Linux Audio

Check our new training course

Loading...
v4.17
 
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2005-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include <linux/pci.h>
 12#include <linux/tcp.h>
 13#include <linux/ip.h>
 14#include <linux/in.h>
 15#include <linux/ipv6.h>
 16#include <linux/slab.h>
 17#include <net/ipv6.h>
 18#include <linux/if_ether.h>
 19#include <linux/highmem.h>
 20#include <linux/cache.h>
 21#include "net_driver.h"
 22#include "efx.h"
 23#include "io.h"
 24#include "nic.h"
 25#include "tx.h"
 26#include "workarounds.h"
 27
 28static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
 29					 struct ef4_tx_buffer *buffer)
 30{
 31	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
 32	struct ef4_buffer *page_buf =
 33		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
 34	unsigned int offset =
 35		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 36
 37	if (unlikely(!page_buf->addr) &&
 38	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 39				 GFP_ATOMIC))
 40		return NULL;
 41	buffer->dma_addr = page_buf->dma_addr + offset;
 42	buffer->unmap_len = 0;
 43	return (u8 *)page_buf->addr + offset;
 44}
 45
 46u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
 47				   struct ef4_tx_buffer *buffer, size_t len)
 48{
 49	if (len > EF4_TX_CB_SIZE)
 50		return NULL;
 51	return ef4_tx_get_copy_buffer(tx_queue, buffer);
 52}
 53
 54static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
 55			       struct ef4_tx_buffer *buffer,
 56			       unsigned int *pkts_compl,
 57			       unsigned int *bytes_compl)
 58{
 59	if (buffer->unmap_len) {
 60		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 61		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 62		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
 63			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 64					 DMA_TO_DEVICE);
 65		else
 66			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 67				       DMA_TO_DEVICE);
 68		buffer->unmap_len = 0;
 69	}
 70
 71	if (buffer->flags & EF4_TX_BUF_SKB) {
 72		(*pkts_compl)++;
 73		(*bytes_compl) += buffer->skb->len;
 74		dev_consume_skb_any((struct sk_buff *)buffer->skb);
 75		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 76			   "TX queue %d transmission id %x complete\n",
 77			   tx_queue->queue, tx_queue->read_count);
 78	}
 79
 80	buffer->len = 0;
 81	buffer->flags = 0;
 82}
 83
 84unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
 85{
 86	/* This is probably too much since we don't have any TSO support;
 87	 * it's a left-over from when we had Software TSO.  But it's safer
 88	 * to leave it as-is than try to determine a new bound.
 89	 */
 90	/* Header and payload descriptor for each output segment, plus
 91	 * one for every input fragment boundary within a segment
 92	 */
 93	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 94
 95	/* Possibly one more per segment for the alignment workaround,
 96	 * or for option descriptors
 97	 */
 98	if (EF4_WORKAROUND_5391(efx))
 99		max_descs += EF4_TSO_MAX_SEGS;
100
101	/* Possibly more for PCIe page boundaries within input fragments */
102	if (PAGE_SIZE > EF4_PAGE_SIZE)
103		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
104				   DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE));
105
106	return max_descs;
107}
108
109static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
110{
111	/* We need to consider both queues that the net core sees as one */
112	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
113	struct ef4_nic *efx = txq1->efx;
114	unsigned int fill_level;
115
116	fill_level = max(txq1->insert_count - txq1->old_read_count,
117			 txq2->insert_count - txq2->old_read_count);
118	if (likely(fill_level < efx->txq_stop_thresh))
119		return;
120
121	/* We used the stale old_read_count above, which gives us a
122	 * pessimistic estimate of the fill level (which may even
123	 * validly be >= efx->txq_entries).  Now try again using
124	 * read_count (more likely to be a cache miss).
125	 *
126	 * If we read read_count and then conditionally stop the
127	 * queue, it is possible for the completion path to race with
128	 * us and complete all outstanding descriptors in the middle,
129	 * after which there will be no more completions to wake it.
130	 * Therefore we stop the queue first, then read read_count
131	 * (with a memory barrier to ensure the ordering), then
132	 * restart the queue if the fill level turns out to be low
133	 * enough.
134	 */
135	netif_tx_stop_queue(txq1->core_txq);
136	smp_mb();
137	txq1->old_read_count = READ_ONCE(txq1->read_count);
138	txq2->old_read_count = READ_ONCE(txq2->read_count);
139
140	fill_level = max(txq1->insert_count - txq1->old_read_count,
141			 txq2->insert_count - txq2->old_read_count);
142	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
143	if (likely(fill_level < efx->txq_stop_thresh)) {
144		smp_mb();
145		if (likely(!efx->loopback_selftest))
146			netif_tx_start_queue(txq1->core_txq);
147	}
148}
149
150static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
151				struct sk_buff *skb)
152{
153	unsigned int min_len = tx_queue->tx_min_size;
154	unsigned int copy_len = skb->len;
155	struct ef4_tx_buffer *buffer;
156	u8 *copy_buffer;
157	int rc;
158
159	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
160
161	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
162
163	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
164	if (unlikely(!copy_buffer))
165		return -ENOMEM;
166
167	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
168	EF4_WARN_ON_PARANOID(rc);
169	if (unlikely(copy_len < min_len)) {
170		memset(copy_buffer + copy_len, 0, min_len - copy_len);
171		buffer->len = min_len;
172	} else {
173		buffer->len = copy_len;
174	}
175
176	buffer->skb = skb;
177	buffer->flags = EF4_TX_BUF_SKB;
178
179	++tx_queue->insert_count;
180	return rc;
181}
182
183static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
184					      dma_addr_t dma_addr,
185					      size_t len)
186{
187	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
188	struct ef4_tx_buffer *buffer;
189	unsigned int dma_len;
190
191	/* Map the fragment taking account of NIC-dependent DMA limits. */
192	do {
193		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
194		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
195
196		buffer->len = dma_len;
197		buffer->dma_addr = dma_addr;
198		buffer->flags = EF4_TX_BUF_CONT;
199		len -= dma_len;
200		dma_addr += dma_len;
201		++tx_queue->insert_count;
202	} while (len);
203
204	return buffer;
205}
206
207/* Map all data from an SKB for DMA and create descriptors on the queue.
208 */
209static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
210{
211	struct ef4_nic *efx = tx_queue->efx;
212	struct device *dma_dev = &efx->pci_dev->dev;
213	unsigned int frag_index, nr_frags;
214	dma_addr_t dma_addr, unmap_addr;
215	unsigned short dma_flags;
216	size_t len, unmap_len;
217
218	nr_frags = skb_shinfo(skb)->nr_frags;
219	frag_index = 0;
220
221	/* Map header data. */
222	len = skb_headlen(skb);
223	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
224	dma_flags = EF4_TX_BUF_MAP_SINGLE;
225	unmap_len = len;
226	unmap_addr = dma_addr;
227
228	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
229		return -EIO;
230
231	/* Add descriptors for each fragment. */
232	do {
233		struct ef4_tx_buffer *buffer;
234		skb_frag_t *fragment;
235
236		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
237
238		/* The final descriptor for a fragment is responsible for
239		 * unmapping the whole fragment.
240		 */
241		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
242		buffer->unmap_len = unmap_len;
243		buffer->dma_offset = buffer->dma_addr - unmap_addr;
244
245		if (frag_index >= nr_frags) {
246			/* Store SKB details with the final buffer for
247			 * the completion.
248			 */
249			buffer->skb = skb;
250			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
251			return 0;
252		}
253
254		/* Move on to the next fragment. */
255		fragment = &skb_shinfo(skb)->frags[frag_index++];
256		len = skb_frag_size(fragment);
257		dma_addr = skb_frag_dma_map(dma_dev, fragment,
258				0, len, DMA_TO_DEVICE);
259		dma_flags = 0;
260		unmap_len = len;
261		unmap_addr = dma_addr;
262
263		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
264			return -EIO;
265	} while (1);
266}
267
268/* Remove buffers put into a tx_queue.  None of the buffers must have
269 * an skb attached.
270 */
271static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
272{
273	struct ef4_tx_buffer *buffer;
274
275	/* Work backwards until we hit the original insert pointer value */
276	while (tx_queue->insert_count != tx_queue->write_count) {
277		--tx_queue->insert_count;
278		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
279		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
280	}
281}
282
283/*
284 * Add a socket buffer to a TX queue
285 *
286 * This maps all fragments of a socket buffer for DMA and adds them to
287 * the TX queue.  The queue's insert pointer will be incremented by
288 * the number of fragments in the socket buffer.
289 *
290 * If any DMA mapping fails, any mapped fragments will be unmapped,
291 * the queue's insert pointer will be restored to its original value.
292 *
293 * This function is split out from ef4_hard_start_xmit to allow the
294 * loopback test to direct packets via specific TX queues.
295 *
296 * Returns NETDEV_TX_OK.
297 * You must hold netif_tx_lock() to call this function.
298 */
299netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
300{
301	bool data_mapped = false;
302	unsigned int skb_len;
303
304	skb_len = skb->len;
305	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
306
307	if (skb_len < tx_queue->tx_min_size ||
308			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
309		/* Pad short packets or coalesce short fragmented packets. */
310		if (ef4_enqueue_skb_copy(tx_queue, skb))
311			goto err;
312		tx_queue->cb_packets++;
313		data_mapped = true;
314	}
315
316	/* Map for DMA and create descriptors if we haven't done so already. */
317	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
318		goto err;
319
320	/* Update BQL */
321	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
322
323	/* Pass off to hardware */
324	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
325		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
326
327		/* There could be packets left on the partner queue if those
328		 * SKBs had skb->xmit_more set. If we do not push those they
329		 * could be left for a long time and cause a netdev watchdog.
330		 */
331		if (txq2->xmit_more_available)
332			ef4_nic_push_buffers(txq2);
333
334		ef4_nic_push_buffers(tx_queue);
335	} else {
336		tx_queue->xmit_more_available = skb->xmit_more;
337	}
338
339	tx_queue->tx_packets++;
340
341	ef4_tx_maybe_stop_queue(tx_queue);
342
343	return NETDEV_TX_OK;
344
345
346err:
347	ef4_enqueue_unwind(tx_queue);
348	dev_kfree_skb_any(skb);
349	return NETDEV_TX_OK;
350}
351
352/* Remove packets from the TX queue
353 *
354 * This removes packets from the TX queue, up to and including the
355 * specified index.
356 */
357static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
358				unsigned int index,
359				unsigned int *pkts_compl,
360				unsigned int *bytes_compl)
361{
362	struct ef4_nic *efx = tx_queue->efx;
363	unsigned int stop_index, read_ptr;
364
365	stop_index = (index + 1) & tx_queue->ptr_mask;
366	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
367
368	while (read_ptr != stop_index) {
369		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
370
371		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
372		    unlikely(buffer->len == 0)) {
373			netif_err(efx, tx_err, efx->net_dev,
374				  "TX queue %d spurious TX completion id %x\n",
375				  tx_queue->queue, read_ptr);
376			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
377			return;
378		}
379
380		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
381
382		++tx_queue->read_count;
383		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
384	}
385}
386
387/* Initiate a packet transmission.  We use one channel per CPU
388 * (sharing when we have more CPUs than channels).  On Falcon, the TX
389 * completion events will be directed back to the CPU that transmitted
390 * the packet, which should be cache-efficient.
391 *
392 * Context: non-blocking.
393 * Note that returning anything other than NETDEV_TX_OK will cause the
394 * OS to free the skb.
395 */
396netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
397				struct net_device *net_dev)
398{
399	struct ef4_nic *efx = netdev_priv(net_dev);
400	struct ef4_tx_queue *tx_queue;
401	unsigned index, type;
402
403	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
404
405	index = skb_get_queue_mapping(skb);
406	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
407	if (index >= efx->n_tx_channels) {
408		index -= efx->n_tx_channels;
409		type |= EF4_TXQ_TYPE_HIGHPRI;
410	}
411	tx_queue = ef4_get_tx_queue(efx, index, type);
412
413	return ef4_enqueue_skb(tx_queue, skb);
414}
415
416void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
417{
418	struct ef4_nic *efx = tx_queue->efx;
419
420	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
421	tx_queue->core_txq =
422		netdev_get_tx_queue(efx->net_dev,
423				    tx_queue->queue / EF4_TXQ_TYPES +
424				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
425				     efx->n_tx_channels : 0));
426}
427
428int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
429		 void *type_data)
430{
431	struct ef4_nic *efx = netdev_priv(net_dev);
432	struct tc_mqprio_qopt *mqprio = type_data;
433	struct ef4_channel *channel;
434	struct ef4_tx_queue *tx_queue;
435	unsigned tc, num_tc;
436	int rc;
437
438	if (type != TC_SETUP_QDISC_MQPRIO)
439		return -EOPNOTSUPP;
440
441	num_tc = mqprio->num_tc;
442
443	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
444		return -EINVAL;
445
446	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
447
448	if (num_tc == net_dev->num_tc)
449		return 0;
450
451	for (tc = 0; tc < num_tc; tc++) {
452		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
453		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
454	}
455
456	if (num_tc > net_dev->num_tc) {
457		/* Initialise high-priority queues as necessary */
458		ef4_for_each_channel(channel, efx) {
459			ef4_for_each_possible_channel_tx_queue(tx_queue,
460							       channel) {
461				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
462					continue;
463				if (!tx_queue->buffer) {
464					rc = ef4_probe_tx_queue(tx_queue);
465					if (rc)
466						return rc;
467				}
468				if (!tx_queue->initialised)
469					ef4_init_tx_queue(tx_queue);
470				ef4_init_tx_queue_core_txq(tx_queue);
471			}
472		}
473	} else {
474		/* Reduce number of classes before number of queues */
475		net_dev->num_tc = num_tc;
476	}
477
478	rc = netif_set_real_num_tx_queues(net_dev,
479					  max_t(int, num_tc, 1) *
480					  efx->n_tx_channels);
481	if (rc)
482		return rc;
483
484	/* Do not destroy high-priority queues when they become
485	 * unused.  We would have to flush them first, and it is
486	 * fairly difficult to flush a subset of TX queues.  Leave
487	 * it to ef4_fini_channels().
488	 */
489
490	net_dev->num_tc = num_tc;
491	return 0;
492}
493
494void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
495{
496	unsigned fill_level;
497	struct ef4_nic *efx = tx_queue->efx;
498	struct ef4_tx_queue *txq2;
499	unsigned int pkts_compl = 0, bytes_compl = 0;
500
501	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
502
503	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
504	tx_queue->pkts_compl += pkts_compl;
505	tx_queue->bytes_compl += bytes_compl;
506
507	if (pkts_compl > 1)
508		++tx_queue->merge_events;
509
510	/* See if we need to restart the netif queue.  This memory
511	 * barrier ensures that we write read_count (inside
512	 * ef4_dequeue_buffers()) before reading the queue status.
513	 */
514	smp_mb();
515	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
516	    likely(efx->port_enabled) &&
517	    likely(netif_device_present(efx->net_dev))) {
518		txq2 = ef4_tx_queue_partner(tx_queue);
519		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
520				 txq2->insert_count - txq2->read_count);
521		if (fill_level <= efx->txq_wake_thresh)
522			netif_tx_wake_queue(tx_queue->core_txq);
523	}
524
525	/* Check whether the hardware queue is now empty */
526	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
527		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
528		if (tx_queue->read_count == tx_queue->old_write_count) {
529			smp_mb();
530			tx_queue->empty_read_count =
531				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
532		}
533	}
534}
535
536static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
537{
538	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
539}
540
541int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
542{
543	struct ef4_nic *efx = tx_queue->efx;
544	unsigned int entries;
545	int rc;
546
547	/* Create the smallest power-of-two aligned ring */
548	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
549	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
550	tx_queue->ptr_mask = entries - 1;
551
552	netif_dbg(efx, probe, efx->net_dev,
553		  "creating TX queue %d size %#x mask %#x\n",
554		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
555
556	/* Allocate software ring */
557	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
558				   GFP_KERNEL);
559	if (!tx_queue->buffer)
560		return -ENOMEM;
561
562	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
563				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
564	if (!tx_queue->cb_page) {
565		rc = -ENOMEM;
566		goto fail1;
567	}
568
569	/* Allocate hardware ring */
570	rc = ef4_nic_probe_tx(tx_queue);
571	if (rc)
572		goto fail2;
573
574	return 0;
575
576fail2:
577	kfree(tx_queue->cb_page);
578	tx_queue->cb_page = NULL;
579fail1:
580	kfree(tx_queue->buffer);
581	tx_queue->buffer = NULL;
582	return rc;
583}
584
585void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
586{
587	struct ef4_nic *efx = tx_queue->efx;
588
589	netif_dbg(efx, drv, efx->net_dev,
590		  "initialising TX queue %d\n", tx_queue->queue);
591
592	tx_queue->insert_count = 0;
593	tx_queue->write_count = 0;
594	tx_queue->old_write_count = 0;
595	tx_queue->read_count = 0;
596	tx_queue->old_read_count = 0;
597	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
598	tx_queue->xmit_more_available = false;
599
600	/* Some older hardware requires Tx writes larger than 32. */
601	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
602
603	/* Set up TX descriptor ring */
604	ef4_nic_init_tx(tx_queue);
605
606	tx_queue->initialised = true;
607}
608
609void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
610{
611	struct ef4_tx_buffer *buffer;
612
613	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
614		  "shutting down TX queue %d\n", tx_queue->queue);
615
616	if (!tx_queue->buffer)
617		return;
618
619	/* Free any buffers left in the ring */
620	while (tx_queue->read_count != tx_queue->write_count) {
621		unsigned int pkts_compl = 0, bytes_compl = 0;
622		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
623		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
624
625		++tx_queue->read_count;
626	}
627	tx_queue->xmit_more_available = false;
628	netdev_tx_reset_queue(tx_queue->core_txq);
629}
630
631void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
632{
633	int i;
634
635	if (!tx_queue->buffer)
636		return;
637
638	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
639		  "destroying TX queue %d\n", tx_queue->queue);
640	ef4_nic_remove_tx(tx_queue);
641
642	if (tx_queue->cb_page) {
643		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
644			ef4_nic_free_buffer(tx_queue->efx,
645					    &tx_queue->cb_page[i]);
646		kfree(tx_queue->cb_page);
647		tx_queue->cb_page = NULL;
648	}
649
650	kfree(tx_queue->buffer);
651	tx_queue->buffer = NULL;
652}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
  6 */
  7
  8#include <linux/pci.h>
  9#include <linux/tcp.h>
 10#include <linux/ip.h>
 11#include <linux/in.h>
 12#include <linux/ipv6.h>
 13#include <linux/slab.h>
 14#include <net/ipv6.h>
 15#include <linux/if_ether.h>
 16#include <linux/highmem.h>
 17#include <linux/cache.h>
 18#include "net_driver.h"
 19#include "efx.h"
 20#include "io.h"
 21#include "nic.h"
 22#include "tx.h"
 23#include "workarounds.h"
 24
 25static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
 26					 struct ef4_tx_buffer *buffer)
 27{
 28	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
 29	struct ef4_buffer *page_buf =
 30		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
 31	unsigned int offset =
 32		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 33
 34	if (unlikely(!page_buf->addr) &&
 35	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 36				 GFP_ATOMIC))
 37		return NULL;
 38	buffer->dma_addr = page_buf->dma_addr + offset;
 39	buffer->unmap_len = 0;
 40	return (u8 *)page_buf->addr + offset;
 41}
 42
 43u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
 44				   struct ef4_tx_buffer *buffer, size_t len)
 45{
 46	if (len > EF4_TX_CB_SIZE)
 47		return NULL;
 48	return ef4_tx_get_copy_buffer(tx_queue, buffer);
 49}
 50
 51static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
 52			       struct ef4_tx_buffer *buffer,
 53			       unsigned int *pkts_compl,
 54			       unsigned int *bytes_compl)
 55{
 56	if (buffer->unmap_len) {
 57		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 58		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 59		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
 60			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 61					 DMA_TO_DEVICE);
 62		else
 63			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 64				       DMA_TO_DEVICE);
 65		buffer->unmap_len = 0;
 66	}
 67
 68	if (buffer->flags & EF4_TX_BUF_SKB) {
 69		(*pkts_compl)++;
 70		(*bytes_compl) += buffer->skb->len;
 71		dev_consume_skb_any((struct sk_buff *)buffer->skb);
 72		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 73			   "TX queue %d transmission id %x complete\n",
 74			   tx_queue->queue, tx_queue->read_count);
 75	}
 76
 77	buffer->len = 0;
 78	buffer->flags = 0;
 79}
 80
 81unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
 82{
 83	/* This is probably too much since we don't have any TSO support;
 84	 * it's a left-over from when we had Software TSO.  But it's safer
 85	 * to leave it as-is than try to determine a new bound.
 86	 */
 87	/* Header and payload descriptor for each output segment, plus
 88	 * one for every input fragment boundary within a segment
 89	 */
 90	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 91
 92	/* Possibly one more per segment for the alignment workaround,
 93	 * or for option descriptors
 94	 */
 95	if (EF4_WORKAROUND_5391(efx))
 96		max_descs += EF4_TSO_MAX_SEGS;
 97
 98	/* Possibly more for PCIe page boundaries within input fragments */
 99	if (PAGE_SIZE > EF4_PAGE_SIZE)
100		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
101				   DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE));
102
103	return max_descs;
104}
105
106static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
107{
108	/* We need to consider both queues that the net core sees as one */
109	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
110	struct ef4_nic *efx = txq1->efx;
111	unsigned int fill_level;
112
113	fill_level = max(txq1->insert_count - txq1->old_read_count,
114			 txq2->insert_count - txq2->old_read_count);
115	if (likely(fill_level < efx->txq_stop_thresh))
116		return;
117
118	/* We used the stale old_read_count above, which gives us a
119	 * pessimistic estimate of the fill level (which may even
120	 * validly be >= efx->txq_entries).  Now try again using
121	 * read_count (more likely to be a cache miss).
122	 *
123	 * If we read read_count and then conditionally stop the
124	 * queue, it is possible for the completion path to race with
125	 * us and complete all outstanding descriptors in the middle,
126	 * after which there will be no more completions to wake it.
127	 * Therefore we stop the queue first, then read read_count
128	 * (with a memory barrier to ensure the ordering), then
129	 * restart the queue if the fill level turns out to be low
130	 * enough.
131	 */
132	netif_tx_stop_queue(txq1->core_txq);
133	smp_mb();
134	txq1->old_read_count = READ_ONCE(txq1->read_count);
135	txq2->old_read_count = READ_ONCE(txq2->read_count);
136
137	fill_level = max(txq1->insert_count - txq1->old_read_count,
138			 txq2->insert_count - txq2->old_read_count);
139	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
140	if (likely(fill_level < efx->txq_stop_thresh)) {
141		smp_mb();
142		if (likely(!efx->loopback_selftest))
143			netif_tx_start_queue(txq1->core_txq);
144	}
145}
146
147static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
148				struct sk_buff *skb)
149{
150	unsigned int min_len = tx_queue->tx_min_size;
151	unsigned int copy_len = skb->len;
152	struct ef4_tx_buffer *buffer;
153	u8 *copy_buffer;
154	int rc;
155
156	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
157
158	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
159
160	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
161	if (unlikely(!copy_buffer))
162		return -ENOMEM;
163
164	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
165	EF4_WARN_ON_PARANOID(rc);
166	if (unlikely(copy_len < min_len)) {
167		memset(copy_buffer + copy_len, 0, min_len - copy_len);
168		buffer->len = min_len;
169	} else {
170		buffer->len = copy_len;
171	}
172
173	buffer->skb = skb;
174	buffer->flags = EF4_TX_BUF_SKB;
175
176	++tx_queue->insert_count;
177	return rc;
178}
179
180static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
181					      dma_addr_t dma_addr,
182					      size_t len)
183{
184	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
185	struct ef4_tx_buffer *buffer;
186	unsigned int dma_len;
187
188	/* Map the fragment taking account of NIC-dependent DMA limits. */
189	do {
190		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
191		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
192
193		buffer->len = dma_len;
194		buffer->dma_addr = dma_addr;
195		buffer->flags = EF4_TX_BUF_CONT;
196		len -= dma_len;
197		dma_addr += dma_len;
198		++tx_queue->insert_count;
199	} while (len);
200
201	return buffer;
202}
203
204/* Map all data from an SKB for DMA and create descriptors on the queue.
205 */
206static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
207{
208	struct ef4_nic *efx = tx_queue->efx;
209	struct device *dma_dev = &efx->pci_dev->dev;
210	unsigned int frag_index, nr_frags;
211	dma_addr_t dma_addr, unmap_addr;
212	unsigned short dma_flags;
213	size_t len, unmap_len;
214
215	nr_frags = skb_shinfo(skb)->nr_frags;
216	frag_index = 0;
217
218	/* Map header data. */
219	len = skb_headlen(skb);
220	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
221	dma_flags = EF4_TX_BUF_MAP_SINGLE;
222	unmap_len = len;
223	unmap_addr = dma_addr;
224
225	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
226		return -EIO;
227
228	/* Add descriptors for each fragment. */
229	do {
230		struct ef4_tx_buffer *buffer;
231		skb_frag_t *fragment;
232
233		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
234
235		/* The final descriptor for a fragment is responsible for
236		 * unmapping the whole fragment.
237		 */
238		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
239		buffer->unmap_len = unmap_len;
240		buffer->dma_offset = buffer->dma_addr - unmap_addr;
241
242		if (frag_index >= nr_frags) {
243			/* Store SKB details with the final buffer for
244			 * the completion.
245			 */
246			buffer->skb = skb;
247			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
248			return 0;
249		}
250
251		/* Move on to the next fragment. */
252		fragment = &skb_shinfo(skb)->frags[frag_index++];
253		len = skb_frag_size(fragment);
254		dma_addr = skb_frag_dma_map(dma_dev, fragment,
255				0, len, DMA_TO_DEVICE);
256		dma_flags = 0;
257		unmap_len = len;
258		unmap_addr = dma_addr;
259
260		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
261			return -EIO;
262	} while (1);
263}
264
265/* Remove buffers put into a tx_queue.  None of the buffers must have
266 * an skb attached.
267 */
268static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
269{
270	struct ef4_tx_buffer *buffer;
271
272	/* Work backwards until we hit the original insert pointer value */
273	while (tx_queue->insert_count != tx_queue->write_count) {
274		--tx_queue->insert_count;
275		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
276		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
277	}
278}
279
280/*
281 * Add a socket buffer to a TX queue
282 *
283 * This maps all fragments of a socket buffer for DMA and adds them to
284 * the TX queue.  The queue's insert pointer will be incremented by
285 * the number of fragments in the socket buffer.
286 *
287 * If any DMA mapping fails, any mapped fragments will be unmapped,
288 * the queue's insert pointer will be restored to its original value.
289 *
290 * This function is split out from ef4_hard_start_xmit to allow the
291 * loopback test to direct packets via specific TX queues.
292 *
293 * Returns NETDEV_TX_OK.
294 * You must hold netif_tx_lock() to call this function.
295 */
296netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
297{
298	bool data_mapped = false;
299	unsigned int skb_len;
300
301	skb_len = skb->len;
302	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
303
304	if (skb_len < tx_queue->tx_min_size ||
305			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
306		/* Pad short packets or coalesce short fragmented packets. */
307		if (ef4_enqueue_skb_copy(tx_queue, skb))
308			goto err;
309		tx_queue->cb_packets++;
310		data_mapped = true;
311	}
312
313	/* Map for DMA and create descriptors if we haven't done so already. */
314	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
315		goto err;
316
317	/* Update BQL */
318	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
319
320	/* Pass off to hardware */
321	if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
322		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
323
324		/* There could be packets left on the partner queue if those
325		 * SKBs had skb->xmit_more set. If we do not push those they
326		 * could be left for a long time and cause a netdev watchdog.
327		 */
328		if (txq2->xmit_more_available)
329			ef4_nic_push_buffers(txq2);
330
331		ef4_nic_push_buffers(tx_queue);
332	} else {
333		tx_queue->xmit_more_available = netdev_xmit_more();
334	}
335
336	tx_queue->tx_packets++;
337
338	ef4_tx_maybe_stop_queue(tx_queue);
339
340	return NETDEV_TX_OK;
341
342
343err:
344	ef4_enqueue_unwind(tx_queue);
345	dev_kfree_skb_any(skb);
346	return NETDEV_TX_OK;
347}
348
349/* Remove packets from the TX queue
350 *
351 * This removes packets from the TX queue, up to and including the
352 * specified index.
353 */
354static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
355				unsigned int index,
356				unsigned int *pkts_compl,
357				unsigned int *bytes_compl)
358{
359	struct ef4_nic *efx = tx_queue->efx;
360	unsigned int stop_index, read_ptr;
361
362	stop_index = (index + 1) & tx_queue->ptr_mask;
363	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
364
365	while (read_ptr != stop_index) {
366		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
367
368		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
369		    unlikely(buffer->len == 0)) {
370			netif_err(efx, tx_err, efx->net_dev,
371				  "TX queue %d spurious TX completion id %x\n",
372				  tx_queue->queue, read_ptr);
373			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
374			return;
375		}
376
377		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
378
379		++tx_queue->read_count;
380		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
381	}
382}
383
384/* Initiate a packet transmission.  We use one channel per CPU
385 * (sharing when we have more CPUs than channels).  On Falcon, the TX
386 * completion events will be directed back to the CPU that transmitted
387 * the packet, which should be cache-efficient.
388 *
389 * Context: non-blocking.
390 * Note that returning anything other than NETDEV_TX_OK will cause the
391 * OS to free the skb.
392 */
393netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
394				struct net_device *net_dev)
395{
396	struct ef4_nic *efx = netdev_priv(net_dev);
397	struct ef4_tx_queue *tx_queue;
398	unsigned index, type;
399
400	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
401
402	index = skb_get_queue_mapping(skb);
403	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
404	if (index >= efx->n_tx_channels) {
405		index -= efx->n_tx_channels;
406		type |= EF4_TXQ_TYPE_HIGHPRI;
407	}
408	tx_queue = ef4_get_tx_queue(efx, index, type);
409
410	return ef4_enqueue_skb(tx_queue, skb);
411}
412
413void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
414{
415	struct ef4_nic *efx = tx_queue->efx;
416
417	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
418	tx_queue->core_txq =
419		netdev_get_tx_queue(efx->net_dev,
420				    tx_queue->queue / EF4_TXQ_TYPES +
421				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
422				     efx->n_tx_channels : 0));
423}
424
425int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
426		 void *type_data)
427{
428	struct ef4_nic *efx = netdev_priv(net_dev);
429	struct tc_mqprio_qopt *mqprio = type_data;
430	struct ef4_channel *channel;
431	struct ef4_tx_queue *tx_queue;
432	unsigned tc, num_tc;
433	int rc;
434
435	if (type != TC_SETUP_QDISC_MQPRIO)
436		return -EOPNOTSUPP;
437
438	num_tc = mqprio->num_tc;
439
440	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
441		return -EINVAL;
442
443	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
444
445	if (num_tc == net_dev->num_tc)
446		return 0;
447
448	for (tc = 0; tc < num_tc; tc++) {
449		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
450		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
451	}
452
453	if (num_tc > net_dev->num_tc) {
454		/* Initialise high-priority queues as necessary */
455		ef4_for_each_channel(channel, efx) {
456			ef4_for_each_possible_channel_tx_queue(tx_queue,
457							       channel) {
458				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
459					continue;
460				if (!tx_queue->buffer) {
461					rc = ef4_probe_tx_queue(tx_queue);
462					if (rc)
463						return rc;
464				}
465				if (!tx_queue->initialised)
466					ef4_init_tx_queue(tx_queue);
467				ef4_init_tx_queue_core_txq(tx_queue);
468			}
469		}
470	} else {
471		/* Reduce number of classes before number of queues */
472		net_dev->num_tc = num_tc;
473	}
474
475	rc = netif_set_real_num_tx_queues(net_dev,
476					  max_t(int, num_tc, 1) *
477					  efx->n_tx_channels);
478	if (rc)
479		return rc;
480
481	/* Do not destroy high-priority queues when they become
482	 * unused.  We would have to flush them first, and it is
483	 * fairly difficult to flush a subset of TX queues.  Leave
484	 * it to ef4_fini_channels().
485	 */
486
487	net_dev->num_tc = num_tc;
488	return 0;
489}
490
491void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
492{
493	unsigned fill_level;
494	struct ef4_nic *efx = tx_queue->efx;
495	struct ef4_tx_queue *txq2;
496	unsigned int pkts_compl = 0, bytes_compl = 0;
497
498	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
499
500	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
501	tx_queue->pkts_compl += pkts_compl;
502	tx_queue->bytes_compl += bytes_compl;
503
504	if (pkts_compl > 1)
505		++tx_queue->merge_events;
506
507	/* See if we need to restart the netif queue.  This memory
508	 * barrier ensures that we write read_count (inside
509	 * ef4_dequeue_buffers()) before reading the queue status.
510	 */
511	smp_mb();
512	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
513	    likely(efx->port_enabled) &&
514	    likely(netif_device_present(efx->net_dev))) {
515		txq2 = ef4_tx_queue_partner(tx_queue);
516		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
517				 txq2->insert_count - txq2->read_count);
518		if (fill_level <= efx->txq_wake_thresh)
519			netif_tx_wake_queue(tx_queue->core_txq);
520	}
521
522	/* Check whether the hardware queue is now empty */
523	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
524		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
525		if (tx_queue->read_count == tx_queue->old_write_count) {
526			smp_mb();
527			tx_queue->empty_read_count =
528				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
529		}
530	}
531}
532
533static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
534{
535	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
536}
537
538int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
539{
540	struct ef4_nic *efx = tx_queue->efx;
541	unsigned int entries;
542	int rc;
543
544	/* Create the smallest power-of-two aligned ring */
545	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
546	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
547	tx_queue->ptr_mask = entries - 1;
548
549	netif_dbg(efx, probe, efx->net_dev,
550		  "creating TX queue %d size %#x mask %#x\n",
551		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
552
553	/* Allocate software ring */
554	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
555				   GFP_KERNEL);
556	if (!tx_queue->buffer)
557		return -ENOMEM;
558
559	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
560				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
561	if (!tx_queue->cb_page) {
562		rc = -ENOMEM;
563		goto fail1;
564	}
565
566	/* Allocate hardware ring */
567	rc = ef4_nic_probe_tx(tx_queue);
568	if (rc)
569		goto fail2;
570
571	return 0;
572
573fail2:
574	kfree(tx_queue->cb_page);
575	tx_queue->cb_page = NULL;
576fail1:
577	kfree(tx_queue->buffer);
578	tx_queue->buffer = NULL;
579	return rc;
580}
581
582void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
583{
584	struct ef4_nic *efx = tx_queue->efx;
585
586	netif_dbg(efx, drv, efx->net_dev,
587		  "initialising TX queue %d\n", tx_queue->queue);
588
589	tx_queue->insert_count = 0;
590	tx_queue->write_count = 0;
591	tx_queue->old_write_count = 0;
592	tx_queue->read_count = 0;
593	tx_queue->old_read_count = 0;
594	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
595	tx_queue->xmit_more_available = false;
596
597	/* Some older hardware requires Tx writes larger than 32. */
598	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
599
600	/* Set up TX descriptor ring */
601	ef4_nic_init_tx(tx_queue);
602
603	tx_queue->initialised = true;
604}
605
606void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
607{
608	struct ef4_tx_buffer *buffer;
609
610	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
611		  "shutting down TX queue %d\n", tx_queue->queue);
612
613	if (!tx_queue->buffer)
614		return;
615
616	/* Free any buffers left in the ring */
617	while (tx_queue->read_count != tx_queue->write_count) {
618		unsigned int pkts_compl = 0, bytes_compl = 0;
619		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
620		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
621
622		++tx_queue->read_count;
623	}
624	tx_queue->xmit_more_available = false;
625	netdev_tx_reset_queue(tx_queue->core_txq);
626}
627
628void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
629{
630	int i;
631
632	if (!tx_queue->buffer)
633		return;
634
635	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
636		  "destroying TX queue %d\n", tx_queue->queue);
637	ef4_nic_remove_tx(tx_queue);
638
639	if (tx_queue->cb_page) {
640		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
641			ef4_nic_free_buffer(tx_queue->efx,
642					    &tx_queue->cb_page[i]);
643		kfree(tx_queue->cb_page);
644		tx_queue->cb_page = NULL;
645	}
646
647	kfree(tx_queue->buffer);
648	tx_queue->buffer = NULL;
649}