Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25/* e1000_82575
  26 * e1000_82576
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/types.h>
  32#include <linux/if_ether.h>
  33#include <linux/i2c.h>
  34
  35#include "e1000_mac.h"
  36#include "e1000_82575.h"
  37#include "e1000_i210.h"
  38#include "igb.h"
  39
  40static s32  igb_get_invariants_82575(struct e1000_hw *);
  41static s32  igb_acquire_phy_82575(struct e1000_hw *);
  42static void igb_release_phy_82575(struct e1000_hw *);
  43static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  44static void igb_release_nvm_82575(struct e1000_hw *);
  45static s32  igb_check_for_link_82575(struct e1000_hw *);
  46static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  47static s32  igb_init_hw_82575(struct e1000_hw *);
  48static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  49static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  50static s32  igb_reset_hw_82575(struct e1000_hw *);
  51static s32  igb_reset_hw_82580(struct e1000_hw *);
  52static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  53static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  55static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  56static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  57static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  59static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  60static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  61						 u16 *);
  62static s32  igb_get_phy_id_82575(struct e1000_hw *);
  63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  64static bool igb_sgmii_active_82575(struct e1000_hw *);
  65static s32  igb_reset_init_script_82575(struct e1000_hw *);
  66static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  67static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  68static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  69static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  73static const u16 e1000_82580_rxpbs_table[] = {
  74	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  75
  76/* Due to a hw errata, if the host tries to  configure the VFTA register
  77 * while performing queries from the BMC or DMA, then the VFTA in some
  78 * cases won't be written.
  79 */
  80
  81/**
  82 *  igb_write_vfta_i350 - Write value to VLAN filter table
  83 *  @hw: pointer to the HW structure
  84 *  @offset: register offset in VLAN filter table
  85 *  @value: register value written to VLAN filter table
  86 *
  87 *  Writes value at the given offset in the register array which stores
  88 *  the VLAN filter table.
  89 **/
  90static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  91{
  92	struct igb_adapter *adapter = hw->back;
  93	int i;
  94
  95	for (i = 10; i--;)
  96		array_wr32(E1000_VFTA, offset, value);
  97
  98	wrfl();
  99	adapter->shadow_vfta[offset] = value;
 100}
 101
 102/**
 103 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 104 *  @hw: pointer to the HW structure
 105 *
 106 *  Called to determine if the I2C pins are being used for I2C or as an
 107 *  external MDIO interface since the two options are mutually exclusive.
 108 **/
 109static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 110{
 111	u32 reg = 0;
 112	bool ext_mdio = false;
 113
 114	switch (hw->mac.type) {
 115	case e1000_82575:
 116	case e1000_82576:
 117		reg = rd32(E1000_MDIC);
 118		ext_mdio = !!(reg & E1000_MDIC_DEST);
 119		break;
 120	case e1000_82580:
 121	case e1000_i350:
 122	case e1000_i354:
 123	case e1000_i210:
 124	case e1000_i211:
 125		reg = rd32(E1000_MDICNFG);
 126		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 127		break;
 128	default:
 129		break;
 130	}
 131	return ext_mdio;
 132}
 133
 134/**
 135 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 136 *  @hw: pointer to the HW structure
 137 *
 138 *  Poll the M88E1112 interfaces to see which interface achieved link.
 139 */
 140static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 141{
 142	struct e1000_phy_info *phy = &hw->phy;
 143	s32 ret_val;
 144	u16 data;
 145	u8 port = 0;
 146
 147	/* Check the copper medium. */
 148	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 149	if (ret_val)
 150		return ret_val;
 151
 152	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 153	if (ret_val)
 154		return ret_val;
 155
 156	if (data & E1000_M88E1112_STATUS_LINK)
 157		port = E1000_MEDIA_PORT_COPPER;
 158
 159	/* Check the other medium. */
 160	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 161	if (ret_val)
 162		return ret_val;
 163
 164	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 165	if (ret_val)
 166		return ret_val;
 167
 168
 169	if (data & E1000_M88E1112_STATUS_LINK)
 170		port = E1000_MEDIA_PORT_OTHER;
 171
 172	/* Determine if a swap needs to happen. */
 173	if (port && (hw->dev_spec._82575.media_port != port)) {
 174		hw->dev_spec._82575.media_port = port;
 175		hw->dev_spec._82575.media_changed = true;
 176	}
 177
 178	if (port == E1000_MEDIA_PORT_COPPER) {
 179		/* reset page to 0 */
 180		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 181		if (ret_val)
 182			return ret_val;
 183		igb_check_for_link_82575(hw);
 184	} else {
 185		igb_check_for_link_82575(hw);
 186		/* reset page to 0 */
 187		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 188		if (ret_val)
 189			return ret_val;
 190	}
 191
 192	return 0;
 193}
 194
 195/**
 196 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 197 *  @hw: pointer to the HW structure
 198 **/
 199static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 200{
 201	struct e1000_phy_info *phy = &hw->phy;
 202	s32 ret_val = 0;
 203	u32 ctrl_ext;
 204
 205	if (hw->phy.media_type != e1000_media_type_copper) {
 206		phy->type = e1000_phy_none;
 207		goto out;
 208	}
 209
 210	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 211	phy->reset_delay_us	= 100;
 212
 213	ctrl_ext = rd32(E1000_CTRL_EXT);
 214
 215	if (igb_sgmii_active_82575(hw)) {
 216		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 217		ctrl_ext |= E1000_CTRL_I2C_ENA;
 218	} else {
 219		phy->ops.reset = igb_phy_hw_reset;
 220		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 221	}
 222
 223	wr32(E1000_CTRL_EXT, ctrl_ext);
 224	igb_reset_mdicnfg_82580(hw);
 225
 226	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 227		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 228		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 229	} else {
 230		switch (hw->mac.type) {
 231		case e1000_82580:
 232		case e1000_i350:
 233		case e1000_i354:
 234		case e1000_i210:
 235		case e1000_i211:
 236			phy->ops.read_reg = igb_read_phy_reg_82580;
 237			phy->ops.write_reg = igb_write_phy_reg_82580;
 238			break;
 239		default:
 240			phy->ops.read_reg = igb_read_phy_reg_igp;
 241			phy->ops.write_reg = igb_write_phy_reg_igp;
 242		}
 243	}
 244
 245	/* set lan id */
 246	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 247			E1000_STATUS_FUNC_SHIFT;
 248
 249	/* Make sure the PHY is in a good state. Several people have reported
 250	 * firmware leaving the PHY's page select register set to something
 251	 * other than the default of zero, which causes the PHY ID read to
 252	 * access something other than the intended register.
 253	 */
 254	ret_val = hw->phy.ops.reset(hw);
 255	if (ret_val) {
 256		hw_dbg("Error resetting the PHY.\n");
 257		goto out;
 258	}
 259
 260	/* Set phy->phy_addr and phy->id. */
 261	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
 262	ret_val = igb_get_phy_id_82575(hw);
 263	if (ret_val)
 264		return ret_val;
 265
 266	/* Verify phy id and set remaining function pointers */
 267	switch (phy->id) {
 268	case M88E1543_E_PHY_ID:
 269	case M88E1512_E_PHY_ID:
 270	case I347AT4_E_PHY_ID:
 271	case M88E1112_E_PHY_ID:
 272	case M88E1111_I_PHY_ID:
 273		phy->type		= e1000_phy_m88;
 274		phy->ops.check_polarity	= igb_check_polarity_m88;
 275		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 276		if (phy->id != M88E1111_I_PHY_ID)
 277			phy->ops.get_cable_length =
 278					 igb_get_cable_length_m88_gen2;
 279		else
 280			phy->ops.get_cable_length = igb_get_cable_length_m88;
 281		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 282		/* Check if this PHY is configured for media swap. */
 283		if (phy->id == M88E1112_E_PHY_ID) {
 284			u16 data;
 285
 286			ret_val = phy->ops.write_reg(hw,
 287						     E1000_M88E1112_PAGE_ADDR,
 288						     2);
 289			if (ret_val)
 290				goto out;
 291
 292			ret_val = phy->ops.read_reg(hw,
 293						    E1000_M88E1112_MAC_CTRL_1,
 294						    &data);
 295			if (ret_val)
 296				goto out;
 297
 298			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 299			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 300			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 301			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 302				hw->mac.ops.check_for_link =
 303						igb_check_for_link_media_swap;
 304		}
 305		if (phy->id == M88E1512_E_PHY_ID) {
 306			ret_val = igb_initialize_M88E1512_phy(hw);
 307			if (ret_val)
 308				goto out;
 309		}
 310		if (phy->id == M88E1543_E_PHY_ID) {
 311			ret_val = igb_initialize_M88E1543_phy(hw);
 312			if (ret_val)
 313				goto out;
 314		}
 315		break;
 316	case IGP03E1000_E_PHY_ID:
 317		phy->type = e1000_phy_igp_3;
 318		phy->ops.get_phy_info = igb_get_phy_info_igp;
 319		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 320		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 321		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 322		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 323		break;
 324	case I82580_I_PHY_ID:
 325	case I350_I_PHY_ID:
 326		phy->type = e1000_phy_82580;
 327		phy->ops.force_speed_duplex =
 328					 igb_phy_force_speed_duplex_82580;
 329		phy->ops.get_cable_length = igb_get_cable_length_82580;
 330		phy->ops.get_phy_info = igb_get_phy_info_82580;
 331		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 332		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 333		break;
 334	case I210_I_PHY_ID:
 335		phy->type		= e1000_phy_i210;
 336		phy->ops.check_polarity	= igb_check_polarity_m88;
 337		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 338		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 339		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 340		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 341		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 342		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 343		break;
 344	case BCM54616_E_PHY_ID:
 345		phy->type = e1000_phy_bcm54616;
 346		break;
 347	default:
 348		ret_val = -E1000_ERR_PHY;
 349		goto out;
 350	}
 351
 352out:
 353	return ret_val;
 354}
 355
 356/**
 357 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 358 *  @hw: pointer to the HW structure
 359 **/
 360static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 361{
 362	struct e1000_nvm_info *nvm = &hw->nvm;
 363	u32 eecd = rd32(E1000_EECD);
 364	u16 size;
 365
 366	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 367		     E1000_EECD_SIZE_EX_SHIFT);
 368
 369	/* Added to a constant, "size" becomes the left-shift value
 370	 * for setting word_size.
 371	 */
 372	size += NVM_WORD_SIZE_BASE_SHIFT;
 373
 374	/* Just in case size is out of range, cap it to the largest
 375	 * EEPROM size supported
 376	 */
 377	if (size > 15)
 378		size = 15;
 379
 380	nvm->word_size = BIT(size);
 381	nvm->opcode_bits = 8;
 382	nvm->delay_usec = 1;
 383
 384	switch (nvm->override) {
 385	case e1000_nvm_override_spi_large:
 386		nvm->page_size = 32;
 387		nvm->address_bits = 16;
 388		break;
 389	case e1000_nvm_override_spi_small:
 390		nvm->page_size = 8;
 391		nvm->address_bits = 8;
 392		break;
 393	default:
 394		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 395		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 396				    16 : 8;
 397		break;
 398	}
 399	if (nvm->word_size == BIT(15))
 400		nvm->page_size = 128;
 401
 402	nvm->type = e1000_nvm_eeprom_spi;
 403
 404	/* NVM Function Pointers */
 405	nvm->ops.acquire = igb_acquire_nvm_82575;
 406	nvm->ops.release = igb_release_nvm_82575;
 407	nvm->ops.write = igb_write_nvm_spi;
 408	nvm->ops.validate = igb_validate_nvm_checksum;
 409	nvm->ops.update = igb_update_nvm_checksum;
 410	if (nvm->word_size < BIT(15))
 411		nvm->ops.read = igb_read_nvm_eerd;
 412	else
 413		nvm->ops.read = igb_read_nvm_spi;
 414
 415	/* override generic family function pointers for specific descendants */
 416	switch (hw->mac.type) {
 417	case e1000_82580:
 418		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 419		nvm->ops.update = igb_update_nvm_checksum_82580;
 420		break;
 421	case e1000_i354:
 422	case e1000_i350:
 423		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 424		nvm->ops.update = igb_update_nvm_checksum_i350;
 425		break;
 426	default:
 427		break;
 428	}
 429
 430	return 0;
 431}
 432
 433/**
 434 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 435 *  @hw: pointer to the HW structure
 436 **/
 437static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 438{
 439	struct e1000_mac_info *mac = &hw->mac;
 440	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 441
 442	/* Set mta register count */
 443	mac->mta_reg_count = 128;
 444	/* Set uta register count */
 445	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 446	/* Set rar entry count */
 447	switch (mac->type) {
 448	case e1000_82576:
 449		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 450		break;
 451	case e1000_82580:
 452		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 453		break;
 454	case e1000_i350:
 455	case e1000_i354:
 456		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 457		break;
 458	default:
 459		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 460		break;
 461	}
 462	/* reset */
 463	if (mac->type >= e1000_82580)
 464		mac->ops.reset_hw = igb_reset_hw_82580;
 465	else
 466		mac->ops.reset_hw = igb_reset_hw_82575;
 467
 468	if (mac->type >= e1000_i210) {
 469		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 470		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 471
 472	} else {
 473		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 474		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 475	}
 476
 477	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 478		mac->ops.write_vfta = igb_write_vfta_i350;
 479	else
 480		mac->ops.write_vfta = igb_write_vfta;
 481
 482	/* Set if part includes ASF firmware */
 483	mac->asf_firmware_present = true;
 484	/* Set if manageability features are enabled. */
 485	mac->arc_subsystem_valid =
 486		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 487			? true : false;
 488	/* enable EEE on i350 parts and later parts */
 489	if (mac->type >= e1000_i350)
 490		dev_spec->eee_disable = false;
 491	else
 492		dev_spec->eee_disable = true;
 493	/* Allow a single clear of the SW semaphore on I210 and newer */
 494	if (mac->type >= e1000_i210)
 495		dev_spec->clear_semaphore_once = true;
 496	/* physical interface link setup */
 497	mac->ops.setup_physical_interface =
 498		(hw->phy.media_type == e1000_media_type_copper)
 499			? igb_setup_copper_link_82575
 500			: igb_setup_serdes_link_82575;
 501
 502	if (mac->type == e1000_82580) {
 503		switch (hw->device_id) {
 504		/* feature not supported on these id's */
 505		case E1000_DEV_ID_DH89XXCC_SGMII:
 506		case E1000_DEV_ID_DH89XXCC_SERDES:
 507		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 508		case E1000_DEV_ID_DH89XXCC_SFP:
 509			break;
 510		default:
 511			hw->dev_spec._82575.mas_capable = true;
 512			break;
 513		}
 514	}
 515	return 0;
 516}
 517
 518/**
 519 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  The media type is chosen based on SFP module.
 523 *  compatibility flags retrieved from SFP ID EEPROM.
 524 **/
 525static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 526{
 527	s32 ret_val = E1000_ERR_CONFIG;
 528	u32 ctrl_ext = 0;
 529	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 530	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 531	u8 tranceiver_type = 0;
 532	s32 timeout = 3;
 533
 534	/* Turn I2C interface ON and power on sfp cage */
 535	ctrl_ext = rd32(E1000_CTRL_EXT);
 536	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 537	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 538
 539	wrfl();
 540
 541	/* Read SFP module data */
 542	while (timeout) {
 543		ret_val = igb_read_sfp_data_byte(hw,
 544			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 545			&tranceiver_type);
 546		if (ret_val == 0)
 547			break;
 548		msleep(100);
 549		timeout--;
 550	}
 551	if (ret_val != 0)
 552		goto out;
 553
 554	ret_val = igb_read_sfp_data_byte(hw,
 555			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 556			(u8 *)eth_flags);
 557	if (ret_val != 0)
 558		goto out;
 559
 560	/* Check if there is some SFP module plugged and powered */
 561	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 562	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 563		dev_spec->module_plugged = true;
 564		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 565			hw->phy.media_type = e1000_media_type_internal_serdes;
 566		} else if (eth_flags->e100_base_fx) {
 567			dev_spec->sgmii_active = true;
 568			hw->phy.media_type = e1000_media_type_internal_serdes;
 569		} else if (eth_flags->e1000_base_t) {
 570			dev_spec->sgmii_active = true;
 571			hw->phy.media_type = e1000_media_type_copper;
 572		} else {
 573			hw->phy.media_type = e1000_media_type_unknown;
 574			hw_dbg("PHY module has not been recognized\n");
 575			goto out;
 576		}
 577	} else {
 578		hw->phy.media_type = e1000_media_type_unknown;
 579	}
 580	ret_val = 0;
 581out:
 582	/* Restore I2C interface setting */
 583	wr32(E1000_CTRL_EXT, ctrl_ext);
 584	return ret_val;
 585}
 586
 587static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 588{
 589	struct e1000_mac_info *mac = &hw->mac;
 590	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 591	s32 ret_val;
 592	u32 ctrl_ext = 0;
 593	u32 link_mode = 0;
 594
 595	switch (hw->device_id) {
 596	case E1000_DEV_ID_82575EB_COPPER:
 597	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 598	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 599		mac->type = e1000_82575;
 600		break;
 601	case E1000_DEV_ID_82576:
 602	case E1000_DEV_ID_82576_NS:
 603	case E1000_DEV_ID_82576_NS_SERDES:
 604	case E1000_DEV_ID_82576_FIBER:
 605	case E1000_DEV_ID_82576_SERDES:
 606	case E1000_DEV_ID_82576_QUAD_COPPER:
 607	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 608	case E1000_DEV_ID_82576_SERDES_QUAD:
 609		mac->type = e1000_82576;
 610		break;
 611	case E1000_DEV_ID_82580_COPPER:
 612	case E1000_DEV_ID_82580_FIBER:
 613	case E1000_DEV_ID_82580_QUAD_FIBER:
 614	case E1000_DEV_ID_82580_SERDES:
 615	case E1000_DEV_ID_82580_SGMII:
 616	case E1000_DEV_ID_82580_COPPER_DUAL:
 617	case E1000_DEV_ID_DH89XXCC_SGMII:
 618	case E1000_DEV_ID_DH89XXCC_SERDES:
 619	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 620	case E1000_DEV_ID_DH89XXCC_SFP:
 621		mac->type = e1000_82580;
 622		break;
 623	case E1000_DEV_ID_I350_COPPER:
 624	case E1000_DEV_ID_I350_FIBER:
 625	case E1000_DEV_ID_I350_SERDES:
 626	case E1000_DEV_ID_I350_SGMII:
 627		mac->type = e1000_i350;
 628		break;
 629	case E1000_DEV_ID_I210_COPPER:
 630	case E1000_DEV_ID_I210_FIBER:
 631	case E1000_DEV_ID_I210_SERDES:
 632	case E1000_DEV_ID_I210_SGMII:
 633	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 634	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 635		mac->type = e1000_i210;
 636		break;
 637	case E1000_DEV_ID_I211_COPPER:
 638		mac->type = e1000_i211;
 639		break;
 640	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 641	case E1000_DEV_ID_I354_SGMII:
 642	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 643		mac->type = e1000_i354;
 644		break;
 645	default:
 646		return -E1000_ERR_MAC_INIT;
 647	}
 648
 649	/* Set media type */
 650	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 651	 * based on the EEPROM. We cannot rely upon device ID. There
 652	 * is no distinguishable difference between fiber and internal
 653	 * SerDes mode on the 82575. There can be an external PHY attached
 654	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 655	 */
 656	hw->phy.media_type = e1000_media_type_copper;
 657	dev_spec->sgmii_active = false;
 658	dev_spec->module_plugged = false;
 659
 660	ctrl_ext = rd32(E1000_CTRL_EXT);
 661
 662	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 663	switch (link_mode) {
 664	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 665		hw->phy.media_type = e1000_media_type_internal_serdes;
 666		break;
 667	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 668		/* Get phy control interface type set (MDIO vs. I2C)*/
 669		if (igb_sgmii_uses_mdio_82575(hw)) {
 670			hw->phy.media_type = e1000_media_type_copper;
 671			dev_spec->sgmii_active = true;
 672			break;
 673		}
 674		/* fall through for I2C based SGMII */
 675	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 676		/* read media type from SFP EEPROM */
 677		ret_val = igb_set_sfp_media_type_82575(hw);
 678		if ((ret_val != 0) ||
 679		    (hw->phy.media_type == e1000_media_type_unknown)) {
 680			/* If media type was not identified then return media
 681			 * type defined by the CTRL_EXT settings.
 682			 */
 683			hw->phy.media_type = e1000_media_type_internal_serdes;
 684
 685			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 686				hw->phy.media_type = e1000_media_type_copper;
 687				dev_spec->sgmii_active = true;
 688			}
 689
 690			break;
 691		}
 692
 693		/* do not change link mode for 100BaseFX */
 694		if (dev_spec->eth_flags.e100_base_fx)
 695			break;
 696
 697		/* change current link mode setting */
 698		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 699
 700		if (hw->phy.media_type == e1000_media_type_copper)
 701			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 702		else
 703			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 704
 705		wr32(E1000_CTRL_EXT, ctrl_ext);
 706
 707		break;
 708	default:
 709		break;
 710	}
 711
 712	/* mac initialization and operations */
 713	ret_val = igb_init_mac_params_82575(hw);
 714	if (ret_val)
 715		goto out;
 716
 717	/* NVM initialization */
 718	ret_val = igb_init_nvm_params_82575(hw);
 719	switch (hw->mac.type) {
 720	case e1000_i210:
 721	case e1000_i211:
 722		ret_val = igb_init_nvm_params_i210(hw);
 723		break;
 724	default:
 725		break;
 726	}
 727
 728	if (ret_val)
 729		goto out;
 730
 731	/* if part supports SR-IOV then initialize mailbox parameters */
 732	switch (mac->type) {
 733	case e1000_82576:
 734	case e1000_i350:
 735		igb_init_mbx_params_pf(hw);
 736		break;
 737	default:
 738		break;
 739	}
 740
 741	/* setup PHY parameters */
 742	ret_val = igb_init_phy_params_82575(hw);
 743
 744out:
 745	return ret_val;
 746}
 747
 748/**
 749 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 750 *  @hw: pointer to the HW structure
 751 *
 752 *  Acquire access rights to the correct PHY.  This is a
 753 *  function pointer entry point called by the api module.
 754 **/
 755static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 756{
 757	u16 mask = E1000_SWFW_PHY0_SM;
 758
 759	if (hw->bus.func == E1000_FUNC_1)
 760		mask = E1000_SWFW_PHY1_SM;
 761	else if (hw->bus.func == E1000_FUNC_2)
 762		mask = E1000_SWFW_PHY2_SM;
 763	else if (hw->bus.func == E1000_FUNC_3)
 764		mask = E1000_SWFW_PHY3_SM;
 765
 766	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 767}
 768
 769/**
 770 *  igb_release_phy_82575 - Release rights to access PHY
 771 *  @hw: pointer to the HW structure
 772 *
 773 *  A wrapper to release access rights to the correct PHY.  This is a
 774 *  function pointer entry point called by the api module.
 775 **/
 776static void igb_release_phy_82575(struct e1000_hw *hw)
 777{
 778	u16 mask = E1000_SWFW_PHY0_SM;
 779
 780	if (hw->bus.func == E1000_FUNC_1)
 781		mask = E1000_SWFW_PHY1_SM;
 782	else if (hw->bus.func == E1000_FUNC_2)
 783		mask = E1000_SWFW_PHY2_SM;
 784	else if (hw->bus.func == E1000_FUNC_3)
 785		mask = E1000_SWFW_PHY3_SM;
 786
 787	hw->mac.ops.release_swfw_sync(hw, mask);
 788}
 789
 790/**
 791 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 792 *  @hw: pointer to the HW structure
 793 *  @offset: register offset to be read
 794 *  @data: pointer to the read data
 795 *
 796 *  Reads the PHY register at offset using the serial gigabit media independent
 797 *  interface and stores the retrieved information in data.
 798 **/
 799static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 800					  u16 *data)
 801{
 802	s32 ret_val = -E1000_ERR_PARAM;
 803
 804	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 805		hw_dbg("PHY Address %u is out of range\n", offset);
 806		goto out;
 807	}
 808
 809	ret_val = hw->phy.ops.acquire(hw);
 810	if (ret_val)
 811		goto out;
 812
 813	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 814
 815	hw->phy.ops.release(hw);
 816
 817out:
 818	return ret_val;
 819}
 820
 821/**
 822 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 823 *  @hw: pointer to the HW structure
 824 *  @offset: register offset to write to
 825 *  @data: data to write at register offset
 826 *
 827 *  Writes the data to PHY register at the offset using the serial gigabit
 828 *  media independent interface.
 829 **/
 830static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 831					   u16 data)
 832{
 833	s32 ret_val = -E1000_ERR_PARAM;
 834
 835
 836	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 837		hw_dbg("PHY Address %d is out of range\n", offset);
 838		goto out;
 839	}
 840
 841	ret_val = hw->phy.ops.acquire(hw);
 842	if (ret_val)
 843		goto out;
 844
 845	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 846
 847	hw->phy.ops.release(hw);
 848
 849out:
 850	return ret_val;
 851}
 852
 853/**
 854 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 855 *  @hw: pointer to the HW structure
 856 *
 857 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 858 *  sgmi interface.
 859 **/
 860static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 861{
 862	struct e1000_phy_info *phy = &hw->phy;
 863	s32  ret_val = 0;
 864	u16 phy_id;
 865	u32 ctrl_ext;
 866	u32 mdic;
 867
 868	/* Extra read required for some PHY's on i354 */
 869	if (hw->mac.type == e1000_i354)
 870		igb_get_phy_id(hw);
 871
 872	/* For SGMII PHYs, we try the list of possible addresses until
 873	 * we find one that works.  For non-SGMII PHYs
 874	 * (e.g. integrated copper PHYs), an address of 1 should
 875	 * work.  The result of this function should mean phy->phy_addr
 876	 * and phy->id are set correctly.
 877	 */
 878	if (!(igb_sgmii_active_82575(hw))) {
 879		phy->addr = 1;
 880		ret_val = igb_get_phy_id(hw);
 881		goto out;
 882	}
 883
 884	if (igb_sgmii_uses_mdio_82575(hw)) {
 885		switch (hw->mac.type) {
 886		case e1000_82575:
 887		case e1000_82576:
 888			mdic = rd32(E1000_MDIC);
 889			mdic &= E1000_MDIC_PHY_MASK;
 890			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 891			break;
 892		case e1000_82580:
 893		case e1000_i350:
 894		case e1000_i354:
 895		case e1000_i210:
 896		case e1000_i211:
 897			mdic = rd32(E1000_MDICNFG);
 898			mdic &= E1000_MDICNFG_PHY_MASK;
 899			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 900			break;
 901		default:
 902			ret_val = -E1000_ERR_PHY;
 903			goto out;
 904		}
 905		ret_val = igb_get_phy_id(hw);
 906		goto out;
 907	}
 908
 909	/* Power on sgmii phy if it is disabled */
 910	ctrl_ext = rd32(E1000_CTRL_EXT);
 911	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 912	wrfl();
 913	msleep(300);
 914
 915	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 916	 * Therefore, we need to test 1-7
 917	 */
 918	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 919		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 920		if (ret_val == 0) {
 921			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 922			       phy_id, phy->addr);
 923			/* At the time of this writing, The M88 part is
 924			 * the only supported SGMII PHY product.
 925			 */
 926			if (phy_id == M88_VENDOR)
 927				break;
 928		} else {
 929			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 930		}
 931	}
 932
 933	/* A valid PHY type couldn't be found. */
 934	if (phy->addr == 8) {
 935		phy->addr = 0;
 936		ret_val = -E1000_ERR_PHY;
 937		goto out;
 938	} else {
 939		ret_val = igb_get_phy_id(hw);
 940	}
 941
 942	/* restore previous sfp cage power state */
 943	wr32(E1000_CTRL_EXT, ctrl_ext);
 944
 945out:
 946	return ret_val;
 947}
 948
 949/**
 950 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Resets the PHY using the serial gigabit media independent interface.
 954 **/
 955static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 956{
 957	struct e1000_phy_info *phy = &hw->phy;
 958	s32 ret_val;
 959
 960	/* This isn't a true "hard" reset, but is the only reset
 961	 * available to us at this time.
 962	 */
 963
 964	hw_dbg("Soft resetting SGMII attached PHY...\n");
 965
 966	/* SFP documentation requires the following to configure the SPF module
 967	 * to work on SGMII.  No further documentation is given.
 968	 */
 969	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 970	if (ret_val)
 971		goto out;
 972
 973	ret_val = igb_phy_sw_reset(hw);
 974	if (ret_val)
 975		goto out;
 976
 977	if (phy->id == M88E1512_E_PHY_ID)
 978		ret_val = igb_initialize_M88E1512_phy(hw);
 979	if (phy->id == M88E1543_E_PHY_ID)
 980		ret_val = igb_initialize_M88E1543_phy(hw);
 981out:
 982	return ret_val;
 983}
 984
 985/**
 986 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 987 *  @hw: pointer to the HW structure
 988 *  @active: true to enable LPLU, false to disable
 989 *
 990 *  Sets the LPLU D0 state according to the active flag.  When
 991 *  activating LPLU this function also disables smart speed
 992 *  and vice versa.  LPLU will not be activated unless the
 993 *  device autonegotiation advertisement meets standards of
 994 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 995 *  This is a function pointer entry point only called by
 996 *  PHY setup routines.
 997 **/
 998static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 999{
1000	struct e1000_phy_info *phy = &hw->phy;
1001	s32 ret_val;
1002	u16 data;
1003
1004	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1005	if (ret_val)
1006		goto out;
1007
1008	if (active) {
1009		data |= IGP02E1000_PM_D0_LPLU;
1010		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1011						 data);
1012		if (ret_val)
1013			goto out;
1014
1015		/* When LPLU is enabled, we should disable SmartSpeed */
1016		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1017						&data);
1018		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1019		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1020						 data);
1021		if (ret_val)
1022			goto out;
1023	} else {
1024		data &= ~IGP02E1000_PM_D0_LPLU;
1025		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1026						 data);
1027		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1028		 * during Dx states where the power conservation is most
1029		 * important.  During driver activity we should enable
1030		 * SmartSpeed, so performance is maintained.
1031		 */
1032		if (phy->smart_speed == e1000_smart_speed_on) {
1033			ret_val = phy->ops.read_reg(hw,
1034					IGP01E1000_PHY_PORT_CONFIG, &data);
1035			if (ret_val)
1036				goto out;
1037
1038			data |= IGP01E1000_PSCFR_SMART_SPEED;
1039			ret_val = phy->ops.write_reg(hw,
1040					IGP01E1000_PHY_PORT_CONFIG, data);
1041			if (ret_val)
1042				goto out;
1043		} else if (phy->smart_speed == e1000_smart_speed_off) {
1044			ret_val = phy->ops.read_reg(hw,
1045					IGP01E1000_PHY_PORT_CONFIG, &data);
1046			if (ret_val)
1047				goto out;
1048
1049			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1050			ret_val = phy->ops.write_reg(hw,
1051					IGP01E1000_PHY_PORT_CONFIG, data);
1052			if (ret_val)
1053				goto out;
1054		}
1055	}
1056
1057out:
1058	return ret_val;
1059}
1060
1061/**
1062 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1063 *  @hw: pointer to the HW structure
1064 *  @active: true to enable LPLU, false to disable
1065 *
1066 *  Sets the LPLU D0 state according to the active flag.  When
1067 *  activating LPLU this function also disables smart speed
1068 *  and vice versa.  LPLU will not be activated unless the
1069 *  device autonegotiation advertisement meets standards of
1070 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1071 *  This is a function pointer entry point only called by
1072 *  PHY setup routines.
1073 **/
1074static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1075{
1076	struct e1000_phy_info *phy = &hw->phy;
1077	u16 data;
1078
1079	data = rd32(E1000_82580_PHY_POWER_MGMT);
1080
1081	if (active) {
1082		data |= E1000_82580_PM_D0_LPLU;
1083
1084		/* When LPLU is enabled, we should disable SmartSpeed */
1085		data &= ~E1000_82580_PM_SPD;
1086	} else {
1087		data &= ~E1000_82580_PM_D0_LPLU;
1088
1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090		 * during Dx states where the power conservation is most
1091		 * important.  During driver activity we should enable
1092		 * SmartSpeed, so performance is maintained.
1093		 */
1094		if (phy->smart_speed == e1000_smart_speed_on)
1095			data |= E1000_82580_PM_SPD;
1096		else if (phy->smart_speed == e1000_smart_speed_off)
1097			data &= ~E1000_82580_PM_SPD; }
1098
1099	wr32(E1000_82580_PHY_POWER_MGMT, data);
1100	return 0;
1101}
1102
1103/**
1104 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1105 *  @hw: pointer to the HW structure
1106 *  @active: boolean used to enable/disable lplu
1107 *
1108 *  Success returns 0, Failure returns 1
1109 *
1110 *  The low power link up (lplu) state is set to the power management level D3
1111 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1112 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1113 *  is used during Dx states where the power conservation is most important.
1114 *  During driver activity, SmartSpeed should be enabled so performance is
1115 *  maintained.
1116 **/
1117static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	u16 data;
1121
1122	data = rd32(E1000_82580_PHY_POWER_MGMT);
1123
1124	if (!active) {
1125		data &= ~E1000_82580_PM_D3_LPLU;
1126		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1127		 * during Dx states where the power conservation is most
1128		 * important.  During driver activity we should enable
1129		 * SmartSpeed, so performance is maintained.
1130		 */
1131		if (phy->smart_speed == e1000_smart_speed_on)
1132			data |= E1000_82580_PM_SPD;
1133		else if (phy->smart_speed == e1000_smart_speed_off)
1134			data &= ~E1000_82580_PM_SPD;
1135	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1136		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1137		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1138		data |= E1000_82580_PM_D3_LPLU;
1139		/* When LPLU is enabled, we should disable SmartSpeed */
1140		data &= ~E1000_82580_PM_SPD;
1141	}
1142
1143	wr32(E1000_82580_PHY_POWER_MGMT, data);
1144	return 0;
1145}
1146
1147/**
1148 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1149 *  @hw: pointer to the HW structure
1150 *
1151 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1152 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1153 *  Return successful if access grant bit set, else clear the request for
1154 *  EEPROM access and return -E1000_ERR_NVM (-1).
1155 **/
1156static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1157{
1158	s32 ret_val;
1159
1160	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1161	if (ret_val)
1162		goto out;
1163
1164	ret_val = igb_acquire_nvm(hw);
1165
1166	if (ret_val)
1167		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168
1169out:
1170	return ret_val;
1171}
1172
1173/**
1174 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1178 *  then release the semaphores acquired.
1179 **/
1180static void igb_release_nvm_82575(struct e1000_hw *hw)
1181{
1182	igb_release_nvm(hw);
1183	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1184}
1185
1186/**
1187 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1188 *  @hw: pointer to the HW structure
1189 *  @mask: specifies which semaphore to acquire
1190 *
1191 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1192 *  will also specify which port we're acquiring the lock for.
1193 **/
1194static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1195{
1196	u32 swfw_sync;
1197	u32 swmask = mask;
1198	u32 fwmask = mask << 16;
1199	s32 ret_val = 0;
1200	s32 i = 0, timeout = 200;
1201
1202	while (i < timeout) {
1203		if (igb_get_hw_semaphore(hw)) {
1204			ret_val = -E1000_ERR_SWFW_SYNC;
1205			goto out;
1206		}
1207
1208		swfw_sync = rd32(E1000_SW_FW_SYNC);
1209		if (!(swfw_sync & (fwmask | swmask)))
1210			break;
1211
1212		/* Firmware currently using resource (fwmask)
1213		 * or other software thread using resource (swmask)
1214		 */
1215		igb_put_hw_semaphore(hw);
1216		mdelay(5);
1217		i++;
1218	}
1219
1220	if (i == timeout) {
1221		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1222		ret_val = -E1000_ERR_SWFW_SYNC;
1223		goto out;
1224	}
1225
1226	swfw_sync |= swmask;
1227	wr32(E1000_SW_FW_SYNC, swfw_sync);
1228
1229	igb_put_hw_semaphore(hw);
1230
1231out:
1232	return ret_val;
1233}
1234
1235/**
1236 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1237 *  @hw: pointer to the HW structure
1238 *  @mask: specifies which semaphore to acquire
1239 *
1240 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1241 *  will also specify which port we're releasing the lock for.
1242 **/
1243static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1244{
1245	u32 swfw_sync;
1246
1247	while (igb_get_hw_semaphore(hw) != 0)
1248		; /* Empty */
1249
1250	swfw_sync = rd32(E1000_SW_FW_SYNC);
1251	swfw_sync &= ~mask;
1252	wr32(E1000_SW_FW_SYNC, swfw_sync);
1253
1254	igb_put_hw_semaphore(hw);
1255}
1256
1257/**
1258 *  igb_get_cfg_done_82575 - Read config done bit
1259 *  @hw: pointer to the HW structure
1260 *
1261 *  Read the management control register for the config done bit for
1262 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1263 *  to read the config done bit, so an error is *ONLY* logged and returns
1264 *  0.  If we were to return with error, EEPROM-less silicon
1265 *  would not be able to be reset or change link.
1266 **/
1267static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1268{
1269	s32 timeout = PHY_CFG_TIMEOUT;
1270	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1271
1272	if (hw->bus.func == 1)
1273		mask = E1000_NVM_CFG_DONE_PORT_1;
1274	else if (hw->bus.func == E1000_FUNC_2)
1275		mask = E1000_NVM_CFG_DONE_PORT_2;
1276	else if (hw->bus.func == E1000_FUNC_3)
1277		mask = E1000_NVM_CFG_DONE_PORT_3;
1278
1279	while (timeout) {
1280		if (rd32(E1000_EEMNGCTL) & mask)
1281			break;
1282		usleep_range(1000, 2000);
1283		timeout--;
1284	}
1285	if (!timeout)
1286		hw_dbg("MNG configuration cycle has not completed.\n");
1287
1288	/* If EEPROM is not marked present, init the PHY manually */
1289	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1290	    (hw->phy.type == e1000_phy_igp_3))
1291		igb_phy_init_script_igp3(hw);
1292
1293	return 0;
1294}
1295
1296/**
1297 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1298 *  @hw: pointer to the HW structure
1299 *  @speed: stores the current speed
1300 *  @duplex: stores the current duplex
1301 *
1302 *  This is a wrapper function, if using the serial gigabit media independent
1303 *  interface, use PCS to retrieve the link speed and duplex information.
1304 *  Otherwise, use the generic function to get the link speed and duplex info.
1305 **/
1306static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1307					u16 *duplex)
1308{
1309	s32 ret_val;
1310
1311	if (hw->phy.media_type != e1000_media_type_copper)
1312		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1313							       duplex);
1314	else
1315		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1316								    duplex);
1317
1318	return ret_val;
1319}
1320
1321/**
1322 *  igb_check_for_link_82575 - Check for link
1323 *  @hw: pointer to the HW structure
1324 *
1325 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1326 *  use the generic interface for determining link.
1327 **/
1328static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1329{
1330	s32 ret_val;
1331	u16 speed, duplex;
1332
1333	if (hw->phy.media_type != e1000_media_type_copper) {
1334		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1335							     &duplex);
1336		/* Use this flag to determine if link needs to be checked or
1337		 * not.  If  we have link clear the flag so that we do not
1338		 * continue to check for link.
1339		 */
1340		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1341
1342		/* Configure Flow Control now that Auto-Neg has completed.
1343		 * First, we need to restore the desired flow control
1344		 * settings because we may have had to re-autoneg with a
1345		 * different link partner.
1346		 */
1347		ret_val = igb_config_fc_after_link_up(hw);
1348		if (ret_val)
1349			hw_dbg("Error configuring flow control\n");
1350	} else {
1351		ret_val = igb_check_for_copper_link(hw);
1352	}
1353
1354	return ret_val;
1355}
1356
1357/**
1358 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1359 *  @hw: pointer to the HW structure
1360 **/
1361void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1362{
1363	u32 reg;
1364
1365
1366	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1367	    !igb_sgmii_active_82575(hw))
1368		return;
1369
1370	/* Enable PCS to turn on link */
1371	reg = rd32(E1000_PCS_CFG0);
1372	reg |= E1000_PCS_CFG_PCS_EN;
1373	wr32(E1000_PCS_CFG0, reg);
1374
1375	/* Power up the laser */
1376	reg = rd32(E1000_CTRL_EXT);
1377	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1378	wr32(E1000_CTRL_EXT, reg);
1379
1380	/* flush the write to verify completion */
1381	wrfl();
1382	usleep_range(1000, 2000);
1383}
1384
1385/**
1386 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1387 *  @hw: pointer to the HW structure
1388 *  @speed: stores the current speed
1389 *  @duplex: stores the current duplex
1390 *
1391 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1392 *  duplex, then store the values in the pointers provided.
1393 **/
1394static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1395						u16 *duplex)
1396{
1397	struct e1000_mac_info *mac = &hw->mac;
1398	u32 pcs, status;
1399
1400	/* Set up defaults for the return values of this function */
1401	mac->serdes_has_link = false;
1402	*speed = 0;
1403	*duplex = 0;
1404
1405	/* Read the PCS Status register for link state. For non-copper mode,
1406	 * the status register is not accurate. The PCS status register is
1407	 * used instead.
1408	 */
1409	pcs = rd32(E1000_PCS_LSTAT);
1410
1411	/* The link up bit determines when link is up on autoneg. The sync ok
1412	 * gets set once both sides sync up and agree upon link. Stable link
1413	 * can be determined by checking for both link up and link sync ok
1414	 */
1415	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1416		mac->serdes_has_link = true;
1417
1418		/* Detect and store PCS speed */
1419		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1420			*speed = SPEED_1000;
1421		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1422			*speed = SPEED_100;
1423		else
1424			*speed = SPEED_10;
1425
1426		/* Detect and store PCS duplex */
1427		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1428			*duplex = FULL_DUPLEX;
1429		else
1430			*duplex = HALF_DUPLEX;
1431
1432	/* Check if it is an I354 2.5Gb backplane connection. */
1433		if (mac->type == e1000_i354) {
1434			status = rd32(E1000_STATUS);
1435			if ((status & E1000_STATUS_2P5_SKU) &&
1436			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1437				*speed = SPEED_2500;
1438				*duplex = FULL_DUPLEX;
1439				hw_dbg("2500 Mbs, ");
1440				hw_dbg("Full Duplex\n");
1441			}
1442		}
1443
1444	}
1445
1446	return 0;
1447}
1448
1449/**
1450 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1451 *  @hw: pointer to the HW structure
1452 *
1453 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1454 *  when management pass thru is not enabled.
1455 **/
1456void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1457{
1458	u32 reg;
1459
1460	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1461	    igb_sgmii_active_82575(hw))
1462		return;
1463
1464	if (!igb_enable_mng_pass_thru(hw)) {
1465		/* Disable PCS to turn off link */
1466		reg = rd32(E1000_PCS_CFG0);
1467		reg &= ~E1000_PCS_CFG_PCS_EN;
1468		wr32(E1000_PCS_CFG0, reg);
1469
1470		/* shutdown the laser */
1471		reg = rd32(E1000_CTRL_EXT);
1472		reg |= E1000_CTRL_EXT_SDP3_DATA;
1473		wr32(E1000_CTRL_EXT, reg);
1474
1475		/* flush the write to verify completion */
1476		wrfl();
1477		usleep_range(1000, 2000);
1478	}
1479}
1480
1481/**
1482 *  igb_reset_hw_82575 - Reset hardware
1483 *  @hw: pointer to the HW structure
1484 *
1485 *  This resets the hardware into a known state.  This is a
1486 *  function pointer entry point called by the api module.
1487 **/
1488static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1489{
1490	u32 ctrl;
1491	s32 ret_val;
1492
1493	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1494	 * on the last TLP read/write transaction when MAC is reset.
1495	 */
1496	ret_val = igb_disable_pcie_master(hw);
1497	if (ret_val)
1498		hw_dbg("PCI-E Master disable polling has failed.\n");
1499
1500	/* set the completion timeout for interface */
1501	ret_val = igb_set_pcie_completion_timeout(hw);
1502	if (ret_val)
1503		hw_dbg("PCI-E Set completion timeout has failed.\n");
1504
1505	hw_dbg("Masking off all interrupts\n");
1506	wr32(E1000_IMC, 0xffffffff);
1507
1508	wr32(E1000_RCTL, 0);
1509	wr32(E1000_TCTL, E1000_TCTL_PSP);
1510	wrfl();
1511
1512	usleep_range(10000, 20000);
1513
1514	ctrl = rd32(E1000_CTRL);
1515
1516	hw_dbg("Issuing a global reset to MAC\n");
1517	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1518
1519	ret_val = igb_get_auto_rd_done(hw);
1520	if (ret_val) {
1521		/* When auto config read does not complete, do not
1522		 * return with an error. This can happen in situations
1523		 * where there is no eeprom and prevents getting link.
1524		 */
1525		hw_dbg("Auto Read Done did not complete\n");
1526	}
1527
1528	/* If EEPROM is not present, run manual init scripts */
1529	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1530		igb_reset_init_script_82575(hw);
1531
1532	/* Clear any pending interrupt events. */
1533	wr32(E1000_IMC, 0xffffffff);
1534	rd32(E1000_ICR);
1535
1536	/* Install any alternate MAC address into RAR0 */
1537	ret_val = igb_check_alt_mac_addr(hw);
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  igb_init_hw_82575 - Initialize hardware
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  This inits the hardware readying it for operation.
1547 **/
1548static s32 igb_init_hw_82575(struct e1000_hw *hw)
1549{
1550	struct e1000_mac_info *mac = &hw->mac;
1551	s32 ret_val;
1552	u16 i, rar_count = mac->rar_entry_count;
1553
1554	if ((hw->mac.type >= e1000_i210) &&
1555	    !(igb_get_flash_presence_i210(hw))) {
1556		ret_val = igb_pll_workaround_i210(hw);
1557		if (ret_val)
1558			return ret_val;
1559	}
1560
1561	/* Initialize identification LED */
1562	ret_val = igb_id_led_init(hw);
1563	if (ret_val) {
1564		hw_dbg("Error initializing identification LED\n");
1565		/* This is not fatal and we should not stop init due to this */
1566	}
1567
1568	/* Disabling VLAN filtering */
1569	hw_dbg("Initializing the IEEE VLAN\n");
1570	igb_clear_vfta(hw);
1571
1572	/* Setup the receive address */
1573	igb_init_rx_addrs(hw, rar_count);
1574
1575	/* Zero out the Multicast HASH table */
1576	hw_dbg("Zeroing the MTA\n");
1577	for (i = 0; i < mac->mta_reg_count; i++)
1578		array_wr32(E1000_MTA, i, 0);
1579
1580	/* Zero out the Unicast HASH table */
1581	hw_dbg("Zeroing the UTA\n");
1582	for (i = 0; i < mac->uta_reg_count; i++)
1583		array_wr32(E1000_UTA, i, 0);
1584
1585	/* Setup link and flow control */
1586	ret_val = igb_setup_link(hw);
1587
1588	/* Clear all of the statistics registers (clear on read).  It is
1589	 * important that we do this after we have tried to establish link
1590	 * because the symbol error count will increment wildly if there
1591	 * is no link.
1592	 */
1593	igb_clear_hw_cntrs_82575(hw);
1594	return ret_val;
1595}
1596
1597/**
1598 *  igb_setup_copper_link_82575 - Configure copper link settings
1599 *  @hw: pointer to the HW structure
1600 *
1601 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1602 *  for link, once link is established calls to configure collision distance
1603 *  and flow control are called.
1604 **/
1605static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1606{
1607	u32 ctrl;
1608	s32  ret_val;
1609	u32 phpm_reg;
1610
1611	ctrl = rd32(E1000_CTRL);
1612	ctrl |= E1000_CTRL_SLU;
1613	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1614	wr32(E1000_CTRL, ctrl);
1615
1616	/* Clear Go Link Disconnect bit on supported devices */
1617	switch (hw->mac.type) {
1618	case e1000_82580:
1619	case e1000_i350:
1620	case e1000_i210:
1621	case e1000_i211:
1622		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1623		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1624		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1625		break;
1626	default:
1627		break;
1628	}
1629
1630	ret_val = igb_setup_serdes_link_82575(hw);
1631	if (ret_val)
1632		goto out;
1633
1634	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1635		/* allow time for SFP cage time to power up phy */
1636		msleep(300);
1637
1638		ret_val = hw->phy.ops.reset(hw);
1639		if (ret_val) {
1640			hw_dbg("Error resetting the PHY.\n");
1641			goto out;
1642		}
1643	}
1644	switch (hw->phy.type) {
1645	case e1000_phy_i210:
1646	case e1000_phy_m88:
1647		switch (hw->phy.id) {
1648		case I347AT4_E_PHY_ID:
1649		case M88E1112_E_PHY_ID:
1650		case M88E1543_E_PHY_ID:
1651		case M88E1512_E_PHY_ID:
1652		case I210_I_PHY_ID:
1653			ret_val = igb_copper_link_setup_m88_gen2(hw);
1654			break;
1655		default:
1656			ret_val = igb_copper_link_setup_m88(hw);
1657			break;
1658		}
1659		break;
1660	case e1000_phy_igp_3:
1661		ret_val = igb_copper_link_setup_igp(hw);
1662		break;
1663	case e1000_phy_82580:
1664		ret_val = igb_copper_link_setup_82580(hw);
1665		break;
1666	case e1000_phy_bcm54616:
1667		ret_val = 0;
1668		break;
1669	default:
1670		ret_val = -E1000_ERR_PHY;
1671		break;
1672	}
1673
1674	if (ret_val)
1675		goto out;
1676
1677	ret_val = igb_setup_copper_link(hw);
1678out:
1679	return ret_val;
1680}
1681
1682/**
1683 *  igb_setup_serdes_link_82575 - Setup link for serdes
1684 *  @hw: pointer to the HW structure
1685 *
1686 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1687 *  used on copper connections where the serialized gigabit media independent
1688 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1689 *  for auto-negotiation or forces speed/duplex.
1690 **/
1691static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1692{
1693	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1694	bool pcs_autoneg;
1695	s32 ret_val = 0;
1696	u16 data;
1697
1698	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1699	    !igb_sgmii_active_82575(hw))
1700		return ret_val;
1701
1702
1703	/* On the 82575, SerDes loopback mode persists until it is
1704	 * explicitly turned off or a power cycle is performed.  A read to
1705	 * the register does not indicate its status.  Therefore, we ensure
1706	 * loopback mode is disabled during initialization.
1707	 */
1708	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1709
1710	/* power on the sfp cage if present and turn on I2C */
1711	ctrl_ext = rd32(E1000_CTRL_EXT);
1712	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1713	ctrl_ext |= E1000_CTRL_I2C_ENA;
1714	wr32(E1000_CTRL_EXT, ctrl_ext);
1715
1716	ctrl_reg = rd32(E1000_CTRL);
1717	ctrl_reg |= E1000_CTRL_SLU;
1718
1719	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1720		/* set both sw defined pins */
1721		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1722
1723		/* Set switch control to serdes energy detect */
1724		reg = rd32(E1000_CONNSW);
1725		reg |= E1000_CONNSW_ENRGSRC;
1726		wr32(E1000_CONNSW, reg);
1727	}
1728
1729	reg = rd32(E1000_PCS_LCTL);
1730
1731	/* default pcs_autoneg to the same setting as mac autoneg */
1732	pcs_autoneg = hw->mac.autoneg;
1733
1734	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1735	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1736		/* sgmii mode lets the phy handle forcing speed/duplex */
1737		pcs_autoneg = true;
1738		/* autoneg time out should be disabled for SGMII mode */
1739		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1740		break;
1741	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1742		/* disable PCS autoneg and support parallel detect only */
1743		pcs_autoneg = false;
 
1744	default:
1745		if (hw->mac.type == e1000_82575 ||
1746		    hw->mac.type == e1000_82576) {
1747			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1748			if (ret_val) {
1749				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1750				return ret_val;
1751			}
1752
1753			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1754				pcs_autoneg = false;
1755		}
1756
1757		/* non-SGMII modes only supports a speed of 1000/Full for the
1758		 * link so it is best to just force the MAC and let the pcs
1759		 * link either autoneg or be forced to 1000/Full
1760		 */
1761		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1762				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1763
1764		/* set speed of 1000/Full if speed/duplex is forced */
1765		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1766		break;
1767	}
1768
1769	wr32(E1000_CTRL, ctrl_reg);
1770
1771	/* New SerDes mode allows for forcing speed or autonegotiating speed
1772	 * at 1gb. Autoneg should be default set by most drivers. This is the
1773	 * mode that will be compatible with older link partners and switches.
1774	 * However, both are supported by the hardware and some drivers/tools.
1775	 */
1776	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1777		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1778
1779	if (pcs_autoneg) {
1780		/* Set PCS register for autoneg */
1781		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1782		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1783
1784		/* Disable force flow control for autoneg */
1785		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1786
1787		/* Configure flow control advertisement for autoneg */
1788		anadv_reg = rd32(E1000_PCS_ANADV);
1789		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1790		switch (hw->fc.requested_mode) {
1791		case e1000_fc_full:
1792		case e1000_fc_rx_pause:
1793			anadv_reg |= E1000_TXCW_ASM_DIR;
1794			anadv_reg |= E1000_TXCW_PAUSE;
1795			break;
1796		case e1000_fc_tx_pause:
1797			anadv_reg |= E1000_TXCW_ASM_DIR;
1798			break;
1799		default:
1800			break;
1801		}
1802		wr32(E1000_PCS_ANADV, anadv_reg);
1803
1804		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1805	} else {
1806		/* Set PCS register for forced link */
1807		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1808
1809		/* Force flow control for forced link */
1810		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1811
1812		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1813	}
1814
1815	wr32(E1000_PCS_LCTL, reg);
1816
1817	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1818		igb_force_mac_fc(hw);
1819
1820	return ret_val;
1821}
1822
1823/**
1824 *  igb_sgmii_active_82575 - Return sgmii state
1825 *  @hw: pointer to the HW structure
1826 *
1827 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1828 *  which can be enabled for use in the embedded applications.  Simply
1829 *  return the current state of the sgmii interface.
1830 **/
1831static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1832{
1833	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1834	return dev_spec->sgmii_active;
1835}
1836
1837/**
1838 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1839 *  @hw: pointer to the HW structure
1840 *
1841 *  Inits recommended HW defaults after a reset when there is no EEPROM
1842 *  detected. This is only for the 82575.
1843 **/
1844static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1845{
1846	if (hw->mac.type == e1000_82575) {
1847		hw_dbg("Running reset init script for 82575\n");
1848		/* SerDes configuration via SERDESCTRL */
1849		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1850		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1851		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1852		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1853
1854		/* CCM configuration via CCMCTL register */
1855		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1856		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1857
1858		/* PCIe lanes configuration */
1859		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1860		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1861		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1862		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1863
1864		/* PCIe PLL Configuration */
1865		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1866		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1867		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1868	}
1869
1870	return 0;
1871}
1872
1873/**
1874 *  igb_read_mac_addr_82575 - Read device MAC address
1875 *  @hw: pointer to the HW structure
1876 **/
1877static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1878{
1879	s32 ret_val = 0;
1880
1881	/* If there's an alternate MAC address place it in RAR0
1882	 * so that it will override the Si installed default perm
1883	 * address.
1884	 */
1885	ret_val = igb_check_alt_mac_addr(hw);
1886	if (ret_val)
1887		goto out;
1888
1889	ret_val = igb_read_mac_addr(hw);
1890
1891out:
1892	return ret_val;
1893}
1894
1895/**
1896 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1897 * @hw: pointer to the HW structure
1898 *
1899 * In the case of a PHY power down to save power, or to turn off link during a
1900 * driver unload, or wake on lan is not enabled, remove the link.
1901 **/
1902void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1903{
1904	/* If the management interface is not enabled, then power down */
1905	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1906		igb_power_down_phy_copper(hw);
1907}
1908
1909/**
1910 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1911 *  @hw: pointer to the HW structure
1912 *
1913 *  Clears the hardware counters by reading the counter registers.
1914 **/
1915static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1916{
1917	igb_clear_hw_cntrs_base(hw);
1918
1919	rd32(E1000_PRC64);
1920	rd32(E1000_PRC127);
1921	rd32(E1000_PRC255);
1922	rd32(E1000_PRC511);
1923	rd32(E1000_PRC1023);
1924	rd32(E1000_PRC1522);
1925	rd32(E1000_PTC64);
1926	rd32(E1000_PTC127);
1927	rd32(E1000_PTC255);
1928	rd32(E1000_PTC511);
1929	rd32(E1000_PTC1023);
1930	rd32(E1000_PTC1522);
1931
1932	rd32(E1000_ALGNERRC);
1933	rd32(E1000_RXERRC);
1934	rd32(E1000_TNCRS);
1935	rd32(E1000_CEXTERR);
1936	rd32(E1000_TSCTC);
1937	rd32(E1000_TSCTFC);
1938
1939	rd32(E1000_MGTPRC);
1940	rd32(E1000_MGTPDC);
1941	rd32(E1000_MGTPTC);
1942
1943	rd32(E1000_IAC);
1944	rd32(E1000_ICRXOC);
1945
1946	rd32(E1000_ICRXPTC);
1947	rd32(E1000_ICRXATC);
1948	rd32(E1000_ICTXPTC);
1949	rd32(E1000_ICTXATC);
1950	rd32(E1000_ICTXQEC);
1951	rd32(E1000_ICTXQMTC);
1952	rd32(E1000_ICRXDMTC);
1953
1954	rd32(E1000_CBTMPC);
1955	rd32(E1000_HTDPMC);
1956	rd32(E1000_CBRMPC);
1957	rd32(E1000_RPTHC);
1958	rd32(E1000_HGPTC);
1959	rd32(E1000_HTCBDPC);
1960	rd32(E1000_HGORCL);
1961	rd32(E1000_HGORCH);
1962	rd32(E1000_HGOTCL);
1963	rd32(E1000_HGOTCH);
1964	rd32(E1000_LENERRS);
1965
1966	/* This register should not be read in copper configurations */
1967	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1968	    igb_sgmii_active_82575(hw))
1969		rd32(E1000_SCVPC);
1970}
1971
1972/**
1973 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1974 *  @hw: pointer to the HW structure
1975 *
1976 *  After rx enable if manageability is enabled then there is likely some
1977 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1978 *  function clears the fifos and flushes any packets that came in as rx was
1979 *  being enabled.
1980 **/
1981void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1982{
1983	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1984	int i, ms_wait;
1985
1986	/* disable IPv6 options as per hardware errata */
1987	rfctl = rd32(E1000_RFCTL);
1988	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1989	wr32(E1000_RFCTL, rfctl);
1990
1991	if (hw->mac.type != e1000_82575 ||
1992	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1993		return;
1994
1995	/* Disable all RX queues */
1996	for (i = 0; i < 4; i++) {
1997		rxdctl[i] = rd32(E1000_RXDCTL(i));
1998		wr32(E1000_RXDCTL(i),
1999		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
2000	}
2001	/* Poll all queues to verify they have shut down */
2002	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2003		usleep_range(1000, 2000);
2004		rx_enabled = 0;
2005		for (i = 0; i < 4; i++)
2006			rx_enabled |= rd32(E1000_RXDCTL(i));
2007		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2008			break;
2009	}
2010
2011	if (ms_wait == 10)
2012		hw_dbg("Queue disable timed out after 10ms\n");
2013
2014	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2015	 * incoming packets are rejected.  Set enable and wait 2ms so that
2016	 * any packet that was coming in as RCTL.EN was set is flushed
2017	 */
2018	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2019
2020	rlpml = rd32(E1000_RLPML);
2021	wr32(E1000_RLPML, 0);
2022
2023	rctl = rd32(E1000_RCTL);
2024	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2025	temp_rctl |= E1000_RCTL_LPE;
2026
2027	wr32(E1000_RCTL, temp_rctl);
2028	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2029	wrfl();
2030	usleep_range(2000, 3000);
2031
2032	/* Enable RX queues that were previously enabled and restore our
2033	 * previous state
2034	 */
2035	for (i = 0; i < 4; i++)
2036		wr32(E1000_RXDCTL(i), rxdctl[i]);
2037	wr32(E1000_RCTL, rctl);
2038	wrfl();
2039
2040	wr32(E1000_RLPML, rlpml);
2041	wr32(E1000_RFCTL, rfctl);
2042
2043	/* Flush receive errors generated by workaround */
2044	rd32(E1000_ROC);
2045	rd32(E1000_RNBC);
2046	rd32(E1000_MPC);
2047}
2048
2049/**
2050 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2051 *  @hw: pointer to the HW structure
2052 *
2053 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2054 *  however the hardware default for these parts is 500us to 1ms which is less
2055 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2056 *  increase the value to either 10ms to 200ms for capability version 1 config,
2057 *  or 16ms to 55ms for version 2.
2058 **/
2059static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2060{
2061	u32 gcr = rd32(E1000_GCR);
2062	s32 ret_val = 0;
2063	u16 pcie_devctl2;
2064
2065	/* only take action if timeout value is defaulted to 0 */
2066	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2067		goto out;
2068
2069	/* if capabilities version is type 1 we can write the
2070	 * timeout of 10ms to 200ms through the GCR register
2071	 */
2072	if (!(gcr & E1000_GCR_CAP_VER2)) {
2073		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2074		goto out;
2075	}
2076
2077	/* for version 2 capabilities we need to write the config space
2078	 * directly in order to set the completion timeout value for
2079	 * 16ms to 55ms
2080	 */
2081	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2082					&pcie_devctl2);
2083	if (ret_val)
2084		goto out;
2085
2086	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2087
2088	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2089					 &pcie_devctl2);
2090out:
2091	/* disable completion timeout resend */
2092	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2093
2094	wr32(E1000_GCR, gcr);
2095	return ret_val;
2096}
2097
2098/**
2099 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2100 *  @hw: pointer to the hardware struct
2101 *  @enable: state to enter, either enabled or disabled
2102 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2103 *
2104 *  enables/disables L2 switch anti-spoofing functionality.
2105 **/
2106void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2107{
2108	u32 reg_val, reg_offset;
2109
2110	switch (hw->mac.type) {
2111	case e1000_82576:
2112		reg_offset = E1000_DTXSWC;
2113		break;
2114	case e1000_i350:
2115	case e1000_i354:
2116		reg_offset = E1000_TXSWC;
2117		break;
2118	default:
2119		return;
2120	}
2121
2122	reg_val = rd32(reg_offset);
2123	if (enable) {
2124		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2125			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2126		/* The PF can spoof - it has to in order to
2127		 * support emulation mode NICs
2128		 */
2129		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2130	} else {
2131		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2132			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2133	}
2134	wr32(reg_offset, reg_val);
2135}
2136
2137/**
2138 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables L2 switch loopback functionality.
2143 **/
2144void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2145{
2146	u32 dtxswc;
2147
2148	switch (hw->mac.type) {
2149	case e1000_82576:
2150		dtxswc = rd32(E1000_DTXSWC);
2151		if (enable)
2152			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2153		else
2154			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2155		wr32(E1000_DTXSWC, dtxswc);
2156		break;
2157	case e1000_i354:
2158	case e1000_i350:
2159		dtxswc = rd32(E1000_TXSWC);
2160		if (enable)
2161			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2162		else
2163			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2164		wr32(E1000_TXSWC, dtxswc);
2165		break;
2166	default:
2167		/* Currently no other hardware supports loopback */
2168		break;
2169	}
2170
2171}
2172
2173/**
2174 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2175 *  @hw: pointer to the hardware struct
2176 *  @enable: state to enter, either enabled or disabled
2177 *
2178 *  enables/disables replication of packets across multiple pools.
2179 **/
2180void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2181{
2182	u32 vt_ctl = rd32(E1000_VT_CTL);
2183
2184	if (enable)
2185		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2186	else
2187		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2188
2189	wr32(E1000_VT_CTL, vt_ctl);
2190}
2191
2192/**
2193 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2194 *  @hw: pointer to the HW structure
2195 *  @offset: register offset to be read
2196 *  @data: pointer to the read data
2197 *
2198 *  Reads the MDI control register in the PHY at offset and stores the
2199 *  information read to data.
2200 **/
2201s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2202{
2203	s32 ret_val;
2204
2205	ret_val = hw->phy.ops.acquire(hw);
2206	if (ret_val)
2207		goto out;
2208
2209	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2210
2211	hw->phy.ops.release(hw);
2212
2213out:
2214	return ret_val;
2215}
2216
2217/**
2218 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2219 *  @hw: pointer to the HW structure
2220 *  @offset: register offset to write to
2221 *  @data: data to write to register at offset
2222 *
2223 *  Writes data to MDI control register in the PHY at offset.
2224 **/
2225s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2226{
2227	s32 ret_val;
2228
2229
2230	ret_val = hw->phy.ops.acquire(hw);
2231	if (ret_val)
2232		goto out;
2233
2234	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2235
2236	hw->phy.ops.release(hw);
2237
2238out:
2239	return ret_val;
2240}
2241
2242/**
2243 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2244 *  @hw: pointer to the HW structure
2245 *
2246 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2247 *  the values found in the EEPROM.  This addresses an issue in which these
2248 *  bits are not restored from EEPROM after reset.
2249 **/
2250static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2251{
2252	s32 ret_val = 0;
2253	u32 mdicnfg;
2254	u16 nvm_data = 0;
2255
2256	if (hw->mac.type != e1000_82580)
2257		goto out;
2258	if (!igb_sgmii_active_82575(hw))
2259		goto out;
2260
2261	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2262				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2263				   &nvm_data);
2264	if (ret_val) {
2265		hw_dbg("NVM Read Error\n");
2266		goto out;
2267	}
2268
2269	mdicnfg = rd32(E1000_MDICNFG);
2270	if (nvm_data & NVM_WORD24_EXT_MDIO)
2271		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2272	if (nvm_data & NVM_WORD24_COM_MDIO)
2273		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2274	wr32(E1000_MDICNFG, mdicnfg);
2275out:
2276	return ret_val;
2277}
2278
2279/**
2280 *  igb_reset_hw_82580 - Reset hardware
2281 *  @hw: pointer to the HW structure
2282 *
2283 *  This resets function or entire device (all ports, etc.)
2284 *  to a known state.
2285 **/
2286static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2287{
2288	s32 ret_val = 0;
2289	/* BH SW mailbox bit in SW_FW_SYNC */
2290	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2291	u32 ctrl;
2292	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2293
2294	hw->dev_spec._82575.global_device_reset = false;
2295
2296	/* due to hw errata, global device reset doesn't always
2297	 * work on 82580
2298	 */
2299	if (hw->mac.type == e1000_82580)
2300		global_device_reset = false;
2301
2302	/* Get current control state. */
2303	ctrl = rd32(E1000_CTRL);
2304
2305	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2306	 * on the last TLP read/write transaction when MAC is reset.
2307	 */
2308	ret_val = igb_disable_pcie_master(hw);
2309	if (ret_val)
2310		hw_dbg("PCI-E Master disable polling has failed.\n");
2311
2312	hw_dbg("Masking off all interrupts\n");
2313	wr32(E1000_IMC, 0xffffffff);
2314	wr32(E1000_RCTL, 0);
2315	wr32(E1000_TCTL, E1000_TCTL_PSP);
2316	wrfl();
2317
2318	usleep_range(10000, 11000);
2319
2320	/* Determine whether or not a global dev reset is requested */
2321	if (global_device_reset &&
2322		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2323			global_device_reset = false;
2324
2325	if (global_device_reset &&
2326		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2327		ctrl |= E1000_CTRL_DEV_RST;
2328	else
2329		ctrl |= E1000_CTRL_RST;
2330
2331	wr32(E1000_CTRL, ctrl);
2332	wrfl();
2333
2334	/* Add delay to insure DEV_RST has time to complete */
2335	if (global_device_reset)
2336		usleep_range(5000, 6000);
2337
2338	ret_val = igb_get_auto_rd_done(hw);
2339	if (ret_val) {
2340		/* When auto config read does not complete, do not
2341		 * return with an error. This can happen in situations
2342		 * where there is no eeprom and prevents getting link.
2343		 */
2344		hw_dbg("Auto Read Done did not complete\n");
2345	}
2346
2347	/* clear global device reset status bit */
2348	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2349
2350	/* Clear any pending interrupt events. */
2351	wr32(E1000_IMC, 0xffffffff);
2352	rd32(E1000_ICR);
2353
2354	ret_val = igb_reset_mdicnfg_82580(hw);
2355	if (ret_val)
2356		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2357
2358	/* Install any alternate MAC address into RAR0 */
2359	ret_val = igb_check_alt_mac_addr(hw);
2360
2361	/* Release semaphore */
2362	if (global_device_reset)
2363		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2370 *  @data: data received by reading RXPBS register
2371 *
2372 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2373 *  This function converts the retrieved value into the correct table value
2374 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2375 *  0x0 36  72 144   1   2   4   8  16
2376 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2377 */
2378u16 igb_rxpbs_adjust_82580(u32 data)
2379{
2380	u16 ret_val = 0;
2381
2382	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2383		ret_val = e1000_82580_rxpbs_table[data];
2384
2385	return ret_val;
2386}
2387
2388/**
2389 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2390 *  checksum
2391 *  @hw: pointer to the HW structure
2392 *  @offset: offset in words of the checksum protected region
2393 *
2394 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2395 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2396 **/
2397static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2398						 u16 offset)
2399{
2400	s32 ret_val = 0;
2401	u16 checksum = 0;
2402	u16 i, nvm_data;
2403
2404	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2405		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2406		if (ret_val) {
2407			hw_dbg("NVM Read Error\n");
2408			goto out;
2409		}
2410		checksum += nvm_data;
2411	}
2412
2413	if (checksum != (u16) NVM_SUM) {
2414		hw_dbg("NVM Checksum Invalid\n");
2415		ret_val = -E1000_ERR_NVM;
2416		goto out;
2417	}
2418
2419out:
2420	return ret_val;
2421}
2422
2423/**
2424 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2425 *  checksum
2426 *  @hw: pointer to the HW structure
2427 *  @offset: offset in words of the checksum protected region
2428 *
2429 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2430 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2431 *  value to the EEPROM.
2432 **/
2433static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2434{
2435	s32 ret_val;
2436	u16 checksum = 0;
2437	u16 i, nvm_data;
2438
2439	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2440		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2441		if (ret_val) {
2442			hw_dbg("NVM Read Error while updating checksum.\n");
2443			goto out;
2444		}
2445		checksum += nvm_data;
2446	}
2447	checksum = (u16) NVM_SUM - checksum;
2448	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2449				&checksum);
2450	if (ret_val)
2451		hw_dbg("NVM Write Error while updating checksum.\n");
2452
2453out:
2454	return ret_val;
2455}
2456
2457/**
2458 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2459 *  @hw: pointer to the HW structure
2460 *
2461 *  Calculates the EEPROM section checksum by reading/adding each word of
2462 *  the EEPROM and then verifies that the sum of the EEPROM is
2463 *  equal to 0xBABA.
2464 **/
2465static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2466{
2467	s32 ret_val = 0;
2468	u16 eeprom_regions_count = 1;
2469	u16 j, nvm_data;
2470	u16 nvm_offset;
2471
2472	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2473	if (ret_val) {
2474		hw_dbg("NVM Read Error\n");
2475		goto out;
2476	}
2477
2478	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2479		/* if checksums compatibility bit is set validate checksums
2480		 * for all 4 ports.
2481		 */
2482		eeprom_regions_count = 4;
2483	}
2484
2485	for (j = 0; j < eeprom_regions_count; j++) {
2486		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2487		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2488								nvm_offset);
2489		if (ret_val != 0)
2490			goto out;
2491	}
2492
2493out:
2494	return ret_val;
2495}
2496
2497/**
2498 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2499 *  @hw: pointer to the HW structure
2500 *
2501 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2502 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2503 *  checksum and writes the value to the EEPROM.
2504 **/
2505static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2506{
2507	s32 ret_val;
2508	u16 j, nvm_data;
2509	u16 nvm_offset;
2510
2511	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2512	if (ret_val) {
2513		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2514		goto out;
2515	}
2516
2517	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2518		/* set compatibility bit to validate checksums appropriately */
2519		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2520		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2521					&nvm_data);
2522		if (ret_val) {
2523			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2524			goto out;
2525		}
2526	}
2527
2528	for (j = 0; j < 4; j++) {
2529		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2530		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2531		if (ret_val)
2532			goto out;
2533	}
2534
2535out:
2536	return ret_val;
2537}
2538
2539/**
2540 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2541 *  @hw: pointer to the HW structure
2542 *
2543 *  Calculates the EEPROM section checksum by reading/adding each word of
2544 *  the EEPROM and then verifies that the sum of the EEPROM is
2545 *  equal to 0xBABA.
2546 **/
2547static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2548{
2549	s32 ret_val = 0;
2550	u16 j;
2551	u16 nvm_offset;
2552
2553	for (j = 0; j < 4; j++) {
2554		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2555		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2556								nvm_offset);
2557		if (ret_val != 0)
2558			goto out;
2559	}
2560
2561out:
2562	return ret_val;
2563}
2564
2565/**
2566 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2567 *  @hw: pointer to the HW structure
2568 *
2569 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2570 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2571 *  checksum and writes the value to the EEPROM.
2572 **/
2573static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2574{
2575	s32 ret_val = 0;
2576	u16 j;
2577	u16 nvm_offset;
2578
2579	for (j = 0; j < 4; j++) {
2580		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2581		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2582		if (ret_val != 0)
2583			goto out;
2584	}
2585
2586out:
2587	return ret_val;
2588}
2589
2590/**
2591 *  __igb_access_emi_reg - Read/write EMI register
2592 *  @hw: pointer to the HW structure
2593 *  @addr: EMI address to program
2594 *  @data: pointer to value to read/write from/to the EMI address
2595 *  @read: boolean flag to indicate read or write
2596 **/
2597static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2598				  u16 *data, bool read)
2599{
2600	s32 ret_val = 0;
2601
2602	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2603	if (ret_val)
2604		return ret_val;
2605
2606	if (read)
2607		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2608	else
2609		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2610
2611	return ret_val;
2612}
2613
2614/**
2615 *  igb_read_emi_reg - Read Extended Management Interface register
2616 *  @hw: pointer to the HW structure
2617 *  @addr: EMI address to program
2618 *  @data: value to be read from the EMI address
2619 **/
2620s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2621{
2622	return __igb_access_emi_reg(hw, addr, data, true);
2623}
2624
2625/**
2626 *  igb_set_eee_i350 - Enable/disable EEE support
2627 *  @hw: pointer to the HW structure
2628 *  @adv1G: boolean flag enabling 1G EEE advertisement
2629 *  @adv100m: boolean flag enabling 100M EEE advertisement
2630 *
2631 *  Enable/disable EEE based on setting in dev_spec structure.
2632 *
2633 **/
2634s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2635{
2636	u32 ipcnfg, eeer;
2637
2638	if ((hw->mac.type < e1000_i350) ||
2639	    (hw->phy.media_type != e1000_media_type_copper))
2640		goto out;
2641	ipcnfg = rd32(E1000_IPCNFG);
2642	eeer = rd32(E1000_EEER);
2643
2644	/* enable or disable per user setting */
2645	if (!(hw->dev_spec._82575.eee_disable)) {
2646		u32 eee_su = rd32(E1000_EEE_SU);
2647
2648		if (adv100M)
2649			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2650		else
2651			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2652
2653		if (adv1G)
2654			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2655		else
2656			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2657
2658		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2659			E1000_EEER_LPI_FC);
2660
2661		/* This bit should not be set in normal operation. */
2662		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2663			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2664
2665	} else {
2666		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2667			E1000_IPCNFG_EEE_100M_AN);
2668		eeer &= ~(E1000_EEER_TX_LPI_EN |
2669			E1000_EEER_RX_LPI_EN |
2670			E1000_EEER_LPI_FC);
2671	}
2672	wr32(E1000_IPCNFG, ipcnfg);
2673	wr32(E1000_EEER, eeer);
2674	rd32(E1000_IPCNFG);
2675	rd32(E1000_EEER);
2676out:
2677
2678	return 0;
2679}
2680
2681/**
2682 *  igb_set_eee_i354 - Enable/disable EEE support
2683 *  @hw: pointer to the HW structure
2684 *  @adv1G: boolean flag enabling 1G EEE advertisement
2685 *  @adv100m: boolean flag enabling 100M EEE advertisement
2686 *
2687 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2688 *
2689 **/
2690s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2691{
2692	struct e1000_phy_info *phy = &hw->phy;
2693	s32 ret_val = 0;
2694	u16 phy_data;
2695
2696	if ((hw->phy.media_type != e1000_media_type_copper) ||
2697	    ((phy->id != M88E1543_E_PHY_ID) &&
2698	     (phy->id != M88E1512_E_PHY_ID)))
2699		goto out;
2700
2701	if (!hw->dev_spec._82575.eee_disable) {
2702		/* Switch to PHY page 18. */
2703		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2704		if (ret_val)
2705			goto out;
2706
2707		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2708					    &phy_data);
2709		if (ret_val)
2710			goto out;
2711
2712		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2713		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2714					     phy_data);
2715		if (ret_val)
2716			goto out;
2717
2718		/* Return the PHY to page 0. */
2719		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2720		if (ret_val)
2721			goto out;
2722
2723		/* Turn on EEE advertisement. */
2724		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2725					     E1000_EEE_ADV_DEV_I354,
2726					     &phy_data);
2727		if (ret_val)
2728			goto out;
2729
2730		if (adv100M)
2731			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2732		else
2733			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2734
2735		if (adv1G)
2736			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2737		else
2738			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2739
2740		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2741						E1000_EEE_ADV_DEV_I354,
2742						phy_data);
2743	} else {
2744		/* Turn off EEE advertisement. */
2745		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2746					     E1000_EEE_ADV_DEV_I354,
2747					     &phy_data);
2748		if (ret_val)
2749			goto out;
2750
2751		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2752			      E1000_EEE_ADV_1000_SUPPORTED);
2753		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2754					      E1000_EEE_ADV_DEV_I354,
2755					      phy_data);
2756	}
2757
2758out:
2759	return ret_val;
2760}
2761
2762/**
2763 *  igb_get_eee_status_i354 - Get EEE status
2764 *  @hw: pointer to the HW structure
2765 *  @status: EEE status
2766 *
2767 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2768 *  been received.
2769 **/
2770s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2771{
2772	struct e1000_phy_info *phy = &hw->phy;
2773	s32 ret_val = 0;
2774	u16 phy_data;
2775
2776	/* Check if EEE is supported on this device. */
2777	if ((hw->phy.media_type != e1000_media_type_copper) ||
2778	    ((phy->id != M88E1543_E_PHY_ID) &&
2779	     (phy->id != M88E1512_E_PHY_ID)))
2780		goto out;
2781
2782	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2783				     E1000_PCS_STATUS_DEV_I354,
2784				     &phy_data);
2785	if (ret_val)
2786		goto out;
2787
2788	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2789			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2790
2791out:
2792	return ret_val;
2793}
2794
 
2795static const u8 e1000_emc_temp_data[4] = {
2796	E1000_EMC_INTERNAL_DATA,
2797	E1000_EMC_DIODE1_DATA,
2798	E1000_EMC_DIODE2_DATA,
2799	E1000_EMC_DIODE3_DATA
2800};
2801static const u8 e1000_emc_therm_limit[4] = {
2802	E1000_EMC_INTERNAL_THERM_LIMIT,
2803	E1000_EMC_DIODE1_THERM_LIMIT,
2804	E1000_EMC_DIODE2_THERM_LIMIT,
2805	E1000_EMC_DIODE3_THERM_LIMIT
2806};
2807
2808#ifdef CONFIG_IGB_HWMON
2809/**
2810 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2811 *  @hw: pointer to hardware structure
2812 *
2813 *  Updates the temperatures in mac.thermal_sensor_data
2814 **/
2815static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2816{
2817	u16 ets_offset;
2818	u16 ets_cfg;
2819	u16 ets_sensor;
2820	u8  num_sensors;
2821	u8  sensor_index;
2822	u8  sensor_location;
2823	u8  i;
2824	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2825
2826	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2827		return E1000_NOT_IMPLEMENTED;
2828
2829	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2830
2831	/* Return the internal sensor only if ETS is unsupported */
2832	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2833	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2834		return 0;
2835
2836	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2837	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2838	    != NVM_ETS_TYPE_EMC)
2839		return E1000_NOT_IMPLEMENTED;
2840
2841	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2842	if (num_sensors > E1000_MAX_SENSORS)
2843		num_sensors = E1000_MAX_SENSORS;
2844
2845	for (i = 1; i < num_sensors; i++) {
2846		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2847		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2848				NVM_ETS_DATA_INDEX_SHIFT);
2849		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2850				   NVM_ETS_DATA_LOC_SHIFT);
2851
2852		if (sensor_location != 0)
2853			hw->phy.ops.read_i2c_byte(hw,
2854					e1000_emc_temp_data[sensor_index],
2855					E1000_I2C_THERMAL_SENSOR_ADDR,
2856					&data->sensor[i].temp);
2857	}
2858	return 0;
2859}
2860
2861/**
2862 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2863 *  @hw: pointer to hardware structure
2864 *
2865 *  Sets the thermal sensor thresholds according to the NVM map
2866 *  and save off the threshold and location values into mac.thermal_sensor_data
2867 **/
2868static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2869{
2870	u16 ets_offset;
2871	u16 ets_cfg;
2872	u16 ets_sensor;
2873	u8  low_thresh_delta;
2874	u8  num_sensors;
2875	u8  sensor_index;
2876	u8  sensor_location;
2877	u8  therm_limit;
2878	u8  i;
2879	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2880
2881	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2882		return E1000_NOT_IMPLEMENTED;
2883
2884	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2885
2886	data->sensor[0].location = 0x1;
2887	data->sensor[0].caution_thresh =
2888		(rd32(E1000_THHIGHTC) & 0xFF);
2889	data->sensor[0].max_op_thresh =
2890		(rd32(E1000_THLOWTC) & 0xFF);
2891
2892	/* Return the internal sensor only if ETS is unsupported */
2893	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2894	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2895		return 0;
2896
2897	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2898	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2899	    != NVM_ETS_TYPE_EMC)
2900		return E1000_NOT_IMPLEMENTED;
2901
2902	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2903			    NVM_ETS_LTHRES_DELTA_SHIFT);
2904	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2905
2906	for (i = 1; i <= num_sensors; i++) {
2907		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2908		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2909				NVM_ETS_DATA_INDEX_SHIFT);
2910		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2911				   NVM_ETS_DATA_LOC_SHIFT);
2912		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2913
2914		hw->phy.ops.write_i2c_byte(hw,
2915			e1000_emc_therm_limit[sensor_index],
2916			E1000_I2C_THERMAL_SENSOR_ADDR,
2917			therm_limit);
2918
2919		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2920			data->sensor[i].location = sensor_location;
2921			data->sensor[i].caution_thresh = therm_limit;
2922			data->sensor[i].max_op_thresh = therm_limit -
2923							low_thresh_delta;
2924		}
2925	}
2926	return 0;
2927}
2928
2929#endif
2930static struct e1000_mac_operations e1000_mac_ops_82575 = {
2931	.init_hw              = igb_init_hw_82575,
2932	.check_for_link       = igb_check_for_link_82575,
2933	.rar_set              = igb_rar_set,
2934	.read_mac_addr        = igb_read_mac_addr_82575,
2935	.get_speed_and_duplex = igb_get_link_up_info_82575,
2936#ifdef CONFIG_IGB_HWMON
2937	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2938	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2939#endif
2940};
2941
2942static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2943	.acquire              = igb_acquire_phy_82575,
2944	.get_cfg_done         = igb_get_cfg_done_82575,
2945	.release              = igb_release_phy_82575,
2946	.write_i2c_byte       = igb_write_i2c_byte,
2947	.read_i2c_byte        = igb_read_i2c_byte,
2948};
2949
2950static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2951	.acquire              = igb_acquire_nvm_82575,
2952	.read                 = igb_read_nvm_eerd,
2953	.release              = igb_release_nvm_82575,
2954	.write                = igb_write_nvm_spi,
2955};
2956
2957const struct e1000_info e1000_82575_info = {
2958	.get_invariants = igb_get_invariants_82575,
2959	.mac_ops = &e1000_mac_ops_82575,
2960	.phy_ops = &e1000_phy_ops_82575,
2961	.nvm_ops = &e1000_nvm_ops_82575,
2962};
2963
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40						 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71	struct igb_adapter *adapter = hw->back;
  72	int i;
  73
  74	for (i = 10; i--;)
  75		array_wr32(E1000_VFTA, offset, value);
  76
  77	wrfl();
  78	adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101	case e1000_i354:
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	s32 ret_val;
 123	u16 data;
 124	u8 port = 0;
 125
 126	/* Check the copper medium. */
 127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128	if (ret_val)
 129		return ret_val;
 130
 131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132	if (ret_val)
 133		return ret_val;
 134
 135	if (data & E1000_M88E1112_STATUS_LINK)
 136		port = E1000_MEDIA_PORT_COPPER;
 137
 138	/* Check the other medium. */
 139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140	if (ret_val)
 141		return ret_val;
 142
 143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144	if (ret_val)
 145		return ret_val;
 146
 147
 148	if (data & E1000_M88E1112_STATUS_LINK)
 149		port = E1000_MEDIA_PORT_OTHER;
 150
 151	/* Determine if a swap needs to happen. */
 152	if (port && (hw->dev_spec._82575.media_port != port)) {
 153		hw->dev_spec._82575.media_port = port;
 154		hw->dev_spec._82575.media_changed = true;
 155	}
 156
 157	if (port == E1000_MEDIA_PORT_COPPER) {
 158		/* reset page to 0 */
 159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160		if (ret_val)
 161			return ret_val;
 162		igb_check_for_link_82575(hw);
 163	} else {
 164		igb_check_for_link_82575(hw);
 165		/* reset page to 0 */
 166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167		if (ret_val)
 168			return ret_val;
 169	}
 170
 171	return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180	struct e1000_phy_info *phy = &hw->phy;
 181	s32 ret_val = 0;
 182	u32 ctrl_ext;
 183
 184	if (hw->phy.media_type != e1000_media_type_copper) {
 185		phy->type = e1000_phy_none;
 186		goto out;
 187	}
 188
 189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190	phy->reset_delay_us	= 100;
 191
 192	ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194	if (igb_sgmii_active_82575(hw)) {
 195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196		ctrl_ext |= E1000_CTRL_I2C_ENA;
 197	} else {
 198		phy->ops.reset = igb_phy_hw_reset;
 199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200	}
 201
 202	wr32(E1000_CTRL_EXT, ctrl_ext);
 203	igb_reset_mdicnfg_82580(hw);
 204
 205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208	} else {
 209		switch (hw->mac.type) {
 210		case e1000_82580:
 211		case e1000_i350:
 212		case e1000_i354:
 213		case e1000_i210:
 214		case e1000_i211:
 215			phy->ops.read_reg = igb_read_phy_reg_82580;
 216			phy->ops.write_reg = igb_write_phy_reg_82580;
 217			break;
 218		default:
 219			phy->ops.read_reg = igb_read_phy_reg_igp;
 220			phy->ops.write_reg = igb_write_phy_reg_igp;
 221		}
 222	}
 223
 224	/* set lan id */
 225	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 226			E1000_STATUS_FUNC_SHIFT;
 227
 
 
 
 
 
 
 
 
 
 
 
 228	/* Set phy->phy_addr and phy->id. */
 
 229	ret_val = igb_get_phy_id_82575(hw);
 230	if (ret_val)
 231		return ret_val;
 232
 233	/* Verify phy id and set remaining function pointers */
 234	switch (phy->id) {
 235	case M88E1543_E_PHY_ID:
 236	case M88E1512_E_PHY_ID:
 237	case I347AT4_E_PHY_ID:
 238	case M88E1112_E_PHY_ID:
 239	case M88E1111_I_PHY_ID:
 240		phy->type		= e1000_phy_m88;
 241		phy->ops.check_polarity	= igb_check_polarity_m88;
 242		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 243		if (phy->id != M88E1111_I_PHY_ID)
 244			phy->ops.get_cable_length =
 245					 igb_get_cable_length_m88_gen2;
 246		else
 247			phy->ops.get_cable_length = igb_get_cable_length_m88;
 248		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 249		/* Check if this PHY is configured for media swap. */
 250		if (phy->id == M88E1112_E_PHY_ID) {
 251			u16 data;
 252
 253			ret_val = phy->ops.write_reg(hw,
 254						     E1000_M88E1112_PAGE_ADDR,
 255						     2);
 256			if (ret_val)
 257				goto out;
 258
 259			ret_val = phy->ops.read_reg(hw,
 260						    E1000_M88E1112_MAC_CTRL_1,
 261						    &data);
 262			if (ret_val)
 263				goto out;
 264
 265			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 266			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 267			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 268			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 269				hw->mac.ops.check_for_link =
 270						igb_check_for_link_media_swap;
 271		}
 272		if (phy->id == M88E1512_E_PHY_ID) {
 273			ret_val = igb_initialize_M88E1512_phy(hw);
 274			if (ret_val)
 275				goto out;
 276		}
 277		if (phy->id == M88E1543_E_PHY_ID) {
 278			ret_val = igb_initialize_M88E1543_phy(hw);
 279			if (ret_val)
 280				goto out;
 281		}
 282		break;
 283	case IGP03E1000_E_PHY_ID:
 284		phy->type = e1000_phy_igp_3;
 285		phy->ops.get_phy_info = igb_get_phy_info_igp;
 286		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 290		break;
 291	case I82580_I_PHY_ID:
 292	case I350_I_PHY_ID:
 293		phy->type = e1000_phy_82580;
 294		phy->ops.force_speed_duplex =
 295					 igb_phy_force_speed_duplex_82580;
 296		phy->ops.get_cable_length = igb_get_cable_length_82580;
 297		phy->ops.get_phy_info = igb_get_phy_info_82580;
 298		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 299		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 300		break;
 301	case I210_I_PHY_ID:
 302		phy->type		= e1000_phy_i210;
 303		phy->ops.check_polarity	= igb_check_polarity_m88;
 304		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 305		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 306		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 307		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 308		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 309		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 310		break;
 311	case BCM54616_E_PHY_ID:
 312		phy->type = e1000_phy_bcm54616;
 313		break;
 314	default:
 315		ret_val = -E1000_ERR_PHY;
 316		goto out;
 317	}
 318
 319out:
 320	return ret_val;
 321}
 322
 323/**
 324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 325 *  @hw: pointer to the HW structure
 326 **/
 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 328{
 329	struct e1000_nvm_info *nvm = &hw->nvm;
 330	u32 eecd = rd32(E1000_EECD);
 331	u16 size;
 332
 333	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 334		     E1000_EECD_SIZE_EX_SHIFT);
 335
 336	/* Added to a constant, "size" becomes the left-shift value
 337	 * for setting word_size.
 338	 */
 339	size += NVM_WORD_SIZE_BASE_SHIFT;
 340
 341	/* Just in case size is out of range, cap it to the largest
 342	 * EEPROM size supported
 343	 */
 344	if (size > 15)
 345		size = 15;
 346
 347	nvm->word_size = BIT(size);
 348	nvm->opcode_bits = 8;
 349	nvm->delay_usec = 1;
 350
 351	switch (nvm->override) {
 352	case e1000_nvm_override_spi_large:
 353		nvm->page_size = 32;
 354		nvm->address_bits = 16;
 355		break;
 356	case e1000_nvm_override_spi_small:
 357		nvm->page_size = 8;
 358		nvm->address_bits = 8;
 359		break;
 360	default:
 361		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 362		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 363				    16 : 8;
 364		break;
 365	}
 366	if (nvm->word_size == BIT(15))
 367		nvm->page_size = 128;
 368
 369	nvm->type = e1000_nvm_eeprom_spi;
 370
 371	/* NVM Function Pointers */
 372	nvm->ops.acquire = igb_acquire_nvm_82575;
 373	nvm->ops.release = igb_release_nvm_82575;
 374	nvm->ops.write = igb_write_nvm_spi;
 375	nvm->ops.validate = igb_validate_nvm_checksum;
 376	nvm->ops.update = igb_update_nvm_checksum;
 377	if (nvm->word_size < BIT(15))
 378		nvm->ops.read = igb_read_nvm_eerd;
 379	else
 380		nvm->ops.read = igb_read_nvm_spi;
 381
 382	/* override generic family function pointers for specific descendants */
 383	switch (hw->mac.type) {
 384	case e1000_82580:
 385		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 386		nvm->ops.update = igb_update_nvm_checksum_82580;
 387		break;
 388	case e1000_i354:
 389	case e1000_i350:
 390		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 391		nvm->ops.update = igb_update_nvm_checksum_i350;
 392		break;
 393	default:
 394		break;
 395	}
 396
 397	return 0;
 398}
 399
 400/**
 401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 402 *  @hw: pointer to the HW structure
 403 **/
 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 405{
 406	struct e1000_mac_info *mac = &hw->mac;
 407	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 408
 409	/* Set mta register count */
 410	mac->mta_reg_count = 128;
 411	/* Set uta register count */
 412	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 413	/* Set rar entry count */
 414	switch (mac->type) {
 415	case e1000_82576:
 416		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 417		break;
 418	case e1000_82580:
 419		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 420		break;
 421	case e1000_i350:
 422	case e1000_i354:
 423		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 424		break;
 425	default:
 426		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 427		break;
 428	}
 429	/* reset */
 430	if (mac->type >= e1000_82580)
 431		mac->ops.reset_hw = igb_reset_hw_82580;
 432	else
 433		mac->ops.reset_hw = igb_reset_hw_82575;
 434
 435	if (mac->type >= e1000_i210) {
 436		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 437		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 438
 439	} else {
 440		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 441		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 442	}
 443
 444	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 445		mac->ops.write_vfta = igb_write_vfta_i350;
 446	else
 447		mac->ops.write_vfta = igb_write_vfta;
 448
 449	/* Set if part includes ASF firmware */
 450	mac->asf_firmware_present = true;
 451	/* Set if manageability features are enabled. */
 452	mac->arc_subsystem_valid =
 453		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 454			? true : false;
 455	/* enable EEE on i350 parts and later parts */
 456	if (mac->type >= e1000_i350)
 457		dev_spec->eee_disable = false;
 458	else
 459		dev_spec->eee_disable = true;
 460	/* Allow a single clear of the SW semaphore on I210 and newer */
 461	if (mac->type >= e1000_i210)
 462		dev_spec->clear_semaphore_once = true;
 463	/* physical interface link setup */
 464	mac->ops.setup_physical_interface =
 465		(hw->phy.media_type == e1000_media_type_copper)
 466			? igb_setup_copper_link_82575
 467			: igb_setup_serdes_link_82575;
 468
 469	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 470		switch (hw->device_id) {
 471		/* feature not supported on these id's */
 472		case E1000_DEV_ID_DH89XXCC_SGMII:
 473		case E1000_DEV_ID_DH89XXCC_SERDES:
 474		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 475		case E1000_DEV_ID_DH89XXCC_SFP:
 476			break;
 477		default:
 478			hw->dev_spec._82575.mas_capable = true;
 479			break;
 480		}
 481	}
 482	return 0;
 483}
 484
 485/**
 486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  The media type is chosen based on SFP module.
 490 *  compatibility flags retrieved from SFP ID EEPROM.
 491 **/
 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 493{
 494	s32 ret_val = E1000_ERR_CONFIG;
 495	u32 ctrl_ext = 0;
 496	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 497	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 498	u8 tranceiver_type = 0;
 499	s32 timeout = 3;
 500
 501	/* Turn I2C interface ON and power on sfp cage */
 502	ctrl_ext = rd32(E1000_CTRL_EXT);
 503	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 504	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 505
 506	wrfl();
 507
 508	/* Read SFP module data */
 509	while (timeout) {
 510		ret_val = igb_read_sfp_data_byte(hw,
 511			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 512			&tranceiver_type);
 513		if (ret_val == 0)
 514			break;
 515		msleep(100);
 516		timeout--;
 517	}
 518	if (ret_val != 0)
 519		goto out;
 520
 521	ret_val = igb_read_sfp_data_byte(hw,
 522			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 523			(u8 *)eth_flags);
 524	if (ret_val != 0)
 525		goto out;
 526
 527	/* Check if there is some SFP module plugged and powered */
 528	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 529	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 530		dev_spec->module_plugged = true;
 531		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 532			hw->phy.media_type = e1000_media_type_internal_serdes;
 533		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 534			dev_spec->sgmii_active = true;
 535			hw->phy.media_type = e1000_media_type_internal_serdes;
 536		} else if (eth_flags->e1000_base_t) {
 537			dev_spec->sgmii_active = true;
 538			hw->phy.media_type = e1000_media_type_copper;
 539		} else {
 540			hw->phy.media_type = e1000_media_type_unknown;
 541			hw_dbg("PHY module has not been recognized\n");
 542			goto out;
 543		}
 544	} else {
 545		hw->phy.media_type = e1000_media_type_unknown;
 546	}
 547	ret_val = 0;
 548out:
 549	/* Restore I2C interface setting */
 550	wr32(E1000_CTRL_EXT, ctrl_ext);
 551	return ret_val;
 552}
 553
 554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 555{
 556	struct e1000_mac_info *mac = &hw->mac;
 557	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 558	s32 ret_val;
 559	u32 ctrl_ext = 0;
 560	u32 link_mode = 0;
 561
 562	switch (hw->device_id) {
 563	case E1000_DEV_ID_82575EB_COPPER:
 564	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 565	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 566		mac->type = e1000_82575;
 567		break;
 568	case E1000_DEV_ID_82576:
 569	case E1000_DEV_ID_82576_NS:
 570	case E1000_DEV_ID_82576_NS_SERDES:
 571	case E1000_DEV_ID_82576_FIBER:
 572	case E1000_DEV_ID_82576_SERDES:
 573	case E1000_DEV_ID_82576_QUAD_COPPER:
 574	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 575	case E1000_DEV_ID_82576_SERDES_QUAD:
 576		mac->type = e1000_82576;
 577		break;
 578	case E1000_DEV_ID_82580_COPPER:
 579	case E1000_DEV_ID_82580_FIBER:
 580	case E1000_DEV_ID_82580_QUAD_FIBER:
 581	case E1000_DEV_ID_82580_SERDES:
 582	case E1000_DEV_ID_82580_SGMII:
 583	case E1000_DEV_ID_82580_COPPER_DUAL:
 584	case E1000_DEV_ID_DH89XXCC_SGMII:
 585	case E1000_DEV_ID_DH89XXCC_SERDES:
 586	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 587	case E1000_DEV_ID_DH89XXCC_SFP:
 588		mac->type = e1000_82580;
 589		break;
 590	case E1000_DEV_ID_I350_COPPER:
 591	case E1000_DEV_ID_I350_FIBER:
 592	case E1000_DEV_ID_I350_SERDES:
 593	case E1000_DEV_ID_I350_SGMII:
 594		mac->type = e1000_i350;
 595		break;
 596	case E1000_DEV_ID_I210_COPPER:
 597	case E1000_DEV_ID_I210_FIBER:
 598	case E1000_DEV_ID_I210_SERDES:
 599	case E1000_DEV_ID_I210_SGMII:
 600	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 601	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 602		mac->type = e1000_i210;
 603		break;
 604	case E1000_DEV_ID_I211_COPPER:
 605		mac->type = e1000_i211;
 606		break;
 607	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 608	case E1000_DEV_ID_I354_SGMII:
 609	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 610		mac->type = e1000_i354;
 611		break;
 612	default:
 613		return -E1000_ERR_MAC_INIT;
 614	}
 615
 616	/* Set media type */
 617	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 618	 * based on the EEPROM. We cannot rely upon device ID. There
 619	 * is no distinguishable difference between fiber and internal
 620	 * SerDes mode on the 82575. There can be an external PHY attached
 621	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 622	 */
 623	hw->phy.media_type = e1000_media_type_copper;
 624	dev_spec->sgmii_active = false;
 625	dev_spec->module_plugged = false;
 626
 627	ctrl_ext = rd32(E1000_CTRL_EXT);
 628
 629	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 630	switch (link_mode) {
 631	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 632		hw->phy.media_type = e1000_media_type_internal_serdes;
 633		break;
 634	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 635		/* Get phy control interface type set (MDIO vs. I2C)*/
 636		if (igb_sgmii_uses_mdio_82575(hw)) {
 637			hw->phy.media_type = e1000_media_type_copper;
 638			dev_spec->sgmii_active = true;
 639			break;
 640		}
 641		fallthrough; /* for I2C based SGMII */
 642	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 643		/* read media type from SFP EEPROM */
 644		ret_val = igb_set_sfp_media_type_82575(hw);
 645		if ((ret_val != 0) ||
 646		    (hw->phy.media_type == e1000_media_type_unknown)) {
 647			/* If media type was not identified then return media
 648			 * type defined by the CTRL_EXT settings.
 649			 */
 650			hw->phy.media_type = e1000_media_type_internal_serdes;
 651
 652			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 653				hw->phy.media_type = e1000_media_type_copper;
 654				dev_spec->sgmii_active = true;
 655			}
 656
 657			break;
 658		}
 659
 
 
 
 
 660		/* change current link mode setting */
 661		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 662
 663		if (dev_spec->sgmii_active)
 664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 665		else
 666			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 667
 668		wr32(E1000_CTRL_EXT, ctrl_ext);
 669
 670		break;
 671	default:
 672		break;
 673	}
 674
 675	/* mac initialization and operations */
 676	ret_val = igb_init_mac_params_82575(hw);
 677	if (ret_val)
 678		goto out;
 679
 680	/* NVM initialization */
 681	ret_val = igb_init_nvm_params_82575(hw);
 682	switch (hw->mac.type) {
 683	case e1000_i210:
 684	case e1000_i211:
 685		ret_val = igb_init_nvm_params_i210(hw);
 686		break;
 687	default:
 688		break;
 689	}
 690
 691	if (ret_val)
 692		goto out;
 693
 694	/* if part supports SR-IOV then initialize mailbox parameters */
 695	switch (mac->type) {
 696	case e1000_82576:
 697	case e1000_i350:
 698		igb_init_mbx_params_pf(hw);
 699		break;
 700	default:
 701		break;
 702	}
 703
 704	/* setup PHY parameters */
 705	ret_val = igb_init_phy_params_82575(hw);
 706
 707out:
 708	return ret_val;
 709}
 710
 711/**
 712 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 713 *  @hw: pointer to the HW structure
 714 *
 715 *  Acquire access rights to the correct PHY.  This is a
 716 *  function pointer entry point called by the api module.
 717 **/
 718static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 719{
 720	u16 mask = E1000_SWFW_PHY0_SM;
 721
 722	if (hw->bus.func == E1000_FUNC_1)
 723		mask = E1000_SWFW_PHY1_SM;
 724	else if (hw->bus.func == E1000_FUNC_2)
 725		mask = E1000_SWFW_PHY2_SM;
 726	else if (hw->bus.func == E1000_FUNC_3)
 727		mask = E1000_SWFW_PHY3_SM;
 728
 729	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 730}
 731
 732/**
 733 *  igb_release_phy_82575 - Release rights to access PHY
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  A wrapper to release access rights to the correct PHY.  This is a
 737 *  function pointer entry point called by the api module.
 738 **/
 739static void igb_release_phy_82575(struct e1000_hw *hw)
 740{
 741	u16 mask = E1000_SWFW_PHY0_SM;
 742
 743	if (hw->bus.func == E1000_FUNC_1)
 744		mask = E1000_SWFW_PHY1_SM;
 745	else if (hw->bus.func == E1000_FUNC_2)
 746		mask = E1000_SWFW_PHY2_SM;
 747	else if (hw->bus.func == E1000_FUNC_3)
 748		mask = E1000_SWFW_PHY3_SM;
 749
 750	hw->mac.ops.release_swfw_sync(hw, mask);
 751}
 752
 753/**
 754 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 755 *  @hw: pointer to the HW structure
 756 *  @offset: register offset to be read
 757 *  @data: pointer to the read data
 758 *
 759 *  Reads the PHY register at offset using the serial gigabit media independent
 760 *  interface and stores the retrieved information in data.
 761 **/
 762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 763					  u16 *data)
 764{
 765	s32 ret_val = -E1000_ERR_PARAM;
 766
 767	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 768		hw_dbg("PHY Address %u is out of range\n", offset);
 769		goto out;
 770	}
 771
 772	ret_val = hw->phy.ops.acquire(hw);
 773	if (ret_val)
 774		goto out;
 775
 776	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 777
 778	hw->phy.ops.release(hw);
 779
 780out:
 781	return ret_val;
 782}
 783
 784/**
 785 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 786 *  @hw: pointer to the HW structure
 787 *  @offset: register offset to write to
 788 *  @data: data to write at register offset
 789 *
 790 *  Writes the data to PHY register at the offset using the serial gigabit
 791 *  media independent interface.
 792 **/
 793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 794					   u16 data)
 795{
 796	s32 ret_val = -E1000_ERR_PARAM;
 797
 798
 799	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 800		hw_dbg("PHY Address %d is out of range\n", offset);
 801		goto out;
 802	}
 803
 804	ret_val = hw->phy.ops.acquire(hw);
 805	if (ret_val)
 806		goto out;
 807
 808	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 809
 810	hw->phy.ops.release(hw);
 811
 812out:
 813	return ret_val;
 814}
 815
 816/**
 817 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 818 *  @hw: pointer to the HW structure
 819 *
 820 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 821 *  sgmi interface.
 822 **/
 823static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 824{
 825	struct e1000_phy_info *phy = &hw->phy;
 826	s32  ret_val = 0;
 827	u16 phy_id;
 828	u32 ctrl_ext;
 829	u32 mdic;
 830
 831	/* Extra read required for some PHY's on i354 */
 832	if (hw->mac.type == e1000_i354)
 833		igb_get_phy_id(hw);
 834
 835	/* For SGMII PHYs, we try the list of possible addresses until
 836	 * we find one that works.  For non-SGMII PHYs
 837	 * (e.g. integrated copper PHYs), an address of 1 should
 838	 * work.  The result of this function should mean phy->phy_addr
 839	 * and phy->id are set correctly.
 840	 */
 841	if (!(igb_sgmii_active_82575(hw))) {
 842		phy->addr = 1;
 843		ret_val = igb_get_phy_id(hw);
 844		goto out;
 845	}
 846
 847	if (igb_sgmii_uses_mdio_82575(hw)) {
 848		switch (hw->mac.type) {
 849		case e1000_82575:
 850		case e1000_82576:
 851			mdic = rd32(E1000_MDIC);
 852			mdic &= E1000_MDIC_PHY_MASK;
 853			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 854			break;
 855		case e1000_82580:
 856		case e1000_i350:
 857		case e1000_i354:
 858		case e1000_i210:
 859		case e1000_i211:
 860			mdic = rd32(E1000_MDICNFG);
 861			mdic &= E1000_MDICNFG_PHY_MASK;
 862			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 863			break;
 864		default:
 865			ret_val = -E1000_ERR_PHY;
 866			goto out;
 867		}
 868		ret_val = igb_get_phy_id(hw);
 869		goto out;
 870	}
 871
 872	/* Power on sgmii phy if it is disabled */
 873	ctrl_ext = rd32(E1000_CTRL_EXT);
 874	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 875	wrfl();
 876	msleep(300);
 877
 878	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 879	 * Therefore, we need to test 1-7
 880	 */
 881	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 882		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 883		if (ret_val == 0) {
 884			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 885			       phy_id, phy->addr);
 886			/* At the time of this writing, The M88 part is
 887			 * the only supported SGMII PHY product.
 888			 */
 889			if (phy_id == M88_VENDOR)
 890				break;
 891		} else {
 892			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 893		}
 894	}
 895
 896	/* A valid PHY type couldn't be found. */
 897	if (phy->addr == 8) {
 898		phy->addr = 0;
 899		ret_val = -E1000_ERR_PHY;
 900		goto out;
 901	} else {
 902		ret_val = igb_get_phy_id(hw);
 903	}
 904
 905	/* restore previous sfp cage power state */
 906	wr32(E1000_CTRL_EXT, ctrl_ext);
 907
 908out:
 909	return ret_val;
 910}
 911
 912/**
 913 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 914 *  @hw: pointer to the HW structure
 915 *
 916 *  Resets the PHY using the serial gigabit media independent interface.
 917 **/
 918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 919{
 920	struct e1000_phy_info *phy = &hw->phy;
 921	s32 ret_val;
 922
 923	/* This isn't a true "hard" reset, but is the only reset
 924	 * available to us at this time.
 925	 */
 926
 927	hw_dbg("Soft resetting SGMII attached PHY...\n");
 928
 929	/* SFP documentation requires the following to configure the SPF module
 930	 * to work on SGMII.  No further documentation is given.
 931	 */
 932	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 933	if (ret_val)
 934		goto out;
 935
 936	ret_val = igb_phy_sw_reset(hw);
 937	if (ret_val)
 938		goto out;
 939
 940	if (phy->id == M88E1512_E_PHY_ID)
 941		ret_val = igb_initialize_M88E1512_phy(hw);
 942	if (phy->id == M88E1543_E_PHY_ID)
 943		ret_val = igb_initialize_M88E1543_phy(hw);
 944out:
 945	return ret_val;
 946}
 947
 948/**
 949 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 950 *  @hw: pointer to the HW structure
 951 *  @active: true to enable LPLU, false to disable
 952 *
 953 *  Sets the LPLU D0 state according to the active flag.  When
 954 *  activating LPLU this function also disables smart speed
 955 *  and vice versa.  LPLU will not be activated unless the
 956 *  device autonegotiation advertisement meets standards of
 957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 958 *  This is a function pointer entry point only called by
 959 *  PHY setup routines.
 960 **/
 961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 962{
 963	struct e1000_phy_info *phy = &hw->phy;
 964	s32 ret_val;
 965	u16 data;
 966
 967	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 968	if (ret_val)
 969		goto out;
 970
 971	if (active) {
 972		data |= IGP02E1000_PM_D0_LPLU;
 973		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 974						 data);
 975		if (ret_val)
 976			goto out;
 977
 978		/* When LPLU is enabled, we should disable SmartSpeed */
 979		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 980						&data);
 981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 982		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 983						 data);
 984		if (ret_val)
 985			goto out;
 986	} else {
 987		data &= ~IGP02E1000_PM_D0_LPLU;
 988		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 989						 data);
 990		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 991		 * during Dx states where the power conservation is most
 992		 * important.  During driver activity we should enable
 993		 * SmartSpeed, so performance is maintained.
 994		 */
 995		if (phy->smart_speed == e1000_smart_speed_on) {
 996			ret_val = phy->ops.read_reg(hw,
 997					IGP01E1000_PHY_PORT_CONFIG, &data);
 998			if (ret_val)
 999				goto out;
1000
1001			data |= IGP01E1000_PSCFR_SMART_SPEED;
1002			ret_val = phy->ops.write_reg(hw,
1003					IGP01E1000_PHY_PORT_CONFIG, data);
1004			if (ret_val)
1005				goto out;
1006		} else if (phy->smart_speed == e1000_smart_speed_off) {
1007			ret_val = phy->ops.read_reg(hw,
1008					IGP01E1000_PHY_PORT_CONFIG, &data);
1009			if (ret_val)
1010				goto out;
1011
1012			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1013			ret_val = phy->ops.write_reg(hw,
1014					IGP01E1000_PHY_PORT_CONFIG, data);
1015			if (ret_val)
1016				goto out;
1017		}
1018	}
1019
1020out:
1021	return ret_val;
1022}
1023
1024/**
1025 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1026 *  @hw: pointer to the HW structure
1027 *  @active: true to enable LPLU, false to disable
1028 *
1029 *  Sets the LPLU D0 state according to the active flag.  When
1030 *  activating LPLU this function also disables smart speed
1031 *  and vice versa.  LPLU will not be activated unless the
1032 *  device autonegotiation advertisement meets standards of
1033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1034 *  This is a function pointer entry point only called by
1035 *  PHY setup routines.
1036 **/
1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1038{
1039	struct e1000_phy_info *phy = &hw->phy;
1040	u16 data;
1041
1042	data = rd32(E1000_82580_PHY_POWER_MGMT);
1043
1044	if (active) {
1045		data |= E1000_82580_PM_D0_LPLU;
1046
1047		/* When LPLU is enabled, we should disable SmartSpeed */
1048		data &= ~E1000_82580_PM_SPD;
1049	} else {
1050		data &= ~E1000_82580_PM_D0_LPLU;
1051
1052		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1053		 * during Dx states where the power conservation is most
1054		 * important.  During driver activity we should enable
1055		 * SmartSpeed, so performance is maintained.
1056		 */
1057		if (phy->smart_speed == e1000_smart_speed_on)
1058			data |= E1000_82580_PM_SPD;
1059		else if (phy->smart_speed == e1000_smart_speed_off)
1060			data &= ~E1000_82580_PM_SPD; }
1061
1062	wr32(E1000_82580_PHY_POWER_MGMT, data);
1063	return 0;
1064}
1065
1066/**
1067 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1068 *  @hw: pointer to the HW structure
1069 *  @active: boolean used to enable/disable lplu
1070 *
1071 *  Success returns 0, Failure returns 1
1072 *
1073 *  The low power link up (lplu) state is set to the power management level D3
1074 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1075 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1076 *  is used during Dx states where the power conservation is most important.
1077 *  During driver activity, SmartSpeed should be enabled so performance is
1078 *  maintained.
1079 **/
1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1081{
1082	struct e1000_phy_info *phy = &hw->phy;
1083	u16 data;
1084
1085	data = rd32(E1000_82580_PHY_POWER_MGMT);
1086
1087	if (!active) {
1088		data &= ~E1000_82580_PM_D3_LPLU;
1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090		 * during Dx states where the power conservation is most
1091		 * important.  During driver activity we should enable
1092		 * SmartSpeed, so performance is maintained.
1093		 */
1094		if (phy->smart_speed == e1000_smart_speed_on)
1095			data |= E1000_82580_PM_SPD;
1096		else if (phy->smart_speed == e1000_smart_speed_off)
1097			data &= ~E1000_82580_PM_SPD;
1098	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1099		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1100		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1101		data |= E1000_82580_PM_D3_LPLU;
1102		/* When LPLU is enabled, we should disable SmartSpeed */
1103		data &= ~E1000_82580_PM_SPD;
1104	}
1105
1106	wr32(E1000_82580_PHY_POWER_MGMT, data);
1107	return 0;
1108}
1109
1110/**
1111 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1112 *  @hw: pointer to the HW structure
1113 *
1114 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1115 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1116 *  Return successful if access grant bit set, else clear the request for
1117 *  EEPROM access and return -E1000_ERR_NVM (-1).
1118 **/
1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1120{
1121	s32 ret_val;
1122
1123	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1124	if (ret_val)
1125		goto out;
1126
1127	ret_val = igb_acquire_nvm(hw);
1128
1129	if (ret_val)
1130		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131
1132out:
1133	return ret_val;
1134}
1135
1136/**
1137 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1138 *  @hw: pointer to the HW structure
1139 *
1140 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1141 *  then release the semaphores acquired.
1142 **/
1143static void igb_release_nvm_82575(struct e1000_hw *hw)
1144{
1145	igb_release_nvm(hw);
1146	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1147}
1148
1149/**
1150 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1151 *  @hw: pointer to the HW structure
1152 *  @mask: specifies which semaphore to acquire
1153 *
1154 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1155 *  will also specify which port we're acquiring the lock for.
1156 **/
1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1158{
1159	u32 swfw_sync;
1160	u32 swmask = mask;
1161	u32 fwmask = mask << 16;
1162	s32 ret_val = 0;
1163	s32 i = 0, timeout = 200;
1164
1165	while (i < timeout) {
1166		if (igb_get_hw_semaphore(hw)) {
1167			ret_val = -E1000_ERR_SWFW_SYNC;
1168			goto out;
1169		}
1170
1171		swfw_sync = rd32(E1000_SW_FW_SYNC);
1172		if (!(swfw_sync & (fwmask | swmask)))
1173			break;
1174
1175		/* Firmware currently using resource (fwmask)
1176		 * or other software thread using resource (swmask)
1177		 */
1178		igb_put_hw_semaphore(hw);
1179		mdelay(5);
1180		i++;
1181	}
1182
1183	if (i == timeout) {
1184		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1185		ret_val = -E1000_ERR_SWFW_SYNC;
1186		goto out;
1187	}
1188
1189	swfw_sync |= swmask;
1190	wr32(E1000_SW_FW_SYNC, swfw_sync);
1191
1192	igb_put_hw_semaphore(hw);
1193
1194out:
1195	return ret_val;
1196}
1197
1198/**
1199 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1200 *  @hw: pointer to the HW structure
1201 *  @mask: specifies which semaphore to acquire
1202 *
1203 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1204 *  will also specify which port we're releasing the lock for.
1205 **/
1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1207{
1208	u32 swfw_sync;
1209
1210	while (igb_get_hw_semaphore(hw) != 0)
1211		; /* Empty */
1212
1213	swfw_sync = rd32(E1000_SW_FW_SYNC);
1214	swfw_sync &= ~mask;
1215	wr32(E1000_SW_FW_SYNC, swfw_sync);
1216
1217	igb_put_hw_semaphore(hw);
1218}
1219
1220/**
1221 *  igb_get_cfg_done_82575 - Read config done bit
1222 *  @hw: pointer to the HW structure
1223 *
1224 *  Read the management control register for the config done bit for
1225 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1226 *  to read the config done bit, so an error is *ONLY* logged and returns
1227 *  0.  If we were to return with error, EEPROM-less silicon
1228 *  would not be able to be reset or change link.
1229 **/
1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1231{
1232	s32 timeout = PHY_CFG_TIMEOUT;
1233	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1234
1235	if (hw->bus.func == 1)
1236		mask = E1000_NVM_CFG_DONE_PORT_1;
1237	else if (hw->bus.func == E1000_FUNC_2)
1238		mask = E1000_NVM_CFG_DONE_PORT_2;
1239	else if (hw->bus.func == E1000_FUNC_3)
1240		mask = E1000_NVM_CFG_DONE_PORT_3;
1241
1242	while (timeout) {
1243		if (rd32(E1000_EEMNGCTL) & mask)
1244			break;
1245		usleep_range(1000, 2000);
1246		timeout--;
1247	}
1248	if (!timeout)
1249		hw_dbg("MNG configuration cycle has not completed.\n");
1250
1251	/* If EEPROM is not marked present, init the PHY manually */
1252	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1253	    (hw->phy.type == e1000_phy_igp_3))
1254		igb_phy_init_script_igp3(hw);
1255
1256	return 0;
1257}
1258
1259/**
1260 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1261 *  @hw: pointer to the HW structure
1262 *  @speed: stores the current speed
1263 *  @duplex: stores the current duplex
1264 *
1265 *  This is a wrapper function, if using the serial gigabit media independent
1266 *  interface, use PCS to retrieve the link speed and duplex information.
1267 *  Otherwise, use the generic function to get the link speed and duplex info.
1268 **/
1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1270					u16 *duplex)
1271{
1272	s32 ret_val;
1273
1274	if (hw->phy.media_type != e1000_media_type_copper)
1275		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1276							       duplex);
1277	else
1278		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1279								    duplex);
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  igb_check_for_link_82575 - Check for link
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1289 *  use the generic interface for determining link.
1290 **/
1291static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1292{
1293	s32 ret_val;
1294	u16 speed, duplex;
1295
1296	if (hw->phy.media_type != e1000_media_type_copper) {
1297		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1298							     &duplex);
1299		/* Use this flag to determine if link needs to be checked or
1300		 * not.  If  we have link clear the flag so that we do not
1301		 * continue to check for link.
1302		 */
1303		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1304
1305		/* Configure Flow Control now that Auto-Neg has completed.
1306		 * First, we need to restore the desired flow control
1307		 * settings because we may have had to re-autoneg with a
1308		 * different link partner.
1309		 */
1310		ret_val = igb_config_fc_after_link_up(hw);
1311		if (ret_val)
1312			hw_dbg("Error configuring flow control\n");
1313	} else {
1314		ret_val = igb_check_for_copper_link(hw);
1315	}
1316
1317	return ret_val;
1318}
1319
1320/**
1321 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1322 *  @hw: pointer to the HW structure
1323 **/
1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1325{
1326	u32 reg;
1327
1328
1329	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1330	    !igb_sgmii_active_82575(hw))
1331		return;
1332
1333	/* Enable PCS to turn on link */
1334	reg = rd32(E1000_PCS_CFG0);
1335	reg |= E1000_PCS_CFG_PCS_EN;
1336	wr32(E1000_PCS_CFG0, reg);
1337
1338	/* Power up the laser */
1339	reg = rd32(E1000_CTRL_EXT);
1340	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1341	wr32(E1000_CTRL_EXT, reg);
1342
1343	/* flush the write to verify completion */
1344	wrfl();
1345	usleep_range(1000, 2000);
1346}
1347
1348/**
1349 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1350 *  @hw: pointer to the HW structure
1351 *  @speed: stores the current speed
1352 *  @duplex: stores the current duplex
1353 *
1354 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1355 *  duplex, then store the values in the pointers provided.
1356 **/
1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1358						u16 *duplex)
1359{
1360	struct e1000_mac_info *mac = &hw->mac;
1361	u32 pcs, status;
1362
1363	/* Set up defaults for the return values of this function */
1364	mac->serdes_has_link = false;
1365	*speed = 0;
1366	*duplex = 0;
1367
1368	/* Read the PCS Status register for link state. For non-copper mode,
1369	 * the status register is not accurate. The PCS status register is
1370	 * used instead.
1371	 */
1372	pcs = rd32(E1000_PCS_LSTAT);
1373
1374	/* The link up bit determines when link is up on autoneg. The sync ok
1375	 * gets set once both sides sync up and agree upon link. Stable link
1376	 * can be determined by checking for both link up and link sync ok
1377	 */
1378	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1379		mac->serdes_has_link = true;
1380
1381		/* Detect and store PCS speed */
1382		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1383			*speed = SPEED_1000;
1384		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1385			*speed = SPEED_100;
1386		else
1387			*speed = SPEED_10;
1388
1389		/* Detect and store PCS duplex */
1390		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1391			*duplex = FULL_DUPLEX;
1392		else
1393			*duplex = HALF_DUPLEX;
1394
1395	/* Check if it is an I354 2.5Gb backplane connection. */
1396		if (mac->type == e1000_i354) {
1397			status = rd32(E1000_STATUS);
1398			if ((status & E1000_STATUS_2P5_SKU) &&
1399			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1400				*speed = SPEED_2500;
1401				*duplex = FULL_DUPLEX;
1402				hw_dbg("2500 Mbs, ");
1403				hw_dbg("Full Duplex\n");
1404			}
1405		}
1406
1407	}
1408
1409	return 0;
1410}
1411
1412/**
1413 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1417 *  when management pass thru is not enabled.
1418 **/
1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1420{
1421	u32 reg;
1422
1423	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1424	    igb_sgmii_active_82575(hw))
1425		return;
1426
1427	if (!igb_enable_mng_pass_thru(hw)) {
1428		/* Disable PCS to turn off link */
1429		reg = rd32(E1000_PCS_CFG0);
1430		reg &= ~E1000_PCS_CFG_PCS_EN;
1431		wr32(E1000_PCS_CFG0, reg);
1432
1433		/* shutdown the laser */
1434		reg = rd32(E1000_CTRL_EXT);
1435		reg |= E1000_CTRL_EXT_SDP3_DATA;
1436		wr32(E1000_CTRL_EXT, reg);
1437
1438		/* flush the write to verify completion */
1439		wrfl();
1440		usleep_range(1000, 2000);
1441	}
1442}
1443
1444/**
1445 *  igb_reset_hw_82575 - Reset hardware
1446 *  @hw: pointer to the HW structure
1447 *
1448 *  This resets the hardware into a known state.  This is a
1449 *  function pointer entry point called by the api module.
1450 **/
1451static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1452{
1453	u32 ctrl;
1454	s32 ret_val;
1455
1456	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1457	 * on the last TLP read/write transaction when MAC is reset.
1458	 */
1459	ret_val = igb_disable_pcie_master(hw);
1460	if (ret_val)
1461		hw_dbg("PCI-E Master disable polling has failed.\n");
1462
1463	/* set the completion timeout for interface */
1464	ret_val = igb_set_pcie_completion_timeout(hw);
1465	if (ret_val)
1466		hw_dbg("PCI-E Set completion timeout has failed.\n");
1467
1468	hw_dbg("Masking off all interrupts\n");
1469	wr32(E1000_IMC, 0xffffffff);
1470
1471	wr32(E1000_RCTL, 0);
1472	wr32(E1000_TCTL, E1000_TCTL_PSP);
1473	wrfl();
1474
1475	usleep_range(10000, 20000);
1476
1477	ctrl = rd32(E1000_CTRL);
1478
1479	hw_dbg("Issuing a global reset to MAC\n");
1480	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1481
1482	ret_val = igb_get_auto_rd_done(hw);
1483	if (ret_val) {
1484		/* When auto config read does not complete, do not
1485		 * return with an error. This can happen in situations
1486		 * where there is no eeprom and prevents getting link.
1487		 */
1488		hw_dbg("Auto Read Done did not complete\n");
1489	}
1490
1491	/* If EEPROM is not present, run manual init scripts */
1492	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1493		igb_reset_init_script_82575(hw);
1494
1495	/* Clear any pending interrupt events. */
1496	wr32(E1000_IMC, 0xffffffff);
1497	rd32(E1000_ICR);
1498
1499	/* Install any alternate MAC address into RAR0 */
1500	ret_val = igb_check_alt_mac_addr(hw);
1501
1502	return ret_val;
1503}
1504
1505/**
1506 *  igb_init_hw_82575 - Initialize hardware
1507 *  @hw: pointer to the HW structure
1508 *
1509 *  This inits the hardware readying it for operation.
1510 **/
1511static s32 igb_init_hw_82575(struct e1000_hw *hw)
1512{
1513	struct e1000_mac_info *mac = &hw->mac;
1514	s32 ret_val;
1515	u16 i, rar_count = mac->rar_entry_count;
1516
1517	if ((hw->mac.type >= e1000_i210) &&
1518	    !(igb_get_flash_presence_i210(hw))) {
1519		ret_val = igb_pll_workaround_i210(hw);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523
1524	/* Initialize identification LED */
1525	ret_val = igb_id_led_init(hw);
1526	if (ret_val) {
1527		hw_dbg("Error initializing identification LED\n");
1528		/* This is not fatal and we should not stop init due to this */
1529	}
1530
1531	/* Disabling VLAN filtering */
1532	hw_dbg("Initializing the IEEE VLAN\n");
1533	igb_clear_vfta(hw);
1534
1535	/* Setup the receive address */
1536	igb_init_rx_addrs(hw, rar_count);
1537
1538	/* Zero out the Multicast HASH table */
1539	hw_dbg("Zeroing the MTA\n");
1540	for (i = 0; i < mac->mta_reg_count; i++)
1541		array_wr32(E1000_MTA, i, 0);
1542
1543	/* Zero out the Unicast HASH table */
1544	hw_dbg("Zeroing the UTA\n");
1545	for (i = 0; i < mac->uta_reg_count; i++)
1546		array_wr32(E1000_UTA, i, 0);
1547
1548	/* Setup link and flow control */
1549	ret_val = igb_setup_link(hw);
1550
1551	/* Clear all of the statistics registers (clear on read).  It is
1552	 * important that we do this after we have tried to establish link
1553	 * because the symbol error count will increment wildly if there
1554	 * is no link.
1555	 */
1556	igb_clear_hw_cntrs_82575(hw);
1557	return ret_val;
1558}
1559
1560/**
1561 *  igb_setup_copper_link_82575 - Configure copper link settings
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1565 *  for link, once link is established calls to configure collision distance
1566 *  and flow control are called.
1567 **/
1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1569{
1570	u32 ctrl;
1571	s32  ret_val;
1572	u32 phpm_reg;
1573
1574	ctrl = rd32(E1000_CTRL);
1575	ctrl |= E1000_CTRL_SLU;
1576	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1577	wr32(E1000_CTRL, ctrl);
1578
1579	/* Clear Go Link Disconnect bit on supported devices */
1580	switch (hw->mac.type) {
1581	case e1000_82580:
1582	case e1000_i350:
1583	case e1000_i210:
1584	case e1000_i211:
1585		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1586		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1587		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1588		break;
1589	default:
1590		break;
1591	}
1592
1593	ret_val = igb_setup_serdes_link_82575(hw);
1594	if (ret_val)
1595		goto out;
1596
1597	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1598		/* allow time for SFP cage time to power up phy */
1599		msleep(300);
1600
1601		ret_val = hw->phy.ops.reset(hw);
1602		if (ret_val) {
1603			hw_dbg("Error resetting the PHY.\n");
1604			goto out;
1605		}
1606	}
1607	switch (hw->phy.type) {
1608	case e1000_phy_i210:
1609	case e1000_phy_m88:
1610		switch (hw->phy.id) {
1611		case I347AT4_E_PHY_ID:
1612		case M88E1112_E_PHY_ID:
1613		case M88E1543_E_PHY_ID:
1614		case M88E1512_E_PHY_ID:
1615		case I210_I_PHY_ID:
1616			ret_val = igb_copper_link_setup_m88_gen2(hw);
1617			break;
1618		default:
1619			ret_val = igb_copper_link_setup_m88(hw);
1620			break;
1621		}
1622		break;
1623	case e1000_phy_igp_3:
1624		ret_val = igb_copper_link_setup_igp(hw);
1625		break;
1626	case e1000_phy_82580:
1627		ret_val = igb_copper_link_setup_82580(hw);
1628		break;
1629	case e1000_phy_bcm54616:
1630		ret_val = 0;
1631		break;
1632	default:
1633		ret_val = -E1000_ERR_PHY;
1634		break;
1635	}
1636
1637	if (ret_val)
1638		goto out;
1639
1640	ret_val = igb_setup_copper_link(hw);
1641out:
1642	return ret_val;
1643}
1644
1645/**
1646 *  igb_setup_serdes_link_82575 - Setup link for serdes
1647 *  @hw: pointer to the HW structure
1648 *
1649 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1650 *  used on copper connections where the serialized gigabit media independent
1651 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1652 *  for auto-negotiation or forces speed/duplex.
1653 **/
1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1655{
1656	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1657	bool pcs_autoneg;
1658	s32 ret_val = 0;
1659	u16 data;
1660
1661	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1662	    !igb_sgmii_active_82575(hw))
1663		return ret_val;
1664
1665
1666	/* On the 82575, SerDes loopback mode persists until it is
1667	 * explicitly turned off or a power cycle is performed.  A read to
1668	 * the register does not indicate its status.  Therefore, we ensure
1669	 * loopback mode is disabled during initialization.
1670	 */
1671	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1672
1673	/* power on the sfp cage if present and turn on I2C */
1674	ctrl_ext = rd32(E1000_CTRL_EXT);
1675	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1676	ctrl_ext |= E1000_CTRL_I2C_ENA;
1677	wr32(E1000_CTRL_EXT, ctrl_ext);
1678
1679	ctrl_reg = rd32(E1000_CTRL);
1680	ctrl_reg |= E1000_CTRL_SLU;
1681
1682	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1683		/* set both sw defined pins */
1684		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1685
1686		/* Set switch control to serdes energy detect */
1687		reg = rd32(E1000_CONNSW);
1688		reg |= E1000_CONNSW_ENRGSRC;
1689		wr32(E1000_CONNSW, reg);
1690	}
1691
1692	reg = rd32(E1000_PCS_LCTL);
1693
1694	/* default pcs_autoneg to the same setting as mac autoneg */
1695	pcs_autoneg = hw->mac.autoneg;
1696
1697	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1698	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1699		/* sgmii mode lets the phy handle forcing speed/duplex */
1700		pcs_autoneg = true;
1701		/* autoneg time out should be disabled for SGMII mode */
1702		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1703		break;
1704	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1705		/* disable PCS autoneg and support parallel detect only */
1706		pcs_autoneg = false;
1707		fallthrough;
1708	default:
1709		if (hw->mac.type == e1000_82575 ||
1710		    hw->mac.type == e1000_82576) {
1711			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1712			if (ret_val) {
1713				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1714				return ret_val;
1715			}
1716
1717			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1718				pcs_autoneg = false;
1719		}
1720
1721		/* non-SGMII modes only supports a speed of 1000/Full for the
1722		 * link so it is best to just force the MAC and let the pcs
1723		 * link either autoneg or be forced to 1000/Full
1724		 */
1725		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1726				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1727
1728		/* set speed of 1000/Full if speed/duplex is forced */
1729		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1730		break;
1731	}
1732
1733	wr32(E1000_CTRL, ctrl_reg);
1734
1735	/* New SerDes mode allows for forcing speed or autonegotiating speed
1736	 * at 1gb. Autoneg should be default set by most drivers. This is the
1737	 * mode that will be compatible with older link partners and switches.
1738	 * However, both are supported by the hardware and some drivers/tools.
1739	 */
1740	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1741		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1742
1743	if (pcs_autoneg) {
1744		/* Set PCS register for autoneg */
1745		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1746		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1747
1748		/* Disable force flow control for autoneg */
1749		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1750
1751		/* Configure flow control advertisement for autoneg */
1752		anadv_reg = rd32(E1000_PCS_ANADV);
1753		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1754		switch (hw->fc.requested_mode) {
1755		case e1000_fc_full:
1756		case e1000_fc_rx_pause:
1757			anadv_reg |= E1000_TXCW_ASM_DIR;
1758			anadv_reg |= E1000_TXCW_PAUSE;
1759			break;
1760		case e1000_fc_tx_pause:
1761			anadv_reg |= E1000_TXCW_ASM_DIR;
1762			break;
1763		default:
1764			break;
1765		}
1766		wr32(E1000_PCS_ANADV, anadv_reg);
1767
1768		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1769	} else {
1770		/* Set PCS register for forced link */
1771		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1772
1773		/* Force flow control for forced link */
1774		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1775
1776		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1777	}
1778
1779	wr32(E1000_PCS_LCTL, reg);
1780
1781	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1782		igb_force_mac_fc(hw);
1783
1784	return ret_val;
1785}
1786
1787/**
1788 *  igb_sgmii_active_82575 - Return sgmii state
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1792 *  which can be enabled for use in the embedded applications.  Simply
1793 *  return the current state of the sgmii interface.
1794 **/
1795static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1796{
1797	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1798	return dev_spec->sgmii_active;
1799}
1800
1801/**
1802 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  Inits recommended HW defaults after a reset when there is no EEPROM
1806 *  detected. This is only for the 82575.
1807 **/
1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1809{
1810	if (hw->mac.type == e1000_82575) {
1811		hw_dbg("Running reset init script for 82575\n");
1812		/* SerDes configuration via SERDESCTRL */
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1815		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1816		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1817
1818		/* CCM configuration via CCMCTL register */
1819		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1820		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1821
1822		/* PCIe lanes configuration */
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1825		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1826		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1827
1828		/* PCIe PLL Configuration */
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1830		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1831		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1832	}
1833
1834	return 0;
1835}
1836
1837/**
1838 *  igb_read_mac_addr_82575 - Read device MAC address
1839 *  @hw: pointer to the HW structure
1840 **/
1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1842{
1843	s32 ret_val = 0;
1844
1845	/* If there's an alternate MAC address place it in RAR0
1846	 * so that it will override the Si installed default perm
1847	 * address.
1848	 */
1849	ret_val = igb_check_alt_mac_addr(hw);
1850	if (ret_val)
1851		goto out;
1852
1853	ret_val = igb_read_mac_addr(hw);
1854
1855out:
1856	return ret_val;
1857}
1858
1859/**
1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1861 * @hw: pointer to the HW structure
1862 *
1863 * In the case of a PHY power down to save power, or to turn off link during a
1864 * driver unload, or wake on lan is not enabled, remove the link.
1865 **/
1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1867{
1868	/* If the management interface is not enabled, then power down */
1869	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1870		igb_power_down_phy_copper(hw);
1871}
1872
1873/**
1874 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1875 *  @hw: pointer to the HW structure
1876 *
1877 *  Clears the hardware counters by reading the counter registers.
1878 **/
1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1880{
1881	igb_clear_hw_cntrs_base(hw);
1882
1883	rd32(E1000_PRC64);
1884	rd32(E1000_PRC127);
1885	rd32(E1000_PRC255);
1886	rd32(E1000_PRC511);
1887	rd32(E1000_PRC1023);
1888	rd32(E1000_PRC1522);
1889	rd32(E1000_PTC64);
1890	rd32(E1000_PTC127);
1891	rd32(E1000_PTC255);
1892	rd32(E1000_PTC511);
1893	rd32(E1000_PTC1023);
1894	rd32(E1000_PTC1522);
1895
1896	rd32(E1000_ALGNERRC);
1897	rd32(E1000_RXERRC);
1898	rd32(E1000_TNCRS);
1899	rd32(E1000_CEXTERR);
1900	rd32(E1000_TSCTC);
1901	rd32(E1000_TSCTFC);
1902
1903	rd32(E1000_MGTPRC);
1904	rd32(E1000_MGTPDC);
1905	rd32(E1000_MGTPTC);
1906
1907	rd32(E1000_IAC);
1908	rd32(E1000_ICRXOC);
1909
1910	rd32(E1000_ICRXPTC);
1911	rd32(E1000_ICRXATC);
1912	rd32(E1000_ICTXPTC);
1913	rd32(E1000_ICTXATC);
1914	rd32(E1000_ICTXQEC);
1915	rd32(E1000_ICTXQMTC);
1916	rd32(E1000_ICRXDMTC);
1917
1918	rd32(E1000_CBTMPC);
1919	rd32(E1000_HTDPMC);
1920	rd32(E1000_CBRMPC);
1921	rd32(E1000_RPTHC);
1922	rd32(E1000_HGPTC);
1923	rd32(E1000_HTCBDPC);
1924	rd32(E1000_HGORCL);
1925	rd32(E1000_HGORCH);
1926	rd32(E1000_HGOTCL);
1927	rd32(E1000_HGOTCH);
1928	rd32(E1000_LENERRS);
1929
1930	/* This register should not be read in copper configurations */
1931	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1932	    igb_sgmii_active_82575(hw))
1933		rd32(E1000_SCVPC);
1934}
1935
1936/**
1937 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  After rx enable if manageability is enabled then there is likely some
1941 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1942 *  function clears the fifos and flushes any packets that came in as rx was
1943 *  being enabled.
1944 **/
1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1946{
1947	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1948	int i, ms_wait;
1949
1950	/* disable IPv6 options as per hardware errata */
1951	rfctl = rd32(E1000_RFCTL);
1952	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1953	wr32(E1000_RFCTL, rfctl);
1954
1955	if (hw->mac.type != e1000_82575 ||
1956	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1957		return;
1958
1959	/* Disable all RX queues */
1960	for (i = 0; i < 4; i++) {
1961		rxdctl[i] = rd32(E1000_RXDCTL(i));
1962		wr32(E1000_RXDCTL(i),
1963		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1964	}
1965	/* Poll all queues to verify they have shut down */
1966	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1967		usleep_range(1000, 2000);
1968		rx_enabled = 0;
1969		for (i = 0; i < 4; i++)
1970			rx_enabled |= rd32(E1000_RXDCTL(i));
1971		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1972			break;
1973	}
1974
1975	if (ms_wait == 10)
1976		hw_dbg("Queue disable timed out after 10ms\n");
1977
1978	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1979	 * incoming packets are rejected.  Set enable and wait 2ms so that
1980	 * any packet that was coming in as RCTL.EN was set is flushed
1981	 */
1982	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1983
1984	rlpml = rd32(E1000_RLPML);
1985	wr32(E1000_RLPML, 0);
1986
1987	rctl = rd32(E1000_RCTL);
1988	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1989	temp_rctl |= E1000_RCTL_LPE;
1990
1991	wr32(E1000_RCTL, temp_rctl);
1992	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1993	wrfl();
1994	usleep_range(2000, 3000);
1995
1996	/* Enable RX queues that were previously enabled and restore our
1997	 * previous state
1998	 */
1999	for (i = 0; i < 4; i++)
2000		wr32(E1000_RXDCTL(i), rxdctl[i]);
2001	wr32(E1000_RCTL, rctl);
2002	wrfl();
2003
2004	wr32(E1000_RLPML, rlpml);
2005	wr32(E1000_RFCTL, rfctl);
2006
2007	/* Flush receive errors generated by workaround */
2008	rd32(E1000_ROC);
2009	rd32(E1000_RNBC);
2010	rd32(E1000_MPC);
2011}
2012
2013/**
2014 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2015 *  @hw: pointer to the HW structure
2016 *
2017 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2018 *  however the hardware default for these parts is 500us to 1ms which is less
2019 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2020 *  increase the value to either 10ms to 200ms for capability version 1 config,
2021 *  or 16ms to 55ms for version 2.
2022 **/
2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2024{
2025	u32 gcr = rd32(E1000_GCR);
2026	s32 ret_val = 0;
2027	u16 pcie_devctl2;
2028
2029	/* only take action if timeout value is defaulted to 0 */
2030	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2031		goto out;
2032
2033	/* if capabilities version is type 1 we can write the
2034	 * timeout of 10ms to 200ms through the GCR register
2035	 */
2036	if (!(gcr & E1000_GCR_CAP_VER2)) {
2037		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2038		goto out;
2039	}
2040
2041	/* for version 2 capabilities we need to write the config space
2042	 * directly in order to set the completion timeout value for
2043	 * 16ms to 55ms
2044	 */
2045	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2046					&pcie_devctl2);
2047	if (ret_val)
2048		goto out;
2049
2050	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2051
2052	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2053					 &pcie_devctl2);
2054out:
2055	/* disable completion timeout resend */
2056	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2057
2058	wr32(E1000_GCR, gcr);
2059	return ret_val;
2060}
2061
2062/**
2063 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2064 *  @hw: pointer to the hardware struct
2065 *  @enable: state to enter, either enabled or disabled
2066 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2067 *
2068 *  enables/disables L2 switch anti-spoofing functionality.
2069 **/
2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2071{
2072	u32 reg_val, reg_offset;
2073
2074	switch (hw->mac.type) {
2075	case e1000_82576:
2076		reg_offset = E1000_DTXSWC;
2077		break;
2078	case e1000_i350:
2079	case e1000_i354:
2080		reg_offset = E1000_TXSWC;
2081		break;
2082	default:
2083		return;
2084	}
2085
2086	reg_val = rd32(reg_offset);
2087	if (enable) {
2088		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2089			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2090		/* The PF can spoof - it has to in order to
2091		 * support emulation mode NICs
2092		 */
2093		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2094	} else {
2095		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2096			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2097	}
2098	wr32(reg_offset, reg_val);
2099}
2100
2101/**
2102 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2103 *  @hw: pointer to the hardware struct
2104 *  @enable: state to enter, either enabled or disabled
2105 *
2106 *  enables/disables L2 switch loopback functionality.
2107 **/
2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2109{
2110	u32 dtxswc;
2111
2112	switch (hw->mac.type) {
2113	case e1000_82576:
2114		dtxswc = rd32(E1000_DTXSWC);
2115		if (enable)
2116			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		else
2118			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2119		wr32(E1000_DTXSWC, dtxswc);
2120		break;
2121	case e1000_i354:
2122	case e1000_i350:
2123		dtxswc = rd32(E1000_TXSWC);
2124		if (enable)
2125			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		else
2127			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2128		wr32(E1000_TXSWC, dtxswc);
2129		break;
2130	default:
2131		/* Currently no other hardware supports loopback */
2132		break;
2133	}
2134
2135}
2136
2137/**
2138 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables replication of packets across multiple pools.
2143 **/
2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2145{
2146	u32 vt_ctl = rd32(E1000_VT_CTL);
2147
2148	if (enable)
2149		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2150	else
2151		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2152
2153	wr32(E1000_VT_CTL, vt_ctl);
2154}
2155
2156/**
2157 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2158 *  @hw: pointer to the HW structure
2159 *  @offset: register offset to be read
2160 *  @data: pointer to the read data
2161 *
2162 *  Reads the MDI control register in the PHY at offset and stores the
2163 *  information read to data.
2164 **/
2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2166{
2167	s32 ret_val;
2168
2169	ret_val = hw->phy.ops.acquire(hw);
2170	if (ret_val)
2171		goto out;
2172
2173	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2174
2175	hw->phy.ops.release(hw);
2176
2177out:
2178	return ret_val;
2179}
2180
2181/**
2182 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2183 *  @hw: pointer to the HW structure
2184 *  @offset: register offset to write to
2185 *  @data: data to write to register at offset
2186 *
2187 *  Writes data to MDI control register in the PHY at offset.
2188 **/
2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2190{
2191	s32 ret_val;
2192
2193
2194	ret_val = hw->phy.ops.acquire(hw);
2195	if (ret_val)
2196		goto out;
2197
2198	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2199
2200	hw->phy.ops.release(hw);
2201
2202out:
2203	return ret_val;
2204}
2205
2206/**
2207 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2208 *  @hw: pointer to the HW structure
2209 *
2210 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2211 *  the values found in the EEPROM.  This addresses an issue in which these
2212 *  bits are not restored from EEPROM after reset.
2213 **/
2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2215{
2216	s32 ret_val = 0;
2217	u32 mdicnfg;
2218	u16 nvm_data = 0;
2219
2220	if (hw->mac.type != e1000_82580)
2221		goto out;
2222	if (!igb_sgmii_active_82575(hw))
2223		goto out;
2224
2225	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2226				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2227				   &nvm_data);
2228	if (ret_val) {
2229		hw_dbg("NVM Read Error\n");
2230		goto out;
2231	}
2232
2233	mdicnfg = rd32(E1000_MDICNFG);
2234	if (nvm_data & NVM_WORD24_EXT_MDIO)
2235		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2236	if (nvm_data & NVM_WORD24_COM_MDIO)
2237		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2238	wr32(E1000_MDICNFG, mdicnfg);
2239out:
2240	return ret_val;
2241}
2242
2243/**
2244 *  igb_reset_hw_82580 - Reset hardware
2245 *  @hw: pointer to the HW structure
2246 *
2247 *  This resets function or entire device (all ports, etc.)
2248 *  to a known state.
2249 **/
2250static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2251{
2252	s32 ret_val = 0;
2253	/* BH SW mailbox bit in SW_FW_SYNC */
2254	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2255	u32 ctrl;
2256	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2257
2258	hw->dev_spec._82575.global_device_reset = false;
2259
2260	/* due to hw errata, global device reset doesn't always
2261	 * work on 82580
2262	 */
2263	if (hw->mac.type == e1000_82580)
2264		global_device_reset = false;
2265
2266	/* Get current control state. */
2267	ctrl = rd32(E1000_CTRL);
2268
2269	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2270	 * on the last TLP read/write transaction when MAC is reset.
2271	 */
2272	ret_val = igb_disable_pcie_master(hw);
2273	if (ret_val)
2274		hw_dbg("PCI-E Master disable polling has failed.\n");
2275
2276	hw_dbg("Masking off all interrupts\n");
2277	wr32(E1000_IMC, 0xffffffff);
2278	wr32(E1000_RCTL, 0);
2279	wr32(E1000_TCTL, E1000_TCTL_PSP);
2280	wrfl();
2281
2282	usleep_range(10000, 11000);
2283
2284	/* Determine whether or not a global dev reset is requested */
2285	if (global_device_reset &&
2286		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2287			global_device_reset = false;
2288
2289	if (global_device_reset &&
2290		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2291		ctrl |= E1000_CTRL_DEV_RST;
2292	else
2293		ctrl |= E1000_CTRL_RST;
2294
2295	wr32(E1000_CTRL, ctrl);
2296	wrfl();
2297
2298	/* Add delay to insure DEV_RST has time to complete */
2299	if (global_device_reset)
2300		usleep_range(5000, 6000);
2301
2302	ret_val = igb_get_auto_rd_done(hw);
2303	if (ret_val) {
2304		/* When auto config read does not complete, do not
2305		 * return with an error. This can happen in situations
2306		 * where there is no eeprom and prevents getting link.
2307		 */
2308		hw_dbg("Auto Read Done did not complete\n");
2309	}
2310
2311	/* clear global device reset status bit */
2312	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2313
2314	/* Clear any pending interrupt events. */
2315	wr32(E1000_IMC, 0xffffffff);
2316	rd32(E1000_ICR);
2317
2318	ret_val = igb_reset_mdicnfg_82580(hw);
2319	if (ret_val)
2320		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2321
2322	/* Install any alternate MAC address into RAR0 */
2323	ret_val = igb_check_alt_mac_addr(hw);
2324
2325	/* Release semaphore */
2326	if (global_device_reset)
2327		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2328
2329	return ret_val;
2330}
2331
2332/**
2333 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2334 *  @data: data received by reading RXPBS register
2335 *
2336 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2337 *  This function converts the retrieved value into the correct table value
2338 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2339 *  0x0 36  72 144   1   2   4   8  16
2340 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2341 */
2342u16 igb_rxpbs_adjust_82580(u32 data)
2343{
2344	u16 ret_val = 0;
2345
2346	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2347		ret_val = e1000_82580_rxpbs_table[data];
2348
2349	return ret_val;
2350}
2351
2352/**
2353 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2354 *  checksum
2355 *  @hw: pointer to the HW structure
2356 *  @offset: offset in words of the checksum protected region
2357 *
2358 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2359 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2360 **/
2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2362						 u16 offset)
2363{
2364	s32 ret_val = 0;
2365	u16 checksum = 0;
2366	u16 i, nvm_data;
2367
2368	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2369		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2370		if (ret_val) {
2371			hw_dbg("NVM Read Error\n");
2372			goto out;
2373		}
2374		checksum += nvm_data;
2375	}
2376
2377	if (checksum != (u16) NVM_SUM) {
2378		hw_dbg("NVM Checksum Invalid\n");
2379		ret_val = -E1000_ERR_NVM;
2380		goto out;
2381	}
2382
2383out:
2384	return ret_val;
2385}
2386
2387/**
2388 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2389 *  checksum
2390 *  @hw: pointer to the HW structure
2391 *  @offset: offset in words of the checksum protected region
2392 *
2393 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2394 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2395 *  value to the EEPROM.
2396 **/
2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2398{
2399	s32 ret_val;
2400	u16 checksum = 0;
2401	u16 i, nvm_data;
2402
2403	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2404		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405		if (ret_val) {
2406			hw_dbg("NVM Read Error while updating checksum.\n");
2407			goto out;
2408		}
2409		checksum += nvm_data;
2410	}
2411	checksum = (u16) NVM_SUM - checksum;
2412	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2413				&checksum);
2414	if (ret_val)
2415		hw_dbg("NVM Write Error while updating checksum.\n");
2416
2417out:
2418	return ret_val;
2419}
2420
2421/**
2422 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2423 *  @hw: pointer to the HW structure
2424 *
2425 *  Calculates the EEPROM section checksum by reading/adding each word of
2426 *  the EEPROM and then verifies that the sum of the EEPROM is
2427 *  equal to 0xBABA.
2428 **/
2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2430{
2431	s32 ret_val = 0;
2432	u16 eeprom_regions_count = 1;
2433	u16 j, nvm_data;
2434	u16 nvm_offset;
2435
2436	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2437	if (ret_val) {
2438		hw_dbg("NVM Read Error\n");
2439		goto out;
2440	}
2441
2442	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2443		/* if checksums compatibility bit is set validate checksums
2444		 * for all 4 ports.
2445		 */
2446		eeprom_regions_count = 4;
2447	}
2448
2449	for (j = 0; j < eeprom_regions_count; j++) {
2450		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2452								nvm_offset);
2453		if (ret_val != 0)
2454			goto out;
2455	}
2456
2457out:
2458	return ret_val;
2459}
2460
2461/**
2462 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2463 *  @hw: pointer to the HW structure
2464 *
2465 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2466 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2467 *  checksum and writes the value to the EEPROM.
2468 **/
2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2470{
2471	s32 ret_val;
2472	u16 j, nvm_data;
2473	u16 nvm_offset;
2474
2475	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2476	if (ret_val) {
2477		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2478		goto out;
2479	}
2480
2481	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2482		/* set compatibility bit to validate checksums appropriately */
2483		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2484		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2485					&nvm_data);
2486		if (ret_val) {
2487			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2488			goto out;
2489		}
2490	}
2491
2492	for (j = 0; j < 4; j++) {
2493		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2494		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2495		if (ret_val)
2496			goto out;
2497	}
2498
2499out:
2500	return ret_val;
2501}
2502
2503/**
2504 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2505 *  @hw: pointer to the HW structure
2506 *
2507 *  Calculates the EEPROM section checksum by reading/adding each word of
2508 *  the EEPROM and then verifies that the sum of the EEPROM is
2509 *  equal to 0xBABA.
2510 **/
2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2512{
2513	s32 ret_val = 0;
2514	u16 j;
2515	u16 nvm_offset;
2516
2517	for (j = 0; j < 4; j++) {
2518		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2519		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2520								nvm_offset);
2521		if (ret_val != 0)
2522			goto out;
2523	}
2524
2525out:
2526	return ret_val;
2527}
2528
2529/**
2530 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2531 *  @hw: pointer to the HW structure
2532 *
2533 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2534 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2535 *  checksum and writes the value to the EEPROM.
2536 **/
2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2538{
2539	s32 ret_val = 0;
2540	u16 j;
2541	u16 nvm_offset;
2542
2543	for (j = 0; j < 4; j++) {
2544		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2545		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2546		if (ret_val != 0)
2547			goto out;
2548	}
2549
2550out:
2551	return ret_val;
2552}
2553
2554/**
2555 *  __igb_access_emi_reg - Read/write EMI register
2556 *  @hw: pointer to the HW structure
2557 *  @address: EMI address to program
2558 *  @data: pointer to value to read/write from/to the EMI address
2559 *  @read: boolean flag to indicate read or write
2560 **/
2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2562				  u16 *data, bool read)
2563{
2564	s32 ret_val = 0;
2565
2566	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2567	if (ret_val)
2568		return ret_val;
2569
2570	if (read)
2571		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2572	else
2573		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2574
2575	return ret_val;
2576}
2577
2578/**
2579 *  igb_read_emi_reg - Read Extended Management Interface register
2580 *  @hw: pointer to the HW structure
2581 *  @addr: EMI address to program
2582 *  @data: value to be read from the EMI address
2583 **/
2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2585{
2586	return __igb_access_emi_reg(hw, addr, data, true);
2587}
2588
2589/**
2590 *  igb_set_eee_i350 - Enable/disable EEE support
2591 *  @hw: pointer to the HW structure
2592 *  @adv1G: boolean flag enabling 1G EEE advertisement
2593 *  @adv100M: boolean flag enabling 100M EEE advertisement
2594 *
2595 *  Enable/disable EEE based on setting in dev_spec structure.
2596 *
2597 **/
2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2599{
2600	u32 ipcnfg, eeer;
2601
2602	if ((hw->mac.type < e1000_i350) ||
2603	    (hw->phy.media_type != e1000_media_type_copper))
2604		goto out;
2605	ipcnfg = rd32(E1000_IPCNFG);
2606	eeer = rd32(E1000_EEER);
2607
2608	/* enable or disable per user setting */
2609	if (!(hw->dev_spec._82575.eee_disable)) {
2610		u32 eee_su = rd32(E1000_EEE_SU);
2611
2612		if (adv100M)
2613			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2614		else
2615			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2616
2617		if (adv1G)
2618			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2619		else
2620			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2621
2622		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2623			E1000_EEER_LPI_FC);
2624
2625		/* This bit should not be set in normal operation. */
2626		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2627			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2628
2629	} else {
2630		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2631			E1000_IPCNFG_EEE_100M_AN);
2632		eeer &= ~(E1000_EEER_TX_LPI_EN |
2633			E1000_EEER_RX_LPI_EN |
2634			E1000_EEER_LPI_FC);
2635	}
2636	wr32(E1000_IPCNFG, ipcnfg);
2637	wr32(E1000_EEER, eeer);
2638	rd32(E1000_IPCNFG);
2639	rd32(E1000_EEER);
2640out:
2641
2642	return 0;
2643}
2644
2645/**
2646 *  igb_set_eee_i354 - Enable/disable EEE support
2647 *  @hw: pointer to the HW structure
2648 *  @adv1G: boolean flag enabling 1G EEE advertisement
2649 *  @adv100M: boolean flag enabling 100M EEE advertisement
2650 *
2651 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2652 *
2653 **/
2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2655{
2656	struct e1000_phy_info *phy = &hw->phy;
2657	s32 ret_val = 0;
2658	u16 phy_data;
2659
2660	if ((hw->phy.media_type != e1000_media_type_copper) ||
2661	    ((phy->id != M88E1543_E_PHY_ID) &&
2662	     (phy->id != M88E1512_E_PHY_ID)))
2663		goto out;
2664
2665	if (!hw->dev_spec._82575.eee_disable) {
2666		/* Switch to PHY page 18. */
2667		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2668		if (ret_val)
2669			goto out;
2670
2671		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2672					    &phy_data);
2673		if (ret_val)
2674			goto out;
2675
2676		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2677		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2678					     phy_data);
2679		if (ret_val)
2680			goto out;
2681
2682		/* Return the PHY to page 0. */
2683		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2684		if (ret_val)
2685			goto out;
2686
2687		/* Turn on EEE advertisement. */
2688		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2689					     E1000_EEE_ADV_DEV_I354,
2690					     &phy_data);
2691		if (ret_val)
2692			goto out;
2693
2694		if (adv100M)
2695			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2696		else
2697			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2698
2699		if (adv1G)
2700			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2701		else
2702			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2703
2704		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2705						E1000_EEE_ADV_DEV_I354,
2706						phy_data);
2707	} else {
2708		/* Turn off EEE advertisement. */
2709		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2710					     E1000_EEE_ADV_DEV_I354,
2711					     &phy_data);
2712		if (ret_val)
2713			goto out;
2714
2715		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2716			      E1000_EEE_ADV_1000_SUPPORTED);
2717		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2718					      E1000_EEE_ADV_DEV_I354,
2719					      phy_data);
2720	}
2721
2722out:
2723	return ret_val;
2724}
2725
2726/**
2727 *  igb_get_eee_status_i354 - Get EEE status
2728 *  @hw: pointer to the HW structure
2729 *  @status: EEE status
2730 *
2731 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2732 *  been received.
2733 **/
2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2735{
2736	struct e1000_phy_info *phy = &hw->phy;
2737	s32 ret_val = 0;
2738	u16 phy_data;
2739
2740	/* Check if EEE is supported on this device. */
2741	if ((hw->phy.media_type != e1000_media_type_copper) ||
2742	    ((phy->id != M88E1543_E_PHY_ID) &&
2743	     (phy->id != M88E1512_E_PHY_ID)))
2744		goto out;
2745
2746	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2747				     E1000_PCS_STATUS_DEV_I354,
2748				     &phy_data);
2749	if (ret_val)
2750		goto out;
2751
2752	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2753			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2754
2755out:
2756	return ret_val;
2757}
2758
2759#ifdef CONFIG_IGB_HWMON
2760static const u8 e1000_emc_temp_data[4] = {
2761	E1000_EMC_INTERNAL_DATA,
2762	E1000_EMC_DIODE1_DATA,
2763	E1000_EMC_DIODE2_DATA,
2764	E1000_EMC_DIODE3_DATA
2765};
2766static const u8 e1000_emc_therm_limit[4] = {
2767	E1000_EMC_INTERNAL_THERM_LIMIT,
2768	E1000_EMC_DIODE1_THERM_LIMIT,
2769	E1000_EMC_DIODE2_THERM_LIMIT,
2770	E1000_EMC_DIODE3_THERM_LIMIT
2771};
2772
 
2773/**
2774 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2775 *  @hw: pointer to hardware structure
2776 *
2777 *  Updates the temperatures in mac.thermal_sensor_data
2778 **/
2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2780{
2781	u16 ets_offset;
2782	u16 ets_cfg;
2783	u16 ets_sensor;
2784	u8  num_sensors;
2785	u8  sensor_index;
2786	u8  sensor_location;
2787	u8  i;
2788	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2789
2790	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2791		return E1000_NOT_IMPLEMENTED;
2792
2793	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2794
2795	/* Return the internal sensor only if ETS is unsupported */
2796	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2797	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2798		return 0;
2799
2800	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2801	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2802	    != NVM_ETS_TYPE_EMC)
2803		return E1000_NOT_IMPLEMENTED;
2804
2805	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806	if (num_sensors > E1000_MAX_SENSORS)
2807		num_sensors = E1000_MAX_SENSORS;
2808
2809	for (i = 1; i < num_sensors; i++) {
2810		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2811		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2812				NVM_ETS_DATA_INDEX_SHIFT);
2813		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2814				   NVM_ETS_DATA_LOC_SHIFT);
2815
2816		if (sensor_location != 0)
2817			hw->phy.ops.read_i2c_byte(hw,
2818					e1000_emc_temp_data[sensor_index],
2819					E1000_I2C_THERMAL_SENSOR_ADDR,
2820					&data->sensor[i].temp);
2821	}
2822	return 0;
2823}
2824
2825/**
2826 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2827 *  @hw: pointer to hardware structure
2828 *
2829 *  Sets the thermal sensor thresholds according to the NVM map
2830 *  and save off the threshold and location values into mac.thermal_sensor_data
2831 **/
2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2833{
2834	u16 ets_offset;
2835	u16 ets_cfg;
2836	u16 ets_sensor;
2837	u8  low_thresh_delta;
2838	u8  num_sensors;
2839	u8  sensor_index;
2840	u8  sensor_location;
2841	u8  therm_limit;
2842	u8  i;
2843	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2844
2845	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2846		return E1000_NOT_IMPLEMENTED;
2847
2848	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2849
2850	data->sensor[0].location = 0x1;
2851	data->sensor[0].caution_thresh =
2852		(rd32(E1000_THHIGHTC) & 0xFF);
2853	data->sensor[0].max_op_thresh =
2854		(rd32(E1000_THLOWTC) & 0xFF);
2855
2856	/* Return the internal sensor only if ETS is unsupported */
2857	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2858	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2859		return 0;
2860
2861	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2862	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2863	    != NVM_ETS_TYPE_EMC)
2864		return E1000_NOT_IMPLEMENTED;
2865
2866	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2867			    NVM_ETS_LTHRES_DELTA_SHIFT);
2868	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2869
2870	for (i = 1; i <= num_sensors; i++) {
2871		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2872		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2873				NVM_ETS_DATA_INDEX_SHIFT);
2874		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2875				   NVM_ETS_DATA_LOC_SHIFT);
2876		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2877
2878		hw->phy.ops.write_i2c_byte(hw,
2879			e1000_emc_therm_limit[sensor_index],
2880			E1000_I2C_THERMAL_SENSOR_ADDR,
2881			therm_limit);
2882
2883		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2884			data->sensor[i].location = sensor_location;
2885			data->sensor[i].caution_thresh = therm_limit;
2886			data->sensor[i].max_op_thresh = therm_limit -
2887							low_thresh_delta;
2888		}
2889	}
2890	return 0;
2891}
2892
2893#endif
2894static struct e1000_mac_operations e1000_mac_ops_82575 = {
2895	.init_hw              = igb_init_hw_82575,
2896	.check_for_link       = igb_check_for_link_82575,
2897	.rar_set              = igb_rar_set,
2898	.read_mac_addr        = igb_read_mac_addr_82575,
2899	.get_speed_and_duplex = igb_get_link_up_info_82575,
2900#ifdef CONFIG_IGB_HWMON
2901	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2902	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2903#endif
2904};
2905
2906static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2907	.acquire              = igb_acquire_phy_82575,
2908	.get_cfg_done         = igb_get_cfg_done_82575,
2909	.release              = igb_release_phy_82575,
2910	.write_i2c_byte       = igb_write_i2c_byte,
2911	.read_i2c_byte        = igb_read_i2c_byte,
2912};
2913
2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2915	.acquire              = igb_acquire_nvm_82575,
2916	.read                 = igb_read_nvm_eerd,
2917	.release              = igb_release_nvm_82575,
2918	.write                = igb_write_nvm_spi,
2919};
2920
2921const struct e1000_info e1000_82575_info = {
2922	.get_invariants = igb_get_invariants_82575,
2923	.mac_ops = &e1000_mac_ops_82575,
2924	.phy_ops = &e1000_phy_ops_82575,
2925	.nvm_ops = &e1000_nvm_ops_82575,
2926};
2927