info->data = 0;
1355 break;
1356 }
1357
1358 return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363 u32 *rules)
1364{
1365 struct net_device_context *ndc = netdev_priv(dev);
1366 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368 if (!nvdev)
1369 return -ENODEV;
1370
1371 switch (info->cmd) {
1372 case ETHTOOL_GRXRINGS:
1373 info->data = nvdev->num_chn;
1374 return 0;
1375
1376 case ETHTOOL_GRXFH:
1377 return netvsc_get_rss_hash_opts(ndc, info);
1378 }
1379 return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383 struct ethtool_rxnfc *info)
1384{
1385 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387 switch (info->flow_type) {
1388 case TCP_V4_FLOW:
1389 ndc->l4_hash |= HV_TCP4_L4HASH;
1390 break;
1391
1392 case TCP_V6_FLOW:
1393 ndc->l4_hash |= HV_TCP6_L4HASH;
1394 break;
1395
1396 case UDP_V4_FLOW:
1397 ndc->l4_hash |= HV_UDP4_L4HASH;
1398 break;
1399
1400 case UDP_V6_FLOW:
1401 ndc->l4_hash |= HV_UDP6_L4HASH;
1402 break;
1403
1404 default:
1405 return -EOPNOTSUPP;
1406 }
1407
1408 return 0;
1409 }
1410
1411 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412 switch (info->flow_type) {
1413 case TCP_V4_FLOW:
1414 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415 break;
1416
1417 case TCP_V6_FLOW:
1418 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419 break;
1420
1421 case UDP_V4_FLOW:
1422 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423 break;
1424
1425 case UDP_V6_FLOW:
1426 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427 break;
1428
1429 default:
1430 return -EOPNOTSUPP;
1431 }
1432
1433 return 0;
1434 }
1435
1436 return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442 struct net_device_context *ndc = netdev_priv(ndev);
1443
1444 if (info->cmd == ETHTOOL_SRXFH)
1445 return netvsc_set_rss_hash_opts(ndc, info);
1446
1447 return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453 struct net_device_context *ndc = netdev_priv(dev);
1454 struct netvsc_device *ndev;
1455 int i;
1456
1457 rcu_read_lock();
1458 ndev = rcu_dereference(ndc->nvdev);
1459 if (ndev) {
1460 for (i = 0; i < ndev->num_chn; i++) {
1461 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463 napi_schedule(&nvchan->napi);
1464 }
1465 }
1466 rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472 return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477 return ITAB_NUM;
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481 u8 *hfunc)
1482{
1483 struct net_device_context *ndc = netdev_priv(dev);
1484 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485 struct rndis_device *rndis_dev;
1486 int i;
1487
1488 if (!ndev)
1489 return -ENODEV;
1490
1491 if (hfunc)
1492 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1493
1494 rndis_dev = ndev->extension;
1495 if (indir) {
1496 for (i = 0; i < ITAB_NUM; i++)
1497 indir[i] = rndis_dev->rx_table[i];
1498 }
1499
1500 if (key)
1501 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503 return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507 const u8 *key, const u8 hfunc)
1508{
1509 struct net_device_context *ndc = netdev_priv(dev);
1510 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511 struct rndis_device *rndis_dev;
1512 int i;
1513
1514 if (!ndev)
1515 return -ENODEV;
1516
1517 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518 return -EOPNOTSUPP;
1519
1520 rndis_dev = ndev->extension;
1521 if (indir) {
1522 for (i = 0; i < ITAB_NUM; i++)
1523 if (indir[i] >= ndev->num_chn)
1524 return -EINVAL;
1525
1526 for (i = 0; i < ITAB_NUM; i++)
1527 rndis_dev->rx_table[i] = indir[i];
1528 }
1529
1530 if (!key) {
1531 if (!indir)
1532 return 0;
1533
1534 key = rndis_dev->rss_key;
1535 }
1536
1537 return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544 struct ethtool_ringparam *ring)
1545{
1546 u32 max_buf_size;
1547
1548 ring->rx_pending = nvdev->recv_section_cnt;
1549 ring->tx_pending = nvdev->send_section_cnt;
1550
1551 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553 else
1554 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558 / nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562 struct ethtool_ringparam *ring)
1563{
1564 struct net_device_context *ndevctx = netdev_priv(ndev);
1565 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567 if (!nvdev)
1568 return;
1569
1570 __netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574 struct ethtool_ringparam *ring)
1575{
1576 struct net_device_context *ndevctx = netdev_priv(ndev);
1577 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578 struct netvsc_device_info device_info;
1579 struct ethtool_ringparam orig;
1580 u32 new_tx, new_rx;
1581 int ret = 0;
1582
1583 if (!nvdev || nvdev->destroy)
1584 return -ENODEV;
1585
1586 memset(&orig, 0, sizeof(orig));
1587 __netvsc_get_ringparam(nvdev, &orig);
1588
1589 new_tx = clamp_t(u32, ring->tx_pending,
1590 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591 new_rx = clamp_t(u32, ring->rx_pending,
1592 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594 if (new_tx == orig.tx_pending &&
1595 new_rx == orig.rx_pending)
1596 return 0; /* no change */
1597
1598 memset(&device_info, 0, sizeof(device_info));
1599 device_info.num_chn = nvdev->num_chn;
1600 device_info.send_sections = new_tx;
1601 device_info.send_section_size = nvdev->send_section_size;
1602 device_info.recv_sections = new_rx;
1603 device_info.recv_section_size = nvdev->recv_section_size;
1604
1605 ret = netvsc_detach(ndev, nvdev);
1606 if (ret)
1607 return ret;
1608
1609 ret = netvsc_attach(ndev, &device_info);
1610 if (ret) {
1611 device_info.send_sections = orig.tx_pending;
1612 device_info.recv_sections = orig.rx_pending;
1613
1614 if (netvsc_attach(ndev, &device_info))
1615 netdev_err(ndev, "restoring ringparam failed");
1616 }
1617
1618 return ret;
1619}
1620
1621static const struct ethtool_ops ethtool_ops = {
1622 .get_drvinfo = netvsc_get_drvinfo,
1623 .get_link = ethtool_op_get_link,
1624 .get_ethtool_stats = netvsc_get_ethtool_stats,
1625 .get_sset_count = netvsc_get_sset_count,
1626 .get_strings = netvsc_get_strings,
1627 .get_channels = netvsc_get_channels,
1628 .set_channels = netvsc_set_channels,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = netvsc_get_rxnfc,
1631 .set_rxnfc = netvsc_set_rxnfc,
1632 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633 .get_rxfh_indir_size = netvsc_rss_indir_size,
1634 .get_rxfh = netvsc_get_rxfh,
1635 .set_rxfh = netvsc_set_rxfh,
1636 .get_link_ksettings = netvsc_get_link_ksettings,
1637 .set_link_ksettings = netvsc_set_link_ksettings,
1638 .get_ringparam = netvsc_get_ringparam,
1639 .set_ringparam = netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643 .ndo_open = netvsc_open,
1644 .ndo_stop = netvsc_close,
1645 .ndo_start_xmit = netvsc_start_xmit,
1646 .ndo_change_rx_flags = netvsc_change_rx_flags,
1647 .ndo_set_rx_mode = netvsc_set_rx_mode,
1648 .ndo_change_mtu = netvsc_change_mtu,
1649 .ndo_validate_addr = eth_validate_addr,
1650 .ndo_set_mac_address = netvsc_set_mac_addr,
1651 .ndo_select_queue = netvsc_select_queue,
1652 .ndo_get_stats64 = netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654 .ndo_poll_controller = netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665 struct net_device_context *ndev_ctx =
1666 container_of(w, struct net_device_context, dwork.work);
1667 struct hv_device *device_obj = ndev_ctx->device_ctx;
1668 struct net_device *net = hv_get_drvdata(device_obj);
1669 struct netvsc_device *net_device;
1670 struct rndis_device *rdev;
1671 struct netvsc_reconfig *event = NULL;
1672 bool notify = false, reschedule = false;
1673 unsigned long flags, next_reconfig, delay;
1674
1675 /* if changes are happening, comeback later */
1676 if (!rtnl_trylock()) {
1677 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678 return;
1679 }
1680
1681 net_device = rtnl_dereference(ndev_ctx->nvdev);
1682 if (!net_device)
1683 goto out_unlock;
1684
1685 rdev = net_device->extension;
1686
1687 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688 if (time_is_after_jiffies(next_reconfig)) {
1689 /* link_watch only sends one notification with current state
1690 * per second, avoid doing reconfig more frequently. Handle
1691 * wrap around.
1692 */
1693 delay = next_reconfig - jiffies;
1694 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695 schedule_delayed_work(&ndev_ctx->dwork, delay);
1696 goto out_unlock;
1697 }
1698 ndev_ctx->last_reconfig = jiffies;
1699
1700 spin_lock_irqsave(&ndev_ctx->lock, flags);
1701 if (!list_empty(&ndev_ctx->reconfig_events)) {
1702 event = list_first_entry(&ndev_ctx->reconfig_events,
1703 struct netvsc_reconfig, list);
1704 list_del(&event->list);
1705 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706 }
1707 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709 if (!event)
1710 goto out_unlock;
1711
1712 switch (event->event) {
1713 /* Only the following events are possible due to the check in
1714 * netvsc_linkstatus_callback()
1715 */
1716 case RNDIS_STATUS_MEDIA_CONNECT:
1717 if (rdev->link_state) {
1718 rdev->link_state = false;
1719 netif_carrier_on(net);
1720 netif_tx_wake_all_queues(net);
1721 } else {
1722 notify = true;
1723 }
1724 kfree(event);
1725 break;
1726 case RNDIS_STATUS_MEDIA_DISCONNECT:
1727 if (!rdev->link_state) {
1728 rdev->link_state = true;
1729 netif_carrier_off(net);
1730 netif_tx_stop_all_queues(net);
1731 }
1732 kfree(event);
1733 break;
1734 case RNDIS_STATUS_NETWORK_CHANGE:
1735 /* Only makes sense if carrier is present */
1736 if (!rdev->link_state) {
1737 rdev->link_state = true;
1738 netif_carrier_off(net);
1739 netif_tx_stop_all_queues(net);
1740 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741 spin_lock_irqsave(&ndev_ctx->lock, flags);
1742 list_add(&event->list, &ndev_ctx->reconfig_events);
1743 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744 reschedule = true;
1745 }
1746 break;
1747 }
1748
1749 rtnl_unlock();
1750
1751 if (notify)
1752 netdev_notify_peers(net);
1753
1754 /* link_watch only sends one notification with current state per
1755 * second, handle next reconfig event in 2 seconds.
1756 */
1757 if (reschedule)
1758 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760 return;
1761
1762out_unlock:
1763 rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768 struct net_device *dev;
1769
1770 ASSERT_RTNL();
1771
1772 for_each_netdev(&init_net, dev) {
1773 if (dev->netdev_ops != &device_ops)
1774 continue; /* not a netvsc device */
1775
1776 if (ether_addr_equal(mac, dev->perm_addr))
1777 return dev;
1778 }
1779
1780 return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
1785 struct net_device *dev;
1786
1787 ASSERT_RTNL();
1788
1789 for_each_netdev(&init_net, dev) {
1790 struct net_device_context *net_device_ctx;
1791
1792 if (dev->netdev_ops != &device_ops)
1793 continue; /* not a netvsc device */
1794
1795 net_device_ctx = netdev_priv(dev);
1796 if (!rtnl_dereference(net_device_ctx->nvdev))
1797 continue; /* device is removed */
1798
1799 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800 return dev; /* a match */
1801 }
1802
1803 return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812 struct sk_buff *skb = *pskb;
1813 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815 struct netvsc_vf_pcpu_stats *pcpu_stats
1816 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818 skb->dev = ndev;
1819
1820 u64_stats_update_begin(&pcpu_stats->syncp);
1821 pcpu_stats->rx_packets++;
1822 pcpu_stats->rx_bytes += skb->len;
1823 u64_stats_update_end(&pcpu_stats->syncp);
1824
1825 return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829 struct net_device *ndev)
1830{
1831 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832 int ret;
1833
1834 ret = netdev_rx_handler_register(vf_netdev,
1835 netvsc_vf_handle_frame, ndev);
1836 if (ret != 0) {
1837 netdev_err(vf_netdev,
1838 "can not register netvsc VF receive handler (err = %d)\n",
1839 ret);
1840 goto rx_handler_failed;
1841 }
1842
1843 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844 NULL, NULL, NULL);
1845 if (ret != 0) {
1846 netdev_err(vf_netdev,
1847 "can not set master device %s (err = %d)\n",
1848 ndev->name, ret);
1849 goto upper_link_failed;
1850 }
1851
1852 /* set slave flag before open to prevent IPv6 addrconf */
1853 vf_netdev->flags |= IFF_SLAVE;
1854
1855 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1856
1857 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860 return 0;
1861
1862upper_link_failed:
1863 netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865 return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869 struct net_device *vf_netdev)
1870{
1871 int ret;
1872
1873 /* Align MTU of VF with master */
1874 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875 if (ret)
1876 netdev_warn(vf_netdev,
1877 "unable to change mtu to %u\n", ndev->mtu);
1878
1879 /* set multicast etc flags on VF */
1880 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882 /* sync address list from ndev to VF */
1883 netif_addr_lock_bh(ndev);
1884 dev_uc_sync(vf_netdev, ndev);
1885 dev_mc_sync(vf_netdev, ndev);
1886 netif_addr_unlock_bh(ndev);
1887
1888 if (netif_running(ndev)) {
1889 ret = dev_open(vf_netdev);
1890 if (ret)
1891 netdev_warn(vf_netdev,
1892 "unable to open: %d\n", ret);
1893 }
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901 struct net_device_context *ndev_ctx
1902 = container_of(w, struct net_device_context, vf_takeover.work);
1903 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904 struct net_device *vf_netdev;
1905
1906 if (!rtnl_trylock()) {
1907 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908 return;
1909 }
1910
1911 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912 if (vf_netdev)
1913 __netvsc_vf_setup(ndev, vf_netdev);
1914
1915 rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
1919{
1920 struct net_device *ndev;
1921 struct net_device_context *net_device_ctx;
1922 struct netvsc_device *netvsc_dev;
1923
1924 if (vf_netdev->addr_len != ETH_ALEN)
1925 return NOTIFY_DONE;
1926
1927 /*
1928 * We will use the MAC address to locate the synthetic interface to
1929 * associate with the VF interface. If we don't find a matching
1930 * synthetic interface, move on.
1931 */
1932 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933 if (!ndev)
1934 return NOTIFY_DONE;
1935
1936 net_device_ctx = netdev_priv(ndev);
1937 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939 return NOTIFY_DONE;
1940
1941 if (netvsc_vf_join(vf_netdev, ndev) != 0)
1942 return NOTIFY_DONE;
1943
1944 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
1946 dev_hold(vf_netdev);
1947 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1948 return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
1953{
1954 struct net_device_context *net_device_ctx;
1955 struct netvsc_device *netvsc_dev;
1956 struct net_device *ndev;
1957 bool vf_is_up = netif_running(vf_netdev);
1958
1959 ndev = get_netvsc_byref(vf_netdev);
1960 if (!ndev)
1961 return NOTIFY_DONE;
1962
1963 net_device_ctx = netdev_priv(ndev);
1964 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965 if (!netvsc_dev)
1966 return NOTIFY_DONE;
1967
1968 netvsc_switch_datapath(ndev, vf_is_up);
1969 netdev_info(ndev, "Data path switched %s VF: %s\n",
1970 vf_is_up ? "to" : "from", vf_netdev->name);
1971
1972 return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977 struct net_device *ndev;
1978 struct net_device_context *net_device_ctx;
1979
1980 ndev = get_netvsc_byref(vf_netdev);
1981 if (!ndev)
1982 return NOTIFY_DONE;
1983
1984 net_device_ctx = netdev_priv(ndev);
1985 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
1989 netdev_rx_handler_unregister(vf_netdev);
1990 netdev_upper_dev_unlink(vf_netdev, ndev);
1991 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992 dev_put(vf_netdev);
1993
1994 return NOTIFY_OK;
1995}
1996
1997static int netvsc_probe(struct hv_device *dev,
1998 const struct hv_vmbus_device_id *dev_id)
1999{
2000 struct net_device *net = NULL;
2001 struct net_device_context *net_device_ctx;
2002 struct netvsc_device_info device_info;
2003 struct netvsc_device *nvdev;
2004 int ret = -ENOMEM;
2005
2006 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007 VRSS_CHANNEL_MAX);
2008 if (!net)
2009 goto no_net;
2010
2011 netif_carrier_off(net);
2012
2013 netvsc_init_settings(net);
2014
2015 net_device_ctx = netdev_priv(net);
2016 net_device_ctx->device_ctx = dev;
2017 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018 if (netif_msg_probe(net_device_ctx))
2019 netdev_dbg(net, "netvsc msg_enable: %d\n",
2020 net_device_ctx->msg_enable);
2021
2022 hv_set_drvdata(dev, net);
2023
2024 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
2026 spin_lock_init(&net_device_ctx->lock);
2027 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030 net_device_ctx->vf_stats
2031 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032 if (!net_device_ctx->vf_stats)
2033 goto no_stats;
2034
2035 net->netdev_ops = &device_ops;
2036 net->ethtool_ops = ðtool_ops;
2037 SET_NETDEV_DEV(net, &dev->device);
2038
2039 /* We always need headroom for rndis header */
2040 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2041
2042 /* Initialize the number of queues to be 1, we may change it if more
2043 * channels are offered later.
2044 */
2045 netif_set_real_num_tx_queues(net, 1);
2046 netif_set_real_num_rx_queues(net, 1);
2047
2048 /* Notify the netvsc driver of the new device */
2049 memset(&device_info, 0, sizeof(device_info));
2050 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051 device_info.send_sections = NETVSC_DEFAULT_TX;
2052 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053 device_info.recv_sections = NETVSC_DEFAULT_RX;
2054 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2055
2056 nvdev = rndis_filter_device_add(dev, &device_info);
2057 if (IS_ERR(nvdev)) {
2058 ret = PTR_ERR(nvdev);
2059 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060 goto rndis_failed;
2061 }
2062
2063 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2064
2065 /* hw_features computed in rndis_netdev_set_hwcaps() */
2066 net->features = net->hw_features |
2067 NETIF_F_HIGHDMA | NETIF_F_SG |
2068 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069 net->vlan_features = net->features;
2070
2071 netdev_lockdep_set_classes(net);
2072
2073 /* MTU range: 68 - 1500 or 65521 */
2074 net->min_mtu = NETVSC_MTU_MIN;
2075 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077 else
2078 net->max_mtu = ETH_DATA_LEN;
2079
2080 ret = register_netdev(net);
2081 if (ret != 0) {
2082 pr_err("Unable to register netdev.\n");
2083 goto register_failed;
2084 }
2085
2086 return ret;
2087
2088register_failed:
2089 rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
2091 free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093 hv_set_drvdata(dev, NULL);
2094 free_netdev(net);
2095no_net:
2096 return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
2101 struct net_device_context *ndev_ctx;
2102 struct net_device *vf_netdev, *net;
2103 struct netvsc_device *nvdev;
2104
2105 net = hv_get_drvdata(dev);
2106 if (net == NULL) {
2107 dev_err(&dev->device, "No net device to remove\n");
2108 return 0;
2109 }
2110
2111 ndev_ctx = netdev_priv(net);
2112
2113 cancel_delayed_work_sync(&ndev_ctx->dwork);
2114
2115 rcu_read_lock();
2116 nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118 if (nvdev)
2119 cancel_work_sync(&nvdev->subchan_work);
2120
2121 /*
2122 * Call to the vsc driver to let it know that the device is being
2123 * removed. Also blocks mtu and channel changes.
2124 */
2125 rtnl_lock();
2126 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127 if (vf_netdev)
2128 netvsc_unregister_vf(vf_netdev);
2129
2130 if (nvdev)
2131 rndis_filter_device_remove(dev, nvdev);
2132
2133 unregister_netdevice(net);
2134
2135 rtnl_unlock();
2136 rcu_read_unlock();
2137
2138 hv_set_drvdata(dev, NULL);
2139
2140 free_percpu(ndev_ctx->vf_stats);
2141 free_netdev(net);
2142 return 0;
2143}
2144
2145static const struct hv_vmbus_device_id id_table[] = {
2146 /* Network guid */
2147 { HV_NIC_GUID, },
2148 { },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct hv_driver netvsc_drv = {
2155 .name = KBUILD_MODNAME,
2156 .id_table = id_table,
2157 .probe = netvsc_probe,
2158 .remove = netvsc_remove,
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168 unsigned long event, void *ptr)
2169{
2170 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2171
2172 /* Skip our own events */
2173 if (event_dev->netdev_ops == &device_ops)
2174 return NOTIFY_DONE;
2175
2176 /* Avoid non-Ethernet type devices */
2177 if (event_dev->type != ARPHRD_ETHER)
2178 return NOTIFY_DONE;
2179
2180 /* Avoid Vlan dev with same MAC registering as VF */
2181 if (is_vlan_dev(event_dev))
2182 return NOTIFY_DONE;
2183
2184 /* Avoid Bonding master dev with same MAC registering as VF */
2185 if ((event_dev->priv_flags & IFF_BONDING) &&
2186 (event_dev->flags & IFF_MASTER))
2187 return NOTIFY_DONE;
2188
2189 switch (event) {
2190 case NETDEV_REGISTER:
2191 return netvsc_register_vf(event_dev);
2192 case NETDEV_UNREGISTER:
2193 return netvsc_unregister_vf(event_dev);
2194 case NETDEV_UP:
2195 case NETDEV_DOWN:
2196 return netvsc_vf_changed(event_dev);
2197 default:
2198 return NOTIFY_DONE;
2199 }
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203 .notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209 vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214 int ret;
2215
2216 if (ring_size < RING_SIZE_MIN) {
2217 ring_size = RING_SIZE_MIN;
2218 pr_info("Increased ring_size to %u (min allowed)\n",
2219 ring_size);
2220 }
2221 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222 netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2223
2224 ret = vmbus_driver_register(&netvsc_drv);
2225 if (ret)
2226 return ret;
2227
2228 register_netdevice_notifier(&netvsc_netdev_notifier);
2229 return 0;
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/ethtool.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/device.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/netdevice.h>
20#include <linux/inetdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/pci.h>
23#include <linux/skbuff.h>
24#include <linux/if_vlan.h>
25#include <linux/in.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/netpoll.h>
29#include <linux/bpf.h>
30
31#include <net/arp.h>
32#include <net/route.h>
33#include <net/sock.h>
34#include <net/pkt_sched.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37
38#include "hyperv_net.h"
39
40#define RING_SIZE_MIN 64
41
42#define LINKCHANGE_INT (2 * HZ)
43#define VF_TAKEOVER_INT (HZ / 10)
44
45static unsigned int ring_size __ro_after_init = 128;
46module_param(ring_size, uint, 0444);
47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48unsigned int netvsc_ring_bytes __ro_after_init;
49
50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 NETIF_MSG_TX_ERR;
54
55static int debug = -1;
56module_param(debug, int, 0444);
57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59static LIST_HEAD(netvsc_dev_list);
60
61static void netvsc_change_rx_flags(struct net_device *net, int change)
62{
63 struct net_device_context *ndev_ctx = netdev_priv(net);
64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65 int inc;
66
67 if (!vf_netdev)
68 return;
69
70 if (change & IFF_PROMISC) {
71 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72 dev_set_promiscuity(vf_netdev, inc);
73 }
74
75 if (change & IFF_ALLMULTI) {
76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77 dev_set_allmulti(vf_netdev, inc);
78 }
79}
80
81static void netvsc_set_rx_mode(struct net_device *net)
82{
83 struct net_device_context *ndev_ctx = netdev_priv(net);
84 struct net_device *vf_netdev;
85 struct netvsc_device *nvdev;
86
87 rcu_read_lock();
88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89 if (vf_netdev) {
90 dev_uc_sync(vf_netdev, net);
91 dev_mc_sync(vf_netdev, net);
92 }
93
94 nvdev = rcu_dereference(ndev_ctx->nvdev);
95 if (nvdev)
96 rndis_filter_update(nvdev);
97 rcu_read_unlock();
98}
99
100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101 struct net_device *ndev)
102{
103 nvscdev->tx_disable = false;
104 virt_wmb(); /* ensure queue wake up mechanism is on */
105
106 netif_tx_wake_all_queues(ndev);
107}
108
109static int netvsc_open(struct net_device *net)
110{
111 struct net_device_context *ndev_ctx = netdev_priv(net);
112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114 struct rndis_device *rdev;
115 int ret = 0;
116
117 netif_carrier_off(net);
118
119 /* Open up the device */
120 ret = rndis_filter_open(nvdev);
121 if (ret != 0) {
122 netdev_err(net, "unable to open device (ret %d).\n", ret);
123 return ret;
124 }
125
126 rdev = nvdev->extension;
127 if (!rdev->link_state) {
128 netif_carrier_on(net);
129 netvsc_tx_enable(nvdev, net);
130 }
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev, NULL);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185 struct net_device *ndev)
186{
187 if (nvscdev) {
188 nvscdev->tx_disable = true;
189 virt_wmb(); /* ensure txq will not wake up after stop */
190 }
191
192 netif_tx_disable(ndev);
193}
194
195static int netvsc_close(struct net_device *net)
196{
197 struct net_device_context *net_device_ctx = netdev_priv(net);
198 struct net_device *vf_netdev
199 = rtnl_dereference(net_device_ctx->vf_netdev);
200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201 int ret;
202
203 netvsc_tx_disable(nvdev, net);
204
205 /* No need to close rndis filter if it is removed already */
206 if (!nvdev)
207 return 0;
208
209 ret = rndis_filter_close(nvdev);
210 if (ret != 0) {
211 netdev_err(net, "unable to close device (ret %d).\n", ret);
212 return ret;
213 }
214
215 ret = netvsc_wait_until_empty(nvdev);
216 if (ret)
217 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219 if (vf_netdev)
220 dev_close(vf_netdev);
221
222 return ret;
223}
224
225static inline void *init_ppi_data(struct rndis_message *msg,
226 u32 ppi_size, u32 pkt_type)
227{
228 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229 struct rndis_per_packet_info *ppi;
230
231 rndis_pkt->data_offset += ppi_size;
232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233 + rndis_pkt->per_pkt_info_len;
234
235 ppi->size = ppi_size;
236 ppi->type = pkt_type;
237 ppi->internal = 0;
238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240 rndis_pkt->per_pkt_info_len += ppi_size;
241
242 return ppi + 1;
243}
244
245/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
246 * packets. We can use ethtool to change UDP hash level when necessary.
247 */
248static inline u32 netvsc_get_hash(
249 struct sk_buff *skb,
250 const struct net_device_context *ndc)
251{
252 struct flow_keys flow;
253 u32 hash, pkt_proto = 0;
254 static u32 hashrnd __read_mostly;
255
256 net_get_random_once(&hashrnd, sizeof(hashrnd));
257
258 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
259 return 0;
260
261 switch (flow.basic.ip_proto) {
262 case IPPROTO_TCP:
263 if (flow.basic.n_proto == htons(ETH_P_IP))
264 pkt_proto = HV_TCP4_L4HASH;
265 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266 pkt_proto = HV_TCP6_L4HASH;
267
268 break;
269
270 case IPPROTO_UDP:
271 if (flow.basic.n_proto == htons(ETH_P_IP))
272 pkt_proto = HV_UDP4_L4HASH;
273 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
274 pkt_proto = HV_UDP6_L4HASH;
275
276 break;
277 }
278
279 if (pkt_proto & ndc->l4_hash) {
280 return skb_get_hash(skb);
281 } else {
282 if (flow.basic.n_proto == htons(ETH_P_IP))
283 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
284 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
286 else
287 return 0;
288
289 __skb_set_sw_hash(skb, hash, false);
290 }
291
292 return hash;
293}
294
295static inline int netvsc_get_tx_queue(struct net_device *ndev,
296 struct sk_buff *skb, int old_idx)
297{
298 const struct net_device_context *ndc = netdev_priv(ndev);
299 struct sock *sk = skb->sk;
300 int q_idx;
301
302 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
303 (VRSS_SEND_TAB_SIZE - 1)];
304
305 /* If queue index changed record the new value */
306 if (q_idx != old_idx &&
307 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
308 sk_tx_queue_set(sk, q_idx);
309
310 return q_idx;
311}
312
313/*
314 * Select queue for transmit.
315 *
316 * If a valid queue has already been assigned, then use that.
317 * Otherwise compute tx queue based on hash and the send table.
318 *
319 * This is basically similar to default (netdev_pick_tx) with the added step
320 * of using the host send_table when no other queue has been assigned.
321 *
322 * TODO support XPS - but get_xps_queue not exported
323 */
324static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
325{
326 int q_idx = sk_tx_queue_get(skb->sk);
327
328 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
329 /* If forwarding a packet, we use the recorded queue when
330 * available for better cache locality.
331 */
332 if (skb_rx_queue_recorded(skb))
333 q_idx = skb_get_rx_queue(skb);
334 else
335 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
336 }
337
338 return q_idx;
339}
340
341static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
342 struct net_device *sb_dev)
343{
344 struct net_device_context *ndc = netdev_priv(ndev);
345 struct net_device *vf_netdev;
346 u16 txq;
347
348 rcu_read_lock();
349 vf_netdev = rcu_dereference(ndc->vf_netdev);
350 if (vf_netdev) {
351 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
352
353 if (vf_ops->ndo_select_queue)
354 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
355 else
356 txq = netdev_pick_tx(vf_netdev, skb, NULL);
357
358 /* Record the queue selected by VF so that it can be
359 * used for common case where VF has more queues than
360 * the synthetic device.
361 */
362 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
363 } else {
364 txq = netvsc_pick_tx(ndev, skb);
365 }
366 rcu_read_unlock();
367
368 while (txq >= ndev->real_num_tx_queues)
369 txq -= ndev->real_num_tx_queues;
370
371 return txq;
372}
373
374static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
375 struct hv_page_buffer *pb)
376{
377 int j = 0;
378
379 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
380 offset = offset & ~HV_HYP_PAGE_MASK;
381
382 while (len > 0) {
383 unsigned long bytes;
384
385 bytes = HV_HYP_PAGE_SIZE - offset;
386 if (bytes > len)
387 bytes = len;
388 pb[j].pfn = hvpfn;
389 pb[j].offset = offset;
390 pb[j].len = bytes;
391
392 offset += bytes;
393 len -= bytes;
394
395 if (offset == HV_HYP_PAGE_SIZE && len) {
396 hvpfn++;
397 offset = 0;
398 j++;
399 }
400 }
401
402 return j + 1;
403}
404
405static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
406 struct hv_netvsc_packet *packet,
407 struct hv_page_buffer *pb)
408{
409 u32 slots_used = 0;
410 char *data = skb->data;
411 int frags = skb_shinfo(skb)->nr_frags;
412 int i;
413
414 /* The packet is laid out thus:
415 * 1. hdr: RNDIS header and PPI
416 * 2. skb linear data
417 * 3. skb fragment data
418 */
419 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
420 offset_in_hvpage(hdr),
421 len,
422 &pb[slots_used]);
423
424 packet->rmsg_size = len;
425 packet->rmsg_pgcnt = slots_used;
426
427 slots_used += fill_pg_buf(virt_to_hvpfn(data),
428 offset_in_hvpage(data),
429 skb_headlen(skb),
430 &pb[slots_used]);
431
432 for (i = 0; i < frags; i++) {
433 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
434
435 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
436 skb_frag_off(frag),
437 skb_frag_size(frag),
438 &pb[slots_used]);
439 }
440 return slots_used;
441}
442
443static int count_skb_frag_slots(struct sk_buff *skb)
444{
445 int i, frags = skb_shinfo(skb)->nr_frags;
446 int pages = 0;
447
448 for (i = 0; i < frags; i++) {
449 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450 unsigned long size = skb_frag_size(frag);
451 unsigned long offset = skb_frag_off(frag);
452
453 /* Skip unused frames from start of page */
454 offset &= ~HV_HYP_PAGE_MASK;
455 pages += HVPFN_UP(offset + size);
456 }
457 return pages;
458}
459
460static int netvsc_get_slots(struct sk_buff *skb)
461{
462 char *data = skb->data;
463 unsigned int offset = offset_in_hvpage(data);
464 unsigned int len = skb_headlen(skb);
465 int slots;
466 int frag_slots;
467
468 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
469 frag_slots = count_skb_frag_slots(skb);
470 return slots + frag_slots;
471}
472
473static u32 net_checksum_info(struct sk_buff *skb)
474{
475 if (skb->protocol == htons(ETH_P_IP)) {
476 struct iphdr *ip = ip_hdr(skb);
477
478 if (ip->protocol == IPPROTO_TCP)
479 return TRANSPORT_INFO_IPV4_TCP;
480 else if (ip->protocol == IPPROTO_UDP)
481 return TRANSPORT_INFO_IPV4_UDP;
482 } else {
483 struct ipv6hdr *ip6 = ipv6_hdr(skb);
484
485 if (ip6->nexthdr == IPPROTO_TCP)
486 return TRANSPORT_INFO_IPV6_TCP;
487 else if (ip6->nexthdr == IPPROTO_UDP)
488 return TRANSPORT_INFO_IPV6_UDP;
489 }
490
491 return TRANSPORT_INFO_NOT_IP;
492}
493
494/* Send skb on the slave VF device. */
495static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
496 struct sk_buff *skb)
497{
498 struct net_device_context *ndev_ctx = netdev_priv(net);
499 unsigned int len = skb->len;
500 int rc;
501
502 skb->dev = vf_netdev;
503 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
504
505 rc = dev_queue_xmit(skb);
506 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507 struct netvsc_vf_pcpu_stats *pcpu_stats
508 = this_cpu_ptr(ndev_ctx->vf_stats);
509
510 u64_stats_update_begin(&pcpu_stats->syncp);
511 pcpu_stats->tx_packets++;
512 pcpu_stats->tx_bytes += len;
513 u64_stats_update_end(&pcpu_stats->syncp);
514 } else {
515 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
516 }
517
518 return rc;
519}
520
521static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
522{
523 struct net_device_context *net_device_ctx = netdev_priv(net);
524 struct hv_netvsc_packet *packet = NULL;
525 int ret;
526 unsigned int num_data_pgs;
527 struct rndis_message *rndis_msg;
528 struct net_device *vf_netdev;
529 u32 rndis_msg_size;
530 u32 hash;
531 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
532
533 /* If VF is present and up then redirect packets to it.
534 * Skip the VF if it is marked down or has no carrier.
535 * If netpoll is in uses, then VF can not be used either.
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
540 net_device_ctx->data_path_is_vf)
541 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543 /* We will atmost need two pages to describe the rndis
544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545 * of pages in a single packet. If skb is scattered around
546 * more pages we try linearizing it.
547 */
548
549 num_data_pgs = netvsc_get_slots(skb) + 2;
550
551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552 ++net_device_ctx->eth_stats.tx_scattered;
553
554 if (skb_linearize(skb))
555 goto no_memory;
556
557 num_data_pgs = netvsc_get_slots(skb) + 2;
558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559 ++net_device_ctx->eth_stats.tx_too_big;
560 goto drop;
561 }
562 }
563
564 /*
565 * Place the rndis header in the skb head room and
566 * the skb->cb will be used for hv_netvsc_packet
567 * structure.
568 */
569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570 if (ret)
571 goto no_memory;
572
573 /* Use the skb control buffer for building up the packet */
574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575 sizeof_field(struct sk_buff, cb));
576 packet = (struct hv_netvsc_packet *)skb->cb;
577
578 packet->q_idx = skb_get_queue_mapping(skb);
579
580 packet->total_data_buflen = skb->len;
581 packet->total_bytes = skb->len;
582 packet->total_packets = 1;
583
584 rndis_msg = (struct rndis_message *)skb->head;
585
586 /* Add the rndis header */
587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588 rndis_msg->msg_len = packet->total_data_buflen;
589
590 rndis_msg->msg.pkt = (struct rndis_packet) {
591 .data_offset = sizeof(struct rndis_packet),
592 .data_len = packet->total_data_buflen,
593 .per_pkt_info_offset = sizeof(struct rndis_packet),
594 };
595
596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598 hash = skb_get_hash_raw(skb);
599 if (hash != 0 && net->real_num_tx_queues > 1) {
600 u32 *hash_info;
601
602 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604 NBL_HASH_VALUE);
605 *hash_info = hash;
606 }
607
608 /* When using AF_PACKET we need to drop VLAN header from
609 * the frame and update the SKB to allow the HOST OS
610 * to transmit the 802.1Q packet
611 */
612 if (skb->protocol == htons(ETH_P_8021Q)) {
613 u16 vlan_tci;
614
615 skb_reset_mac_header(skb);
616 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
617 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
618 ++net_device_ctx->eth_stats.vlan_error;
619 goto drop;
620 }
621
622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
623 /* Update the NDIS header pkt lengths */
624 packet->total_data_buflen -= VLAN_HLEN;
625 packet->total_bytes -= VLAN_HLEN;
626 rndis_msg->msg_len = packet->total_data_buflen;
627 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
628 }
629 }
630
631 if (skb_vlan_tag_present(skb)) {
632 struct ndis_pkt_8021q_info *vlan;
633
634 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
635 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
636 IEEE_8021Q_INFO);
637
638 vlan->value = 0;
639 vlan->vlanid = skb_vlan_tag_get_id(skb);
640 vlan->cfi = skb_vlan_tag_get_cfi(skb);
641 vlan->pri = skb_vlan_tag_get_prio(skb);
642 }
643
644 if (skb_is_gso(skb)) {
645 struct ndis_tcp_lso_info *lso_info;
646
647 rndis_msg_size += NDIS_LSO_PPI_SIZE;
648 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
649 TCP_LARGESEND_PKTINFO);
650
651 lso_info->value = 0;
652 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
653 if (skb->protocol == htons(ETH_P_IP)) {
654 lso_info->lso_v2_transmit.ip_version =
655 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
656 ip_hdr(skb)->tot_len = 0;
657 ip_hdr(skb)->check = 0;
658 tcp_hdr(skb)->check =
659 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
660 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
661 } else {
662 lso_info->lso_v2_transmit.ip_version =
663 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
664 tcp_v6_gso_csum_prep(skb);
665 }
666 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
667 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
668 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
669 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
670 struct ndis_tcp_ip_checksum_info *csum_info;
671
672 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
673 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
674 TCPIP_CHKSUM_PKTINFO);
675
676 csum_info->value = 0;
677 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
678
679 if (skb->protocol == htons(ETH_P_IP)) {
680 csum_info->transmit.is_ipv4 = 1;
681
682 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
683 csum_info->transmit.tcp_checksum = 1;
684 else
685 csum_info->transmit.udp_checksum = 1;
686 } else {
687 csum_info->transmit.is_ipv6 = 1;
688
689 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
690 csum_info->transmit.tcp_checksum = 1;
691 else
692 csum_info->transmit.udp_checksum = 1;
693 }
694 } else {
695 /* Can't do offload of this type of checksum */
696 if (skb_checksum_help(skb))
697 goto drop;
698 }
699 }
700
701 /* Start filling in the page buffers with the rndis hdr */
702 rndis_msg->msg_len += rndis_msg_size;
703 packet->total_data_buflen = rndis_msg->msg_len;
704 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
705 skb, packet, pb);
706
707 /* timestamp packet in software */
708 skb_tx_timestamp(skb);
709
710 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
711 if (likely(ret == 0))
712 return NETDEV_TX_OK;
713
714 if (ret == -EAGAIN) {
715 ++net_device_ctx->eth_stats.tx_busy;
716 return NETDEV_TX_BUSY;
717 }
718
719 if (ret == -ENOSPC)
720 ++net_device_ctx->eth_stats.tx_no_space;
721
722drop:
723 dev_kfree_skb_any(skb);
724 net->stats.tx_dropped++;
725
726 return NETDEV_TX_OK;
727
728no_memory:
729 ++net_device_ctx->eth_stats.tx_no_memory;
730 goto drop;
731}
732
733static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
734 struct net_device *ndev)
735{
736 return netvsc_xmit(skb, ndev, false);
737}
738
739/*
740 * netvsc_linkstatus_callback - Link up/down notification
741 */
742void netvsc_linkstatus_callback(struct net_device *net,
743 struct rndis_message *resp,
744 void *data, u32 data_buflen)
745{
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
749 unsigned long flags;
750
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754 resp->msg_len);
755 return;
756 }
757
758 /* Copy the RNDIS indicate status into nvchan->recv_buf */
759 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
760
761 /* Update the physical link speed when changing to another vSwitch */
762 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
763 u32 speed;
764
765 /* Validate status_buf_offset and status_buflen.
766 *
767 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
768 * for the status buffer field in resp->msg_len; perform the validation
769 * using data_buflen (>= resp->msg_len).
770 */
771 if (indicate->status_buflen < sizeof(speed) ||
772 indicate->status_buf_offset < sizeof(*indicate) ||
773 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
774 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
775 < indicate->status_buflen) {
776 netdev_err(net, "invalid rndis_indicate_status packet\n");
777 return;
778 }
779
780 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
781 ndev_ctx->speed = speed;
782 return;
783 }
784
785 /* Handle these link change statuses below */
786 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
787 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
788 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
789 return;
790
791 if (net->reg_state != NETREG_REGISTERED)
792 return;
793
794 event = kzalloc(sizeof(*event), GFP_ATOMIC);
795 if (!event)
796 return;
797 event->event = indicate->status;
798
799 spin_lock_irqsave(&ndev_ctx->lock, flags);
800 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
801 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
802
803 schedule_delayed_work(&ndev_ctx->dwork, 0);
804}
805
806static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
807{
808 int rc;
809
810 skb->queue_mapping = skb_get_rx_queue(skb);
811 __skb_push(skb, ETH_HLEN);
812
813 rc = netvsc_xmit(skb, ndev, true);
814
815 if (dev_xmit_complete(rc))
816 return;
817
818 dev_kfree_skb_any(skb);
819 ndev->stats.tx_dropped++;
820}
821
822static void netvsc_comp_ipcsum(struct sk_buff *skb)
823{
824 struct iphdr *iph = (struct iphdr *)skb->data;
825
826 iph->check = 0;
827 iph->check = ip_fast_csum(iph, iph->ihl);
828}
829
830static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
831 struct netvsc_channel *nvchan,
832 struct xdp_buff *xdp)
833{
834 struct napi_struct *napi = &nvchan->napi;
835 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
836 const struct ndis_tcp_ip_checksum_info *csum_info =
837 &nvchan->rsc.csum_info;
838 const u32 *hash_info = &nvchan->rsc.hash_info;
839 u8 ppi_flags = nvchan->rsc.ppi_flags;
840 struct sk_buff *skb;
841 void *xbuf = xdp->data_hard_start;
842 int i;
843
844 if (xbuf) {
845 unsigned int hdroom = xdp->data - xdp->data_hard_start;
846 unsigned int xlen = xdp->data_end - xdp->data;
847 unsigned int frag_size = xdp->frame_sz;
848
849 skb = build_skb(xbuf, frag_size);
850
851 if (!skb) {
852 __free_page(virt_to_page(xbuf));
853 return NULL;
854 }
855
856 skb_reserve(skb, hdroom);
857 skb_put(skb, xlen);
858 skb->dev = napi->dev;
859 } else {
860 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
861
862 if (!skb)
863 return NULL;
864
865 /* Copy to skb. This copy is needed here since the memory
866 * pointed by hv_netvsc_packet cannot be deallocated.
867 */
868 for (i = 0; i < nvchan->rsc.cnt; i++)
869 skb_put_data(skb, nvchan->rsc.data[i],
870 nvchan->rsc.len[i]);
871 }
872
873 skb->protocol = eth_type_trans(skb, net);
874
875 /* skb is already created with CHECKSUM_NONE */
876 skb_checksum_none_assert(skb);
877
878 /* Incoming packets may have IP header checksum verified by the host.
879 * They may not have IP header checksum computed after coalescing.
880 * We compute it here if the flags are set, because on Linux, the IP
881 * checksum is always checked.
882 */
883 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
884 csum_info->receive.ip_checksum_succeeded &&
885 skb->protocol == htons(ETH_P_IP)) {
886 /* Check that there is enough space to hold the IP header. */
887 if (skb_headlen(skb) < sizeof(struct iphdr)) {
888 kfree_skb(skb);
889 return NULL;
890 }
891 netvsc_comp_ipcsum(skb);
892 }
893
894 /* Do L4 checksum offload if enabled and present. */
895 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
896 if (csum_info->receive.tcp_checksum_succeeded ||
897 csum_info->receive.udp_checksum_succeeded)
898 skb->ip_summed = CHECKSUM_UNNECESSARY;
899 }
900
901 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
902 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
903
904 if (ppi_flags & NVSC_RSC_VLAN) {
905 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
906 (vlan->cfi ? VLAN_CFI_MASK : 0);
907
908 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
909 vlan_tci);
910 }
911
912 return skb;
913}
914
915/*
916 * netvsc_recv_callback - Callback when we receive a packet from the
917 * "wire" on the specified device.
918 */
919int netvsc_recv_callback(struct net_device *net,
920 struct netvsc_device *net_device,
921 struct netvsc_channel *nvchan)
922{
923 struct net_device_context *net_device_ctx = netdev_priv(net);
924 struct vmbus_channel *channel = nvchan->channel;
925 u16 q_idx = channel->offermsg.offer.sub_channel_index;
926 struct sk_buff *skb;
927 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
928 struct xdp_buff xdp;
929 u32 act;
930
931 if (net->reg_state != NETREG_REGISTERED)
932 return NVSP_STAT_FAIL;
933
934 act = netvsc_run_xdp(net, nvchan, &xdp);
935
936 if (act != XDP_PASS && act != XDP_TX) {
937 u64_stats_update_begin(&rx_stats->syncp);
938 rx_stats->xdp_drop++;
939 u64_stats_update_end(&rx_stats->syncp);
940
941 return NVSP_STAT_SUCCESS; /* consumed by XDP */
942 }
943
944 /* Allocate a skb - TODO direct I/O to pages? */
945 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
946
947 if (unlikely(!skb)) {
948 ++net_device_ctx->eth_stats.rx_no_memory;
949 return NVSP_STAT_FAIL;
950 }
951
952 skb_record_rx_queue(skb, q_idx);
953
954 /*
955 * Even if injecting the packet, record the statistics
956 * on the synthetic device because modifying the VF device
957 * statistics will not work correctly.
958 */
959 u64_stats_update_begin(&rx_stats->syncp);
960 rx_stats->packets++;
961 rx_stats->bytes += nvchan->rsc.pktlen;
962
963 if (skb->pkt_type == PACKET_BROADCAST)
964 ++rx_stats->broadcast;
965 else if (skb->pkt_type == PACKET_MULTICAST)
966 ++rx_stats->multicast;
967 u64_stats_update_end(&rx_stats->syncp);
968
969 if (act == XDP_TX) {
970 netvsc_xdp_xmit(skb, net);
971 return NVSP_STAT_SUCCESS;
972 }
973
974 napi_gro_receive(&nvchan->napi, skb);
975 return NVSP_STAT_SUCCESS;
976}
977
978static void netvsc_get_drvinfo(struct net_device *net,
979 struct ethtool_drvinfo *info)
980{
981 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
982 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
983}
984
985static void netvsc_get_channels(struct net_device *net,
986 struct ethtool_channels *channel)
987{
988 struct net_device_context *net_device_ctx = netdev_priv(net);
989 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
990
991 if (nvdev) {
992 channel->max_combined = nvdev->max_chn;
993 channel->combined_count = nvdev->num_chn;
994 }
995}
996
997/* Alloc struct netvsc_device_info, and initialize it from either existing
998 * struct netvsc_device, or from default values.
999 */
1000static
1001struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002{
1003 struct netvsc_device_info *dev_info;
1004 struct bpf_prog *prog;
1005
1006 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1007
1008 if (!dev_info)
1009 return NULL;
1010
1011 if (nvdev) {
1012 ASSERT_RTNL();
1013
1014 dev_info->num_chn = nvdev->num_chn;
1015 dev_info->send_sections = nvdev->send_section_cnt;
1016 dev_info->send_section_size = nvdev->send_section_size;
1017 dev_info->recv_sections = nvdev->recv_section_cnt;
1018 dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021 NETVSC_HASH_KEYLEN);
1022
1023 prog = netvsc_xdp_get(nvdev);
1024 if (prog) {
1025 bpf_prog_inc(prog);
1026 dev_info->bprog = prog;
1027 }
1028 } else {
1029 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1030 dev_info->send_sections = NETVSC_DEFAULT_TX;
1031 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034 }
1035
1036 return dev_info;
1037}
1038
1039/* Free struct netvsc_device_info */
1040static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041{
1042 if (dev_info->bprog) {
1043 ASSERT_RTNL();
1044 bpf_prog_put(dev_info->bprog);
1045 }
1046
1047 kfree(dev_info);
1048}
1049
1050static int netvsc_detach(struct net_device *ndev,
1051 struct netvsc_device *nvdev)
1052{
1053 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054 struct hv_device *hdev = ndev_ctx->device_ctx;
1055 int ret;
1056
1057 /* Don't try continuing to try and setup sub channels */
1058 if (cancel_work_sync(&nvdev->subchan_work))
1059 nvdev->num_chn = 1;
1060
1061 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063 /* If device was up (receiving) then shutdown */
1064 if (netif_running(ndev)) {
1065 netvsc_tx_disable(nvdev, ndev);
1066
1067 ret = rndis_filter_close(nvdev);
1068 if (ret) {
1069 netdev_err(ndev,
1070 "unable to close device (ret %d).\n", ret);
1071 return ret;
1072 }
1073
1074 ret = netvsc_wait_until_empty(nvdev);
1075 if (ret) {
1076 netdev_err(ndev,
1077 "Ring buffer not empty after closing rndis\n");
1078 return ret;
1079 }
1080 }
1081
1082 netif_device_detach(ndev);
1083
1084 rndis_filter_device_remove(hdev, nvdev);
1085
1086 return 0;
1087}
1088
1089static int netvsc_attach(struct net_device *ndev,
1090 struct netvsc_device_info *dev_info)
1091{
1092 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093 struct hv_device *hdev = ndev_ctx->device_ctx;
1094 struct netvsc_device *nvdev;
1095 struct rndis_device *rdev;
1096 struct bpf_prog *prog;
1097 int ret = 0;
1098
1099 nvdev = rndis_filter_device_add(hdev, dev_info);
1100 if (IS_ERR(nvdev))
1101 return PTR_ERR(nvdev);
1102
1103 if (nvdev->num_chn > 1) {
1104 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106 /* if unavailable, just proceed with one queue */
1107 if (ret) {
1108 nvdev->max_chn = 1;
1109 nvdev->num_chn = 1;
1110 }
1111 }
1112
1113 prog = dev_info->bprog;
1114 if (prog) {
1115 bpf_prog_inc(prog);
1116 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117 if (ret) {
1118 bpf_prog_put(prog);
1119 goto err1;
1120 }
1121 }
1122
1123 /* In any case device is now ready */
1124 nvdev->tx_disable = false;
1125 netif_device_attach(ndev);
1126
1127 /* Note: enable and attach happen when sub-channels setup */
1128 netif_carrier_off(ndev);
1129
1130 if (netif_running(ndev)) {
1131 ret = rndis_filter_open(nvdev);
1132 if (ret)
1133 goto err2;
1134
1135 rdev = nvdev->extension;
1136 if (!rdev->link_state)
1137 netif_carrier_on(ndev);
1138 }
1139
1140 return 0;
1141
1142err2:
1143 netif_device_detach(ndev);
1144
1145err1:
1146 rndis_filter_device_remove(hdev, nvdev);
1147
1148 return ret;
1149}
1150
1151static int netvsc_set_channels(struct net_device *net,
1152 struct ethtool_channels *channels)
1153{
1154 struct net_device_context *net_device_ctx = netdev_priv(net);
1155 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156 unsigned int orig, count = channels->combined_count;
1157 struct netvsc_device_info *device_info;
1158 int ret;
1159
1160 /* We do not support separate count for rx, tx, or other */
1161 if (count == 0 ||
1162 channels->rx_count || channels->tx_count || channels->other_count)
1163 return -EINVAL;
1164
1165 if (!nvdev || nvdev->destroy)
1166 return -ENODEV;
1167
1168 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169 return -EINVAL;
1170
1171 if (count > nvdev->max_chn)
1172 return -EINVAL;
1173
1174 orig = nvdev->num_chn;
1175
1176 device_info = netvsc_devinfo_get(nvdev);
1177
1178 if (!device_info)
1179 return -ENOMEM;
1180
1181 device_info->num_chn = count;
1182
1183 ret = netvsc_detach(net, nvdev);
1184 if (ret)
1185 goto out;
1186
1187 ret = netvsc_attach(net, device_info);
1188 if (ret) {
1189 device_info->num_chn = orig;
1190 if (netvsc_attach(net, device_info))
1191 netdev_err(net, "restoring channel setting failed\n");
1192 }
1193
1194out:
1195 netvsc_devinfo_put(device_info);
1196 return ret;
1197}
1198
1199static void netvsc_init_settings(struct net_device *dev)
1200{
1201 struct net_device_context *ndc = netdev_priv(dev);
1202
1203 ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205 ndc->speed = SPEED_UNKNOWN;
1206 ndc->duplex = DUPLEX_FULL;
1207
1208 dev->features = NETIF_F_LRO;
1209}
1210
1211static int netvsc_get_link_ksettings(struct net_device *dev,
1212 struct ethtool_link_ksettings *cmd)
1213{
1214 struct net_device_context *ndc = netdev_priv(dev);
1215 struct net_device *vf_netdev;
1216
1217 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219 if (vf_netdev)
1220 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222 cmd->base.speed = ndc->speed;
1223 cmd->base.duplex = ndc->duplex;
1224 cmd->base.port = PORT_OTHER;
1225
1226 return 0;
1227}
1228
1229static int netvsc_set_link_ksettings(struct net_device *dev,
1230 const struct ethtool_link_ksettings *cmd)
1231{
1232 struct net_device_context *ndc = netdev_priv(dev);
1233 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235 if (vf_netdev) {
1236 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237 return -EOPNOTSUPP;
1238
1239 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240 cmd);
1241 }
1242
1243 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244 &ndc->speed, &ndc->duplex);
1245}
1246
1247static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248{
1249 struct net_device_context *ndevctx = netdev_priv(ndev);
1250 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252 int orig_mtu = ndev->mtu;
1253 struct netvsc_device_info *device_info;
1254 int ret = 0;
1255
1256 if (!nvdev || nvdev->destroy)
1257 return -ENODEV;
1258
1259 device_info = netvsc_devinfo_get(nvdev);
1260
1261 if (!device_info)
1262 return -ENOMEM;
1263
1264 /* Change MTU of underlying VF netdev first. */
1265 if (vf_netdev) {
1266 ret = dev_set_mtu(vf_netdev, mtu);
1267 if (ret)
1268 goto out;
1269 }
1270
1271 ret = netvsc_detach(ndev, nvdev);
1272 if (ret)
1273 goto rollback_vf;
1274
1275 ndev->mtu = mtu;
1276
1277 ret = netvsc_attach(ndev, device_info);
1278 if (!ret)
1279 goto out;
1280
1281 /* Attempt rollback to original MTU */
1282 ndev->mtu = orig_mtu;
1283
1284 if (netvsc_attach(ndev, device_info))
1285 netdev_err(ndev, "restoring mtu failed\n");
1286rollback_vf:
1287 if (vf_netdev)
1288 dev_set_mtu(vf_netdev, orig_mtu);
1289
1290out:
1291 netvsc_devinfo_put(device_info);
1292 return ret;
1293}
1294
1295static void netvsc_get_vf_stats(struct net_device *net,
1296 struct netvsc_vf_pcpu_stats *tot)
1297{
1298 struct net_device_context *ndev_ctx = netdev_priv(net);
1299 int i;
1300
1301 memset(tot, 0, sizeof(*tot));
1302
1303 for_each_possible_cpu(i) {
1304 const struct netvsc_vf_pcpu_stats *stats
1305 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1306 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307 unsigned int start;
1308
1309 do {
1310 start = u64_stats_fetch_begin_irq(&stats->syncp);
1311 rx_packets = stats->rx_packets;
1312 tx_packets = stats->tx_packets;
1313 rx_bytes = stats->rx_bytes;
1314 tx_bytes = stats->tx_bytes;
1315 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317 tot->rx_packets += rx_packets;
1318 tot->tx_packets += tx_packets;
1319 tot->rx_bytes += rx_bytes;
1320 tot->tx_bytes += tx_bytes;
1321 tot->tx_dropped += stats->tx_dropped;
1322 }
1323}
1324
1325static void netvsc_get_pcpu_stats(struct net_device *net,
1326 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327{
1328 struct net_device_context *ndev_ctx = netdev_priv(net);
1329 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330 int i;
1331
1332 /* fetch percpu stats of vf */
1333 for_each_possible_cpu(i) {
1334 const struct netvsc_vf_pcpu_stats *stats =
1335 per_cpu_ptr(ndev_ctx->vf_stats, i);
1336 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1337 unsigned int start;
1338
1339 do {
1340 start = u64_stats_fetch_begin_irq(&stats->syncp);
1341 this_tot->vf_rx_packets = stats->rx_packets;
1342 this_tot->vf_tx_packets = stats->tx_packets;
1343 this_tot->vf_rx_bytes = stats->rx_bytes;
1344 this_tot->vf_tx_bytes = stats->tx_bytes;
1345 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346 this_tot->rx_packets = this_tot->vf_rx_packets;
1347 this_tot->tx_packets = this_tot->vf_tx_packets;
1348 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1349 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1350 }
1351
1352 /* fetch percpu stats of netvsc */
1353 for (i = 0; i < nvdev->num_chn; i++) {
1354 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355 const struct netvsc_stats *stats;
1356 struct netvsc_ethtool_pcpu_stats *this_tot =
1357 &pcpu_tot[nvchan->channel->target_cpu];
1358 u64 packets, bytes;
1359 unsigned int start;
1360
1361 stats = &nvchan->tx_stats;
1362 do {
1363 start = u64_stats_fetch_begin_irq(&stats->syncp);
1364 packets = stats->packets;
1365 bytes = stats->bytes;
1366 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368 this_tot->tx_bytes += bytes;
1369 this_tot->tx_packets += packets;
1370
1371 stats = &nvchan->rx_stats;
1372 do {
1373 start = u64_stats_fetch_begin_irq(&stats->syncp);
1374 packets = stats->packets;
1375 bytes = stats->bytes;
1376 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378 this_tot->rx_bytes += bytes;
1379 this_tot->rx_packets += packets;
1380 }
1381}
1382
1383static void netvsc_get_stats64(struct net_device *net,
1384 struct rtnl_link_stats64 *t)
1385{
1386 struct net_device_context *ndev_ctx = netdev_priv(net);
1387 struct netvsc_device *nvdev;
1388 struct netvsc_vf_pcpu_stats vf_tot;
1389 int i;
1390
1391 rcu_read_lock();
1392
1393 nvdev = rcu_dereference(ndev_ctx->nvdev);
1394 if (!nvdev)
1395 goto out;
1396
1397 netdev_stats_to_stats64(t, &net->stats);
1398
1399 netvsc_get_vf_stats(net, &vf_tot);
1400 t->rx_packets += vf_tot.rx_packets;
1401 t->tx_packets += vf_tot.tx_packets;
1402 t->rx_bytes += vf_tot.rx_bytes;
1403 t->tx_bytes += vf_tot.tx_bytes;
1404 t->tx_dropped += vf_tot.tx_dropped;
1405
1406 for (i = 0; i < nvdev->num_chn; i++) {
1407 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408 const struct netvsc_stats *stats;
1409 u64 packets, bytes, multicast;
1410 unsigned int start;
1411
1412 stats = &nvchan->tx_stats;
1413 do {
1414 start = u64_stats_fetch_begin_irq(&stats->syncp);
1415 packets = stats->packets;
1416 bytes = stats->bytes;
1417 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419 t->tx_bytes += bytes;
1420 t->tx_packets += packets;
1421
1422 stats = &nvchan->rx_stats;
1423 do {
1424 start = u64_stats_fetch_begin_irq(&stats->syncp);
1425 packets = stats->packets;
1426 bytes = stats->bytes;
1427 multicast = stats->multicast + stats->broadcast;
1428 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430 t->rx_bytes += bytes;
1431 t->rx_packets += packets;
1432 t->multicast += multicast;
1433 }
1434out:
1435 rcu_read_unlock();
1436}
1437
1438static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439{
1440 struct net_device_context *ndc = netdev_priv(ndev);
1441 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443 struct sockaddr *addr = p;
1444 int err;
1445
1446 err = eth_prepare_mac_addr_change(ndev, p);
1447 if (err)
1448 return err;
1449
1450 if (!nvdev)
1451 return -ENODEV;
1452
1453 if (vf_netdev) {
1454 err = dev_set_mac_address(vf_netdev, addr, NULL);
1455 if (err)
1456 return err;
1457 }
1458
1459 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460 if (!err) {
1461 eth_commit_mac_addr_change(ndev, p);
1462 } else if (vf_netdev) {
1463 /* rollback change on VF */
1464 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465 dev_set_mac_address(vf_netdev, addr, NULL);
1466 }
1467
1468 return err;
1469}
1470
1471static const struct {
1472 char name[ETH_GSTRING_LEN];
1473 u16 offset;
1474} netvsc_stats[] = {
1475 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486}, pcpu_stats[] = {
1487 { "cpu%u_rx_packets",
1488 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489 { "cpu%u_rx_bytes",
1490 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491 { "cpu%u_tx_packets",
1492 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493 { "cpu%u_tx_bytes",
1494 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495 { "cpu%u_vf_rx_packets",
1496 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497 { "cpu%u_vf_rx_bytes",
1498 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499 { "cpu%u_vf_tx_packets",
1500 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501 { "cpu%u_vf_tx_bytes",
1502 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503}, vf_stats[] = {
1504 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509};
1510
1511#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1512#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1513
1514/* statistics per queue (rx/tx packets/bytes) */
1515#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521{
1522 struct net_device_context *ndc = netdev_priv(dev);
1523 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525 if (!nvdev)
1526 return -ENODEV;
1527
1528 switch (string_set) {
1529 case ETH_SS_STATS:
1530 return NETVSC_GLOBAL_STATS_LEN
1531 + NETVSC_VF_STATS_LEN
1532 + NETVSC_QUEUE_STATS_LEN(nvdev)
1533 + NETVSC_PCPU_STATS_LEN;
1534 default:
1535 return -EINVAL;
1536 }
1537}
1538
1539static void netvsc_get_ethtool_stats(struct net_device *dev,
1540 struct ethtool_stats *stats, u64 *data)
1541{
1542 struct net_device_context *ndc = netdev_priv(dev);
1543 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544 const void *nds = &ndc->eth_stats;
1545 const struct netvsc_stats *qstats;
1546 struct netvsc_vf_pcpu_stats sum;
1547 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548 unsigned int start;
1549 u64 packets, bytes;
1550 u64 xdp_drop;
1551 int i, j, cpu;
1552
1553 if (!nvdev)
1554 return;
1555
1556 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559 netvsc_get_vf_stats(dev, &sum);
1560 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563 for (j = 0; j < nvdev->num_chn; j++) {
1564 qstats = &nvdev->chan_table[j].tx_stats;
1565
1566 do {
1567 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568 packets = qstats->packets;
1569 bytes = qstats->bytes;
1570 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1571 data[i++] = packets;
1572 data[i++] = bytes;
1573
1574 qstats = &nvdev->chan_table[j].rx_stats;
1575 do {
1576 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577 packets = qstats->packets;
1578 bytes = qstats->bytes;
1579 xdp_drop = qstats->xdp_drop;
1580 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1581 data[i++] = packets;
1582 data[i++] = bytes;
1583 data[i++] = xdp_drop;
1584 }
1585
1586 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587 sizeof(struct netvsc_ethtool_pcpu_stats),
1588 GFP_KERNEL);
1589 netvsc_get_pcpu_stats(dev, pcpu_sum);
1590 for_each_present_cpu(cpu) {
1591 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1592
1593 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1594 data[i++] = *(u64 *)((void *)this_sum
1595 + pcpu_stats[j].offset);
1596 }
1597 kvfree(pcpu_sum);
1598}
1599
1600static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1601{
1602 struct net_device_context *ndc = netdev_priv(dev);
1603 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1604 u8 *p = data;
1605 int i, cpu;
1606
1607 if (!nvdev)
1608 return;
1609
1610 switch (stringset) {
1611 case ETH_SS_STATS:
1612 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1613 ethtool_sprintf(&p, netvsc_stats[i].name);
1614
1615 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1616 ethtool_sprintf(&p, vf_stats[i].name);
1617
1618 for (i = 0; i < nvdev->num_chn; i++) {
1619 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1620 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1621 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1622 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1623 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1624 }
1625
1626 for_each_present_cpu(cpu) {
1627 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1628 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1629 }
1630
1631 break;
1632 }
1633}
1634
1635static int
1636netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1637 struct ethtool_rxnfc *info)
1638{
1639 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1640
1641 info->data = RXH_IP_SRC | RXH_IP_DST;
1642
1643 switch (info->flow_type) {
1644 case TCP_V4_FLOW:
1645 if (ndc->l4_hash & HV_TCP4_L4HASH)
1646 info->data |= l4_flag;
1647
1648 break;
1649
1650 case TCP_V6_FLOW:
1651 if (ndc->l4_hash & HV_TCP6_L4HASH)
1652 info->data |= l4_flag;
1653
1654 break;
1655
1656 case UDP_V4_FLOW:
1657 if (ndc->l4_hash & HV_UDP4_L4HASH)
1658 info->data |= l4_flag;
1659
1660 break;
1661
1662 case UDP_V6_FLOW:
1663 if (ndc->l4_hash & HV_UDP6_L4HASH)
1664 info->data |= l4_flag;
1665
1666 break;
1667
1668 case IPV4_FLOW:
1669 case IPV6_FLOW:
1670 break;
1671 default:
1672 info->data = 0;
1673 break;
1674 }
1675
1676 return 0;
1677}
1678
1679static int
1680netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1681 u32 *rules)
1682{
1683 struct net_device_context *ndc = netdev_priv(dev);
1684 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1685
1686 if (!nvdev)
1687 return -ENODEV;
1688
1689 switch (info->cmd) {
1690 case ETHTOOL_GRXRINGS:
1691 info->data = nvdev->num_chn;
1692 return 0;
1693
1694 case ETHTOOL_GRXFH:
1695 return netvsc_get_rss_hash_opts(ndc, info);
1696 }
1697 return -EOPNOTSUPP;
1698}
1699
1700static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1701 struct ethtool_rxnfc *info)
1702{
1703 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1704 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1705 switch (info->flow_type) {
1706 case TCP_V4_FLOW:
1707 ndc->l4_hash |= HV_TCP4_L4HASH;
1708 break;
1709
1710 case TCP_V6_FLOW:
1711 ndc->l4_hash |= HV_TCP6_L4HASH;
1712 break;
1713
1714 case UDP_V4_FLOW:
1715 ndc->l4_hash |= HV_UDP4_L4HASH;
1716 break;
1717
1718 case UDP_V6_FLOW:
1719 ndc->l4_hash |= HV_UDP6_L4HASH;
1720 break;
1721
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725
1726 return 0;
1727 }
1728
1729 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1730 switch (info->flow_type) {
1731 case TCP_V4_FLOW:
1732 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1733 break;
1734
1735 case TCP_V6_FLOW:
1736 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1737 break;
1738
1739 case UDP_V4_FLOW:
1740 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1741 break;
1742
1743 case UDP_V6_FLOW:
1744 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1745 break;
1746
1747 default:
1748 return -EOPNOTSUPP;
1749 }
1750
1751 return 0;
1752 }
1753
1754 return -EOPNOTSUPP;
1755}
1756
1757static int
1758netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1759{
1760 struct net_device_context *ndc = netdev_priv(ndev);
1761
1762 if (info->cmd == ETHTOOL_SRXFH)
1763 return netvsc_set_rss_hash_opts(ndc, info);
1764
1765 return -EOPNOTSUPP;
1766}
1767
1768static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1769{
1770 return NETVSC_HASH_KEYLEN;
1771}
1772
1773static u32 netvsc_rss_indir_size(struct net_device *dev)
1774{
1775 return ITAB_NUM;
1776}
1777
1778static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1779 u8 *hfunc)
1780{
1781 struct net_device_context *ndc = netdev_priv(dev);
1782 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1783 struct rndis_device *rndis_dev;
1784 int i;
1785
1786 if (!ndev)
1787 return -ENODEV;
1788
1789 if (hfunc)
1790 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1791
1792 rndis_dev = ndev->extension;
1793 if (indir) {
1794 for (i = 0; i < ITAB_NUM; i++)
1795 indir[i] = ndc->rx_table[i];
1796 }
1797
1798 if (key)
1799 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1800
1801 return 0;
1802}
1803
1804static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1805 const u8 *key, const u8 hfunc)
1806{
1807 struct net_device_context *ndc = netdev_priv(dev);
1808 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1809 struct rndis_device *rndis_dev;
1810 int i;
1811
1812 if (!ndev)
1813 return -ENODEV;
1814
1815 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1816 return -EOPNOTSUPP;
1817
1818 rndis_dev = ndev->extension;
1819 if (indir) {
1820 for (i = 0; i < ITAB_NUM; i++)
1821 if (indir[i] >= ndev->num_chn)
1822 return -EINVAL;
1823
1824 for (i = 0; i < ITAB_NUM; i++)
1825 ndc->rx_table[i] = indir[i];
1826 }
1827
1828 if (!key) {
1829 if (!indir)
1830 return 0;
1831
1832 key = rndis_dev->rss_key;
1833 }
1834
1835 return rndis_filter_set_rss_param(rndis_dev, key);
1836}
1837
1838/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1839 * It does have pre-allocated receive area which is divided into sections.
1840 */
1841static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1842 struct ethtool_ringparam *ring)
1843{
1844 u32 max_buf_size;
1845
1846 ring->rx_pending = nvdev->recv_section_cnt;
1847 ring->tx_pending = nvdev->send_section_cnt;
1848
1849 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1850 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1851 else
1852 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1853
1854 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1855 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1856 / nvdev->send_section_size;
1857}
1858
1859static void netvsc_get_ringparam(struct net_device *ndev,
1860 struct ethtool_ringparam *ring)
1861{
1862 struct net_device_context *ndevctx = netdev_priv(ndev);
1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864
1865 if (!nvdev)
1866 return;
1867
1868 __netvsc_get_ringparam(nvdev, ring);
1869}
1870
1871static int netvsc_set_ringparam(struct net_device *ndev,
1872 struct ethtool_ringparam *ring)
1873{
1874 struct net_device_context *ndevctx = netdev_priv(ndev);
1875 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1876 struct netvsc_device_info *device_info;
1877 struct ethtool_ringparam orig;
1878 u32 new_tx, new_rx;
1879 int ret = 0;
1880
1881 if (!nvdev || nvdev->destroy)
1882 return -ENODEV;
1883
1884 memset(&orig, 0, sizeof(orig));
1885 __netvsc_get_ringparam(nvdev, &orig);
1886
1887 new_tx = clamp_t(u32, ring->tx_pending,
1888 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1889 new_rx = clamp_t(u32, ring->rx_pending,
1890 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1891
1892 if (new_tx == orig.tx_pending &&
1893 new_rx == orig.rx_pending)
1894 return 0; /* no change */
1895
1896 device_info = netvsc_devinfo_get(nvdev);
1897
1898 if (!device_info)
1899 return -ENOMEM;
1900
1901 device_info->send_sections = new_tx;
1902 device_info->recv_sections = new_rx;
1903
1904 ret = netvsc_detach(ndev, nvdev);
1905 if (ret)
1906 goto out;
1907
1908 ret = netvsc_attach(ndev, device_info);
1909 if (ret) {
1910 device_info->send_sections = orig.tx_pending;
1911 device_info->recv_sections = orig.rx_pending;
1912
1913 if (netvsc_attach(ndev, device_info))
1914 netdev_err(ndev, "restoring ringparam failed");
1915 }
1916
1917out:
1918 netvsc_devinfo_put(device_info);
1919 return ret;
1920}
1921
1922static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1923 netdev_features_t features)
1924{
1925 struct net_device_context *ndevctx = netdev_priv(ndev);
1926 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1927
1928 if (!nvdev || nvdev->destroy)
1929 return features;
1930
1931 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1932 features ^= NETIF_F_LRO;
1933 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1934 }
1935
1936 return features;
1937}
1938
1939static int netvsc_set_features(struct net_device *ndev,
1940 netdev_features_t features)
1941{
1942 netdev_features_t change = features ^ ndev->features;
1943 struct net_device_context *ndevctx = netdev_priv(ndev);
1944 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1945 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1946 struct ndis_offload_params offloads;
1947 int ret = 0;
1948
1949 if (!nvdev || nvdev->destroy)
1950 return -ENODEV;
1951
1952 if (!(change & NETIF_F_LRO))
1953 goto syncvf;
1954
1955 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1956
1957 if (features & NETIF_F_LRO) {
1958 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1959 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960 } else {
1961 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1962 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963 }
1964
1965 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1966
1967 if (ret) {
1968 features ^= NETIF_F_LRO;
1969 ndev->features = features;
1970 }
1971
1972syncvf:
1973 if (!vf_netdev)
1974 return ret;
1975
1976 vf_netdev->wanted_features = features;
1977 netdev_update_features(vf_netdev);
1978
1979 return ret;
1980}
1981
1982static int netvsc_get_regs_len(struct net_device *netdev)
1983{
1984 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1985}
1986
1987static void netvsc_get_regs(struct net_device *netdev,
1988 struct ethtool_regs *regs, void *p)
1989{
1990 struct net_device_context *ndc = netdev_priv(netdev);
1991 u32 *regs_buff = p;
1992
1993 /* increase the version, if buffer format is changed. */
1994 regs->version = 1;
1995
1996 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1997}
1998
1999static u32 netvsc_get_msglevel(struct net_device *ndev)
2000{
2001 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002
2003 return ndev_ctx->msg_enable;
2004}
2005
2006static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2007{
2008 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2009
2010 ndev_ctx->msg_enable = val;
2011}
2012
2013static const struct ethtool_ops ethtool_ops = {
2014 .get_drvinfo = netvsc_get_drvinfo,
2015 .get_regs_len = netvsc_get_regs_len,
2016 .get_regs = netvsc_get_regs,
2017 .get_msglevel = netvsc_get_msglevel,
2018 .set_msglevel = netvsc_set_msglevel,
2019 .get_link = ethtool_op_get_link,
2020 .get_ethtool_stats = netvsc_get_ethtool_stats,
2021 .get_sset_count = netvsc_get_sset_count,
2022 .get_strings = netvsc_get_strings,
2023 .get_channels = netvsc_get_channels,
2024 .set_channels = netvsc_set_channels,
2025 .get_ts_info = ethtool_op_get_ts_info,
2026 .get_rxnfc = netvsc_get_rxnfc,
2027 .set_rxnfc = netvsc_set_rxnfc,
2028 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2029 .get_rxfh_indir_size = netvsc_rss_indir_size,
2030 .get_rxfh = netvsc_get_rxfh,
2031 .set_rxfh = netvsc_set_rxfh,
2032 .get_link_ksettings = netvsc_get_link_ksettings,
2033 .set_link_ksettings = netvsc_set_link_ksettings,
2034 .get_ringparam = netvsc_get_ringparam,
2035 .set_ringparam = netvsc_set_ringparam,
2036};
2037
2038static const struct net_device_ops device_ops = {
2039 .ndo_open = netvsc_open,
2040 .ndo_stop = netvsc_close,
2041 .ndo_start_xmit = netvsc_start_xmit,
2042 .ndo_change_rx_flags = netvsc_change_rx_flags,
2043 .ndo_set_rx_mode = netvsc_set_rx_mode,
2044 .ndo_fix_features = netvsc_fix_features,
2045 .ndo_set_features = netvsc_set_features,
2046 .ndo_change_mtu = netvsc_change_mtu,
2047 .ndo_validate_addr = eth_validate_addr,
2048 .ndo_set_mac_address = netvsc_set_mac_addr,
2049 .ndo_select_queue = netvsc_select_queue,
2050 .ndo_get_stats64 = netvsc_get_stats64,
2051 .ndo_bpf = netvsc_bpf,
2052};
2053
2054/*
2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2057 * present send GARP packet to network peers with netif_notify_peers().
2058 */
2059static void netvsc_link_change(struct work_struct *w)
2060{
2061 struct net_device_context *ndev_ctx =
2062 container_of(w, struct net_device_context, dwork.work);
2063 struct hv_device *device_obj = ndev_ctx->device_ctx;
2064 struct net_device *net = hv_get_drvdata(device_obj);
2065 unsigned long flags, next_reconfig, delay;
2066 struct netvsc_reconfig *event = NULL;
2067 struct netvsc_device *net_device;
2068 struct rndis_device *rdev;
2069 bool reschedule = false;
2070
2071 /* if changes are happening, comeback later */
2072 if (!rtnl_trylock()) {
2073 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2074 return;
2075 }
2076
2077 net_device = rtnl_dereference(ndev_ctx->nvdev);
2078 if (!net_device)
2079 goto out_unlock;
2080
2081 rdev = net_device->extension;
2082
2083 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2084 if (time_is_after_jiffies(next_reconfig)) {
2085 /* link_watch only sends one notification with current state
2086 * per second, avoid doing reconfig more frequently. Handle
2087 * wrap around.
2088 */
2089 delay = next_reconfig - jiffies;
2090 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2091 schedule_delayed_work(&ndev_ctx->dwork, delay);
2092 goto out_unlock;
2093 }
2094 ndev_ctx->last_reconfig = jiffies;
2095
2096 spin_lock_irqsave(&ndev_ctx->lock, flags);
2097 if (!list_empty(&ndev_ctx->reconfig_events)) {
2098 event = list_first_entry(&ndev_ctx->reconfig_events,
2099 struct netvsc_reconfig, list);
2100 list_del(&event->list);
2101 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2102 }
2103 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2104
2105 if (!event)
2106 goto out_unlock;
2107
2108 switch (event->event) {
2109 /* Only the following events are possible due to the check in
2110 * netvsc_linkstatus_callback()
2111 */
2112 case RNDIS_STATUS_MEDIA_CONNECT:
2113 if (rdev->link_state) {
2114 rdev->link_state = false;
2115 netif_carrier_on(net);
2116 netvsc_tx_enable(net_device, net);
2117 } else {
2118 __netdev_notify_peers(net);
2119 }
2120 kfree(event);
2121 break;
2122 case RNDIS_STATUS_MEDIA_DISCONNECT:
2123 if (!rdev->link_state) {
2124 rdev->link_state = true;
2125 netif_carrier_off(net);
2126 netvsc_tx_disable(net_device, net);
2127 }
2128 kfree(event);
2129 break;
2130 case RNDIS_STATUS_NETWORK_CHANGE:
2131 /* Only makes sense if carrier is present */
2132 if (!rdev->link_state) {
2133 rdev->link_state = true;
2134 netif_carrier_off(net);
2135 netvsc_tx_disable(net_device, net);
2136 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2137 spin_lock_irqsave(&ndev_ctx->lock, flags);
2138 list_add(&event->list, &ndev_ctx->reconfig_events);
2139 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2140 reschedule = true;
2141 }
2142 break;
2143 }
2144
2145 rtnl_unlock();
2146
2147 /* link_watch only sends one notification with current state per
2148 * second, handle next reconfig event in 2 seconds.
2149 */
2150 if (reschedule)
2151 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2152
2153 return;
2154
2155out_unlock:
2156 rtnl_unlock();
2157}
2158
2159static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2160{
2161 struct net_device_context *net_device_ctx;
2162 struct net_device *dev;
2163
2164 dev = netdev_master_upper_dev_get(vf_netdev);
2165 if (!dev || dev->netdev_ops != &device_ops)
2166 return NULL; /* not a netvsc device */
2167
2168 net_device_ctx = netdev_priv(dev);
2169 if (!rtnl_dereference(net_device_ctx->nvdev))
2170 return NULL; /* device is removed */
2171
2172 return dev;
2173}
2174
2175/* Called when VF is injecting data into network stack.
2176 * Change the associated network device from VF to netvsc.
2177 * note: already called with rcu_read_lock
2178 */
2179static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2180{
2181 struct sk_buff *skb = *pskb;
2182 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2183 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2184 struct netvsc_vf_pcpu_stats *pcpu_stats
2185 = this_cpu_ptr(ndev_ctx->vf_stats);
2186
2187 skb = skb_share_check(skb, GFP_ATOMIC);
2188 if (unlikely(!skb))
2189 return RX_HANDLER_CONSUMED;
2190
2191 *pskb = skb;
2192
2193 skb->dev = ndev;
2194
2195 u64_stats_update_begin(&pcpu_stats->syncp);
2196 pcpu_stats->rx_packets++;
2197 pcpu_stats->rx_bytes += skb->len;
2198 u64_stats_update_end(&pcpu_stats->syncp);
2199
2200 return RX_HANDLER_ANOTHER;
2201}
2202
2203static int netvsc_vf_join(struct net_device *vf_netdev,
2204 struct net_device *ndev)
2205{
2206 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2207 int ret;
2208
2209 ret = netdev_rx_handler_register(vf_netdev,
2210 netvsc_vf_handle_frame, ndev);
2211 if (ret != 0) {
2212 netdev_err(vf_netdev,
2213 "can not register netvsc VF receive handler (err = %d)\n",
2214 ret);
2215 goto rx_handler_failed;
2216 }
2217
2218 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2219 NULL, NULL, NULL);
2220 if (ret != 0) {
2221 netdev_err(vf_netdev,
2222 "can not set master device %s (err = %d)\n",
2223 ndev->name, ret);
2224 goto upper_link_failed;
2225 }
2226
2227 /* set slave flag before open to prevent IPv6 addrconf */
2228 vf_netdev->flags |= IFF_SLAVE;
2229
2230 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2231
2232 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2233
2234 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2235 return 0;
2236
2237upper_link_failed:
2238 netdev_rx_handler_unregister(vf_netdev);
2239rx_handler_failed:
2240 return ret;
2241}
2242
2243static void __netvsc_vf_setup(struct net_device *ndev,
2244 struct net_device *vf_netdev)
2245{
2246 int ret;
2247
2248 /* Align MTU of VF with master */
2249 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2250 if (ret)
2251 netdev_warn(vf_netdev,
2252 "unable to change mtu to %u\n", ndev->mtu);
2253
2254 /* set multicast etc flags on VF */
2255 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2256
2257 /* sync address list from ndev to VF */
2258 netif_addr_lock_bh(ndev);
2259 dev_uc_sync(vf_netdev, ndev);
2260 dev_mc_sync(vf_netdev, ndev);
2261 netif_addr_unlock_bh(ndev);
2262
2263 if (netif_running(ndev)) {
2264 ret = dev_open(vf_netdev, NULL);
2265 if (ret)
2266 netdev_warn(vf_netdev,
2267 "unable to open: %d\n", ret);
2268 }
2269}
2270
2271/* Setup VF as slave of the synthetic device.
2272 * Runs in workqueue to avoid recursion in netlink callbacks.
2273 */
2274static void netvsc_vf_setup(struct work_struct *w)
2275{
2276 struct net_device_context *ndev_ctx
2277 = container_of(w, struct net_device_context, vf_takeover.work);
2278 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2279 struct net_device *vf_netdev;
2280
2281 if (!rtnl_trylock()) {
2282 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2283 return;
2284 }
2285
2286 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2287 if (vf_netdev)
2288 __netvsc_vf_setup(ndev, vf_netdev);
2289
2290 rtnl_unlock();
2291}
2292
2293/* Find netvsc by VF serial number.
2294 * The PCI hyperv controller records the serial number as the slot kobj name.
2295 */
2296static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2297{
2298 struct device *parent = vf_netdev->dev.parent;
2299 struct net_device_context *ndev_ctx;
2300 struct net_device *ndev;
2301 struct pci_dev *pdev;
2302 u32 serial;
2303
2304 if (!parent || !dev_is_pci(parent))
2305 return NULL; /* not a PCI device */
2306
2307 pdev = to_pci_dev(parent);
2308 if (!pdev->slot) {
2309 netdev_notice(vf_netdev, "no PCI slot information\n");
2310 return NULL;
2311 }
2312
2313 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2314 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2315 pci_slot_name(pdev->slot));
2316 return NULL;
2317 }
2318
2319 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320 if (!ndev_ctx->vf_alloc)
2321 continue;
2322
2323 if (ndev_ctx->vf_serial != serial)
2324 continue;
2325
2326 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2327 if (ndev->addr_len != vf_netdev->addr_len ||
2328 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2329 ndev->addr_len) != 0)
2330 continue;
2331
2332 return ndev;
2333
2334 }
2335
2336 netdev_notice(vf_netdev,
2337 "no netdev found for vf serial:%u\n", serial);
2338 return NULL;
2339}
2340
2341static int netvsc_register_vf(struct net_device *vf_netdev)
2342{
2343 struct net_device_context *net_device_ctx;
2344 struct netvsc_device *netvsc_dev;
2345 struct bpf_prog *prog;
2346 struct net_device *ndev;
2347 int ret;
2348
2349 if (vf_netdev->addr_len != ETH_ALEN)
2350 return NOTIFY_DONE;
2351
2352 ndev = get_netvsc_byslot(vf_netdev);
2353 if (!ndev)
2354 return NOTIFY_DONE;
2355
2356 net_device_ctx = netdev_priv(ndev);
2357 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2358 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2359 return NOTIFY_DONE;
2360
2361 /* if synthetic interface is a different namespace,
2362 * then move the VF to that namespace; join will be
2363 * done again in that context.
2364 */
2365 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2366 ret = dev_change_net_namespace(vf_netdev,
2367 dev_net(ndev), "eth%d");
2368 if (ret)
2369 netdev_err(vf_netdev,
2370 "could not move to same namespace as %s: %d\n",
2371 ndev->name, ret);
2372 else
2373 netdev_info(vf_netdev,
2374 "VF moved to namespace with: %s\n",
2375 ndev->name);
2376 return NOTIFY_DONE;
2377 }
2378
2379 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2380
2381 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2382 return NOTIFY_DONE;
2383
2384 dev_hold(vf_netdev);
2385 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2386
2387 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2388 ndev->needed_headroom = vf_netdev->needed_headroom;
2389
2390 vf_netdev->wanted_features = ndev->features;
2391 netdev_update_features(vf_netdev);
2392
2393 prog = netvsc_xdp_get(netvsc_dev);
2394 netvsc_vf_setxdp(vf_netdev, prog);
2395
2396 return NOTIFY_OK;
2397}
2398
2399/* Change the data path when VF UP/DOWN/CHANGE are detected.
2400 *
2401 * Typically a UP or DOWN event is followed by a CHANGE event, so
2402 * net_device_ctx->data_path_is_vf is used to cache the current data path
2403 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2404 * message.
2405 *
2406 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2407 * interface, there is only the CHANGE event and no UP or DOWN event.
2408 */
2409static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2410{
2411 struct net_device_context *net_device_ctx;
2412 struct netvsc_device *netvsc_dev;
2413 struct net_device *ndev;
2414 bool vf_is_up = false;
2415 int ret;
2416
2417 if (event != NETDEV_GOING_DOWN)
2418 vf_is_up = netif_running(vf_netdev);
2419
2420 ndev = get_netvsc_byref(vf_netdev);
2421 if (!ndev)
2422 return NOTIFY_DONE;
2423
2424 net_device_ctx = netdev_priv(ndev);
2425 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426 if (!netvsc_dev)
2427 return NOTIFY_DONE;
2428
2429 if (net_device_ctx->data_path_is_vf == vf_is_up)
2430 return NOTIFY_OK;
2431
2432 ret = netvsc_switch_datapath(ndev, vf_is_up);
2433
2434 if (ret) {
2435 netdev_err(ndev,
2436 "Data path failed to switch %s VF: %s, err: %d\n",
2437 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2438 return NOTIFY_DONE;
2439 } else {
2440 netdev_info(ndev, "Data path switched %s VF: %s\n",
2441 vf_is_up ? "to" : "from", vf_netdev->name);
2442 }
2443
2444 return NOTIFY_OK;
2445}
2446
2447static int netvsc_unregister_vf(struct net_device *vf_netdev)
2448{
2449 struct net_device *ndev;
2450 struct net_device_context *net_device_ctx;
2451
2452 ndev = get_netvsc_byref(vf_netdev);
2453 if (!ndev)
2454 return NOTIFY_DONE;
2455
2456 net_device_ctx = netdev_priv(ndev);
2457 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2458
2459 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2460
2461 netvsc_vf_setxdp(vf_netdev, NULL);
2462
2463 netdev_rx_handler_unregister(vf_netdev);
2464 netdev_upper_dev_unlink(vf_netdev, ndev);
2465 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466 dev_put(vf_netdev);
2467
2468 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2469
2470 return NOTIFY_OK;
2471}
2472
2473static int netvsc_probe(struct hv_device *dev,
2474 const struct hv_vmbus_device_id *dev_id)
2475{
2476 struct net_device *net = NULL;
2477 struct net_device_context *net_device_ctx;
2478 struct netvsc_device_info *device_info = NULL;
2479 struct netvsc_device *nvdev;
2480 int ret = -ENOMEM;
2481
2482 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2483 VRSS_CHANNEL_MAX);
2484 if (!net)
2485 goto no_net;
2486
2487 netif_carrier_off(net);
2488
2489 netvsc_init_settings(net);
2490
2491 net_device_ctx = netdev_priv(net);
2492 net_device_ctx->device_ctx = dev;
2493 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2494 if (netif_msg_probe(net_device_ctx))
2495 netdev_dbg(net, "netvsc msg_enable: %d\n",
2496 net_device_ctx->msg_enable);
2497
2498 hv_set_drvdata(dev, net);
2499
2500 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2501
2502 spin_lock_init(&net_device_ctx->lock);
2503 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2504 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2505
2506 net_device_ctx->vf_stats
2507 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2508 if (!net_device_ctx->vf_stats)
2509 goto no_stats;
2510
2511 net->netdev_ops = &device_ops;
2512 net->ethtool_ops = ðtool_ops;
2513 SET_NETDEV_DEV(net, &dev->device);
2514
2515 /* We always need headroom for rndis header */
2516 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518 /* Initialize the number of queues to be 1, we may change it if more
2519 * channels are offered later.
2520 */
2521 netif_set_real_num_tx_queues(net, 1);
2522 netif_set_real_num_rx_queues(net, 1);
2523
2524 /* Notify the netvsc driver of the new device */
2525 device_info = netvsc_devinfo_get(NULL);
2526
2527 if (!device_info) {
2528 ret = -ENOMEM;
2529 goto devinfo_failed;
2530 }
2531
2532 nvdev = rndis_filter_device_add(dev, device_info);
2533 if (IS_ERR(nvdev)) {
2534 ret = PTR_ERR(nvdev);
2535 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536 goto rndis_failed;
2537 }
2538
2539 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2540
2541 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543 * all subchannels to show up, but that may not happen because
2544 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546 * the device lock, so all the subchannels can't be processed --
2547 * finally netvsc_subchan_work() hangs forever.
2548 */
2549 rtnl_lock();
2550
2551 if (nvdev->num_chn > 1)
2552 schedule_work(&nvdev->subchan_work);
2553
2554 /* hw_features computed in rndis_netdev_set_hwcaps() */
2555 net->features = net->hw_features |
2556 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557 NETIF_F_HW_VLAN_CTAG_RX;
2558 net->vlan_features = net->features;
2559
2560 netdev_lockdep_set_classes(net);
2561
2562 /* MTU range: 68 - 1500 or 65521 */
2563 net->min_mtu = NETVSC_MTU_MIN;
2564 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566 else
2567 net->max_mtu = ETH_DATA_LEN;
2568
2569 nvdev->tx_disable = false;
2570
2571 ret = register_netdevice(net);
2572 if (ret != 0) {
2573 pr_err("Unable to register netdev.\n");
2574 goto register_failed;
2575 }
2576
2577 list_add(&net_device_ctx->list, &netvsc_dev_list);
2578 rtnl_unlock();
2579
2580 netvsc_devinfo_put(device_info);
2581 return 0;
2582
2583register_failed:
2584 rtnl_unlock();
2585 rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587 netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589 free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591 hv_set_drvdata(dev, NULL);
2592 free_netdev(net);
2593no_net:
2594 return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599 struct net_device_context *ndev_ctx;
2600 struct net_device *vf_netdev, *net;
2601 struct netvsc_device *nvdev;
2602
2603 net = hv_get_drvdata(dev);
2604 if (net == NULL) {
2605 dev_err(&dev->device, "No net device to remove\n");
2606 return 0;
2607 }
2608
2609 ndev_ctx = netdev_priv(net);
2610
2611 cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613 rtnl_lock();
2614 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615 if (nvdev) {
2616 cancel_work_sync(&nvdev->subchan_work);
2617 netvsc_xdp_set(net, NULL, NULL, nvdev);
2618 }
2619
2620 /*
2621 * Call to the vsc driver to let it know that the device is being
2622 * removed. Also blocks mtu and channel changes.
2623 */
2624 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625 if (vf_netdev)
2626 netvsc_unregister_vf(vf_netdev);
2627
2628 if (nvdev)
2629 rndis_filter_device_remove(dev, nvdev);
2630
2631 unregister_netdevice(net);
2632 list_del(&ndev_ctx->list);
2633
2634 rtnl_unlock();
2635
2636 hv_set_drvdata(dev, NULL);
2637
2638 free_percpu(ndev_ctx->vf_stats);
2639 free_netdev(net);
2640 return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645 struct net_device_context *ndev_ctx;
2646 struct netvsc_device *nvdev;
2647 struct net_device *net;
2648 int ret;
2649
2650 net = hv_get_drvdata(dev);
2651
2652 ndev_ctx = netdev_priv(net);
2653 cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655 rtnl_lock();
2656
2657 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658 if (nvdev == NULL) {
2659 ret = -ENODEV;
2660 goto out;
2661 }
2662
2663 /* Save the current config info */
2664 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665
2666 ret = netvsc_detach(net, nvdev);
2667out:
2668 rtnl_unlock();
2669
2670 return ret;
2671}
2672
2673static int netvsc_resume(struct hv_device *dev)
2674{
2675 struct net_device *net = hv_get_drvdata(dev);
2676 struct net_device_context *net_device_ctx;
2677 struct netvsc_device_info *device_info;
2678 int ret;
2679
2680 rtnl_lock();
2681
2682 net_device_ctx = netdev_priv(net);
2683
2684 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2685 * channel. Later netvsc_netdev_event() will switch the data path to
2686 * the VF upon the UP or CHANGE event.
2687 */
2688 net_device_ctx->data_path_is_vf = false;
2689 device_info = net_device_ctx->saved_netvsc_dev_info;
2690
2691 ret = netvsc_attach(net, device_info);
2692
2693 netvsc_devinfo_put(device_info);
2694 net_device_ctx->saved_netvsc_dev_info = NULL;
2695
2696 rtnl_unlock();
2697
2698 return ret;
2699}
2700static const struct hv_vmbus_device_id id_table[] = {
2701 /* Network guid */
2702 { HV_NIC_GUID, },
2703 { },
2704};
2705
2706MODULE_DEVICE_TABLE(vmbus, id_table);
2707
2708/* The one and only one */
2709static struct hv_driver netvsc_drv = {
2710 .name = KBUILD_MODNAME,
2711 .id_table = id_table,
2712 .probe = netvsc_probe,
2713 .remove = netvsc_remove,
2714 .suspend = netvsc_suspend,
2715 .resume = netvsc_resume,
2716 .driver = {
2717 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2718 },
2719};
2720
2721/*
2722 * On Hyper-V, every VF interface is matched with a corresponding
2723 * synthetic interface. The synthetic interface is presented first
2724 * to the guest. When the corresponding VF instance is registered,
2725 * we will take care of switching the data path.
2726 */
2727static int netvsc_netdev_event(struct notifier_block *this,
2728 unsigned long event, void *ptr)
2729{
2730 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2731
2732 /* Skip our own events */
2733 if (event_dev->netdev_ops == &device_ops)
2734 return NOTIFY_DONE;
2735
2736 /* Avoid non-Ethernet type devices */
2737 if (event_dev->type != ARPHRD_ETHER)
2738 return NOTIFY_DONE;
2739
2740 /* Avoid Vlan dev with same MAC registering as VF */
2741 if (is_vlan_dev(event_dev))
2742 return NOTIFY_DONE;
2743
2744 /* Avoid Bonding master dev with same MAC registering as VF */
2745 if ((event_dev->priv_flags & IFF_BONDING) &&
2746 (event_dev->flags & IFF_MASTER))
2747 return NOTIFY_DONE;
2748
2749 switch (event) {
2750 case NETDEV_REGISTER:
2751 return netvsc_register_vf(event_dev);
2752 case NETDEV_UNREGISTER:
2753 return netvsc_unregister_vf(event_dev);
2754 case NETDEV_UP:
2755 case NETDEV_DOWN:
2756 case NETDEV_CHANGE:
2757 case NETDEV_GOING_DOWN:
2758 return netvsc_vf_changed(event_dev, event);
2759 default:
2760 return NOTIFY_DONE;
2761 }
2762}
2763
2764static struct notifier_block netvsc_netdev_notifier = {
2765 .notifier_call = netvsc_netdev_event,
2766};
2767
2768static void __exit netvsc_drv_exit(void)
2769{
2770 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771 vmbus_driver_unregister(&netvsc_drv);
2772}
2773
2774static int __init netvsc_drv_init(void)
2775{
2776 int ret;
2777
2778 if (ring_size < RING_SIZE_MIN) {
2779 ring_size = RING_SIZE_MIN;
2780 pr_info("Increased ring_size to %u (min allowed)\n",
2781 ring_size);
2782 }
2783 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2784
2785 ret = vmbus_driver_register(&netvsc_drv);
2786 if (ret)
2787 return ret;
2788
2789 register_netdevice_notifier(&netvsc_netdev_notifier);
2790 return 0;
2791}
2792
2793MODULE_LICENSE("GPL");
2794MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2795
2796module_init(netvsc_drv_init);
2797module_exit(netvsc_drv_exit);