Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include "ice.h"
9
10#define DRV_VERSION "ice-0.7.0-k"
11#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
12const char ice_drv_ver[] = DRV_VERSION;
13static const char ice_driver_string[] = DRV_SUMMARY;
14static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
15
16MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
17MODULE_DESCRIPTION(DRV_SUMMARY);
18MODULE_LICENSE("GPL");
19MODULE_VERSION(DRV_VERSION);
20
21static int debug = -1;
22module_param(debug, int, 0644);
23#ifndef CONFIG_DYNAMIC_DEBUG
24MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
25#else
26MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
27#endif /* !CONFIG_DYNAMIC_DEBUG */
28
29static struct workqueue_struct *ice_wq;
30static const struct net_device_ops ice_netdev_ops;
31
32static void ice_pf_dis_all_vsi(struct ice_pf *pf);
33static void ice_rebuild(struct ice_pf *pf);
34static int ice_vsi_release(struct ice_vsi *vsi);
35static void ice_update_vsi_stats(struct ice_vsi *vsi);
36static void ice_update_pf_stats(struct ice_pf *pf);
37
38/**
39 * ice_get_free_slot - get the next non-NULL location index in array
40 * @array: array to search
41 * @size: size of the array
42 * @curr: last known occupied index to be used as a search hint
43 *
44 * void * is being used to keep the functionality generic. This lets us use this
45 * function on any array of pointers.
46 */
47static int ice_get_free_slot(void *array, int size, int curr)
48{
49 int **tmp_array = (int **)array;
50 int next;
51
52 if (curr < (size - 1) && !tmp_array[curr + 1]) {
53 next = curr + 1;
54 } else {
55 int i = 0;
56
57 while ((i < size) && (tmp_array[i]))
58 i++;
59 if (i == size)
60 next = ICE_NO_VSI;
61 else
62 next = i;
63 }
64 return next;
65}
66
67/**
68 * ice_search_res - Search the tracker for a block of resources
69 * @res: pointer to the resource
70 * @needed: size of the block needed
71 * @id: identifier to track owner
72 * Returns the base item index of the block, or -ENOMEM for error
73 */
74static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
75{
76 int start = res->search_hint;
77 int end = start;
78
79 id |= ICE_RES_VALID_BIT;
80
81 do {
82 /* skip already allocated entries */
83 if (res->list[end++] & ICE_RES_VALID_BIT) {
84 start = end;
85 if ((start + needed) > res->num_entries)
86 break;
87 }
88
89 if (end == (start + needed)) {
90 int i = start;
91
92 /* there was enough, so assign it to the requestor */
93 while (i != end)
94 res->list[i++] = id;
95
96 if (end == res->num_entries)
97 end = 0;
98
99 res->search_hint = end;
100 return start;
101 }
102 } while (1);
103
104 return -ENOMEM;
105}
106
107/**
108 * ice_get_res - get a block of resources
109 * @pf: board private structure
110 * @res: pointer to the resource
111 * @needed: size of the block needed
112 * @id: identifier to track owner
113 *
114 * Returns the base item index of the block, or -ENOMEM for error
115 * The search_hint trick and lack of advanced fit-finding only works
116 * because we're highly likely to have all the same sized requests.
117 * Linear search time and any fragmentation should be minimal.
118 */
119static int
120ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
121{
122 int ret;
123
124 if (!res || !pf)
125 return -EINVAL;
126
127 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
128 dev_err(&pf->pdev->dev,
129 "param err: needed=%d, num_entries = %d id=0x%04x\n",
130 needed, res->num_entries, id);
131 return -EINVAL;
132 }
133
134 /* search based on search_hint */
135 ret = ice_search_res(res, needed, id);
136
137 if (ret < 0) {
138 /* previous search failed. Reset search hint and try again */
139 res->search_hint = 0;
140 ret = ice_search_res(res, needed, id);
141 }
142
143 return ret;
144}
145
146/**
147 * ice_free_res - free a block of resources
148 * @res: pointer to the resource
149 * @index: starting index previously returned by ice_get_res
150 * @id: identifier to track owner
151 * Returns number of resources freed
152 */
153static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
154{
155 int count = 0;
156 int i;
157
158 if (!res || index >= res->num_entries)
159 return -EINVAL;
160
161 id |= ICE_RES_VALID_BIT;
162 for (i = index; i < res->num_entries && res->list[i] == id; i++) {
163 res->list[i] = 0;
164 count++;
165 }
166
167 return count;
168}
169
170/**
171 * ice_add_mac_to_list - Add a mac address filter entry to the list
172 * @vsi: the VSI to be forwarded to
173 * @add_list: pointer to the list which contains MAC filter entries
174 * @macaddr: the MAC address to be added.
175 *
176 * Adds mac address filter entry to the temp list
177 *
178 * Returns 0 on success or ENOMEM on failure.
179 */
180static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
181 const u8 *macaddr)
182{
183 struct ice_fltr_list_entry *tmp;
184 struct ice_pf *pf = vsi->back;
185
186 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
187 if (!tmp)
188 return -ENOMEM;
189
190 tmp->fltr_info.flag = ICE_FLTR_TX;
191 tmp->fltr_info.src = vsi->vsi_num;
192 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
193 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
194 tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
195 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
196
197 INIT_LIST_HEAD(&tmp->list_entry);
198 list_add(&tmp->list_entry, add_list);
199
200 return 0;
201}
202
203/**
204 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
205 * @netdev: the net device on which the sync is happening
206 * @addr: mac address to sync
207 *
208 * This is a callback function which is called by the in kernel device sync
209 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
210 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
211 * mac filters from the hardware.
212 */
213static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
214{
215 struct ice_netdev_priv *np = netdev_priv(netdev);
216 struct ice_vsi *vsi = np->vsi;
217
218 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
219 return -EINVAL;
220
221 return 0;
222}
223
224/**
225 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
226 * @netdev: the net device on which the unsync is happening
227 * @addr: mac address to unsync
228 *
229 * This is a callback function which is called by the in kernel device unsync
230 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
231 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
232 * delete the mac filters from the hardware.
233 */
234static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
235{
236 struct ice_netdev_priv *np = netdev_priv(netdev);
237 struct ice_vsi *vsi = np->vsi;
238
239 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
240 return -EINVAL;
241
242 return 0;
243}
244
245/**
246 * ice_free_fltr_list - free filter lists helper
247 * @dev: pointer to the device struct
248 * @h: pointer to the list head to be freed
249 *
250 * Helper function to free filter lists previously created using
251 * ice_add_mac_to_list
252 */
253static void ice_free_fltr_list(struct device *dev, struct list_head *h)
254{
255 struct ice_fltr_list_entry *e, *tmp;
256
257 list_for_each_entry_safe(e, tmp, h, list_entry) {
258 list_del(&e->list_entry);
259 devm_kfree(dev, e);
260 }
261}
262
263/**
264 * ice_vsi_fltr_changed - check if filter state changed
265 * @vsi: VSI to be checked
266 *
267 * returns true if filter state has changed, false otherwise.
268 */
269static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
270{
271 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
272 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
273 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
274}
275
276/**
277 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
278 * @vsi: ptr to the VSI
279 *
280 * Push any outstanding VSI filter changes through the AdminQ.
281 */
282static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
283{
284 struct device *dev = &vsi->back->pdev->dev;
285 struct net_device *netdev = vsi->netdev;
286 bool promisc_forced_on = false;
287 struct ice_pf *pf = vsi->back;
288 struct ice_hw *hw = &pf->hw;
289 enum ice_status status = 0;
290 u32 changed_flags = 0;
291 int err = 0;
292
293 if (!vsi->netdev)
294 return -EINVAL;
295
296 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
297 usleep_range(1000, 2000);
298
299 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
300 vsi->current_netdev_flags = vsi->netdev->flags;
301
302 INIT_LIST_HEAD(&vsi->tmp_sync_list);
303 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
304
305 if (ice_vsi_fltr_changed(vsi)) {
306 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
307 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
308 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
309
310 /* grab the netdev's addr_list_lock */
311 netif_addr_lock_bh(netdev);
312 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
313 ice_add_mac_to_unsync_list);
314 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
315 ice_add_mac_to_unsync_list);
316 /* our temp lists are populated. release lock */
317 netif_addr_unlock_bh(netdev);
318 }
319
320 /* Remove mac addresses in the unsync list */
321 status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
322 ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
323 if (status) {
324 netdev_err(netdev, "Failed to delete MAC filters\n");
325 /* if we failed because of alloc failures, just bail */
326 if (status == ICE_ERR_NO_MEMORY) {
327 err = -ENOMEM;
328 goto out;
329 }
330 }
331
332 /* Add mac addresses in the sync list */
333 status = ice_add_mac(hw, &vsi->tmp_sync_list);
334 ice_free_fltr_list(dev, &vsi->tmp_sync_list);
335 if (status) {
336 netdev_err(netdev, "Failed to add MAC filters\n");
337 /* If there is no more space for new umac filters, vsi
338 * should go into promiscuous mode. There should be some
339 * space reserved for promiscuous filters.
340 */
341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
342 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
343 vsi->state)) {
344 promisc_forced_on = true;
345 netdev_warn(netdev,
346 "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
347 vsi->vsi_num);
348 } else {
349 err = -EIO;
350 goto out;
351 }
352 }
353 /* check for changes in promiscuous modes */
354 if (changed_flags & IFF_ALLMULTI)
355 netdev_warn(netdev, "Unsupported configuration\n");
356
357 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
358 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
359 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
360 if (vsi->current_netdev_flags & IFF_PROMISC) {
361 /* Apply TX filter rule to get traffic from VMs */
362 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
363 ICE_FLTR_TX);
364 if (status) {
365 netdev_err(netdev, "Error setting default VSI %i tx rule\n",
366 vsi->vsi_num);
367 vsi->current_netdev_flags &= ~IFF_PROMISC;
368 err = -EIO;
369 goto out_promisc;
370 }
371 /* Apply RX filter rule to get traffic from wire */
372 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
373 ICE_FLTR_RX);
374 if (status) {
375 netdev_err(netdev, "Error setting default VSI %i rx rule\n",
376 vsi->vsi_num);
377 vsi->current_netdev_flags &= ~IFF_PROMISC;
378 err = -EIO;
379 goto out_promisc;
380 }
381 } else {
382 /* Clear TX filter rule to stop traffic from VMs */
383 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
384 ICE_FLTR_TX);
385 if (status) {
386 netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
387 vsi->vsi_num);
388 vsi->current_netdev_flags |= IFF_PROMISC;
389 err = -EIO;
390 goto out_promisc;
391 }
392 /* Clear filter RX to remove traffic from wire */
393 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
394 ICE_FLTR_RX);
395 if (status) {
396 netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
397 vsi->vsi_num);
398 vsi->current_netdev_flags |= IFF_PROMISC;
399 err = -EIO;
400 goto out_promisc;
401 }
402 }
403 }
404 goto exit;
405
406out_promisc:
407 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
408 goto exit;
409out:
410 /* if something went wrong then set the changed flag so we try again */
411 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
412 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
413exit:
414 clear_bit(__ICE_CFG_BUSY, vsi->state);
415 return err;
416}
417
418/**
419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
420 * @pf: board private structure
421 */
422static void ice_sync_fltr_subtask(struct ice_pf *pf)
423{
424 int v;
425
426 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
427 return;
428
429 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430
431 for (v = 0; v < pf->num_alloc_vsi; v++)
432 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
433 ice_vsi_sync_fltr(pf->vsi[v])) {
434 /* come back and try again later */
435 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
436 break;
437 }
438}
439
440/**
441 * ice_is_reset_recovery_pending - schedule a reset
442 * @state: pf state field
443 */
444static bool ice_is_reset_recovery_pending(unsigned long int *state)
445{
446 return test_bit(__ICE_RESET_RECOVERY_PENDING, state);
447}
448
449/**
450 * ice_prepare_for_reset - prep for the core to reset
451 * @pf: board private structure
452 *
453 * Inform or close all dependent features in prep for reset.
454 */
455static void
456ice_prepare_for_reset(struct ice_pf *pf)
457{
458 struct ice_hw *hw = &pf->hw;
459 u32 v;
460
461 ice_for_each_vsi(pf, v)
462 if (pf->vsi[v])
463 ice_remove_vsi_fltr(hw, pf->vsi[v]->vsi_num);
464
465 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
466
467 /* disable the VSIs and their queues that are not already DOWN */
468 /* pf_dis_all_vsi modifies netdev structures -rtnl_lock needed */
469 ice_pf_dis_all_vsi(pf);
470
471 ice_for_each_vsi(pf, v)
472 if (pf->vsi[v])
473 pf->vsi[v]->vsi_num = 0;
474
475 ice_shutdown_all_ctrlq(hw);
476}
477
478/**
479 * ice_do_reset - Initiate one of many types of resets
480 * @pf: board private structure
481 * @reset_type: reset type requested
482 * before this function was called.
483 */
484static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
485{
486 struct device *dev = &pf->pdev->dev;
487 struct ice_hw *hw = &pf->hw;
488
489 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
490 WARN_ON(in_interrupt());
491
492 /* PFR is a bit of a special case because it doesn't result in an OICR
493 * interrupt. So for PFR, we prepare for reset, issue the reset and
494 * rebuild sequentially.
495 */
496 if (reset_type == ICE_RESET_PFR) {
497 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
498 ice_prepare_for_reset(pf);
499 }
500
501 /* trigger the reset */
502 if (ice_reset(hw, reset_type)) {
503 dev_err(dev, "reset %d failed\n", reset_type);
504 set_bit(__ICE_RESET_FAILED, pf->state);
505 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
506 return;
507 }
508
509 if (reset_type == ICE_RESET_PFR) {
510 pf->pfr_count++;
511 ice_rebuild(pf);
512 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
513 }
514}
515
516/**
517 * ice_reset_subtask - Set up for resetting the device and driver
518 * @pf: board private structure
519 */
520static void ice_reset_subtask(struct ice_pf *pf)
521{
522 enum ice_reset_req reset_type;
523
524 rtnl_lock();
525
526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what
528 * type of reset happened and sets __ICE_RESET_RECOVERY_PENDING bit in
529 * pf->state. So if reset/recovery is pending (as indicated by this bit)
530 * we do a rebuild and return.
531 */
532 if (ice_is_reset_recovery_pending(pf->state)) {
533 clear_bit(__ICE_GLOBR_RECV, pf->state);
534 clear_bit(__ICE_CORER_RECV, pf->state);
535 ice_prepare_for_reset(pf);
536
537 /* make sure we are ready to rebuild */
538 if (ice_check_reset(&pf->hw))
539 set_bit(__ICE_RESET_FAILED, pf->state);
540 else
541 ice_rebuild(pf);
542 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
543 goto unlock;
544 }
545
546 /* No pending resets to finish processing. Check for new resets */
547 if (test_and_clear_bit(__ICE_GLOBR_REQ, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 else if (test_and_clear_bit(__ICE_CORER_REQ, pf->state))
550 reset_type = ICE_RESET_CORER;
551 else if (test_and_clear_bit(__ICE_PFR_REQ, pf->state))
552 reset_type = ICE_RESET_PFR;
553 else
554 goto unlock;
555
556 /* reset if not already down or resetting */
557 if (!test_bit(__ICE_DOWN, pf->state) &&
558 !test_bit(__ICE_CFG_BUSY, pf->state)) {
559 ice_do_reset(pf, reset_type);
560 }
561
562unlock:
563 rtnl_unlock();
564}
565
566/**
567 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
568 * @pf: board private structure
569 */
570static void ice_watchdog_subtask(struct ice_pf *pf)
571{
572 int i;
573
574 /* if interface is down do nothing */
575 if (test_bit(__ICE_DOWN, pf->state) ||
576 test_bit(__ICE_CFG_BUSY, pf->state))
577 return;
578
579 /* make sure we don't do these things too often */
580 if (time_before(jiffies,
581 pf->serv_tmr_prev + pf->serv_tmr_period))
582 return;
583
584 pf->serv_tmr_prev = jiffies;
585
586 /* Update the stats for active netdevs so the network stack
587 * can look at updated numbers whenever it cares to
588 */
589 ice_update_pf_stats(pf);
590 for (i = 0; i < pf->num_alloc_vsi; i++)
591 if (pf->vsi[i] && pf->vsi[i]->netdev)
592 ice_update_vsi_stats(pf->vsi[i]);
593}
594
595/**
596 * ice_print_link_msg - print link up or down message
597 * @vsi: the VSI whose link status is being queried
598 * @isup: boolean for if the link is now up or down
599 */
600void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
601{
602 const char *speed;
603 const char *fc;
604
605 if (vsi->current_isup == isup)
606 return;
607
608 vsi->current_isup = isup;
609
610 if (!isup) {
611 netdev_info(vsi->netdev, "NIC Link is Down\n");
612 return;
613 }
614
615 switch (vsi->port_info->phy.link_info.link_speed) {
616 case ICE_AQ_LINK_SPEED_40GB:
617 speed = "40 G";
618 break;
619 case ICE_AQ_LINK_SPEED_25GB:
620 speed = "25 G";
621 break;
622 case ICE_AQ_LINK_SPEED_20GB:
623 speed = "20 G";
624 break;
625 case ICE_AQ_LINK_SPEED_10GB:
626 speed = "10 G";
627 break;
628 case ICE_AQ_LINK_SPEED_5GB:
629 speed = "5 G";
630 break;
631 case ICE_AQ_LINK_SPEED_2500MB:
632 speed = "2.5 G";
633 break;
634 case ICE_AQ_LINK_SPEED_1000MB:
635 speed = "1 G";
636 break;
637 case ICE_AQ_LINK_SPEED_100MB:
638 speed = "100 M";
639 break;
640 default:
641 speed = "Unknown";
642 break;
643 }
644
645 switch (vsi->port_info->fc.current_mode) {
646 case ICE_FC_FULL:
647 fc = "RX/TX";
648 break;
649 case ICE_FC_TX_PAUSE:
650 fc = "TX";
651 break;
652 case ICE_FC_RX_PAUSE:
653 fc = "RX";
654 break;
655 default:
656 fc = "Unknown";
657 break;
658 }
659
660 netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
661 speed, fc);
662}
663
664/**
665 * ice_init_link_events - enable/initialize link events
666 * @pi: pointer to the port_info instance
667 *
668 * Returns -EIO on failure, 0 on success
669 */
670static int ice_init_link_events(struct ice_port_info *pi)
671{
672 u16 mask;
673
674 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
675 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
676
677 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
678 dev_dbg(ice_hw_to_dev(pi->hw),
679 "Failed to set link event mask for port %d\n",
680 pi->lport);
681 return -EIO;
682 }
683
684 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
685 dev_dbg(ice_hw_to_dev(pi->hw),
686 "Failed to enable link events for port %d\n",
687 pi->lport);
688 return -EIO;
689 }
690
691 return 0;
692}
693
694/**
695 * ice_vsi_link_event - update the vsi's netdev
696 * @vsi: the vsi on which the link event occurred
697 * @link_up: whether or not the vsi needs to be set up or down
698 */
699static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
700{
701 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
702 return;
703
704 if (vsi->type == ICE_VSI_PF) {
705 if (!vsi->netdev) {
706 dev_dbg(&vsi->back->pdev->dev,
707 "vsi->netdev is not initialized!\n");
708 return;
709 }
710 if (link_up) {
711 netif_carrier_on(vsi->netdev);
712 netif_tx_wake_all_queues(vsi->netdev);
713 } else {
714 netif_carrier_off(vsi->netdev);
715 netif_tx_stop_all_queues(vsi->netdev);
716 }
717 }
718}
719
720/**
721 * ice_link_event - process the link event
722 * @pf: pf that the link event is associated with
723 * @pi: port_info for the port that the link event is associated with
724 *
725 * Returns -EIO if ice_get_link_status() fails
726 * Returns 0 on success
727 */
728static int
729ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
730{
731 u8 new_link_speed, old_link_speed;
732 struct ice_phy_info *phy_info;
733 bool new_link_same_as_old;
734 bool new_link, old_link;
735 u8 lport;
736 u16 v;
737
738 phy_info = &pi->phy;
739 phy_info->link_info_old = phy_info->link_info;
740 /* Force ice_get_link_status() to update link info */
741 phy_info->get_link_info = true;
742
743 old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
744 old_link_speed = phy_info->link_info_old.link_speed;
745
746 lport = pi->lport;
747 if (ice_get_link_status(pi, &new_link)) {
748 dev_dbg(&pf->pdev->dev,
749 "Could not get link status for port %d\n", lport);
750 return -EIO;
751 }
752
753 new_link_speed = phy_info->link_info.link_speed;
754
755 new_link_same_as_old = (new_link == old_link &&
756 new_link_speed == old_link_speed);
757
758 ice_for_each_vsi(pf, v) {
759 struct ice_vsi *vsi = pf->vsi[v];
760
761 if (!vsi || !vsi->port_info)
762 continue;
763
764 if (new_link_same_as_old &&
765 (test_bit(__ICE_DOWN, vsi->state) ||
766 new_link == netif_carrier_ok(vsi->netdev)))
767 continue;
768
769 if (vsi->port_info->lport == lport) {
770 ice_print_link_msg(vsi, new_link);
771 ice_vsi_link_event(vsi, new_link);
772 }
773 }
774
775 return 0;
776}
777
778/**
779 * ice_handle_link_event - handle link event via ARQ
780 * @pf: pf that the link event is associated with
781 *
782 * Return -EINVAL if port_info is null
783 * Return status on succes
784 */
785static int ice_handle_link_event(struct ice_pf *pf)
786{
787 struct ice_port_info *port_info;
788 int status;
789
790 port_info = pf->hw.port_info;
791 if (!port_info)
792 return -EINVAL;
793
794 status = ice_link_event(pf, port_info);
795 if (status)
796 dev_dbg(&pf->pdev->dev,
797 "Could not process link event, error %d\n", status);
798
799 return status;
800}
801
802/**
803 * __ice_clean_ctrlq - helper function to clean controlq rings
804 * @pf: ptr to struct ice_pf
805 * @q_type: specific Control queue type
806 */
807static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
808{
809 struct ice_rq_event_info event;
810 struct ice_hw *hw = &pf->hw;
811 struct ice_ctl_q_info *cq;
812 u16 pending, i = 0;
813 const char *qtype;
814 u32 oldval, val;
815
816 /* Do not clean control queue if/when PF reset fails */
817 if (test_bit(__ICE_RESET_FAILED, pf->state))
818 return 0;
819
820 switch (q_type) {
821 case ICE_CTL_Q_ADMIN:
822 cq = &hw->adminq;
823 qtype = "Admin";
824 break;
825 default:
826 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
827 q_type);
828 return 0;
829 }
830
831 /* check for error indications - PF_xx_AxQLEN register layout for
832 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
833 */
834 val = rd32(hw, cq->rq.len);
835 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
836 PF_FW_ARQLEN_ARQCRIT_M)) {
837 oldval = val;
838 if (val & PF_FW_ARQLEN_ARQVFE_M)
839 dev_dbg(&pf->pdev->dev,
840 "%s Receive Queue VF Error detected\n", qtype);
841 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
842 dev_dbg(&pf->pdev->dev,
843 "%s Receive Queue Overflow Error detected\n",
844 qtype);
845 }
846 if (val & PF_FW_ARQLEN_ARQCRIT_M)
847 dev_dbg(&pf->pdev->dev,
848 "%s Receive Queue Critical Error detected\n",
849 qtype);
850 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
851 PF_FW_ARQLEN_ARQCRIT_M);
852 if (oldval != val)
853 wr32(hw, cq->rq.len, val);
854 }
855
856 val = rd32(hw, cq->sq.len);
857 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
858 PF_FW_ATQLEN_ATQCRIT_M)) {
859 oldval = val;
860 if (val & PF_FW_ATQLEN_ATQVFE_M)
861 dev_dbg(&pf->pdev->dev,
862 "%s Send Queue VF Error detected\n", qtype);
863 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
864 dev_dbg(&pf->pdev->dev,
865 "%s Send Queue Overflow Error detected\n",
866 qtype);
867 }
868 if (val & PF_FW_ATQLEN_ATQCRIT_M)
869 dev_dbg(&pf->pdev->dev,
870 "%s Send Queue Critical Error detected\n",
871 qtype);
872 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
873 PF_FW_ATQLEN_ATQCRIT_M);
874 if (oldval != val)
875 wr32(hw, cq->sq.len, val);
876 }
877
878 event.buf_len = cq->rq_buf_size;
879 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
880 GFP_KERNEL);
881 if (!event.msg_buf)
882 return 0;
883
884 do {
885 enum ice_status ret;
886 u16 opcode;
887
888 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
889 if (ret == ICE_ERR_AQ_NO_WORK)
890 break;
891 if (ret) {
892 dev_err(&pf->pdev->dev,
893 "%s Receive Queue event error %d\n", qtype,
894 ret);
895 break;
896 }
897
898 opcode = le16_to_cpu(event.desc.opcode);
899
900 switch (opcode) {
901 case ice_aqc_opc_get_link_status:
902 if (ice_handle_link_event(pf))
903 dev_err(&pf->pdev->dev,
904 "Could not handle link event");
905 break;
906 default:
907 dev_dbg(&pf->pdev->dev,
908 "%s Receive Queue unknown event 0x%04x ignored\n",
909 qtype, opcode);
910 break;
911 }
912 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
913
914 devm_kfree(&pf->pdev->dev, event.msg_buf);
915
916 return pending && (i == ICE_DFLT_IRQ_WORK);
917}
918
919/**
920 * ice_clean_adminq_subtask - clean the AdminQ rings
921 * @pf: board private structure
922 */
923static void ice_clean_adminq_subtask(struct ice_pf *pf)
924{
925 struct ice_hw *hw = &pf->hw;
926 u32 val;
927
928 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
929 return;
930
931 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
932 return;
933
934 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
935
936 /* re-enable Admin queue interrupt causes */
937 val = rd32(hw, PFINT_FW_CTL);
938 wr32(hw, PFINT_FW_CTL, (val | PFINT_FW_CTL_CAUSE_ENA_M));
939
940 ice_flush(hw);
941}
942
943/**
944 * ice_service_task_schedule - schedule the service task to wake up
945 * @pf: board private structure
946 *
947 * If not already scheduled, this puts the task into the work queue.
948 */
949static void ice_service_task_schedule(struct ice_pf *pf)
950{
951 if (!test_bit(__ICE_DOWN, pf->state) &&
952 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state))
953 queue_work(ice_wq, &pf->serv_task);
954}
955
956/**
957 * ice_service_task_complete - finish up the service task
958 * @pf: board private structure
959 */
960static void ice_service_task_complete(struct ice_pf *pf)
961{
962 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
963
964 /* force memory (pf->state) to sync before next service task */
965 smp_mb__before_atomic();
966 clear_bit(__ICE_SERVICE_SCHED, pf->state);
967}
968
969/**
970 * ice_service_timer - timer callback to schedule service task
971 * @t: pointer to timer_list
972 */
973static void ice_service_timer(struct timer_list *t)
974{
975 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
976
977 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
978 ice_service_task_schedule(pf);
979}
980
981/**
982 * ice_service_task - manage and run subtasks
983 * @work: pointer to work_struct contained by the PF struct
984 */
985static void ice_service_task(struct work_struct *work)
986{
987 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
988 unsigned long start_time = jiffies;
989
990 /* subtasks */
991
992 /* process reset requests first */
993 ice_reset_subtask(pf);
994
995 /* bail if a reset/recovery cycle is pending */
996 if (ice_is_reset_recovery_pending(pf->state) ||
997 test_bit(__ICE_SUSPENDED, pf->state)) {
998 ice_service_task_complete(pf);
999 return;
1000 }
1001
1002 ice_sync_fltr_subtask(pf);
1003 ice_watchdog_subtask(pf);
1004 ice_clean_adminq_subtask(pf);
1005
1006 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1007 ice_service_task_complete(pf);
1008
1009 /* If the tasks have taken longer than one service timer period
1010 * or there is more work to be done, reset the service timer to
1011 * schedule the service task now.
1012 */
1013 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1014 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1015 mod_timer(&pf->serv_tmr, jiffies);
1016}
1017
1018/**
1019 * ice_set_ctrlq_len - helper function to set controlq length
1020 * @hw: pointer to the hw instance
1021 */
1022static void ice_set_ctrlq_len(struct ice_hw *hw)
1023{
1024 hw->adminq.num_rq_entries = ICE_AQ_LEN;
1025 hw->adminq.num_sq_entries = ICE_AQ_LEN;
1026 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1027 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1028}
1029
1030/**
1031 * ice_irq_affinity_notify - Callback for affinity changes
1032 * @notify: context as to what irq was changed
1033 * @mask: the new affinity mask
1034 *
1035 * This is a callback function used by the irq_set_affinity_notifier function
1036 * so that we may register to receive changes to the irq affinity masks.
1037 */
1038static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1039 const cpumask_t *mask)
1040{
1041 struct ice_q_vector *q_vector =
1042 container_of(notify, struct ice_q_vector, affinity_notify);
1043
1044 cpumask_copy(&q_vector->affinity_mask, mask);
1045}
1046
1047/**
1048 * ice_irq_affinity_release - Callback for affinity notifier release
1049 * @ref: internal core kernel usage
1050 *
1051 * This is a callback function used by the irq_set_affinity_notifier function
1052 * to inform the current notification subscriber that they will no longer
1053 * receive notifications.
1054 */
1055static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1056
1057/**
1058 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
1059 * @vsi: the VSI being un-configured
1060 */
1061static void ice_vsi_dis_irq(struct ice_vsi *vsi)
1062{
1063 struct ice_pf *pf = vsi->back;
1064 struct ice_hw *hw = &pf->hw;
1065 int base = vsi->base_vector;
1066 u32 val;
1067 int i;
1068
1069 /* disable interrupt causation from each queue */
1070 if (vsi->tx_rings) {
1071 ice_for_each_txq(vsi, i) {
1072 if (vsi->tx_rings[i]) {
1073 u16 reg;
1074
1075 reg = vsi->tx_rings[i]->reg_idx;
1076 val = rd32(hw, QINT_TQCTL(reg));
1077 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1078 wr32(hw, QINT_TQCTL(reg), val);
1079 }
1080 }
1081 }
1082
1083 if (vsi->rx_rings) {
1084 ice_for_each_rxq(vsi, i) {
1085 if (vsi->rx_rings[i]) {
1086 u16 reg;
1087
1088 reg = vsi->rx_rings[i]->reg_idx;
1089 val = rd32(hw, QINT_RQCTL(reg));
1090 val &= ~QINT_RQCTL_CAUSE_ENA_M;
1091 wr32(hw, QINT_RQCTL(reg), val);
1092 }
1093 }
1094 }
1095
1096 /* disable each interrupt */
1097 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1098 for (i = vsi->base_vector;
1099 i < (vsi->num_q_vectors + vsi->base_vector); i++)
1100 wr32(hw, GLINT_DYN_CTL(i), 0);
1101
1102 ice_flush(hw);
1103 for (i = 0; i < vsi->num_q_vectors; i++)
1104 synchronize_irq(pf->msix_entries[i + base].vector);
1105 }
1106}
1107
1108/**
1109 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1110 * @vsi: the VSI being configured
1111 */
1112static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1113{
1114 struct ice_pf *pf = vsi->back;
1115 struct ice_hw *hw = &pf->hw;
1116
1117 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1118 int i;
1119
1120 for (i = 0; i < vsi->num_q_vectors; i++)
1121 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1122 }
1123
1124 ice_flush(hw);
1125 return 0;
1126}
1127
1128/**
1129 * ice_vsi_delete - delete a VSI from the switch
1130 * @vsi: pointer to VSI being removed
1131 */
1132static void ice_vsi_delete(struct ice_vsi *vsi)
1133{
1134 struct ice_pf *pf = vsi->back;
1135 struct ice_vsi_ctx ctxt;
1136 enum ice_status status;
1137
1138 ctxt.vsi_num = vsi->vsi_num;
1139
1140 memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));
1141
1142 status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
1143 if (status)
1144 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
1145 vsi->vsi_num);
1146}
1147
1148/**
1149 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1150 * @vsi: the VSI being configured
1151 * @basename: name for the vector
1152 */
1153static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1154{
1155 int q_vectors = vsi->num_q_vectors;
1156 struct ice_pf *pf = vsi->back;
1157 int base = vsi->base_vector;
1158 int rx_int_idx = 0;
1159 int tx_int_idx = 0;
1160 int vector, err;
1161 int irq_num;
1162
1163 for (vector = 0; vector < q_vectors; vector++) {
1164 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1165
1166 irq_num = pf->msix_entries[base + vector].vector;
1167
1168 if (q_vector->tx.ring && q_vector->rx.ring) {
1169 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1170 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1171 tx_int_idx++;
1172 } else if (q_vector->rx.ring) {
1173 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1174 "%s-%s-%d", basename, "rx", rx_int_idx++);
1175 } else if (q_vector->tx.ring) {
1176 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1177 "%s-%s-%d", basename, "tx", tx_int_idx++);
1178 } else {
1179 /* skip this unused q_vector */
1180 continue;
1181 }
1182 err = devm_request_irq(&pf->pdev->dev,
1183 pf->msix_entries[base + vector].vector,
1184 vsi->irq_handler, 0, q_vector->name,
1185 q_vector);
1186 if (err) {
1187 netdev_err(vsi->netdev,
1188 "MSIX request_irq failed, error: %d\n", err);
1189 goto free_q_irqs;
1190 }
1191
1192 /* register for affinity change notifications */
1193 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1194 q_vector->affinity_notify.release = ice_irq_affinity_release;
1195 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1196
1197 /* assign the mask for this irq */
1198 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1199 }
1200
1201 vsi->irqs_ready = true;
1202 return 0;
1203
1204free_q_irqs:
1205 while (vector) {
1206 vector--;
1207 irq_num = pf->msix_entries[base + vector].vector,
1208 irq_set_affinity_notifier(irq_num, NULL);
1209 irq_set_affinity_hint(irq_num, NULL);
1210 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1211 }
1212 return err;
1213}
1214
1215/**
1216 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
1217 * @vsi: the VSI being configured
1218 */
1219static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
1220{
1221 struct ice_hw_common_caps *cap;
1222 struct ice_pf *pf = vsi->back;
1223
1224 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
1225 vsi->rss_size = 1;
1226 return;
1227 }
1228
1229 cap = &pf->hw.func_caps.common_cap;
1230 switch (vsi->type) {
1231 case ICE_VSI_PF:
1232 /* PF VSI will inherit RSS instance of PF */
1233 vsi->rss_table_size = cap->rss_table_size;
1234 vsi->rss_size = min_t(int, num_online_cpus(),
1235 BIT(cap->rss_table_entry_width));
1236 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
1237 break;
1238 default:
1239 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1240 break;
1241 }
1242}
1243
1244/**
1245 * ice_vsi_setup_q_map - Setup a VSI queue map
1246 * @vsi: the VSI being configured
1247 * @ctxt: VSI context structure
1248 */
1249static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1250{
1251 u16 offset = 0, qmap = 0, numq_tc;
1252 u16 pow = 0, max_rss = 0, qcount;
1253 u16 qcount_tx = vsi->alloc_txq;
1254 u16 qcount_rx = vsi->alloc_rxq;
1255 bool ena_tc0 = false;
1256 int i;
1257
1258 /* at least TC0 should be enabled by default */
1259 if (vsi->tc_cfg.numtc) {
1260 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
1261 ena_tc0 = true;
1262 } else {
1263 ena_tc0 = true;
1264 }
1265
1266 if (ena_tc0) {
1267 vsi->tc_cfg.numtc++;
1268 vsi->tc_cfg.ena_tc |= 1;
1269 }
1270
1271 numq_tc = qcount_rx / vsi->tc_cfg.numtc;
1272
1273 /* TC mapping is a function of the number of Rx queues assigned to the
1274 * VSI for each traffic class and the offset of these queues.
1275 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1276 * queues allocated to TC0. No:of queues is a power-of-2.
1277 *
1278 * If TC is not enabled, the queue offset is set to 0, and allocate one
1279 * queue, this way, traffic for the given TC will be sent to the default
1280 * queue.
1281 *
1282 * Setup number and offset of Rx queues for all TCs for the VSI
1283 */
1284
1285 /* qcount will change if RSS is enabled */
1286 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
1287 if (vsi->type == ICE_VSI_PF)
1288 max_rss = ICE_MAX_LG_RSS_QS;
1289 else
1290 max_rss = ICE_MAX_SMALL_RSS_QS;
1291
1292 qcount = min_t(int, numq_tc, max_rss);
1293 qcount = min_t(int, qcount, vsi->rss_size);
1294 } else {
1295 qcount = numq_tc;
1296 }
1297
1298 /* find higher power-of-2 of qcount */
1299 pow = ilog2(qcount);
1300
1301 if (!is_power_of_2(qcount))
1302 pow++;
1303
1304 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
1305 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1306 /* TC is not enabled */
1307 vsi->tc_cfg.tc_info[i].qoffset = 0;
1308 vsi->tc_cfg.tc_info[i].qcount = 1;
1309 ctxt->info.tc_mapping[i] = 0;
1310 continue;
1311 }
1312
1313 /* TC is enabled */
1314 vsi->tc_cfg.tc_info[i].qoffset = offset;
1315 vsi->tc_cfg.tc_info[i].qcount = qcount;
1316
1317 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1318 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1319 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1320 ICE_AQ_VSI_TC_Q_NUM_M);
1321 offset += qcount;
1322 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1323 }
1324
1325 vsi->num_txq = qcount_tx;
1326 vsi->num_rxq = offset;
1327
1328 /* Rx queue mapping */
1329 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1330 /* q_mapping buffer holds the info for the first queue allocated for
1331 * this VSI in the PF space and also the number of queues associated
1332 * with this VSI.
1333 */
1334 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1335 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1336}
1337
1338/**
1339 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
1340 * @ctxt: the VSI context being set
1341 *
1342 * This initializes a default VSI context for all sections except the Queues.
1343 */
1344static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
1345{
1346 u32 table = 0;
1347
1348 memset(&ctxt->info, 0, sizeof(ctxt->info));
1349 /* VSI's should be allocated from shared pool */
1350 ctxt->alloc_from_pool = true;
1351 /* Src pruning enabled by default */
1352 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
1353 /* Traffic from VSI can be sent to LAN */
1354 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1355 /* Allow all packets untagged/tagged */
1356 ctxt->info.port_vlan_flags = ((ICE_AQ_VSI_PVLAN_MODE_ALL &
1357 ICE_AQ_VSI_PVLAN_MODE_M) >>
1358 ICE_AQ_VSI_PVLAN_MODE_S);
1359 /* Show VLAN/UP from packets in Rx descriptors */
1360 ctxt->info.port_vlan_flags |= ((ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH &
1361 ICE_AQ_VSI_PVLAN_EMOD_M) >>
1362 ICE_AQ_VSI_PVLAN_EMOD_S);
1363 /* Have 1:1 UP mapping for both ingress/egress tables */
1364 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1365 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1366 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1367 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1368 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1369 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1370 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1371 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1372 ctxt->info.ingress_table = cpu_to_le32(table);
1373 ctxt->info.egress_table = cpu_to_le32(table);
1374 /* Have 1:1 UP mapping for outer to inner UP table */
1375 ctxt->info.outer_up_table = cpu_to_le32(table);
1376 /* No Outer tag support outer_tag_flags remains to zero */
1377}
1378
1379/**
1380 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1381 * @ctxt: the VSI context being set
1382 * @vsi: the VSI being configured
1383 */
1384static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1385{
1386 u8 lut_type, hash_type;
1387
1388 switch (vsi->type) {
1389 case ICE_VSI_PF:
1390 /* PF VSI will inherit RSS instance of PF */
1391 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1392 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1393 break;
1394 default:
1395 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1396 vsi->type);
1397 return;
1398 }
1399
1400 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1401 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1402 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1403 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1404}
1405
1406/**
1407 * ice_vsi_add - Create a new VSI or fetch preallocated VSI
1408 * @vsi: the VSI being configured
1409 *
1410 * This initializes a VSI context depending on the VSI type to be added and
1411 * passes it down to the add_vsi aq command to create a new VSI.
1412 */
1413static int ice_vsi_add(struct ice_vsi *vsi)
1414{
1415 struct ice_vsi_ctx ctxt = { 0 };
1416 struct ice_pf *pf = vsi->back;
1417 struct ice_hw *hw = &pf->hw;
1418 int ret = 0;
1419
1420 switch (vsi->type) {
1421 case ICE_VSI_PF:
1422 ctxt.flags = ICE_AQ_VSI_TYPE_PF;
1423 break;
1424 default:
1425 return -ENODEV;
1426 }
1427
1428 ice_set_dflt_vsi_ctx(&ctxt);
1429 /* if the switch is in VEB mode, allow VSI loopback */
1430 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1431 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1432
1433 /* Set LUT type and HASH type if RSS is enabled */
1434 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1435 ice_set_rss_vsi_ctx(&ctxt, vsi);
1436
1437 ctxt.info.sw_id = vsi->port_info->sw_id;
1438 ice_vsi_setup_q_map(vsi, &ctxt);
1439
1440 ret = ice_aq_add_vsi(hw, &ctxt, NULL);
1441 if (ret) {
1442 dev_err(&vsi->back->pdev->dev,
1443 "Add VSI AQ call failed, err %d\n", ret);
1444 return -EIO;
1445 }
1446 vsi->info = ctxt.info;
1447 vsi->vsi_num = ctxt.vsi_num;
1448
1449 return ret;
1450}
1451
1452/**
1453 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
1454 * @vsi: the VSI being cleaned up
1455 */
1456static void ice_vsi_release_msix(struct ice_vsi *vsi)
1457{
1458 struct ice_pf *pf = vsi->back;
1459 u16 vector = vsi->base_vector;
1460 struct ice_hw *hw = &pf->hw;
1461 u32 txq = 0;
1462 u32 rxq = 0;
1463 int i, q;
1464
1465 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1466 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1467
1468 wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0);
1469 wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0);
1470 for (q = 0; q < q_vector->num_ring_tx; q++) {
1471 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
1472 txq++;
1473 }
1474
1475 for (q = 0; q < q_vector->num_ring_rx; q++) {
1476 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
1477 rxq++;
1478 }
1479 }
1480
1481 ice_flush(hw);
1482}
1483
1484/**
1485 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1486 * @vsi: the VSI having rings deallocated
1487 */
1488static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1489{
1490 int i;
1491
1492 if (vsi->tx_rings) {
1493 for (i = 0; i < vsi->alloc_txq; i++) {
1494 if (vsi->tx_rings[i]) {
1495 kfree_rcu(vsi->tx_rings[i], rcu);
1496 vsi->tx_rings[i] = NULL;
1497 }
1498 }
1499 }
1500 if (vsi->rx_rings) {
1501 for (i = 0; i < vsi->alloc_rxq; i++) {
1502 if (vsi->rx_rings[i]) {
1503 kfree_rcu(vsi->rx_rings[i], rcu);
1504 vsi->rx_rings[i] = NULL;
1505 }
1506 }
1507 }
1508}
1509
1510/**
1511 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1512 * @vsi: VSI which is having rings allocated
1513 */
1514static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1515{
1516 struct ice_pf *pf = vsi->back;
1517 int i;
1518
1519 /* Allocate tx_rings */
1520 for (i = 0; i < vsi->alloc_txq; i++) {
1521 struct ice_ring *ring;
1522
1523 /* allocate with kzalloc(), free with kfree_rcu() */
1524 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1525
1526 if (!ring)
1527 goto err_out;
1528
1529 ring->q_index = i;
1530 ring->reg_idx = vsi->txq_map[i];
1531 ring->ring_active = false;
1532 ring->vsi = vsi;
1533 ring->netdev = vsi->netdev;
1534 ring->dev = &pf->pdev->dev;
1535 ring->count = vsi->num_desc;
1536
1537 vsi->tx_rings[i] = ring;
1538 }
1539
1540 /* Allocate rx_rings */
1541 for (i = 0; i < vsi->alloc_rxq; i++) {
1542 struct ice_ring *ring;
1543
1544 /* allocate with kzalloc(), free with kfree_rcu() */
1545 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1546 if (!ring)
1547 goto err_out;
1548
1549 ring->q_index = i;
1550 ring->reg_idx = vsi->rxq_map[i];
1551 ring->ring_active = false;
1552 ring->vsi = vsi;
1553 ring->netdev = vsi->netdev;
1554 ring->dev = &pf->pdev->dev;
1555 ring->count = vsi->num_desc;
1556 vsi->rx_rings[i] = ring;
1557 }
1558
1559 return 0;
1560
1561err_out:
1562 ice_vsi_clear_rings(vsi);
1563 return -ENOMEM;
1564}
1565
1566/**
1567 * ice_vsi_free_irq - Free the irq association with the OS
1568 * @vsi: the VSI being configured
1569 */
1570static void ice_vsi_free_irq(struct ice_vsi *vsi)
1571{
1572 struct ice_pf *pf = vsi->back;
1573 int base = vsi->base_vector;
1574
1575 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1576 int i;
1577
1578 if (!vsi->q_vectors || !vsi->irqs_ready)
1579 return;
1580
1581 vsi->irqs_ready = false;
1582 for (i = 0; i < vsi->num_q_vectors; i++) {
1583 u16 vector = i + base;
1584 int irq_num;
1585
1586 irq_num = pf->msix_entries[vector].vector;
1587
1588 /* free only the irqs that were actually requested */
1589 if (!vsi->q_vectors[i] ||
1590 !(vsi->q_vectors[i]->num_ring_tx ||
1591 vsi->q_vectors[i]->num_ring_rx))
1592 continue;
1593
1594 /* clear the affinity notifier in the IRQ descriptor */
1595 irq_set_affinity_notifier(irq_num, NULL);
1596
1597 /* clear the affinity_mask in the IRQ descriptor */
1598 irq_set_affinity_hint(irq_num, NULL);
1599 synchronize_irq(irq_num);
1600 devm_free_irq(&pf->pdev->dev, irq_num,
1601 vsi->q_vectors[i]);
1602 }
1603 ice_vsi_release_msix(vsi);
1604 }
1605}
1606
1607/**
1608 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1609 * @vsi: the VSI being configured
1610 */
1611static void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1612{
1613 struct ice_pf *pf = vsi->back;
1614 u16 vector = vsi->base_vector;
1615 struct ice_hw *hw = &pf->hw;
1616 u32 txq = 0, rxq = 0;
1617 int i, q, itr;
1618 u8 itr_gran;
1619
1620 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1621 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1622
1623 itr_gran = hw->itr_gran_200;
1624
1625 if (q_vector->num_ring_rx) {
1626 q_vector->rx.itr =
1627 ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting,
1628 itr_gran);
1629 q_vector->rx.latency_range = ICE_LOW_LATENCY;
1630 }
1631
1632 if (q_vector->num_ring_tx) {
1633 q_vector->tx.itr =
1634 ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting,
1635 itr_gran);
1636 q_vector->tx.latency_range = ICE_LOW_LATENCY;
1637 }
1638 wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr);
1639 wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr);
1640
1641 /* Both Transmit Queue Interrupt Cause Control register
1642 * and Receive Queue Interrupt Cause control register
1643 * expects MSIX_INDX field to be the vector index
1644 * within the function space and not the absolute
1645 * vector index across PF or across device.
1646 * For SR-IOV VF VSIs queue vector index always starts
1647 * with 1 since first vector index(0) is used for OICR
1648 * in VF space. Since VMDq and other PF VSIs are withtin
1649 * the PF function space, use the vector index thats
1650 * tracked for this PF.
1651 */
1652 for (q = 0; q < q_vector->num_ring_tx; q++) {
1653 u32 val;
1654
1655 itr = ICE_TX_ITR;
1656 val = QINT_TQCTL_CAUSE_ENA_M |
1657 (itr << QINT_TQCTL_ITR_INDX_S) |
1658 (vector << QINT_TQCTL_MSIX_INDX_S);
1659 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1660 txq++;
1661 }
1662
1663 for (q = 0; q < q_vector->num_ring_rx; q++) {
1664 u32 val;
1665
1666 itr = ICE_RX_ITR;
1667 val = QINT_RQCTL_CAUSE_ENA_M |
1668 (itr << QINT_RQCTL_ITR_INDX_S) |
1669 (vector << QINT_RQCTL_MSIX_INDX_S);
1670 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1671 rxq++;
1672 }
1673 }
1674
1675 ice_flush(hw);
1676}
1677
1678/**
1679 * ice_ena_misc_vector - enable the non-queue interrupts
1680 * @pf: board private structure
1681 */
1682static void ice_ena_misc_vector(struct ice_pf *pf)
1683{
1684 struct ice_hw *hw = &pf->hw;
1685 u32 val;
1686
1687 /* clear things first */
1688 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
1689 rd32(hw, PFINT_OICR); /* read to clear */
1690
1691 val = (PFINT_OICR_HLP_RDY_M |
1692 PFINT_OICR_CPM_RDY_M |
1693 PFINT_OICR_ECC_ERR_M |
1694 PFINT_OICR_MAL_DETECT_M |
1695 PFINT_OICR_GRST_M |
1696 PFINT_OICR_PCI_EXCEPTION_M |
1697 PFINT_OICR_GPIO_M |
1698 PFINT_OICR_STORM_DETECT_M |
1699 PFINT_OICR_HMC_ERR_M);
1700
1701 wr32(hw, PFINT_OICR_ENA, val);
1702
1703 /* SW_ITR_IDX = 0, but don't change INTENA */
1704 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1705 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1706}
1707
1708/**
1709 * ice_misc_intr - misc interrupt handler
1710 * @irq: interrupt number
1711 * @data: pointer to a q_vector
1712 */
1713static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1714{
1715 struct ice_pf *pf = (struct ice_pf *)data;
1716 struct ice_hw *hw = &pf->hw;
1717 irqreturn_t ret = IRQ_NONE;
1718 u32 oicr, ena_mask;
1719
1720 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1721
1722 oicr = rd32(hw, PFINT_OICR);
1723 ena_mask = rd32(hw, PFINT_OICR_ENA);
1724
1725 if (oicr & PFINT_OICR_GRST_M) {
1726 u32 reset;
1727 /* we have a reset warning */
1728 ena_mask &= ~PFINT_OICR_GRST_M;
1729 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1730 GLGEN_RSTAT_RESET_TYPE_S;
1731
1732 if (reset == ICE_RESET_CORER)
1733 pf->corer_count++;
1734 else if (reset == ICE_RESET_GLOBR)
1735 pf->globr_count++;
1736 else
1737 pf->empr_count++;
1738
1739 /* If a reset cycle isn't already in progress, we set a bit in
1740 * pf->state so that the service task can start a reset/rebuild.
1741 * We also make note of which reset happened so that peer
1742 * devices/drivers can be informed.
1743 */
1744 if (!test_bit(__ICE_RESET_RECOVERY_PENDING, pf->state)) {
1745 if (reset == ICE_RESET_CORER)
1746 set_bit(__ICE_CORER_RECV, pf->state);
1747 else if (reset == ICE_RESET_GLOBR)
1748 set_bit(__ICE_GLOBR_RECV, pf->state);
1749 else
1750 set_bit(__ICE_EMPR_RECV, pf->state);
1751
1752 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
1753 }
1754 }
1755
1756 if (oicr & PFINT_OICR_HMC_ERR_M) {
1757 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1758 dev_dbg(&pf->pdev->dev,
1759 "HMC Error interrupt - info 0x%x, data 0x%x\n",
1760 rd32(hw, PFHMC_ERRORINFO),
1761 rd32(hw, PFHMC_ERRORDATA));
1762 }
1763
1764 /* Report and mask off any remaining unexpected interrupts */
1765 oicr &= ena_mask;
1766 if (oicr) {
1767 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1768 oicr);
1769 /* If a critical error is pending there is no choice but to
1770 * reset the device.
1771 */
1772 if (oicr & (PFINT_OICR_PE_CRITERR_M |
1773 PFINT_OICR_PCI_EXCEPTION_M |
1774 PFINT_OICR_ECC_ERR_M)) {
1775 set_bit(__ICE_PFR_REQ, pf->state);
1776 ice_service_task_schedule(pf);
1777 }
1778 ena_mask &= ~oicr;
1779 }
1780 ret = IRQ_HANDLED;
1781
1782 /* re-enable interrupt causes that are not handled during this pass */
1783 wr32(hw, PFINT_OICR_ENA, ena_mask);
1784 if (!test_bit(__ICE_DOWN, pf->state)) {
1785 ice_service_task_schedule(pf);
1786 ice_irq_dynamic_ena(hw, NULL, NULL);
1787 }
1788
1789 return ret;
1790}
1791
1792/**
1793 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1794 * @vsi: the VSI being configured
1795 *
1796 * This function maps descriptor rings to the queue-specific vectors allotted
1797 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1798 * and Rx rings to the vector as "efficiently" as possible.
1799 */
1800static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1801{
1802 int q_vectors = vsi->num_q_vectors;
1803 int tx_rings_rem, rx_rings_rem;
1804 int v_id;
1805
1806 /* initially assigning remaining rings count to VSIs num queue value */
1807 tx_rings_rem = vsi->num_txq;
1808 rx_rings_rem = vsi->num_rxq;
1809
1810 for (v_id = 0; v_id < q_vectors; v_id++) {
1811 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1812 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1813
1814 /* Tx rings mapping to vector */
1815 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1816 q_vector->num_ring_tx = tx_rings_per_v;
1817 q_vector->tx.ring = NULL;
1818 q_base = vsi->num_txq - tx_rings_rem;
1819
1820 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1821 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1822
1823 tx_ring->q_vector = q_vector;
1824 tx_ring->next = q_vector->tx.ring;
1825 q_vector->tx.ring = tx_ring;
1826 }
1827 tx_rings_rem -= tx_rings_per_v;
1828
1829 /* Rx rings mapping to vector */
1830 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1831 q_vector->num_ring_rx = rx_rings_per_v;
1832 q_vector->rx.ring = NULL;
1833 q_base = vsi->num_rxq - rx_rings_rem;
1834
1835 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1836 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1837
1838 rx_ring->q_vector = q_vector;
1839 rx_ring->next = q_vector->rx.ring;
1840 q_vector->rx.ring = rx_ring;
1841 }
1842 rx_rings_rem -= rx_rings_per_v;
1843 }
1844}
1845
1846/**
1847 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
1848 * @vsi: the VSI being configured
1849 *
1850 * Return 0 on success and a negative value on error
1851 */
1852static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
1853{
1854 struct ice_pf *pf = vsi->back;
1855
1856 switch (vsi->type) {
1857 case ICE_VSI_PF:
1858 vsi->alloc_txq = pf->num_lan_tx;
1859 vsi->alloc_rxq = pf->num_lan_rx;
1860 vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
1861 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
1862 break;
1863 default:
1864 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1865 vsi->type);
1866 break;
1867 }
1868}
1869
1870/**
1871 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
1872 * @vsi: VSI pointer
1873 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
1874 *
1875 * On error: returns error code (negative)
1876 * On success: returns 0
1877 */
1878static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
1879{
1880 struct ice_pf *pf = vsi->back;
1881
1882 /* allocate memory for both Tx and Rx ring pointers */
1883 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
1884 sizeof(struct ice_ring *), GFP_KERNEL);
1885 if (!vsi->tx_rings)
1886 goto err_txrings;
1887
1888 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
1889 sizeof(struct ice_ring *), GFP_KERNEL);
1890 if (!vsi->rx_rings)
1891 goto err_rxrings;
1892
1893 if (alloc_qvectors) {
1894 /* allocate memory for q_vector pointers */
1895 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
1896 vsi->num_q_vectors,
1897 sizeof(struct ice_q_vector *),
1898 GFP_KERNEL);
1899 if (!vsi->q_vectors)
1900 goto err_vectors;
1901 }
1902
1903 return 0;
1904
1905err_vectors:
1906 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
1907err_rxrings:
1908 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
1909err_txrings:
1910 return -ENOMEM;
1911}
1912
1913/**
1914 * ice_msix_clean_rings - MSIX mode Interrupt Handler
1915 * @irq: interrupt number
1916 * @data: pointer to a q_vector
1917 */
1918static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
1919{
1920 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
1921
1922 if (!q_vector->tx.ring && !q_vector->rx.ring)
1923 return IRQ_HANDLED;
1924
1925 napi_schedule(&q_vector->napi);
1926
1927 return IRQ_HANDLED;
1928}
1929
1930/**
1931 * ice_vsi_alloc - Allocates the next available struct vsi in the PF
1932 * @pf: board private structure
1933 * @type: type of VSI
1934 *
1935 * returns a pointer to a VSI on success, NULL on failure.
1936 */
1937static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
1938{
1939 struct ice_vsi *vsi = NULL;
1940
1941 /* Need to protect the allocation of the VSIs at the PF level */
1942 mutex_lock(&pf->sw_mutex);
1943
1944 /* If we have already allocated our maximum number of VSIs,
1945 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
1946 * is available to be populated
1947 */
1948 if (pf->next_vsi == ICE_NO_VSI) {
1949 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
1950 goto unlock_pf;
1951 }
1952
1953 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
1954 if (!vsi)
1955 goto unlock_pf;
1956
1957 vsi->type = type;
1958 vsi->back = pf;
1959 set_bit(__ICE_DOWN, vsi->state);
1960 vsi->idx = pf->next_vsi;
1961 vsi->work_lmt = ICE_DFLT_IRQ_WORK;
1962
1963 ice_vsi_set_num_qs(vsi);
1964
1965 switch (vsi->type) {
1966 case ICE_VSI_PF:
1967 if (ice_vsi_alloc_arrays(vsi, true))
1968 goto err_rings;
1969
1970 /* Setup default MSIX irq handler for VSI */
1971 vsi->irq_handler = ice_msix_clean_rings;
1972 break;
1973 default:
1974 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1975 goto unlock_pf;
1976 }
1977
1978 /* fill VSI slot in the PF struct */
1979 pf->vsi[pf->next_vsi] = vsi;
1980
1981 /* prepare pf->next_vsi for next use */
1982 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
1983 pf->next_vsi);
1984 goto unlock_pf;
1985
1986err_rings:
1987 devm_kfree(&pf->pdev->dev, vsi);
1988 vsi = NULL;
1989unlock_pf:
1990 mutex_unlock(&pf->sw_mutex);
1991 return vsi;
1992}
1993
1994/**
1995 * ice_free_irq_msix_misc - Unroll misc vector setup
1996 * @pf: board private structure
1997 */
1998static void ice_free_irq_msix_misc(struct ice_pf *pf)
1999{
2000 /* disable OICR interrupt */
2001 wr32(&pf->hw, PFINT_OICR_ENA, 0);
2002 ice_flush(&pf->hw);
2003
2004 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
2005 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2006 devm_free_irq(&pf->pdev->dev,
2007 pf->msix_entries[pf->oicr_idx].vector, pf);
2008 }
2009
2010 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2011}
2012
2013/**
2014 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2015 * @pf: board private structure
2016 *
2017 * This sets up the handler for MSIX 0, which is used to manage the
2018 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2019 * when in MSI or Legacy interrupt mode.
2020 */
2021static int ice_req_irq_msix_misc(struct ice_pf *pf)
2022{
2023 struct ice_hw *hw = &pf->hw;
2024 int oicr_idx, err = 0;
2025 u8 itr_gran;
2026 u32 val;
2027
2028 if (!pf->int_name[0])
2029 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2030 dev_driver_string(&pf->pdev->dev),
2031 dev_name(&pf->pdev->dev));
2032
2033 /* Do not request IRQ but do enable OICR interrupt since settings are
2034 * lost during reset. Note that this function is called only during
2035 * rebuild path and not while reset is in progress.
2036 */
2037 if (ice_is_reset_recovery_pending(pf->state))
2038 goto skip_req_irq;
2039
2040 /* reserve one vector in irq_tracker for misc interrupts */
2041 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2042 if (oicr_idx < 0)
2043 return oicr_idx;
2044
2045 pf->oicr_idx = oicr_idx;
2046
2047 err = devm_request_irq(&pf->pdev->dev,
2048 pf->msix_entries[pf->oicr_idx].vector,
2049 ice_misc_intr, 0, pf->int_name, pf);
2050 if (err) {
2051 dev_err(&pf->pdev->dev,
2052 "devm_request_irq for %s failed: %d\n",
2053 pf->int_name, err);
2054 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2055 return err;
2056 }
2057
2058skip_req_irq:
2059 ice_ena_misc_vector(pf);
2060
2061 val = (pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2062 (ICE_RX_ITR & PFINT_OICR_CTL_ITR_INDX_M) |
2063 PFINT_OICR_CTL_CAUSE_ENA_M;
2064 wr32(hw, PFINT_OICR_CTL, val);
2065
2066 /* This enables Admin queue Interrupt causes */
2067 val = (pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2068 (ICE_RX_ITR & PFINT_FW_CTL_ITR_INDX_M) |
2069 PFINT_FW_CTL_CAUSE_ENA_M;
2070 wr32(hw, PFINT_FW_CTL, val);
2071
2072 itr_gran = hw->itr_gran_200;
2073
2074 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2075 ITR_TO_REG(ICE_ITR_8K, itr_gran));
2076
2077 ice_flush(hw);
2078 ice_irq_dynamic_ena(hw, NULL, NULL);
2079
2080 return 0;
2081}
2082
2083/**
2084 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
2085 * @vsi: the VSI getting queues
2086 *
2087 * Return 0 on success and a negative value on error
2088 */
2089static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
2090{
2091 struct ice_pf *pf = vsi->back;
2092 int offset, ret = 0;
2093
2094 mutex_lock(&pf->avail_q_mutex);
2095 /* look for contiguous block of queues for tx */
2096 offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
2097 0, vsi->alloc_txq, 0);
2098 if (offset < ICE_MAX_TXQS) {
2099 int i;
2100
2101 bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
2102 for (i = 0; i < vsi->alloc_txq; i++)
2103 vsi->txq_map[i] = i + offset;
2104 } else {
2105 ret = -ENOMEM;
2106 vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
2107 }
2108
2109 /* look for contiguous block of queues for rx */
2110 offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
2111 0, vsi->alloc_rxq, 0);
2112 if (offset < ICE_MAX_RXQS) {
2113 int i;
2114
2115 bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
2116 for (i = 0; i < vsi->alloc_rxq; i++)
2117 vsi->rxq_map[i] = i + offset;
2118 } else {
2119 ret = -ENOMEM;
2120 vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
2121 }
2122 mutex_unlock(&pf->avail_q_mutex);
2123
2124 return ret;
2125}
2126
2127/**
2128 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
2129 * @vsi: the VSI getting queues
2130 *
2131 * Return 0 on success and a negative value on error
2132 */
2133static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
2134{
2135 struct ice_pf *pf = vsi->back;
2136 int i, index = 0;
2137
2138 mutex_lock(&pf->avail_q_mutex);
2139
2140 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2141 for (i = 0; i < vsi->alloc_txq; i++) {
2142 index = find_next_zero_bit(pf->avail_txqs,
2143 ICE_MAX_TXQS, index);
2144 if (index < ICE_MAX_TXQS) {
2145 set_bit(index, pf->avail_txqs);
2146 vsi->txq_map[i] = index;
2147 } else {
2148 goto err_scatter_tx;
2149 }
2150 }
2151 }
2152
2153 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2154 for (i = 0; i < vsi->alloc_rxq; i++) {
2155 index = find_next_zero_bit(pf->avail_rxqs,
2156 ICE_MAX_RXQS, index);
2157 if (index < ICE_MAX_RXQS) {
2158 set_bit(index, pf->avail_rxqs);
2159 vsi->rxq_map[i] = index;
2160 } else {
2161 goto err_scatter_rx;
2162 }
2163 }
2164 }
2165
2166 mutex_unlock(&pf->avail_q_mutex);
2167 return 0;
2168
2169err_scatter_rx:
2170 /* unflag any queues we have grabbed (i is failed position) */
2171 for (index = 0; index < i; index++) {
2172 clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
2173 vsi->rxq_map[index] = 0;
2174 }
2175 i = vsi->alloc_txq;
2176err_scatter_tx:
2177 /* i is either position of failed attempt or vsi->alloc_txq */
2178 for (index = 0; index < i; index++) {
2179 clear_bit(vsi->txq_map[index], pf->avail_txqs);
2180 vsi->txq_map[index] = 0;
2181 }
2182
2183 mutex_unlock(&pf->avail_q_mutex);
2184 return -ENOMEM;
2185}
2186
2187/**
2188 * ice_vsi_get_qs - Assign queues from PF to VSI
2189 * @vsi: the VSI to assign queues to
2190 *
2191 * Returns 0 on success and a negative value on error
2192 */
2193static int ice_vsi_get_qs(struct ice_vsi *vsi)
2194{
2195 int ret = 0;
2196
2197 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
2198 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
2199
2200 /* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping
2201 * modes individually to scatter if assigning contiguous queues
2202 * to rx or tx fails
2203 */
2204 ret = ice_vsi_get_qs_contig(vsi);
2205 if (ret < 0) {
2206 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
2207 vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
2208 ICE_MAX_SCATTER_TXQS);
2209 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
2210 vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
2211 ICE_MAX_SCATTER_RXQS);
2212 ret = ice_vsi_get_qs_scatter(vsi);
2213 }
2214
2215 return ret;
2216}
2217
2218/**
2219 * ice_vsi_put_qs - Release queues from VSI to PF
2220 * @vsi: the VSI thats going to release queues
2221 */
2222static void ice_vsi_put_qs(struct ice_vsi *vsi)
2223{
2224 struct ice_pf *pf = vsi->back;
2225 int i;
2226
2227 mutex_lock(&pf->avail_q_mutex);
2228
2229 for (i = 0; i < vsi->alloc_txq; i++) {
2230 clear_bit(vsi->txq_map[i], pf->avail_txqs);
2231 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
2232 }
2233
2234 for (i = 0; i < vsi->alloc_rxq; i++) {
2235 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
2236 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
2237 }
2238
2239 mutex_unlock(&pf->avail_q_mutex);
2240}
2241
2242/**
2243 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
2244 * @vsi: VSI having the memory freed
2245 * @v_idx: index of the vector to be freed
2246 */
2247static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
2248{
2249 struct ice_q_vector *q_vector;
2250 struct ice_ring *ring;
2251
2252 if (!vsi->q_vectors[v_idx]) {
2253 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
2254 v_idx);
2255 return;
2256 }
2257 q_vector = vsi->q_vectors[v_idx];
2258
2259 ice_for_each_ring(ring, q_vector->tx)
2260 ring->q_vector = NULL;
2261 ice_for_each_ring(ring, q_vector->rx)
2262 ring->q_vector = NULL;
2263
2264 /* only VSI with an associated netdev is set up with NAPI */
2265 if (vsi->netdev)
2266 netif_napi_del(&q_vector->napi);
2267
2268 devm_kfree(&vsi->back->pdev->dev, q_vector);
2269 vsi->q_vectors[v_idx] = NULL;
2270}
2271
2272/**
2273 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
2274 * @vsi: the VSI having memory freed
2275 */
2276static void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
2277{
2278 int v_idx;
2279
2280 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
2281 ice_free_q_vector(vsi, v_idx);
2282}
2283
2284/**
2285 * ice_cfg_netdev - Setup the netdev flags
2286 * @vsi: the VSI being configured
2287 *
2288 * Returns 0 on success, negative value on failure
2289 */
2290static int ice_cfg_netdev(struct ice_vsi *vsi)
2291{
2292 netdev_features_t csumo_features;
2293 netdev_features_t vlano_features;
2294 netdev_features_t dflt_features;
2295 netdev_features_t tso_features;
2296 struct ice_netdev_priv *np;
2297 struct net_device *netdev;
2298 u8 mac_addr[ETH_ALEN];
2299
2300 netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
2301 vsi->alloc_txq, vsi->alloc_rxq);
2302 if (!netdev)
2303 return -ENOMEM;
2304
2305 vsi->netdev = netdev;
2306 np = netdev_priv(netdev);
2307 np->vsi = vsi;
2308
2309 dflt_features = NETIF_F_SG |
2310 NETIF_F_HIGHDMA |
2311 NETIF_F_RXHASH;
2312
2313 csumo_features = NETIF_F_RXCSUM |
2314 NETIF_F_IP_CSUM |
2315 NETIF_F_IPV6_CSUM;
2316
2317 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2318 NETIF_F_HW_VLAN_CTAG_TX |
2319 NETIF_F_HW_VLAN_CTAG_RX;
2320
2321 tso_features = NETIF_F_TSO;
2322
2323 /* set features that user can change */
2324 netdev->hw_features = dflt_features | csumo_features |
2325 vlano_features | tso_features;
2326
2327 /* enable features */
2328 netdev->features |= netdev->hw_features;
2329 /* encap and VLAN devices inherit default, csumo and tso features */
2330 netdev->hw_enc_features |= dflt_features | csumo_features |
2331 tso_features;
2332 netdev->vlan_features |= dflt_features | csumo_features |
2333 tso_features;
2334
2335 if (vsi->type == ICE_VSI_PF) {
2336 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
2337 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2338
2339 ether_addr_copy(netdev->dev_addr, mac_addr);
2340 ether_addr_copy(netdev->perm_addr, mac_addr);
2341 }
2342
2343 netdev->priv_flags |= IFF_UNICAST_FLT;
2344
2345 /* assign netdev_ops */
2346 netdev->netdev_ops = &ice_netdev_ops;
2347
2348 /* setup watchdog timeout value to be 5 second */
2349 netdev->watchdog_timeo = 5 * HZ;
2350
2351 ice_set_ethtool_ops(netdev);
2352
2353 netdev->min_mtu = ETH_MIN_MTU;
2354 netdev->max_mtu = ICE_MAX_MTU;
2355
2356 return 0;
2357}
2358
2359/**
2360 * ice_vsi_free_arrays - clean up vsi resources
2361 * @vsi: pointer to VSI being cleared
2362 * @free_qvectors: bool to specify if q_vectors should be deallocated
2363 */
2364static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
2365{
2366 struct ice_pf *pf = vsi->back;
2367
2368 /* free the ring and vector containers */
2369 if (free_qvectors && vsi->q_vectors) {
2370 devm_kfree(&pf->pdev->dev, vsi->q_vectors);
2371 vsi->q_vectors = NULL;
2372 }
2373 if (vsi->tx_rings) {
2374 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
2375 vsi->tx_rings = NULL;
2376 }
2377 if (vsi->rx_rings) {
2378 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
2379 vsi->rx_rings = NULL;
2380 }
2381}
2382
2383/**
2384 * ice_vsi_clear - clean up and deallocate the provided vsi
2385 * @vsi: pointer to VSI being cleared
2386 *
2387 * This deallocates the vsi's queue resources, removes it from the PF's
2388 * VSI array if necessary, and deallocates the VSI
2389 *
2390 * Returns 0 on success, negative on failure
2391 */
2392static int ice_vsi_clear(struct ice_vsi *vsi)
2393{
2394 struct ice_pf *pf = NULL;
2395
2396 if (!vsi)
2397 return 0;
2398
2399 if (!vsi->back)
2400 return -EINVAL;
2401
2402 pf = vsi->back;
2403
2404 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
2405 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
2406 vsi->idx);
2407 return -EINVAL;
2408 }
2409
2410 mutex_lock(&pf->sw_mutex);
2411 /* updates the PF for this cleared vsi */
2412
2413 pf->vsi[vsi->idx] = NULL;
2414 if (vsi->idx < pf->next_vsi)
2415 pf->next_vsi = vsi->idx;
2416
2417 ice_vsi_free_arrays(vsi, true);
2418 mutex_unlock(&pf->sw_mutex);
2419 devm_kfree(&pf->pdev->dev, vsi);
2420
2421 return 0;
2422}
2423
2424/**
2425 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
2426 * @vsi: the VSI being configured
2427 * @v_idx: index of the vector in the vsi struct
2428 *
2429 * We allocate one q_vector. If allocation fails we return -ENOMEM.
2430 */
2431static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
2432{
2433 struct ice_pf *pf = vsi->back;
2434 struct ice_q_vector *q_vector;
2435
2436 /* allocate q_vector */
2437 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
2438 if (!q_vector)
2439 return -ENOMEM;
2440
2441 q_vector->vsi = vsi;
2442 q_vector->v_idx = v_idx;
2443 /* only set affinity_mask if the CPU is online */
2444 if (cpu_online(v_idx))
2445 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
2446
2447 if (vsi->netdev)
2448 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
2449 NAPI_POLL_WEIGHT);
2450 /* tie q_vector and vsi together */
2451 vsi->q_vectors[v_idx] = q_vector;
2452
2453 return 0;
2454}
2455
2456/**
2457 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
2458 * @vsi: the VSI being configured
2459 *
2460 * We allocate one q_vector per queue interrupt. If allocation fails we
2461 * return -ENOMEM.
2462 */
2463static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
2464{
2465 struct ice_pf *pf = vsi->back;
2466 int v_idx = 0, num_q_vectors;
2467 int err;
2468
2469 if (vsi->q_vectors[0]) {
2470 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
2471 vsi->vsi_num);
2472 return -EEXIST;
2473 }
2474
2475 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2476 num_q_vectors = vsi->num_q_vectors;
2477 } else {
2478 err = -EINVAL;
2479 goto err_out;
2480 }
2481
2482 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
2483 err = ice_vsi_alloc_q_vector(vsi, v_idx);
2484 if (err)
2485 goto err_out;
2486 }
2487
2488 return 0;
2489
2490err_out:
2491 while (v_idx--)
2492 ice_free_q_vector(vsi, v_idx);
2493
2494 dev_err(&pf->pdev->dev,
2495 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
2496 vsi->num_q_vectors, vsi->vsi_num, err);
2497 vsi->num_q_vectors = 0;
2498 return err;
2499}
2500
2501/**
2502 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
2503 * @vsi: ptr to the VSI
2504 *
2505 * This should only be called after ice_vsi_alloc() which allocates the
2506 * corresponding SW VSI structure and initializes num_queue_pairs for the
2507 * newly allocated VSI.
2508 *
2509 * Returns 0 on success or negative on failure
2510 */
2511static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
2512{
2513 struct ice_pf *pf = vsi->back;
2514 int num_q_vectors = 0;
2515
2516 if (vsi->base_vector) {
2517 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
2518 vsi->vsi_num, vsi->base_vector);
2519 return -EEXIST;
2520 }
2521
2522 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2523 return -ENOENT;
2524
2525 switch (vsi->type) {
2526 case ICE_VSI_PF:
2527 num_q_vectors = vsi->num_q_vectors;
2528 break;
2529 default:
2530 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
2531 vsi->type);
2532 break;
2533 }
2534
2535 if (num_q_vectors)
2536 vsi->base_vector = ice_get_res(pf, pf->irq_tracker,
2537 num_q_vectors, vsi->idx);
2538
2539 if (vsi->base_vector < 0) {
2540 dev_err(&pf->pdev->dev,
2541 "Failed to get tracking for %d vectors for VSI %d, err=%d\n",
2542 num_q_vectors, vsi->vsi_num, vsi->base_vector);
2543 return -ENOENT;
2544 }
2545
2546 return 0;
2547}
2548
2549/**
2550 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2551 * @lut: Lookup table
2552 * @rss_table_size: Lookup table size
2553 * @rss_size: Range of queue number for hashing
2554 */
2555void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2556{
2557 u16 i;
2558
2559 for (i = 0; i < rss_table_size; i++)
2560 lut[i] = i % rss_size;
2561}
2562
2563/**
2564 * ice_vsi_cfg_rss - Configure RSS params for a VSI
2565 * @vsi: VSI to be configured
2566 */
2567static int ice_vsi_cfg_rss(struct ice_vsi *vsi)
2568{
2569 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
2570 struct ice_aqc_get_set_rss_keys *key;
2571 struct ice_pf *pf = vsi->back;
2572 enum ice_status status;
2573 int err = 0;
2574 u8 *lut;
2575
2576 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
2577
2578 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
2579 if (!lut)
2580 return -ENOMEM;
2581
2582 if (vsi->rss_lut_user)
2583 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
2584 else
2585 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
2586
2587 status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type,
2588 lut, vsi->rss_table_size);
2589
2590 if (status) {
2591 dev_err(&vsi->back->pdev->dev,
2592 "set_rss_lut failed, error %d\n", status);
2593 err = -EIO;
2594 goto ice_vsi_cfg_rss_exit;
2595 }
2596
2597 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
2598 if (!key) {
2599 err = -ENOMEM;
2600 goto ice_vsi_cfg_rss_exit;
2601 }
2602
2603 if (vsi->rss_hkey_user)
2604 memcpy(seed, vsi->rss_hkey_user,
2605 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2606 else
2607 netdev_rss_key_fill((void *)seed,
2608 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2609 memcpy(&key->standard_rss_key, seed,
2610 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2611
2612 status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key);
2613
2614 if (status) {
2615 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
2616 status);
2617 err = -EIO;
2618 }
2619
2620 devm_kfree(&pf->pdev->dev, key);
2621ice_vsi_cfg_rss_exit:
2622 devm_kfree(&pf->pdev->dev, lut);
2623 return err;
2624}
2625
2626/**
2627 * ice_vsi_reinit_setup - return resource and reallocate resource for a VSI
2628 * @vsi: pointer to the ice_vsi
2629 *
2630 * This reallocates the VSIs queue resources
2631 *
2632 * Returns 0 on success and negative value on failure
2633 */
2634static int ice_vsi_reinit_setup(struct ice_vsi *vsi)
2635{
2636 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2637 int ret, i;
2638
2639 if (!vsi)
2640 return -EINVAL;
2641
2642 ice_vsi_free_q_vectors(vsi);
2643 ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
2644 vsi->base_vector = 0;
2645 ice_vsi_clear_rings(vsi);
2646 ice_vsi_free_arrays(vsi, false);
2647 ice_vsi_set_num_qs(vsi);
2648
2649 /* Initialize VSI struct elements and create VSI in FW */
2650 ret = ice_vsi_add(vsi);
2651 if (ret < 0)
2652 goto err_vsi;
2653
2654 ret = ice_vsi_alloc_arrays(vsi, false);
2655 if (ret < 0)
2656 goto err_vsi;
2657
2658 switch (vsi->type) {
2659 case ICE_VSI_PF:
2660 if (!vsi->netdev) {
2661 ret = ice_cfg_netdev(vsi);
2662 if (ret)
2663 goto err_rings;
2664
2665 ret = register_netdev(vsi->netdev);
2666 if (ret)
2667 goto err_rings;
2668
2669 netif_carrier_off(vsi->netdev);
2670 netif_tx_stop_all_queues(vsi->netdev);
2671 }
2672
2673 ret = ice_vsi_alloc_q_vectors(vsi);
2674 if (ret)
2675 goto err_rings;
2676
2677 ret = ice_vsi_setup_vector_base(vsi);
2678 if (ret)
2679 goto err_vectors;
2680
2681 ret = ice_vsi_alloc_rings(vsi);
2682 if (ret)
2683 goto err_vectors;
2684
2685 ice_vsi_map_rings_to_vectors(vsi);
2686 break;
2687 default:
2688 break;
2689 }
2690
2691 ice_vsi_set_tc_cfg(vsi);
2692
2693 /* configure VSI nodes based on number of queues and TC's */
2694 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2695 max_txqs[i] = vsi->num_txq;
2696
2697 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2698 vsi->tc_cfg.ena_tc, max_txqs);
2699 if (ret) {
2700 dev_info(&vsi->back->pdev->dev,
2701 "Failed VSI lan queue config\n");
2702 goto err_vectors;
2703 }
2704 return 0;
2705
2706err_vectors:
2707 ice_vsi_free_q_vectors(vsi);
2708err_rings:
2709 if (vsi->netdev) {
2710 vsi->current_netdev_flags = 0;
2711 unregister_netdev(vsi->netdev);
2712 free_netdev(vsi->netdev);
2713 vsi->netdev = NULL;
2714 }
2715err_vsi:
2716 ice_vsi_clear(vsi);
2717 set_bit(__ICE_RESET_FAILED, vsi->back->state);
2718 return ret;
2719}
2720
2721/**
2722 * ice_vsi_setup - Set up a VSI by a given type
2723 * @pf: board private structure
2724 * @type: VSI type
2725 * @pi: pointer to the port_info instance
2726 *
2727 * This allocates the sw VSI structure and its queue resources.
2728 *
2729 * Returns pointer to the successfully allocated and configure VSI sw struct on
2730 * success, otherwise returns NULL on failure.
2731 */
2732static struct ice_vsi *
2733ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type,
2734 struct ice_port_info *pi)
2735{
2736 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2737 struct device *dev = &pf->pdev->dev;
2738 struct ice_vsi_ctx ctxt = { 0 };
2739 struct ice_vsi *vsi;
2740 int ret, i;
2741
2742 vsi = ice_vsi_alloc(pf, type);
2743 if (!vsi) {
2744 dev_err(dev, "could not allocate VSI\n");
2745 return NULL;
2746 }
2747
2748 vsi->port_info = pi;
2749 vsi->vsw = pf->first_sw;
2750
2751 if (ice_vsi_get_qs(vsi)) {
2752 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2753 vsi->idx);
2754 goto err_get_qs;
2755 }
2756
2757 /* set RSS capabilities */
2758 ice_vsi_set_rss_params(vsi);
2759
2760 /* create the VSI */
2761 ret = ice_vsi_add(vsi);
2762 if (ret)
2763 goto err_vsi;
2764
2765 ctxt.vsi_num = vsi->vsi_num;
2766
2767 switch (vsi->type) {
2768 case ICE_VSI_PF:
2769 ret = ice_cfg_netdev(vsi);
2770 if (ret)
2771 goto err_cfg_netdev;
2772
2773 ret = register_netdev(vsi->netdev);
2774 if (ret)
2775 goto err_register_netdev;
2776
2777 netif_carrier_off(vsi->netdev);
2778
2779 /* make sure transmit queues start off as stopped */
2780 netif_tx_stop_all_queues(vsi->netdev);
2781 ret = ice_vsi_alloc_q_vectors(vsi);
2782 if (ret)
2783 goto err_msix;
2784
2785 ret = ice_vsi_setup_vector_base(vsi);
2786 if (ret)
2787 goto err_rings;
2788
2789 ret = ice_vsi_alloc_rings(vsi);
2790 if (ret)
2791 goto err_rings;
2792
2793 ice_vsi_map_rings_to_vectors(vsi);
2794
2795 /* Do not exit if configuring RSS had an issue, at least
2796 * receive traffic on first queue. Hence no need to capture
2797 * return value
2798 */
2799 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2800 ice_vsi_cfg_rss(vsi);
2801 break;
2802 default:
2803 /* if vsi type is not recognized, clean up the resources and
2804 * exit
2805 */
2806 goto err_rings;
2807 }
2808
2809 ice_vsi_set_tc_cfg(vsi);
2810
2811 /* configure VSI nodes based on number of queues and TC's */
2812 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2813 max_txqs[i] = vsi->num_txq;
2814
2815 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2816 vsi->tc_cfg.ena_tc, max_txqs);
2817 if (ret) {
2818 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
2819 goto err_rings;
2820 }
2821
2822 return vsi;
2823
2824err_rings:
2825 ice_vsi_free_q_vectors(vsi);
2826err_msix:
2827 if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
2828 unregister_netdev(vsi->netdev);
2829err_register_netdev:
2830 if (vsi->netdev) {
2831 free_netdev(vsi->netdev);
2832 vsi->netdev = NULL;
2833 }
2834err_cfg_netdev:
2835 ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
2836 if (ret)
2837 dev_err(&vsi->back->pdev->dev,
2838 "Free VSI AQ call failed, err %d\n", ret);
2839err_vsi:
2840 ice_vsi_put_qs(vsi);
2841err_get_qs:
2842 pf->q_left_tx += vsi->alloc_txq;
2843 pf->q_left_rx += vsi->alloc_rxq;
2844 ice_vsi_clear(vsi);
2845
2846 return NULL;
2847}
2848
2849/**
2850 * ice_vsi_add_vlan - Add vsi membership for given vlan
2851 * @vsi: the vsi being configured
2852 * @vid: vlan id to be added
2853 */
2854static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
2855{
2856 struct ice_fltr_list_entry *tmp;
2857 struct ice_pf *pf = vsi->back;
2858 LIST_HEAD(tmp_add_list);
2859 enum ice_status status;
2860 int err = 0;
2861
2862 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
2863 if (!tmp)
2864 return -ENOMEM;
2865
2866 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2867 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2868 tmp->fltr_info.flag = ICE_FLTR_TX;
2869 tmp->fltr_info.src = vsi->vsi_num;
2870 tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2871 tmp->fltr_info.l_data.vlan.vlan_id = vid;
2872
2873 INIT_LIST_HEAD(&tmp->list_entry);
2874 list_add(&tmp->list_entry, &tmp_add_list);
2875
2876 status = ice_add_vlan(&pf->hw, &tmp_add_list);
2877 if (status) {
2878 err = -ENODEV;
2879 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
2880 vid, vsi->vsi_num);
2881 }
2882
2883 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2884 return err;
2885}
2886
2887/**
2888 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
2889 * @netdev: network interface to be adjusted
2890 * @proto: unused protocol
2891 * @vid: vlan id to be added
2892 *
2893 * net_device_ops implementation for adding vlan ids
2894 */
2895static int ice_vlan_rx_add_vid(struct net_device *netdev,
2896 __always_unused __be16 proto, u16 vid)
2897{
2898 struct ice_netdev_priv *np = netdev_priv(netdev);
2899 struct ice_vsi *vsi = np->vsi;
2900 int ret = 0;
2901
2902 if (vid >= VLAN_N_VID) {
2903 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2904 vid, VLAN_N_VID);
2905 return -EINVAL;
2906 }
2907
2908 if (vsi->info.pvid)
2909 return -EINVAL;
2910
2911 /* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
2912 * needed to continue allowing all untagged packets since VLAN prune
2913 * list is applied to all packets by the switch
2914 */
2915 ret = ice_vsi_add_vlan(vsi, vid);
2916
2917 if (!ret)
2918 set_bit(vid, vsi->active_vlans);
2919
2920 return ret;
2921}
2922
2923/**
2924 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
2925 * @vsi: the VSI being configured
2926 * @vid: VLAN id to be removed
2927 */
2928static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
2929{
2930 struct ice_fltr_list_entry *list;
2931 struct ice_pf *pf = vsi->back;
2932 LIST_HEAD(tmp_add_list);
2933
2934 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2935 if (!list)
2936 return;
2937
2938 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2939 list->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2940 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2941 list->fltr_info.l_data.vlan.vlan_id = vid;
2942 list->fltr_info.flag = ICE_FLTR_TX;
2943 list->fltr_info.src = vsi->vsi_num;
2944
2945 INIT_LIST_HEAD(&list->list_entry);
2946 list_add(&list->list_entry, &tmp_add_list);
2947
2948 if (ice_remove_vlan(&pf->hw, &tmp_add_list))
2949 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
2950 vid, vsi->vsi_num);
2951
2952 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2953}
2954
2955/**
2956 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2957 * @netdev: network interface to be adjusted
2958 * @proto: unused protocol
2959 * @vid: vlan id to be removed
2960 *
2961 * net_device_ops implementation for removing vlan ids
2962 */
2963static int ice_vlan_rx_kill_vid(struct net_device *netdev,
2964 __always_unused __be16 proto, u16 vid)
2965{
2966 struct ice_netdev_priv *np = netdev_priv(netdev);
2967 struct ice_vsi *vsi = np->vsi;
2968
2969 if (vsi->info.pvid)
2970 return -EINVAL;
2971
2972 /* return code is ignored as there is nothing a user
2973 * can do about failure to remove and a log message was
2974 * already printed from the other function
2975 */
2976 ice_vsi_kill_vlan(vsi, vid);
2977
2978 clear_bit(vid, vsi->active_vlans);
2979
2980 return 0;
2981}
2982
2983/**
2984 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2985 * @pf: board private structure
2986 *
2987 * Returns 0 on success, negative value on failure
2988 */
2989static int ice_setup_pf_sw(struct ice_pf *pf)
2990{
2991 LIST_HEAD(tmp_add_list);
2992 u8 broadcast[ETH_ALEN];
2993 struct ice_vsi *vsi;
2994 int status = 0;
2995
2996 if (!ice_is_reset_recovery_pending(pf->state)) {
2997 vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info);
2998 if (!vsi) {
2999 status = -ENOMEM;
3000 goto error_exit;
3001 }
3002 } else {
3003 vsi = pf->vsi[0];
3004 status = ice_vsi_reinit_setup(vsi);
3005 if (status < 0)
3006 return -EIO;
3007 }
3008
3009 /* tmp_add_list contains a list of MAC addresses for which MAC
3010 * filters need to be programmed. Add the VSI's unicast MAC to
3011 * this list
3012 */
3013 status = ice_add_mac_to_list(vsi, &tmp_add_list,
3014 vsi->port_info->mac.perm_addr);
3015 if (status)
3016 goto error_exit;
3017
3018 /* VSI needs to receive broadcast traffic, so add the broadcast
3019 * MAC address to the list.
3020 */
3021 eth_broadcast_addr(broadcast);
3022 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
3023 if (status)
3024 goto error_exit;
3025
3026 /* program MAC filters for entries in tmp_add_list */
3027 status = ice_add_mac(&pf->hw, &tmp_add_list);
3028 if (status) {
3029 dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
3030 status = -ENOMEM;
3031 goto error_exit;
3032 }
3033
3034 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3035 return status;
3036
3037error_exit:
3038 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3039
3040 if (vsi) {
3041 ice_vsi_free_q_vectors(vsi);
3042 if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
3043 unregister_netdev(vsi->netdev);
3044 if (vsi->netdev) {
3045 free_netdev(vsi->netdev);
3046 vsi->netdev = NULL;
3047 }
3048
3049 ice_vsi_delete(vsi);
3050 ice_vsi_put_qs(vsi);
3051 pf->q_left_tx += vsi->alloc_txq;
3052 pf->q_left_rx += vsi->alloc_rxq;
3053 ice_vsi_clear(vsi);
3054 }
3055 return status;
3056}
3057
3058/**
3059 * ice_determine_q_usage - Calculate queue distribution
3060 * @pf: board private structure
3061 *
3062 * Return -ENOMEM if we don't get enough queues for all ports
3063 */
3064static void ice_determine_q_usage(struct ice_pf *pf)
3065{
3066 u16 q_left_tx, q_left_rx;
3067
3068 q_left_tx = pf->hw.func_caps.common_cap.num_txq;
3069 q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
3070
3071 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
3072
3073 /* only 1 rx queue unless RSS is enabled */
3074 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3075 pf->num_lan_rx = 1;
3076 else
3077 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
3078
3079 pf->q_left_tx = q_left_tx - pf->num_lan_tx;
3080 pf->q_left_rx = q_left_rx - pf->num_lan_rx;
3081}
3082
3083/**
3084 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3085 * @pf: board private structure to initialize
3086 */
3087static void ice_deinit_pf(struct ice_pf *pf)
3088{
3089 if (pf->serv_tmr.function)
3090 del_timer_sync(&pf->serv_tmr);
3091 if (pf->serv_task.func)
3092 cancel_work_sync(&pf->serv_task);
3093 mutex_destroy(&pf->sw_mutex);
3094 mutex_destroy(&pf->avail_q_mutex);
3095}
3096
3097/**
3098 * ice_init_pf - Initialize general software structures (struct ice_pf)
3099 * @pf: board private structure to initialize
3100 */
3101static void ice_init_pf(struct ice_pf *pf)
3102{
3103 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
3104 set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3105
3106 mutex_init(&pf->sw_mutex);
3107 mutex_init(&pf->avail_q_mutex);
3108
3109 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
3110 mutex_lock(&pf->avail_q_mutex);
3111 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
3112 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
3113 mutex_unlock(&pf->avail_q_mutex);
3114
3115 if (pf->hw.func_caps.common_cap.rss_table_size)
3116 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3117
3118 /* setup service timer and periodic service task */
3119 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3120 pf->serv_tmr_period = HZ;
3121 INIT_WORK(&pf->serv_task, ice_service_task);
3122 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3123}
3124
3125/**
3126 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3127 * @pf: board private structure
3128 *
3129 * compute the number of MSIX vectors required (v_budget) and request from
3130 * the OS. Return the number of vectors reserved or negative on failure
3131 */
3132static int ice_ena_msix_range(struct ice_pf *pf)
3133{
3134 int v_left, v_actual, v_budget = 0;
3135 int needed, err, i;
3136
3137 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3138
3139 /* reserve one vector for miscellaneous handler */
3140 needed = 1;
3141 v_budget += needed;
3142 v_left -= needed;
3143
3144 /* reserve vectors for LAN traffic */
3145 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
3146 v_budget += pf->num_lan_msix;
3147
3148 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
3149 sizeof(struct msix_entry), GFP_KERNEL);
3150
3151 if (!pf->msix_entries) {
3152 err = -ENOMEM;
3153 goto exit_err;
3154 }
3155
3156 for (i = 0; i < v_budget; i++)
3157 pf->msix_entries[i].entry = i;
3158
3159 /* actually reserve the vectors */
3160 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3161 ICE_MIN_MSIX, v_budget);
3162
3163 if (v_actual < 0) {
3164 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
3165 err = v_actual;
3166 goto msix_err;
3167 }
3168
3169 if (v_actual < v_budget) {
3170 dev_warn(&pf->pdev->dev,
3171 "not enough vectors. requested = %d, obtained = %d\n",
3172 v_budget, v_actual);
3173 if (v_actual >= (pf->num_lan_msix + 1)) {
3174 pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1);
3175 } else if (v_actual >= 2) {
3176 pf->num_lan_msix = 1;
3177 pf->num_avail_msix = v_actual - 2;
3178 } else {
3179 pci_disable_msix(pf->pdev);
3180 err = -ERANGE;
3181 goto msix_err;
3182 }
3183 }
3184
3185 return v_actual;
3186
3187msix_err:
3188 devm_kfree(&pf->pdev->dev, pf->msix_entries);
3189 goto exit_err;
3190
3191exit_err:
3192 pf->num_lan_msix = 0;
3193 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3194 return err;
3195}
3196
3197/**
3198 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3199 * @pf: board private structure
3200 */
3201static void ice_dis_msix(struct ice_pf *pf)
3202{
3203 pci_disable_msix(pf->pdev);
3204 devm_kfree(&pf->pdev->dev, pf->msix_entries);
3205 pf->msix_entries = NULL;
3206 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3207}
3208
3209/**
3210 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3211 * @pf: board private structure to initialize
3212 */
3213static int ice_init_interrupt_scheme(struct ice_pf *pf)
3214{
3215 int vectors = 0;
3216 ssize_t size;
3217
3218 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3219 vectors = ice_ena_msix_range(pf);
3220 else
3221 return -ENODEV;
3222
3223 if (vectors < 0)
3224 return vectors;
3225
3226 /* set up vector assignment tracking */
3227 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
3228
3229 pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
3230 if (!pf->irq_tracker) {
3231 ice_dis_msix(pf);
3232 return -ENOMEM;
3233 }
3234
3235 pf->irq_tracker->num_entries = vectors;
3236
3237 return 0;
3238}
3239
3240/**
3241 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3242 * @pf: board private structure
3243 */
3244static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3245{
3246 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3247 ice_dis_msix(pf);
3248
3249 devm_kfree(&pf->pdev->dev, pf->irq_tracker);
3250 pf->irq_tracker = NULL;
3251}
3252
3253/**
3254 * ice_probe - Device initialization routine
3255 * @pdev: PCI device information struct
3256 * @ent: entry in ice_pci_tbl
3257 *
3258 * Returns 0 on success, negative on failure
3259 */
3260static int ice_probe(struct pci_dev *pdev,
3261 const struct pci_device_id __always_unused *ent)
3262{
3263 struct ice_pf *pf;
3264 struct ice_hw *hw;
3265 int err;
3266
3267 /* this driver uses devres, see Documentation/driver-model/devres.txt */
3268 err = pcim_enable_device(pdev);
3269 if (err)
3270 return err;
3271
3272 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3273 if (err) {
3274 dev_err(&pdev->dev, "I/O map error %d\n", err);
3275 return err;
3276 }
3277
3278 pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
3279 if (!pf)
3280 return -ENOMEM;
3281
3282 /* set up for high or low dma */
3283 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3284 if (err)
3285 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3286 if (err) {
3287 dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3288 return err;
3289 }
3290
3291 pci_enable_pcie_error_reporting(pdev);
3292 pci_set_master(pdev);
3293
3294 pf->pdev = pdev;
3295 pci_set_drvdata(pdev, pf);
3296 set_bit(__ICE_DOWN, pf->state);
3297
3298 hw = &pf->hw;
3299 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3300 hw->back = pf;
3301 hw->vendor_id = pdev->vendor;
3302 hw->device_id = pdev->device;
3303 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3304 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3305 hw->subsystem_device_id = pdev->subsystem_device;
3306 hw->bus.device = PCI_SLOT(pdev->devfn);
3307 hw->bus.func = PCI_FUNC(pdev->devfn);
3308 ice_set_ctrlq_len(hw);
3309
3310 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3311
3312#ifndef CONFIG_DYNAMIC_DEBUG
3313 if (debug < -1)
3314 hw->debug_mask = debug;
3315#endif
3316
3317 err = ice_init_hw(hw);
3318 if (err) {
3319 dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
3320 err = -EIO;
3321 goto err_exit_unroll;
3322 }
3323
3324 dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
3325 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
3326 hw->api_maj_ver, hw->api_min_ver);
3327
3328 ice_init_pf(pf);
3329
3330 ice_determine_q_usage(pf);
3331
3332 pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
3333 hw->func_caps.guaranteed_num_vsi);
3334 if (!pf->num_alloc_vsi) {
3335 err = -EIO;
3336 goto err_init_pf_unroll;
3337 }
3338
3339 pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
3340 sizeof(struct ice_vsi *), GFP_KERNEL);
3341 if (!pf->vsi) {
3342 err = -ENOMEM;
3343 goto err_init_pf_unroll;
3344 }
3345
3346 err = ice_init_interrupt_scheme(pf);
3347 if (err) {
3348 dev_err(&pdev->dev,
3349 "ice_init_interrupt_scheme failed: %d\n", err);
3350 err = -EIO;
3351 goto err_init_interrupt_unroll;
3352 }
3353
3354 /* In case of MSIX we are going to setup the misc vector right here
3355 * to handle admin queue events etc. In case of legacy and MSI
3356 * the misc functionality and queue processing is combined in
3357 * the same vector and that gets setup at open.
3358 */
3359 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
3360 err = ice_req_irq_msix_misc(pf);
3361 if (err) {
3362 dev_err(&pdev->dev,
3363 "setup of misc vector failed: %d\n", err);
3364 goto err_init_interrupt_unroll;
3365 }
3366 }
3367
3368 /* create switch struct for the switch element created by FW on boot */
3369 pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
3370 GFP_KERNEL);
3371 if (!pf->first_sw) {
3372 err = -ENOMEM;
3373 goto err_msix_misc_unroll;
3374 }
3375
3376 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3377 pf->first_sw->pf = pf;
3378
3379 /* record the sw_id available for later use */
3380 pf->first_sw->sw_id = hw->port_info->sw_id;
3381
3382 err = ice_setup_pf_sw(pf);
3383 if (err) {
3384 dev_err(&pdev->dev,
3385 "probe failed due to setup pf switch:%d\n", err);
3386 goto err_alloc_sw_unroll;
3387 }
3388
3389 /* Driver is mostly up */
3390 clear_bit(__ICE_DOWN, pf->state);
3391
3392 /* since everything is good, start the service timer */
3393 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3394
3395 err = ice_init_link_events(pf->hw.port_info);
3396 if (err) {
3397 dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
3398 goto err_alloc_sw_unroll;
3399 }
3400
3401 return 0;
3402
3403err_alloc_sw_unroll:
3404 set_bit(__ICE_DOWN, pf->state);
3405 devm_kfree(&pf->pdev->dev, pf->first_sw);
3406err_msix_misc_unroll:
3407 ice_free_irq_msix_misc(pf);
3408err_init_interrupt_unroll:
3409 ice_clear_interrupt_scheme(pf);
3410 devm_kfree(&pdev->dev, pf->vsi);
3411err_init_pf_unroll:
3412 ice_deinit_pf(pf);
3413 ice_deinit_hw(hw);
3414err_exit_unroll:
3415 pci_disable_pcie_error_reporting(pdev);
3416 return err;
3417}
3418
3419/**
3420 * ice_remove - Device removal routine
3421 * @pdev: PCI device information struct
3422 */
3423static void ice_remove(struct pci_dev *pdev)
3424{
3425 struct ice_pf *pf = pci_get_drvdata(pdev);
3426 int i = 0;
3427 int err;
3428
3429 if (!pf)
3430 return;
3431
3432 set_bit(__ICE_DOWN, pf->state);
3433
3434 for (i = 0; i < pf->num_alloc_vsi; i++) {
3435 if (!pf->vsi[i])
3436 continue;
3437
3438 err = ice_vsi_release(pf->vsi[i]);
3439 if (err)
3440 dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n",
3441 i, err);
3442 }
3443
3444 ice_free_irq_msix_misc(pf);
3445 ice_clear_interrupt_scheme(pf);
3446 ice_deinit_pf(pf);
3447 ice_deinit_hw(&pf->hw);
3448 pci_disable_pcie_error_reporting(pdev);
3449}
3450
3451/* ice_pci_tbl - PCI Device ID Table
3452 *
3453 * Wildcard entries (PCI_ANY_ID) should come last
3454 * Last entry must be all 0s
3455 *
3456 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3457 * Class, Class Mask, private data (not used) }
3458 */
3459static const struct pci_device_id ice_pci_tbl[] = {
3460 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
3461 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
3462 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
3463 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 },
3464 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 },
3465 /* required last entry */
3466 { 0, }
3467};
3468MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3469
3470static struct pci_driver ice_driver = {
3471 .name = KBUILD_MODNAME,
3472 .id_table = ice_pci_tbl,
3473 .probe = ice_probe,
3474 .remove = ice_remove,
3475};
3476
3477/**
3478 * ice_module_init - Driver registration routine
3479 *
3480 * ice_module_init is the first routine called when the driver is
3481 * loaded. All it does is register with the PCI subsystem.
3482 */
3483static int __init ice_module_init(void)
3484{
3485 int status;
3486
3487 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3488 pr_info("%s\n", ice_copyright);
3489
3490 ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME);
3491 if (!ice_wq) {
3492 pr_err("Failed to create workqueue\n");
3493 return -ENOMEM;
3494 }
3495
3496 status = pci_register_driver(&ice_driver);
3497 if (status) {
3498 pr_err("failed to register pci driver, err %d\n", status);
3499 destroy_workqueue(ice_wq);
3500 }
3501
3502 return status;
3503}
3504module_init(ice_module_init);
3505
3506/**
3507 * ice_module_exit - Driver exit cleanup routine
3508 *
3509 * ice_module_exit is called just before the driver is removed
3510 * from memory.
3511 */
3512static void __exit ice_module_exit(void)
3513{
3514 pci_unregister_driver(&ice_driver);
3515 destroy_workqueue(ice_wq);
3516 pr_info("module unloaded\n");
3517}
3518module_exit(ice_module_exit);
3519
3520/**
3521 * ice_set_mac_address - NDO callback to set mac address
3522 * @netdev: network interface device structure
3523 * @pi: pointer to an address structure
3524 *
3525 * Returns 0 on success, negative on failure
3526 */
3527static int ice_set_mac_address(struct net_device *netdev, void *pi)
3528{
3529 struct ice_netdev_priv *np = netdev_priv(netdev);
3530 struct ice_vsi *vsi = np->vsi;
3531 struct ice_pf *pf = vsi->back;
3532 struct ice_hw *hw = &pf->hw;
3533 struct sockaddr *addr = pi;
3534 enum ice_status status;
3535 LIST_HEAD(a_mac_list);
3536 LIST_HEAD(r_mac_list);
3537 u8 flags = 0;
3538 int err;
3539 u8 *mac;
3540
3541 mac = (u8 *)addr->sa_data;
3542
3543 if (!is_valid_ether_addr(mac))
3544 return -EADDRNOTAVAIL;
3545
3546 if (ether_addr_equal(netdev->dev_addr, mac)) {
3547 netdev_warn(netdev, "already using mac %pM\n", mac);
3548 return 0;
3549 }
3550
3551 if (test_bit(__ICE_DOWN, pf->state) ||
3552 ice_is_reset_recovery_pending(pf->state)) {
3553 netdev_err(netdev, "can't set mac %pM. device not ready\n",
3554 mac);
3555 return -EBUSY;
3556 }
3557
3558 /* When we change the mac address we also have to change the mac address
3559 * based filter rules that were created previously for the old mac
3560 * address. So first, we remove the old filter rule using ice_remove_mac
3561 * and then create a new filter rule using ice_add_mac. Note that for
3562 * both these operations, we first need to form a "list" of mac
3563 * addresses (even though in this case, we have only 1 mac address to be
3564 * added/removed) and this done using ice_add_mac_to_list. Depending on
3565 * the ensuing operation this "list" of mac addresses is either to be
3566 * added or removed from the filter.
3567 */
3568 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
3569 if (err) {
3570 err = -EADDRNOTAVAIL;
3571 goto free_lists;
3572 }
3573
3574 status = ice_remove_mac(hw, &r_mac_list);
3575 if (status) {
3576 err = -EADDRNOTAVAIL;
3577 goto free_lists;
3578 }
3579
3580 err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
3581 if (err) {
3582 err = -EADDRNOTAVAIL;
3583 goto free_lists;
3584 }
3585
3586 status = ice_add_mac(hw, &a_mac_list);
3587 if (status) {
3588 err = -EADDRNOTAVAIL;
3589 goto free_lists;
3590 }
3591
3592free_lists:
3593 /* free list entries */
3594 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
3595 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
3596
3597 if (err) {
3598 netdev_err(netdev, "can't set mac %pM. filter update failed\n",
3599 mac);
3600 return err;
3601 }
3602
3603 /* change the netdev's mac address */
3604 memcpy(netdev->dev_addr, mac, netdev->addr_len);
3605 netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
3606 netdev->dev_addr);
3607
3608 /* write new mac address to the firmware */
3609 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3610 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3611 if (status) {
3612 netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
3613 mac);
3614 }
3615 return 0;
3616}
3617
3618/**
3619 * ice_set_rx_mode - NDO callback to set the netdev filters
3620 * @netdev: network interface device structure
3621 */
3622static void ice_set_rx_mode(struct net_device *netdev)
3623{
3624 struct ice_netdev_priv *np = netdev_priv(netdev);
3625 struct ice_vsi *vsi = np->vsi;
3626
3627 if (!vsi)
3628 return;
3629
3630 /* Set the flags to synchronize filters
3631 * ndo_set_rx_mode may be triggered even without a change in netdev
3632 * flags
3633 */
3634 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3635 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3636 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3637
3638 /* schedule our worker thread which will take care of
3639 * applying the new filter changes
3640 */
3641 ice_service_task_schedule(vsi->back);
3642}
3643
3644/**
3645 * ice_fdb_add - add an entry to the hardware database
3646 * @ndm: the input from the stack
3647 * @tb: pointer to array of nladdr (unused)
3648 * @dev: the net device pointer
3649 * @addr: the MAC address entry being added
3650 * @vid: VLAN id
3651 * @flags: instructions from stack about fdb operation
3652 */
3653static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3654 struct net_device *dev, const unsigned char *addr,
3655 u16 vid, u16 flags)
3656{
3657 int err;
3658
3659 if (vid) {
3660 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3661 return -EINVAL;
3662 }
3663 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3664 netdev_err(dev, "FDB only supports static addresses\n");
3665 return -EINVAL;
3666 }
3667
3668 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3669 err = dev_uc_add_excl(dev, addr);
3670 else if (is_multicast_ether_addr(addr))
3671 err = dev_mc_add_excl(dev, addr);
3672 else
3673 err = -EINVAL;
3674
3675 /* Only return duplicate errors if NLM_F_EXCL is set */
3676 if (err == -EEXIST && !(flags & NLM_F_EXCL))
3677 err = 0;
3678
3679 return err;
3680}
3681
3682/**
3683 * ice_fdb_del - delete an entry from the hardware database
3684 * @ndm: the input from the stack
3685 * @tb: pointer to array of nladdr (unused)
3686 * @dev: the net device pointer
3687 * @addr: the MAC address entry being added
3688 * @vid: VLAN id
3689 */
3690static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3691 struct net_device *dev, const unsigned char *addr,
3692 __always_unused u16 vid)
3693{
3694 int err;
3695
3696 if (ndm->ndm_state & NUD_PERMANENT) {
3697 netdev_err(dev, "FDB only supports static addresses\n");
3698 return -EINVAL;
3699 }
3700
3701 if (is_unicast_ether_addr(addr))
3702 err = dev_uc_del(dev, addr);
3703 else if (is_multicast_ether_addr(addr))
3704 err = dev_mc_del(dev, addr);
3705 else
3706 err = -EINVAL;
3707
3708 return err;
3709}
3710
3711/**
3712 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
3713 * @vsi: the vsi being changed
3714 */
3715static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
3716{
3717 struct device *dev = &vsi->back->pdev->dev;
3718 struct ice_hw *hw = &vsi->back->hw;
3719 struct ice_vsi_ctx ctxt = { 0 };
3720 enum ice_status status;
3721
3722 /* Here we are configuring the VSI to let the driver add VLAN tags by
3723 * setting port_vlan_flags to ICE_AQ_VSI_PVLAN_MODE_ALL. The actual VLAN
3724 * tag insertion happens in the Tx hot path, in ice_tx_map.
3725 */
3726 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_MODE_ALL;
3727
3728 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3729 ctxt.vsi_num = vsi->vsi_num;
3730
3731 status = ice_aq_update_vsi(hw, &ctxt, NULL);
3732 if (status) {
3733 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
3734 status, hw->adminq.sq_last_status);
3735 return -EIO;
3736 }
3737
3738 vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3739 return 0;
3740}
3741
3742/**
3743 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
3744 * @vsi: the vsi being changed
3745 * @ena: boolean value indicating if this is a enable or disable request
3746 */
3747static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
3748{
3749 struct device *dev = &vsi->back->pdev->dev;
3750 struct ice_hw *hw = &vsi->back->hw;
3751 struct ice_vsi_ctx ctxt = { 0 };
3752 enum ice_status status;
3753
3754 /* Here we are configuring what the VSI should do with the VLAN tag in
3755 * the Rx packet. We can either leave the tag in the packet or put it in
3756 * the Rx descriptor.
3757 */
3758 if (ena) {
3759 /* Strip VLAN tag from Rx packet and put it in the desc */
3760 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH;
3761 } else {
3762 /* Disable stripping. Leave tag in packet */
3763 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_NOTHING;
3764 }
3765
3766 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3767 ctxt.vsi_num = vsi->vsi_num;
3768
3769 status = ice_aq_update_vsi(hw, &ctxt, NULL);
3770 if (status) {
3771 dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n",
3772 ena, status, hw->adminq.sq_last_status);
3773 return -EIO;
3774 }
3775
3776 vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3777 return 0;
3778}
3779
3780/**
3781 * ice_set_features - set the netdev feature flags
3782 * @netdev: ptr to the netdev being adjusted
3783 * @features: the feature set that the stack is suggesting
3784 */
3785static int ice_set_features(struct net_device *netdev,
3786 netdev_features_t features)
3787{
3788 struct ice_netdev_priv *np = netdev_priv(netdev);
3789 struct ice_vsi *vsi = np->vsi;
3790 int ret = 0;
3791
3792 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3793 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3794 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3795 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3796 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3797 ret = ice_vsi_manage_vlan_stripping(vsi, false);
3798 else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3799 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3800 ret = ice_vsi_manage_vlan_insertion(vsi);
3801 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3802 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3803 ret = ice_vsi_manage_vlan_insertion(vsi);
3804
3805 return ret;
3806}
3807
3808/**
3809 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
3810 * @vsi: VSI to setup vlan properties for
3811 */
3812static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3813{
3814 int ret = 0;
3815
3816 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3817 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3818 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3819 ret = ice_vsi_manage_vlan_insertion(vsi);
3820
3821 return ret;
3822}
3823
3824/**
3825 * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
3826 * @vsi: the VSI being brought back up
3827 */
3828static int ice_restore_vlan(struct ice_vsi *vsi)
3829{
3830 int err;
3831 u16 vid;
3832
3833 if (!vsi->netdev)
3834 return -EINVAL;
3835
3836 err = ice_vsi_vlan_setup(vsi);
3837 if (err)
3838 return err;
3839
3840 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
3841 err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
3842 if (err)
3843 break;
3844 }
3845
3846 return err;
3847}
3848
3849/**
3850 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
3851 * @ring: The Tx ring to configure
3852 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
3853 * @pf_q: queue index in the PF space
3854 *
3855 * Configure the Tx descriptor ring in TLAN context.
3856 */
3857static void
3858ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
3859{
3860 struct ice_vsi *vsi = ring->vsi;
3861 struct ice_hw *hw = &vsi->back->hw;
3862
3863 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
3864
3865 tlan_ctx->port_num = vsi->port_info->lport;
3866
3867 /* Transmit Queue Length */
3868 tlan_ctx->qlen = ring->count;
3869
3870 /* PF number */
3871 tlan_ctx->pf_num = hw->pf_id;
3872
3873 /* queue belongs to a specific VSI type
3874 * VF / VM index should be programmed per vmvf_type setting:
3875 * for vmvf_type = VF, it is VF number between 0-256
3876 * for vmvf_type = VM, it is VM number between 0-767
3877 * for PF or EMP this field should be set to zero
3878 */
3879 switch (vsi->type) {
3880 case ICE_VSI_PF:
3881 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
3882 break;
3883 default:
3884 return;
3885 }
3886
3887 /* make sure the context is associated with the right VSI */
3888 tlan_ctx->src_vsi = vsi->vsi_num;
3889
3890 tlan_ctx->tso_ena = ICE_TX_LEGACY;
3891 tlan_ctx->tso_qnum = pf_q;
3892
3893 /* Legacy or Advanced Host Interface:
3894 * 0: Advanced Host Interface
3895 * 1: Legacy Host Interface
3896 */
3897 tlan_ctx->legacy_int = ICE_TX_LEGACY;
3898}
3899
3900/**
3901 * ice_vsi_cfg_txqs - Configure the VSI for Tx
3902 * @vsi: the VSI being configured
3903 *
3904 * Return 0 on success and a negative value on error
3905 * Configure the Tx VSI for operation.
3906 */
3907static int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
3908{
3909 struct ice_aqc_add_tx_qgrp *qg_buf;
3910 struct ice_aqc_add_txqs_perq *txq;
3911 struct ice_pf *pf = vsi->back;
3912 enum ice_status status;
3913 u16 buf_len, i, pf_q;
3914 int err = 0, tc = 0;
3915 u8 num_q_grps;
3916
3917 buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
3918 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
3919 if (!qg_buf)
3920 return -ENOMEM;
3921
3922 if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
3923 err = -EINVAL;
3924 goto err_cfg_txqs;
3925 }
3926 qg_buf->num_txqs = 1;
3927 num_q_grps = 1;
3928
3929 /* set up and configure the tx queues */
3930 ice_for_each_txq(vsi, i) {
3931 struct ice_tlan_ctx tlan_ctx = { 0 };
3932
3933 pf_q = vsi->txq_map[i];
3934 ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
3935 /* copy context contents into the qg_buf */
3936 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
3937 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
3938 ice_tlan_ctx_info);
3939
3940 /* init queue specific tail reg. It is referred as transmit
3941 * comm scheduler queue doorbell.
3942 */
3943 vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
3944 status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc,
3945 num_q_grps, qg_buf, buf_len, NULL);
3946 if (status) {
3947 dev_err(&vsi->back->pdev->dev,
3948 "Failed to set LAN Tx queue context, error: %d\n",
3949 status);
3950 err = -ENODEV;
3951 goto err_cfg_txqs;
3952 }
3953
3954 /* Add Tx Queue TEID into the VSI tx ring from the response
3955 * This will complete configuring and enabling the queue.
3956 */
3957 txq = &qg_buf->txqs[0];
3958 if (pf_q == le16_to_cpu(txq->txq_id))
3959 vsi->tx_rings[i]->txq_teid =
3960 le32_to_cpu(txq->q_teid);
3961 }
3962err_cfg_txqs:
3963 devm_kfree(&pf->pdev->dev, qg_buf);
3964 return err;
3965}
3966
3967/**
3968 * ice_setup_rx_ctx - Configure a receive ring context
3969 * @ring: The Rx ring to configure
3970 *
3971 * Configure the Rx descriptor ring in RLAN context.
3972 */
3973static int ice_setup_rx_ctx(struct ice_ring *ring)
3974{
3975 struct ice_vsi *vsi = ring->vsi;
3976 struct ice_hw *hw = &vsi->back->hw;
3977 u32 rxdid = ICE_RXDID_FLEX_NIC;
3978 struct ice_rlan_ctx rlan_ctx;
3979 u32 regval;
3980 u16 pf_q;
3981 int err;
3982
3983 /* what is RX queue number in global space of 2K rx queues */
3984 pf_q = vsi->rxq_map[ring->q_index];
3985
3986 /* clear the context structure first */
3987 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
3988
3989 rlan_ctx.base = ring->dma >> 7;
3990
3991 rlan_ctx.qlen = ring->count;
3992
3993 /* Receive Packet Data Buffer Size.
3994 * The Packet Data Buffer Size is defined in 128 byte units.
3995 */
3996 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
3997
3998 /* use 32 byte descriptors */
3999 rlan_ctx.dsize = 1;
4000
4001 /* Strip the Ethernet CRC bytes before the packet is posted to host
4002 * memory.
4003 */
4004 rlan_ctx.crcstrip = 1;
4005
4006 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
4007 rlan_ctx.l2tsel = 1;
4008
4009 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
4010 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
4011 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
4012
4013 /* This controls whether VLAN is stripped from inner headers
4014 * The VLAN in the inner L2 header is stripped to the receive
4015 * descriptor if enabled by this flag.
4016 */
4017 rlan_ctx.showiv = 0;
4018
4019 /* Max packet size for this queue - must not be set to a larger value
4020 * than 5 x DBUF
4021 */
4022 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
4023 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
4024
4025 /* Rx queue threshold in units of 64 */
4026 rlan_ctx.lrxqthresh = 1;
4027
4028 /* Enable Flexible Descriptors in the queue context which
4029 * allows this driver to select a specific receive descriptor format
4030 */
4031 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
4032 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
4033 QRXFLXP_CNTXT_RXDID_IDX_M;
4034
4035 /* increasing context priority to pick up profile id;
4036 * default is 0x01; setting to 0x03 to ensure profile
4037 * is programming if prev context is of same priority
4038 */
4039 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
4040 QRXFLXP_CNTXT_RXDID_PRIO_M;
4041
4042 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
4043
4044 /* Absolute queue number out of 2K needs to be passed */
4045 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
4046 if (err) {
4047 dev_err(&vsi->back->pdev->dev,
4048 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
4049 pf_q, err);
4050 return -EIO;
4051 }
4052
4053 /* init queue specific tail register */
4054 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
4055 writel(0, ring->tail);
4056 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
4057
4058 return 0;
4059}
4060
4061/**
4062 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
4063 * @vsi: the VSI being configured
4064 *
4065 * Return 0 on success and a negative value on error
4066 * Configure the Rx VSI for operation.
4067 */
4068static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
4069{
4070 int err = 0;
4071 u16 i;
4072
4073 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
4074 vsi->max_frame = vsi->netdev->mtu +
4075 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4076 else
4077 vsi->max_frame = ICE_RXBUF_2048;
4078
4079 vsi->rx_buf_len = ICE_RXBUF_2048;
4080 /* set up individual rings */
4081 for (i = 0; i < vsi->num_rxq && !err; i++)
4082 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
4083
4084 if (err) {
4085 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
4086 return -EIO;
4087 }
4088 return err;
4089}
4090
4091/**
4092 * ice_vsi_cfg - Setup the VSI
4093 * @vsi: the VSI being configured
4094 *
4095 * Return 0 on success and negative value on error
4096 */
4097static int ice_vsi_cfg(struct ice_vsi *vsi)
4098{
4099 int err;
4100
4101 ice_set_rx_mode(vsi->netdev);
4102
4103 err = ice_restore_vlan(vsi);
4104 if (err)
4105 return err;
4106
4107 err = ice_vsi_cfg_txqs(vsi);
4108 if (!err)
4109 err = ice_vsi_cfg_rxqs(vsi);
4110
4111 return err;
4112}
4113
4114/**
4115 * ice_vsi_stop_tx_rings - Disable Tx rings
4116 * @vsi: the VSI being configured
4117 */
4118static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
4119{
4120 struct ice_pf *pf = vsi->back;
4121 struct ice_hw *hw = &pf->hw;
4122 enum ice_status status;
4123 u32 *q_teids, val;
4124 u16 *q_ids, i;
4125 int err = 0;
4126
4127 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
4128 return -EINVAL;
4129
4130 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
4131 GFP_KERNEL);
4132 if (!q_teids)
4133 return -ENOMEM;
4134
4135 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
4136 GFP_KERNEL);
4137 if (!q_ids) {
4138 err = -ENOMEM;
4139 goto err_alloc_q_ids;
4140 }
4141
4142 /* set up the tx queue list to be disabled */
4143 ice_for_each_txq(vsi, i) {
4144 u16 v_idx;
4145
4146 if (!vsi->tx_rings || !vsi->tx_rings[i]) {
4147 err = -EINVAL;
4148 goto err_out;
4149 }
4150
4151 q_ids[i] = vsi->txq_map[i];
4152 q_teids[i] = vsi->tx_rings[i]->txq_teid;
4153
4154 /* clear cause_ena bit for disabled queues */
4155 val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4156 val &= ~QINT_TQCTL_CAUSE_ENA_M;
4157 wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4158
4159 /* software is expected to wait for 100 ns */
4160 ndelay(100);
4161
4162 /* trigger a software interrupt for the vector associated to
4163 * the queue to schedule napi handler
4164 */
4165 v_idx = vsi->tx_rings[i]->q_vector->v_idx;
4166 wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx),
4167 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
4168 }
4169 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
4170 NULL);
4171 if (status) {
4172 dev_err(&pf->pdev->dev,
4173 "Failed to disable LAN Tx queues, error: %d\n",
4174 status);
4175 err = -ENODEV;
4176 }
4177
4178err_out:
4179 devm_kfree(&pf->pdev->dev, q_ids);
4180
4181err_alloc_q_ids:
4182 devm_kfree(&pf->pdev->dev, q_teids);
4183
4184 return err;
4185}
4186
4187/**
4188 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4189 * @pf: the PF being configured
4190 * @pf_q: the PF queue
4191 * @ena: enable or disable state of the queue
4192 *
4193 * This routine will wait for the given Rx queue of the PF to reach the
4194 * enabled or disabled state.
4195 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4196 * multiple retries; else will return 0 in case of success.
4197 */
4198static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
4199{
4200 int i;
4201
4202 for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
4203 u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
4204
4205 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4206 break;
4207
4208 usleep_range(10, 20);
4209 }
4210 if (i >= ICE_Q_WAIT_RETRY_LIMIT)
4211 return -ETIMEDOUT;
4212
4213 return 0;
4214}
4215
4216/**
4217 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings
4218 * @vsi: the VSI being configured
4219 * @ena: start or stop the rx rings
4220 */
4221static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
4222{
4223 struct ice_pf *pf = vsi->back;
4224 struct ice_hw *hw = &pf->hw;
4225 int i, j, ret = 0;
4226
4227 for (i = 0; i < vsi->num_rxq; i++) {
4228 int pf_q = vsi->rxq_map[i];
4229 u32 rx_reg;
4230
4231 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
4232 rx_reg = rd32(hw, QRX_CTRL(pf_q));
4233 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
4234 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
4235 break;
4236 usleep_range(1000, 2000);
4237 }
4238
4239 /* Skip if the queue is already in the requested state */
4240 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4241 continue;
4242
4243 /* turn on/off the queue */
4244 if (ena)
4245 rx_reg |= QRX_CTRL_QENA_REQ_M;
4246 else
4247 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
4248 wr32(hw, QRX_CTRL(pf_q), rx_reg);
4249
4250 /* wait for the change to finish */
4251 ret = ice_pf_rxq_wait(pf, pf_q, ena);
4252 if (ret) {
4253 dev_err(&pf->pdev->dev,
4254 "VSI idx %d Rx ring %d %sable timeout\n",
4255 vsi->idx, pf_q, (ena ? "en" : "dis"));
4256 break;
4257 }
4258 }
4259
4260 return ret;
4261}
4262
4263/**
4264 * ice_vsi_start_rx_rings - start VSI's rx rings
4265 * @vsi: the VSI whose rings are to be started
4266 *
4267 * Returns 0 on success and a negative value on error
4268 */
4269static int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
4270{
4271 return ice_vsi_ctrl_rx_rings(vsi, true);
4272}
4273
4274/**
4275 * ice_vsi_stop_rx_rings - stop VSI's rx rings
4276 * @vsi: the VSI
4277 *
4278 * Returns 0 on success and a negative value on error
4279 */
4280static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
4281{
4282 return ice_vsi_ctrl_rx_rings(vsi, false);
4283}
4284
4285/**
4286 * ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings
4287 * @vsi: the VSI
4288 * Returns 0 on success and a negative value on error
4289 */
4290static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi)
4291{
4292 int err_tx, err_rx;
4293
4294 err_tx = ice_vsi_stop_tx_rings(vsi);
4295 if (err_tx)
4296 dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n");
4297
4298 err_rx = ice_vsi_stop_rx_rings(vsi);
4299 if (err_rx)
4300 dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n");
4301
4302 if (err_tx || err_rx)
4303 return -EIO;
4304
4305 return 0;
4306}
4307
4308/**
4309 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4310 * @vsi: the VSI being configured
4311 */
4312static void ice_napi_enable_all(struct ice_vsi *vsi)
4313{
4314 int q_idx;
4315
4316 if (!vsi->netdev)
4317 return;
4318
4319 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4320 napi_enable(&vsi->q_vectors[q_idx]->napi);
4321}
4322
4323/**
4324 * ice_up_complete - Finish the last steps of bringing up a connection
4325 * @vsi: The VSI being configured
4326 *
4327 * Return 0 on success and negative value on error
4328 */
4329static int ice_up_complete(struct ice_vsi *vsi)
4330{
4331 struct ice_pf *pf = vsi->back;
4332 int err;
4333
4334 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4335 ice_vsi_cfg_msix(vsi);
4336 else
4337 return -ENOTSUPP;
4338
4339 /* Enable only Rx rings, Tx rings were enabled by the FW when the
4340 * Tx queue group list was configured and the context bits were
4341 * programmed using ice_vsi_cfg_txqs
4342 */
4343 err = ice_vsi_start_rx_rings(vsi);
4344 if (err)
4345 return err;
4346
4347 clear_bit(__ICE_DOWN, vsi->state);
4348 ice_napi_enable_all(vsi);
4349 ice_vsi_ena_irq(vsi);
4350
4351 if (vsi->port_info &&
4352 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4353 vsi->netdev) {
4354 ice_print_link_msg(vsi, true);
4355 netif_tx_start_all_queues(vsi->netdev);
4356 netif_carrier_on(vsi->netdev);
4357 }
4358
4359 ice_service_task_schedule(pf);
4360
4361 return err;
4362}
4363
4364/**
4365 * ice_up - Bring the connection back up after being down
4366 * @vsi: VSI being configured
4367 */
4368int ice_up(struct ice_vsi *vsi)
4369{
4370 int err;
4371
4372 err = ice_vsi_cfg(vsi);
4373 if (!err)
4374 err = ice_up_complete(vsi);
4375
4376 return err;
4377}
4378
4379/**
4380 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4381 * @ring: Tx or Rx ring to read stats from
4382 * @pkts: packets stats counter
4383 * @bytes: bytes stats counter
4384 *
4385 * This function fetches stats from the ring considering the atomic operations
4386 * that needs to be performed to read u64 values in 32 bit machine.
4387 */
4388static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
4389 u64 *bytes)
4390{
4391 unsigned int start;
4392 *pkts = 0;
4393 *bytes = 0;
4394
4395 if (!ring)
4396 return;
4397 do {
4398 start = u64_stats_fetch_begin_irq(&ring->syncp);
4399 *pkts = ring->stats.pkts;
4400 *bytes = ring->stats.bytes;
4401 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4402}
4403
4404/**
4405 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4406 * @hw: ptr to the hardware info
4407 * @hireg: high 32 bit HW register to read from
4408 * @loreg: low 32 bit HW register to read from
4409 * @prev_stat_loaded: bool to specify if previous stats are loaded
4410 * @prev_stat: ptr to previous loaded stat value
4411 * @cur_stat: ptr to current stat value
4412 */
4413static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
4414 bool prev_stat_loaded, u64 *prev_stat,
4415 u64 *cur_stat)
4416{
4417 u64 new_data;
4418
4419 new_data = rd32(hw, loreg);
4420 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
4421
4422 /* device stats are not reset at PFR, they likely will not be zeroed
4423 * when the driver starts. So save the first values read and use them as
4424 * offsets to be subtracted from the raw values in order to report stats
4425 * that count from zero.
4426 */
4427 if (!prev_stat_loaded)
4428 *prev_stat = new_data;
4429 if (likely(new_data >= *prev_stat))
4430 *cur_stat = new_data - *prev_stat;
4431 else
4432 /* to manage the potential roll-over */
4433 *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
4434 *cur_stat &= 0xFFFFFFFFFFULL;
4435}
4436
4437/**
4438 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4439 * @hw: ptr to the hardware info
4440 * @reg: HW register to read from
4441 * @prev_stat_loaded: bool to specify if previous stats are loaded
4442 * @prev_stat: ptr to previous loaded stat value
4443 * @cur_stat: ptr to current stat value
4444 */
4445static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4446 u64 *prev_stat, u64 *cur_stat)
4447{
4448 u32 new_data;
4449
4450 new_data = rd32(hw, reg);
4451
4452 /* device stats are not reset at PFR, they likely will not be zeroed
4453 * when the driver starts. So save the first values read and use them as
4454 * offsets to be subtracted from the raw values in order to report stats
4455 * that count from zero.
4456 */
4457 if (!prev_stat_loaded)
4458 *prev_stat = new_data;
4459 if (likely(new_data >= *prev_stat))
4460 *cur_stat = new_data - *prev_stat;
4461 else
4462 /* to manage the potential roll-over */
4463 *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
4464}
4465
4466/**
4467 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
4468 * @vsi: the VSI to be updated
4469 */
4470static void ice_update_eth_stats(struct ice_vsi *vsi)
4471{
4472 struct ice_eth_stats *prev_es, *cur_es;
4473 struct ice_hw *hw = &vsi->back->hw;
4474 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
4475
4476 prev_es = &vsi->eth_stats_prev;
4477 cur_es = &vsi->eth_stats;
4478
4479 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
4480 vsi->stat_offsets_loaded, &prev_es->rx_bytes,
4481 &cur_es->rx_bytes);
4482
4483 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
4484 vsi->stat_offsets_loaded, &prev_es->rx_unicast,
4485 &cur_es->rx_unicast);
4486
4487 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
4488 vsi->stat_offsets_loaded, &prev_es->rx_multicast,
4489 &cur_es->rx_multicast);
4490
4491 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
4492 vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
4493 &cur_es->rx_broadcast);
4494
4495 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
4496 &prev_es->rx_discards, &cur_es->rx_discards);
4497
4498 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
4499 vsi->stat_offsets_loaded, &prev_es->tx_bytes,
4500 &cur_es->tx_bytes);
4501
4502 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
4503 vsi->stat_offsets_loaded, &prev_es->tx_unicast,
4504 &cur_es->tx_unicast);
4505
4506 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
4507 vsi->stat_offsets_loaded, &prev_es->tx_multicast,
4508 &cur_es->tx_multicast);
4509
4510 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
4511 vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
4512 &cur_es->tx_broadcast);
4513
4514 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
4515 &prev_es->tx_errors, &cur_es->tx_errors);
4516
4517 vsi->stat_offsets_loaded = true;
4518}
4519
4520/**
4521 * ice_update_vsi_ring_stats - Update VSI stats counters
4522 * @vsi: the VSI to be updated
4523 */
4524static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4525{
4526 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4527 struct ice_ring *ring;
4528 u64 pkts, bytes;
4529 int i;
4530
4531 /* reset netdev stats */
4532 vsi_stats->tx_packets = 0;
4533 vsi_stats->tx_bytes = 0;
4534 vsi_stats->rx_packets = 0;
4535 vsi_stats->rx_bytes = 0;
4536
4537 /* reset non-netdev (extended) stats */
4538 vsi->tx_restart = 0;
4539 vsi->tx_busy = 0;
4540 vsi->tx_linearize = 0;
4541 vsi->rx_buf_failed = 0;
4542 vsi->rx_page_failed = 0;
4543
4544 rcu_read_lock();
4545
4546 /* update Tx rings counters */
4547 ice_for_each_txq(vsi, i) {
4548 ring = READ_ONCE(vsi->tx_rings[i]);
4549 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4550 vsi_stats->tx_packets += pkts;
4551 vsi_stats->tx_bytes += bytes;
4552 vsi->tx_restart += ring->tx_stats.restart_q;
4553 vsi->tx_busy += ring->tx_stats.tx_busy;
4554 vsi->tx_linearize += ring->tx_stats.tx_linearize;
4555 }
4556
4557 /* update Rx rings counters */
4558 ice_for_each_rxq(vsi, i) {
4559 ring = READ_ONCE(vsi->rx_rings[i]);
4560 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4561 vsi_stats->rx_packets += pkts;
4562 vsi_stats->rx_bytes += bytes;
4563 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4564 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4565 }
4566
4567 rcu_read_unlock();
4568}
4569
4570/**
4571 * ice_update_vsi_stats - Update VSI stats counters
4572 * @vsi: the VSI to be updated
4573 */
4574static void ice_update_vsi_stats(struct ice_vsi *vsi)
4575{
4576 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4577 struct ice_eth_stats *cur_es = &vsi->eth_stats;
4578 struct ice_pf *pf = vsi->back;
4579
4580 if (test_bit(__ICE_DOWN, vsi->state) ||
4581 test_bit(__ICE_CFG_BUSY, pf->state))
4582 return;
4583
4584 /* get stats as recorded by Tx/Rx rings */
4585 ice_update_vsi_ring_stats(vsi);
4586
4587 /* get VSI stats as recorded by the hardware */
4588 ice_update_eth_stats(vsi);
4589
4590 cur_ns->tx_errors = cur_es->tx_errors;
4591 cur_ns->rx_dropped = cur_es->rx_discards;
4592 cur_ns->tx_dropped = cur_es->tx_discards;
4593 cur_ns->multicast = cur_es->rx_multicast;
4594
4595 /* update some more netdev stats if this is main VSI */
4596 if (vsi->type == ICE_VSI_PF) {
4597 cur_ns->rx_crc_errors = pf->stats.crc_errors;
4598 cur_ns->rx_errors = pf->stats.crc_errors +
4599 pf->stats.illegal_bytes;
4600 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4601 }
4602}
4603
4604/**
4605 * ice_update_pf_stats - Update PF port stats counters
4606 * @pf: PF whose stats needs to be updated
4607 */
4608static void ice_update_pf_stats(struct ice_pf *pf)
4609{
4610 struct ice_hw_port_stats *prev_ps, *cur_ps;
4611 struct ice_hw *hw = &pf->hw;
4612 u8 pf_id;
4613
4614 prev_ps = &pf->stats_prev;
4615 cur_ps = &pf->stats;
4616 pf_id = hw->pf_id;
4617
4618 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
4619 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
4620 &cur_ps->eth.rx_bytes);
4621
4622 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
4623 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
4624 &cur_ps->eth.rx_unicast);
4625
4626 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
4627 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
4628 &cur_ps->eth.rx_multicast);
4629
4630 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
4631 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
4632 &cur_ps->eth.rx_broadcast);
4633
4634 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
4635 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
4636 &cur_ps->eth.tx_bytes);
4637
4638 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
4639 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
4640 &cur_ps->eth.tx_unicast);
4641
4642 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
4643 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
4644 &cur_ps->eth.tx_multicast);
4645
4646 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
4647 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
4648 &cur_ps->eth.tx_broadcast);
4649
4650 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
4651 &prev_ps->tx_dropped_link_down,
4652 &cur_ps->tx_dropped_link_down);
4653
4654 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
4655 pf->stat_prev_loaded, &prev_ps->rx_size_64,
4656 &cur_ps->rx_size_64);
4657
4658 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
4659 pf->stat_prev_loaded, &prev_ps->rx_size_127,
4660 &cur_ps->rx_size_127);
4661
4662 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
4663 pf->stat_prev_loaded, &prev_ps->rx_size_255,
4664 &cur_ps->rx_size_255);
4665
4666 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
4667 pf->stat_prev_loaded, &prev_ps->rx_size_511,
4668 &cur_ps->rx_size_511);
4669
4670 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
4671 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
4672 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4673
4674 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
4675 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
4676 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4677
4678 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
4679 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
4680 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4681
4682 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
4683 pf->stat_prev_loaded, &prev_ps->tx_size_64,
4684 &cur_ps->tx_size_64);
4685
4686 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
4687 pf->stat_prev_loaded, &prev_ps->tx_size_127,
4688 &cur_ps->tx_size_127);
4689
4690 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
4691 pf->stat_prev_loaded, &prev_ps->tx_size_255,
4692 &cur_ps->tx_size_255);
4693
4694 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
4695 pf->stat_prev_loaded, &prev_ps->tx_size_511,
4696 &cur_ps->tx_size_511);
4697
4698 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
4699 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
4700 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4701
4702 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
4703 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
4704 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4705
4706 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
4707 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
4708 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4709
4710 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
4711 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4712
4713 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
4714 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4715
4716 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
4717 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4718
4719 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
4720 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4721
4722 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
4723 &prev_ps->crc_errors, &cur_ps->crc_errors);
4724
4725 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
4726 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4727
4728 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
4729 &prev_ps->mac_local_faults,
4730 &cur_ps->mac_local_faults);
4731
4732 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
4733 &prev_ps->mac_remote_faults,
4734 &cur_ps->mac_remote_faults);
4735
4736 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
4737 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4738
4739 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
4740 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4741
4742 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
4743 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4744
4745 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
4746 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4747
4748 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
4749 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4750
4751 pf->stat_prev_loaded = true;
4752}
4753
4754/**
4755 * ice_get_stats64 - get statistics for network device structure
4756 * @netdev: network interface device structure
4757 * @stats: main device statistics structure
4758 */
4759static
4760void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4761{
4762 struct ice_netdev_priv *np = netdev_priv(netdev);
4763 struct rtnl_link_stats64 *vsi_stats;
4764 struct ice_vsi *vsi = np->vsi;
4765
4766 vsi_stats = &vsi->net_stats;
4767
4768 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
4769 return;
4770 /* netdev packet/byte stats come from ring counter. These are obtained
4771 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4772 */
4773 ice_update_vsi_ring_stats(vsi);
4774 stats->tx_packets = vsi_stats->tx_packets;
4775 stats->tx_bytes = vsi_stats->tx_bytes;
4776 stats->rx_packets = vsi_stats->rx_packets;
4777 stats->rx_bytes = vsi_stats->rx_bytes;
4778
4779 /* The rest of the stats can be read from the hardware but instead we
4780 * just return values that the watchdog task has already obtained from
4781 * the hardware.
4782 */
4783 stats->multicast = vsi_stats->multicast;
4784 stats->tx_errors = vsi_stats->tx_errors;
4785 stats->tx_dropped = vsi_stats->tx_dropped;
4786 stats->rx_errors = vsi_stats->rx_errors;
4787 stats->rx_dropped = vsi_stats->rx_dropped;
4788 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4789 stats->rx_length_errors = vsi_stats->rx_length_errors;
4790}
4791
4792#ifdef CONFIG_NET_POLL_CONTROLLER
4793/**
4794 * ice_netpoll - polling "interrupt" handler
4795 * @netdev: network interface device structure
4796 *
4797 * Used by netconsole to send skbs without having to re-enable interrupts.
4798 * This is not called in the normal interrupt path.
4799 */
4800static void ice_netpoll(struct net_device *netdev)
4801{
4802 struct ice_netdev_priv *np = netdev_priv(netdev);
4803 struct ice_vsi *vsi = np->vsi;
4804 struct ice_pf *pf = vsi->back;
4805 int i;
4806
4807 if (test_bit(__ICE_DOWN, vsi->state) ||
4808 !test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4809 return;
4810
4811 for (i = 0; i < vsi->num_q_vectors; i++)
4812 ice_msix_clean_rings(0, vsi->q_vectors[i]);
4813}
4814#endif /* CONFIG_NET_POLL_CONTROLLER */
4815
4816/**
4817 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4818 * @vsi: VSI having NAPI disabled
4819 */
4820static void ice_napi_disable_all(struct ice_vsi *vsi)
4821{
4822 int q_idx;
4823
4824 if (!vsi->netdev)
4825 return;
4826
4827 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4828 napi_disable(&vsi->q_vectors[q_idx]->napi);
4829}
4830
4831/**
4832 * ice_down - Shutdown the connection
4833 * @vsi: The VSI being stopped
4834 */
4835int ice_down(struct ice_vsi *vsi)
4836{
4837 int i, err;
4838
4839 /* Caller of this function is expected to set the
4840 * vsi->state __ICE_DOWN bit
4841 */
4842 if (vsi->netdev) {
4843 netif_carrier_off(vsi->netdev);
4844 netif_tx_disable(vsi->netdev);
4845 }
4846
4847 ice_vsi_dis_irq(vsi);
4848 err = ice_vsi_stop_tx_rx_rings(vsi);
4849 ice_napi_disable_all(vsi);
4850
4851 ice_for_each_txq(vsi, i)
4852 ice_clean_tx_ring(vsi->tx_rings[i]);
4853
4854 ice_for_each_rxq(vsi, i)
4855 ice_clean_rx_ring(vsi->rx_rings[i]);
4856
4857 if (err)
4858 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4859 vsi->vsi_num, vsi->vsw->sw_id);
4860 return err;
4861}
4862
4863/**
4864 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4865 * @vsi: VSI having resources allocated
4866 *
4867 * Return 0 on success, negative on failure
4868 */
4869static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4870{
4871 int i, err;
4872
4873 if (!vsi->num_txq) {
4874 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
4875 vsi->vsi_num);
4876 return -EINVAL;
4877 }
4878
4879 ice_for_each_txq(vsi, i) {
4880 err = ice_setup_tx_ring(vsi->tx_rings[i]);
4881 if (err)
4882 break;
4883 }
4884
4885 return err;
4886}
4887
4888/**
4889 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4890 * @vsi: VSI having resources allocated
4891 *
4892 * Return 0 on success, negative on failure
4893 */
4894static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4895{
4896 int i, err;
4897
4898 if (!vsi->num_rxq) {
4899 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
4900 vsi->vsi_num);
4901 return -EINVAL;
4902 }
4903
4904 ice_for_each_rxq(vsi, i) {
4905 err = ice_setup_rx_ring(vsi->rx_rings[i]);
4906 if (err)
4907 break;
4908 }
4909
4910 return err;
4911}
4912
4913/**
4914 * ice_vsi_req_irq - Request IRQ from the OS
4915 * @vsi: The VSI IRQ is being requested for
4916 * @basename: name for the vector
4917 *
4918 * Return 0 on success and a negative value on error
4919 */
4920static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
4921{
4922 struct ice_pf *pf = vsi->back;
4923 int err = -EINVAL;
4924
4925 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4926 err = ice_vsi_req_irq_msix(vsi, basename);
4927
4928 return err;
4929}
4930
4931/**
4932 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
4933 * @vsi: the VSI having resources freed
4934 */
4935static void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
4936{
4937 int i;
4938
4939 if (!vsi->tx_rings)
4940 return;
4941
4942 ice_for_each_txq(vsi, i)
4943 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4944 ice_free_tx_ring(vsi->tx_rings[i]);
4945}
4946
4947/**
4948 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
4949 * @vsi: the VSI having resources freed
4950 */
4951static void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
4952{
4953 int i;
4954
4955 if (!vsi->rx_rings)
4956 return;
4957
4958 ice_for_each_rxq(vsi, i)
4959 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
4960 ice_free_rx_ring(vsi->rx_rings[i]);
4961}
4962
4963/**
4964 * ice_vsi_open - Called when a network interface is made active
4965 * @vsi: the VSI to open
4966 *
4967 * Initialization of the VSI
4968 *
4969 * Returns 0 on success, negative value on error
4970 */
4971static int ice_vsi_open(struct ice_vsi *vsi)
4972{
4973 char int_name[ICE_INT_NAME_STR_LEN];
4974 struct ice_pf *pf = vsi->back;
4975 int err;
4976
4977 /* allocate descriptors */
4978 err = ice_vsi_setup_tx_rings(vsi);
4979 if (err)
4980 goto err_setup_tx;
4981
4982 err = ice_vsi_setup_rx_rings(vsi);
4983 if (err)
4984 goto err_setup_rx;
4985
4986 err = ice_vsi_cfg(vsi);
4987 if (err)
4988 goto err_setup_rx;
4989
4990 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4991 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4992 err = ice_vsi_req_irq(vsi, int_name);
4993 if (err)
4994 goto err_setup_rx;
4995
4996 /* Notify the stack of the actual queue counts. */
4997 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4998 if (err)
4999 goto err_set_qs;
5000
5001 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5002 if (err)
5003 goto err_set_qs;
5004
5005 err = ice_up_complete(vsi);
5006 if (err)
5007 goto err_up_complete;
5008
5009 return 0;
5010
5011err_up_complete:
5012 ice_down(vsi);
5013err_set_qs:
5014 ice_vsi_free_irq(vsi);
5015err_setup_rx:
5016 ice_vsi_free_rx_rings(vsi);
5017err_setup_tx:
5018 ice_vsi_free_tx_rings(vsi);
5019
5020 return err;
5021}
5022
5023/**
5024 * ice_vsi_close - Shut down a VSI
5025 * @vsi: the VSI being shut down
5026 */
5027static void ice_vsi_close(struct ice_vsi *vsi)
5028{
5029 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
5030 ice_down(vsi);
5031
5032 ice_vsi_free_irq(vsi);
5033 ice_vsi_free_tx_rings(vsi);
5034 ice_vsi_free_rx_rings(vsi);
5035}
5036
5037/**
5038 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
5039 * @vsi: the VSI being removed
5040 */
5041static void ice_rss_clean(struct ice_vsi *vsi)
5042{
5043 struct ice_pf *pf;
5044
5045 pf = vsi->back;
5046
5047 if (vsi->rss_hkey_user)
5048 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
5049 if (vsi->rss_lut_user)
5050 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
5051}
5052
5053/**
5054 * ice_vsi_release - Delete a VSI and free its resources
5055 * @vsi: the VSI being removed
5056 *
5057 * Returns 0 on success or < 0 on error
5058 */
5059static int ice_vsi_release(struct ice_vsi *vsi)
5060{
5061 struct ice_pf *pf;
5062
5063 if (!vsi->back)
5064 return -ENODEV;
5065 pf = vsi->back;
5066
5067 if (vsi->netdev) {
5068 unregister_netdev(vsi->netdev);
5069 free_netdev(vsi->netdev);
5070 vsi->netdev = NULL;
5071 }
5072
5073 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
5074 ice_rss_clean(vsi);
5075
5076 /* Disable VSI and free resources */
5077 ice_vsi_dis_irq(vsi);
5078 ice_vsi_close(vsi);
5079
5080 /* reclaim interrupt vectors back to PF */
5081 ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
5082 pf->num_avail_msix += vsi->num_q_vectors;
5083
5084 ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num);
5085 ice_vsi_delete(vsi);
5086 ice_vsi_free_q_vectors(vsi);
5087 ice_vsi_clear_rings(vsi);
5088
5089 ice_vsi_put_qs(vsi);
5090 pf->q_left_tx += vsi->alloc_txq;
5091 pf->q_left_rx += vsi->alloc_rxq;
5092
5093 ice_vsi_clear(vsi);
5094
5095 return 0;
5096}
5097
5098/**
5099 * ice_dis_vsi - pause a VSI
5100 * @vsi: the VSI being paused
5101 */
5102static void ice_dis_vsi(struct ice_vsi *vsi)
5103{
5104 if (test_bit(__ICE_DOWN, vsi->state))
5105 return;
5106
5107 set_bit(__ICE_NEEDS_RESTART, vsi->state);
5108
5109 if (vsi->netdev && netif_running(vsi->netdev) &&
5110 vsi->type == ICE_VSI_PF)
5111 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
5112
5113 ice_vsi_close(vsi);
5114}
5115
5116/**
5117 * ice_ena_vsi - resume a VSI
5118 * @vsi: the VSI being resume
5119 */
5120static void ice_ena_vsi(struct ice_vsi *vsi)
5121{
5122 if (!test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
5123 return;
5124
5125 if (vsi->netdev && netif_running(vsi->netdev))
5126 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5127 else if (ice_vsi_open(vsi))
5128 /* this clears the DOWN bit */
5129 dev_dbg(&vsi->back->pdev->dev, "Failed open VSI 0x%04X on switch 0x%04X\n",
5130 vsi->vsi_num, vsi->vsw->sw_id);
5131}
5132
5133/**
5134 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
5135 * @pf: the PF
5136 */
5137static void ice_pf_dis_all_vsi(struct ice_pf *pf)
5138{
5139 int v;
5140
5141 ice_for_each_vsi(pf, v)
5142 if (pf->vsi[v])
5143 ice_dis_vsi(pf->vsi[v]);
5144}
5145
5146/**
5147 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
5148 * @pf: the PF
5149 */
5150static void ice_pf_ena_all_vsi(struct ice_pf *pf)
5151{
5152 int v;
5153
5154 ice_for_each_vsi(pf, v)
5155 if (pf->vsi[v])
5156 ice_ena_vsi(pf->vsi[v]);
5157}
5158
5159/**
5160 * ice_rebuild - rebuild after reset
5161 * @pf: pf to rebuild
5162 */
5163static void ice_rebuild(struct ice_pf *pf)
5164{
5165 struct device *dev = &pf->pdev->dev;
5166 struct ice_hw *hw = &pf->hw;
5167 enum ice_status ret;
5168 int err;
5169
5170 if (test_bit(__ICE_DOWN, pf->state))
5171 goto clear_recovery;
5172
5173 dev_dbg(dev, "rebuilding pf\n");
5174
5175 ret = ice_init_all_ctrlq(hw);
5176 if (ret) {
5177 dev_err(dev, "control queues init failed %d\n", ret);
5178 goto fail_reset;
5179 }
5180
5181 ret = ice_clear_pf_cfg(hw);
5182 if (ret) {
5183 dev_err(dev, "clear PF configuration failed %d\n", ret);
5184 goto fail_reset;
5185 }
5186
5187 ice_clear_pxe_mode(hw);
5188
5189 ret = ice_get_caps(hw);
5190 if (ret) {
5191 dev_err(dev, "ice_get_caps failed %d\n", ret);
5192 goto fail_reset;
5193 }
5194
5195 /* basic nic switch setup */
5196 err = ice_setup_pf_sw(pf);
5197 if (err) {
5198 dev_err(dev, "ice_setup_pf_sw failed\n");
5199 goto fail_reset;
5200 }
5201
5202 /* start misc vector */
5203 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
5204 err = ice_req_irq_msix_misc(pf);
5205 if (err) {
5206 dev_err(dev, "misc vector setup failed: %d\n", err);
5207 goto fail_reset;
5208 }
5209 }
5210
5211 /* restart the VSIs that were rebuilt and running before the reset */
5212 ice_pf_ena_all_vsi(pf);
5213
5214 return;
5215
5216fail_reset:
5217 ice_shutdown_all_ctrlq(hw);
5218 set_bit(__ICE_RESET_FAILED, pf->state);
5219clear_recovery:
5220 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
5221}
5222
5223/**
5224 * ice_change_mtu - NDO callback to change the MTU
5225 * @netdev: network interface device structure
5226 * @new_mtu: new value for maximum frame size
5227 *
5228 * Returns 0 on success, negative on failure
5229 */
5230static int ice_change_mtu(struct net_device *netdev, int new_mtu)
5231{
5232 struct ice_netdev_priv *np = netdev_priv(netdev);
5233 struct ice_vsi *vsi = np->vsi;
5234 struct ice_pf *pf = vsi->back;
5235 u8 count = 0;
5236
5237 if (new_mtu == netdev->mtu) {
5238 netdev_warn(netdev, "mtu is already %d\n", netdev->mtu);
5239 return 0;
5240 }
5241
5242 if (new_mtu < netdev->min_mtu) {
5243 netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
5244 netdev->min_mtu);
5245 return -EINVAL;
5246 } else if (new_mtu > netdev->max_mtu) {
5247 netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
5248 netdev->min_mtu);
5249 return -EINVAL;
5250 }
5251 /* if a reset is in progress, wait for some time for it to complete */
5252 do {
5253 if (ice_is_reset_recovery_pending(pf->state)) {
5254 count++;
5255 usleep_range(1000, 2000);
5256 } else {
5257 break;
5258 }
5259
5260 } while (count < 100);
5261
5262 if (count == 100) {
5263 netdev_err(netdev, "can't change mtu. Device is busy\n");
5264 return -EBUSY;
5265 }
5266
5267 netdev->mtu = new_mtu;
5268
5269 /* if VSI is up, bring it down and then back up */
5270 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
5271 int err;
5272
5273 err = ice_down(vsi);
5274 if (err) {
5275 netdev_err(netdev, "change mtu if_up err %d\n", err);
5276 return err;
5277 }
5278
5279 err = ice_up(vsi);
5280 if (err) {
5281 netdev_err(netdev, "change mtu if_up err %d\n", err);
5282 return err;
5283 }
5284 }
5285
5286 netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
5287 return 0;
5288}
5289
5290/**
5291 * ice_set_rss - Set RSS keys and lut
5292 * @vsi: Pointer to VSI structure
5293 * @seed: RSS hash seed
5294 * @lut: Lookup table
5295 * @lut_size: Lookup table size
5296 *
5297 * Returns 0 on success, negative on failure
5298 */
5299int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5300{
5301 struct ice_pf *pf = vsi->back;
5302 struct ice_hw *hw = &pf->hw;
5303 enum ice_status status;
5304
5305 if (seed) {
5306 struct ice_aqc_get_set_rss_keys *buf =
5307 (struct ice_aqc_get_set_rss_keys *)seed;
5308
5309 status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf);
5310
5311 if (status) {
5312 dev_err(&pf->pdev->dev,
5313 "Cannot set RSS key, err %d aq_err %d\n",
5314 status, hw->adminq.rq_last_status);
5315 return -EIO;
5316 }
5317 }
5318
5319 if (lut) {
5320 status = ice_aq_set_rss_lut(hw, vsi->vsi_num,
5321 vsi->rss_lut_type, lut, lut_size);
5322 if (status) {
5323 dev_err(&pf->pdev->dev,
5324 "Cannot set RSS lut, err %d aq_err %d\n",
5325 status, hw->adminq.rq_last_status);
5326 return -EIO;
5327 }
5328 }
5329
5330 return 0;
5331}
5332
5333/**
5334 * ice_get_rss - Get RSS keys and lut
5335 * @vsi: Pointer to VSI structure
5336 * @seed: Buffer to store the keys
5337 * @lut: Buffer to store the lookup table entries
5338 * @lut_size: Size of buffer to store the lookup table entries
5339 *
5340 * Returns 0 on success, negative on failure
5341 */
5342int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5343{
5344 struct ice_pf *pf = vsi->back;
5345 struct ice_hw *hw = &pf->hw;
5346 enum ice_status status;
5347
5348 if (seed) {
5349 struct ice_aqc_get_set_rss_keys *buf =
5350 (struct ice_aqc_get_set_rss_keys *)seed;
5351
5352 status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf);
5353 if (status) {
5354 dev_err(&pf->pdev->dev,
5355 "Cannot get RSS key, err %d aq_err %d\n",
5356 status, hw->adminq.rq_last_status);
5357 return -EIO;
5358 }
5359 }
5360
5361 if (lut) {
5362 status = ice_aq_get_rss_lut(hw, vsi->vsi_num,
5363 vsi->rss_lut_type, lut, lut_size);
5364 if (status) {
5365 dev_err(&pf->pdev->dev,
5366 "Cannot get RSS lut, err %d aq_err %d\n",
5367 status, hw->adminq.rq_last_status);
5368 return -EIO;
5369 }
5370 }
5371
5372 return 0;
5373}
5374
5375/**
5376 * ice_open - Called when a network interface becomes active
5377 * @netdev: network interface device structure
5378 *
5379 * The open entry point is called when a network interface is made
5380 * active by the system (IFF_UP). At this point all resources needed
5381 * for transmit and receive operations are allocated, the interrupt
5382 * handler is registered with the OS, the netdev watchdog is enabled,
5383 * and the stack is notified that the interface is ready.
5384 *
5385 * Returns 0 on success, negative value on failure
5386 */
5387static int ice_open(struct net_device *netdev)
5388{
5389 struct ice_netdev_priv *np = netdev_priv(netdev);
5390 struct ice_vsi *vsi = np->vsi;
5391 int err;
5392
5393 netif_carrier_off(netdev);
5394
5395 err = ice_vsi_open(vsi);
5396
5397 if (err)
5398 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5399 vsi->vsi_num, vsi->vsw->sw_id);
5400 return err;
5401}
5402
5403/**
5404 * ice_stop - Disables a network interface
5405 * @netdev: network interface device structure
5406 *
5407 * The stop entry point is called when an interface is de-activated by the OS,
5408 * and the netdevice enters the DOWN state. The hardware is still under the
5409 * driver's control, but the netdev interface is disabled.
5410 *
5411 * Returns success only - not allowed to fail
5412 */
5413static int ice_stop(struct net_device *netdev)
5414{
5415 struct ice_netdev_priv *np = netdev_priv(netdev);
5416 struct ice_vsi *vsi = np->vsi;
5417
5418 ice_vsi_close(vsi);
5419
5420 return 0;
5421}
5422
5423/**
5424 * ice_features_check - Validate encapsulated packet conforms to limits
5425 * @skb: skb buffer
5426 * @netdev: This port's netdev
5427 * @features: Offload features that the stack believes apply
5428 */
5429static netdev_features_t
5430ice_features_check(struct sk_buff *skb,
5431 struct net_device __always_unused *netdev,
5432 netdev_features_t features)
5433{
5434 size_t len;
5435
5436 /* No point in doing any of this if neither checksum nor GSO are
5437 * being requested for this frame. We can rule out both by just
5438 * checking for CHECKSUM_PARTIAL
5439 */
5440 if (skb->ip_summed != CHECKSUM_PARTIAL)
5441 return features;
5442
5443 /* We cannot support GSO if the MSS is going to be less than
5444 * 64 bytes. If it is then we need to drop support for GSO.
5445 */
5446 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5447 features &= ~NETIF_F_GSO_MASK;
5448
5449 len = skb_network_header(skb) - skb->data;
5450 if (len & ~(ICE_TXD_MACLEN_MAX))
5451 goto out_rm_features;
5452
5453 len = skb_transport_header(skb) - skb_network_header(skb);
5454 if (len & ~(ICE_TXD_IPLEN_MAX))
5455 goto out_rm_features;
5456
5457 if (skb->encapsulation) {
5458 len = skb_inner_network_header(skb) - skb_transport_header(skb);
5459 if (len & ~(ICE_TXD_L4LEN_MAX))
5460 goto out_rm_features;
5461
5462 len = skb_inner_transport_header(skb) -
5463 skb_inner_network_header(skb);
5464 if (len & ~(ICE_TXD_IPLEN_MAX))
5465 goto out_rm_features;
5466 }
5467
5468 return features;
5469out_rm_features:
5470 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5471}
5472
5473static const struct net_device_ops ice_netdev_ops = {
5474 .ndo_open = ice_open,
5475 .ndo_stop = ice_stop,
5476 .ndo_start_xmit = ice_start_xmit,
5477 .ndo_features_check = ice_features_check,
5478 .ndo_set_rx_mode = ice_set_rx_mode,
5479 .ndo_set_mac_address = ice_set_mac_address,
5480 .ndo_validate_addr = eth_validate_addr,
5481 .ndo_change_mtu = ice_change_mtu,
5482 .ndo_get_stats64 = ice_get_stats64,
5483#ifdef CONFIG_NET_POLL_CONTROLLER
5484 .ndo_poll_controller = ice_netpoll,
5485#endif /* CONFIG_NET_POLL_CONTROLLER */
5486 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5487 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5488 .ndo_set_features = ice_set_features,
5489 .ndo_fdb_add = ice_fdb_add,
5490 .ndo_fdb_del = ice_fdb_del,
5491};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20#define CREATE_TRACE_POINTS
21#include "ice_trace.h"
22
23#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
24static const char ice_driver_string[] = DRV_SUMMARY;
25static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
26
27/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
28#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
29#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
30
31MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
32MODULE_DESCRIPTION(DRV_SUMMARY);
33MODULE_LICENSE("GPL v2");
34MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
35
36static int debug = -1;
37module_param(debug, int, 0644);
38#ifndef CONFIG_DYNAMIC_DEBUG
39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
40#else
41MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
42#endif /* !CONFIG_DYNAMIC_DEBUG */
43
44static DEFINE_IDA(ice_aux_ida);
45
46static struct workqueue_struct *ice_wq;
47static const struct net_device_ops ice_netdev_safe_mode_ops;
48static const struct net_device_ops ice_netdev_ops;
49static int ice_vsi_open(struct ice_vsi *vsi);
50
51static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
52
53static void ice_vsi_release_all(struct ice_pf *pf);
54
55bool netif_is_ice(struct net_device *dev)
56{
57 return dev && (dev->netdev_ops == &ice_netdev_ops);
58}
59
60/**
61 * ice_get_tx_pending - returns number of Tx descriptors not processed
62 * @ring: the ring of descriptors
63 */
64static u16 ice_get_tx_pending(struct ice_ring *ring)
65{
66 u16 head, tail;
67
68 head = ring->next_to_clean;
69 tail = ring->next_to_use;
70
71 if (head != tail)
72 return (head < tail) ?
73 tail - head : (tail + ring->count - head);
74 return 0;
75}
76
77/**
78 * ice_check_for_hang_subtask - check for and recover hung queues
79 * @pf: pointer to PF struct
80 */
81static void ice_check_for_hang_subtask(struct ice_pf *pf)
82{
83 struct ice_vsi *vsi = NULL;
84 struct ice_hw *hw;
85 unsigned int i;
86 int packets;
87 u32 v;
88
89 ice_for_each_vsi(pf, v)
90 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
91 vsi = pf->vsi[v];
92 break;
93 }
94
95 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
96 return;
97
98 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
99 return;
100
101 hw = &vsi->back->hw;
102
103 for (i = 0; i < vsi->num_txq; i++) {
104 struct ice_ring *tx_ring = vsi->tx_rings[i];
105
106 if (tx_ring && tx_ring->desc) {
107 /* If packet counter has not changed the queue is
108 * likely stalled, so force an interrupt for this
109 * queue.
110 *
111 * prev_pkt would be negative if there was no
112 * pending work.
113 */
114 packets = tx_ring->stats.pkts & INT_MAX;
115 if (tx_ring->tx_stats.prev_pkt == packets) {
116 /* Trigger sw interrupt to revive the queue */
117 ice_trigger_sw_intr(hw, tx_ring->q_vector);
118 continue;
119 }
120
121 /* Memory barrier between read of packet count and call
122 * to ice_get_tx_pending()
123 */
124 smp_rmb();
125 tx_ring->tx_stats.prev_pkt =
126 ice_get_tx_pending(tx_ring) ? packets : -1;
127 }
128 }
129}
130
131/**
132 * ice_init_mac_fltr - Set initial MAC filters
133 * @pf: board private structure
134 *
135 * Set initial set of MAC filters for PF VSI; configure filters for permanent
136 * address and broadcast address. If an error is encountered, netdevice will be
137 * unregistered.
138 */
139static int ice_init_mac_fltr(struct ice_pf *pf)
140{
141 enum ice_status status;
142 struct ice_vsi *vsi;
143 u8 *perm_addr;
144
145 vsi = ice_get_main_vsi(pf);
146 if (!vsi)
147 return -EINVAL;
148
149 perm_addr = vsi->port_info->mac.perm_addr;
150 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
151 if (status)
152 return -EIO;
153
154 return 0;
155}
156
157/**
158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
159 * @netdev: the net device on which the sync is happening
160 * @addr: MAC address to sync
161 *
162 * This is a callback function which is called by the in kernel device sync
163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
165 * MAC filters from the hardware.
166 */
167static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
168{
169 struct ice_netdev_priv *np = netdev_priv(netdev);
170 struct ice_vsi *vsi = np->vsi;
171
172 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
173 ICE_FWD_TO_VSI))
174 return -EINVAL;
175
176 return 0;
177}
178
179/**
180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
181 * @netdev: the net device on which the unsync is happening
182 * @addr: MAC address to unsync
183 *
184 * This is a callback function which is called by the in kernel device unsync
185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
187 * delete the MAC filters from the hardware.
188 */
189static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
190{
191 struct ice_netdev_priv *np = netdev_priv(netdev);
192 struct ice_vsi *vsi = np->vsi;
193
194 /* Under some circumstances, we might receive a request to delete our
195 * own device address from our uc list. Because we store the device
196 * address in the VSI's MAC filter list, we need to ignore such
197 * requests and not delete our device address from this list.
198 */
199 if (ether_addr_equal(addr, netdev->dev_addr))
200 return 0;
201
202 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
203 ICE_FWD_TO_VSI))
204 return -EINVAL;
205
206 return 0;
207}
208
209/**
210 * ice_vsi_fltr_changed - check if filter state changed
211 * @vsi: VSI to be checked
212 *
213 * returns true if filter state has changed, false otherwise.
214 */
215static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
216{
217 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
218 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
219 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
220}
221
222/**
223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
224 * @vsi: the VSI being configured
225 * @promisc_m: mask of promiscuous config bits
226 * @set_promisc: enable or disable promisc flag request
227 *
228 */
229static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
230{
231 struct ice_hw *hw = &vsi->back->hw;
232 enum ice_status status = 0;
233
234 if (vsi->type != ICE_VSI_PF)
235 return 0;
236
237 if (vsi->num_vlan > 1) {
238 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
239 set_promisc);
240 } else {
241 if (set_promisc)
242 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
243 0);
244 else
245 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
246 0);
247 }
248
249 if (status)
250 return -EIO;
251
252 return 0;
253}
254
255/**
256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
257 * @vsi: ptr to the VSI
258 *
259 * Push any outstanding VSI filter changes through the AdminQ.
260 */
261static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
262{
263 struct device *dev = ice_pf_to_dev(vsi->back);
264 struct net_device *netdev = vsi->netdev;
265 bool promisc_forced_on = false;
266 struct ice_pf *pf = vsi->back;
267 struct ice_hw *hw = &pf->hw;
268 enum ice_status status = 0;
269 u32 changed_flags = 0;
270 u8 promisc_m;
271 int err = 0;
272
273 if (!vsi->netdev)
274 return -EINVAL;
275
276 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
277 usleep_range(1000, 2000);
278
279 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
280 vsi->current_netdev_flags = vsi->netdev->flags;
281
282 INIT_LIST_HEAD(&vsi->tmp_sync_list);
283 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
284
285 if (ice_vsi_fltr_changed(vsi)) {
286 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
287 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
288 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
289
290 /* grab the netdev's addr_list_lock */
291 netif_addr_lock_bh(netdev);
292 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
295 ice_add_mac_to_unsync_list);
296 /* our temp lists are populated. release lock */
297 netif_addr_unlock_bh(netdev);
298 }
299
300 /* Remove MAC addresses in the unsync list */
301 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
302 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
303 if (status) {
304 netdev_err(netdev, "Failed to delete MAC filters\n");
305 /* if we failed because of alloc failures, just bail */
306 if (status == ICE_ERR_NO_MEMORY) {
307 err = -ENOMEM;
308 goto out;
309 }
310 }
311
312 /* Add MAC addresses in the sync list */
313 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
314 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
315 /* If filter is added successfully or already exists, do not go into
316 * 'if' condition and report it as error. Instead continue processing
317 * rest of the function.
318 */
319 if (status && status != ICE_ERR_ALREADY_EXISTS) {
320 netdev_err(netdev, "Failed to add MAC filters\n");
321 /* If there is no more space for new umac filters, VSI
322 * should go into promiscuous mode. There should be some
323 * space reserved for promiscuous filters.
324 */
325 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
326 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
327 vsi->state)) {
328 promisc_forced_on = true;
329 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
330 vsi->vsi_num);
331 } else {
332 err = -EIO;
333 goto out;
334 }
335 }
336 /* check for changes in promiscuous modes */
337 if (changed_flags & IFF_ALLMULTI) {
338 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
339 if (vsi->num_vlan > 1)
340 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
341 else
342 promisc_m = ICE_MCAST_PROMISC_BITS;
343
344 err = ice_cfg_promisc(vsi, promisc_m, true);
345 if (err) {
346 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
347 vsi->vsi_num);
348 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
349 goto out_promisc;
350 }
351 } else {
352 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
353 if (vsi->num_vlan > 1)
354 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
355 else
356 promisc_m = ICE_MCAST_PROMISC_BITS;
357
358 err = ice_cfg_promisc(vsi, promisc_m, false);
359 if (err) {
360 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
361 vsi->vsi_num);
362 vsi->current_netdev_flags |= IFF_ALLMULTI;
363 goto out_promisc;
364 }
365 }
366 }
367
368 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
369 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
370 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
371 if (vsi->current_netdev_flags & IFF_PROMISC) {
372 /* Apply Rx filter rule to get traffic from wire */
373 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
374 err = ice_set_dflt_vsi(pf->first_sw, vsi);
375 if (err && err != -EEXIST) {
376 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
377 err, vsi->vsi_num);
378 vsi->current_netdev_flags &=
379 ~IFF_PROMISC;
380 goto out_promisc;
381 }
382 ice_cfg_vlan_pruning(vsi, false, false);
383 }
384 } else {
385 /* Clear Rx filter to remove traffic from wire */
386 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
387 err = ice_clear_dflt_vsi(pf->first_sw);
388 if (err) {
389 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
390 err, vsi->vsi_num);
391 vsi->current_netdev_flags |=
392 IFF_PROMISC;
393 goto out_promisc;
394 }
395 if (vsi->num_vlan > 1)
396 ice_cfg_vlan_pruning(vsi, true, false);
397 }
398 }
399 }
400 goto exit;
401
402out_promisc:
403 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
404 goto exit;
405out:
406 /* if something went wrong then set the changed flag so we try again */
407 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
408 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
409exit:
410 clear_bit(ICE_CFG_BUSY, vsi->state);
411 return err;
412}
413
414/**
415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
416 * @pf: board private structure
417 */
418static void ice_sync_fltr_subtask(struct ice_pf *pf)
419{
420 int v;
421
422 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
423 return;
424
425 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
426
427 ice_for_each_vsi(pf, v)
428 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
429 ice_vsi_sync_fltr(pf->vsi[v])) {
430 /* come back and try again later */
431 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
432 break;
433 }
434}
435
436/**
437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
438 * @pf: the PF
439 * @locked: is the rtnl_lock already held
440 */
441static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
442{
443 int node;
444 int v;
445
446 ice_for_each_vsi(pf, v)
447 if (pf->vsi[v])
448 ice_dis_vsi(pf->vsi[v], locked);
449
450 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
451 pf->pf_agg_node[node].num_vsis = 0;
452
453 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
454 pf->vf_agg_node[node].num_vsis = 0;
455}
456
457/**
458 * ice_prepare_for_reset - prep for the core to reset
459 * @pf: board private structure
460 *
461 * Inform or close all dependent features in prep for reset.
462 */
463static void
464ice_prepare_for_reset(struct ice_pf *pf)
465{
466 struct ice_hw *hw = &pf->hw;
467 unsigned int i;
468
469 /* already prepared for reset */
470 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
471 return;
472
473 ice_unplug_aux_dev(pf);
474
475 /* Notify VFs of impending reset */
476 if (ice_check_sq_alive(hw, &hw->mailboxq))
477 ice_vc_notify_reset(pf);
478
479 /* Disable VFs until reset is completed */
480 ice_for_each_vf(pf, i)
481 ice_set_vf_state_qs_dis(&pf->vf[i]);
482
483 /* clear SW filtering DB */
484 ice_clear_hw_tbls(hw);
485 /* disable the VSIs and their queues that are not already DOWN */
486 ice_pf_dis_all_vsi(pf, false);
487
488 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
489 ice_ptp_release(pf);
490
491 if (hw->port_info)
492 ice_sched_clear_port(hw->port_info);
493
494 ice_shutdown_all_ctrlq(hw);
495
496 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
497}
498
499/**
500 * ice_do_reset - Initiate one of many types of resets
501 * @pf: board private structure
502 * @reset_type: reset type requested
503 * before this function was called.
504 */
505static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
506{
507 struct device *dev = ice_pf_to_dev(pf);
508 struct ice_hw *hw = &pf->hw;
509
510 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
511
512 ice_prepare_for_reset(pf);
513
514 /* trigger the reset */
515 if (ice_reset(hw, reset_type)) {
516 dev_err(dev, "reset %d failed\n", reset_type);
517 set_bit(ICE_RESET_FAILED, pf->state);
518 clear_bit(ICE_RESET_OICR_RECV, pf->state);
519 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(ICE_PFR_REQ, pf->state);
521 clear_bit(ICE_CORER_REQ, pf->state);
522 clear_bit(ICE_GLOBR_REQ, pf->state);
523 wake_up(&pf->reset_wait_queue);
524 return;
525 }
526
527 /* PFR is a bit of a special case because it doesn't result in an OICR
528 * interrupt. So for PFR, rebuild after the reset and clear the reset-
529 * associated state bits.
530 */
531 if (reset_type == ICE_RESET_PFR) {
532 pf->pfr_count++;
533 ice_rebuild(pf, reset_type);
534 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
535 clear_bit(ICE_PFR_REQ, pf->state);
536 wake_up(&pf->reset_wait_queue);
537 ice_reset_all_vfs(pf, true);
538 }
539}
540
541/**
542 * ice_reset_subtask - Set up for resetting the device and driver
543 * @pf: board private structure
544 */
545static void ice_reset_subtask(struct ice_pf *pf)
546{
547 enum ice_reset_req reset_type = ICE_RESET_INVAL;
548
549 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
550 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
551 * of reset is pending and sets bits in pf->state indicating the reset
552 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
553 * prepare for pending reset if not already (for PF software-initiated
554 * global resets the software should already be prepared for it as
555 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
556 * by firmware or software on other PFs, that bit is not set so prepare
557 * for the reset now), poll for reset done, rebuild and return.
558 */
559 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
560 /* Perform the largest reset requested */
561 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
562 reset_type = ICE_RESET_CORER;
563 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
564 reset_type = ICE_RESET_GLOBR;
565 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
566 reset_type = ICE_RESET_EMPR;
567 /* return if no valid reset type requested */
568 if (reset_type == ICE_RESET_INVAL)
569 return;
570 ice_prepare_for_reset(pf);
571
572 /* make sure we are ready to rebuild */
573 if (ice_check_reset(&pf->hw)) {
574 set_bit(ICE_RESET_FAILED, pf->state);
575 } else {
576 /* done with reset. start rebuild */
577 pf->hw.reset_ongoing = false;
578 ice_rebuild(pf, reset_type);
579 /* clear bit to resume normal operations, but
580 * ICE_NEEDS_RESTART bit is set in case rebuild failed
581 */
582 clear_bit(ICE_RESET_OICR_RECV, pf->state);
583 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
584 clear_bit(ICE_PFR_REQ, pf->state);
585 clear_bit(ICE_CORER_REQ, pf->state);
586 clear_bit(ICE_GLOBR_REQ, pf->state);
587 wake_up(&pf->reset_wait_queue);
588 ice_reset_all_vfs(pf, true);
589 }
590
591 return;
592 }
593
594 /* No pending resets to finish processing. Check for new resets */
595 if (test_bit(ICE_PFR_REQ, pf->state))
596 reset_type = ICE_RESET_PFR;
597 if (test_bit(ICE_CORER_REQ, pf->state))
598 reset_type = ICE_RESET_CORER;
599 if (test_bit(ICE_GLOBR_REQ, pf->state))
600 reset_type = ICE_RESET_GLOBR;
601 /* If no valid reset type requested just return */
602 if (reset_type == ICE_RESET_INVAL)
603 return;
604
605 /* reset if not already down or busy */
606 if (!test_bit(ICE_DOWN, pf->state) &&
607 !test_bit(ICE_CFG_BUSY, pf->state)) {
608 ice_do_reset(pf, reset_type);
609 }
610}
611
612/**
613 * ice_print_topo_conflict - print topology conflict message
614 * @vsi: the VSI whose topology status is being checked
615 */
616static void ice_print_topo_conflict(struct ice_vsi *vsi)
617{
618 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
619 case ICE_AQ_LINK_TOPO_CONFLICT:
620 case ICE_AQ_LINK_MEDIA_CONFLICT:
621 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
622 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
623 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
624 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
625 break;
626 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
627 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
628 break;
629 default:
630 break;
631 }
632}
633
634/**
635 * ice_print_link_msg - print link up or down message
636 * @vsi: the VSI whose link status is being queried
637 * @isup: boolean for if the link is now up or down
638 */
639void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
640{
641 struct ice_aqc_get_phy_caps_data *caps;
642 const char *an_advertised;
643 enum ice_status status;
644 const char *fec_req;
645 const char *speed;
646 const char *fec;
647 const char *fc;
648 const char *an;
649
650 if (!vsi)
651 return;
652
653 if (vsi->current_isup == isup)
654 return;
655
656 vsi->current_isup = isup;
657
658 if (!isup) {
659 netdev_info(vsi->netdev, "NIC Link is Down\n");
660 return;
661 }
662
663 switch (vsi->port_info->phy.link_info.link_speed) {
664 case ICE_AQ_LINK_SPEED_100GB:
665 speed = "100 G";
666 break;
667 case ICE_AQ_LINK_SPEED_50GB:
668 speed = "50 G";
669 break;
670 case ICE_AQ_LINK_SPEED_40GB:
671 speed = "40 G";
672 break;
673 case ICE_AQ_LINK_SPEED_25GB:
674 speed = "25 G";
675 break;
676 case ICE_AQ_LINK_SPEED_20GB:
677 speed = "20 G";
678 break;
679 case ICE_AQ_LINK_SPEED_10GB:
680 speed = "10 G";
681 break;
682 case ICE_AQ_LINK_SPEED_5GB:
683 speed = "5 G";
684 break;
685 case ICE_AQ_LINK_SPEED_2500MB:
686 speed = "2.5 G";
687 break;
688 case ICE_AQ_LINK_SPEED_1000MB:
689 speed = "1 G";
690 break;
691 case ICE_AQ_LINK_SPEED_100MB:
692 speed = "100 M";
693 break;
694 default:
695 speed = "Unknown ";
696 break;
697 }
698
699 switch (vsi->port_info->fc.current_mode) {
700 case ICE_FC_FULL:
701 fc = "Rx/Tx";
702 break;
703 case ICE_FC_TX_PAUSE:
704 fc = "Tx";
705 break;
706 case ICE_FC_RX_PAUSE:
707 fc = "Rx";
708 break;
709 case ICE_FC_NONE:
710 fc = "None";
711 break;
712 default:
713 fc = "Unknown";
714 break;
715 }
716
717 /* Get FEC mode based on negotiated link info */
718 switch (vsi->port_info->phy.link_info.fec_info) {
719 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
720 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
721 fec = "RS-FEC";
722 break;
723 case ICE_AQ_LINK_25G_KR_FEC_EN:
724 fec = "FC-FEC/BASE-R";
725 break;
726 default:
727 fec = "NONE";
728 break;
729 }
730
731 /* check if autoneg completed, might be false due to not supported */
732 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
733 an = "True";
734 else
735 an = "False";
736
737 /* Get FEC mode requested based on PHY caps last SW configuration */
738 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
739 if (!caps) {
740 fec_req = "Unknown";
741 an_advertised = "Unknown";
742 goto done;
743 }
744
745 status = ice_aq_get_phy_caps(vsi->port_info, false,
746 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
747 if (status)
748 netdev_info(vsi->netdev, "Get phy capability failed.\n");
749
750 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
751
752 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
753 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
754 fec_req = "RS-FEC";
755 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
756 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
757 fec_req = "FC-FEC/BASE-R";
758 else
759 fec_req = "NONE";
760
761 kfree(caps);
762
763done:
764 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
765 speed, fec_req, fec, an_advertised, an, fc);
766 ice_print_topo_conflict(vsi);
767}
768
769/**
770 * ice_vsi_link_event - update the VSI's netdev
771 * @vsi: the VSI on which the link event occurred
772 * @link_up: whether or not the VSI needs to be set up or down
773 */
774static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
775{
776 if (!vsi)
777 return;
778
779 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
780 return;
781
782 if (vsi->type == ICE_VSI_PF) {
783 if (link_up == netif_carrier_ok(vsi->netdev))
784 return;
785
786 if (link_up) {
787 netif_carrier_on(vsi->netdev);
788 netif_tx_wake_all_queues(vsi->netdev);
789 } else {
790 netif_carrier_off(vsi->netdev);
791 netif_tx_stop_all_queues(vsi->netdev);
792 }
793 }
794}
795
796/**
797 * ice_set_dflt_mib - send a default config MIB to the FW
798 * @pf: private PF struct
799 *
800 * This function sends a default configuration MIB to the FW.
801 *
802 * If this function errors out at any point, the driver is still able to
803 * function. The main impact is that LFC may not operate as expected.
804 * Therefore an error state in this function should be treated with a DBG
805 * message and continue on with driver rebuild/reenable.
806 */
807static void ice_set_dflt_mib(struct ice_pf *pf)
808{
809 struct device *dev = ice_pf_to_dev(pf);
810 u8 mib_type, *buf, *lldpmib = NULL;
811 u16 len, typelen, offset = 0;
812 struct ice_lldp_org_tlv *tlv;
813 struct ice_hw *hw = &pf->hw;
814 u32 ouisubtype;
815
816 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
817 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
818 if (!lldpmib) {
819 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
820 __func__);
821 return;
822 }
823
824 /* Add ETS CFG TLV */
825 tlv = (struct ice_lldp_org_tlv *)lldpmib;
826 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
827 ICE_IEEE_ETS_TLV_LEN);
828 tlv->typelen = htons(typelen);
829 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
830 ICE_IEEE_SUBTYPE_ETS_CFG);
831 tlv->ouisubtype = htonl(ouisubtype);
832
833 buf = tlv->tlvinfo;
834 buf[0] = 0;
835
836 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
837 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
838 * Octets 13 - 20 are TSA values - leave as zeros
839 */
840 buf[5] = 0x64;
841 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
842 offset += len + 2;
843 tlv = (struct ice_lldp_org_tlv *)
844 ((char *)tlv + sizeof(tlv->typelen) + len);
845
846 /* Add ETS REC TLV */
847 buf = tlv->tlvinfo;
848 tlv->typelen = htons(typelen);
849
850 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
851 ICE_IEEE_SUBTYPE_ETS_REC);
852 tlv->ouisubtype = htonl(ouisubtype);
853
854 /* First octet of buf is reserved
855 * Octets 1 - 4 map UP to TC - all UPs map to zero
856 * Octets 5 - 12 are BW values - set TC 0 to 100%.
857 * Octets 13 - 20 are TSA value - leave as zeros
858 */
859 buf[5] = 0x64;
860 offset += len + 2;
861 tlv = (struct ice_lldp_org_tlv *)
862 ((char *)tlv + sizeof(tlv->typelen) + len);
863
864 /* Add PFC CFG TLV */
865 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
866 ICE_IEEE_PFC_TLV_LEN);
867 tlv->typelen = htons(typelen);
868
869 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
870 ICE_IEEE_SUBTYPE_PFC_CFG);
871 tlv->ouisubtype = htonl(ouisubtype);
872
873 /* Octet 1 left as all zeros - PFC disabled */
874 buf[0] = 0x08;
875 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
876 offset += len + 2;
877
878 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
879 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
880
881 kfree(lldpmib);
882}
883
884/**
885 * ice_check_module_power
886 * @pf: pointer to PF struct
887 * @link_cfg_err: bitmap from the link info structure
888 *
889 * check module power level returned by a previous call to aq_get_link_info
890 * and print error messages if module power level is not supported
891 */
892static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
893{
894 /* if module power level is supported, clear the flag */
895 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
896 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
897 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
898 return;
899 }
900
901 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
902 * above block didn't clear this bit, there's nothing to do
903 */
904 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
905 return;
906
907 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
908 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
909 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
910 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
911 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
912 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
913 }
914}
915
916/**
917 * ice_link_event - process the link event
918 * @pf: PF that the link event is associated with
919 * @pi: port_info for the port that the link event is associated with
920 * @link_up: true if the physical link is up and false if it is down
921 * @link_speed: current link speed received from the link event
922 *
923 * Returns 0 on success and negative on failure
924 */
925static int
926ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
927 u16 link_speed)
928{
929 struct device *dev = ice_pf_to_dev(pf);
930 struct ice_phy_info *phy_info;
931 enum ice_status status;
932 struct ice_vsi *vsi;
933 u16 old_link_speed;
934 bool old_link;
935
936 phy_info = &pi->phy;
937 phy_info->link_info_old = phy_info->link_info;
938
939 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
940 old_link_speed = phy_info->link_info_old.link_speed;
941
942 /* update the link info structures and re-enable link events,
943 * don't bail on failure due to other book keeping needed
944 */
945 status = ice_update_link_info(pi);
946 if (status)
947 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
948 pi->lport, ice_stat_str(status),
949 ice_aq_str(pi->hw->adminq.sq_last_status));
950
951 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
952
953 /* Check if the link state is up after updating link info, and treat
954 * this event as an UP event since the link is actually UP now.
955 */
956 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
957 link_up = true;
958
959 vsi = ice_get_main_vsi(pf);
960 if (!vsi || !vsi->port_info)
961 return -EINVAL;
962
963 /* turn off PHY if media was removed */
964 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
965 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
966 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
967 ice_set_link(vsi, false);
968 }
969
970 /* if the old link up/down and speed is the same as the new */
971 if (link_up == old_link && link_speed == old_link_speed)
972 return 0;
973
974 if (ice_is_dcb_active(pf)) {
975 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
976 ice_dcb_rebuild(pf);
977 } else {
978 if (link_up)
979 ice_set_dflt_mib(pf);
980 }
981 ice_vsi_link_event(vsi, link_up);
982 ice_print_link_msg(vsi, link_up);
983
984 ice_vc_notify_link_state(pf);
985
986 return 0;
987}
988
989/**
990 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
991 * @pf: board private structure
992 */
993static void ice_watchdog_subtask(struct ice_pf *pf)
994{
995 int i;
996
997 /* if interface is down do nothing */
998 if (test_bit(ICE_DOWN, pf->state) ||
999 test_bit(ICE_CFG_BUSY, pf->state))
1000 return;
1001
1002 /* make sure we don't do these things too often */
1003 if (time_before(jiffies,
1004 pf->serv_tmr_prev + pf->serv_tmr_period))
1005 return;
1006
1007 pf->serv_tmr_prev = jiffies;
1008
1009 /* Update the stats for active netdevs so the network stack
1010 * can look at updated numbers whenever it cares to
1011 */
1012 ice_update_pf_stats(pf);
1013 ice_for_each_vsi(pf, i)
1014 if (pf->vsi[i] && pf->vsi[i]->netdev)
1015 ice_update_vsi_stats(pf->vsi[i]);
1016}
1017
1018/**
1019 * ice_init_link_events - enable/initialize link events
1020 * @pi: pointer to the port_info instance
1021 *
1022 * Returns -EIO on failure, 0 on success
1023 */
1024static int ice_init_link_events(struct ice_port_info *pi)
1025{
1026 u16 mask;
1027
1028 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1029 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1030
1031 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1032 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1033 pi->lport);
1034 return -EIO;
1035 }
1036
1037 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1038 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1039 pi->lport);
1040 return -EIO;
1041 }
1042
1043 return 0;
1044}
1045
1046/**
1047 * ice_handle_link_event - handle link event via ARQ
1048 * @pf: PF that the link event is associated with
1049 * @event: event structure containing link status info
1050 */
1051static int
1052ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1053{
1054 struct ice_aqc_get_link_status_data *link_data;
1055 struct ice_port_info *port_info;
1056 int status;
1057
1058 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1059 port_info = pf->hw.port_info;
1060 if (!port_info)
1061 return -EINVAL;
1062
1063 status = ice_link_event(pf, port_info,
1064 !!(link_data->link_info & ICE_AQ_LINK_UP),
1065 le16_to_cpu(link_data->link_speed));
1066 if (status)
1067 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1068 status);
1069
1070 return status;
1071}
1072
1073enum ice_aq_task_state {
1074 ICE_AQ_TASK_WAITING = 0,
1075 ICE_AQ_TASK_COMPLETE,
1076 ICE_AQ_TASK_CANCELED,
1077};
1078
1079struct ice_aq_task {
1080 struct hlist_node entry;
1081
1082 u16 opcode;
1083 struct ice_rq_event_info *event;
1084 enum ice_aq_task_state state;
1085};
1086
1087/**
1088 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1089 * @pf: pointer to the PF private structure
1090 * @opcode: the opcode to wait for
1091 * @timeout: how long to wait, in jiffies
1092 * @event: storage for the event info
1093 *
1094 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1095 * current thread will be put to sleep until the specified event occurs or
1096 * until the given timeout is reached.
1097 *
1098 * To obtain only the descriptor contents, pass an event without an allocated
1099 * msg_buf. If the complete data buffer is desired, allocate the
1100 * event->msg_buf with enough space ahead of time.
1101 *
1102 * Returns: zero on success, or a negative error code on failure.
1103 */
1104int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1105 struct ice_rq_event_info *event)
1106{
1107 struct device *dev = ice_pf_to_dev(pf);
1108 struct ice_aq_task *task;
1109 unsigned long start;
1110 long ret;
1111 int err;
1112
1113 task = kzalloc(sizeof(*task), GFP_KERNEL);
1114 if (!task)
1115 return -ENOMEM;
1116
1117 INIT_HLIST_NODE(&task->entry);
1118 task->opcode = opcode;
1119 task->event = event;
1120 task->state = ICE_AQ_TASK_WAITING;
1121
1122 spin_lock_bh(&pf->aq_wait_lock);
1123 hlist_add_head(&task->entry, &pf->aq_wait_list);
1124 spin_unlock_bh(&pf->aq_wait_lock);
1125
1126 start = jiffies;
1127
1128 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1129 timeout);
1130 switch (task->state) {
1131 case ICE_AQ_TASK_WAITING:
1132 err = ret < 0 ? ret : -ETIMEDOUT;
1133 break;
1134 case ICE_AQ_TASK_CANCELED:
1135 err = ret < 0 ? ret : -ECANCELED;
1136 break;
1137 case ICE_AQ_TASK_COMPLETE:
1138 err = ret < 0 ? ret : 0;
1139 break;
1140 default:
1141 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1142 err = -EINVAL;
1143 break;
1144 }
1145
1146 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1147 jiffies_to_msecs(jiffies - start),
1148 jiffies_to_msecs(timeout),
1149 opcode);
1150
1151 spin_lock_bh(&pf->aq_wait_lock);
1152 hlist_del(&task->entry);
1153 spin_unlock_bh(&pf->aq_wait_lock);
1154 kfree(task);
1155
1156 return err;
1157}
1158
1159/**
1160 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1161 * @pf: pointer to the PF private structure
1162 * @opcode: the opcode of the event
1163 * @event: the event to check
1164 *
1165 * Loops over the current list of pending threads waiting for an AdminQ event.
1166 * For each matching task, copy the contents of the event into the task
1167 * structure and wake up the thread.
1168 *
1169 * If multiple threads wait for the same opcode, they will all be woken up.
1170 *
1171 * Note that event->msg_buf will only be duplicated if the event has a buffer
1172 * with enough space already allocated. Otherwise, only the descriptor and
1173 * message length will be copied.
1174 *
1175 * Returns: true if an event was found, false otherwise
1176 */
1177static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1178 struct ice_rq_event_info *event)
1179{
1180 struct ice_aq_task *task;
1181 bool found = false;
1182
1183 spin_lock_bh(&pf->aq_wait_lock);
1184 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1185 if (task->state || task->opcode != opcode)
1186 continue;
1187
1188 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1189 task->event->msg_len = event->msg_len;
1190
1191 /* Only copy the data buffer if a destination was set */
1192 if (task->event->msg_buf &&
1193 task->event->buf_len > event->buf_len) {
1194 memcpy(task->event->msg_buf, event->msg_buf,
1195 event->buf_len);
1196 task->event->buf_len = event->buf_len;
1197 }
1198
1199 task->state = ICE_AQ_TASK_COMPLETE;
1200 found = true;
1201 }
1202 spin_unlock_bh(&pf->aq_wait_lock);
1203
1204 if (found)
1205 wake_up(&pf->aq_wait_queue);
1206}
1207
1208/**
1209 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1210 * @pf: the PF private structure
1211 *
1212 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1213 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1214 */
1215static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1216{
1217 struct ice_aq_task *task;
1218
1219 spin_lock_bh(&pf->aq_wait_lock);
1220 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1221 task->state = ICE_AQ_TASK_CANCELED;
1222 spin_unlock_bh(&pf->aq_wait_lock);
1223
1224 wake_up(&pf->aq_wait_queue);
1225}
1226
1227/**
1228 * __ice_clean_ctrlq - helper function to clean controlq rings
1229 * @pf: ptr to struct ice_pf
1230 * @q_type: specific Control queue type
1231 */
1232static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1233{
1234 struct device *dev = ice_pf_to_dev(pf);
1235 struct ice_rq_event_info event;
1236 struct ice_hw *hw = &pf->hw;
1237 struct ice_ctl_q_info *cq;
1238 u16 pending, i = 0;
1239 const char *qtype;
1240 u32 oldval, val;
1241
1242 /* Do not clean control queue if/when PF reset fails */
1243 if (test_bit(ICE_RESET_FAILED, pf->state))
1244 return 0;
1245
1246 switch (q_type) {
1247 case ICE_CTL_Q_ADMIN:
1248 cq = &hw->adminq;
1249 qtype = "Admin";
1250 break;
1251 case ICE_CTL_Q_SB:
1252 cq = &hw->sbq;
1253 qtype = "Sideband";
1254 break;
1255 case ICE_CTL_Q_MAILBOX:
1256 cq = &hw->mailboxq;
1257 qtype = "Mailbox";
1258 /* we are going to try to detect a malicious VF, so set the
1259 * state to begin detection
1260 */
1261 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1262 break;
1263 default:
1264 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1265 return 0;
1266 }
1267
1268 /* check for error indications - PF_xx_AxQLEN register layout for
1269 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1270 */
1271 val = rd32(hw, cq->rq.len);
1272 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1273 PF_FW_ARQLEN_ARQCRIT_M)) {
1274 oldval = val;
1275 if (val & PF_FW_ARQLEN_ARQVFE_M)
1276 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1277 qtype);
1278 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1279 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1280 qtype);
1281 }
1282 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1283 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1284 qtype);
1285 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1286 PF_FW_ARQLEN_ARQCRIT_M);
1287 if (oldval != val)
1288 wr32(hw, cq->rq.len, val);
1289 }
1290
1291 val = rd32(hw, cq->sq.len);
1292 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1293 PF_FW_ATQLEN_ATQCRIT_M)) {
1294 oldval = val;
1295 if (val & PF_FW_ATQLEN_ATQVFE_M)
1296 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1297 qtype);
1298 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1299 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1300 qtype);
1301 }
1302 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1303 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1304 qtype);
1305 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1306 PF_FW_ATQLEN_ATQCRIT_M);
1307 if (oldval != val)
1308 wr32(hw, cq->sq.len, val);
1309 }
1310
1311 event.buf_len = cq->rq_buf_size;
1312 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1313 if (!event.msg_buf)
1314 return 0;
1315
1316 do {
1317 enum ice_status ret;
1318 u16 opcode;
1319
1320 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1321 if (ret == ICE_ERR_AQ_NO_WORK)
1322 break;
1323 if (ret) {
1324 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1325 ice_stat_str(ret));
1326 break;
1327 }
1328
1329 opcode = le16_to_cpu(event.desc.opcode);
1330
1331 /* Notify any thread that might be waiting for this event */
1332 ice_aq_check_events(pf, opcode, &event);
1333
1334 switch (opcode) {
1335 case ice_aqc_opc_get_link_status:
1336 if (ice_handle_link_event(pf, &event))
1337 dev_err(dev, "Could not handle link event\n");
1338 break;
1339 case ice_aqc_opc_event_lan_overflow:
1340 ice_vf_lan_overflow_event(pf, &event);
1341 break;
1342 case ice_mbx_opc_send_msg_to_pf:
1343 if (!ice_is_malicious_vf(pf, &event, i, pending))
1344 ice_vc_process_vf_msg(pf, &event);
1345 break;
1346 case ice_aqc_opc_fw_logging:
1347 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1348 break;
1349 case ice_aqc_opc_lldp_set_mib_change:
1350 ice_dcb_process_lldp_set_mib_change(pf, &event);
1351 break;
1352 default:
1353 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1354 qtype, opcode);
1355 break;
1356 }
1357 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1358
1359 kfree(event.msg_buf);
1360
1361 return pending && (i == ICE_DFLT_IRQ_WORK);
1362}
1363
1364/**
1365 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1366 * @hw: pointer to hardware info
1367 * @cq: control queue information
1368 *
1369 * returns true if there are pending messages in a queue, false if there aren't
1370 */
1371static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1372{
1373 u16 ntu;
1374
1375 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1376 return cq->rq.next_to_clean != ntu;
1377}
1378
1379/**
1380 * ice_clean_adminq_subtask - clean the AdminQ rings
1381 * @pf: board private structure
1382 */
1383static void ice_clean_adminq_subtask(struct ice_pf *pf)
1384{
1385 struct ice_hw *hw = &pf->hw;
1386
1387 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1388 return;
1389
1390 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1391 return;
1392
1393 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1394
1395 /* There might be a situation where new messages arrive to a control
1396 * queue between processing the last message and clearing the
1397 * EVENT_PENDING bit. So before exiting, check queue head again (using
1398 * ice_ctrlq_pending) and process new messages if any.
1399 */
1400 if (ice_ctrlq_pending(hw, &hw->adminq))
1401 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1402
1403 ice_flush(hw);
1404}
1405
1406/**
1407 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1408 * @pf: board private structure
1409 */
1410static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1411{
1412 struct ice_hw *hw = &pf->hw;
1413
1414 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1415 return;
1416
1417 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1418 return;
1419
1420 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1421
1422 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1423 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1424
1425 ice_flush(hw);
1426}
1427
1428/**
1429 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1430 * @pf: board private structure
1431 */
1432static void ice_clean_sbq_subtask(struct ice_pf *pf)
1433{
1434 struct ice_hw *hw = &pf->hw;
1435
1436 /* Nothing to do here if sideband queue is not supported */
1437 if (!ice_is_sbq_supported(hw)) {
1438 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1439 return;
1440 }
1441
1442 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1443 return;
1444
1445 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1446 return;
1447
1448 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1449
1450 if (ice_ctrlq_pending(hw, &hw->sbq))
1451 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1452
1453 ice_flush(hw);
1454}
1455
1456/**
1457 * ice_service_task_schedule - schedule the service task to wake up
1458 * @pf: board private structure
1459 *
1460 * If not already scheduled, this puts the task into the work queue.
1461 */
1462void ice_service_task_schedule(struct ice_pf *pf)
1463{
1464 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1465 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1466 !test_bit(ICE_NEEDS_RESTART, pf->state))
1467 queue_work(ice_wq, &pf->serv_task);
1468}
1469
1470/**
1471 * ice_service_task_complete - finish up the service task
1472 * @pf: board private structure
1473 */
1474static void ice_service_task_complete(struct ice_pf *pf)
1475{
1476 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1477
1478 /* force memory (pf->state) to sync before next service task */
1479 smp_mb__before_atomic();
1480 clear_bit(ICE_SERVICE_SCHED, pf->state);
1481}
1482
1483/**
1484 * ice_service_task_stop - stop service task and cancel works
1485 * @pf: board private structure
1486 *
1487 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1488 * 1 otherwise.
1489 */
1490static int ice_service_task_stop(struct ice_pf *pf)
1491{
1492 int ret;
1493
1494 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1495
1496 if (pf->serv_tmr.function)
1497 del_timer_sync(&pf->serv_tmr);
1498 if (pf->serv_task.func)
1499 cancel_work_sync(&pf->serv_task);
1500
1501 clear_bit(ICE_SERVICE_SCHED, pf->state);
1502 return ret;
1503}
1504
1505/**
1506 * ice_service_task_restart - restart service task and schedule works
1507 * @pf: board private structure
1508 *
1509 * This function is needed for suspend and resume works (e.g WoL scenario)
1510 */
1511static void ice_service_task_restart(struct ice_pf *pf)
1512{
1513 clear_bit(ICE_SERVICE_DIS, pf->state);
1514 ice_service_task_schedule(pf);
1515}
1516
1517/**
1518 * ice_service_timer - timer callback to schedule service task
1519 * @t: pointer to timer_list
1520 */
1521static void ice_service_timer(struct timer_list *t)
1522{
1523 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1524
1525 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1526 ice_service_task_schedule(pf);
1527}
1528
1529/**
1530 * ice_handle_mdd_event - handle malicious driver detect event
1531 * @pf: pointer to the PF structure
1532 *
1533 * Called from service task. OICR interrupt handler indicates MDD event.
1534 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1535 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1536 * disable the queue, the PF can be configured to reset the VF using ethtool
1537 * private flag mdd-auto-reset-vf.
1538 */
1539static void ice_handle_mdd_event(struct ice_pf *pf)
1540{
1541 struct device *dev = ice_pf_to_dev(pf);
1542 struct ice_hw *hw = &pf->hw;
1543 unsigned int i;
1544 u32 reg;
1545
1546 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1547 /* Since the VF MDD event logging is rate limited, check if
1548 * there are pending MDD events.
1549 */
1550 ice_print_vfs_mdd_events(pf);
1551 return;
1552 }
1553
1554 /* find what triggered an MDD event */
1555 reg = rd32(hw, GL_MDET_TX_PQM);
1556 if (reg & GL_MDET_TX_PQM_VALID_M) {
1557 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1558 GL_MDET_TX_PQM_PF_NUM_S;
1559 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1560 GL_MDET_TX_PQM_VF_NUM_S;
1561 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1562 GL_MDET_TX_PQM_MAL_TYPE_S;
1563 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1564 GL_MDET_TX_PQM_QNUM_S);
1565
1566 if (netif_msg_tx_err(pf))
1567 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1568 event, queue, pf_num, vf_num);
1569 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1570 }
1571
1572 reg = rd32(hw, GL_MDET_TX_TCLAN);
1573 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1574 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1575 GL_MDET_TX_TCLAN_PF_NUM_S;
1576 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1577 GL_MDET_TX_TCLAN_VF_NUM_S;
1578 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1579 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1580 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1581 GL_MDET_TX_TCLAN_QNUM_S);
1582
1583 if (netif_msg_tx_err(pf))
1584 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1585 event, queue, pf_num, vf_num);
1586 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1587 }
1588
1589 reg = rd32(hw, GL_MDET_RX);
1590 if (reg & GL_MDET_RX_VALID_M) {
1591 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1592 GL_MDET_RX_PF_NUM_S;
1593 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1594 GL_MDET_RX_VF_NUM_S;
1595 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1596 GL_MDET_RX_MAL_TYPE_S;
1597 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1598 GL_MDET_RX_QNUM_S);
1599
1600 if (netif_msg_rx_err(pf))
1601 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1602 event, queue, pf_num, vf_num);
1603 wr32(hw, GL_MDET_RX, 0xffffffff);
1604 }
1605
1606 /* check to see if this PF caused an MDD event */
1607 reg = rd32(hw, PF_MDET_TX_PQM);
1608 if (reg & PF_MDET_TX_PQM_VALID_M) {
1609 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1610 if (netif_msg_tx_err(pf))
1611 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1612 }
1613
1614 reg = rd32(hw, PF_MDET_TX_TCLAN);
1615 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1616 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1617 if (netif_msg_tx_err(pf))
1618 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1619 }
1620
1621 reg = rd32(hw, PF_MDET_RX);
1622 if (reg & PF_MDET_RX_VALID_M) {
1623 wr32(hw, PF_MDET_RX, 0xFFFF);
1624 if (netif_msg_rx_err(pf))
1625 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1626 }
1627
1628 /* Check to see if one of the VFs caused an MDD event, and then
1629 * increment counters and set print pending
1630 */
1631 ice_for_each_vf(pf, i) {
1632 struct ice_vf *vf = &pf->vf[i];
1633
1634 reg = rd32(hw, VP_MDET_TX_PQM(i));
1635 if (reg & VP_MDET_TX_PQM_VALID_M) {
1636 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1637 vf->mdd_tx_events.count++;
1638 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1639 if (netif_msg_tx_err(pf))
1640 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1641 i);
1642 }
1643
1644 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1645 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1646 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1647 vf->mdd_tx_events.count++;
1648 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1649 if (netif_msg_tx_err(pf))
1650 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1651 i);
1652 }
1653
1654 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1655 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1656 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1657 vf->mdd_tx_events.count++;
1658 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1659 if (netif_msg_tx_err(pf))
1660 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1661 i);
1662 }
1663
1664 reg = rd32(hw, VP_MDET_RX(i));
1665 if (reg & VP_MDET_RX_VALID_M) {
1666 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1667 vf->mdd_rx_events.count++;
1668 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1669 if (netif_msg_rx_err(pf))
1670 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1671 i);
1672
1673 /* Since the queue is disabled on VF Rx MDD events, the
1674 * PF can be configured to reset the VF through ethtool
1675 * private flag mdd-auto-reset-vf.
1676 */
1677 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1678 /* VF MDD event counters will be cleared by
1679 * reset, so print the event prior to reset.
1680 */
1681 ice_print_vf_rx_mdd_event(vf);
1682 ice_reset_vf(&pf->vf[i], false);
1683 }
1684 }
1685 }
1686
1687 ice_print_vfs_mdd_events(pf);
1688}
1689
1690/**
1691 * ice_force_phys_link_state - Force the physical link state
1692 * @vsi: VSI to force the physical link state to up/down
1693 * @link_up: true/false indicates to set the physical link to up/down
1694 *
1695 * Force the physical link state by getting the current PHY capabilities from
1696 * hardware and setting the PHY config based on the determined capabilities. If
1697 * link changes a link event will be triggered because both the Enable Automatic
1698 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1699 *
1700 * Returns 0 on success, negative on failure
1701 */
1702static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1703{
1704 struct ice_aqc_get_phy_caps_data *pcaps;
1705 struct ice_aqc_set_phy_cfg_data *cfg;
1706 struct ice_port_info *pi;
1707 struct device *dev;
1708 int retcode;
1709
1710 if (!vsi || !vsi->port_info || !vsi->back)
1711 return -EINVAL;
1712 if (vsi->type != ICE_VSI_PF)
1713 return 0;
1714
1715 dev = ice_pf_to_dev(vsi->back);
1716
1717 pi = vsi->port_info;
1718
1719 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1720 if (!pcaps)
1721 return -ENOMEM;
1722
1723 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1724 NULL);
1725 if (retcode) {
1726 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1727 vsi->vsi_num, retcode);
1728 retcode = -EIO;
1729 goto out;
1730 }
1731
1732 /* No change in link */
1733 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1734 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1735 goto out;
1736
1737 /* Use the current user PHY configuration. The current user PHY
1738 * configuration is initialized during probe from PHY capabilities
1739 * software mode, and updated on set PHY configuration.
1740 */
1741 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1742 if (!cfg) {
1743 retcode = -ENOMEM;
1744 goto out;
1745 }
1746
1747 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1748 if (link_up)
1749 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1750 else
1751 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1752
1753 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1754 if (retcode) {
1755 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1756 vsi->vsi_num, retcode);
1757 retcode = -EIO;
1758 }
1759
1760 kfree(cfg);
1761out:
1762 kfree(pcaps);
1763 return retcode;
1764}
1765
1766/**
1767 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1768 * @pi: port info structure
1769 *
1770 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1771 */
1772static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1773{
1774 struct ice_aqc_get_phy_caps_data *pcaps;
1775 struct ice_pf *pf = pi->hw->back;
1776 enum ice_status status;
1777 int err = 0;
1778
1779 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1780 if (!pcaps)
1781 return -ENOMEM;
1782
1783 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1784 NULL);
1785
1786 if (status) {
1787 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1788 err = -EIO;
1789 goto out;
1790 }
1791
1792 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1793 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1794
1795out:
1796 kfree(pcaps);
1797 return err;
1798}
1799
1800/**
1801 * ice_init_link_dflt_override - Initialize link default override
1802 * @pi: port info structure
1803 *
1804 * Initialize link default override and PHY total port shutdown during probe
1805 */
1806static void ice_init_link_dflt_override(struct ice_port_info *pi)
1807{
1808 struct ice_link_default_override_tlv *ldo;
1809 struct ice_pf *pf = pi->hw->back;
1810
1811 ldo = &pf->link_dflt_override;
1812 if (ice_get_link_default_override(ldo, pi))
1813 return;
1814
1815 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1816 return;
1817
1818 /* Enable Total Port Shutdown (override/replace link-down-on-close
1819 * ethtool private flag) for ports with Port Disable bit set.
1820 */
1821 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1822 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1823}
1824
1825/**
1826 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1827 * @pi: port info structure
1828 *
1829 * If default override is enabled, initialize the user PHY cfg speed and FEC
1830 * settings using the default override mask from the NVM.
1831 *
1832 * The PHY should only be configured with the default override settings the
1833 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1834 * is used to indicate that the user PHY cfg default override is initialized
1835 * and the PHY has not been configured with the default override settings. The
1836 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1837 * configured.
1838 *
1839 * This function should be called only if the FW doesn't support default
1840 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1841 */
1842static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1843{
1844 struct ice_link_default_override_tlv *ldo;
1845 struct ice_aqc_set_phy_cfg_data *cfg;
1846 struct ice_phy_info *phy = &pi->phy;
1847 struct ice_pf *pf = pi->hw->back;
1848
1849 ldo = &pf->link_dflt_override;
1850
1851 /* If link default override is enabled, use to mask NVM PHY capabilities
1852 * for speed and FEC default configuration.
1853 */
1854 cfg = &phy->curr_user_phy_cfg;
1855
1856 if (ldo->phy_type_low || ldo->phy_type_high) {
1857 cfg->phy_type_low = pf->nvm_phy_type_lo &
1858 cpu_to_le64(ldo->phy_type_low);
1859 cfg->phy_type_high = pf->nvm_phy_type_hi &
1860 cpu_to_le64(ldo->phy_type_high);
1861 }
1862 cfg->link_fec_opt = ldo->fec_options;
1863 phy->curr_user_fec_req = ICE_FEC_AUTO;
1864
1865 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1866}
1867
1868/**
1869 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1870 * @pi: port info structure
1871 *
1872 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1873 * mode to default. The PHY defaults are from get PHY capabilities topology
1874 * with media so call when media is first available. An error is returned if
1875 * called when media is not available. The PHY initialization completed state is
1876 * set here.
1877 *
1878 * These configurations are used when setting PHY
1879 * configuration. The user PHY configuration is updated on set PHY
1880 * configuration. Returns 0 on success, negative on failure
1881 */
1882static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1883{
1884 struct ice_aqc_get_phy_caps_data *pcaps;
1885 struct ice_phy_info *phy = &pi->phy;
1886 struct ice_pf *pf = pi->hw->back;
1887 enum ice_status status;
1888 int err = 0;
1889
1890 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1891 return -EIO;
1892
1893 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1894 if (!pcaps)
1895 return -ENOMEM;
1896
1897 if (ice_fw_supports_report_dflt_cfg(pi->hw))
1898 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1899 pcaps, NULL);
1900 else
1901 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1902 pcaps, NULL);
1903 if (status) {
1904 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1905 err = -EIO;
1906 goto err_out;
1907 }
1908
1909 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1910
1911 /* check if lenient mode is supported and enabled */
1912 if (ice_fw_supports_link_override(pi->hw) &&
1913 !(pcaps->module_compliance_enforcement &
1914 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1915 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1916
1917 /* if the FW supports default PHY configuration mode, then the driver
1918 * does not have to apply link override settings. If not,
1919 * initialize user PHY configuration with link override values
1920 */
1921 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1922 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1923 ice_init_phy_cfg_dflt_override(pi);
1924 goto out;
1925 }
1926 }
1927
1928 /* if link default override is not enabled, set user flow control and
1929 * FEC settings based on what get_phy_caps returned
1930 */
1931 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1932 pcaps->link_fec_options);
1933 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1934
1935out:
1936 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1937 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1938err_out:
1939 kfree(pcaps);
1940 return err;
1941}
1942
1943/**
1944 * ice_configure_phy - configure PHY
1945 * @vsi: VSI of PHY
1946 *
1947 * Set the PHY configuration. If the current PHY configuration is the same as
1948 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1949 * configure the based get PHY capabilities for topology with media.
1950 */
1951static int ice_configure_phy(struct ice_vsi *vsi)
1952{
1953 struct device *dev = ice_pf_to_dev(vsi->back);
1954 struct ice_port_info *pi = vsi->port_info;
1955 struct ice_aqc_get_phy_caps_data *pcaps;
1956 struct ice_aqc_set_phy_cfg_data *cfg;
1957 struct ice_phy_info *phy = &pi->phy;
1958 struct ice_pf *pf = vsi->back;
1959 enum ice_status status;
1960 int err = 0;
1961
1962 /* Ensure we have media as we cannot configure a medialess port */
1963 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1964 return -EPERM;
1965
1966 ice_print_topo_conflict(vsi);
1967
1968 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1969 return -EPERM;
1970
1971 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1972 return ice_force_phys_link_state(vsi, true);
1973
1974 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1975 if (!pcaps)
1976 return -ENOMEM;
1977
1978 /* Get current PHY config */
1979 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1980 NULL);
1981 if (status) {
1982 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1983 vsi->vsi_num, ice_stat_str(status));
1984 err = -EIO;
1985 goto done;
1986 }
1987
1988 /* If PHY enable link is configured and configuration has not changed,
1989 * there's nothing to do
1990 */
1991 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1992 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1993 goto done;
1994
1995 /* Use PHY topology as baseline for configuration */
1996 memset(pcaps, 0, sizeof(*pcaps));
1997 if (ice_fw_supports_report_dflt_cfg(pi->hw))
1998 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1999 pcaps, NULL);
2000 else
2001 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2002 pcaps, NULL);
2003 if (status) {
2004 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2005 vsi->vsi_num, ice_stat_str(status));
2006 err = -EIO;
2007 goto done;
2008 }
2009
2010 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2011 if (!cfg) {
2012 err = -ENOMEM;
2013 goto done;
2014 }
2015
2016 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2017
2018 /* Speed - If default override pending, use curr_user_phy_cfg set in
2019 * ice_init_phy_user_cfg_ldo.
2020 */
2021 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2022 vsi->back->state)) {
2023 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2024 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2025 } else {
2026 u64 phy_low = 0, phy_high = 0;
2027
2028 ice_update_phy_type(&phy_low, &phy_high,
2029 pi->phy.curr_user_speed_req);
2030 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2031 cfg->phy_type_high = pcaps->phy_type_high &
2032 cpu_to_le64(phy_high);
2033 }
2034
2035 /* Can't provide what was requested; use PHY capabilities */
2036 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2037 cfg->phy_type_low = pcaps->phy_type_low;
2038 cfg->phy_type_high = pcaps->phy_type_high;
2039 }
2040
2041 /* FEC */
2042 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2043
2044 /* Can't provide what was requested; use PHY capabilities */
2045 if (cfg->link_fec_opt !=
2046 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2047 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2048 cfg->link_fec_opt = pcaps->link_fec_options;
2049 }
2050
2051 /* Flow Control - always supported; no need to check against
2052 * capabilities
2053 */
2054 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2055
2056 /* Enable link and link update */
2057 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2058
2059 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2060 if (status) {
2061 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2062 vsi->vsi_num, ice_stat_str(status));
2063 err = -EIO;
2064 }
2065
2066 kfree(cfg);
2067done:
2068 kfree(pcaps);
2069 return err;
2070}
2071
2072/**
2073 * ice_check_media_subtask - Check for media
2074 * @pf: pointer to PF struct
2075 *
2076 * If media is available, then initialize PHY user configuration if it is not
2077 * been, and configure the PHY if the interface is up.
2078 */
2079static void ice_check_media_subtask(struct ice_pf *pf)
2080{
2081 struct ice_port_info *pi;
2082 struct ice_vsi *vsi;
2083 int err;
2084
2085 /* No need to check for media if it's already present */
2086 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2087 return;
2088
2089 vsi = ice_get_main_vsi(pf);
2090 if (!vsi)
2091 return;
2092
2093 /* Refresh link info and check if media is present */
2094 pi = vsi->port_info;
2095 err = ice_update_link_info(pi);
2096 if (err)
2097 return;
2098
2099 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2100
2101 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2102 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2103 ice_init_phy_user_cfg(pi);
2104
2105 /* PHY settings are reset on media insertion, reconfigure
2106 * PHY to preserve settings.
2107 */
2108 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2109 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2110 return;
2111
2112 err = ice_configure_phy(vsi);
2113 if (!err)
2114 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2115
2116 /* A Link Status Event will be generated; the event handler
2117 * will complete bringing the interface up
2118 */
2119 }
2120}
2121
2122/**
2123 * ice_service_task - manage and run subtasks
2124 * @work: pointer to work_struct contained by the PF struct
2125 */
2126static void ice_service_task(struct work_struct *work)
2127{
2128 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2129 unsigned long start_time = jiffies;
2130
2131 /* subtasks */
2132
2133 /* process reset requests first */
2134 ice_reset_subtask(pf);
2135
2136 /* bail if a reset/recovery cycle is pending or rebuild failed */
2137 if (ice_is_reset_in_progress(pf->state) ||
2138 test_bit(ICE_SUSPENDED, pf->state) ||
2139 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2140 ice_service_task_complete(pf);
2141 return;
2142 }
2143
2144 ice_clean_adminq_subtask(pf);
2145 ice_check_media_subtask(pf);
2146 ice_check_for_hang_subtask(pf);
2147 ice_sync_fltr_subtask(pf);
2148 ice_handle_mdd_event(pf);
2149 ice_watchdog_subtask(pf);
2150
2151 if (ice_is_safe_mode(pf)) {
2152 ice_service_task_complete(pf);
2153 return;
2154 }
2155
2156 ice_process_vflr_event(pf);
2157 ice_clean_mailboxq_subtask(pf);
2158 ice_clean_sbq_subtask(pf);
2159 ice_sync_arfs_fltrs(pf);
2160 ice_flush_fdir_ctx(pf);
2161
2162 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2163 ice_service_task_complete(pf);
2164
2165 /* If the tasks have taken longer than one service timer period
2166 * or there is more work to be done, reset the service timer to
2167 * schedule the service task now.
2168 */
2169 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2170 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2171 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2172 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2173 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2174 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2175 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2176 mod_timer(&pf->serv_tmr, jiffies);
2177}
2178
2179/**
2180 * ice_set_ctrlq_len - helper function to set controlq length
2181 * @hw: pointer to the HW instance
2182 */
2183static void ice_set_ctrlq_len(struct ice_hw *hw)
2184{
2185 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2186 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2187 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2188 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2189 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2190 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2191 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2192 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2193 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2194 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2195 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2196 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2197}
2198
2199/**
2200 * ice_schedule_reset - schedule a reset
2201 * @pf: board private structure
2202 * @reset: reset being requested
2203 */
2204int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2205{
2206 struct device *dev = ice_pf_to_dev(pf);
2207
2208 /* bail out if earlier reset has failed */
2209 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2210 dev_dbg(dev, "earlier reset has failed\n");
2211 return -EIO;
2212 }
2213 /* bail if reset/recovery already in progress */
2214 if (ice_is_reset_in_progress(pf->state)) {
2215 dev_dbg(dev, "Reset already in progress\n");
2216 return -EBUSY;
2217 }
2218
2219 ice_unplug_aux_dev(pf);
2220
2221 switch (reset) {
2222 case ICE_RESET_PFR:
2223 set_bit(ICE_PFR_REQ, pf->state);
2224 break;
2225 case ICE_RESET_CORER:
2226 set_bit(ICE_CORER_REQ, pf->state);
2227 break;
2228 case ICE_RESET_GLOBR:
2229 set_bit(ICE_GLOBR_REQ, pf->state);
2230 break;
2231 default:
2232 return -EINVAL;
2233 }
2234
2235 ice_service_task_schedule(pf);
2236 return 0;
2237}
2238
2239/**
2240 * ice_irq_affinity_notify - Callback for affinity changes
2241 * @notify: context as to what irq was changed
2242 * @mask: the new affinity mask
2243 *
2244 * This is a callback function used by the irq_set_affinity_notifier function
2245 * so that we may register to receive changes to the irq affinity masks.
2246 */
2247static void
2248ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2249 const cpumask_t *mask)
2250{
2251 struct ice_q_vector *q_vector =
2252 container_of(notify, struct ice_q_vector, affinity_notify);
2253
2254 cpumask_copy(&q_vector->affinity_mask, mask);
2255}
2256
2257/**
2258 * ice_irq_affinity_release - Callback for affinity notifier release
2259 * @ref: internal core kernel usage
2260 *
2261 * This is a callback function used by the irq_set_affinity_notifier function
2262 * to inform the current notification subscriber that they will no longer
2263 * receive notifications.
2264 */
2265static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2266
2267/**
2268 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2269 * @vsi: the VSI being configured
2270 */
2271static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2272{
2273 struct ice_hw *hw = &vsi->back->hw;
2274 int i;
2275
2276 ice_for_each_q_vector(vsi, i)
2277 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2278
2279 ice_flush(hw);
2280 return 0;
2281}
2282
2283/**
2284 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2285 * @vsi: the VSI being configured
2286 * @basename: name for the vector
2287 */
2288static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2289{
2290 int q_vectors = vsi->num_q_vectors;
2291 struct ice_pf *pf = vsi->back;
2292 int base = vsi->base_vector;
2293 struct device *dev;
2294 int rx_int_idx = 0;
2295 int tx_int_idx = 0;
2296 int vector, err;
2297 int irq_num;
2298
2299 dev = ice_pf_to_dev(pf);
2300 for (vector = 0; vector < q_vectors; vector++) {
2301 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2302
2303 irq_num = pf->msix_entries[base + vector].vector;
2304
2305 if (q_vector->tx.ring && q_vector->rx.ring) {
2306 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2307 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2308 tx_int_idx++;
2309 } else if (q_vector->rx.ring) {
2310 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2311 "%s-%s-%d", basename, "rx", rx_int_idx++);
2312 } else if (q_vector->tx.ring) {
2313 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2314 "%s-%s-%d", basename, "tx", tx_int_idx++);
2315 } else {
2316 /* skip this unused q_vector */
2317 continue;
2318 }
2319 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2320 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2321 IRQF_SHARED, q_vector->name,
2322 q_vector);
2323 else
2324 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2325 0, q_vector->name, q_vector);
2326 if (err) {
2327 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2328 err);
2329 goto free_q_irqs;
2330 }
2331
2332 /* register for affinity change notifications */
2333 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2334 struct irq_affinity_notify *affinity_notify;
2335
2336 affinity_notify = &q_vector->affinity_notify;
2337 affinity_notify->notify = ice_irq_affinity_notify;
2338 affinity_notify->release = ice_irq_affinity_release;
2339 irq_set_affinity_notifier(irq_num, affinity_notify);
2340 }
2341
2342 /* assign the mask for this irq */
2343 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2344 }
2345
2346 vsi->irqs_ready = true;
2347 return 0;
2348
2349free_q_irqs:
2350 while (vector) {
2351 vector--;
2352 irq_num = pf->msix_entries[base + vector].vector;
2353 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2354 irq_set_affinity_notifier(irq_num, NULL);
2355 irq_set_affinity_hint(irq_num, NULL);
2356 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2357 }
2358 return err;
2359}
2360
2361/**
2362 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2363 * @vsi: VSI to setup Tx rings used by XDP
2364 *
2365 * Return 0 on success and negative value on error
2366 */
2367static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2368{
2369 struct device *dev = ice_pf_to_dev(vsi->back);
2370 int i;
2371
2372 for (i = 0; i < vsi->num_xdp_txq; i++) {
2373 u16 xdp_q_idx = vsi->alloc_txq + i;
2374 struct ice_ring *xdp_ring;
2375
2376 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2377
2378 if (!xdp_ring)
2379 goto free_xdp_rings;
2380
2381 xdp_ring->q_index = xdp_q_idx;
2382 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2383 xdp_ring->ring_active = false;
2384 xdp_ring->vsi = vsi;
2385 xdp_ring->netdev = NULL;
2386 xdp_ring->dev = dev;
2387 xdp_ring->count = vsi->num_tx_desc;
2388 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2389 if (ice_setup_tx_ring(xdp_ring))
2390 goto free_xdp_rings;
2391 ice_set_ring_xdp(xdp_ring);
2392 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2393 }
2394
2395 return 0;
2396
2397free_xdp_rings:
2398 for (; i >= 0; i--)
2399 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2400 ice_free_tx_ring(vsi->xdp_rings[i]);
2401 return -ENOMEM;
2402}
2403
2404/**
2405 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2406 * @vsi: VSI to set the bpf prog on
2407 * @prog: the bpf prog pointer
2408 */
2409static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2410{
2411 struct bpf_prog *old_prog;
2412 int i;
2413
2414 old_prog = xchg(&vsi->xdp_prog, prog);
2415 if (old_prog)
2416 bpf_prog_put(old_prog);
2417
2418 ice_for_each_rxq(vsi, i)
2419 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2420}
2421
2422/**
2423 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2424 * @vsi: VSI to bring up Tx rings used by XDP
2425 * @prog: bpf program that will be assigned to VSI
2426 *
2427 * Return 0 on success and negative value on error
2428 */
2429int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2430{
2431 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432 int xdp_rings_rem = vsi->num_xdp_txq;
2433 struct ice_pf *pf = vsi->back;
2434 struct ice_qs_cfg xdp_qs_cfg = {
2435 .qs_mutex = &pf->avail_q_mutex,
2436 .pf_map = pf->avail_txqs,
2437 .pf_map_size = pf->max_pf_txqs,
2438 .q_count = vsi->num_xdp_txq,
2439 .scatter_count = ICE_MAX_SCATTER_TXQS,
2440 .vsi_map = vsi->txq_map,
2441 .vsi_map_offset = vsi->alloc_txq,
2442 .mapping_mode = ICE_VSI_MAP_CONTIG
2443 };
2444 enum ice_status status;
2445 struct device *dev;
2446 int i, v_idx;
2447
2448 dev = ice_pf_to_dev(pf);
2449 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2450 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2451 if (!vsi->xdp_rings)
2452 return -ENOMEM;
2453
2454 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2455 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2456 goto err_map_xdp;
2457
2458 if (ice_xdp_alloc_setup_rings(vsi))
2459 goto clear_xdp_rings;
2460
2461 /* follow the logic from ice_vsi_map_rings_to_vectors */
2462 ice_for_each_q_vector(vsi, v_idx) {
2463 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2464 int xdp_rings_per_v, q_id, q_base;
2465
2466 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2467 vsi->num_q_vectors - v_idx);
2468 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2469
2470 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2471 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2472
2473 xdp_ring->q_vector = q_vector;
2474 xdp_ring->next = q_vector->tx.ring;
2475 q_vector->tx.ring = xdp_ring;
2476 }
2477 xdp_rings_rem -= xdp_rings_per_v;
2478 }
2479
2480 /* omit the scheduler update if in reset path; XDP queues will be
2481 * taken into account at the end of ice_vsi_rebuild, where
2482 * ice_cfg_vsi_lan is being called
2483 */
2484 if (ice_is_reset_in_progress(pf->state))
2485 return 0;
2486
2487 /* tell the Tx scheduler that right now we have
2488 * additional queues
2489 */
2490 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2491 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2492
2493 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2494 max_txqs);
2495 if (status) {
2496 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2497 ice_stat_str(status));
2498 goto clear_xdp_rings;
2499 }
2500 ice_vsi_assign_bpf_prog(vsi, prog);
2501
2502 return 0;
2503clear_xdp_rings:
2504 for (i = 0; i < vsi->num_xdp_txq; i++)
2505 if (vsi->xdp_rings[i]) {
2506 kfree_rcu(vsi->xdp_rings[i], rcu);
2507 vsi->xdp_rings[i] = NULL;
2508 }
2509
2510err_map_xdp:
2511 mutex_lock(&pf->avail_q_mutex);
2512 for (i = 0; i < vsi->num_xdp_txq; i++) {
2513 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2514 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2515 }
2516 mutex_unlock(&pf->avail_q_mutex);
2517
2518 devm_kfree(dev, vsi->xdp_rings);
2519 return -ENOMEM;
2520}
2521
2522/**
2523 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2524 * @vsi: VSI to remove XDP rings
2525 *
2526 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2527 * resources
2528 */
2529int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2530{
2531 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2532 struct ice_pf *pf = vsi->back;
2533 int i, v_idx;
2534
2535 /* q_vectors are freed in reset path so there's no point in detaching
2536 * rings; in case of rebuild being triggered not from reset bits
2537 * in pf->state won't be set, so additionally check first q_vector
2538 * against NULL
2539 */
2540 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2541 goto free_qmap;
2542
2543 ice_for_each_q_vector(vsi, v_idx) {
2544 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2545 struct ice_ring *ring;
2546
2547 ice_for_each_ring(ring, q_vector->tx)
2548 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2549 break;
2550
2551 /* restore the value of last node prior to XDP setup */
2552 q_vector->tx.ring = ring;
2553 }
2554
2555free_qmap:
2556 mutex_lock(&pf->avail_q_mutex);
2557 for (i = 0; i < vsi->num_xdp_txq; i++) {
2558 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2559 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2560 }
2561 mutex_unlock(&pf->avail_q_mutex);
2562
2563 for (i = 0; i < vsi->num_xdp_txq; i++)
2564 if (vsi->xdp_rings[i]) {
2565 if (vsi->xdp_rings[i]->desc)
2566 ice_free_tx_ring(vsi->xdp_rings[i]);
2567 kfree_rcu(vsi->xdp_rings[i], rcu);
2568 vsi->xdp_rings[i] = NULL;
2569 }
2570
2571 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2572 vsi->xdp_rings = NULL;
2573
2574 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2575 return 0;
2576
2577 ice_vsi_assign_bpf_prog(vsi, NULL);
2578
2579 /* notify Tx scheduler that we destroyed XDP queues and bring
2580 * back the old number of child nodes
2581 */
2582 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2583 max_txqs[i] = vsi->num_txq;
2584
2585 /* change number of XDP Tx queues to 0 */
2586 vsi->num_xdp_txq = 0;
2587
2588 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2589 max_txqs);
2590}
2591
2592/**
2593 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2594 * @vsi: VSI to schedule napi on
2595 */
2596static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2597{
2598 int i;
2599
2600 ice_for_each_rxq(vsi, i) {
2601 struct ice_ring *rx_ring = vsi->rx_rings[i];
2602
2603 if (rx_ring->xsk_pool)
2604 napi_schedule(&rx_ring->q_vector->napi);
2605 }
2606}
2607
2608/**
2609 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2610 * @vsi: VSI to setup XDP for
2611 * @prog: XDP program
2612 * @extack: netlink extended ack
2613 */
2614static int
2615ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2616 struct netlink_ext_ack *extack)
2617{
2618 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2619 bool if_running = netif_running(vsi->netdev);
2620 int ret = 0, xdp_ring_err = 0;
2621
2622 if (frame_size > vsi->rx_buf_len) {
2623 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2624 return -EOPNOTSUPP;
2625 }
2626
2627 /* need to stop netdev while setting up the program for Rx rings */
2628 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2629 ret = ice_down(vsi);
2630 if (ret) {
2631 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2632 return ret;
2633 }
2634 }
2635
2636 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2637 vsi->num_xdp_txq = vsi->alloc_rxq;
2638 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2639 if (xdp_ring_err)
2640 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2641 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2642 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2643 if (xdp_ring_err)
2644 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2645 } else {
2646 ice_vsi_assign_bpf_prog(vsi, prog);
2647 }
2648
2649 if (if_running)
2650 ret = ice_up(vsi);
2651
2652 if (!ret && prog)
2653 ice_vsi_rx_napi_schedule(vsi);
2654
2655 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2656}
2657
2658/**
2659 * ice_xdp_safe_mode - XDP handler for safe mode
2660 * @dev: netdevice
2661 * @xdp: XDP command
2662 */
2663static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2664 struct netdev_bpf *xdp)
2665{
2666 NL_SET_ERR_MSG_MOD(xdp->extack,
2667 "Please provide working DDP firmware package in order to use XDP\n"
2668 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2669 return -EOPNOTSUPP;
2670}
2671
2672/**
2673 * ice_xdp - implements XDP handler
2674 * @dev: netdevice
2675 * @xdp: XDP command
2676 */
2677static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2678{
2679 struct ice_netdev_priv *np = netdev_priv(dev);
2680 struct ice_vsi *vsi = np->vsi;
2681
2682 if (vsi->type != ICE_VSI_PF) {
2683 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2684 return -EINVAL;
2685 }
2686
2687 switch (xdp->command) {
2688 case XDP_SETUP_PROG:
2689 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2690 case XDP_SETUP_XSK_POOL:
2691 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2692 xdp->xsk.queue_id);
2693 default:
2694 return -EINVAL;
2695 }
2696}
2697
2698/**
2699 * ice_ena_misc_vector - enable the non-queue interrupts
2700 * @pf: board private structure
2701 */
2702static void ice_ena_misc_vector(struct ice_pf *pf)
2703{
2704 struct ice_hw *hw = &pf->hw;
2705 u32 val;
2706
2707 /* Disable anti-spoof detection interrupt to prevent spurious event
2708 * interrupts during a function reset. Anti-spoof functionally is
2709 * still supported.
2710 */
2711 val = rd32(hw, GL_MDCK_TX_TDPU);
2712 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2713 wr32(hw, GL_MDCK_TX_TDPU, val);
2714
2715 /* clear things first */
2716 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2717 rd32(hw, PFINT_OICR); /* read to clear */
2718
2719 val = (PFINT_OICR_ECC_ERR_M |
2720 PFINT_OICR_MAL_DETECT_M |
2721 PFINT_OICR_GRST_M |
2722 PFINT_OICR_PCI_EXCEPTION_M |
2723 PFINT_OICR_VFLR_M |
2724 PFINT_OICR_HMC_ERR_M |
2725 PFINT_OICR_PE_PUSH_M |
2726 PFINT_OICR_PE_CRITERR_M);
2727
2728 wr32(hw, PFINT_OICR_ENA, val);
2729
2730 /* SW_ITR_IDX = 0, but don't change INTENA */
2731 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2732 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2733}
2734
2735/**
2736 * ice_misc_intr - misc interrupt handler
2737 * @irq: interrupt number
2738 * @data: pointer to a q_vector
2739 */
2740static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2741{
2742 struct ice_pf *pf = (struct ice_pf *)data;
2743 struct ice_hw *hw = &pf->hw;
2744 irqreturn_t ret = IRQ_NONE;
2745 struct device *dev;
2746 u32 oicr, ena_mask;
2747
2748 dev = ice_pf_to_dev(pf);
2749 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2750 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2751 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2752
2753 oicr = rd32(hw, PFINT_OICR);
2754 ena_mask = rd32(hw, PFINT_OICR_ENA);
2755
2756 if (oicr & PFINT_OICR_SWINT_M) {
2757 ena_mask &= ~PFINT_OICR_SWINT_M;
2758 pf->sw_int_count++;
2759 }
2760
2761 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2762 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2763 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2764 }
2765 if (oicr & PFINT_OICR_VFLR_M) {
2766 /* disable any further VFLR event notifications */
2767 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2768 u32 reg = rd32(hw, PFINT_OICR_ENA);
2769
2770 reg &= ~PFINT_OICR_VFLR_M;
2771 wr32(hw, PFINT_OICR_ENA, reg);
2772 } else {
2773 ena_mask &= ~PFINT_OICR_VFLR_M;
2774 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2775 }
2776 }
2777
2778 if (oicr & PFINT_OICR_GRST_M) {
2779 u32 reset;
2780
2781 /* we have a reset warning */
2782 ena_mask &= ~PFINT_OICR_GRST_M;
2783 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2784 GLGEN_RSTAT_RESET_TYPE_S;
2785
2786 if (reset == ICE_RESET_CORER)
2787 pf->corer_count++;
2788 else if (reset == ICE_RESET_GLOBR)
2789 pf->globr_count++;
2790 else if (reset == ICE_RESET_EMPR)
2791 pf->empr_count++;
2792 else
2793 dev_dbg(dev, "Invalid reset type %d\n", reset);
2794
2795 /* If a reset cycle isn't already in progress, we set a bit in
2796 * pf->state so that the service task can start a reset/rebuild.
2797 */
2798 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2799 if (reset == ICE_RESET_CORER)
2800 set_bit(ICE_CORER_RECV, pf->state);
2801 else if (reset == ICE_RESET_GLOBR)
2802 set_bit(ICE_GLOBR_RECV, pf->state);
2803 else
2804 set_bit(ICE_EMPR_RECV, pf->state);
2805
2806 /* There are couple of different bits at play here.
2807 * hw->reset_ongoing indicates whether the hardware is
2808 * in reset. This is set to true when a reset interrupt
2809 * is received and set back to false after the driver
2810 * has determined that the hardware is out of reset.
2811 *
2812 * ICE_RESET_OICR_RECV in pf->state indicates
2813 * that a post reset rebuild is required before the
2814 * driver is operational again. This is set above.
2815 *
2816 * As this is the start of the reset/rebuild cycle, set
2817 * both to indicate that.
2818 */
2819 hw->reset_ongoing = true;
2820 }
2821 }
2822
2823 if (oicr & PFINT_OICR_TSYN_TX_M) {
2824 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2825 ice_ptp_process_ts(pf);
2826 }
2827
2828 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2829 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2830 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2831
2832 /* Save EVENTs from GTSYN register */
2833 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2834 GLTSYN_STAT_EVENT1_M |
2835 GLTSYN_STAT_EVENT2_M);
2836 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2837 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2838 }
2839
2840#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2841 if (oicr & ICE_AUX_CRIT_ERR) {
2842 struct iidc_event *event;
2843
2844 ena_mask &= ~ICE_AUX_CRIT_ERR;
2845 event = kzalloc(sizeof(*event), GFP_KERNEL);
2846 if (event) {
2847 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2848 /* report the entire OICR value to AUX driver */
2849 event->reg = oicr;
2850 ice_send_event_to_aux(pf, event);
2851 kfree(event);
2852 }
2853 }
2854
2855 /* Report any remaining unexpected interrupts */
2856 oicr &= ena_mask;
2857 if (oicr) {
2858 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2859 /* If a critical error is pending there is no choice but to
2860 * reset the device.
2861 */
2862 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
2863 PFINT_OICR_ECC_ERR_M)) {
2864 set_bit(ICE_PFR_REQ, pf->state);
2865 ice_service_task_schedule(pf);
2866 }
2867 }
2868 ret = IRQ_HANDLED;
2869
2870 ice_service_task_schedule(pf);
2871 ice_irq_dynamic_ena(hw, NULL, NULL);
2872
2873 return ret;
2874}
2875
2876/**
2877 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2878 * @hw: pointer to HW structure
2879 */
2880static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2881{
2882 /* disable Admin queue Interrupt causes */
2883 wr32(hw, PFINT_FW_CTL,
2884 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2885
2886 /* disable Mailbox queue Interrupt causes */
2887 wr32(hw, PFINT_MBX_CTL,
2888 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2889
2890 wr32(hw, PFINT_SB_CTL,
2891 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
2892
2893 /* disable Control queue Interrupt causes */
2894 wr32(hw, PFINT_OICR_CTL,
2895 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2896
2897 ice_flush(hw);
2898}
2899
2900/**
2901 * ice_free_irq_msix_misc - Unroll misc vector setup
2902 * @pf: board private structure
2903 */
2904static void ice_free_irq_msix_misc(struct ice_pf *pf)
2905{
2906 struct ice_hw *hw = &pf->hw;
2907
2908 ice_dis_ctrlq_interrupts(hw);
2909
2910 /* disable OICR interrupt */
2911 wr32(hw, PFINT_OICR_ENA, 0);
2912 ice_flush(hw);
2913
2914 if (pf->msix_entries) {
2915 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2916 devm_free_irq(ice_pf_to_dev(pf),
2917 pf->msix_entries[pf->oicr_idx].vector, pf);
2918 }
2919
2920 pf->num_avail_sw_msix += 1;
2921 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2922}
2923
2924/**
2925 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2926 * @hw: pointer to HW structure
2927 * @reg_idx: HW vector index to associate the control queue interrupts with
2928 */
2929static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2930{
2931 u32 val;
2932
2933 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2934 PFINT_OICR_CTL_CAUSE_ENA_M);
2935 wr32(hw, PFINT_OICR_CTL, val);
2936
2937 /* enable Admin queue Interrupt causes */
2938 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2939 PFINT_FW_CTL_CAUSE_ENA_M);
2940 wr32(hw, PFINT_FW_CTL, val);
2941
2942 /* enable Mailbox queue Interrupt causes */
2943 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2944 PFINT_MBX_CTL_CAUSE_ENA_M);
2945 wr32(hw, PFINT_MBX_CTL, val);
2946
2947 /* This enables Sideband queue Interrupt causes */
2948 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2949 PFINT_SB_CTL_CAUSE_ENA_M);
2950 wr32(hw, PFINT_SB_CTL, val);
2951
2952 ice_flush(hw);
2953}
2954
2955/**
2956 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2957 * @pf: board private structure
2958 *
2959 * This sets up the handler for MSIX 0, which is used to manage the
2960 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2961 * when in MSI or Legacy interrupt mode.
2962 */
2963static int ice_req_irq_msix_misc(struct ice_pf *pf)
2964{
2965 struct device *dev = ice_pf_to_dev(pf);
2966 struct ice_hw *hw = &pf->hw;
2967 int oicr_idx, err = 0;
2968
2969 if (!pf->int_name[0])
2970 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2971 dev_driver_string(dev), dev_name(dev));
2972
2973 /* Do not request IRQ but do enable OICR interrupt since settings are
2974 * lost during reset. Note that this function is called only during
2975 * rebuild path and not while reset is in progress.
2976 */
2977 if (ice_is_reset_in_progress(pf->state))
2978 goto skip_req_irq;
2979
2980 /* reserve one vector in irq_tracker for misc interrupts */
2981 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2982 if (oicr_idx < 0)
2983 return oicr_idx;
2984
2985 pf->num_avail_sw_msix -= 1;
2986 pf->oicr_idx = (u16)oicr_idx;
2987
2988 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2989 ice_misc_intr, 0, pf->int_name, pf);
2990 if (err) {
2991 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2992 pf->int_name, err);
2993 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2994 pf->num_avail_sw_msix += 1;
2995 return err;
2996 }
2997
2998skip_req_irq:
2999 ice_ena_misc_vector(pf);
3000
3001 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3002 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3003 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3004
3005 ice_flush(hw);
3006 ice_irq_dynamic_ena(hw, NULL, NULL);
3007
3008 return 0;
3009}
3010
3011/**
3012 * ice_napi_add - register NAPI handler for the VSI
3013 * @vsi: VSI for which NAPI handler is to be registered
3014 *
3015 * This function is only called in the driver's load path. Registering the NAPI
3016 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3017 * reset/rebuild, etc.)
3018 */
3019static void ice_napi_add(struct ice_vsi *vsi)
3020{
3021 int v_idx;
3022
3023 if (!vsi->netdev)
3024 return;
3025
3026 ice_for_each_q_vector(vsi, v_idx)
3027 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3028 ice_napi_poll, NAPI_POLL_WEIGHT);
3029}
3030
3031/**
3032 * ice_set_ops - set netdev and ethtools ops for the given netdev
3033 * @netdev: netdev instance
3034 */
3035static void ice_set_ops(struct net_device *netdev)
3036{
3037 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3038
3039 if (ice_is_safe_mode(pf)) {
3040 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3041 ice_set_ethtool_safe_mode_ops(netdev);
3042 return;
3043 }
3044
3045 netdev->netdev_ops = &ice_netdev_ops;
3046 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3047 ice_set_ethtool_ops(netdev);
3048}
3049
3050/**
3051 * ice_set_netdev_features - set features for the given netdev
3052 * @netdev: netdev instance
3053 */
3054static void ice_set_netdev_features(struct net_device *netdev)
3055{
3056 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3057 netdev_features_t csumo_features;
3058 netdev_features_t vlano_features;
3059 netdev_features_t dflt_features;
3060 netdev_features_t tso_features;
3061
3062 if (ice_is_safe_mode(pf)) {
3063 /* safe mode */
3064 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3065 netdev->hw_features = netdev->features;
3066 return;
3067 }
3068
3069 dflt_features = NETIF_F_SG |
3070 NETIF_F_HIGHDMA |
3071 NETIF_F_NTUPLE |
3072 NETIF_F_RXHASH;
3073
3074 csumo_features = NETIF_F_RXCSUM |
3075 NETIF_F_IP_CSUM |
3076 NETIF_F_SCTP_CRC |
3077 NETIF_F_IPV6_CSUM;
3078
3079 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3080 NETIF_F_HW_VLAN_CTAG_TX |
3081 NETIF_F_HW_VLAN_CTAG_RX;
3082
3083 tso_features = NETIF_F_TSO |
3084 NETIF_F_TSO_ECN |
3085 NETIF_F_TSO6 |
3086 NETIF_F_GSO_GRE |
3087 NETIF_F_GSO_UDP_TUNNEL |
3088 NETIF_F_GSO_GRE_CSUM |
3089 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3090 NETIF_F_GSO_PARTIAL |
3091 NETIF_F_GSO_IPXIP4 |
3092 NETIF_F_GSO_IPXIP6 |
3093 NETIF_F_GSO_UDP_L4;
3094
3095 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3096 NETIF_F_GSO_GRE_CSUM;
3097 /* set features that user can change */
3098 netdev->hw_features = dflt_features | csumo_features |
3099 vlano_features | tso_features;
3100
3101 /* add support for HW_CSUM on packets with MPLS header */
3102 netdev->mpls_features = NETIF_F_HW_CSUM;
3103
3104 /* enable features */
3105 netdev->features |= netdev->hw_features;
3106 /* encap and VLAN devices inherit default, csumo and tso features */
3107 netdev->hw_enc_features |= dflt_features | csumo_features |
3108 tso_features;
3109 netdev->vlan_features |= dflt_features | csumo_features |
3110 tso_features;
3111}
3112
3113/**
3114 * ice_cfg_netdev - Allocate, configure and register a netdev
3115 * @vsi: the VSI associated with the new netdev
3116 *
3117 * Returns 0 on success, negative value on failure
3118 */
3119static int ice_cfg_netdev(struct ice_vsi *vsi)
3120{
3121 struct ice_netdev_priv *np;
3122 struct net_device *netdev;
3123 u8 mac_addr[ETH_ALEN];
3124
3125 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3126 vsi->alloc_rxq);
3127 if (!netdev)
3128 return -ENOMEM;
3129
3130 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3131 vsi->netdev = netdev;
3132 np = netdev_priv(netdev);
3133 np->vsi = vsi;
3134
3135 ice_set_netdev_features(netdev);
3136
3137 ice_set_ops(netdev);
3138
3139 if (vsi->type == ICE_VSI_PF) {
3140 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3141 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3142 ether_addr_copy(netdev->dev_addr, mac_addr);
3143 ether_addr_copy(netdev->perm_addr, mac_addr);
3144 }
3145
3146 netdev->priv_flags |= IFF_UNICAST_FLT;
3147
3148 /* Setup netdev TC information */
3149 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3150
3151 /* setup watchdog timeout value to be 5 second */
3152 netdev->watchdog_timeo = 5 * HZ;
3153
3154 netdev->min_mtu = ETH_MIN_MTU;
3155 netdev->max_mtu = ICE_MAX_MTU;
3156
3157 return 0;
3158}
3159
3160/**
3161 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3162 * @lut: Lookup table
3163 * @rss_table_size: Lookup table size
3164 * @rss_size: Range of queue number for hashing
3165 */
3166void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3167{
3168 u16 i;
3169
3170 for (i = 0; i < rss_table_size; i++)
3171 lut[i] = i % rss_size;
3172}
3173
3174/**
3175 * ice_pf_vsi_setup - Set up a PF VSI
3176 * @pf: board private structure
3177 * @pi: pointer to the port_info instance
3178 *
3179 * Returns pointer to the successfully allocated VSI software struct
3180 * on success, otherwise returns NULL on failure.
3181 */
3182static struct ice_vsi *
3183ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3184{
3185 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3186}
3187
3188/**
3189 * ice_ctrl_vsi_setup - Set up a control VSI
3190 * @pf: board private structure
3191 * @pi: pointer to the port_info instance
3192 *
3193 * Returns pointer to the successfully allocated VSI software struct
3194 * on success, otherwise returns NULL on failure.
3195 */
3196static struct ice_vsi *
3197ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3198{
3199 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3200}
3201
3202/**
3203 * ice_lb_vsi_setup - Set up a loopback VSI
3204 * @pf: board private structure
3205 * @pi: pointer to the port_info instance
3206 *
3207 * Returns pointer to the successfully allocated VSI software struct
3208 * on success, otherwise returns NULL on failure.
3209 */
3210struct ice_vsi *
3211ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3212{
3213 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3214}
3215
3216/**
3217 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3218 * @netdev: network interface to be adjusted
3219 * @proto: unused protocol
3220 * @vid: VLAN ID to be added
3221 *
3222 * net_device_ops implementation for adding VLAN IDs
3223 */
3224static int
3225ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3226 u16 vid)
3227{
3228 struct ice_netdev_priv *np = netdev_priv(netdev);
3229 struct ice_vsi *vsi = np->vsi;
3230 int ret;
3231
3232 /* VLAN 0 is added by default during load/reset */
3233 if (!vid)
3234 return 0;
3235
3236 /* Enable VLAN pruning when a VLAN other than 0 is added */
3237 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3238 ret = ice_cfg_vlan_pruning(vsi, true, false);
3239 if (ret)
3240 return ret;
3241 }
3242
3243 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3244 * packets aren't pruned by the device's internal switch on Rx
3245 */
3246 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3247 if (!ret)
3248 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3249
3250 return ret;
3251}
3252
3253/**
3254 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3255 * @netdev: network interface to be adjusted
3256 * @proto: unused protocol
3257 * @vid: VLAN ID to be removed
3258 *
3259 * net_device_ops implementation for removing VLAN IDs
3260 */
3261static int
3262ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3263 u16 vid)
3264{
3265 struct ice_netdev_priv *np = netdev_priv(netdev);
3266 struct ice_vsi *vsi = np->vsi;
3267 int ret;
3268
3269 /* don't allow removal of VLAN 0 */
3270 if (!vid)
3271 return 0;
3272
3273 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3274 * information
3275 */
3276 ret = ice_vsi_kill_vlan(vsi, vid);
3277 if (ret)
3278 return ret;
3279
3280 /* Disable pruning when VLAN 0 is the only VLAN rule */
3281 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3282 ret = ice_cfg_vlan_pruning(vsi, false, false);
3283
3284 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3285 return ret;
3286}
3287
3288/**
3289 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3290 * @pf: board private structure
3291 *
3292 * Returns 0 on success, negative value on failure
3293 */
3294static int ice_setup_pf_sw(struct ice_pf *pf)
3295{
3296 struct ice_vsi *vsi;
3297 int status = 0;
3298
3299 if (ice_is_reset_in_progress(pf->state))
3300 return -EBUSY;
3301
3302 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3303 if (!vsi)
3304 return -ENOMEM;
3305
3306 status = ice_cfg_netdev(vsi);
3307 if (status) {
3308 status = -ENODEV;
3309 goto unroll_vsi_setup;
3310 }
3311 /* netdev has to be configured before setting frame size */
3312 ice_vsi_cfg_frame_size(vsi);
3313
3314 /* Setup DCB netlink interface */
3315 ice_dcbnl_setup(vsi);
3316
3317 /* registering the NAPI handler requires both the queues and
3318 * netdev to be created, which are done in ice_pf_vsi_setup()
3319 * and ice_cfg_netdev() respectively
3320 */
3321 ice_napi_add(vsi);
3322
3323 status = ice_set_cpu_rx_rmap(vsi);
3324 if (status) {
3325 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3326 vsi->vsi_num, status);
3327 status = -EINVAL;
3328 goto unroll_napi_add;
3329 }
3330 status = ice_init_mac_fltr(pf);
3331 if (status)
3332 goto free_cpu_rx_map;
3333
3334 return status;
3335
3336free_cpu_rx_map:
3337 ice_free_cpu_rx_rmap(vsi);
3338
3339unroll_napi_add:
3340 if (vsi) {
3341 ice_napi_del(vsi);
3342 if (vsi->netdev) {
3343 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3344 free_netdev(vsi->netdev);
3345 vsi->netdev = NULL;
3346 }
3347 }
3348
3349unroll_vsi_setup:
3350 ice_vsi_release(vsi);
3351 return status;
3352}
3353
3354/**
3355 * ice_get_avail_q_count - Get count of queues in use
3356 * @pf_qmap: bitmap to get queue use count from
3357 * @lock: pointer to a mutex that protects access to pf_qmap
3358 * @size: size of the bitmap
3359 */
3360static u16
3361ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3362{
3363 unsigned long bit;
3364 u16 count = 0;
3365
3366 mutex_lock(lock);
3367 for_each_clear_bit(bit, pf_qmap, size)
3368 count++;
3369 mutex_unlock(lock);
3370
3371 return count;
3372}
3373
3374/**
3375 * ice_get_avail_txq_count - Get count of Tx queues in use
3376 * @pf: pointer to an ice_pf instance
3377 */
3378u16 ice_get_avail_txq_count(struct ice_pf *pf)
3379{
3380 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3381 pf->max_pf_txqs);
3382}
3383
3384/**
3385 * ice_get_avail_rxq_count - Get count of Rx queues in use
3386 * @pf: pointer to an ice_pf instance
3387 */
3388u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3389{
3390 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3391 pf->max_pf_rxqs);
3392}
3393
3394/**
3395 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3396 * @pf: board private structure to initialize
3397 */
3398static void ice_deinit_pf(struct ice_pf *pf)
3399{
3400 ice_service_task_stop(pf);
3401 mutex_destroy(&pf->sw_mutex);
3402 mutex_destroy(&pf->tc_mutex);
3403 mutex_destroy(&pf->avail_q_mutex);
3404
3405 if (pf->avail_txqs) {
3406 bitmap_free(pf->avail_txqs);
3407 pf->avail_txqs = NULL;
3408 }
3409
3410 if (pf->avail_rxqs) {
3411 bitmap_free(pf->avail_rxqs);
3412 pf->avail_rxqs = NULL;
3413 }
3414
3415 if (pf->ptp.clock)
3416 ptp_clock_unregister(pf->ptp.clock);
3417}
3418
3419/**
3420 * ice_set_pf_caps - set PFs capability flags
3421 * @pf: pointer to the PF instance
3422 */
3423static void ice_set_pf_caps(struct ice_pf *pf)
3424{
3425 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3426
3427 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3428 clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3429 if (func_caps->common_cap.rdma) {
3430 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3431 set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3432 }
3433 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3434 if (func_caps->common_cap.dcb)
3435 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3436 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3437 if (func_caps->common_cap.sr_iov_1_1) {
3438 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3439 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3440 ICE_MAX_VF_COUNT);
3441 }
3442 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3443 if (func_caps->common_cap.rss_table_size)
3444 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3445
3446 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3447 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3448 u16 unused;
3449
3450 /* ctrl_vsi_idx will be set to a valid value when flow director
3451 * is setup by ice_init_fdir
3452 */
3453 pf->ctrl_vsi_idx = ICE_NO_VSI;
3454 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3455 /* force guaranteed filter pool for PF */
3456 ice_alloc_fd_guar_item(&pf->hw, &unused,
3457 func_caps->fd_fltr_guar);
3458 /* force shared filter pool for PF */
3459 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3460 func_caps->fd_fltr_best_effort);
3461 }
3462
3463 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3464 if (func_caps->common_cap.ieee_1588)
3465 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3466
3467 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3468 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3469}
3470
3471/**
3472 * ice_init_pf - Initialize general software structures (struct ice_pf)
3473 * @pf: board private structure to initialize
3474 */
3475static int ice_init_pf(struct ice_pf *pf)
3476{
3477 ice_set_pf_caps(pf);
3478
3479 mutex_init(&pf->sw_mutex);
3480 mutex_init(&pf->tc_mutex);
3481
3482 INIT_HLIST_HEAD(&pf->aq_wait_list);
3483 spin_lock_init(&pf->aq_wait_lock);
3484 init_waitqueue_head(&pf->aq_wait_queue);
3485
3486 init_waitqueue_head(&pf->reset_wait_queue);
3487
3488 /* setup service timer and periodic service task */
3489 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3490 pf->serv_tmr_period = HZ;
3491 INIT_WORK(&pf->serv_task, ice_service_task);
3492 clear_bit(ICE_SERVICE_SCHED, pf->state);
3493
3494 mutex_init(&pf->avail_q_mutex);
3495 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3496 if (!pf->avail_txqs)
3497 return -ENOMEM;
3498
3499 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3500 if (!pf->avail_rxqs) {
3501 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3502 pf->avail_txqs = NULL;
3503 return -ENOMEM;
3504 }
3505
3506 return 0;
3507}
3508
3509/**
3510 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3511 * @pf: board private structure
3512 *
3513 * compute the number of MSIX vectors required (v_budget) and request from
3514 * the OS. Return the number of vectors reserved or negative on failure
3515 */
3516static int ice_ena_msix_range(struct ice_pf *pf)
3517{
3518 int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3519 struct device *dev = ice_pf_to_dev(pf);
3520 int needed, err, i;
3521
3522 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3523 num_cpus = num_online_cpus();
3524
3525 /* reserve for LAN miscellaneous handler */
3526 needed = ICE_MIN_LAN_OICR_MSIX;
3527 if (v_left < needed)
3528 goto no_hw_vecs_left_err;
3529 v_budget += needed;
3530 v_left -= needed;
3531
3532 /* reserve for flow director */
3533 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3534 needed = ICE_FDIR_MSIX;
3535 if (v_left < needed)
3536 goto no_hw_vecs_left_err;
3537 v_budget += needed;
3538 v_left -= needed;
3539 }
3540
3541 /* total used for non-traffic vectors */
3542 v_other = v_budget;
3543
3544 /* reserve vectors for LAN traffic */
3545 needed = num_cpus;
3546 if (v_left < needed)
3547 goto no_hw_vecs_left_err;
3548 pf->num_lan_msix = needed;
3549 v_budget += needed;
3550 v_left -= needed;
3551
3552 /* reserve vectors for RDMA auxiliary driver */
3553 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3554 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3555 if (v_left < needed)
3556 goto no_hw_vecs_left_err;
3557 pf->num_rdma_msix = needed;
3558 v_budget += needed;
3559 v_left -= needed;
3560 }
3561
3562 pf->msix_entries = devm_kcalloc(dev, v_budget,
3563 sizeof(*pf->msix_entries), GFP_KERNEL);
3564 if (!pf->msix_entries) {
3565 err = -ENOMEM;
3566 goto exit_err;
3567 }
3568
3569 for (i = 0; i < v_budget; i++)
3570 pf->msix_entries[i].entry = i;
3571
3572 /* actually reserve the vectors */
3573 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3574 ICE_MIN_MSIX, v_budget);
3575 if (v_actual < 0) {
3576 dev_err(dev, "unable to reserve MSI-X vectors\n");
3577 err = v_actual;
3578 goto msix_err;
3579 }
3580
3581 if (v_actual < v_budget) {
3582 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3583 v_budget, v_actual);
3584
3585 if (v_actual < ICE_MIN_MSIX) {
3586 /* error if we can't get minimum vectors */
3587 pci_disable_msix(pf->pdev);
3588 err = -ERANGE;
3589 goto msix_err;
3590 } else {
3591 int v_remain = v_actual - v_other;
3592 int v_rdma = 0, v_min_rdma = 0;
3593
3594 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3595 /* Need at least 1 interrupt in addition to
3596 * AEQ MSIX
3597 */
3598 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3599 v_min_rdma = ICE_MIN_RDMA_MSIX;
3600 }
3601
3602 if (v_actual == ICE_MIN_MSIX ||
3603 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3604 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3605 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3606
3607 pf->num_rdma_msix = 0;
3608 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3609 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3610 (v_remain - v_rdma < v_rdma)) {
3611 /* Support minimum RDMA and give remaining
3612 * vectors to LAN MSIX
3613 */
3614 pf->num_rdma_msix = v_min_rdma;
3615 pf->num_lan_msix = v_remain - v_min_rdma;
3616 } else {
3617 /* Split remaining MSIX with RDMA after
3618 * accounting for AEQ MSIX
3619 */
3620 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3621 ICE_RDMA_NUM_AEQ_MSIX;
3622 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3623 }
3624
3625 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3626 pf->num_lan_msix);
3627
3628 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3629 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3630 pf->num_rdma_msix);
3631 }
3632 }
3633
3634 return v_actual;
3635
3636msix_err:
3637 devm_kfree(dev, pf->msix_entries);
3638 goto exit_err;
3639
3640no_hw_vecs_left_err:
3641 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3642 needed, v_left);
3643 err = -ERANGE;
3644exit_err:
3645 pf->num_rdma_msix = 0;
3646 pf->num_lan_msix = 0;
3647 return err;
3648}
3649
3650/**
3651 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3652 * @pf: board private structure
3653 */
3654static void ice_dis_msix(struct ice_pf *pf)
3655{
3656 pci_disable_msix(pf->pdev);
3657 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3658 pf->msix_entries = NULL;
3659}
3660
3661/**
3662 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3663 * @pf: board private structure
3664 */
3665static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3666{
3667 ice_dis_msix(pf);
3668
3669 if (pf->irq_tracker) {
3670 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3671 pf->irq_tracker = NULL;
3672 }
3673}
3674
3675/**
3676 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3677 * @pf: board private structure to initialize
3678 */
3679static int ice_init_interrupt_scheme(struct ice_pf *pf)
3680{
3681 int vectors;
3682
3683 vectors = ice_ena_msix_range(pf);
3684
3685 if (vectors < 0)
3686 return vectors;
3687
3688 /* set up vector assignment tracking */
3689 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3690 struct_size(pf->irq_tracker, list, vectors),
3691 GFP_KERNEL);
3692 if (!pf->irq_tracker) {
3693 ice_dis_msix(pf);
3694 return -ENOMEM;
3695 }
3696
3697 /* populate SW interrupts pool with number of OS granted IRQs. */
3698 pf->num_avail_sw_msix = (u16)vectors;
3699 pf->irq_tracker->num_entries = (u16)vectors;
3700 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3701
3702 return 0;
3703}
3704
3705/**
3706 * ice_is_wol_supported - check if WoL is supported
3707 * @hw: pointer to hardware info
3708 *
3709 * Check if WoL is supported based on the HW configuration.
3710 * Returns true if NVM supports and enables WoL for this port, false otherwise
3711 */
3712bool ice_is_wol_supported(struct ice_hw *hw)
3713{
3714 u16 wol_ctrl;
3715
3716 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3717 * word) indicates WoL is not supported on the corresponding PF ID.
3718 */
3719 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3720 return false;
3721
3722 return !(BIT(hw->port_info->lport) & wol_ctrl);
3723}
3724
3725/**
3726 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3727 * @vsi: VSI being changed
3728 * @new_rx: new number of Rx queues
3729 * @new_tx: new number of Tx queues
3730 *
3731 * Only change the number of queues if new_tx, or new_rx is non-0.
3732 *
3733 * Returns 0 on success.
3734 */
3735int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3736{
3737 struct ice_pf *pf = vsi->back;
3738 int err = 0, timeout = 50;
3739
3740 if (!new_rx && !new_tx)
3741 return -EINVAL;
3742
3743 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3744 timeout--;
3745 if (!timeout)
3746 return -EBUSY;
3747 usleep_range(1000, 2000);
3748 }
3749
3750 if (new_tx)
3751 vsi->req_txq = (u16)new_tx;
3752 if (new_rx)
3753 vsi->req_rxq = (u16)new_rx;
3754
3755 /* set for the next time the netdev is started */
3756 if (!netif_running(vsi->netdev)) {
3757 ice_vsi_rebuild(vsi, false);
3758 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3759 goto done;
3760 }
3761
3762 ice_vsi_close(vsi);
3763 ice_vsi_rebuild(vsi, false);
3764 ice_pf_dcb_recfg(pf);
3765 ice_vsi_open(vsi);
3766done:
3767 clear_bit(ICE_CFG_BUSY, pf->state);
3768 return err;
3769}
3770
3771/**
3772 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3773 * @pf: PF to configure
3774 *
3775 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3776 * VSI can still Tx/Rx VLAN tagged packets.
3777 */
3778static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3779{
3780 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3781 struct ice_vsi_ctx *ctxt;
3782 enum ice_status status;
3783 struct ice_hw *hw;
3784
3785 if (!vsi)
3786 return;
3787
3788 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3789 if (!ctxt)
3790 return;
3791
3792 hw = &pf->hw;
3793 ctxt->info = vsi->info;
3794
3795 ctxt->info.valid_sections =
3796 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3797 ICE_AQ_VSI_PROP_SECURITY_VALID |
3798 ICE_AQ_VSI_PROP_SW_VALID);
3799
3800 /* disable VLAN anti-spoof */
3801 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3802 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3803
3804 /* disable VLAN pruning and keep all other settings */
3805 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3806
3807 /* allow all VLANs on Tx and don't strip on Rx */
3808 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3809 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3810
3811 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3812 if (status) {
3813 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3814 ice_stat_str(status),
3815 ice_aq_str(hw->adminq.sq_last_status));
3816 } else {
3817 vsi->info.sec_flags = ctxt->info.sec_flags;
3818 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3819 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3820 }
3821
3822 kfree(ctxt);
3823}
3824
3825/**
3826 * ice_log_pkg_init - log result of DDP package load
3827 * @hw: pointer to hardware info
3828 * @status: status of package load
3829 */
3830static void
3831ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3832{
3833 struct ice_pf *pf = (struct ice_pf *)hw->back;
3834 struct device *dev = ice_pf_to_dev(pf);
3835
3836 switch (*status) {
3837 case ICE_SUCCESS:
3838 /* The package download AdminQ command returned success because
3839 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3840 * already a package loaded on the device.
3841 */
3842 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3843 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3844 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3845 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3846 !memcmp(hw->pkg_name, hw->active_pkg_name,
3847 sizeof(hw->pkg_name))) {
3848 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3849 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3850 hw->active_pkg_name,
3851 hw->active_pkg_ver.major,
3852 hw->active_pkg_ver.minor,
3853 hw->active_pkg_ver.update,
3854 hw->active_pkg_ver.draft);
3855 else
3856 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3857 hw->active_pkg_name,
3858 hw->active_pkg_ver.major,
3859 hw->active_pkg_ver.minor,
3860 hw->active_pkg_ver.update,
3861 hw->active_pkg_ver.draft);
3862 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3863 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3864 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3865 hw->active_pkg_name,
3866 hw->active_pkg_ver.major,
3867 hw->active_pkg_ver.minor,
3868 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3869 *status = ICE_ERR_NOT_SUPPORTED;
3870 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3871 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3872 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3873 hw->active_pkg_name,
3874 hw->active_pkg_ver.major,
3875 hw->active_pkg_ver.minor,
3876 hw->active_pkg_ver.update,
3877 hw->active_pkg_ver.draft,
3878 hw->pkg_name,
3879 hw->pkg_ver.major,
3880 hw->pkg_ver.minor,
3881 hw->pkg_ver.update,
3882 hw->pkg_ver.draft);
3883 } else {
3884 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3885 *status = ICE_ERR_NOT_SUPPORTED;
3886 }
3887 break;
3888 case ICE_ERR_FW_DDP_MISMATCH:
3889 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3890 break;
3891 case ICE_ERR_BUF_TOO_SHORT:
3892 case ICE_ERR_CFG:
3893 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3894 break;
3895 case ICE_ERR_NOT_SUPPORTED:
3896 /* Package File version not supported */
3897 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3898 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3899 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3900 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3901 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3902 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3903 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3904 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3905 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3906 break;
3907 case ICE_ERR_AQ_ERROR:
3908 switch (hw->pkg_dwnld_status) {
3909 case ICE_AQ_RC_ENOSEC:
3910 case ICE_AQ_RC_EBADSIG:
3911 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3912 return;
3913 case ICE_AQ_RC_ESVN:
3914 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3915 return;
3916 case ICE_AQ_RC_EBADMAN:
3917 case ICE_AQ_RC_EBADBUF:
3918 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3919 /* poll for reset to complete */
3920 if (ice_check_reset(hw))
3921 dev_err(dev, "Error resetting device. Please reload the driver\n");
3922 return;
3923 default:
3924 break;
3925 }
3926 fallthrough;
3927 default:
3928 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3929 *status);
3930 break;
3931 }
3932}
3933
3934/**
3935 * ice_load_pkg - load/reload the DDP Package file
3936 * @firmware: firmware structure when firmware requested or NULL for reload
3937 * @pf: pointer to the PF instance
3938 *
3939 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3940 * initialize HW tables.
3941 */
3942static void
3943ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3944{
3945 enum ice_status status = ICE_ERR_PARAM;
3946 struct device *dev = ice_pf_to_dev(pf);
3947 struct ice_hw *hw = &pf->hw;
3948
3949 /* Load DDP Package */
3950 if (firmware && !hw->pkg_copy) {
3951 status = ice_copy_and_init_pkg(hw, firmware->data,
3952 firmware->size);
3953 ice_log_pkg_init(hw, &status);
3954 } else if (!firmware && hw->pkg_copy) {
3955 /* Reload package during rebuild after CORER/GLOBR reset */
3956 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3957 ice_log_pkg_init(hw, &status);
3958 } else {
3959 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3960 }
3961
3962 if (status) {
3963 /* Safe Mode */
3964 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3965 return;
3966 }
3967
3968 /* Successful download package is the precondition for advanced
3969 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3970 */
3971 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3972}
3973
3974/**
3975 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3976 * @pf: pointer to the PF structure
3977 *
3978 * There is no error returned here because the driver should be able to handle
3979 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3980 * specifically with Tx.
3981 */
3982static void ice_verify_cacheline_size(struct ice_pf *pf)
3983{
3984 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3985 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3986 ICE_CACHE_LINE_BYTES);
3987}
3988
3989/**
3990 * ice_send_version - update firmware with driver version
3991 * @pf: PF struct
3992 *
3993 * Returns ICE_SUCCESS on success, else error code
3994 */
3995static enum ice_status ice_send_version(struct ice_pf *pf)
3996{
3997 struct ice_driver_ver dv;
3998
3999 dv.major_ver = 0xff;
4000 dv.minor_ver = 0xff;
4001 dv.build_ver = 0xff;
4002 dv.subbuild_ver = 0;
4003 strscpy((char *)dv.driver_string, UTS_RELEASE,
4004 sizeof(dv.driver_string));
4005 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4006}
4007
4008/**
4009 * ice_init_fdir - Initialize flow director VSI and configuration
4010 * @pf: pointer to the PF instance
4011 *
4012 * returns 0 on success, negative on error
4013 */
4014static int ice_init_fdir(struct ice_pf *pf)
4015{
4016 struct device *dev = ice_pf_to_dev(pf);
4017 struct ice_vsi *ctrl_vsi;
4018 int err;
4019
4020 /* Side Band Flow Director needs to have a control VSI.
4021 * Allocate it and store it in the PF.
4022 */
4023 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4024 if (!ctrl_vsi) {
4025 dev_dbg(dev, "could not create control VSI\n");
4026 return -ENOMEM;
4027 }
4028
4029 err = ice_vsi_open_ctrl(ctrl_vsi);
4030 if (err) {
4031 dev_dbg(dev, "could not open control VSI\n");
4032 goto err_vsi_open;
4033 }
4034
4035 mutex_init(&pf->hw.fdir_fltr_lock);
4036
4037 err = ice_fdir_create_dflt_rules(pf);
4038 if (err)
4039 goto err_fdir_rule;
4040
4041 return 0;
4042
4043err_fdir_rule:
4044 ice_fdir_release_flows(&pf->hw);
4045 ice_vsi_close(ctrl_vsi);
4046err_vsi_open:
4047 ice_vsi_release(ctrl_vsi);
4048 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4049 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4050 pf->ctrl_vsi_idx = ICE_NO_VSI;
4051 }
4052 return err;
4053}
4054
4055/**
4056 * ice_get_opt_fw_name - return optional firmware file name or NULL
4057 * @pf: pointer to the PF instance
4058 */
4059static char *ice_get_opt_fw_name(struct ice_pf *pf)
4060{
4061 /* Optional firmware name same as default with additional dash
4062 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4063 */
4064 struct pci_dev *pdev = pf->pdev;
4065 char *opt_fw_filename;
4066 u64 dsn;
4067
4068 /* Determine the name of the optional file using the DSN (two
4069 * dwords following the start of the DSN Capability).
4070 */
4071 dsn = pci_get_dsn(pdev);
4072 if (!dsn)
4073 return NULL;
4074
4075 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4076 if (!opt_fw_filename)
4077 return NULL;
4078
4079 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4080 ICE_DDP_PKG_PATH, dsn);
4081
4082 return opt_fw_filename;
4083}
4084
4085/**
4086 * ice_request_fw - Device initialization routine
4087 * @pf: pointer to the PF instance
4088 */
4089static void ice_request_fw(struct ice_pf *pf)
4090{
4091 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4092 const struct firmware *firmware = NULL;
4093 struct device *dev = ice_pf_to_dev(pf);
4094 int err = 0;
4095
4096 /* optional device-specific DDP (if present) overrides the default DDP
4097 * package file. kernel logs a debug message if the file doesn't exist,
4098 * and warning messages for other errors.
4099 */
4100 if (opt_fw_filename) {
4101 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4102 if (err) {
4103 kfree(opt_fw_filename);
4104 goto dflt_pkg_load;
4105 }
4106
4107 /* request for firmware was successful. Download to device */
4108 ice_load_pkg(firmware, pf);
4109 kfree(opt_fw_filename);
4110 release_firmware(firmware);
4111 return;
4112 }
4113
4114dflt_pkg_load:
4115 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4116 if (err) {
4117 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4118 return;
4119 }
4120
4121 /* request for firmware was successful. Download to device */
4122 ice_load_pkg(firmware, pf);
4123 release_firmware(firmware);
4124}
4125
4126/**
4127 * ice_print_wake_reason - show the wake up cause in the log
4128 * @pf: pointer to the PF struct
4129 */
4130static void ice_print_wake_reason(struct ice_pf *pf)
4131{
4132 u32 wus = pf->wakeup_reason;
4133 const char *wake_str;
4134
4135 /* if no wake event, nothing to print */
4136 if (!wus)
4137 return;
4138
4139 if (wus & PFPM_WUS_LNKC_M)
4140 wake_str = "Link\n";
4141 else if (wus & PFPM_WUS_MAG_M)
4142 wake_str = "Magic Packet\n";
4143 else if (wus & PFPM_WUS_MNG_M)
4144 wake_str = "Management\n";
4145 else if (wus & PFPM_WUS_FW_RST_WK_M)
4146 wake_str = "Firmware Reset\n";
4147 else
4148 wake_str = "Unknown\n";
4149
4150 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4151}
4152
4153/**
4154 * ice_register_netdev - register netdev and devlink port
4155 * @pf: pointer to the PF struct
4156 */
4157static int ice_register_netdev(struct ice_pf *pf)
4158{
4159 struct ice_vsi *vsi;
4160 int err = 0;
4161
4162 vsi = ice_get_main_vsi(pf);
4163 if (!vsi || !vsi->netdev)
4164 return -EIO;
4165
4166 err = register_netdev(vsi->netdev);
4167 if (err)
4168 goto err_register_netdev;
4169
4170 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4171 netif_carrier_off(vsi->netdev);
4172 netif_tx_stop_all_queues(vsi->netdev);
4173 err = ice_devlink_create_port(vsi);
4174 if (err)
4175 goto err_devlink_create;
4176
4177 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
4178
4179 return 0;
4180err_devlink_create:
4181 unregister_netdev(vsi->netdev);
4182 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4183err_register_netdev:
4184 free_netdev(vsi->netdev);
4185 vsi->netdev = NULL;
4186 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4187 return err;
4188}
4189
4190/**
4191 * ice_probe - Device initialization routine
4192 * @pdev: PCI device information struct
4193 * @ent: entry in ice_pci_tbl
4194 *
4195 * Returns 0 on success, negative on failure
4196 */
4197static int
4198ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4199{
4200 struct device *dev = &pdev->dev;
4201 struct ice_pf *pf;
4202 struct ice_hw *hw;
4203 int i, err;
4204
4205 if (pdev->is_virtfn) {
4206 dev_err(dev, "can't probe a virtual function\n");
4207 return -EINVAL;
4208 }
4209
4210 /* this driver uses devres, see
4211 * Documentation/driver-api/driver-model/devres.rst
4212 */
4213 err = pcim_enable_device(pdev);
4214 if (err)
4215 return err;
4216
4217 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4218 if (err) {
4219 dev_err(dev, "BAR0 I/O map error %d\n", err);
4220 return err;
4221 }
4222
4223 pf = ice_allocate_pf(dev);
4224 if (!pf)
4225 return -ENOMEM;
4226
4227 /* initialize Auxiliary index to invalid value */
4228 pf->aux_idx = -1;
4229
4230 /* set up for high or low DMA */
4231 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4232 if (err)
4233 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4234 if (err) {
4235 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4236 return err;
4237 }
4238
4239 pci_enable_pcie_error_reporting(pdev);
4240 pci_set_master(pdev);
4241
4242 pf->pdev = pdev;
4243 pci_set_drvdata(pdev, pf);
4244 set_bit(ICE_DOWN, pf->state);
4245 /* Disable service task until DOWN bit is cleared */
4246 set_bit(ICE_SERVICE_DIS, pf->state);
4247
4248 hw = &pf->hw;
4249 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4250 pci_save_state(pdev);
4251
4252 hw->back = pf;
4253 hw->vendor_id = pdev->vendor;
4254 hw->device_id = pdev->device;
4255 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4256 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4257 hw->subsystem_device_id = pdev->subsystem_device;
4258 hw->bus.device = PCI_SLOT(pdev->devfn);
4259 hw->bus.func = PCI_FUNC(pdev->devfn);
4260 ice_set_ctrlq_len(hw);
4261
4262 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4263
4264 err = ice_devlink_register(pf);
4265 if (err) {
4266 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4267 goto err_exit_unroll;
4268 }
4269
4270#ifndef CONFIG_DYNAMIC_DEBUG
4271 if (debug < -1)
4272 hw->debug_mask = debug;
4273#endif
4274
4275 err = ice_init_hw(hw);
4276 if (err) {
4277 dev_err(dev, "ice_init_hw failed: %d\n", err);
4278 err = -EIO;
4279 goto err_exit_unroll;
4280 }
4281
4282 ice_request_fw(pf);
4283
4284 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4285 * set in pf->state, which will cause ice_is_safe_mode to return
4286 * true
4287 */
4288 if (ice_is_safe_mode(pf)) {
4289 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4290 /* we already got function/device capabilities but these don't
4291 * reflect what the driver needs to do in safe mode. Instead of
4292 * adding conditional logic everywhere to ignore these
4293 * device/function capabilities, override them.
4294 */
4295 ice_set_safe_mode_caps(hw);
4296 }
4297
4298 err = ice_init_pf(pf);
4299 if (err) {
4300 dev_err(dev, "ice_init_pf failed: %d\n", err);
4301 goto err_init_pf_unroll;
4302 }
4303
4304 ice_devlink_init_regions(pf);
4305
4306 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4307 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4308 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4309 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4310 i = 0;
4311 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4312 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4313 pf->hw.tnl.valid_count[TNL_VXLAN];
4314 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4315 UDP_TUNNEL_TYPE_VXLAN;
4316 i++;
4317 }
4318 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4319 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4320 pf->hw.tnl.valid_count[TNL_GENEVE];
4321 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4322 UDP_TUNNEL_TYPE_GENEVE;
4323 i++;
4324 }
4325
4326 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4327 if (!pf->num_alloc_vsi) {
4328 err = -EIO;
4329 goto err_init_pf_unroll;
4330 }
4331 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4332 dev_warn(&pf->pdev->dev,
4333 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4334 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4335 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4336 }
4337
4338 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4339 GFP_KERNEL);
4340 if (!pf->vsi) {
4341 err = -ENOMEM;
4342 goto err_init_pf_unroll;
4343 }
4344
4345 err = ice_init_interrupt_scheme(pf);
4346 if (err) {
4347 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4348 err = -EIO;
4349 goto err_init_vsi_unroll;
4350 }
4351
4352 /* In case of MSIX we are going to setup the misc vector right here
4353 * to handle admin queue events etc. In case of legacy and MSI
4354 * the misc functionality and queue processing is combined in
4355 * the same vector and that gets setup at open.
4356 */
4357 err = ice_req_irq_msix_misc(pf);
4358 if (err) {
4359 dev_err(dev, "setup of misc vector failed: %d\n", err);
4360 goto err_init_interrupt_unroll;
4361 }
4362
4363 /* create switch struct for the switch element created by FW on boot */
4364 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4365 if (!pf->first_sw) {
4366 err = -ENOMEM;
4367 goto err_msix_misc_unroll;
4368 }
4369
4370 if (hw->evb_veb)
4371 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4372 else
4373 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4374
4375 pf->first_sw->pf = pf;
4376
4377 /* record the sw_id available for later use */
4378 pf->first_sw->sw_id = hw->port_info->sw_id;
4379
4380 err = ice_setup_pf_sw(pf);
4381 if (err) {
4382 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4383 goto err_alloc_sw_unroll;
4384 }
4385
4386 clear_bit(ICE_SERVICE_DIS, pf->state);
4387
4388 /* tell the firmware we are up */
4389 err = ice_send_version(pf);
4390 if (err) {
4391 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4392 UTS_RELEASE, err);
4393 goto err_send_version_unroll;
4394 }
4395
4396 /* since everything is good, start the service timer */
4397 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4398
4399 err = ice_init_link_events(pf->hw.port_info);
4400 if (err) {
4401 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4402 goto err_send_version_unroll;
4403 }
4404
4405 /* not a fatal error if this fails */
4406 err = ice_init_nvm_phy_type(pf->hw.port_info);
4407 if (err)
4408 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4409
4410 /* not a fatal error if this fails */
4411 err = ice_update_link_info(pf->hw.port_info);
4412 if (err)
4413 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4414
4415 ice_init_link_dflt_override(pf->hw.port_info);
4416
4417 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4418
4419 /* if media available, initialize PHY settings */
4420 if (pf->hw.port_info->phy.link_info.link_info &
4421 ICE_AQ_MEDIA_AVAILABLE) {
4422 /* not a fatal error if this fails */
4423 err = ice_init_phy_user_cfg(pf->hw.port_info);
4424 if (err)
4425 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4426
4427 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4428 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4429
4430 if (vsi)
4431 ice_configure_phy(vsi);
4432 }
4433 } else {
4434 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4435 }
4436
4437 ice_verify_cacheline_size(pf);
4438
4439 /* Save wakeup reason register for later use */
4440 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4441
4442 /* check for a power management event */
4443 ice_print_wake_reason(pf);
4444
4445 /* clear wake status, all bits */
4446 wr32(hw, PFPM_WUS, U32_MAX);
4447
4448 /* Disable WoL at init, wait for user to enable */
4449 device_set_wakeup_enable(dev, false);
4450
4451 if (ice_is_safe_mode(pf)) {
4452 ice_set_safe_mode_vlan_cfg(pf);
4453 goto probe_done;
4454 }
4455
4456 /* initialize DDP driven features */
4457 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4458 ice_ptp_init(pf);
4459
4460 /* Note: Flow director init failure is non-fatal to load */
4461 if (ice_init_fdir(pf))
4462 dev_err(dev, "could not initialize flow director\n");
4463
4464 /* Note: DCB init failure is non-fatal to load */
4465 if (ice_init_pf_dcb(pf, false)) {
4466 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4467 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4468 } else {
4469 ice_cfg_lldp_mib_change(&pf->hw, true);
4470 }
4471
4472 if (ice_init_lag(pf))
4473 dev_warn(dev, "Failed to init link aggregation support\n");
4474
4475 /* print PCI link speed and width */
4476 pcie_print_link_status(pf->pdev);
4477
4478probe_done:
4479 err = ice_register_netdev(pf);
4480 if (err)
4481 goto err_netdev_reg;
4482
4483 /* ready to go, so clear down state bit */
4484 clear_bit(ICE_DOWN, pf->state);
4485 if (ice_is_aux_ena(pf)) {
4486 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4487 if (pf->aux_idx < 0) {
4488 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4489 err = -ENOMEM;
4490 goto err_netdev_reg;
4491 }
4492
4493 err = ice_init_rdma(pf);
4494 if (err) {
4495 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4496 err = -EIO;
4497 goto err_init_aux_unroll;
4498 }
4499 } else {
4500 dev_warn(dev, "RDMA is not supported on this device\n");
4501 }
4502
4503 return 0;
4504
4505err_init_aux_unroll:
4506 pf->adev = NULL;
4507 ida_free(&ice_aux_ida, pf->aux_idx);
4508err_netdev_reg:
4509err_send_version_unroll:
4510 ice_vsi_release_all(pf);
4511err_alloc_sw_unroll:
4512 set_bit(ICE_SERVICE_DIS, pf->state);
4513 set_bit(ICE_DOWN, pf->state);
4514 devm_kfree(dev, pf->first_sw);
4515err_msix_misc_unroll:
4516 ice_free_irq_msix_misc(pf);
4517err_init_interrupt_unroll:
4518 ice_clear_interrupt_scheme(pf);
4519err_init_vsi_unroll:
4520 devm_kfree(dev, pf->vsi);
4521err_init_pf_unroll:
4522 ice_deinit_pf(pf);
4523 ice_devlink_destroy_regions(pf);
4524 ice_deinit_hw(hw);
4525err_exit_unroll:
4526 ice_devlink_unregister(pf);
4527 pci_disable_pcie_error_reporting(pdev);
4528 pci_disable_device(pdev);
4529 return err;
4530}
4531
4532/**
4533 * ice_set_wake - enable or disable Wake on LAN
4534 * @pf: pointer to the PF struct
4535 *
4536 * Simple helper for WoL control
4537 */
4538static void ice_set_wake(struct ice_pf *pf)
4539{
4540 struct ice_hw *hw = &pf->hw;
4541 bool wol = pf->wol_ena;
4542
4543 /* clear wake state, otherwise new wake events won't fire */
4544 wr32(hw, PFPM_WUS, U32_MAX);
4545
4546 /* enable / disable APM wake up, no RMW needed */
4547 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4548
4549 /* set magic packet filter enabled */
4550 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4551}
4552
4553/**
4554 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4555 * @pf: pointer to the PF struct
4556 *
4557 * Issue firmware command to enable multicast magic wake, making
4558 * sure that any locally administered address (LAA) is used for
4559 * wake, and that PF reset doesn't undo the LAA.
4560 */
4561static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4562{
4563 struct device *dev = ice_pf_to_dev(pf);
4564 struct ice_hw *hw = &pf->hw;
4565 enum ice_status status;
4566 u8 mac_addr[ETH_ALEN];
4567 struct ice_vsi *vsi;
4568 u8 flags;
4569
4570 if (!pf->wol_ena)
4571 return;
4572
4573 vsi = ice_get_main_vsi(pf);
4574 if (!vsi)
4575 return;
4576
4577 /* Get current MAC address in case it's an LAA */
4578 if (vsi->netdev)
4579 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4580 else
4581 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4582
4583 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4584 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4585 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4586
4587 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4588 if (status)
4589 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4590 ice_stat_str(status),
4591 ice_aq_str(hw->adminq.sq_last_status));
4592}
4593
4594/**
4595 * ice_remove - Device removal routine
4596 * @pdev: PCI device information struct
4597 */
4598static void ice_remove(struct pci_dev *pdev)
4599{
4600 struct ice_pf *pf = pci_get_drvdata(pdev);
4601 int i;
4602
4603 if (!pf)
4604 return;
4605
4606 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4607 if (!ice_is_reset_in_progress(pf->state))
4608 break;
4609 msleep(100);
4610 }
4611
4612 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4613 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4614 ice_free_vfs(pf);
4615 }
4616
4617 ice_service_task_stop(pf);
4618
4619 ice_aq_cancel_waiting_tasks(pf);
4620 ice_unplug_aux_dev(pf);
4621 if (pf->aux_idx >= 0)
4622 ida_free(&ice_aux_ida, pf->aux_idx);
4623 set_bit(ICE_DOWN, pf->state);
4624
4625 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4626 ice_deinit_lag(pf);
4627 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4628 ice_ptp_release(pf);
4629 if (!ice_is_safe_mode(pf))
4630 ice_remove_arfs(pf);
4631 ice_setup_mc_magic_wake(pf);
4632 ice_vsi_release_all(pf);
4633 ice_set_wake(pf);
4634 ice_free_irq_msix_misc(pf);
4635 ice_for_each_vsi(pf, i) {
4636 if (!pf->vsi[i])
4637 continue;
4638 ice_vsi_free_q_vectors(pf->vsi[i]);
4639 }
4640 ice_deinit_pf(pf);
4641 ice_devlink_destroy_regions(pf);
4642 ice_deinit_hw(&pf->hw);
4643 ice_devlink_unregister(pf);
4644
4645 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4646 * do it via ice_schedule_reset() since there is no need to rebuild
4647 * and the service task is already stopped.
4648 */
4649 ice_reset(&pf->hw, ICE_RESET_PFR);
4650 pci_wait_for_pending_transaction(pdev);
4651 ice_clear_interrupt_scheme(pf);
4652 pci_disable_pcie_error_reporting(pdev);
4653 pci_disable_device(pdev);
4654}
4655
4656/**
4657 * ice_shutdown - PCI callback for shutting down device
4658 * @pdev: PCI device information struct
4659 */
4660static void ice_shutdown(struct pci_dev *pdev)
4661{
4662 struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664 ice_remove(pdev);
4665
4666 if (system_state == SYSTEM_POWER_OFF) {
4667 pci_wake_from_d3(pdev, pf->wol_ena);
4668 pci_set_power_state(pdev, PCI_D3hot);
4669 }
4670}
4671
4672#ifdef CONFIG_PM
4673/**
4674 * ice_prepare_for_shutdown - prep for PCI shutdown
4675 * @pf: board private structure
4676 *
4677 * Inform or close all dependent features in prep for PCI device shutdown
4678 */
4679static void ice_prepare_for_shutdown(struct ice_pf *pf)
4680{
4681 struct ice_hw *hw = &pf->hw;
4682 u32 v;
4683
4684 /* Notify VFs of impending reset */
4685 if (ice_check_sq_alive(hw, &hw->mailboxq))
4686 ice_vc_notify_reset(pf);
4687
4688 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4689
4690 /* disable the VSIs and their queues that are not already DOWN */
4691 ice_pf_dis_all_vsi(pf, false);
4692
4693 ice_for_each_vsi(pf, v)
4694 if (pf->vsi[v])
4695 pf->vsi[v]->vsi_num = 0;
4696
4697 ice_shutdown_all_ctrlq(hw);
4698}
4699
4700/**
4701 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4702 * @pf: board private structure to reinitialize
4703 *
4704 * This routine reinitialize interrupt scheme that was cleared during
4705 * power management suspend callback.
4706 *
4707 * This should be called during resume routine to re-allocate the q_vectors
4708 * and reacquire interrupts.
4709 */
4710static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4711{
4712 struct device *dev = ice_pf_to_dev(pf);
4713 int ret, v;
4714
4715 /* Since we clear MSIX flag during suspend, we need to
4716 * set it back during resume...
4717 */
4718
4719 ret = ice_init_interrupt_scheme(pf);
4720 if (ret) {
4721 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4722 return ret;
4723 }
4724
4725 /* Remap vectors and rings, after successful re-init interrupts */
4726 ice_for_each_vsi(pf, v) {
4727 if (!pf->vsi[v])
4728 continue;
4729
4730 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4731 if (ret)
4732 goto err_reinit;
4733 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4734 }
4735
4736 ret = ice_req_irq_msix_misc(pf);
4737 if (ret) {
4738 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4739 ret);
4740 goto err_reinit;
4741 }
4742
4743 return 0;
4744
4745err_reinit:
4746 while (v--)
4747 if (pf->vsi[v])
4748 ice_vsi_free_q_vectors(pf->vsi[v]);
4749
4750 return ret;
4751}
4752
4753/**
4754 * ice_suspend
4755 * @dev: generic device information structure
4756 *
4757 * Power Management callback to quiesce the device and prepare
4758 * for D3 transition.
4759 */
4760static int __maybe_unused ice_suspend(struct device *dev)
4761{
4762 struct pci_dev *pdev = to_pci_dev(dev);
4763 struct ice_pf *pf;
4764 int disabled, v;
4765
4766 pf = pci_get_drvdata(pdev);
4767
4768 if (!ice_pf_state_is_nominal(pf)) {
4769 dev_err(dev, "Device is not ready, no need to suspend it\n");
4770 return -EBUSY;
4771 }
4772
4773 /* Stop watchdog tasks until resume completion.
4774 * Even though it is most likely that the service task is
4775 * disabled if the device is suspended or down, the service task's
4776 * state is controlled by a different state bit, and we should
4777 * store and honor whatever state that bit is in at this point.
4778 */
4779 disabled = ice_service_task_stop(pf);
4780
4781 ice_unplug_aux_dev(pf);
4782
4783 /* Already suspended?, then there is nothing to do */
4784 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4785 if (!disabled)
4786 ice_service_task_restart(pf);
4787 return 0;
4788 }
4789
4790 if (test_bit(ICE_DOWN, pf->state) ||
4791 ice_is_reset_in_progress(pf->state)) {
4792 dev_err(dev, "can't suspend device in reset or already down\n");
4793 if (!disabled)
4794 ice_service_task_restart(pf);
4795 return 0;
4796 }
4797
4798 ice_setup_mc_magic_wake(pf);
4799
4800 ice_prepare_for_shutdown(pf);
4801
4802 ice_set_wake(pf);
4803
4804 /* Free vectors, clear the interrupt scheme and release IRQs
4805 * for proper hibernation, especially with large number of CPUs.
4806 * Otherwise hibernation might fail when mapping all the vectors back
4807 * to CPU0.
4808 */
4809 ice_free_irq_msix_misc(pf);
4810 ice_for_each_vsi(pf, v) {
4811 if (!pf->vsi[v])
4812 continue;
4813 ice_vsi_free_q_vectors(pf->vsi[v]);
4814 }
4815 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4816 ice_clear_interrupt_scheme(pf);
4817
4818 pci_save_state(pdev);
4819 pci_wake_from_d3(pdev, pf->wol_ena);
4820 pci_set_power_state(pdev, PCI_D3hot);
4821 return 0;
4822}
4823
4824/**
4825 * ice_resume - PM callback for waking up from D3
4826 * @dev: generic device information structure
4827 */
4828static int __maybe_unused ice_resume(struct device *dev)
4829{
4830 struct pci_dev *pdev = to_pci_dev(dev);
4831 enum ice_reset_req reset_type;
4832 struct ice_pf *pf;
4833 struct ice_hw *hw;
4834 int ret;
4835
4836 pci_set_power_state(pdev, PCI_D0);
4837 pci_restore_state(pdev);
4838 pci_save_state(pdev);
4839
4840 if (!pci_device_is_present(pdev))
4841 return -ENODEV;
4842
4843 ret = pci_enable_device_mem(pdev);
4844 if (ret) {
4845 dev_err(dev, "Cannot enable device after suspend\n");
4846 return ret;
4847 }
4848
4849 pf = pci_get_drvdata(pdev);
4850 hw = &pf->hw;
4851
4852 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4853 ice_print_wake_reason(pf);
4854
4855 /* We cleared the interrupt scheme when we suspended, so we need to
4856 * restore it now to resume device functionality.
4857 */
4858 ret = ice_reinit_interrupt_scheme(pf);
4859 if (ret)
4860 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4861
4862 clear_bit(ICE_DOWN, pf->state);
4863 /* Now perform PF reset and rebuild */
4864 reset_type = ICE_RESET_PFR;
4865 /* re-enable service task for reset, but allow reset to schedule it */
4866 clear_bit(ICE_SERVICE_DIS, pf->state);
4867
4868 if (ice_schedule_reset(pf, reset_type))
4869 dev_err(dev, "Reset during resume failed.\n");
4870
4871 clear_bit(ICE_SUSPENDED, pf->state);
4872 ice_service_task_restart(pf);
4873
4874 /* Restart the service task */
4875 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4876
4877 return 0;
4878}
4879#endif /* CONFIG_PM */
4880
4881/**
4882 * ice_pci_err_detected - warning that PCI error has been detected
4883 * @pdev: PCI device information struct
4884 * @err: the type of PCI error
4885 *
4886 * Called to warn that something happened on the PCI bus and the error handling
4887 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4888 */
4889static pci_ers_result_t
4890ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4891{
4892 struct ice_pf *pf = pci_get_drvdata(pdev);
4893
4894 if (!pf) {
4895 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4896 __func__, err);
4897 return PCI_ERS_RESULT_DISCONNECT;
4898 }
4899
4900 if (!test_bit(ICE_SUSPENDED, pf->state)) {
4901 ice_service_task_stop(pf);
4902
4903 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4904 set_bit(ICE_PFR_REQ, pf->state);
4905 ice_prepare_for_reset(pf);
4906 }
4907 }
4908
4909 return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4914 * @pdev: PCI device information struct
4915 *
4916 * Called to determine if the driver can recover from the PCI slot reset by
4917 * using a register read to determine if the device is recoverable.
4918 */
4919static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4920{
4921 struct ice_pf *pf = pci_get_drvdata(pdev);
4922 pci_ers_result_t result;
4923 int err;
4924 u32 reg;
4925
4926 err = pci_enable_device_mem(pdev);
4927 if (err) {
4928 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4929 err);
4930 result = PCI_ERS_RESULT_DISCONNECT;
4931 } else {
4932 pci_set_master(pdev);
4933 pci_restore_state(pdev);
4934 pci_save_state(pdev);
4935 pci_wake_from_d3(pdev, false);
4936
4937 /* Check for life */
4938 reg = rd32(&pf->hw, GLGEN_RTRIG);
4939 if (!reg)
4940 result = PCI_ERS_RESULT_RECOVERED;
4941 else
4942 result = PCI_ERS_RESULT_DISCONNECT;
4943 }
4944
4945 err = pci_aer_clear_nonfatal_status(pdev);
4946 if (err)
4947 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4948 err);
4949 /* non-fatal, continue */
4950
4951 return result;
4952}
4953
4954/**
4955 * ice_pci_err_resume - restart operations after PCI error recovery
4956 * @pdev: PCI device information struct
4957 *
4958 * Called to allow the driver to bring things back up after PCI error and/or
4959 * reset recovery have finished
4960 */
4961static void ice_pci_err_resume(struct pci_dev *pdev)
4962{
4963 struct ice_pf *pf = pci_get_drvdata(pdev);
4964
4965 if (!pf) {
4966 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4967 __func__);
4968 return;
4969 }
4970
4971 if (test_bit(ICE_SUSPENDED, pf->state)) {
4972 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4973 __func__);
4974 return;
4975 }
4976
4977 ice_restore_all_vfs_msi_state(pdev);
4978
4979 ice_do_reset(pf, ICE_RESET_PFR);
4980 ice_service_task_restart(pf);
4981 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4982}
4983
4984/**
4985 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4986 * @pdev: PCI device information struct
4987 */
4988static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4989{
4990 struct ice_pf *pf = pci_get_drvdata(pdev);
4991
4992 if (!test_bit(ICE_SUSPENDED, pf->state)) {
4993 ice_service_task_stop(pf);
4994
4995 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4996 set_bit(ICE_PFR_REQ, pf->state);
4997 ice_prepare_for_reset(pf);
4998 }
4999 }
5000}
5001
5002/**
5003 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5004 * @pdev: PCI device information struct
5005 */
5006static void ice_pci_err_reset_done(struct pci_dev *pdev)
5007{
5008 ice_pci_err_resume(pdev);
5009}
5010
5011/* ice_pci_tbl - PCI Device ID Table
5012 *
5013 * Wildcard entries (PCI_ANY_ID) should come last
5014 * Last entry must be all 0s
5015 *
5016 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5017 * Class, Class Mask, private data (not used) }
5018 */
5019static const struct pci_device_id ice_pci_tbl[] = {
5020 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5021 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5022 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5023 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5024 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5025 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5026 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5027 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5028 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5029 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5030 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5031 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5032 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5033 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5034 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5035 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5036 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5037 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5038 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5039 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5040 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5041 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5042 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5043 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5044 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5045 /* required last entry */
5046 { 0, }
5047};
5048MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5049
5050static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5051
5052static const struct pci_error_handlers ice_pci_err_handler = {
5053 .error_detected = ice_pci_err_detected,
5054 .slot_reset = ice_pci_err_slot_reset,
5055 .reset_prepare = ice_pci_err_reset_prepare,
5056 .reset_done = ice_pci_err_reset_done,
5057 .resume = ice_pci_err_resume
5058};
5059
5060static struct pci_driver ice_driver = {
5061 .name = KBUILD_MODNAME,
5062 .id_table = ice_pci_tbl,
5063 .probe = ice_probe,
5064 .remove = ice_remove,
5065#ifdef CONFIG_PM
5066 .driver.pm = &ice_pm_ops,
5067#endif /* CONFIG_PM */
5068 .shutdown = ice_shutdown,
5069 .sriov_configure = ice_sriov_configure,
5070 .err_handler = &ice_pci_err_handler
5071};
5072
5073/**
5074 * ice_module_init - Driver registration routine
5075 *
5076 * ice_module_init is the first routine called when the driver is
5077 * loaded. All it does is register with the PCI subsystem.
5078 */
5079static int __init ice_module_init(void)
5080{
5081 int status;
5082
5083 pr_info("%s\n", ice_driver_string);
5084 pr_info("%s\n", ice_copyright);
5085
5086 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5087 if (!ice_wq) {
5088 pr_err("Failed to create workqueue\n");
5089 return -ENOMEM;
5090 }
5091
5092 status = pci_register_driver(&ice_driver);
5093 if (status) {
5094 pr_err("failed to register PCI driver, err %d\n", status);
5095 destroy_workqueue(ice_wq);
5096 }
5097
5098 return status;
5099}
5100module_init(ice_module_init);
5101
5102/**
5103 * ice_module_exit - Driver exit cleanup routine
5104 *
5105 * ice_module_exit is called just before the driver is removed
5106 * from memory.
5107 */
5108static void __exit ice_module_exit(void)
5109{
5110 pci_unregister_driver(&ice_driver);
5111 destroy_workqueue(ice_wq);
5112 pr_info("module unloaded\n");
5113}
5114module_exit(ice_module_exit);
5115
5116/**
5117 * ice_set_mac_address - NDO callback to set MAC address
5118 * @netdev: network interface device structure
5119 * @pi: pointer to an address structure
5120 *
5121 * Returns 0 on success, negative on failure
5122 */
5123static int ice_set_mac_address(struct net_device *netdev, void *pi)
5124{
5125 struct ice_netdev_priv *np = netdev_priv(netdev);
5126 struct ice_vsi *vsi = np->vsi;
5127 struct ice_pf *pf = vsi->back;
5128 struct ice_hw *hw = &pf->hw;
5129 struct sockaddr *addr = pi;
5130 enum ice_status status;
5131 u8 old_mac[ETH_ALEN];
5132 u8 flags = 0;
5133 int err = 0;
5134 u8 *mac;
5135
5136 mac = (u8 *)addr->sa_data;
5137
5138 if (!is_valid_ether_addr(mac))
5139 return -EADDRNOTAVAIL;
5140
5141 if (ether_addr_equal(netdev->dev_addr, mac)) {
5142 netdev_dbg(netdev, "already using mac %pM\n", mac);
5143 return 0;
5144 }
5145
5146 if (test_bit(ICE_DOWN, pf->state) ||
5147 ice_is_reset_in_progress(pf->state)) {
5148 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5149 mac);
5150 return -EBUSY;
5151 }
5152
5153 netif_addr_lock_bh(netdev);
5154 ether_addr_copy(old_mac, netdev->dev_addr);
5155 /* change the netdev's MAC address */
5156 memcpy(netdev->dev_addr, mac, netdev->addr_len);
5157 netif_addr_unlock_bh(netdev);
5158
5159 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5160 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5161 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5162 err = -EADDRNOTAVAIL;
5163 goto err_update_filters;
5164 }
5165
5166 /* Add filter for new MAC. If filter exists, return success */
5167 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5168 if (status == ICE_ERR_ALREADY_EXISTS)
5169 /* Although this MAC filter is already present in hardware it's
5170 * possible in some cases (e.g. bonding) that dev_addr was
5171 * modified outside of the driver and needs to be restored back
5172 * to this value.
5173 */
5174 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5175 else if (status)
5176 /* error if the new filter addition failed */
5177 err = -EADDRNOTAVAIL;
5178
5179err_update_filters:
5180 if (err) {
5181 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5182 mac);
5183 netif_addr_lock_bh(netdev);
5184 ether_addr_copy(netdev->dev_addr, old_mac);
5185 netif_addr_unlock_bh(netdev);
5186 return err;
5187 }
5188
5189 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5190 netdev->dev_addr);
5191
5192 /* write new MAC address to the firmware */
5193 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5194 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5195 if (status) {
5196 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5197 mac, ice_stat_str(status));
5198 }
5199 return 0;
5200}
5201
5202/**
5203 * ice_set_rx_mode - NDO callback to set the netdev filters
5204 * @netdev: network interface device structure
5205 */
5206static void ice_set_rx_mode(struct net_device *netdev)
5207{
5208 struct ice_netdev_priv *np = netdev_priv(netdev);
5209 struct ice_vsi *vsi = np->vsi;
5210
5211 if (!vsi)
5212 return;
5213
5214 /* Set the flags to synchronize filters
5215 * ndo_set_rx_mode may be triggered even without a change in netdev
5216 * flags
5217 */
5218 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5219 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5220 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5221
5222 /* schedule our worker thread which will take care of
5223 * applying the new filter changes
5224 */
5225 ice_service_task_schedule(vsi->back);
5226}
5227
5228/**
5229 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5230 * @netdev: network interface device structure
5231 * @queue_index: Queue ID
5232 * @maxrate: maximum bandwidth in Mbps
5233 */
5234static int
5235ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5236{
5237 struct ice_netdev_priv *np = netdev_priv(netdev);
5238 struct ice_vsi *vsi = np->vsi;
5239 enum ice_status status;
5240 u16 q_handle;
5241 u8 tc;
5242
5243 /* Validate maxrate requested is within permitted range */
5244 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5245 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5246 maxrate, queue_index);
5247 return -EINVAL;
5248 }
5249
5250 q_handle = vsi->tx_rings[queue_index]->q_handle;
5251 tc = ice_dcb_get_tc(vsi, queue_index);
5252
5253 /* Set BW back to default, when user set maxrate to 0 */
5254 if (!maxrate)
5255 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5256 q_handle, ICE_MAX_BW);
5257 else
5258 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5259 q_handle, ICE_MAX_BW, maxrate * 1000);
5260 if (status) {
5261 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5262 ice_stat_str(status));
5263 return -EIO;
5264 }
5265
5266 return 0;
5267}
5268
5269/**
5270 * ice_fdb_add - add an entry to the hardware database
5271 * @ndm: the input from the stack
5272 * @tb: pointer to array of nladdr (unused)
5273 * @dev: the net device pointer
5274 * @addr: the MAC address entry being added
5275 * @vid: VLAN ID
5276 * @flags: instructions from stack about fdb operation
5277 * @extack: netlink extended ack
5278 */
5279static int
5280ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5281 struct net_device *dev, const unsigned char *addr, u16 vid,
5282 u16 flags, struct netlink_ext_ack __always_unused *extack)
5283{
5284 int err;
5285
5286 if (vid) {
5287 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5288 return -EINVAL;
5289 }
5290 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5291 netdev_err(dev, "FDB only supports static addresses\n");
5292 return -EINVAL;
5293 }
5294
5295 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5296 err = dev_uc_add_excl(dev, addr);
5297 else if (is_multicast_ether_addr(addr))
5298 err = dev_mc_add_excl(dev, addr);
5299 else
5300 err = -EINVAL;
5301
5302 /* Only return duplicate errors if NLM_F_EXCL is set */
5303 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5304 err = 0;
5305
5306 return err;
5307}
5308
5309/**
5310 * ice_fdb_del - delete an entry from the hardware database
5311 * @ndm: the input from the stack
5312 * @tb: pointer to array of nladdr (unused)
5313 * @dev: the net device pointer
5314 * @addr: the MAC address entry being added
5315 * @vid: VLAN ID
5316 */
5317static int
5318ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5319 struct net_device *dev, const unsigned char *addr,
5320 __always_unused u16 vid)
5321{
5322 int err;
5323
5324 if (ndm->ndm_state & NUD_PERMANENT) {
5325 netdev_err(dev, "FDB only supports static addresses\n");
5326 return -EINVAL;
5327 }
5328
5329 if (is_unicast_ether_addr(addr))
5330 err = dev_uc_del(dev, addr);
5331 else if (is_multicast_ether_addr(addr))
5332 err = dev_mc_del(dev, addr);
5333 else
5334 err = -EINVAL;
5335
5336 return err;
5337}
5338
5339/**
5340 * ice_set_features - set the netdev feature flags
5341 * @netdev: ptr to the netdev being adjusted
5342 * @features: the feature set that the stack is suggesting
5343 */
5344static int
5345ice_set_features(struct net_device *netdev, netdev_features_t features)
5346{
5347 struct ice_netdev_priv *np = netdev_priv(netdev);
5348 struct ice_vsi *vsi = np->vsi;
5349 struct ice_pf *pf = vsi->back;
5350 int ret = 0;
5351
5352 /* Don't set any netdev advanced features with device in Safe Mode */
5353 if (ice_is_safe_mode(vsi->back)) {
5354 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5355 return ret;
5356 }
5357
5358 /* Do not change setting during reset */
5359 if (ice_is_reset_in_progress(pf->state)) {
5360 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5361 return -EBUSY;
5362 }
5363
5364 /* Multiple features can be changed in one call so keep features in
5365 * separate if/else statements to guarantee each feature is checked
5366 */
5367 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5368 ice_vsi_manage_rss_lut(vsi, true);
5369 else if (!(features & NETIF_F_RXHASH) &&
5370 netdev->features & NETIF_F_RXHASH)
5371 ice_vsi_manage_rss_lut(vsi, false);
5372
5373 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5374 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5375 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5376 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5377 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5378 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5379
5380 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5381 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5382 ret = ice_vsi_manage_vlan_insertion(vsi);
5383 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5384 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5385 ret = ice_vsi_manage_vlan_insertion(vsi);
5386
5387 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5388 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5389 ret = ice_cfg_vlan_pruning(vsi, true, false);
5390 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5391 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5392 ret = ice_cfg_vlan_pruning(vsi, false, false);
5393
5394 if ((features & NETIF_F_NTUPLE) &&
5395 !(netdev->features & NETIF_F_NTUPLE)) {
5396 ice_vsi_manage_fdir(vsi, true);
5397 ice_init_arfs(vsi);
5398 } else if (!(features & NETIF_F_NTUPLE) &&
5399 (netdev->features & NETIF_F_NTUPLE)) {
5400 ice_vsi_manage_fdir(vsi, false);
5401 ice_clear_arfs(vsi);
5402 }
5403
5404 return ret;
5405}
5406
5407/**
5408 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5409 * @vsi: VSI to setup VLAN properties for
5410 */
5411static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5412{
5413 int ret = 0;
5414
5415 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5416 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5417 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5418 ret = ice_vsi_manage_vlan_insertion(vsi);
5419
5420 return ret;
5421}
5422
5423/**
5424 * ice_vsi_cfg - Setup the VSI
5425 * @vsi: the VSI being configured
5426 *
5427 * Return 0 on success and negative value on error
5428 */
5429int ice_vsi_cfg(struct ice_vsi *vsi)
5430{
5431 int err;
5432
5433 if (vsi->netdev) {
5434 ice_set_rx_mode(vsi->netdev);
5435
5436 err = ice_vsi_vlan_setup(vsi);
5437
5438 if (err)
5439 return err;
5440 }
5441 ice_vsi_cfg_dcb_rings(vsi);
5442
5443 err = ice_vsi_cfg_lan_txqs(vsi);
5444 if (!err && ice_is_xdp_ena_vsi(vsi))
5445 err = ice_vsi_cfg_xdp_txqs(vsi);
5446 if (!err)
5447 err = ice_vsi_cfg_rxqs(vsi);
5448
5449 return err;
5450}
5451
5452/* THEORY OF MODERATION:
5453 * The below code creates custom DIM profiles for use by this driver, because
5454 * the ice driver hardware works differently than the hardware that DIMLIB was
5455 * originally made for. ice hardware doesn't have packet count limits that
5456 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5457 * and this code adds that capability to be used by the driver when it's using
5458 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5459 * for how to "respond" to traffic and interrupts, so this driver uses a
5460 * slightly different set of moderation parameters to get best performance.
5461 */
5462struct ice_dim {
5463 /* the throttle rate for interrupts, basically worst case delay before
5464 * an initial interrupt fires, value is stored in microseconds.
5465 */
5466 u16 itr;
5467 /* the rate limit for interrupts, which can cap a delay from a small
5468 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5469 * could yield as much as 500,000 interrupts per second, but with a
5470 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5471 * is stored in microseconds.
5472 */
5473 u16 intrl;
5474};
5475
5476/* Make a different profile for Rx that doesn't allow quite so aggressive
5477 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5478 * second. The INTRL/rate parameters here are only useful to cap small ITR
5479 * values, which is why for larger ITR's - like 128, which can only generate
5480 * 8k interrupts per second, there is no point to rate limit and the values
5481 * are set to zero. The rate limit values do affect latency, and so must
5482 * be reasonably small so to not impact latency sensitive tests.
5483 */
5484static const struct ice_dim rx_profile[] = {
5485 {2, 10},
5486 {8, 16},
5487 {32, 0},
5488 {96, 0},
5489 {128, 0}
5490};
5491
5492/* The transmit profile, which has the same sorts of values
5493 * as the previous struct
5494 */
5495static const struct ice_dim tx_profile[] = {
5496 {2, 10},
5497 {8, 16},
5498 {64, 0},
5499 {128, 0},
5500 {256, 0}
5501};
5502
5503static void ice_tx_dim_work(struct work_struct *work)
5504{
5505 struct ice_ring_container *rc;
5506 struct ice_q_vector *q_vector;
5507 struct dim *dim;
5508 u16 itr, intrl;
5509
5510 dim = container_of(work, struct dim, work);
5511 rc = container_of(dim, struct ice_ring_container, dim);
5512 q_vector = container_of(rc, struct ice_q_vector, tx);
5513
5514 if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5515 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5516
5517 /* look up the values in our local table */
5518 itr = tx_profile[dim->profile_ix].itr;
5519 intrl = tx_profile[dim->profile_ix].intrl;
5520
5521 ice_trace(tx_dim_work, q_vector, dim);
5522 ice_write_itr(rc, itr);
5523 ice_write_intrl(q_vector, intrl);
5524
5525 dim->state = DIM_START_MEASURE;
5526}
5527
5528static void ice_rx_dim_work(struct work_struct *work)
5529{
5530 struct ice_ring_container *rc;
5531 struct ice_q_vector *q_vector;
5532 struct dim *dim;
5533 u16 itr, intrl;
5534
5535 dim = container_of(work, struct dim, work);
5536 rc = container_of(dim, struct ice_ring_container, dim);
5537 q_vector = container_of(rc, struct ice_q_vector, rx);
5538
5539 if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5540 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5541
5542 /* look up the values in our local table */
5543 itr = rx_profile[dim->profile_ix].itr;
5544 intrl = rx_profile[dim->profile_ix].intrl;
5545
5546 ice_trace(rx_dim_work, q_vector, dim);
5547 ice_write_itr(rc, itr);
5548 ice_write_intrl(q_vector, intrl);
5549
5550 dim->state = DIM_START_MEASURE;
5551}
5552
5553/**
5554 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5555 * @vsi: the VSI being configured
5556 */
5557static void ice_napi_enable_all(struct ice_vsi *vsi)
5558{
5559 int q_idx;
5560
5561 if (!vsi->netdev)
5562 return;
5563
5564 ice_for_each_q_vector(vsi, q_idx) {
5565 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5566
5567 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5568 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5569
5570 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5571 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5572
5573 if (q_vector->rx.ring || q_vector->tx.ring)
5574 napi_enable(&q_vector->napi);
5575 }
5576}
5577
5578/**
5579 * ice_up_complete - Finish the last steps of bringing up a connection
5580 * @vsi: The VSI being configured
5581 *
5582 * Return 0 on success and negative value on error
5583 */
5584static int ice_up_complete(struct ice_vsi *vsi)
5585{
5586 struct ice_pf *pf = vsi->back;
5587 int err;
5588
5589 ice_vsi_cfg_msix(vsi);
5590
5591 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5592 * Tx queue group list was configured and the context bits were
5593 * programmed using ice_vsi_cfg_txqs
5594 */
5595 err = ice_vsi_start_all_rx_rings(vsi);
5596 if (err)
5597 return err;
5598
5599 clear_bit(ICE_VSI_DOWN, vsi->state);
5600 ice_napi_enable_all(vsi);
5601 ice_vsi_ena_irq(vsi);
5602
5603 if (vsi->port_info &&
5604 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5605 vsi->netdev) {
5606 ice_print_link_msg(vsi, true);
5607 netif_tx_start_all_queues(vsi->netdev);
5608 netif_carrier_on(vsi->netdev);
5609 }
5610
5611 ice_service_task_schedule(pf);
5612
5613 return 0;
5614}
5615
5616/**
5617 * ice_up - Bring the connection back up after being down
5618 * @vsi: VSI being configured
5619 */
5620int ice_up(struct ice_vsi *vsi)
5621{
5622 int err;
5623
5624 err = ice_vsi_cfg(vsi);
5625 if (!err)
5626 err = ice_up_complete(vsi);
5627
5628 return err;
5629}
5630
5631/**
5632 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5633 * @ring: Tx or Rx ring to read stats from
5634 * @pkts: packets stats counter
5635 * @bytes: bytes stats counter
5636 *
5637 * This function fetches stats from the ring considering the atomic operations
5638 * that needs to be performed to read u64 values in 32 bit machine.
5639 */
5640static void
5641ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5642{
5643 unsigned int start;
5644 *pkts = 0;
5645 *bytes = 0;
5646
5647 if (!ring)
5648 return;
5649 do {
5650 start = u64_stats_fetch_begin_irq(&ring->syncp);
5651 *pkts = ring->stats.pkts;
5652 *bytes = ring->stats.bytes;
5653 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5654}
5655
5656/**
5657 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5658 * @vsi: the VSI to be updated
5659 * @rings: rings to work on
5660 * @count: number of rings
5661 */
5662static void
5663ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5664 u16 count)
5665{
5666 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5667 u16 i;
5668
5669 for (i = 0; i < count; i++) {
5670 struct ice_ring *ring;
5671 u64 pkts, bytes;
5672
5673 ring = READ_ONCE(rings[i]);
5674 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5675 vsi_stats->tx_packets += pkts;
5676 vsi_stats->tx_bytes += bytes;
5677 vsi->tx_restart += ring->tx_stats.restart_q;
5678 vsi->tx_busy += ring->tx_stats.tx_busy;
5679 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5680 }
5681}
5682
5683/**
5684 * ice_update_vsi_ring_stats - Update VSI stats counters
5685 * @vsi: the VSI to be updated
5686 */
5687static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5688{
5689 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5690 u64 pkts, bytes;
5691 int i;
5692
5693 /* reset netdev stats */
5694 vsi_stats->tx_packets = 0;
5695 vsi_stats->tx_bytes = 0;
5696 vsi_stats->rx_packets = 0;
5697 vsi_stats->rx_bytes = 0;
5698
5699 /* reset non-netdev (extended) stats */
5700 vsi->tx_restart = 0;
5701 vsi->tx_busy = 0;
5702 vsi->tx_linearize = 0;
5703 vsi->rx_buf_failed = 0;
5704 vsi->rx_page_failed = 0;
5705
5706 rcu_read_lock();
5707
5708 /* update Tx rings counters */
5709 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5710
5711 /* update Rx rings counters */
5712 ice_for_each_rxq(vsi, i) {
5713 struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5714
5715 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5716 vsi_stats->rx_packets += pkts;
5717 vsi_stats->rx_bytes += bytes;
5718 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5719 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5720 }
5721
5722 /* update XDP Tx rings counters */
5723 if (ice_is_xdp_ena_vsi(vsi))
5724 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5725 vsi->num_xdp_txq);
5726
5727 rcu_read_unlock();
5728}
5729
5730/**
5731 * ice_update_vsi_stats - Update VSI stats counters
5732 * @vsi: the VSI to be updated
5733 */
5734void ice_update_vsi_stats(struct ice_vsi *vsi)
5735{
5736 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5737 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5738 struct ice_pf *pf = vsi->back;
5739
5740 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5741 test_bit(ICE_CFG_BUSY, pf->state))
5742 return;
5743
5744 /* get stats as recorded by Tx/Rx rings */
5745 ice_update_vsi_ring_stats(vsi);
5746
5747 /* get VSI stats as recorded by the hardware */
5748 ice_update_eth_stats(vsi);
5749
5750 cur_ns->tx_errors = cur_es->tx_errors;
5751 cur_ns->rx_dropped = cur_es->rx_discards;
5752 cur_ns->tx_dropped = cur_es->tx_discards;
5753 cur_ns->multicast = cur_es->rx_multicast;
5754
5755 /* update some more netdev stats if this is main VSI */
5756 if (vsi->type == ICE_VSI_PF) {
5757 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5758 cur_ns->rx_errors = pf->stats.crc_errors +
5759 pf->stats.illegal_bytes +
5760 pf->stats.rx_len_errors +
5761 pf->stats.rx_undersize +
5762 pf->hw_csum_rx_error +
5763 pf->stats.rx_jabber +
5764 pf->stats.rx_fragments +
5765 pf->stats.rx_oversize;
5766 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5767 /* record drops from the port level */
5768 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5769 }
5770}
5771
5772/**
5773 * ice_update_pf_stats - Update PF port stats counters
5774 * @pf: PF whose stats needs to be updated
5775 */
5776void ice_update_pf_stats(struct ice_pf *pf)
5777{
5778 struct ice_hw_port_stats *prev_ps, *cur_ps;
5779 struct ice_hw *hw = &pf->hw;
5780 u16 fd_ctr_base;
5781 u8 port;
5782
5783 port = hw->port_info->lport;
5784 prev_ps = &pf->stats_prev;
5785 cur_ps = &pf->stats;
5786
5787 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5788 &prev_ps->eth.rx_bytes,
5789 &cur_ps->eth.rx_bytes);
5790
5791 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5792 &prev_ps->eth.rx_unicast,
5793 &cur_ps->eth.rx_unicast);
5794
5795 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5796 &prev_ps->eth.rx_multicast,
5797 &cur_ps->eth.rx_multicast);
5798
5799 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5800 &prev_ps->eth.rx_broadcast,
5801 &cur_ps->eth.rx_broadcast);
5802
5803 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5804 &prev_ps->eth.rx_discards,
5805 &cur_ps->eth.rx_discards);
5806
5807 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5808 &prev_ps->eth.tx_bytes,
5809 &cur_ps->eth.tx_bytes);
5810
5811 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5812 &prev_ps->eth.tx_unicast,
5813 &cur_ps->eth.tx_unicast);
5814
5815 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5816 &prev_ps->eth.tx_multicast,
5817 &cur_ps->eth.tx_multicast);
5818
5819 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5820 &prev_ps->eth.tx_broadcast,
5821 &cur_ps->eth.tx_broadcast);
5822
5823 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5824 &prev_ps->tx_dropped_link_down,
5825 &cur_ps->tx_dropped_link_down);
5826
5827 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5828 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5829
5830 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5831 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5832
5833 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5834 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5835
5836 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5837 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5838
5839 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5840 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5841
5842 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5843 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5844
5845 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5846 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5847
5848 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5849 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5850
5851 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5852 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5853
5854 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5855 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5856
5857 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5858 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5859
5860 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5861 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5862
5863 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5864 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5865
5866 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5867 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5868
5869 fd_ctr_base = hw->fd_ctr_base;
5870
5871 ice_stat_update40(hw,
5872 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5873 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5874 &cur_ps->fd_sb_match);
5875 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5876 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5877
5878 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5879 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5880
5881 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5882 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5883
5884 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5885 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5886
5887 ice_update_dcb_stats(pf);
5888
5889 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5890 &prev_ps->crc_errors, &cur_ps->crc_errors);
5891
5892 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5893 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5894
5895 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5896 &prev_ps->mac_local_faults,
5897 &cur_ps->mac_local_faults);
5898
5899 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5900 &prev_ps->mac_remote_faults,
5901 &cur_ps->mac_remote_faults);
5902
5903 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5904 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5905
5906 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5907 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5908
5909 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5910 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5911
5912 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5913 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5914
5915 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5916 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5917
5918 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5919
5920 pf->stat_prev_loaded = true;
5921}
5922
5923/**
5924 * ice_get_stats64 - get statistics for network device structure
5925 * @netdev: network interface device structure
5926 * @stats: main device statistics structure
5927 */
5928static
5929void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5930{
5931 struct ice_netdev_priv *np = netdev_priv(netdev);
5932 struct rtnl_link_stats64 *vsi_stats;
5933 struct ice_vsi *vsi = np->vsi;
5934
5935 vsi_stats = &vsi->net_stats;
5936
5937 if (!vsi->num_txq || !vsi->num_rxq)
5938 return;
5939
5940 /* netdev packet/byte stats come from ring counter. These are obtained
5941 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5942 * But, only call the update routine and read the registers if VSI is
5943 * not down.
5944 */
5945 if (!test_bit(ICE_VSI_DOWN, vsi->state))
5946 ice_update_vsi_ring_stats(vsi);
5947 stats->tx_packets = vsi_stats->tx_packets;
5948 stats->tx_bytes = vsi_stats->tx_bytes;
5949 stats->rx_packets = vsi_stats->rx_packets;
5950 stats->rx_bytes = vsi_stats->rx_bytes;
5951
5952 /* The rest of the stats can be read from the hardware but instead we
5953 * just return values that the watchdog task has already obtained from
5954 * the hardware.
5955 */
5956 stats->multicast = vsi_stats->multicast;
5957 stats->tx_errors = vsi_stats->tx_errors;
5958 stats->tx_dropped = vsi_stats->tx_dropped;
5959 stats->rx_errors = vsi_stats->rx_errors;
5960 stats->rx_dropped = vsi_stats->rx_dropped;
5961 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5962 stats->rx_length_errors = vsi_stats->rx_length_errors;
5963}
5964
5965/**
5966 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5967 * @vsi: VSI having NAPI disabled
5968 */
5969static void ice_napi_disable_all(struct ice_vsi *vsi)
5970{
5971 int q_idx;
5972
5973 if (!vsi->netdev)
5974 return;
5975
5976 ice_for_each_q_vector(vsi, q_idx) {
5977 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5978
5979 if (q_vector->rx.ring || q_vector->tx.ring)
5980 napi_disable(&q_vector->napi);
5981
5982 cancel_work_sync(&q_vector->tx.dim.work);
5983 cancel_work_sync(&q_vector->rx.dim.work);
5984 }
5985}
5986
5987/**
5988 * ice_down - Shutdown the connection
5989 * @vsi: The VSI being stopped
5990 */
5991int ice_down(struct ice_vsi *vsi)
5992{
5993 int i, tx_err, rx_err, link_err = 0;
5994
5995 /* Caller of this function is expected to set the
5996 * vsi->state ICE_DOWN bit
5997 */
5998 if (vsi->netdev) {
5999 netif_carrier_off(vsi->netdev);
6000 netif_tx_disable(vsi->netdev);
6001 }
6002
6003 ice_vsi_dis_irq(vsi);
6004
6005 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6006 if (tx_err)
6007 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6008 vsi->vsi_num, tx_err);
6009 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6010 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6011 if (tx_err)
6012 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6013 vsi->vsi_num, tx_err);
6014 }
6015
6016 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6017 if (rx_err)
6018 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6019 vsi->vsi_num, rx_err);
6020
6021 ice_napi_disable_all(vsi);
6022
6023 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6024 link_err = ice_force_phys_link_state(vsi, false);
6025 if (link_err)
6026 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6027 vsi->vsi_num, link_err);
6028 }
6029
6030 ice_for_each_txq(vsi, i)
6031 ice_clean_tx_ring(vsi->tx_rings[i]);
6032
6033 ice_for_each_rxq(vsi, i)
6034 ice_clean_rx_ring(vsi->rx_rings[i]);
6035
6036 if (tx_err || rx_err || link_err) {
6037 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6038 vsi->vsi_num, vsi->vsw->sw_id);
6039 return -EIO;
6040 }
6041
6042 return 0;
6043}
6044
6045/**
6046 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6047 * @vsi: VSI having resources allocated
6048 *
6049 * Return 0 on success, negative on failure
6050 */
6051int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6052{
6053 int i, err = 0;
6054
6055 if (!vsi->num_txq) {
6056 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6057 vsi->vsi_num);
6058 return -EINVAL;
6059 }
6060
6061 ice_for_each_txq(vsi, i) {
6062 struct ice_ring *ring = vsi->tx_rings[i];
6063
6064 if (!ring)
6065 return -EINVAL;
6066
6067 ring->netdev = vsi->netdev;
6068 err = ice_setup_tx_ring(ring);
6069 if (err)
6070 break;
6071 }
6072
6073 return err;
6074}
6075
6076/**
6077 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6078 * @vsi: VSI having resources allocated
6079 *
6080 * Return 0 on success, negative on failure
6081 */
6082int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6083{
6084 int i, err = 0;
6085
6086 if (!vsi->num_rxq) {
6087 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6088 vsi->vsi_num);
6089 return -EINVAL;
6090 }
6091
6092 ice_for_each_rxq(vsi, i) {
6093 struct ice_ring *ring = vsi->rx_rings[i];
6094
6095 if (!ring)
6096 return -EINVAL;
6097
6098 ring->netdev = vsi->netdev;
6099 err = ice_setup_rx_ring(ring);
6100 if (err)
6101 break;
6102 }
6103
6104 return err;
6105}
6106
6107/**
6108 * ice_vsi_open_ctrl - open control VSI for use
6109 * @vsi: the VSI to open
6110 *
6111 * Initialization of the Control VSI
6112 *
6113 * Returns 0 on success, negative value on error
6114 */
6115int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6116{
6117 char int_name[ICE_INT_NAME_STR_LEN];
6118 struct ice_pf *pf = vsi->back;
6119 struct device *dev;
6120 int err;
6121
6122 dev = ice_pf_to_dev(pf);
6123 /* allocate descriptors */
6124 err = ice_vsi_setup_tx_rings(vsi);
6125 if (err)
6126 goto err_setup_tx;
6127
6128 err = ice_vsi_setup_rx_rings(vsi);
6129 if (err)
6130 goto err_setup_rx;
6131
6132 err = ice_vsi_cfg(vsi);
6133 if (err)
6134 goto err_setup_rx;
6135
6136 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6137 dev_driver_string(dev), dev_name(dev));
6138 err = ice_vsi_req_irq_msix(vsi, int_name);
6139 if (err)
6140 goto err_setup_rx;
6141
6142 ice_vsi_cfg_msix(vsi);
6143
6144 err = ice_vsi_start_all_rx_rings(vsi);
6145 if (err)
6146 goto err_up_complete;
6147
6148 clear_bit(ICE_VSI_DOWN, vsi->state);
6149 ice_vsi_ena_irq(vsi);
6150
6151 return 0;
6152
6153err_up_complete:
6154 ice_down(vsi);
6155err_setup_rx:
6156 ice_vsi_free_rx_rings(vsi);
6157err_setup_tx:
6158 ice_vsi_free_tx_rings(vsi);
6159
6160 return err;
6161}
6162
6163/**
6164 * ice_vsi_open - Called when a network interface is made active
6165 * @vsi: the VSI to open
6166 *
6167 * Initialization of the VSI
6168 *
6169 * Returns 0 on success, negative value on error
6170 */
6171static int ice_vsi_open(struct ice_vsi *vsi)
6172{
6173 char int_name[ICE_INT_NAME_STR_LEN];
6174 struct ice_pf *pf = vsi->back;
6175 int err;
6176
6177 /* allocate descriptors */
6178 err = ice_vsi_setup_tx_rings(vsi);
6179 if (err)
6180 goto err_setup_tx;
6181
6182 err = ice_vsi_setup_rx_rings(vsi);
6183 if (err)
6184 goto err_setup_rx;
6185
6186 err = ice_vsi_cfg(vsi);
6187 if (err)
6188 goto err_setup_rx;
6189
6190 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6191 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6192 err = ice_vsi_req_irq_msix(vsi, int_name);
6193 if (err)
6194 goto err_setup_rx;
6195
6196 /* Notify the stack of the actual queue counts. */
6197 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6198 if (err)
6199 goto err_set_qs;
6200
6201 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6202 if (err)
6203 goto err_set_qs;
6204
6205 err = ice_up_complete(vsi);
6206 if (err)
6207 goto err_up_complete;
6208
6209 return 0;
6210
6211err_up_complete:
6212 ice_down(vsi);
6213err_set_qs:
6214 ice_vsi_free_irq(vsi);
6215err_setup_rx:
6216 ice_vsi_free_rx_rings(vsi);
6217err_setup_tx:
6218 ice_vsi_free_tx_rings(vsi);
6219
6220 return err;
6221}
6222
6223/**
6224 * ice_vsi_release_all - Delete all VSIs
6225 * @pf: PF from which all VSIs are being removed
6226 */
6227static void ice_vsi_release_all(struct ice_pf *pf)
6228{
6229 int err, i;
6230
6231 if (!pf->vsi)
6232 return;
6233
6234 ice_for_each_vsi(pf, i) {
6235 if (!pf->vsi[i])
6236 continue;
6237
6238 err = ice_vsi_release(pf->vsi[i]);
6239 if (err)
6240 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6241 i, err, pf->vsi[i]->vsi_num);
6242 }
6243}
6244
6245/**
6246 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6247 * @pf: pointer to the PF instance
6248 * @type: VSI type to rebuild
6249 *
6250 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6251 */
6252static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6253{
6254 struct device *dev = ice_pf_to_dev(pf);
6255 enum ice_status status;
6256 int i, err;
6257
6258 ice_for_each_vsi(pf, i) {
6259 struct ice_vsi *vsi = pf->vsi[i];
6260
6261 if (!vsi || vsi->type != type)
6262 continue;
6263
6264 /* rebuild the VSI */
6265 err = ice_vsi_rebuild(vsi, true);
6266 if (err) {
6267 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6268 err, vsi->idx, ice_vsi_type_str(type));
6269 return err;
6270 }
6271
6272 /* replay filters for the VSI */
6273 status = ice_replay_vsi(&pf->hw, vsi->idx);
6274 if (status) {
6275 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6276 ice_stat_str(status), vsi->idx,
6277 ice_vsi_type_str(type));
6278 return -EIO;
6279 }
6280
6281 /* Re-map HW VSI number, using VSI handle that has been
6282 * previously validated in ice_replay_vsi() call above
6283 */
6284 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6285
6286 /* enable the VSI */
6287 err = ice_ena_vsi(vsi, false);
6288 if (err) {
6289 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6290 err, vsi->idx, ice_vsi_type_str(type));
6291 return err;
6292 }
6293
6294 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6295 ice_vsi_type_str(type));
6296 }
6297
6298 return 0;
6299}
6300
6301/**
6302 * ice_update_pf_netdev_link - Update PF netdev link status
6303 * @pf: pointer to the PF instance
6304 */
6305static void ice_update_pf_netdev_link(struct ice_pf *pf)
6306{
6307 bool link_up;
6308 int i;
6309
6310 ice_for_each_vsi(pf, i) {
6311 struct ice_vsi *vsi = pf->vsi[i];
6312
6313 if (!vsi || vsi->type != ICE_VSI_PF)
6314 return;
6315
6316 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6317 if (link_up) {
6318 netif_carrier_on(pf->vsi[i]->netdev);
6319 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6320 } else {
6321 netif_carrier_off(pf->vsi[i]->netdev);
6322 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6323 }
6324 }
6325}
6326
6327/**
6328 * ice_rebuild - rebuild after reset
6329 * @pf: PF to rebuild
6330 * @reset_type: type of reset
6331 *
6332 * Do not rebuild VF VSI in this flow because that is already handled via
6333 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6334 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6335 * to reset/rebuild all the VF VSI twice.
6336 */
6337static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6338{
6339 struct device *dev = ice_pf_to_dev(pf);
6340 struct ice_hw *hw = &pf->hw;
6341 enum ice_status ret;
6342 int err;
6343
6344 if (test_bit(ICE_DOWN, pf->state))
6345 goto clear_recovery;
6346
6347 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6348
6349 ret = ice_init_all_ctrlq(hw);
6350 if (ret) {
6351 dev_err(dev, "control queues init failed %s\n",
6352 ice_stat_str(ret));
6353 goto err_init_ctrlq;
6354 }
6355
6356 /* if DDP was previously loaded successfully */
6357 if (!ice_is_safe_mode(pf)) {
6358 /* reload the SW DB of filter tables */
6359 if (reset_type == ICE_RESET_PFR)
6360 ice_fill_blk_tbls(hw);
6361 else
6362 /* Reload DDP Package after CORER/GLOBR reset */
6363 ice_load_pkg(NULL, pf);
6364 }
6365
6366 ret = ice_clear_pf_cfg(hw);
6367 if (ret) {
6368 dev_err(dev, "clear PF configuration failed %s\n",
6369 ice_stat_str(ret));
6370 goto err_init_ctrlq;
6371 }
6372
6373 if (pf->first_sw->dflt_vsi_ena)
6374 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6375 /* clear the default VSI configuration if it exists */
6376 pf->first_sw->dflt_vsi = NULL;
6377 pf->first_sw->dflt_vsi_ena = false;
6378
6379 ice_clear_pxe_mode(hw);
6380
6381 ret = ice_init_nvm(hw);
6382 if (ret) {
6383 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6384 goto err_init_ctrlq;
6385 }
6386
6387 ret = ice_get_caps(hw);
6388 if (ret) {
6389 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6390 goto err_init_ctrlq;
6391 }
6392
6393 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6394 if (ret) {
6395 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6396 goto err_init_ctrlq;
6397 }
6398
6399 err = ice_sched_init_port(hw->port_info);
6400 if (err)
6401 goto err_sched_init_port;
6402
6403 /* start misc vector */
6404 err = ice_req_irq_msix_misc(pf);
6405 if (err) {
6406 dev_err(dev, "misc vector setup failed: %d\n", err);
6407 goto err_sched_init_port;
6408 }
6409
6410 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6411 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6412 if (!rd32(hw, PFQF_FD_SIZE)) {
6413 u16 unused, guar, b_effort;
6414
6415 guar = hw->func_caps.fd_fltr_guar;
6416 b_effort = hw->func_caps.fd_fltr_best_effort;
6417
6418 /* force guaranteed filter pool for PF */
6419 ice_alloc_fd_guar_item(hw, &unused, guar);
6420 /* force shared filter pool for PF */
6421 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6422 }
6423 }
6424
6425 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6426 ice_dcb_rebuild(pf);
6427
6428 /* If the PF previously had enabled PTP, PTP init needs to happen before
6429 * the VSI rebuild. If not, this causes the PTP link status events to
6430 * fail.
6431 */
6432 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6433 ice_ptp_init(pf);
6434
6435 /* rebuild PF VSI */
6436 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6437 if (err) {
6438 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6439 goto err_vsi_rebuild;
6440 }
6441
6442 /* If Flow Director is active */
6443 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6444 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6445 if (err) {
6446 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6447 goto err_vsi_rebuild;
6448 }
6449
6450 /* replay HW Flow Director recipes */
6451 if (hw->fdir_prof)
6452 ice_fdir_replay_flows(hw);
6453
6454 /* replay Flow Director filters */
6455 ice_fdir_replay_fltrs(pf);
6456
6457 ice_rebuild_arfs(pf);
6458 }
6459
6460 ice_update_pf_netdev_link(pf);
6461
6462 /* tell the firmware we are up */
6463 ret = ice_send_version(pf);
6464 if (ret) {
6465 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6466 ice_stat_str(ret));
6467 goto err_vsi_rebuild;
6468 }
6469
6470 ice_replay_post(hw);
6471
6472 /* if we get here, reset flow is successful */
6473 clear_bit(ICE_RESET_FAILED, pf->state);
6474
6475 ice_plug_aux_dev(pf);
6476 return;
6477
6478err_vsi_rebuild:
6479err_sched_init_port:
6480 ice_sched_cleanup_all(hw);
6481err_init_ctrlq:
6482 ice_shutdown_all_ctrlq(hw);
6483 set_bit(ICE_RESET_FAILED, pf->state);
6484clear_recovery:
6485 /* set this bit in PF state to control service task scheduling */
6486 set_bit(ICE_NEEDS_RESTART, pf->state);
6487 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6488}
6489
6490/**
6491 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6492 * @vsi: Pointer to VSI structure
6493 */
6494static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6495{
6496 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6497 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6498 else
6499 return ICE_RXBUF_3072;
6500}
6501
6502/**
6503 * ice_change_mtu - NDO callback to change the MTU
6504 * @netdev: network interface device structure
6505 * @new_mtu: new value for maximum frame size
6506 *
6507 * Returns 0 on success, negative on failure
6508 */
6509static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6510{
6511 struct ice_netdev_priv *np = netdev_priv(netdev);
6512 struct ice_vsi *vsi = np->vsi;
6513 struct ice_pf *pf = vsi->back;
6514 struct iidc_event *event;
6515 u8 count = 0;
6516 int err = 0;
6517
6518 if (new_mtu == (int)netdev->mtu) {
6519 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6520 return 0;
6521 }
6522
6523 if (ice_is_xdp_ena_vsi(vsi)) {
6524 int frame_size = ice_max_xdp_frame_size(vsi);
6525
6526 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6527 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6528 frame_size - ICE_ETH_PKT_HDR_PAD);
6529 return -EINVAL;
6530 }
6531 }
6532
6533 /* if a reset is in progress, wait for some time for it to complete */
6534 do {
6535 if (ice_is_reset_in_progress(pf->state)) {
6536 count++;
6537 usleep_range(1000, 2000);
6538 } else {
6539 break;
6540 }
6541
6542 } while (count < 100);
6543
6544 if (count == 100) {
6545 netdev_err(netdev, "can't change MTU. Device is busy\n");
6546 return -EBUSY;
6547 }
6548
6549 event = kzalloc(sizeof(*event), GFP_KERNEL);
6550 if (!event)
6551 return -ENOMEM;
6552
6553 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6554 ice_send_event_to_aux(pf, event);
6555 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6556
6557 netdev->mtu = (unsigned int)new_mtu;
6558
6559 /* if VSI is up, bring it down and then back up */
6560 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6561 err = ice_down(vsi);
6562 if (err) {
6563 netdev_err(netdev, "change MTU if_down err %d\n", err);
6564 goto event_after;
6565 }
6566
6567 err = ice_up(vsi);
6568 if (err) {
6569 netdev_err(netdev, "change MTU if_up err %d\n", err);
6570 goto event_after;
6571 }
6572 }
6573
6574 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6575event_after:
6576 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6577 ice_send_event_to_aux(pf, event);
6578 kfree(event);
6579
6580 return err;
6581}
6582
6583/**
6584 * ice_do_ioctl - Access the hwtstamp interface
6585 * @netdev: network interface device structure
6586 * @ifr: interface request data
6587 * @cmd: ioctl command
6588 */
6589static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6590{
6591 struct ice_netdev_priv *np = netdev_priv(netdev);
6592 struct ice_pf *pf = np->vsi->back;
6593
6594 switch (cmd) {
6595 case SIOCGHWTSTAMP:
6596 return ice_ptp_get_ts_config(pf, ifr);
6597 case SIOCSHWTSTAMP:
6598 return ice_ptp_set_ts_config(pf, ifr);
6599 default:
6600 return -EOPNOTSUPP;
6601 }
6602}
6603
6604/**
6605 * ice_aq_str - convert AQ err code to a string
6606 * @aq_err: the AQ error code to convert
6607 */
6608const char *ice_aq_str(enum ice_aq_err aq_err)
6609{
6610 switch (aq_err) {
6611 case ICE_AQ_RC_OK:
6612 return "OK";
6613 case ICE_AQ_RC_EPERM:
6614 return "ICE_AQ_RC_EPERM";
6615 case ICE_AQ_RC_ENOENT:
6616 return "ICE_AQ_RC_ENOENT";
6617 case ICE_AQ_RC_ENOMEM:
6618 return "ICE_AQ_RC_ENOMEM";
6619 case ICE_AQ_RC_EBUSY:
6620 return "ICE_AQ_RC_EBUSY";
6621 case ICE_AQ_RC_EEXIST:
6622 return "ICE_AQ_RC_EEXIST";
6623 case ICE_AQ_RC_EINVAL:
6624 return "ICE_AQ_RC_EINVAL";
6625 case ICE_AQ_RC_ENOSPC:
6626 return "ICE_AQ_RC_ENOSPC";
6627 case ICE_AQ_RC_ENOSYS:
6628 return "ICE_AQ_RC_ENOSYS";
6629 case ICE_AQ_RC_EMODE:
6630 return "ICE_AQ_RC_EMODE";
6631 case ICE_AQ_RC_ENOSEC:
6632 return "ICE_AQ_RC_ENOSEC";
6633 case ICE_AQ_RC_EBADSIG:
6634 return "ICE_AQ_RC_EBADSIG";
6635 case ICE_AQ_RC_ESVN:
6636 return "ICE_AQ_RC_ESVN";
6637 case ICE_AQ_RC_EBADMAN:
6638 return "ICE_AQ_RC_EBADMAN";
6639 case ICE_AQ_RC_EBADBUF:
6640 return "ICE_AQ_RC_EBADBUF";
6641 }
6642
6643 return "ICE_AQ_RC_UNKNOWN";
6644}
6645
6646/**
6647 * ice_stat_str - convert status err code to a string
6648 * @stat_err: the status error code to convert
6649 */
6650const char *ice_stat_str(enum ice_status stat_err)
6651{
6652 switch (stat_err) {
6653 case ICE_SUCCESS:
6654 return "OK";
6655 case ICE_ERR_PARAM:
6656 return "ICE_ERR_PARAM";
6657 case ICE_ERR_NOT_IMPL:
6658 return "ICE_ERR_NOT_IMPL";
6659 case ICE_ERR_NOT_READY:
6660 return "ICE_ERR_NOT_READY";
6661 case ICE_ERR_NOT_SUPPORTED:
6662 return "ICE_ERR_NOT_SUPPORTED";
6663 case ICE_ERR_BAD_PTR:
6664 return "ICE_ERR_BAD_PTR";
6665 case ICE_ERR_INVAL_SIZE:
6666 return "ICE_ERR_INVAL_SIZE";
6667 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6668 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6669 case ICE_ERR_RESET_FAILED:
6670 return "ICE_ERR_RESET_FAILED";
6671 case ICE_ERR_FW_API_VER:
6672 return "ICE_ERR_FW_API_VER";
6673 case ICE_ERR_NO_MEMORY:
6674 return "ICE_ERR_NO_MEMORY";
6675 case ICE_ERR_CFG:
6676 return "ICE_ERR_CFG";
6677 case ICE_ERR_OUT_OF_RANGE:
6678 return "ICE_ERR_OUT_OF_RANGE";
6679 case ICE_ERR_ALREADY_EXISTS:
6680 return "ICE_ERR_ALREADY_EXISTS";
6681 case ICE_ERR_NVM:
6682 return "ICE_ERR_NVM";
6683 case ICE_ERR_NVM_CHECKSUM:
6684 return "ICE_ERR_NVM_CHECKSUM";
6685 case ICE_ERR_BUF_TOO_SHORT:
6686 return "ICE_ERR_BUF_TOO_SHORT";
6687 case ICE_ERR_NVM_BLANK_MODE:
6688 return "ICE_ERR_NVM_BLANK_MODE";
6689 case ICE_ERR_IN_USE:
6690 return "ICE_ERR_IN_USE";
6691 case ICE_ERR_MAX_LIMIT:
6692 return "ICE_ERR_MAX_LIMIT";
6693 case ICE_ERR_RESET_ONGOING:
6694 return "ICE_ERR_RESET_ONGOING";
6695 case ICE_ERR_HW_TABLE:
6696 return "ICE_ERR_HW_TABLE";
6697 case ICE_ERR_DOES_NOT_EXIST:
6698 return "ICE_ERR_DOES_NOT_EXIST";
6699 case ICE_ERR_FW_DDP_MISMATCH:
6700 return "ICE_ERR_FW_DDP_MISMATCH";
6701 case ICE_ERR_AQ_ERROR:
6702 return "ICE_ERR_AQ_ERROR";
6703 case ICE_ERR_AQ_TIMEOUT:
6704 return "ICE_ERR_AQ_TIMEOUT";
6705 case ICE_ERR_AQ_FULL:
6706 return "ICE_ERR_AQ_FULL";
6707 case ICE_ERR_AQ_NO_WORK:
6708 return "ICE_ERR_AQ_NO_WORK";
6709 case ICE_ERR_AQ_EMPTY:
6710 return "ICE_ERR_AQ_EMPTY";
6711 case ICE_ERR_AQ_FW_CRITICAL:
6712 return "ICE_ERR_AQ_FW_CRITICAL";
6713 }
6714
6715 return "ICE_ERR_UNKNOWN";
6716}
6717
6718/**
6719 * ice_set_rss_lut - Set RSS LUT
6720 * @vsi: Pointer to VSI structure
6721 * @lut: Lookup table
6722 * @lut_size: Lookup table size
6723 *
6724 * Returns 0 on success, negative on failure
6725 */
6726int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6727{
6728 struct ice_aq_get_set_rss_lut_params params = {};
6729 struct ice_hw *hw = &vsi->back->hw;
6730 enum ice_status status;
6731
6732 if (!lut)
6733 return -EINVAL;
6734
6735 params.vsi_handle = vsi->idx;
6736 params.lut_size = lut_size;
6737 params.lut_type = vsi->rss_lut_type;
6738 params.lut = lut;
6739
6740 status = ice_aq_set_rss_lut(hw, ¶ms);
6741 if (status) {
6742 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6743 ice_stat_str(status),
6744 ice_aq_str(hw->adminq.sq_last_status));
6745 return -EIO;
6746 }
6747
6748 return 0;
6749}
6750
6751/**
6752 * ice_set_rss_key - Set RSS key
6753 * @vsi: Pointer to the VSI structure
6754 * @seed: RSS hash seed
6755 *
6756 * Returns 0 on success, negative on failure
6757 */
6758int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6759{
6760 struct ice_hw *hw = &vsi->back->hw;
6761 enum ice_status status;
6762
6763 if (!seed)
6764 return -EINVAL;
6765
6766 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6767 if (status) {
6768 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6769 ice_stat_str(status),
6770 ice_aq_str(hw->adminq.sq_last_status));
6771 return -EIO;
6772 }
6773
6774 return 0;
6775}
6776
6777/**
6778 * ice_get_rss_lut - Get RSS LUT
6779 * @vsi: Pointer to VSI structure
6780 * @lut: Buffer to store the lookup table entries
6781 * @lut_size: Size of buffer to store the lookup table entries
6782 *
6783 * Returns 0 on success, negative on failure
6784 */
6785int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6786{
6787 struct ice_aq_get_set_rss_lut_params params = {};
6788 struct ice_hw *hw = &vsi->back->hw;
6789 enum ice_status status;
6790
6791 if (!lut)
6792 return -EINVAL;
6793
6794 params.vsi_handle = vsi->idx;
6795 params.lut_size = lut_size;
6796 params.lut_type = vsi->rss_lut_type;
6797 params.lut = lut;
6798
6799 status = ice_aq_get_rss_lut(hw, ¶ms);
6800 if (status) {
6801 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6802 ice_stat_str(status),
6803 ice_aq_str(hw->adminq.sq_last_status));
6804 return -EIO;
6805 }
6806
6807 return 0;
6808}
6809
6810/**
6811 * ice_get_rss_key - Get RSS key
6812 * @vsi: Pointer to VSI structure
6813 * @seed: Buffer to store the key in
6814 *
6815 * Returns 0 on success, negative on failure
6816 */
6817int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6818{
6819 struct ice_hw *hw = &vsi->back->hw;
6820 enum ice_status status;
6821
6822 if (!seed)
6823 return -EINVAL;
6824
6825 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6826 if (status) {
6827 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6828 ice_stat_str(status),
6829 ice_aq_str(hw->adminq.sq_last_status));
6830 return -EIO;
6831 }
6832
6833 return 0;
6834}
6835
6836/**
6837 * ice_bridge_getlink - Get the hardware bridge mode
6838 * @skb: skb buff
6839 * @pid: process ID
6840 * @seq: RTNL message seq
6841 * @dev: the netdev being configured
6842 * @filter_mask: filter mask passed in
6843 * @nlflags: netlink flags passed in
6844 *
6845 * Return the bridge mode (VEB/VEPA)
6846 */
6847static int
6848ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6849 struct net_device *dev, u32 filter_mask, int nlflags)
6850{
6851 struct ice_netdev_priv *np = netdev_priv(dev);
6852 struct ice_vsi *vsi = np->vsi;
6853 struct ice_pf *pf = vsi->back;
6854 u16 bmode;
6855
6856 bmode = pf->first_sw->bridge_mode;
6857
6858 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6859 filter_mask, NULL);
6860}
6861
6862/**
6863 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6864 * @vsi: Pointer to VSI structure
6865 * @bmode: Hardware bridge mode (VEB/VEPA)
6866 *
6867 * Returns 0 on success, negative on failure
6868 */
6869static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6870{
6871 struct ice_aqc_vsi_props *vsi_props;
6872 struct ice_hw *hw = &vsi->back->hw;
6873 struct ice_vsi_ctx *ctxt;
6874 enum ice_status status;
6875 int ret = 0;
6876
6877 vsi_props = &vsi->info;
6878
6879 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6880 if (!ctxt)
6881 return -ENOMEM;
6882
6883 ctxt->info = vsi->info;
6884
6885 if (bmode == BRIDGE_MODE_VEB)
6886 /* change from VEPA to VEB mode */
6887 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6888 else
6889 /* change from VEB to VEPA mode */
6890 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6891 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6892
6893 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6894 if (status) {
6895 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6896 bmode, ice_stat_str(status),
6897 ice_aq_str(hw->adminq.sq_last_status));
6898 ret = -EIO;
6899 goto out;
6900 }
6901 /* Update sw flags for book keeping */
6902 vsi_props->sw_flags = ctxt->info.sw_flags;
6903
6904out:
6905 kfree(ctxt);
6906 return ret;
6907}
6908
6909/**
6910 * ice_bridge_setlink - Set the hardware bridge mode
6911 * @dev: the netdev being configured
6912 * @nlh: RTNL message
6913 * @flags: bridge setlink flags
6914 * @extack: netlink extended ack
6915 *
6916 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6917 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6918 * not already set for all VSIs connected to this switch. And also update the
6919 * unicast switch filter rules for the corresponding switch of the netdev.
6920 */
6921static int
6922ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6923 u16 __always_unused flags,
6924 struct netlink_ext_ack __always_unused *extack)
6925{
6926 struct ice_netdev_priv *np = netdev_priv(dev);
6927 struct ice_pf *pf = np->vsi->back;
6928 struct nlattr *attr, *br_spec;
6929 struct ice_hw *hw = &pf->hw;
6930 enum ice_status status;
6931 struct ice_sw *pf_sw;
6932 int rem, v, err = 0;
6933
6934 pf_sw = pf->first_sw;
6935 /* find the attribute in the netlink message */
6936 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6937
6938 nla_for_each_nested(attr, br_spec, rem) {
6939 __u16 mode;
6940
6941 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6942 continue;
6943 mode = nla_get_u16(attr);
6944 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6945 return -EINVAL;
6946 /* Continue if bridge mode is not being flipped */
6947 if (mode == pf_sw->bridge_mode)
6948 continue;
6949 /* Iterates through the PF VSI list and update the loopback
6950 * mode of the VSI
6951 */
6952 ice_for_each_vsi(pf, v) {
6953 if (!pf->vsi[v])
6954 continue;
6955 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6956 if (err)
6957 return err;
6958 }
6959
6960 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6961 /* Update the unicast switch filter rules for the corresponding
6962 * switch of the netdev
6963 */
6964 status = ice_update_sw_rule_bridge_mode(hw);
6965 if (status) {
6966 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6967 mode, ice_stat_str(status),
6968 ice_aq_str(hw->adminq.sq_last_status));
6969 /* revert hw->evb_veb */
6970 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6971 return -EIO;
6972 }
6973
6974 pf_sw->bridge_mode = mode;
6975 }
6976
6977 return 0;
6978}
6979
6980/**
6981 * ice_tx_timeout - Respond to a Tx Hang
6982 * @netdev: network interface device structure
6983 * @txqueue: Tx queue
6984 */
6985static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6986{
6987 struct ice_netdev_priv *np = netdev_priv(netdev);
6988 struct ice_ring *tx_ring = NULL;
6989 struct ice_vsi *vsi = np->vsi;
6990 struct ice_pf *pf = vsi->back;
6991 u32 i;
6992
6993 pf->tx_timeout_count++;
6994
6995 /* Check if PFC is enabled for the TC to which the queue belongs
6996 * to. If yes then Tx timeout is not caused by a hung queue, no
6997 * need to reset and rebuild
6998 */
6999 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7000 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7001 txqueue);
7002 return;
7003 }
7004
7005 /* now that we have an index, find the tx_ring struct */
7006 for (i = 0; i < vsi->num_txq; i++)
7007 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7008 if (txqueue == vsi->tx_rings[i]->q_index) {
7009 tx_ring = vsi->tx_rings[i];
7010 break;
7011 }
7012
7013 /* Reset recovery level if enough time has elapsed after last timeout.
7014 * Also ensure no new reset action happens before next timeout period.
7015 */
7016 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7017 pf->tx_timeout_recovery_level = 1;
7018 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7019 netdev->watchdog_timeo)))
7020 return;
7021
7022 if (tx_ring) {
7023 struct ice_hw *hw = &pf->hw;
7024 u32 head, val = 0;
7025
7026 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7027 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7028 /* Read interrupt register */
7029 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7030
7031 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7032 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7033 head, tx_ring->next_to_use, val);
7034 }
7035
7036 pf->tx_timeout_last_recovery = jiffies;
7037 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7038 pf->tx_timeout_recovery_level, txqueue);
7039
7040 switch (pf->tx_timeout_recovery_level) {
7041 case 1:
7042 set_bit(ICE_PFR_REQ, pf->state);
7043 break;
7044 case 2:
7045 set_bit(ICE_CORER_REQ, pf->state);
7046 break;
7047 case 3:
7048 set_bit(ICE_GLOBR_REQ, pf->state);
7049 break;
7050 default:
7051 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7052 set_bit(ICE_DOWN, pf->state);
7053 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7054 set_bit(ICE_SERVICE_DIS, pf->state);
7055 break;
7056 }
7057
7058 ice_service_task_schedule(pf);
7059 pf->tx_timeout_recovery_level++;
7060}
7061
7062/**
7063 * ice_open - Called when a network interface becomes active
7064 * @netdev: network interface device structure
7065 *
7066 * The open entry point is called when a network interface is made
7067 * active by the system (IFF_UP). At this point all resources needed
7068 * for transmit and receive operations are allocated, the interrupt
7069 * handler is registered with the OS, the netdev watchdog is enabled,
7070 * and the stack is notified that the interface is ready.
7071 *
7072 * Returns 0 on success, negative value on failure
7073 */
7074int ice_open(struct net_device *netdev)
7075{
7076 struct ice_netdev_priv *np = netdev_priv(netdev);
7077 struct ice_pf *pf = np->vsi->back;
7078
7079 if (ice_is_reset_in_progress(pf->state)) {
7080 netdev_err(netdev, "can't open net device while reset is in progress");
7081 return -EBUSY;
7082 }
7083
7084 return ice_open_internal(netdev);
7085}
7086
7087/**
7088 * ice_open_internal - Called when a network interface becomes active
7089 * @netdev: network interface device structure
7090 *
7091 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7092 * handling routine
7093 *
7094 * Returns 0 on success, negative value on failure
7095 */
7096int ice_open_internal(struct net_device *netdev)
7097{
7098 struct ice_netdev_priv *np = netdev_priv(netdev);
7099 struct ice_vsi *vsi = np->vsi;
7100 struct ice_pf *pf = vsi->back;
7101 struct ice_port_info *pi;
7102 enum ice_status status;
7103 int err;
7104
7105 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7106 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7107 return -EIO;
7108 }
7109
7110 netif_carrier_off(netdev);
7111
7112 pi = vsi->port_info;
7113 status = ice_update_link_info(pi);
7114 if (status) {
7115 netdev_err(netdev, "Failed to get link info, error %s\n",
7116 ice_stat_str(status));
7117 return -EIO;
7118 }
7119
7120 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7121
7122 /* Set PHY if there is media, otherwise, turn off PHY */
7123 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7124 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7125 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7126 err = ice_init_phy_user_cfg(pi);
7127 if (err) {
7128 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7129 err);
7130 return err;
7131 }
7132 }
7133
7134 err = ice_configure_phy(vsi);
7135 if (err) {
7136 netdev_err(netdev, "Failed to set physical link up, error %d\n",
7137 err);
7138 return err;
7139 }
7140 } else {
7141 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7142 ice_set_link(vsi, false);
7143 }
7144
7145 err = ice_vsi_open(vsi);
7146 if (err)
7147 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7148 vsi->vsi_num, vsi->vsw->sw_id);
7149
7150 /* Update existing tunnels information */
7151 udp_tunnel_get_rx_info(netdev);
7152
7153 return err;
7154}
7155
7156/**
7157 * ice_stop - Disables a network interface
7158 * @netdev: network interface device structure
7159 *
7160 * The stop entry point is called when an interface is de-activated by the OS,
7161 * and the netdevice enters the DOWN state. The hardware is still under the
7162 * driver's control, but the netdev interface is disabled.
7163 *
7164 * Returns success only - not allowed to fail
7165 */
7166int ice_stop(struct net_device *netdev)
7167{
7168 struct ice_netdev_priv *np = netdev_priv(netdev);
7169 struct ice_vsi *vsi = np->vsi;
7170 struct ice_pf *pf = vsi->back;
7171
7172 if (ice_is_reset_in_progress(pf->state)) {
7173 netdev_err(netdev, "can't stop net device while reset is in progress");
7174 return -EBUSY;
7175 }
7176
7177 ice_vsi_close(vsi);
7178
7179 return 0;
7180}
7181
7182/**
7183 * ice_features_check - Validate encapsulated packet conforms to limits
7184 * @skb: skb buffer
7185 * @netdev: This port's netdev
7186 * @features: Offload features that the stack believes apply
7187 */
7188static netdev_features_t
7189ice_features_check(struct sk_buff *skb,
7190 struct net_device __always_unused *netdev,
7191 netdev_features_t features)
7192{
7193 size_t len;
7194
7195 /* No point in doing any of this if neither checksum nor GSO are
7196 * being requested for this frame. We can rule out both by just
7197 * checking for CHECKSUM_PARTIAL
7198 */
7199 if (skb->ip_summed != CHECKSUM_PARTIAL)
7200 return features;
7201
7202 /* We cannot support GSO if the MSS is going to be less than
7203 * 64 bytes. If it is then we need to drop support for GSO.
7204 */
7205 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
7206 features &= ~NETIF_F_GSO_MASK;
7207
7208 len = skb_network_header(skb) - skb->data;
7209 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7210 goto out_rm_features;
7211
7212 len = skb_transport_header(skb) - skb_network_header(skb);
7213 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7214 goto out_rm_features;
7215
7216 if (skb->encapsulation) {
7217 len = skb_inner_network_header(skb) - skb_transport_header(skb);
7218 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7219 goto out_rm_features;
7220
7221 len = skb_inner_transport_header(skb) -
7222 skb_inner_network_header(skb);
7223 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7224 goto out_rm_features;
7225 }
7226
7227 return features;
7228out_rm_features:
7229 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7230}
7231
7232static const struct net_device_ops ice_netdev_safe_mode_ops = {
7233 .ndo_open = ice_open,
7234 .ndo_stop = ice_stop,
7235 .ndo_start_xmit = ice_start_xmit,
7236 .ndo_set_mac_address = ice_set_mac_address,
7237 .ndo_validate_addr = eth_validate_addr,
7238 .ndo_change_mtu = ice_change_mtu,
7239 .ndo_get_stats64 = ice_get_stats64,
7240 .ndo_tx_timeout = ice_tx_timeout,
7241 .ndo_bpf = ice_xdp_safe_mode,
7242};
7243
7244static const struct net_device_ops ice_netdev_ops = {
7245 .ndo_open = ice_open,
7246 .ndo_stop = ice_stop,
7247 .ndo_start_xmit = ice_start_xmit,
7248 .ndo_features_check = ice_features_check,
7249 .ndo_set_rx_mode = ice_set_rx_mode,
7250 .ndo_set_mac_address = ice_set_mac_address,
7251 .ndo_validate_addr = eth_validate_addr,
7252 .ndo_change_mtu = ice_change_mtu,
7253 .ndo_get_stats64 = ice_get_stats64,
7254 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
7255 .ndo_do_ioctl = ice_do_ioctl,
7256 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7257 .ndo_set_vf_mac = ice_set_vf_mac,
7258 .ndo_get_vf_config = ice_get_vf_cfg,
7259 .ndo_set_vf_trust = ice_set_vf_trust,
7260 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
7261 .ndo_set_vf_link_state = ice_set_vf_link_state,
7262 .ndo_get_vf_stats = ice_get_vf_stats,
7263 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7264 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7265 .ndo_set_features = ice_set_features,
7266 .ndo_bridge_getlink = ice_bridge_getlink,
7267 .ndo_bridge_setlink = ice_bridge_setlink,
7268 .ndo_fdb_add = ice_fdb_add,
7269 .ndo_fdb_del = ice_fdb_del,
7270#ifdef CONFIG_RFS_ACCEL
7271 .ndo_rx_flow_steer = ice_rx_flow_steer,
7272#endif
7273 .ndo_tx_timeout = ice_tx_timeout,
7274 .ndo_bpf = ice_xdp,
7275 .ndo_xdp_xmit = ice_xdp_xmit,
7276 .ndo_xsk_wakeup = ice_xsk_wakeup,
7277};