Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
 
   8#include "ice.h"
 
 
 
 
 
 
 
 
 
 
 
 
   9
  10#define DRV_VERSION	"ice-0.7.0-k"
  11#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  12const char ice_drv_ver[] = DRV_VERSION;
  13static const char ice_driver_string[] = DRV_SUMMARY;
  14static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  15
 
 
 
 
  16MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  17MODULE_DESCRIPTION(DRV_SUMMARY);
  18MODULE_LICENSE("GPL");
  19MODULE_VERSION(DRV_VERSION);
  20
  21static int debug = -1;
  22module_param(debug, int, 0644);
  23#ifndef CONFIG_DYNAMIC_DEBUG
  24MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  25#else
  26MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  27#endif /* !CONFIG_DYNAMIC_DEBUG */
  28
 
 
  29static struct workqueue_struct *ice_wq;
 
  30static const struct net_device_ops ice_netdev_ops;
 
  31
  32static void ice_pf_dis_all_vsi(struct ice_pf *pf);
  33static void ice_rebuild(struct ice_pf *pf);
  34static int ice_vsi_release(struct ice_vsi *vsi);
  35static void ice_update_vsi_stats(struct ice_vsi *vsi);
  36static void ice_update_pf_stats(struct ice_pf *pf);
  37
  38/**
  39 * ice_get_free_slot - get the next non-NULL location index in array
  40 * @array: array to search
  41 * @size: size of the array
  42 * @curr: last known occupied index to be used as a search hint
  43 *
  44 * void * is being used to keep the functionality generic. This lets us use this
  45 * function on any array of pointers.
  46 */
  47static int ice_get_free_slot(void *array, int size, int curr)
  48{
  49	int **tmp_array = (int **)array;
  50	int next;
  51
  52	if (curr < (size - 1) && !tmp_array[curr + 1]) {
  53		next = curr + 1;
  54	} else {
  55		int i = 0;
  56
  57		while ((i < size) && (tmp_array[i]))
  58			i++;
  59		if (i == size)
  60			next = ICE_NO_VSI;
  61		else
  62			next = i;
  63	}
  64	return next;
  65}
  66
  67/**
  68 * ice_search_res - Search the tracker for a block of resources
  69 * @res: pointer to the resource
  70 * @needed: size of the block needed
  71 * @id: identifier to track owner
  72 * Returns the base item index of the block, or -ENOMEM for error
  73 */
  74static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
  75{
  76	int start = res->search_hint;
  77	int end = start;
  78
  79	id |= ICE_RES_VALID_BIT;
  80
  81	do {
  82		/* skip already allocated entries */
  83		if (res->list[end++] & ICE_RES_VALID_BIT) {
  84			start = end;
  85			if ((start + needed) > res->num_entries)
  86				break;
  87		}
  88
  89		if (end == (start + needed)) {
  90			int i = start;
  91
  92			/* there was enough, so assign it to the requestor */
  93			while (i != end)
  94				res->list[i++] = id;
  95
  96			if (end == res->num_entries)
  97				end = 0;
  98
  99			res->search_hint = end;
 100			return start;
 101		}
 102	} while (1);
 103
 104	return -ENOMEM;
 
 
 
 105}
 106
 107/**
 108 * ice_get_res - get a block of resources
 109 * @pf: board private structure
 110 * @res: pointer to the resource
 111 * @needed: size of the block needed
 112 * @id: identifier to track owner
 113 *
 114 * Returns the base item index of the block, or -ENOMEM for error
 115 * The search_hint trick and lack of advanced fit-finding only works
 116 * because we're highly likely to have all the same sized requests.
 117 * Linear search time and any fragmentation should be minimal.
 118 */
 119static int
 120ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
 121{
 122	int ret;
 123
 124	if (!res || !pf)
 125		return -EINVAL;
 
 126
 127	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
 128		dev_err(&pf->pdev->dev,
 129			"param err: needed=%d, num_entries = %d id=0x%04x\n",
 130			needed, res->num_entries, id);
 131		return -EINVAL;
 132	}
 133
 134	/* search based on search_hint */
 135	ret = ice_search_res(res, needed, id);
 136
 137	if (ret < 0) {
 138		/* previous search failed. Reset search hint and try again */
 139		res->search_hint = 0;
 140		ret = ice_search_res(res, needed, id);
 141	}
 142
 143	return ret;
 144}
 145
 146/**
 147 * ice_free_res - free a block of resources
 148 * @res: pointer to the resource
 149 * @index: starting index previously returned by ice_get_res
 150 * @id: identifier to track owner
 151 * Returns number of resources freed
 152 */
 153static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
 154{
 155	int count = 0;
 156	int i;
 157
 158	if (!res || index >= res->num_entries)
 159		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 160
 161	id |= ICE_RES_VALID_BIT;
 162	for (i = index; i < res->num_entries && res->list[i] == id; i++) {
 163		res->list[i] = 0;
 164		count++;
 
 
 
 165	}
 166
 167	return count;
 168}
 169
 170/**
 171 * ice_add_mac_to_list - Add a mac address filter entry to the list
 172 * @vsi: the VSI to be forwarded to
 173 * @add_list: pointer to the list which contains MAC filter entries
 174 * @macaddr: the MAC address to be added.
 175 *
 176 * Adds mac address filter entry to the temp list
 177 *
 178 * Returns 0 on success or ENOMEM on failure.
 
 
 179 */
 180static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
 181			       const u8 *macaddr)
 182{
 183	struct ice_fltr_list_entry *tmp;
 184	struct ice_pf *pf = vsi->back;
 185
 186	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
 187	if (!tmp)
 188		return -ENOMEM;
 189
 190	tmp->fltr_info.flag = ICE_FLTR_TX;
 191	tmp->fltr_info.src = vsi->vsi_num;
 192	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
 193	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
 194	tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
 195	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
 196
 197	INIT_LIST_HEAD(&tmp->list_entry);
 198	list_add(&tmp->list_entry, add_list);
 
 
 199
 200	return 0;
 201}
 202
 203/**
 204 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
 205 * @netdev: the net device on which the sync is happening
 206 * @addr: mac address to sync
 207 *
 208 * This is a callback function which is called by the in kernel device sync
 209 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 210 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 211 * mac filters from the hardware.
 212 */
 213static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 214{
 215	struct ice_netdev_priv *np = netdev_priv(netdev);
 216	struct ice_vsi *vsi = np->vsi;
 217
 218	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
 
 219		return -EINVAL;
 220
 221	return 0;
 222}
 223
 224/**
 225 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
 226 * @netdev: the net device on which the unsync is happening
 227 * @addr: mac address to unsync
 228 *
 229 * This is a callback function which is called by the in kernel device unsync
 230 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 231 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 232 * delete the mac filters from the hardware.
 233 */
 234static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 235{
 236	struct ice_netdev_priv *np = netdev_priv(netdev);
 237	struct ice_vsi *vsi = np->vsi;
 238
 239	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
 
 
 
 
 
 
 
 
 
 240		return -EINVAL;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_free_fltr_list - free filter lists helper
 247 * @dev: pointer to the device struct
 248 * @h: pointer to the list head to be freed
 249 *
 250 * Helper function to free filter lists previously created using
 251 * ice_add_mac_to_list
 252 */
 253static void ice_free_fltr_list(struct device *dev, struct list_head *h)
 254{
 255	struct ice_fltr_list_entry *e, *tmp;
 256
 257	list_for_each_entry_safe(e, tmp, h, list_entry) {
 258		list_del(&e->list_entry);
 259		devm_kfree(dev, e);
 260	}
 261}
 262
 263/**
 264 * ice_vsi_fltr_changed - check if filter state changed
 265 * @vsi: VSI to be checked
 
 
 266 *
 267 * returns true if filter state has changed, false otherwise.
 268 */
 269static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 270{
 271	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 272	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 273	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274}
 275
 276/**
 277 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 278 * @vsi: ptr to the VSI
 279 *
 280 * Push any outstanding VSI filter changes through the AdminQ.
 281 */
 282static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 283{
 284	struct device *dev = &vsi->back->pdev->dev;
 285	struct net_device *netdev = vsi->netdev;
 286	bool promisc_forced_on = false;
 287	struct ice_pf *pf = vsi->back;
 288	struct ice_hw *hw = &pf->hw;
 289	enum ice_status status = 0;
 290	u32 changed_flags = 0;
 
 291	int err = 0;
 292
 293	if (!vsi->netdev)
 294		return -EINVAL;
 295
 296	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 297		usleep_range(1000, 2000);
 298
 299	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 300	vsi->current_netdev_flags = vsi->netdev->flags;
 301
 302	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 303	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 304
 305	if (ice_vsi_fltr_changed(vsi)) {
 306		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 307		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 308		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 309
 310		/* grab the netdev's addr_list_lock */
 311		netif_addr_lock_bh(netdev);
 312		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 313			      ice_add_mac_to_unsync_list);
 314		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 315			      ice_add_mac_to_unsync_list);
 316		/* our temp lists are populated. release lock */
 317		netif_addr_unlock_bh(netdev);
 318	}
 319
 320	/* Remove mac addresses in the unsync list */
 321	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
 322	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
 323	if (status) {
 324		netdev_err(netdev, "Failed to delete MAC filters\n");
 325		/* if we failed because of alloc failures, just bail */
 326		if (status == ICE_ERR_NO_MEMORY) {
 327			err = -ENOMEM;
 328			goto out;
 329		}
 330	}
 331
 332	/* Add mac addresses in the sync list */
 333	status = ice_add_mac(hw, &vsi->tmp_sync_list);
 334	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
 335	if (status) {
 
 
 
 
 336		netdev_err(netdev, "Failed to add MAC filters\n");
 337		/* If there is no more space for new umac filters, vsi
 338		 * should go into promiscuous mode. There should be some
 339		 * space reserved for promiscuous filters.
 340		 */
 341		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 342		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 343				      vsi->state)) {
 344			promisc_forced_on = true;
 345			netdev_warn(netdev,
 346				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 347				    vsi->vsi_num);
 348		} else {
 349			err = -EIO;
 350			goto out;
 351		}
 352	}
 353	/* check for changes in promiscuous modes */
 354	if (changed_flags & IFF_ALLMULTI)
 355		netdev_warn(netdev, "Unsupported configuration\n");
 
 
 
 
 356
 357	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 358	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 359		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 360		if (vsi->current_netdev_flags & IFF_PROMISC) {
 361			/* Apply TX filter rule to get traffic from VMs */
 362			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
 363						  ICE_FLTR_TX);
 364			if (status) {
 365				netdev_err(netdev, "Error setting default VSI %i tx rule\n",
 366					   vsi->vsi_num);
 367				vsi->current_netdev_flags &= ~IFF_PROMISC;
 368				err = -EIO;
 369				goto out_promisc;
 370			}
 371			/* Apply RX filter rule to get traffic from wire */
 372			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
 373						  ICE_FLTR_RX);
 374			if (status) {
 375				netdev_err(netdev, "Error setting default VSI %i rx rule\n",
 376					   vsi->vsi_num);
 377				vsi->current_netdev_flags &= ~IFF_PROMISC;
 378				err = -EIO;
 379				goto out_promisc;
 380			}
 381		} else {
 382			/* Clear TX filter rule to stop traffic from VMs */
 383			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
 384						  ICE_FLTR_TX);
 385			if (status) {
 386				netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
 
 
 
 
 387					   vsi->vsi_num);
 388				vsi->current_netdev_flags |= IFF_PROMISC;
 389				err = -EIO;
 390				goto out_promisc;
 391			}
 392			/* Clear filter RX to remove traffic from wire */
 393			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
 394						  ICE_FLTR_RX);
 395			if (status) {
 396				netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
 397					   vsi->vsi_num);
 398				vsi->current_netdev_flags |= IFF_PROMISC;
 399				err = -EIO;
 400				goto out_promisc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401			}
 402		}
 403	}
 404	goto exit;
 405
 406out_promisc:
 407	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 408	goto exit;
 409out:
 410	/* if something went wrong then set the changed flag so we try again */
 411	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 412	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 413exit:
 414	clear_bit(__ICE_CFG_BUSY, vsi->state);
 415	return err;
 416}
 417
 418/**
 419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 420 * @pf: board private structure
 421 */
 422static void ice_sync_fltr_subtask(struct ice_pf *pf)
 423{
 424	int v;
 425
 426	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 427		return;
 428
 429	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 430
 431	for (v = 0; v < pf->num_alloc_vsi; v++)
 432		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 433		    ice_vsi_sync_fltr(pf->vsi[v])) {
 434			/* come back and try again later */
 435			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 436			break;
 437		}
 438}
 439
 440/**
 441 * ice_is_reset_recovery_pending - schedule a reset
 442 * @state: pf state field
 
 443 */
 444static bool ice_is_reset_recovery_pending(unsigned long int *state)
 445{
 446	return test_bit(__ICE_RESET_RECOVERY_PENDING, state);
 
 
 
 
 
 
 
 
 
 
 
 447}
 448
 449/**
 450 * ice_prepare_for_reset - prep for the core to reset
 451 * @pf: board private structure
 452 *
 453 * Inform or close all dependent features in prep for reset.
 454 */
 455static void
 456ice_prepare_for_reset(struct ice_pf *pf)
 457{
 458	struct ice_hw *hw = &pf->hw;
 459	u32 v;
 460
 461	ice_for_each_vsi(pf, v)
 462		if (pf->vsi[v])
 463			ice_remove_vsi_fltr(hw, pf->vsi[v]->vsi_num);
 
 
 464
 465	dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
 
 
 
 
 
 
 466
 
 
 467	/* disable the VSIs and their queues that are not already DOWN */
 468	/* pf_dis_all_vsi modifies netdev structures -rtnl_lock needed */
 469	ice_pf_dis_all_vsi(pf);
 470
 471	ice_for_each_vsi(pf, v)
 472		if (pf->vsi[v])
 473			pf->vsi[v]->vsi_num = 0;
 
 
 474
 475	ice_shutdown_all_ctrlq(hw);
 
 
 476}
 477
 478/**
 479 * ice_do_reset - Initiate one of many types of resets
 480 * @pf: board private structure
 481 * @reset_type: reset type requested
 482 * before this function was called.
 483 */
 484static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 485{
 486	struct device *dev = &pf->pdev->dev;
 487	struct ice_hw *hw = &pf->hw;
 488
 489	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 490	WARN_ON(in_interrupt());
 491
 492	/* PFR is a bit of a special case because it doesn't result in an OICR
 493	 * interrupt. So for PFR, we prepare for reset, issue the reset and
 494	 * rebuild sequentially.
 495	 */
 496	if (reset_type == ICE_RESET_PFR) {
 497		set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 498		ice_prepare_for_reset(pf);
 499	}
 500
 501	/* trigger the reset */
 502	if (ice_reset(hw, reset_type)) {
 503		dev_err(dev, "reset %d failed\n", reset_type);
 504		set_bit(__ICE_RESET_FAILED, pf->state);
 505		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 
 506		return;
 507	}
 508
 
 
 
 
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf);
 512		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 513	}
 514}
 515
 516/**
 517 * ice_reset_subtask - Set up for resetting the device and driver
 518 * @pf: board private structure
 519 */
 520static void ice_reset_subtask(struct ice_pf *pf)
 521{
 522	enum ice_reset_req reset_type;
 523
 524	rtnl_lock();
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what
 528	 * type of reset happened and sets __ICE_RESET_RECOVERY_PENDING bit in
 529	 * pf->state. So if reset/recovery is pending (as indicated by this bit)
 530	 * we do a rebuild and return.
 531	 */
 532	if (ice_is_reset_recovery_pending(pf->state)) {
 533		clear_bit(__ICE_GLOBR_RECV, pf->state);
 534		clear_bit(__ICE_CORER_RECV, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 535		ice_prepare_for_reset(pf);
 536
 537		/* make sure we are ready to rebuild */
 538		if (ice_check_reset(&pf->hw))
 539			set_bit(__ICE_RESET_FAILED, pf->state);
 540		else
 541			ice_rebuild(pf);
 542		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 543		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 544	}
 545
 546	/* No pending resets to finish processing. Check for new resets */
 547	if (test_and_clear_bit(__ICE_GLOBR_REQ, pf->state))
 548		reset_type = ICE_RESET_GLOBR;
 549	else if (test_and_clear_bit(__ICE_CORER_REQ, pf->state))
 550		reset_type = ICE_RESET_CORER;
 551	else if (test_and_clear_bit(__ICE_PFR_REQ, pf->state))
 552		reset_type = ICE_RESET_PFR;
 553	else
 554		goto unlock;
 
 
 
 
 
 555
 556	/* reset if not already down or resetting */
 557	if (!test_bit(__ICE_DOWN, pf->state) &&
 558	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 559		ice_do_reset(pf, reset_type);
 560	}
 561
 562unlock:
 563	rtnl_unlock();
 564}
 565
 566/**
 567 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 568 * @pf: board private structure
 569 */
 570static void ice_watchdog_subtask(struct ice_pf *pf)
 571{
 572	int i;
 573
 574	/* if interface is down do nothing */
 575	if (test_bit(__ICE_DOWN, pf->state) ||
 576	    test_bit(__ICE_CFG_BUSY, pf->state))
 577		return;
 578
 579	/* make sure we don't do these things too often */
 580	if (time_before(jiffies,
 581			pf->serv_tmr_prev + pf->serv_tmr_period))
 582		return;
 583
 584	pf->serv_tmr_prev = jiffies;
 585
 586	/* Update the stats for active netdevs so the network stack
 587	 * can look at updated numbers whenever it cares to
 588	 */
 589	ice_update_pf_stats(pf);
 590	for (i = 0; i < pf->num_alloc_vsi; i++)
 591		if (pf->vsi[i] && pf->vsi[i]->netdev)
 592			ice_update_vsi_stats(pf->vsi[i]);
 593}
 594
 595/**
 596 * ice_print_link_msg - print link up or down message
 597 * @vsi: the VSI whose link status is being queried
 598 * @isup: boolean for if the link is now up or down
 599 */
 600void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 601{
 
 
 
 
 602	const char *speed;
 
 603	const char *fc;
 
 
 
 
 604
 605	if (vsi->current_isup == isup)
 606		return;
 607
 608	vsi->current_isup = isup;
 609
 610	if (!isup) {
 611		netdev_info(vsi->netdev, "NIC Link is Down\n");
 612		return;
 613	}
 614
 615	switch (vsi->port_info->phy.link_info.link_speed) {
 
 
 
 
 
 
 616	case ICE_AQ_LINK_SPEED_40GB:
 617		speed = "40 G";
 618		break;
 619	case ICE_AQ_LINK_SPEED_25GB:
 620		speed = "25 G";
 621		break;
 622	case ICE_AQ_LINK_SPEED_20GB:
 623		speed = "20 G";
 624		break;
 625	case ICE_AQ_LINK_SPEED_10GB:
 626		speed = "10 G";
 627		break;
 628	case ICE_AQ_LINK_SPEED_5GB:
 629		speed = "5 G";
 630		break;
 631	case ICE_AQ_LINK_SPEED_2500MB:
 632		speed = "2.5 G";
 633		break;
 634	case ICE_AQ_LINK_SPEED_1000MB:
 635		speed = "1 G";
 636		break;
 637	case ICE_AQ_LINK_SPEED_100MB:
 638		speed = "100 M";
 639		break;
 640	default:
 641		speed = "Unknown";
 642		break;
 643	}
 644
 645	switch (vsi->port_info->fc.current_mode) {
 646	case ICE_FC_FULL:
 647		fc = "RX/TX";
 648		break;
 649	case ICE_FC_TX_PAUSE:
 650		fc = "TX";
 651		break;
 652	case ICE_FC_RX_PAUSE:
 653		fc = "RX";
 
 
 
 654		break;
 655	default:
 656		fc = "Unknown";
 657		break;
 658	}
 659
 660	netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
 661		    speed, fc);
 662}
 663
 664/**
 665 * ice_init_link_events - enable/initialize link events
 666 * @pi: pointer to the port_info instance
 667 *
 668 * Returns -EIO on failure, 0 on success
 669 */
 670static int ice_init_link_events(struct ice_port_info *pi)
 671{
 672	u16 mask;
 673
 674	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 675		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 
 
 
 676
 677	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 678		dev_dbg(ice_hw_to_dev(pi->hw),
 679			"Failed to set link event mask for port %d\n",
 680			pi->lport);
 681		return -EIO;
 
 682	}
 683
 684	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 685		dev_dbg(ice_hw_to_dev(pi->hw),
 686			"Failed to enable link events for port %d\n",
 687			pi->lport);
 688		return -EIO;
 689	}
 690
 691	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692}
 693
 694/**
 695 * ice_vsi_link_event - update the vsi's netdev
 696 * @vsi: the vsi on which the link event occurred
 697 * @link_up: whether or not the vsi needs to be set up or down
 698 */
 699static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 700{
 701	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
 
 
 
 702		return;
 703
 704	if (vsi->type == ICE_VSI_PF) {
 705		if (!vsi->netdev) {
 706			dev_dbg(&vsi->back->pdev->dev,
 707				"vsi->netdev is not initialized!\n");
 708			return;
 709		}
 710		if (link_up) {
 711			netif_carrier_on(vsi->netdev);
 712			netif_tx_wake_all_queues(vsi->netdev);
 713		} else {
 714			netif_carrier_off(vsi->netdev);
 715			netif_tx_stop_all_queues(vsi->netdev);
 716		}
 717	}
 718}
 719
 720/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721 * ice_link_event - process the link event
 722 * @pf: pf that the link event is associated with
 723 * @pi: port_info for the port that the link event is associated with
 
 
 724 *
 725 * Returns -EIO if ice_get_link_status() fails
 726 * Returns 0 on success
 727 */
 728static int
 729ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
 
 730{
 731	u8 new_link_speed, old_link_speed;
 732	struct ice_phy_info *phy_info;
 733	bool new_link_same_as_old;
 734	bool new_link, old_link;
 735	u8 lport;
 736	u16 v;
 737
 738	phy_info = &pi->phy;
 739	phy_info->link_info_old = phy_info->link_info;
 740	/* Force ice_get_link_status() to update link info */
 741	phy_info->get_link_info = true;
 742
 743	old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 744	old_link_speed = phy_info->link_info_old.link_speed;
 745
 746	lport = pi->lport;
 747	if (ice_get_link_status(pi, &new_link)) {
 748		dev_dbg(&pf->pdev->dev,
 749			"Could not get link status for port %d\n", lport);
 750		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 752
 753	new_link_speed = phy_info->link_info.link_speed;
 
 
 754
 755	new_link_same_as_old = (new_link == old_link &&
 756				new_link_speed == old_link_speed);
 
 
 
 
 
 
 
 757
 758	ice_for_each_vsi(pf, v) {
 759		struct ice_vsi *vsi = pf->vsi[v];
 760
 761		if (!vsi || !vsi->port_info)
 762			continue;
 763
 764		if (new_link_same_as_old &&
 765		    (test_bit(__ICE_DOWN, vsi->state) ||
 766		    new_link == netif_carrier_ok(vsi->netdev)))
 767			continue;
 
 
 
 768
 769		if (vsi->port_info->lport == lport) {
 770			ice_print_link_msg(vsi, new_link);
 771			ice_vsi_link_event(vsi, new_link);
 772		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773	}
 774
 775	return 0;
 776}
 777
 778/**
 779 * ice_handle_link_event - handle link event via ARQ
 780 * @pf: pf that the link event is associated with
 781 *
 782 * Return -EINVAL if port_info is null
 783 * Return status on succes
 784 */
 785static int ice_handle_link_event(struct ice_pf *pf)
 
 786{
 
 787	struct ice_port_info *port_info;
 788	int status;
 789
 
 790	port_info = pf->hw.port_info;
 791	if (!port_info)
 792		return -EINVAL;
 793
 794	status = ice_link_event(pf, port_info);
 
 
 795	if (status)
 796		dev_dbg(&pf->pdev->dev,
 797			"Could not process link event, error %d\n", status);
 798
 799	return status;
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802/**
 803 * __ice_clean_ctrlq - helper function to clean controlq rings
 804 * @pf: ptr to struct ice_pf
 805 * @q_type: specific Control queue type
 806 */
 807static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
 808{
 
 809	struct ice_rq_event_info event;
 810	struct ice_hw *hw = &pf->hw;
 811	struct ice_ctl_q_info *cq;
 812	u16 pending, i = 0;
 813	const char *qtype;
 814	u32 oldval, val;
 815
 816	/* Do not clean control queue if/when PF reset fails */
 817	if (test_bit(__ICE_RESET_FAILED, pf->state))
 818		return 0;
 819
 820	switch (q_type) {
 821	case ICE_CTL_Q_ADMIN:
 822		cq = &hw->adminq;
 823		qtype = "Admin";
 824		break;
 
 
 
 
 
 
 
 
 
 
 
 
 825	default:
 826		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
 827			 q_type);
 828		return 0;
 829	}
 830
 831	/* check for error indications - PF_xx_AxQLEN register layout for
 832	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
 833	 */
 834	val = rd32(hw, cq->rq.len);
 835	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
 836		   PF_FW_ARQLEN_ARQCRIT_M)) {
 837		oldval = val;
 838		if (val & PF_FW_ARQLEN_ARQVFE_M)
 839			dev_dbg(&pf->pdev->dev,
 840				"%s Receive Queue VF Error detected\n", qtype);
 841		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
 842			dev_dbg(&pf->pdev->dev,
 843				"%s Receive Queue Overflow Error detected\n",
 844				qtype);
 845		}
 846		if (val & PF_FW_ARQLEN_ARQCRIT_M)
 847			dev_dbg(&pf->pdev->dev,
 848				"%s Receive Queue Critical Error detected\n",
 849				qtype);
 850		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
 851			 PF_FW_ARQLEN_ARQCRIT_M);
 852		if (oldval != val)
 853			wr32(hw, cq->rq.len, val);
 854	}
 855
 856	val = rd32(hw, cq->sq.len);
 857	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
 858		   PF_FW_ATQLEN_ATQCRIT_M)) {
 859		oldval = val;
 860		if (val & PF_FW_ATQLEN_ATQVFE_M)
 861			dev_dbg(&pf->pdev->dev,
 862				"%s Send Queue VF Error detected\n", qtype);
 863		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
 864			dev_dbg(&pf->pdev->dev,
 865				"%s Send Queue Overflow Error detected\n",
 866				qtype);
 867		}
 868		if (val & PF_FW_ATQLEN_ATQCRIT_M)
 869			dev_dbg(&pf->pdev->dev,
 870				"%s Send Queue Critical Error detected\n",
 871				qtype);
 872		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
 873			 PF_FW_ATQLEN_ATQCRIT_M);
 874		if (oldval != val)
 875			wr32(hw, cq->sq.len, val);
 876	}
 877
 878	event.buf_len = cq->rq_buf_size;
 879	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
 880				     GFP_KERNEL);
 881	if (!event.msg_buf)
 882		return 0;
 883
 884	do {
 885		enum ice_status ret;
 886		u16 opcode;
 887
 888		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
 889		if (ret == ICE_ERR_AQ_NO_WORK)
 890			break;
 891		if (ret) {
 892			dev_err(&pf->pdev->dev,
 893				"%s Receive Queue event error %d\n", qtype,
 894				ret);
 895			break;
 896		}
 897
 898		opcode = le16_to_cpu(event.desc.opcode);
 899
 
 
 
 900		switch (opcode) {
 901		case ice_aqc_opc_get_link_status:
 902			if (ice_handle_link_event(pf))
 903				dev_err(&pf->pdev->dev,
 904					"Could not handle link event");
 
 
 
 
 
 
 
 
 
 
 
 
 905			break;
 906		default:
 907			dev_dbg(&pf->pdev->dev,
 908				"%s Receive Queue unknown event 0x%04x ignored\n",
 909				qtype, opcode);
 910			break;
 911		}
 912	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
 913
 914	devm_kfree(&pf->pdev->dev, event.msg_buf);
 915
 916	return pending && (i == ICE_DFLT_IRQ_WORK);
 917}
 918
 919/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920 * ice_clean_adminq_subtask - clean the AdminQ rings
 921 * @pf: board private structure
 922 */
 923static void ice_clean_adminq_subtask(struct ice_pf *pf)
 924{
 925	struct ice_hw *hw = &pf->hw;
 926	u32 val;
 927
 928	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
 929		return;
 930
 931	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
 932		return;
 933
 934	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935
 936	/* re-enable Admin queue interrupt causes */
 937	val = rd32(hw, PFINT_FW_CTL);
 938	wr32(hw, PFINT_FW_CTL, (val | PFINT_FW_CTL_CAUSE_ENA_M));
 939
 940	ice_flush(hw);
 941}
 942
 943/**
 944 * ice_service_task_schedule - schedule the service task to wake up
 945 * @pf: board private structure
 946 *
 947 * If not already scheduled, this puts the task into the work queue.
 948 */
 949static void ice_service_task_schedule(struct ice_pf *pf)
 950{
 951	if (!test_bit(__ICE_DOWN, pf->state) &&
 952	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state))
 
 953		queue_work(ice_wq, &pf->serv_task);
 954}
 955
 956/**
 957 * ice_service_task_complete - finish up the service task
 958 * @pf: board private structure
 959 */
 960static void ice_service_task_complete(struct ice_pf *pf)
 961{
 962	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
 963
 964	/* force memory (pf->state) to sync before next service task */
 965	smp_mb__before_atomic();
 966	clear_bit(__ICE_SERVICE_SCHED, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968
 969/**
 970 * ice_service_timer - timer callback to schedule service task
 971 * @t: pointer to timer_list
 972 */
 973static void ice_service_timer(struct timer_list *t)
 974{
 975	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
 976
 977	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
 978	ice_service_task_schedule(pf);
 979}
 980
 981/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982 * ice_service_task - manage and run subtasks
 983 * @work: pointer to work_struct contained by the PF struct
 984 */
 985static void ice_service_task(struct work_struct *work)
 986{
 987	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
 988	unsigned long start_time = jiffies;
 989
 990	/* subtasks */
 991
 992	/* process reset requests first */
 993	ice_reset_subtask(pf);
 994
 995	/* bail if a reset/recovery cycle is pending */
 996	if (ice_is_reset_recovery_pending(pf->state) ||
 997	    test_bit(__ICE_SUSPENDED, pf->state)) {
 
 998		ice_service_task_complete(pf);
 999		return;
1000	}
1001
 
 
 
1002	ice_sync_fltr_subtask(pf);
 
1003	ice_watchdog_subtask(pf);
1004	ice_clean_adminq_subtask(pf);
1005
1006	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
 
 
 
 
 
 
 
 
 
 
 
1007	ice_service_task_complete(pf);
1008
1009	/* If the tasks have taken longer than one service timer period
1010	 * or there is more work to be done, reset the service timer to
1011	 * schedule the service task now.
1012	 */
1013	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1014	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
 
 
 
 
 
1015		mod_timer(&pf->serv_tmr, jiffies);
1016}
1017
1018/**
1019 * ice_set_ctrlq_len - helper function to set controlq length
1020 * @hw: pointer to the hw instance
1021 */
1022static void ice_set_ctrlq_len(struct ice_hw *hw)
1023{
1024	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1025	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1026	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1027	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028}
1029
1030/**
1031 * ice_irq_affinity_notify - Callback for affinity changes
1032 * @notify: context as to what irq was changed
1033 * @mask: the new affinity mask
1034 *
1035 * This is a callback function used by the irq_set_affinity_notifier function
1036 * so that we may register to receive changes to the irq affinity masks.
1037 */
1038static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1039				    const cpumask_t *mask)
 
1040{
1041	struct ice_q_vector *q_vector =
1042		container_of(notify, struct ice_q_vector, affinity_notify);
1043
1044	cpumask_copy(&q_vector->affinity_mask, mask);
1045}
1046
1047/**
1048 * ice_irq_affinity_release - Callback for affinity notifier release
1049 * @ref: internal core kernel usage
1050 *
1051 * This is a callback function used by the irq_set_affinity_notifier function
1052 * to inform the current notification subscriber that they will no longer
1053 * receive notifications.
1054 */
1055static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1056
1057/**
1058 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
1059 * @vsi: the VSI being un-configured
1060 */
1061static void ice_vsi_dis_irq(struct ice_vsi *vsi)
1062{
1063	struct ice_pf *pf = vsi->back;
1064	struct ice_hw *hw = &pf->hw;
1065	int base = vsi->base_vector;
1066	u32 val;
1067	int i;
1068
1069	/* disable interrupt causation from each queue */
1070	if (vsi->tx_rings) {
1071		ice_for_each_txq(vsi, i) {
1072			if (vsi->tx_rings[i]) {
1073				u16 reg;
1074
1075				reg = vsi->tx_rings[i]->reg_idx;
1076				val = rd32(hw, QINT_TQCTL(reg));
1077				val &= ~QINT_TQCTL_CAUSE_ENA_M;
1078				wr32(hw, QINT_TQCTL(reg), val);
1079			}
1080		}
1081	}
1082
1083	if (vsi->rx_rings) {
1084		ice_for_each_rxq(vsi, i) {
1085			if (vsi->rx_rings[i]) {
1086				u16 reg;
1087
1088				reg = vsi->rx_rings[i]->reg_idx;
1089				val = rd32(hw, QINT_RQCTL(reg));
1090				val &= ~QINT_RQCTL_CAUSE_ENA_M;
1091				wr32(hw, QINT_RQCTL(reg), val);
1092			}
1093		}
1094	}
1095
1096	/* disable each interrupt */
1097	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1098		for (i = vsi->base_vector;
1099		     i < (vsi->num_q_vectors + vsi->base_vector); i++)
1100			wr32(hw, GLINT_DYN_CTL(i), 0);
1101
1102		ice_flush(hw);
1103		for (i = 0; i < vsi->num_q_vectors; i++)
1104			synchronize_irq(pf->msix_entries[i + base].vector);
1105	}
1106}
1107
1108/**
1109 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1110 * @vsi: the VSI being configured
1111 */
1112static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1113{
1114	struct ice_pf *pf = vsi->back;
1115	struct ice_hw *hw = &pf->hw;
1116
1117	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1118		int i;
1119
1120		for (i = 0; i < vsi->num_q_vectors; i++)
1121			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1122	}
1123
1124	ice_flush(hw);
1125	return 0;
1126}
1127
1128/**
1129 * ice_vsi_delete - delete a VSI from the switch
1130 * @vsi: pointer to VSI being removed
1131 */
1132static void ice_vsi_delete(struct ice_vsi *vsi)
1133{
1134	struct ice_pf *pf = vsi->back;
1135	struct ice_vsi_ctx ctxt;
1136	enum ice_status status;
1137
1138	ctxt.vsi_num = vsi->vsi_num;
1139
1140	memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));
1141
1142	status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
1143	if (status)
1144		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
1145			vsi->vsi_num);
1146}
1147
1148/**
1149 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1150 * @vsi: the VSI being configured
1151 * @basename: name for the vector
1152 */
1153static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1154{
1155	int q_vectors = vsi->num_q_vectors;
1156	struct ice_pf *pf = vsi->back;
1157	int base = vsi->base_vector;
 
1158	int rx_int_idx = 0;
1159	int tx_int_idx = 0;
1160	int vector, err;
1161	int irq_num;
1162
 
1163	for (vector = 0; vector < q_vectors; vector++) {
1164		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1165
1166		irq_num = pf->msix_entries[base + vector].vector;
1167
1168		if (q_vector->tx.ring && q_vector->rx.ring) {
1169			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1170				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1171			tx_int_idx++;
1172		} else if (q_vector->rx.ring) {
1173			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1174				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1175		} else if (q_vector->tx.ring) {
1176			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1177				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1178		} else {
1179			/* skip this unused q_vector */
1180			continue;
1181		}
1182		err = devm_request_irq(&pf->pdev->dev,
1183				       pf->msix_entries[base + vector].vector,
1184				       vsi->irq_handler, 0, q_vector->name,
1185				       q_vector);
 
 
 
1186		if (err) {
1187			netdev_err(vsi->netdev,
1188				   "MSIX request_irq failed, error: %d\n", err);
1189			goto free_q_irqs;
1190		}
1191
1192		/* register for affinity change notifications */
1193		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1194		q_vector->affinity_notify.release = ice_irq_affinity_release;
1195		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 
 
 
 
 
1196
1197		/* assign the mask for this irq */
1198		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1199	}
1200
1201	vsi->irqs_ready = true;
1202	return 0;
1203
1204free_q_irqs:
1205	while (vector) {
1206		vector--;
1207		irq_num = pf->msix_entries[base + vector].vector,
1208		irq_set_affinity_notifier(irq_num, NULL);
 
1209		irq_set_affinity_hint(irq_num, NULL);
1210		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1211	}
1212	return err;
1213}
1214
1215/**
1216 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
1217 * @vsi: the VSI being configured
 
 
1218 */
1219static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
1220{
1221	struct ice_hw_common_caps *cap;
1222	struct ice_pf *pf = vsi->back;
1223
1224	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
1225		vsi->rss_size = 1;
1226		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	}
1228
1229	cap = &pf->hw.func_caps.common_cap;
1230	switch (vsi->type) {
1231	case ICE_VSI_PF:
1232		/* PF VSI will inherit RSS instance of PF */
1233		vsi->rss_table_size = cap->rss_table_size;
1234		vsi->rss_size = min_t(int, num_online_cpus(),
1235				      BIT(cap->rss_table_entry_width));
1236		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
1237		break;
1238	default:
1239		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1240		break;
1241	}
1242}
1243
1244/**
1245 * ice_vsi_setup_q_map - Setup a VSI queue map
1246 * @vsi: the VSI being configured
1247 * @ctxt: VSI context structure
1248 */
1249static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1250{
1251	u16 offset = 0, qmap = 0, numq_tc;
1252	u16 pow = 0, max_rss = 0, qcount;
1253	u16 qcount_tx = vsi->alloc_txq;
1254	u16 qcount_rx = vsi->alloc_rxq;
1255	bool ena_tc0 = false;
1256	int i;
1257
1258	/* at least TC0 should be enabled by default */
1259	if (vsi->tc_cfg.numtc) {
1260		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
1261			ena_tc0 =  true;
1262	} else {
1263		ena_tc0 =  true;
1264	}
1265
1266	if (ena_tc0) {
1267		vsi->tc_cfg.numtc++;
1268		vsi->tc_cfg.ena_tc |= 1;
1269	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270
1271	numq_tc = qcount_rx / vsi->tc_cfg.numtc;
 
 
 
 
1272
1273	/* TC mapping is a function of the number of Rx queues assigned to the
1274	 * VSI for each traffic class and the offset of these queues.
1275	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1276	 * queues allocated to TC0. No:of queues is a power-of-2.
1277	 *
1278	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1279	 * queue, this way, traffic for the given TC will be sent to the default
1280	 * queue.
1281	 *
1282	 * Setup number and offset of Rx queues for all TCs for the VSI
1283	 */
1284
1285	/* qcount will change if RSS is enabled */
1286	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
1287		if (vsi->type == ICE_VSI_PF)
1288			max_rss = ICE_MAX_LG_RSS_QS;
1289		else
1290			max_rss = ICE_MAX_SMALL_RSS_QS;
1291
1292		qcount = min_t(int, numq_tc, max_rss);
1293		qcount = min_t(int, qcount, vsi->rss_size);
1294	} else {
1295		qcount = numq_tc;
1296	}
1297
1298	/* find higher power-of-2 of qcount */
1299	pow = ilog2(qcount);
 
1300
1301	if (!is_power_of_2(qcount))
1302		pow++;
1303
1304	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
1305		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1306			/* TC is not enabled */
1307			vsi->tc_cfg.tc_info[i].qoffset = 0;
1308			vsi->tc_cfg.tc_info[i].qcount = 1;
1309			ctxt->info.tc_mapping[i] = 0;
1310			continue;
1311		}
 
 
1312
1313		/* TC is enabled */
1314		vsi->tc_cfg.tc_info[i].qoffset = offset;
1315		vsi->tc_cfg.tc_info[i].qcount = qcount;
1316
1317		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1318			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1319			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1320			 ICE_AQ_VSI_TC_Q_NUM_M);
1321		offset += qcount;
1322		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1323	}
1324
1325	vsi->num_txq = qcount_tx;
1326	vsi->num_rxq = offset;
1327
1328	/* Rx queue mapping */
1329	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1330	/* q_mapping buffer holds the info for the first queue allocated for
1331	 * this VSI in the PF space and also the number of queues associated
1332	 * with this VSI.
1333	 */
1334	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1335	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1336}
1337
1338/**
1339 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
1340 * @ctxt: the VSI context being set
1341 *
1342 * This initializes a default VSI context for all sections except the Queues.
1343 */
1344static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
1345{
1346	u32 table = 0;
1347
1348	memset(&ctxt->info, 0, sizeof(ctxt->info));
1349	/* VSI's should be allocated from shared pool */
1350	ctxt->alloc_from_pool = true;
1351	/* Src pruning enabled by default */
1352	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
1353	/* Traffic from VSI can be sent to LAN */
1354	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1355	/* Allow all packets untagged/tagged */
1356	ctxt->info.port_vlan_flags = ((ICE_AQ_VSI_PVLAN_MODE_ALL &
1357				       ICE_AQ_VSI_PVLAN_MODE_M) >>
1358				      ICE_AQ_VSI_PVLAN_MODE_S);
1359	/* Show VLAN/UP from packets in Rx descriptors */
1360	ctxt->info.port_vlan_flags |= ((ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH &
1361					ICE_AQ_VSI_PVLAN_EMOD_M) >>
1362				       ICE_AQ_VSI_PVLAN_EMOD_S);
1363	/* Have 1:1 UP mapping for both ingress/egress tables */
1364	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1365	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1366	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1367	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1368	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1369	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1370	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1371	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1372	ctxt->info.ingress_table = cpu_to_le32(table);
1373	ctxt->info.egress_table = cpu_to_le32(table);
1374	/* Have 1:1 UP mapping for outer to inner UP table */
1375	ctxt->info.outer_up_table = cpu_to_le32(table);
1376	/* No Outer tag support outer_tag_flags remains to zero */
1377}
1378
1379/**
1380 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1381 * @ctxt: the VSI context being set
1382 * @vsi: the VSI being configured
1383 */
1384static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1385{
1386	u8 lut_type, hash_type;
1387
1388	switch (vsi->type) {
1389	case ICE_VSI_PF:
1390		/* PF VSI will inherit RSS instance of PF */
1391		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1392		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1393		break;
1394	default:
1395		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1396			 vsi->type);
1397		return;
1398	}
 
 
 
 
 
 
 
 
 
1399
1400	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1401				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1402				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1403				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 
 
 
 
 
 
1404}
1405
1406/**
1407 * ice_vsi_add - Create a new VSI or fetch preallocated VSI
1408 * @vsi: the VSI being configured
1409 *
1410 * This initializes a VSI context depending on the VSI type to be added and
1411 * passes it down to the add_vsi aq command to create a new VSI.
1412 */
1413static int ice_vsi_add(struct ice_vsi *vsi)
1414{
1415	struct ice_vsi_ctx ctxt = { 0 };
1416	struct ice_pf *pf = vsi->back;
1417	struct ice_hw *hw = &pf->hw;
1418	int ret = 0;
1419
1420	switch (vsi->type) {
1421	case ICE_VSI_PF:
1422		ctxt.flags = ICE_AQ_VSI_TYPE_PF;
1423		break;
1424	default:
1425		return -ENODEV;
1426	}
1427
1428	ice_set_dflt_vsi_ctx(&ctxt);
1429	/* if the switch is in VEB mode, allow VSI loopback */
1430	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1431		ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1432
1433	/* Set LUT type and HASH type if RSS is enabled */
1434	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1435		ice_set_rss_vsi_ctx(&ctxt, vsi);
1436
1437	ctxt.info.sw_id = vsi->port_info->sw_id;
1438	ice_vsi_setup_q_map(vsi, &ctxt);
 
1439
1440	ret = ice_aq_add_vsi(hw, &ctxt, NULL);
1441	if (ret) {
1442		dev_err(&vsi->back->pdev->dev,
1443			"Add VSI AQ call failed, err %d\n", ret);
1444		return -EIO;
1445	}
1446	vsi->info = ctxt.info;
1447	vsi->vsi_num = ctxt.vsi_num;
1448
1449	return ret;
1450}
 
 
 
 
 
1451
1452/**
1453 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
1454 * @vsi: the VSI being cleaned up
1455 */
1456static void ice_vsi_release_msix(struct ice_vsi *vsi)
1457{
1458	struct ice_pf *pf = vsi->back;
1459	u16 vector = vsi->base_vector;
1460	struct ice_hw *hw = &pf->hw;
1461	u32 txq = 0;
1462	u32 rxq = 0;
1463	int i, q;
1464
1465	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1466		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1467
1468		wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0);
1469		wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0);
1470		for (q = 0; q < q_vector->num_ring_tx; q++) {
1471			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
1472			txq++;
1473		}
1474
1475		for (q = 0; q < q_vector->num_ring_rx; q++) {
1476			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
1477			rxq++;
1478		}
1479	}
1480
1481	ice_flush(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482}
1483
1484/**
1485 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1486 * @vsi: the VSI having rings deallocated
1487 */
1488static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1489{
1490	int i;
1491
1492	if (vsi->tx_rings) {
1493		for (i = 0; i < vsi->alloc_txq; i++) {
1494			if (vsi->tx_rings[i]) {
1495				kfree_rcu(vsi->tx_rings[i], rcu);
1496				vsi->tx_rings[i] = NULL;
1497			}
1498		}
1499	}
1500	if (vsi->rx_rings) {
1501		for (i = 0; i < vsi->alloc_rxq; i++) {
1502			if (vsi->rx_rings[i]) {
1503				kfree_rcu(vsi->rx_rings[i], rcu);
1504				vsi->rx_rings[i] = NULL;
1505			}
1506		}
1507	}
1508}
1509
1510/**
1511 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1512 * @vsi: VSI which is having rings allocated
 
 
1513 */
1514static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
 
 
1515{
1516	struct ice_pf *pf = vsi->back;
1517	int i;
1518
1519	/* Allocate tx_rings */
1520	for (i = 0; i < vsi->alloc_txq; i++) {
1521		struct ice_ring *ring;
1522
1523		/* allocate with kzalloc(), free with kfree_rcu() */
1524		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1525
1526		if (!ring)
1527			goto err_out;
1528
1529		ring->q_index = i;
1530		ring->reg_idx = vsi->txq_map[i];
1531		ring->ring_active = false;
1532		ring->vsi = vsi;
1533		ring->netdev = vsi->netdev;
1534		ring->dev = &pf->pdev->dev;
1535		ring->count = vsi->num_desc;
1536
1537		vsi->tx_rings[i] = ring;
 
 
1538	}
1539
1540	/* Allocate rx_rings */
1541	for (i = 0; i < vsi->alloc_rxq; i++) {
1542		struct ice_ring *ring;
1543
1544		/* allocate with kzalloc(), free with kfree_rcu() */
1545		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1546		if (!ring)
1547			goto err_out;
1548
1549		ring->q_index = i;
1550		ring->reg_idx = vsi->rxq_map[i];
1551		ring->ring_active = false;
1552		ring->vsi = vsi;
1553		ring->netdev = vsi->netdev;
1554		ring->dev = &pf->pdev->dev;
1555		ring->count = vsi->num_desc;
1556		vsi->rx_rings[i] = ring;
 
 
 
1557	}
1558
1559	return 0;
 
1560
1561err_out:
1562	ice_vsi_clear_rings(vsi);
1563	return -ENOMEM;
 
1564}
1565
1566/**
1567 * ice_vsi_free_irq - Free the irq association with the OS
1568 * @vsi: the VSI being configured
 
1569 */
1570static void ice_vsi_free_irq(struct ice_vsi *vsi)
 
1571{
1572	struct ice_pf *pf = vsi->back;
1573	int base = vsi->base_vector;
1574
1575	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1576		int i;
1577
1578		if (!vsi->q_vectors || !vsi->irqs_ready)
1579			return;
1580
1581		vsi->irqs_ready = false;
1582		for (i = 0; i < vsi->num_q_vectors; i++) {
1583			u16 vector = i + base;
1584			int irq_num;
1585
1586			irq_num = pf->msix_entries[vector].vector;
1587
1588			/* free only the irqs that were actually requested */
1589			if (!vsi->q_vectors[i] ||
1590			    !(vsi->q_vectors[i]->num_ring_tx ||
1591			      vsi->q_vectors[i]->num_ring_rx))
1592				continue;
1593
1594			/* clear the affinity notifier in the IRQ descriptor */
1595			irq_set_affinity_notifier(irq_num, NULL);
1596
1597			/* clear the affinity_mask in the IRQ descriptor */
1598			irq_set_affinity_hint(irq_num, NULL);
1599			synchronize_irq(irq_num);
1600			devm_free_irq(&pf->pdev->dev, irq_num,
1601				      vsi->q_vectors[i]);
1602		}
1603		ice_vsi_release_msix(vsi);
1604	}
1605}
1606
1607/**
1608 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1609 * @vsi: the VSI being configured
 
1610 */
1611static void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1612{
1613	struct ice_pf *pf = vsi->back;
1614	u16 vector = vsi->base_vector;
1615	struct ice_hw *hw = &pf->hw;
1616	u32 txq = 0, rxq = 0;
1617	int i, q, itr;
1618	u8 itr_gran;
1619
1620	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1621		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1622
1623		itr_gran = hw->itr_gran_200;
1624
1625		if (q_vector->num_ring_rx) {
1626			q_vector->rx.itr =
1627				ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting,
1628					   itr_gran);
1629			q_vector->rx.latency_range = ICE_LOW_LATENCY;
1630		}
1631
1632		if (q_vector->num_ring_tx) {
1633			q_vector->tx.itr =
1634				ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting,
1635					   itr_gran);
1636			q_vector->tx.latency_range = ICE_LOW_LATENCY;
1637		}
1638		wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr);
1639		wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr);
1640
1641		/* Both Transmit Queue Interrupt Cause Control register
1642		 * and Receive Queue Interrupt Cause control register
1643		 * expects MSIX_INDX field to be the vector index
1644		 * within the function space and not the absolute
1645		 * vector index across PF or across device.
1646		 * For SR-IOV VF VSIs queue vector index always starts
1647		 * with 1 since first vector index(0) is used for OICR
1648		 * in VF space. Since VMDq and other PF VSIs are withtin
1649		 * the PF function space, use the vector index thats
1650		 * tracked for this PF.
1651		 */
1652		for (q = 0; q < q_vector->num_ring_tx; q++) {
1653			u32 val;
1654
1655			itr = ICE_TX_ITR;
1656			val = QINT_TQCTL_CAUSE_ENA_M |
1657			      (itr << QINT_TQCTL_ITR_INDX_S)  |
1658			      (vector << QINT_TQCTL_MSIX_INDX_S);
1659			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1660			txq++;
1661		}
1662
1663		for (q = 0; q < q_vector->num_ring_rx; q++) {
1664			u32 val;
1665
1666			itr = ICE_RX_ITR;
1667			val = QINT_RQCTL_CAUSE_ENA_M |
1668			      (itr << QINT_RQCTL_ITR_INDX_S)  |
1669			      (vector << QINT_RQCTL_MSIX_INDX_S);
1670			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1671			rxq++;
1672		}
1673	}
1674
1675	ice_flush(hw);
 
 
 
 
 
 
 
 
1676}
1677
1678/**
1679 * ice_ena_misc_vector - enable the non-queue interrupts
1680 * @pf: board private structure
1681 */
1682static void ice_ena_misc_vector(struct ice_pf *pf)
1683{
1684	struct ice_hw *hw = &pf->hw;
1685	u32 val;
1686
 
 
 
 
 
 
 
 
1687	/* clear things first */
1688	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1689	rd32(hw, PFINT_OICR);		/* read to clear */
1690
1691	val = (PFINT_OICR_HLP_RDY_M |
1692	       PFINT_OICR_CPM_RDY_M |
1693	       PFINT_OICR_ECC_ERR_M |
1694	       PFINT_OICR_MAL_DETECT_M |
1695	       PFINT_OICR_GRST_M |
1696	       PFINT_OICR_PCI_EXCEPTION_M |
1697	       PFINT_OICR_GPIO_M |
1698	       PFINT_OICR_STORM_DETECT_M |
1699	       PFINT_OICR_HMC_ERR_M);
 
1700
1701	wr32(hw, PFINT_OICR_ENA, val);
1702
1703	/* SW_ITR_IDX = 0, but don't change INTENA */
1704	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1705	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1706}
1707
1708/**
1709 * ice_misc_intr - misc interrupt handler
1710 * @irq: interrupt number
1711 * @data: pointer to a q_vector
1712 */
1713static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1714{
1715	struct ice_pf *pf = (struct ice_pf *)data;
1716	struct ice_hw *hw = &pf->hw;
1717	irqreturn_t ret = IRQ_NONE;
 
1718	u32 oicr, ena_mask;
1719
1720	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
 
 
 
1721
1722	oicr = rd32(hw, PFINT_OICR);
1723	ena_mask = rd32(hw, PFINT_OICR_ENA);
1724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	if (oicr & PFINT_OICR_GRST_M) {
1726		u32 reset;
 
1727		/* we have a reset warning */
1728		ena_mask &= ~PFINT_OICR_GRST_M;
1729		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1730			GLGEN_RSTAT_RESET_TYPE_S;
1731
1732		if (reset == ICE_RESET_CORER)
1733			pf->corer_count++;
1734		else if (reset == ICE_RESET_GLOBR)
1735			pf->globr_count++;
1736		else
1737			pf->empr_count++;
 
 
1738
1739		/* If a reset cycle isn't already in progress, we set a bit in
1740		 * pf->state so that the service task can start a reset/rebuild.
1741		 * We also make note of which reset happened so that peer
1742		 * devices/drivers can be informed.
1743		 */
1744		if (!test_bit(__ICE_RESET_RECOVERY_PENDING, pf->state)) {
1745			if (reset == ICE_RESET_CORER)
1746				set_bit(__ICE_CORER_RECV, pf->state);
1747			else if (reset == ICE_RESET_GLOBR)
1748				set_bit(__ICE_GLOBR_RECV, pf->state);
1749			else
1750				set_bit(__ICE_EMPR_RECV, pf->state);
1751
1752			set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
1753		}
1754	}
1755
1756	if (oicr & PFINT_OICR_HMC_ERR_M) {
1757		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1758		dev_dbg(&pf->pdev->dev,
1759			"HMC Error interrupt - info 0x%x, data 0x%x\n",
1760			rd32(hw, PFHMC_ERRORINFO),
1761			rd32(hw, PFHMC_ERRORDATA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	}
1763
1764	/* Report and mask off any remaining unexpected interrupts */
1765	oicr &= ena_mask;
1766	if (oicr) {
1767		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1768			oicr);
1769		/* If a critical error is pending there is no choice but to
1770		 * reset the device.
1771		 */
1772		if (oicr & (PFINT_OICR_PE_CRITERR_M |
1773			    PFINT_OICR_PCI_EXCEPTION_M |
1774			    PFINT_OICR_ECC_ERR_M)) {
1775			set_bit(__ICE_PFR_REQ, pf->state);
1776			ice_service_task_schedule(pf);
1777		}
1778		ena_mask &= ~oicr;
1779	}
1780	ret = IRQ_HANDLED;
1781
1782	/* re-enable interrupt causes that are not handled during this pass */
1783	wr32(hw, PFINT_OICR_ENA, ena_mask);
1784	if (!test_bit(__ICE_DOWN, pf->state)) {
1785		ice_service_task_schedule(pf);
1786		ice_irq_dynamic_ena(hw, NULL, NULL);
1787	}
1788
1789	return ret;
1790}
1791
1792/**
1793 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1794 * @vsi: the VSI being configured
1795 *
1796 * This function maps descriptor rings to the queue-specific vectors allotted
1797 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1798 * and Rx rings to the vector as "efficiently" as possible.
1799 */
1800static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1801{
1802	int q_vectors = vsi->num_q_vectors;
1803	int tx_rings_rem, rx_rings_rem;
1804	int v_id;
1805
1806	/* initially assigning remaining rings count to VSIs num queue value */
1807	tx_rings_rem = vsi->num_txq;
1808	rx_rings_rem = vsi->num_rxq;
1809
1810	for (v_id = 0; v_id < q_vectors; v_id++) {
1811		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1812		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1813
1814		/* Tx rings mapping to vector */
1815		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1816		q_vector->num_ring_tx = tx_rings_per_v;
1817		q_vector->tx.ring = NULL;
1818		q_base = vsi->num_txq - tx_rings_rem;
1819
1820		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1821			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
 
1822
1823			tx_ring->q_vector = q_vector;
1824			tx_ring->next = q_vector->tx.ring;
1825			q_vector->tx.ring = tx_ring;
1826		}
1827		tx_rings_rem -= tx_rings_per_v;
1828
1829		/* Rx rings mapping to vector */
1830		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1831		q_vector->num_ring_rx = rx_rings_per_v;
1832		q_vector->rx.ring = NULL;
1833		q_base = vsi->num_rxq - rx_rings_rem;
1834
1835		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1836			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1837
1838			rx_ring->q_vector = q_vector;
1839			rx_ring->next = q_vector->rx.ring;
1840			q_vector->rx.ring = rx_ring;
1841		}
1842		rx_rings_rem -= rx_rings_per_v;
1843	}
1844}
1845
1846/**
1847 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
1848 * @vsi: the VSI being configured
1849 *
1850 * Return 0 on success and a negative value on error
1851 */
1852static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
1853{
1854	struct ice_pf *pf = vsi->back;
1855
1856	switch (vsi->type) {
1857	case ICE_VSI_PF:
1858		vsi->alloc_txq = pf->num_lan_tx;
1859		vsi->alloc_rxq = pf->num_lan_rx;
1860		vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
1861		vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
1862		break;
1863	default:
1864		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1865			 vsi->type);
1866		break;
1867	}
1868}
1869
1870/**
1871 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
1872 * @vsi: VSI pointer
1873 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
1874 *
1875 * On error: returns error code (negative)
1876 * On success: returns 0
1877 */
1878static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
1879{
1880	struct ice_pf *pf = vsi->back;
1881
1882	/* allocate memory for both Tx and Rx ring pointers */
1883	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
1884				     sizeof(struct ice_ring *), GFP_KERNEL);
1885	if (!vsi->tx_rings)
1886		goto err_txrings;
1887
1888	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
1889				     sizeof(struct ice_ring *), GFP_KERNEL);
1890	if (!vsi->rx_rings)
1891		goto err_rxrings;
1892
1893	if (alloc_qvectors) {
1894		/* allocate memory for q_vector pointers */
1895		vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
1896					      vsi->num_q_vectors,
1897					      sizeof(struct ice_q_vector *),
1898					      GFP_KERNEL);
1899		if (!vsi->q_vectors)
1900			goto err_vectors;
1901	}
1902
1903	return 0;
1904
1905err_vectors:
1906	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
1907err_rxrings:
1908	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
1909err_txrings:
1910	return -ENOMEM;
1911}
1912
1913/**
1914 * ice_msix_clean_rings - MSIX mode Interrupt Handler
1915 * @irq: interrupt number
1916 * @data: pointer to a q_vector
1917 */
1918static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
1919{
1920	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
1921
1922	if (!q_vector->tx.ring && !q_vector->rx.ring)
1923		return IRQ_HANDLED;
1924
1925	napi_schedule(&q_vector->napi);
1926
1927	return IRQ_HANDLED;
1928}
1929
1930/**
1931 * ice_vsi_alloc - Allocates the next available struct vsi in the PF
1932 * @pf: board private structure
1933 * @type: type of VSI
1934 *
1935 * returns a pointer to a VSI on success, NULL on failure.
1936 */
1937static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
1938{
1939	struct ice_vsi *vsi = NULL;
1940
1941	/* Need to protect the allocation of the VSIs at the PF level */
1942	mutex_lock(&pf->sw_mutex);
1943
1944	/* If we have already allocated our maximum number of VSIs,
1945	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
1946	 * is available to be populated
1947	 */
1948	if (pf->next_vsi == ICE_NO_VSI) {
1949		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
1950		goto unlock_pf;
1951	}
1952
1953	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
1954	if (!vsi)
1955		goto unlock_pf;
1956
1957	vsi->type = type;
1958	vsi->back = pf;
1959	set_bit(__ICE_DOWN, vsi->state);
1960	vsi->idx = pf->next_vsi;
1961	vsi->work_lmt = ICE_DFLT_IRQ_WORK;
1962
1963	ice_vsi_set_num_qs(vsi);
1964
1965	switch (vsi->type) {
1966	case ICE_VSI_PF:
1967		if (ice_vsi_alloc_arrays(vsi, true))
1968			goto err_rings;
1969
1970		/* Setup default MSIX irq handler for VSI */
1971		vsi->irq_handler = ice_msix_clean_rings;
1972		break;
1973	default:
1974		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1975		goto unlock_pf;
1976	}
1977
1978	/* fill VSI slot in the PF struct */
1979	pf->vsi[pf->next_vsi] = vsi;
1980
1981	/* prepare pf->next_vsi for next use */
1982	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
1983					 pf->next_vsi);
1984	goto unlock_pf;
1985
1986err_rings:
1987	devm_kfree(&pf->pdev->dev, vsi);
1988	vsi = NULL;
1989unlock_pf:
1990	mutex_unlock(&pf->sw_mutex);
1991	return vsi;
1992}
1993
1994/**
1995 * ice_free_irq_msix_misc - Unroll misc vector setup
1996 * @pf: board private structure
1997 */
1998static void ice_free_irq_msix_misc(struct ice_pf *pf)
1999{
2000	/* disable OICR interrupt */
2001	wr32(&pf->hw, PFINT_OICR_ENA, 0);
2002	ice_flush(&pf->hw);
2003
2004	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
2005		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2006		devm_free_irq(&pf->pdev->dev,
2007			      pf->msix_entries[pf->oicr_idx].vector, pf);
2008	}
 
 
 
 
2009
2010	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2011}
2012
2013/**
2014 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2015 * @pf: board private structure
2016 *
2017 * This sets up the handler for MSIX 0, which is used to manage the
2018 * non-queue interrupts, e.g. AdminQ and errors.  This is not used
2019 * when in MSI or Legacy interrupt mode.
2020 */
2021static int ice_req_irq_msix_misc(struct ice_pf *pf)
2022{
 
2023	struct ice_hw *hw = &pf->hw;
2024	int oicr_idx, err = 0;
2025	u8 itr_gran;
2026	u32 val;
2027
2028	if (!pf->int_name[0])
2029		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2030			 dev_driver_string(&pf->pdev->dev),
2031			 dev_name(&pf->pdev->dev));
2032
2033	/* Do not request IRQ but do enable OICR interrupt since settings are
2034	 * lost during reset. Note that this function is called only during
2035	 * rebuild path and not while reset is in progress.
2036	 */
2037	if (ice_is_reset_recovery_pending(pf->state))
2038		goto skip_req_irq;
2039
2040	/* reserve one vector in irq_tracker for misc interrupts */
2041	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2042	if (oicr_idx < 0)
2043		return oicr_idx;
2044
2045	pf->oicr_idx = oicr_idx;
 
2046
2047	err = devm_request_irq(&pf->pdev->dev,
2048			       pf->msix_entries[pf->oicr_idx].vector,
2049			       ice_misc_intr, 0, pf->int_name, pf);
2050	if (err) {
2051		dev_err(&pf->pdev->dev,
2052			"devm_request_irq for %s failed: %d\n",
2053			pf->int_name, err);
2054		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
 
2055		return err;
2056	}
2057
2058skip_req_irq:
2059	ice_ena_misc_vector(pf);
2060
2061	val = (pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2062	      (ICE_RX_ITR & PFINT_OICR_CTL_ITR_INDX_M) |
2063	      PFINT_OICR_CTL_CAUSE_ENA_M;
2064	wr32(hw, PFINT_OICR_CTL, val);
2065
2066	/* This enables Admin queue Interrupt causes */
2067	val = (pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2068	      (ICE_RX_ITR & PFINT_FW_CTL_ITR_INDX_M) |
2069	      PFINT_FW_CTL_CAUSE_ENA_M;
2070	wr32(hw, PFINT_FW_CTL, val);
2071
2072	itr_gran = hw->itr_gran_200;
2073
2074	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2075	     ITR_TO_REG(ICE_ITR_8K, itr_gran));
2076
2077	ice_flush(hw);
2078	ice_irq_dynamic_ena(hw, NULL, NULL);
2079
2080	return 0;
2081}
2082
2083/**
2084 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
2085 * @vsi: the VSI getting queues
2086 *
2087 * Return 0 on success and a negative value on error
 
 
2088 */
2089static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
2090{
2091	struct ice_pf *pf = vsi->back;
2092	int offset, ret = 0;
2093
2094	mutex_lock(&pf->avail_q_mutex);
2095	/* look for contiguous block of queues for tx */
2096	offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
2097					    0, vsi->alloc_txq, 0);
2098	if (offset < ICE_MAX_TXQS) {
2099		int i;
2100
2101		bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
2102		for (i = 0; i < vsi->alloc_txq; i++)
2103			vsi->txq_map[i] = i + offset;
2104	} else {
2105		ret = -ENOMEM;
2106		vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
2107	}
2108
2109	/* look for contiguous block of queues for rx */
2110	offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
2111					    0, vsi->alloc_rxq, 0);
2112	if (offset < ICE_MAX_RXQS) {
2113		int i;
2114
2115		bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
2116		for (i = 0; i < vsi->alloc_rxq; i++)
2117			vsi->rxq_map[i] = i + offset;
2118	} else {
2119		ret = -ENOMEM;
2120		vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
2121	}
2122	mutex_unlock(&pf->avail_q_mutex);
2123
2124	return ret;
2125}
2126
2127/**
2128 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
2129 * @vsi: the VSI getting queues
2130 *
2131 * Return 0 on success and a negative value on error
2132 */
2133static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
2134{
2135	struct ice_pf *pf = vsi->back;
2136	int i, index = 0;
2137
2138	mutex_lock(&pf->avail_q_mutex);
2139
2140	if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2141		for (i = 0; i < vsi->alloc_txq; i++) {
2142			index = find_next_zero_bit(pf->avail_txqs,
2143						   ICE_MAX_TXQS, index);
2144			if (index < ICE_MAX_TXQS) {
2145				set_bit(index, pf->avail_txqs);
2146				vsi->txq_map[i] = index;
2147			} else {
2148				goto err_scatter_tx;
2149			}
2150		}
2151	}
2152
2153	if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2154		for (i = 0; i < vsi->alloc_rxq; i++) {
2155			index = find_next_zero_bit(pf->avail_rxqs,
2156						   ICE_MAX_RXQS, index);
2157			if (index < ICE_MAX_RXQS) {
2158				set_bit(index, pf->avail_rxqs);
2159				vsi->rxq_map[i] = index;
2160			} else {
2161				goto err_scatter_rx;
2162			}
2163		}
2164	}
2165
2166	mutex_unlock(&pf->avail_q_mutex);
2167	return 0;
2168
2169err_scatter_rx:
2170	/* unflag any queues we have grabbed (i is failed position) */
2171	for (index = 0; index < i; index++) {
2172		clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
2173		vsi->rxq_map[index] = 0;
2174	}
2175	i = vsi->alloc_txq;
2176err_scatter_tx:
2177	/* i is either position of failed attempt or vsi->alloc_txq */
2178	for (index = 0; index < i; index++) {
2179		clear_bit(vsi->txq_map[index], pf->avail_txqs);
2180		vsi->txq_map[index] = 0;
2181	}
2182
2183	mutex_unlock(&pf->avail_q_mutex);
2184	return -ENOMEM;
2185}
2186
2187/**
2188 * ice_vsi_get_qs - Assign queues from PF to VSI
2189 * @vsi: the VSI to assign queues to
2190 *
2191 * Returns 0 on success and a negative value on error
2192 */
2193static int ice_vsi_get_qs(struct ice_vsi *vsi)
2194{
2195	int ret = 0;
2196
2197	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
2198	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
2199
2200	/* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping
2201	 * modes individually to scatter if assigning contiguous queues
2202	 * to rx or tx fails
2203	 */
2204	ret = ice_vsi_get_qs_contig(vsi);
2205	if (ret < 0) {
2206		if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
2207			vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
2208					       ICE_MAX_SCATTER_TXQS);
2209		if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
2210			vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
2211					       ICE_MAX_SCATTER_RXQS);
2212		ret = ice_vsi_get_qs_scatter(vsi);
2213	}
2214
2215	return ret;
2216}
2217
2218/**
2219 * ice_vsi_put_qs - Release queues from VSI to PF
2220 * @vsi: the VSI thats going to release queues
2221 */
2222static void ice_vsi_put_qs(struct ice_vsi *vsi)
2223{
2224	struct ice_pf *pf = vsi->back;
2225	int i;
2226
2227	mutex_lock(&pf->avail_q_mutex);
2228
2229	for (i = 0; i < vsi->alloc_txq; i++) {
2230		clear_bit(vsi->txq_map[i], pf->avail_txqs);
2231		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
2232	}
2233
2234	for (i = 0; i < vsi->alloc_rxq; i++) {
2235		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
2236		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
2237	}
2238
2239	mutex_unlock(&pf->avail_q_mutex);
 
 
2240}
2241
2242/**
2243 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
2244 * @vsi: VSI having the memory freed
2245 * @v_idx: index of the vector to be freed
2246 */
2247static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
2248{
2249	struct ice_q_vector *q_vector;
2250	struct ice_ring *ring;
2251
2252	if (!vsi->q_vectors[v_idx]) {
2253		dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
2254			v_idx);
2255		return;
2256	}
2257	q_vector = vsi->q_vectors[v_idx];
2258
2259	ice_for_each_ring(ring, q_vector->tx)
2260		ring->q_vector = NULL;
2261	ice_for_each_ring(ring, q_vector->rx)
2262		ring->q_vector = NULL;
2263
2264	/* only VSI with an associated netdev is set up with NAPI */
2265	if (vsi->netdev)
2266		netif_napi_del(&q_vector->napi);
2267
2268	devm_kfree(&vsi->back->pdev->dev, q_vector);
2269	vsi->q_vectors[v_idx] = NULL;
2270}
2271
2272/**
2273 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
2274 * @vsi: the VSI having memory freed
2275 */
2276static void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
2277{
2278	int v_idx;
2279
2280	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
2281		ice_free_q_vector(vsi, v_idx);
 
2282}
2283
2284/**
2285 * ice_cfg_netdev - Setup the netdev flags
2286 * @vsi: the VSI being configured
2287 *
2288 * Returns 0 on success, negative value on failure
2289 */
2290static int ice_cfg_netdev(struct ice_vsi *vsi)
2291{
 
2292	netdev_features_t csumo_features;
2293	netdev_features_t vlano_features;
2294	netdev_features_t dflt_features;
2295	netdev_features_t tso_features;
2296	struct ice_netdev_priv *np;
2297	struct net_device *netdev;
2298	u8 mac_addr[ETH_ALEN];
2299
2300	netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
2301				    vsi->alloc_txq, vsi->alloc_rxq);
2302	if (!netdev)
2303		return -ENOMEM;
2304
2305	vsi->netdev = netdev;
2306	np = netdev_priv(netdev);
2307	np->vsi = vsi;
2308
2309	dflt_features = NETIF_F_SG	|
2310			NETIF_F_HIGHDMA	|
 
2311			NETIF_F_RXHASH;
2312
2313	csumo_features = NETIF_F_RXCSUM	  |
2314			 NETIF_F_IP_CSUM  |
 
2315			 NETIF_F_IPV6_CSUM;
2316
2317	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2318			 NETIF_F_HW_VLAN_CTAG_TX     |
2319			 NETIF_F_HW_VLAN_CTAG_RX;
2320
2321	tso_features = NETIF_F_TSO;
 
 
 
 
 
 
 
 
 
 
2322
 
 
2323	/* set features that user can change */
2324	netdev->hw_features = dflt_features | csumo_features |
2325			      vlano_features | tso_features;
2326
 
 
 
2327	/* enable features */
2328	netdev->features |= netdev->hw_features;
2329	/* encap and VLAN devices inherit default, csumo and tso features */
2330	netdev->hw_enc_features |= dflt_features | csumo_features |
2331				   tso_features;
2332	netdev->vlan_features |= dflt_features | csumo_features |
2333				 tso_features;
2334
2335	if (vsi->type == ICE_VSI_PF) {
2336		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
2337		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2338
2339		ether_addr_copy(netdev->dev_addr, mac_addr);
2340		ether_addr_copy(netdev->perm_addr, mac_addr);
2341	}
2342
2343	netdev->priv_flags |= IFF_UNICAST_FLT;
2344
2345	/* assign netdev_ops */
2346	netdev->netdev_ops = &ice_netdev_ops;
2347
2348	/* setup watchdog timeout value to be 5 second */
2349	netdev->watchdog_timeo = 5 * HZ;
2350
2351	ice_set_ethtool_ops(netdev);
2352
2353	netdev->min_mtu = ETH_MIN_MTU;
2354	netdev->max_mtu = ICE_MAX_MTU;
2355
2356	return 0;
2357}
2358
2359/**
2360 * ice_vsi_free_arrays - clean up vsi resources
2361 * @vsi: pointer to VSI being cleared
2362 * @free_qvectors: bool to specify if q_vectors should be deallocated
2363 */
2364static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
2365{
2366	struct ice_pf *pf = vsi->back;
2367
2368	/* free the ring and vector containers */
2369	if (free_qvectors && vsi->q_vectors) {
2370		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
2371		vsi->q_vectors = NULL;
2372	}
2373	if (vsi->tx_rings) {
2374		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
2375		vsi->tx_rings = NULL;
2376	}
2377	if (vsi->rx_rings) {
2378		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
2379		vsi->rx_rings = NULL;
2380	}
2381}
2382
2383/**
2384 * ice_vsi_clear - clean up and deallocate the provided vsi
2385 * @vsi: pointer to VSI being cleared
2386 *
2387 * This deallocates the vsi's queue resources, removes it from the PF's
2388 * VSI array if necessary, and deallocates the VSI
2389 *
2390 * Returns 0 on success, negative on failure
2391 */
2392static int ice_vsi_clear(struct ice_vsi *vsi)
2393{
2394	struct ice_pf *pf = NULL;
2395
2396	if (!vsi)
2397		return 0;
2398
2399	if (!vsi->back)
2400		return -EINVAL;
2401
2402	pf = vsi->back;
2403
2404	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
2405		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
2406			vsi->idx);
2407		return -EINVAL;
2408	}
2409
2410	mutex_lock(&pf->sw_mutex);
2411	/* updates the PF for this cleared vsi */
2412
2413	pf->vsi[vsi->idx] = NULL;
2414	if (vsi->idx < pf->next_vsi)
2415		pf->next_vsi = vsi->idx;
2416
2417	ice_vsi_free_arrays(vsi, true);
2418	mutex_unlock(&pf->sw_mutex);
2419	devm_kfree(&pf->pdev->dev, vsi);
2420
2421	return 0;
2422}
2423
2424/**
2425 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
2426 * @vsi: the VSI being configured
2427 * @v_idx: index of the vector in the vsi struct
2428 *
2429 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2430 */
2431static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
2432{
2433	struct ice_pf *pf = vsi->back;
2434	struct ice_q_vector *q_vector;
 
2435
2436	/* allocate q_vector */
2437	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
2438	if (!q_vector)
2439		return -ENOMEM;
2440
2441	q_vector->vsi = vsi;
2442	q_vector->v_idx = v_idx;
2443	/* only set affinity_mask if the CPU is online */
2444	if (cpu_online(v_idx))
2445		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
2446
2447	if (vsi->netdev)
2448		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
2449			       NAPI_POLL_WEIGHT);
2450	/* tie q_vector and vsi together */
2451	vsi->q_vectors[v_idx] = q_vector;
2452
2453	return 0;
2454}
2455
2456/**
2457 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
2458 * @vsi: the VSI being configured
2459 *
2460 * We allocate one q_vector per queue interrupt.  If allocation fails we
2461 * return -ENOMEM.
2462 */
2463static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
2464{
2465	struct ice_pf *pf = vsi->back;
2466	int v_idx = 0, num_q_vectors;
2467	int err;
2468
2469	if (vsi->q_vectors[0]) {
2470		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
2471			vsi->vsi_num);
2472		return -EEXIST;
2473	}
2474
2475	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2476		num_q_vectors = vsi->num_q_vectors;
2477	} else {
2478		err = -EINVAL;
2479		goto err_out;
2480	}
2481
2482	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
2483		err = ice_vsi_alloc_q_vector(vsi, v_idx);
2484		if (err)
2485			goto err_out;
2486	}
2487
2488	return 0;
2489
2490err_out:
2491	while (v_idx--)
2492		ice_free_q_vector(vsi, v_idx);
2493
2494	dev_err(&pf->pdev->dev,
2495		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
2496		vsi->num_q_vectors, vsi->vsi_num, err);
2497	vsi->num_q_vectors = 0;
2498	return err;
2499}
2500
2501/**
2502 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
2503 * @vsi: ptr to the VSI
2504 *
2505 * This should only be called after ice_vsi_alloc() which allocates the
2506 * corresponding SW VSI structure and initializes num_queue_pairs for the
2507 * newly allocated VSI.
2508 *
2509 * Returns 0 on success or negative on failure
2510 */
2511static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
2512{
2513	struct ice_pf *pf = vsi->back;
2514	int num_q_vectors = 0;
2515
2516	if (vsi->base_vector) {
2517		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
2518			vsi->vsi_num, vsi->base_vector);
2519		return -EEXIST;
2520	}
2521
2522	if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2523		return -ENOENT;
2524
2525	switch (vsi->type) {
2526	case ICE_VSI_PF:
2527		num_q_vectors = vsi->num_q_vectors;
2528		break;
2529	default:
2530		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
2531			 vsi->type);
2532		break;
2533	}
2534
2535	if (num_q_vectors)
2536		vsi->base_vector = ice_get_res(pf, pf->irq_tracker,
2537					       num_q_vectors, vsi->idx);
2538
2539	if (vsi->base_vector < 0) {
2540		dev_err(&pf->pdev->dev,
2541			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
2542			num_q_vectors, vsi->vsi_num, vsi->base_vector);
2543		return -ENOENT;
2544	}
2545
2546	return 0;
2547}
2548
2549/**
2550 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2551 * @lut: Lookup table
2552 * @rss_table_size: Lookup table size
2553 * @rss_size: Range of queue number for hashing
2554 */
2555void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2556{
2557	u16 i;
2558
2559	for (i = 0; i < rss_table_size; i++)
2560		lut[i] = i % rss_size;
2561}
2562
2563/**
2564 * ice_vsi_cfg_rss - Configure RSS params for a VSI
2565 * @vsi: VSI to be configured
2566 */
2567static int ice_vsi_cfg_rss(struct ice_vsi *vsi)
2568{
2569	u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
2570	struct ice_aqc_get_set_rss_keys *key;
2571	struct ice_pf *pf = vsi->back;
2572	enum ice_status status;
2573	int err = 0;
2574	u8 *lut;
2575
2576	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
2577
2578	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
2579	if (!lut)
2580		return -ENOMEM;
2581
2582	if (vsi->rss_lut_user)
2583		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
2584	else
2585		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
2586
2587	status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type,
2588				    lut, vsi->rss_table_size);
2589
2590	if (status) {
2591		dev_err(&vsi->back->pdev->dev,
2592			"set_rss_lut failed, error %d\n", status);
2593		err = -EIO;
2594		goto ice_vsi_cfg_rss_exit;
2595	}
2596
2597	key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
2598	if (!key) {
2599		err = -ENOMEM;
2600		goto ice_vsi_cfg_rss_exit;
2601	}
2602
2603	if (vsi->rss_hkey_user)
2604		memcpy(seed, vsi->rss_hkey_user,
2605		       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2606	else
2607		netdev_rss_key_fill((void *)seed,
2608				    ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2609	memcpy(&key->standard_rss_key, seed,
2610	       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2611
2612	status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key);
2613
2614	if (status) {
2615		dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
2616			status);
2617		err = -EIO;
2618	}
2619
2620	devm_kfree(&pf->pdev->dev, key);
2621ice_vsi_cfg_rss_exit:
2622	devm_kfree(&pf->pdev->dev, lut);
2623	return err;
2624}
2625
2626/**
2627 * ice_vsi_reinit_setup - return resource and reallocate resource for a VSI
2628 * @vsi: pointer to the ice_vsi
2629 *
2630 * This reallocates the VSIs queue resources
2631 *
2632 * Returns 0 on success and negative value on failure
 
2633 */
2634static int ice_vsi_reinit_setup(struct ice_vsi *vsi)
 
2635{
2636	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2637	int ret, i;
2638
2639	if (!vsi)
2640		return -EINVAL;
2641
2642	ice_vsi_free_q_vectors(vsi);
2643	ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
2644	vsi->base_vector = 0;
2645	ice_vsi_clear_rings(vsi);
2646	ice_vsi_free_arrays(vsi, false);
2647	ice_vsi_set_num_qs(vsi);
2648
2649	/* Initialize VSI struct elements and create VSI in FW */
2650	ret = ice_vsi_add(vsi);
2651	if (ret < 0)
2652		goto err_vsi;
2653
2654	ret = ice_vsi_alloc_arrays(vsi, false);
2655	if (ret < 0)
2656		goto err_vsi;
2657
2658	switch (vsi->type) {
2659	case ICE_VSI_PF:
2660		if (!vsi->netdev) {
2661			ret = ice_cfg_netdev(vsi);
2662			if (ret)
2663				goto err_rings;
2664
2665			ret = register_netdev(vsi->netdev);
2666			if (ret)
2667				goto err_rings;
2668
2669			netif_carrier_off(vsi->netdev);
2670			netif_tx_stop_all_queues(vsi->netdev);
2671		}
2672
2673		ret = ice_vsi_alloc_q_vectors(vsi);
2674		if (ret)
2675			goto err_rings;
2676
2677		ret = ice_vsi_setup_vector_base(vsi);
2678		if (ret)
2679			goto err_vectors;
2680
2681		ret = ice_vsi_alloc_rings(vsi);
2682		if (ret)
2683			goto err_vectors;
2684
2685		ice_vsi_map_rings_to_vectors(vsi);
2686		break;
2687	default:
2688		break;
2689	}
2690
2691	ice_vsi_set_tc_cfg(vsi);
2692
2693	/* configure VSI nodes based on number of queues and TC's */
2694	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2695		max_txqs[i] = vsi->num_txq;
2696
2697	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2698			      vsi->tc_cfg.ena_tc, max_txqs);
2699	if (ret) {
2700		dev_info(&vsi->back->pdev->dev,
2701			 "Failed VSI lan queue config\n");
2702		goto err_vectors;
2703	}
2704	return 0;
2705
2706err_vectors:
2707	ice_vsi_free_q_vectors(vsi);
2708err_rings:
2709	if (vsi->netdev) {
2710		vsi->current_netdev_flags = 0;
2711		unregister_netdev(vsi->netdev);
2712		free_netdev(vsi->netdev);
2713		vsi->netdev = NULL;
2714	}
2715err_vsi:
2716	ice_vsi_clear(vsi);
2717	set_bit(__ICE_RESET_FAILED, vsi->back->state);
2718	return ret;
2719}
2720
2721/**
2722 * ice_vsi_setup - Set up a VSI by a given type
2723 * @pf: board private structure
2724 * @type: VSI type
2725 * @pi: pointer to the port_info instance
2726 *
2727 * This allocates the sw VSI structure and its queue resources.
2728 *
2729 * Returns pointer to the successfully allocated and configure VSI sw struct on
2730 * success, otherwise returns NULL on failure.
2731 */
2732static struct ice_vsi *
2733ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type,
2734	      struct ice_port_info *pi)
2735{
2736	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2737	struct device *dev = &pf->pdev->dev;
2738	struct ice_vsi_ctx ctxt = { 0 };
2739	struct ice_vsi *vsi;
2740	int ret, i;
2741
2742	vsi = ice_vsi_alloc(pf, type);
2743	if (!vsi) {
2744		dev_err(dev, "could not allocate VSI\n");
2745		return NULL;
2746	}
2747
2748	vsi->port_info = pi;
2749	vsi->vsw = pf->first_sw;
2750
2751	if (ice_vsi_get_qs(vsi)) {
2752		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2753			vsi->idx);
2754		goto err_get_qs;
2755	}
2756
2757	/* set RSS capabilities */
2758	ice_vsi_set_rss_params(vsi);
2759
2760	/* create the VSI */
2761	ret = ice_vsi_add(vsi);
2762	if (ret)
2763		goto err_vsi;
2764
2765	ctxt.vsi_num = vsi->vsi_num;
2766
2767	switch (vsi->type) {
2768	case ICE_VSI_PF:
2769		ret = ice_cfg_netdev(vsi);
2770		if (ret)
2771			goto err_cfg_netdev;
2772
2773		ret = register_netdev(vsi->netdev);
2774		if (ret)
2775			goto err_register_netdev;
2776
2777		netif_carrier_off(vsi->netdev);
2778
2779		/* make sure transmit queues start off as stopped */
2780		netif_tx_stop_all_queues(vsi->netdev);
2781		ret = ice_vsi_alloc_q_vectors(vsi);
2782		if (ret)
2783			goto err_msix;
2784
2785		ret = ice_vsi_setup_vector_base(vsi);
2786		if (ret)
2787			goto err_rings;
2788
2789		ret = ice_vsi_alloc_rings(vsi);
2790		if (ret)
2791			goto err_rings;
2792
2793		ice_vsi_map_rings_to_vectors(vsi);
2794
2795		/* Do not exit if configuring RSS had an issue, at least
2796		 * receive traffic on first queue. Hence no need to capture
2797		 * return value
2798		 */
2799		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2800			ice_vsi_cfg_rss(vsi);
2801		break;
2802	default:
2803		/* if vsi type is not recognized, clean up the resources and
2804		 * exit
2805		 */
2806		goto err_rings;
2807	}
2808
2809	ice_vsi_set_tc_cfg(vsi);
2810
2811	/* configure VSI nodes based on number of queues and TC's */
2812	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2813		max_txqs[i] = vsi->num_txq;
2814
2815	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2816			      vsi->tc_cfg.ena_tc, max_txqs);
2817	if (ret) {
2818		dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
2819		goto err_rings;
2820	}
2821
2822	return vsi;
2823
2824err_rings:
2825	ice_vsi_free_q_vectors(vsi);
2826err_msix:
2827	if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
2828		unregister_netdev(vsi->netdev);
2829err_register_netdev:
2830	if (vsi->netdev) {
2831		free_netdev(vsi->netdev);
2832		vsi->netdev = NULL;
2833	}
2834err_cfg_netdev:
2835	ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
2836	if (ret)
2837		dev_err(&vsi->back->pdev->dev,
2838			"Free VSI AQ call failed, err %d\n", ret);
2839err_vsi:
2840	ice_vsi_put_qs(vsi);
2841err_get_qs:
2842	pf->q_left_tx += vsi->alloc_txq;
2843	pf->q_left_rx += vsi->alloc_rxq;
2844	ice_vsi_clear(vsi);
2845
2846	return NULL;
2847}
2848
2849/**
2850 * ice_vsi_add_vlan - Add vsi membership for given vlan
2851 * @vsi: the vsi being configured
2852 * @vid: vlan id to be added
 
 
 
2853 */
2854static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
 
2855{
2856	struct ice_fltr_list_entry *tmp;
2857	struct ice_pf *pf = vsi->back;
2858	LIST_HEAD(tmp_add_list);
2859	enum ice_status status;
2860	int err = 0;
2861
2862	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
2863	if (!tmp)
2864		return -ENOMEM;
2865
2866	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2867	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2868	tmp->fltr_info.flag = ICE_FLTR_TX;
2869	tmp->fltr_info.src = vsi->vsi_num;
2870	tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2871	tmp->fltr_info.l_data.vlan.vlan_id = vid;
2872
2873	INIT_LIST_HEAD(&tmp->list_entry);
2874	list_add(&tmp->list_entry, &tmp_add_list);
2875
2876	status = ice_add_vlan(&pf->hw, &tmp_add_list);
2877	if (status) {
2878		err = -ENODEV;
2879		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
2880			vid, vsi->vsi_num);
2881	}
2882
2883	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2884	return err;
2885}
2886
2887/**
2888 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
2889 * @netdev: network interface to be adjusted
2890 * @proto: unused protocol
2891 * @vid: vlan id to be added
2892 *
2893 * net_device_ops implementation for adding vlan ids
2894 */
2895static int ice_vlan_rx_add_vid(struct net_device *netdev,
2896			       __always_unused __be16 proto, u16 vid)
 
2897{
2898	struct ice_netdev_priv *np = netdev_priv(netdev);
2899	struct ice_vsi *vsi = np->vsi;
2900	int ret = 0;
2901
2902	if (vid >= VLAN_N_VID) {
2903		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2904			   vid, VLAN_N_VID);
2905		return -EINVAL;
2906	}
2907
2908	if (vsi->info.pvid)
2909		return -EINVAL;
 
 
 
 
2910
2911	/* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
2912	 * needed to continue allowing all untagged packets since VLAN prune
2913	 * list is applied to all packets by the switch
2914	 */
2915	ret = ice_vsi_add_vlan(vsi, vid);
2916
2917	if (!ret)
2918		set_bit(vid, vsi->active_vlans);
2919
2920	return ret;
2921}
2922
2923/**
2924 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
2925 * @vsi: the VSI being configured
2926 * @vid: VLAN id to be removed
2927 */
2928static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
2929{
2930	struct ice_fltr_list_entry *list;
2931	struct ice_pf *pf = vsi->back;
2932	LIST_HEAD(tmp_add_list);
2933
2934	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2935	if (!list)
2936		return;
2937
2938	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2939	list->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2940	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2941	list->fltr_info.l_data.vlan.vlan_id = vid;
2942	list->fltr_info.flag = ICE_FLTR_TX;
2943	list->fltr_info.src = vsi->vsi_num;
2944
2945	INIT_LIST_HEAD(&list->list_entry);
2946	list_add(&list->list_entry, &tmp_add_list);
2947
2948	if (ice_remove_vlan(&pf->hw, &tmp_add_list))
2949		dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
2950			vid, vsi->vsi_num);
2951
2952	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2953}
2954
2955/**
2956 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2957 * @netdev: network interface to be adjusted
2958 * @proto: unused protocol
2959 * @vid: vlan id to be removed
2960 *
2961 * net_device_ops implementation for removing vlan ids
2962 */
2963static int ice_vlan_rx_kill_vid(struct net_device *netdev,
2964				__always_unused __be16 proto, u16 vid)
 
2965{
2966	struct ice_netdev_priv *np = netdev_priv(netdev);
2967	struct ice_vsi *vsi = np->vsi;
 
2968
2969	if (vsi->info.pvid)
2970		return -EINVAL;
 
2971
2972	/* return code is ignored as there is nothing a user
2973	 * can do about failure to remove and a log message was
2974	 * already printed from the other function
2975	 */
2976	ice_vsi_kill_vlan(vsi, vid);
 
 
2977
2978	clear_bit(vid, vsi->active_vlans);
 
 
2979
2980	return 0;
 
2981}
2982
2983/**
2984 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2985 * @pf: board private structure
2986 *
2987 * Returns 0 on success, negative value on failure
2988 */
2989static int ice_setup_pf_sw(struct ice_pf *pf)
2990{
2991	LIST_HEAD(tmp_add_list);
2992	u8 broadcast[ETH_ALEN];
2993	struct ice_vsi *vsi;
2994	int status = 0;
2995
2996	if (!ice_is_reset_recovery_pending(pf->state)) {
2997		vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info);
2998		if (!vsi) {
2999			status = -ENOMEM;
3000			goto error_exit;
3001		}
3002	} else {
3003		vsi = pf->vsi[0];
3004		status = ice_vsi_reinit_setup(vsi);
3005		if (status < 0)
3006			return -EIO;
3007	}
 
 
3008
3009	/* tmp_add_list contains a list of MAC addresses for which MAC
3010	 * filters need to be programmed. Add the VSI's unicast MAC to
3011	 * this list
3012	 */
3013	status = ice_add_mac_to_list(vsi, &tmp_add_list,
3014				     vsi->port_info->mac.perm_addr);
3015	if (status)
3016		goto error_exit;
3017
3018	/* VSI needs to receive broadcast traffic, so add the broadcast
3019	 * MAC address to the list.
 
3020	 */
3021	eth_broadcast_addr(broadcast);
3022	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
3023	if (status)
3024		goto error_exit;
3025
3026	/* program MAC filters for entries in tmp_add_list */
3027	status = ice_add_mac(&pf->hw, &tmp_add_list);
3028	if (status) {
3029		dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
3030		status = -ENOMEM;
3031		goto error_exit;
 
3032	}
 
 
 
3033
3034	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3035	return status;
3036
3037error_exit:
3038	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3039
 
3040	if (vsi) {
3041		ice_vsi_free_q_vectors(vsi);
3042		if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
3043			unregister_netdev(vsi->netdev);
3044		if (vsi->netdev) {
 
3045			free_netdev(vsi->netdev);
3046			vsi->netdev = NULL;
3047		}
3048
3049		ice_vsi_delete(vsi);
3050		ice_vsi_put_qs(vsi);
3051		pf->q_left_tx += vsi->alloc_txq;
3052		pf->q_left_rx += vsi->alloc_rxq;
3053		ice_vsi_clear(vsi);
3054	}
 
 
 
3055	return status;
3056}
3057
3058/**
3059 * ice_determine_q_usage - Calculate queue distribution
3060 * @pf: board private structure
3061 *
3062 * Return -ENOMEM if we don't get enough queues for all ports
3063 */
3064static void ice_determine_q_usage(struct ice_pf *pf)
 
3065{
3066	u16 q_left_tx, q_left_rx;
 
3067
3068	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
3069	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
 
 
3070
3071	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
 
3072
3073	/* only 1 rx queue unless RSS is enabled */
3074	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3075		pf->num_lan_rx = 1;
3076	else
3077		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
 
 
 
 
3078
3079	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
3080	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
 
 
 
 
 
 
3081}
3082
3083/**
3084 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3085 * @pf: board private structure to initialize
3086 */
3087static void ice_deinit_pf(struct ice_pf *pf)
3088{
3089	if (pf->serv_tmr.function)
3090		del_timer_sync(&pf->serv_tmr);
3091	if (pf->serv_task.func)
3092		cancel_work_sync(&pf->serv_task);
3093	mutex_destroy(&pf->sw_mutex);
 
3094	mutex_destroy(&pf->avail_q_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095}
3096
3097/**
3098 * ice_init_pf - Initialize general software structures (struct ice_pf)
3099 * @pf: board private structure to initialize
3100 */
3101static void ice_init_pf(struct ice_pf *pf)
3102{
3103	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
3104	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3105
3106	mutex_init(&pf->sw_mutex);
3107	mutex_init(&pf->avail_q_mutex);
3108
3109	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
3110	mutex_lock(&pf->avail_q_mutex);
3111	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
3112	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
3113	mutex_unlock(&pf->avail_q_mutex);
3114
3115	if (pf->hw.func_caps.common_cap.rss_table_size)
3116		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3117
3118	/* setup service timer and periodic service task */
3119	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3120	pf->serv_tmr_period = HZ;
3121	INIT_WORK(&pf->serv_task, ice_service_task);
3122	clear_bit(__ICE_SERVICE_SCHED, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3123}
3124
3125/**
3126 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3127 * @pf: board private structure
3128 *
3129 * compute the number of MSIX vectors required (v_budget) and request from
3130 * the OS. Return the number of vectors reserved or negative on failure
3131 */
3132static int ice_ena_msix_range(struct ice_pf *pf)
3133{
3134	int v_left, v_actual, v_budget = 0;
 
3135	int needed, err, i;
3136
3137	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
 
3138
3139	/* reserve one vector for miscellaneous handler */
3140	needed = 1;
 
 
3141	v_budget += needed;
3142	v_left -= needed;
3143
 
 
 
 
 
 
 
 
 
 
 
 
3144	/* reserve vectors for LAN traffic */
3145	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
3146	v_budget += pf->num_lan_msix;
 
 
 
 
3147
3148	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
3149					sizeof(struct msix_entry), GFP_KERNEL);
 
 
 
 
 
 
 
3150
 
 
3151	if (!pf->msix_entries) {
3152		err = -ENOMEM;
3153		goto exit_err;
3154	}
3155
3156	for (i = 0; i < v_budget; i++)
3157		pf->msix_entries[i].entry = i;
3158
3159	/* actually reserve the vectors */
3160	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3161					 ICE_MIN_MSIX, v_budget);
3162
3163	if (v_actual < 0) {
3164		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
3165		err = v_actual;
3166		goto msix_err;
3167	}
3168
3169	if (v_actual < v_budget) {
3170		dev_warn(&pf->pdev->dev,
3171			 "not enough vectors. requested = %d, obtained = %d\n",
3172			 v_budget, v_actual);
3173		if (v_actual >= (pf->num_lan_msix + 1)) {
3174			pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1);
3175		} else if (v_actual >= 2) {
3176			pf->num_lan_msix = 1;
3177			pf->num_avail_msix = v_actual - 2;
3178		} else {
3179			pci_disable_msix(pf->pdev);
3180			err = -ERANGE;
3181			goto msix_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3182		}
3183	}
3184
3185	return v_actual;
3186
3187msix_err:
3188	devm_kfree(&pf->pdev->dev, pf->msix_entries);
3189	goto exit_err;
3190
 
 
 
 
3191exit_err:
 
3192	pf->num_lan_msix = 0;
3193	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3194	return err;
3195}
3196
3197/**
3198 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3199 * @pf: board private structure
3200 */
3201static void ice_dis_msix(struct ice_pf *pf)
3202{
3203	pci_disable_msix(pf->pdev);
3204	devm_kfree(&pf->pdev->dev, pf->msix_entries);
3205	pf->msix_entries = NULL;
3206	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
3207}
3208
3209/**
3210 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3211 * @pf: board private structure to initialize
3212 */
3213static int ice_init_interrupt_scheme(struct ice_pf *pf)
3214{
3215	int vectors = 0;
3216	ssize_t size;
3217
3218	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3219		vectors = ice_ena_msix_range(pf);
3220	else
3221		return -ENODEV;
3222
3223	if (vectors < 0)
3224		return vectors;
3225
3226	/* set up vector assignment tracking */
3227	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
3228
3229	pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
3230	if (!pf->irq_tracker) {
3231		ice_dis_msix(pf);
3232		return -ENOMEM;
3233	}
3234
3235	pf->irq_tracker->num_entries = vectors;
 
 
 
3236
3237	return 0;
3238}
3239
3240/**
3241 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3242 * @pf: board private structure
 
 
 
3243 */
3244static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3245{
3246	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3247		ice_dis_msix(pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248
3249	devm_kfree(&pf->pdev->dev, pf->irq_tracker);
3250	pf->irq_tracker = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3251}
3252
3253/**
3254 * ice_probe - Device initialization routine
3255 * @pdev: PCI device information struct
3256 * @ent: entry in ice_pci_tbl
3257 *
3258 * Returns 0 on success, negative on failure
3259 */
3260static int ice_probe(struct pci_dev *pdev,
3261		     const struct pci_device_id __always_unused *ent)
3262{
 
3263	struct ice_pf *pf;
3264	struct ice_hw *hw;
3265	int err;
3266
3267	/* this driver uses devres, see Documentation/driver-model/devres.txt */
 
 
 
 
 
 
 
3268	err = pcim_enable_device(pdev);
3269	if (err)
3270		return err;
3271
3272	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3273	if (err) {
3274		dev_err(&pdev->dev, "I/O map error %d\n", err);
3275		return err;
3276	}
3277
3278	pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
3279	if (!pf)
3280		return -ENOMEM;
3281
3282	/* set up for high or low dma */
3283	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 
 
 
3284	if (err)
3285		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3286	if (err) {
3287		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3288		return err;
3289	}
3290
3291	pci_enable_pcie_error_reporting(pdev);
3292	pci_set_master(pdev);
3293
3294	pf->pdev = pdev;
3295	pci_set_drvdata(pdev, pf);
3296	set_bit(__ICE_DOWN, pf->state);
 
 
3297
3298	hw = &pf->hw;
3299	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
 
 
3300	hw->back = pf;
3301	hw->vendor_id = pdev->vendor;
3302	hw->device_id = pdev->device;
3303	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3304	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3305	hw->subsystem_device_id = pdev->subsystem_device;
3306	hw->bus.device = PCI_SLOT(pdev->devfn);
3307	hw->bus.func = PCI_FUNC(pdev->devfn);
3308	ice_set_ctrlq_len(hw);
3309
3310	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3311
 
 
 
 
 
 
3312#ifndef CONFIG_DYNAMIC_DEBUG
3313	if (debug < -1)
3314		hw->debug_mask = debug;
3315#endif
3316
3317	err = ice_init_hw(hw);
3318	if (err) {
3319		dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
3320		err = -EIO;
3321		goto err_exit_unroll;
3322	}
3323
3324	dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
3325		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
3326		 hw->api_maj_ver, hw->api_min_ver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327
3328	ice_init_pf(pf);
3329
3330	ice_determine_q_usage(pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3331
3332	pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
3333				  hw->func_caps.guaranteed_num_vsi);
3334	if (!pf->num_alloc_vsi) {
3335		err = -EIO;
3336		goto err_init_pf_unroll;
3337	}
 
 
 
 
 
 
3338
3339	pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
3340			       sizeof(struct ice_vsi *), GFP_KERNEL);
3341	if (!pf->vsi) {
3342		err = -ENOMEM;
3343		goto err_init_pf_unroll;
3344	}
3345
3346	err = ice_init_interrupt_scheme(pf);
3347	if (err) {
3348		dev_err(&pdev->dev,
3349			"ice_init_interrupt_scheme failed: %d\n", err);
3350		err = -EIO;
3351		goto err_init_interrupt_unroll;
3352	}
3353
3354	/* In case of MSIX we are going to setup the misc vector right here
3355	 * to handle admin queue events etc. In case of legacy and MSI
3356	 * the misc functionality and queue processing is combined in
3357	 * the same vector and that gets setup at open.
3358	 */
3359	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
3360		err = ice_req_irq_msix_misc(pf);
3361		if (err) {
3362			dev_err(&pdev->dev,
3363				"setup of misc vector failed: %d\n", err);
3364			goto err_init_interrupt_unroll;
3365		}
3366	}
3367
3368	/* create switch struct for the switch element created by FW on boot */
3369	pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
3370				    GFP_KERNEL);
3371	if (!pf->first_sw) {
3372		err = -ENOMEM;
3373		goto err_msix_misc_unroll;
3374	}
3375
3376	pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
 
 
 
 
3377	pf->first_sw->pf = pf;
3378
3379	/* record the sw_id available for later use */
3380	pf->first_sw->sw_id = hw->port_info->sw_id;
3381
3382	err = ice_setup_pf_sw(pf);
3383	if (err) {
3384		dev_err(&pdev->dev,
3385			"probe failed due to setup pf switch:%d\n", err);
3386		goto err_alloc_sw_unroll;
3387	}
3388
3389	/* Driver is mostly up */
3390	clear_bit(__ICE_DOWN, pf->state);
 
 
 
 
 
 
 
3391
3392	/* since everything is good, start the service timer */
3393	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3394
3395	err = ice_init_link_events(pf->hw.port_info);
3396	if (err) {
3397		dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
3398		goto err_alloc_sw_unroll;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399	}
3400
3401	return 0;
3402
 
 
 
 
 
 
3403err_alloc_sw_unroll:
3404	set_bit(__ICE_DOWN, pf->state);
3405	devm_kfree(&pf->pdev->dev, pf->first_sw);
 
3406err_msix_misc_unroll:
3407	ice_free_irq_msix_misc(pf);
3408err_init_interrupt_unroll:
3409	ice_clear_interrupt_scheme(pf);
3410	devm_kfree(&pdev->dev, pf->vsi);
 
3411err_init_pf_unroll:
3412	ice_deinit_pf(pf);
 
3413	ice_deinit_hw(hw);
3414err_exit_unroll:
 
3415	pci_disable_pcie_error_reporting(pdev);
 
3416	return err;
3417}
3418
3419/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3420 * ice_remove - Device removal routine
3421 * @pdev: PCI device information struct
3422 */
3423static void ice_remove(struct pci_dev *pdev)
3424{
3425	struct ice_pf *pf = pci_get_drvdata(pdev);
3426	int i = 0;
3427	int err;
3428
3429	if (!pf)
3430		return;
3431
3432	set_bit(__ICE_DOWN, pf->state);
 
 
 
 
3433
3434	for (i = 0; i < pf->num_alloc_vsi; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435		if (!pf->vsi[i])
3436			continue;
 
 
 
 
 
 
3437
3438		err = ice_vsi_release(pf->vsi[i]);
3439		if (err)
3440			dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n",
3441				i, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442	}
3443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3444	ice_free_irq_msix_misc(pf);
 
 
 
 
 
 
3445	ice_clear_interrupt_scheme(pf);
3446	ice_deinit_pf(pf);
3447	ice_deinit_hw(&pf->hw);
3448	pci_disable_pcie_error_reporting(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449}
3450
3451/* ice_pci_tbl - PCI Device ID Table
3452 *
3453 * Wildcard entries (PCI_ANY_ID) should come last
3454 * Last entry must be all 0s
3455 *
3456 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3457 *   Class, Class Mask, private data (not used) }
3458 */
3459static const struct pci_device_id ice_pci_tbl[] = {
3460	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
3461	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
3462	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
3463	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 },
3464	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	/* required last entry */
3466	{ 0, }
3467};
3468MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3469
 
 
 
 
 
 
 
 
 
 
3470static struct pci_driver ice_driver = {
3471	.name = KBUILD_MODNAME,
3472	.id_table = ice_pci_tbl,
3473	.probe = ice_probe,
3474	.remove = ice_remove,
 
 
 
 
 
 
3475};
3476
3477/**
3478 * ice_module_init - Driver registration routine
3479 *
3480 * ice_module_init is the first routine called when the driver is
3481 * loaded. All it does is register with the PCI subsystem.
3482 */
3483static int __init ice_module_init(void)
3484{
3485	int status;
3486
3487	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3488	pr_info("%s\n", ice_copyright);
3489
3490	ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME);
3491	if (!ice_wq) {
3492		pr_err("Failed to create workqueue\n");
3493		return -ENOMEM;
3494	}
3495
3496	status = pci_register_driver(&ice_driver);
3497	if (status) {
3498		pr_err("failed to register pci driver, err %d\n", status);
3499		destroy_workqueue(ice_wq);
3500	}
3501
3502	return status;
3503}
3504module_init(ice_module_init);
3505
3506/**
3507 * ice_module_exit - Driver exit cleanup routine
3508 *
3509 * ice_module_exit is called just before the driver is removed
3510 * from memory.
3511 */
3512static void __exit ice_module_exit(void)
3513{
3514	pci_unregister_driver(&ice_driver);
3515	destroy_workqueue(ice_wq);
3516	pr_info("module unloaded\n");
3517}
3518module_exit(ice_module_exit);
3519
3520/**
3521 * ice_set_mac_address - NDO callback to set mac address
3522 * @netdev: network interface device structure
3523 * @pi: pointer to an address structure
3524 *
3525 * Returns 0 on success, negative on failure
3526 */
3527static int ice_set_mac_address(struct net_device *netdev, void *pi)
3528{
3529	struct ice_netdev_priv *np = netdev_priv(netdev);
3530	struct ice_vsi *vsi = np->vsi;
3531	struct ice_pf *pf = vsi->back;
3532	struct ice_hw *hw = &pf->hw;
3533	struct sockaddr *addr = pi;
3534	enum ice_status status;
3535	LIST_HEAD(a_mac_list);
3536	LIST_HEAD(r_mac_list);
3537	u8 flags = 0;
3538	int err;
3539	u8 *mac;
3540
3541	mac = (u8 *)addr->sa_data;
3542
3543	if (!is_valid_ether_addr(mac))
3544		return -EADDRNOTAVAIL;
3545
3546	if (ether_addr_equal(netdev->dev_addr, mac)) {
3547		netdev_warn(netdev, "already using mac %pM\n", mac);
3548		return 0;
3549	}
3550
3551	if (test_bit(__ICE_DOWN, pf->state) ||
3552	    ice_is_reset_recovery_pending(pf->state)) {
3553		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3554			   mac);
3555		return -EBUSY;
3556	}
3557
3558	/* When we change the mac address we also have to change the mac address
3559	 * based filter rules that were created previously for the old mac
3560	 * address. So first, we remove the old filter rule using ice_remove_mac
3561	 * and then create a new filter rule using ice_add_mac. Note that for
3562	 * both these operations, we first need to form a "list" of mac
3563	 * addresses (even though in this case, we have only 1 mac address to be
3564	 * added/removed) and this done using ice_add_mac_to_list. Depending on
3565	 * the ensuing operation this "list" of mac addresses is either to be
3566	 * added or removed from the filter.
3567	 */
3568	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
3569	if (err) {
3570		err = -EADDRNOTAVAIL;
3571		goto free_lists;
3572	}
3573
3574	status = ice_remove_mac(hw, &r_mac_list);
3575	if (status) {
3576		err = -EADDRNOTAVAIL;
3577		goto free_lists;
3578	}
3579
3580	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
3581	if (err) {
 
3582		err = -EADDRNOTAVAIL;
3583		goto free_lists;
3584	}
3585
3586	status = ice_add_mac(hw, &a_mac_list);
3587	if (status) {
 
 
 
 
 
 
 
 
 
3588		err = -EADDRNOTAVAIL;
3589		goto free_lists;
3590	}
3591
3592free_lists:
3593	/* free list entries */
3594	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
3595	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
3596
 
3597	if (err) {
3598		netdev_err(netdev, "can't set mac %pM. filter update failed\n",
3599			   mac);
 
 
 
3600		return err;
3601	}
3602
3603	/* change the netdev's mac address */
3604	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3605	netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
3606		   netdev->dev_addr);
3607
3608	/* write new mac address to the firmware */
3609	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3610	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3611	if (status) {
3612		netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
3613			   mac);
3614	}
3615	return 0;
3616}
3617
3618/**
3619 * ice_set_rx_mode - NDO callback to set the netdev filters
3620 * @netdev: network interface device structure
3621 */
3622static void ice_set_rx_mode(struct net_device *netdev)
3623{
3624	struct ice_netdev_priv *np = netdev_priv(netdev);
3625	struct ice_vsi *vsi = np->vsi;
3626
3627	if (!vsi)
3628		return;
3629
3630	/* Set the flags to synchronize filters
3631	 * ndo_set_rx_mode may be triggered even without a change in netdev
3632	 * flags
3633	 */
3634	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3635	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3636	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3637
3638	/* schedule our worker thread which will take care of
3639	 * applying the new filter changes
3640	 */
3641	ice_service_task_schedule(vsi->back);
3642}
3643
3644/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645 * ice_fdb_add - add an entry to the hardware database
3646 * @ndm: the input from the stack
3647 * @tb: pointer to array of nladdr (unused)
3648 * @dev: the net device pointer
3649 * @addr: the MAC address entry being added
3650 * @vid: VLAN id
3651 * @flags: instructions from stack about fdb operation
 
3652 */
3653static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3654		       struct net_device *dev, const unsigned char *addr,
3655		       u16 vid, u16 flags)
 
3656{
3657	int err;
3658
3659	if (vid) {
3660		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3661		return -EINVAL;
3662	}
3663	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3664		netdev_err(dev, "FDB only supports static addresses\n");
3665		return -EINVAL;
3666	}
3667
3668	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3669		err = dev_uc_add_excl(dev, addr);
3670	else if (is_multicast_ether_addr(addr))
3671		err = dev_mc_add_excl(dev, addr);
3672	else
3673		err = -EINVAL;
3674
3675	/* Only return duplicate errors if NLM_F_EXCL is set */
3676	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3677		err = 0;
3678
3679	return err;
3680}
3681
3682/**
3683 * ice_fdb_del - delete an entry from the hardware database
3684 * @ndm: the input from the stack
3685 * @tb: pointer to array of nladdr (unused)
3686 * @dev: the net device pointer
3687 * @addr: the MAC address entry being added
3688 * @vid: VLAN id
3689 */
3690static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3691		       struct net_device *dev, const unsigned char *addr,
3692		       __always_unused u16 vid)
 
3693{
3694	int err;
3695
3696	if (ndm->ndm_state & NUD_PERMANENT) {
3697		netdev_err(dev, "FDB only supports static addresses\n");
3698		return -EINVAL;
3699	}
3700
3701	if (is_unicast_ether_addr(addr))
3702		err = dev_uc_del(dev, addr);
3703	else if (is_multicast_ether_addr(addr))
3704		err = dev_mc_del(dev, addr);
3705	else
3706		err = -EINVAL;
3707
3708	return err;
3709}
3710
3711/**
3712 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
3713 * @vsi: the vsi being changed
3714 */
3715static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
3716{
3717	struct device *dev = &vsi->back->pdev->dev;
3718	struct ice_hw *hw = &vsi->back->hw;
3719	struct ice_vsi_ctx ctxt = { 0 };
3720	enum ice_status status;
3721
3722	/* Here we are configuring the VSI to let the driver add VLAN tags by
3723	 * setting port_vlan_flags to ICE_AQ_VSI_PVLAN_MODE_ALL. The actual VLAN
3724	 * tag insertion happens in the Tx hot path, in ice_tx_map.
3725	 */
3726	ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_MODE_ALL;
3727
3728	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3729	ctxt.vsi_num = vsi->vsi_num;
3730
3731	status = ice_aq_update_vsi(hw, &ctxt, NULL);
3732	if (status) {
3733		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
3734			status, hw->adminq.sq_last_status);
3735		return -EIO;
3736	}
3737
3738	vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3739	return 0;
3740}
3741
3742/**
3743 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
3744 * @vsi: the vsi being changed
3745 * @ena: boolean value indicating if this is a enable or disable request
3746 */
3747static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
3748{
3749	struct device *dev = &vsi->back->pdev->dev;
3750	struct ice_hw *hw = &vsi->back->hw;
3751	struct ice_vsi_ctx ctxt = { 0 };
3752	enum ice_status status;
3753
3754	/* Here we are configuring what the VSI should do with the VLAN tag in
3755	 * the Rx packet. We can either leave the tag in the packet or put it in
3756	 * the Rx descriptor.
3757	 */
3758	if (ena) {
3759		/* Strip VLAN tag from Rx packet and put it in the desc */
3760		ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH;
3761	} else {
3762		/* Disable stripping. Leave tag in packet */
3763		ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_NOTHING;
3764	}
3765
3766	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3767	ctxt.vsi_num = vsi->vsi_num;
3768
3769	status = ice_aq_update_vsi(hw, &ctxt, NULL);
3770	if (status) {
3771		dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n",
3772			ena, status, hw->adminq.sq_last_status);
3773		return -EIO;
3774	}
3775
3776	vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3777	return 0;
3778}
3779
3780/**
3781 * ice_set_features - set the netdev feature flags
3782 * @netdev: ptr to the netdev being adjusted
3783 * @features: the feature set that the stack is suggesting
3784 */
3785static int ice_set_features(struct net_device *netdev,
3786			    netdev_features_t features)
3787{
3788	struct ice_netdev_priv *np = netdev_priv(netdev);
3789	struct ice_vsi *vsi = np->vsi;
 
3790	int ret = 0;
3791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3793	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3794		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3795	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3796		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3797		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3798	else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3799		 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
 
3800		ret = ice_vsi_manage_vlan_insertion(vsi);
3801	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3802		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3803		ret = ice_vsi_manage_vlan_insertion(vsi);
3804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805	return ret;
3806}
3807
3808/**
3809 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
3810 * @vsi: VSI to setup vlan properties for
3811 */
3812static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3813{
3814	int ret = 0;
3815
3816	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3817		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3818	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3819		ret = ice_vsi_manage_vlan_insertion(vsi);
3820
3821	return ret;
3822}
3823
3824/**
3825 * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
3826 * @vsi: the VSI being brought back up
3827 */
3828static int ice_restore_vlan(struct ice_vsi *vsi)
3829{
3830	int err;
3831	u16 vid;
3832
3833	if (!vsi->netdev)
3834		return -EINVAL;
3835
3836	err = ice_vsi_vlan_setup(vsi);
3837	if (err)
3838		return err;
3839
3840	for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
3841		err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
3842		if (err)
3843			break;
3844	}
3845
3846	return err;
3847}
3848
3849/**
3850 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
3851 * @ring: The Tx ring to configure
3852 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
3853 * @pf_q: queue index in the PF space
3854 *
3855 * Configure the Tx descriptor ring in TLAN context.
3856 */
3857static void
3858ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
3859{
3860	struct ice_vsi *vsi = ring->vsi;
3861	struct ice_hw *hw = &vsi->back->hw;
3862
3863	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
3864
3865	tlan_ctx->port_num = vsi->port_info->lport;
3866
3867	/* Transmit Queue Length */
3868	tlan_ctx->qlen = ring->count;
3869
3870	/* PF number */
3871	tlan_ctx->pf_num = hw->pf_id;
3872
3873	/* queue belongs to a specific VSI type
3874	 * VF / VM index should be programmed per vmvf_type setting:
3875	 * for vmvf_type = VF, it is VF number between 0-256
3876	 * for vmvf_type = VM, it is VM number between 0-767
3877	 * for PF or EMP this field should be set to zero
3878	 */
3879	switch (vsi->type) {
3880	case ICE_VSI_PF:
3881		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
3882		break;
3883	default:
3884		return;
3885	}
3886
3887	/* make sure the context is associated with the right VSI */
3888	tlan_ctx->src_vsi = vsi->vsi_num;
3889
3890	tlan_ctx->tso_ena = ICE_TX_LEGACY;
3891	tlan_ctx->tso_qnum = pf_q;
3892
3893	/* Legacy or Advanced Host Interface:
3894	 * 0: Advanced Host Interface
3895	 * 1: Legacy Host Interface
3896	 */
3897	tlan_ctx->legacy_int = ICE_TX_LEGACY;
3898}
3899
3900/**
3901 * ice_vsi_cfg_txqs - Configure the VSI for Tx
3902 * @vsi: the VSI being configured
3903 *
3904 * Return 0 on success and a negative value on error
3905 * Configure the Tx VSI for operation.
3906 */
3907static int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
3908{
3909	struct ice_aqc_add_tx_qgrp *qg_buf;
3910	struct ice_aqc_add_txqs_perq *txq;
3911	struct ice_pf *pf = vsi->back;
3912	enum ice_status status;
3913	u16 buf_len, i, pf_q;
3914	int err = 0, tc = 0;
3915	u8 num_q_grps;
3916
3917	buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
3918	qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
3919	if (!qg_buf)
3920		return -ENOMEM;
3921
3922	if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
3923		err = -EINVAL;
3924		goto err_cfg_txqs;
3925	}
3926	qg_buf->num_txqs = 1;
3927	num_q_grps = 1;
3928
3929	/* set up and configure the tx queues */
3930	ice_for_each_txq(vsi, i) {
3931		struct ice_tlan_ctx tlan_ctx = { 0 };
3932
3933		pf_q = vsi->txq_map[i];
3934		ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
3935		/* copy context contents into the qg_buf */
3936		qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
3937		ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
3938			    ice_tlan_ctx_info);
3939
3940		/* init queue specific tail reg. It is referred as transmit
3941		 * comm scheduler queue doorbell.
3942		 */
3943		vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
3944		status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc,
3945					 num_q_grps, qg_buf, buf_len, NULL);
3946		if (status) {
3947			dev_err(&vsi->back->pdev->dev,
3948				"Failed to set LAN Tx queue context, error: %d\n",
3949				status);
3950			err = -ENODEV;
3951			goto err_cfg_txqs;
3952		}
3953
3954		/* Add Tx Queue TEID into the VSI tx ring from the response
3955		 * This will complete configuring and enabling the queue.
3956		 */
3957		txq = &qg_buf->txqs[0];
3958		if (pf_q == le16_to_cpu(txq->txq_id))
3959			vsi->tx_rings[i]->txq_teid =
3960				le32_to_cpu(txq->q_teid);
3961	}
3962err_cfg_txqs:
3963	devm_kfree(&pf->pdev->dev, qg_buf);
3964	return err;
3965}
3966
3967/**
3968 * ice_setup_rx_ctx - Configure a receive ring context
3969 * @ring: The Rx ring to configure
3970 *
3971 * Configure the Rx descriptor ring in RLAN context.
3972 */
3973static int ice_setup_rx_ctx(struct ice_ring *ring)
3974{
3975	struct ice_vsi *vsi = ring->vsi;
3976	struct ice_hw *hw = &vsi->back->hw;
3977	u32 rxdid = ICE_RXDID_FLEX_NIC;
3978	struct ice_rlan_ctx rlan_ctx;
3979	u32 regval;
3980	u16 pf_q;
3981	int err;
3982
3983	/* what is RX queue number in global space of 2K rx queues */
3984	pf_q = vsi->rxq_map[ring->q_index];
3985
3986	/* clear the context structure first */
3987	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
3988
3989	rlan_ctx.base = ring->dma >> 7;
3990
3991	rlan_ctx.qlen = ring->count;
3992
3993	/* Receive Packet Data Buffer Size.
3994	 * The Packet Data Buffer Size is defined in 128 byte units.
3995	 */
3996	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
3997
3998	/* use 32 byte descriptors */
3999	rlan_ctx.dsize = 1;
4000
4001	/* Strip the Ethernet CRC bytes before the packet is posted to host
4002	 * memory.
4003	 */
4004	rlan_ctx.crcstrip = 1;
4005
4006	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
4007	rlan_ctx.l2tsel = 1;
4008
4009	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
4010	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
4011	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
4012
4013	/* This controls whether VLAN is stripped from inner headers
4014	 * The VLAN in the inner L2 header is stripped to the receive
4015	 * descriptor if enabled by this flag.
4016	 */
4017	rlan_ctx.showiv = 0;
4018
4019	/* Max packet size for this queue - must not be set to a larger value
4020	 * than 5 x DBUF
4021	 */
4022	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
4023			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
4024
4025	/* Rx queue threshold in units of 64 */
4026	rlan_ctx.lrxqthresh = 1;
4027
4028	 /* Enable Flexible Descriptors in the queue context which
4029	  * allows this driver to select a specific receive descriptor format
4030	  */
4031	regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
4032	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
4033		QRXFLXP_CNTXT_RXDID_IDX_M;
4034
4035	/* increasing context priority to pick up profile id;
4036	 * default is 0x01; setting to 0x03 to ensure profile
4037	 * is programming if prev context is of same priority
4038	 */
4039	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
4040		QRXFLXP_CNTXT_RXDID_PRIO_M;
4041
4042	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
4043
4044	/* Absolute queue number out of 2K needs to be passed */
4045	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
4046	if (err) {
4047		dev_err(&vsi->back->pdev->dev,
4048			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
4049			pf_q, err);
4050		return -EIO;
4051	}
4052
4053	/* init queue specific tail register */
4054	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
4055	writel(0, ring->tail);
4056	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
4057
4058	return 0;
4059}
4060
4061/**
4062 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
4063 * @vsi: the VSI being configured
4064 *
4065 * Return 0 on success and a negative value on error
4066 * Configure the Rx VSI for operation.
4067 */
4068static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
4069{
4070	int err = 0;
4071	u16 i;
4072
4073	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
4074		vsi->max_frame = vsi->netdev->mtu +
4075			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4076	else
4077		vsi->max_frame = ICE_RXBUF_2048;
4078
4079	vsi->rx_buf_len = ICE_RXBUF_2048;
4080	/* set up individual rings */
4081	for (i = 0; i < vsi->num_rxq && !err; i++)
4082		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
4083
4084	if (err) {
4085		dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
4086		return -EIO;
4087	}
4088	return err;
4089}
4090
4091/**
4092 * ice_vsi_cfg - Setup the VSI
4093 * @vsi: the VSI being configured
4094 *
4095 * Return 0 on success and negative value on error
4096 */
4097static int ice_vsi_cfg(struct ice_vsi *vsi)
4098{
4099	int err;
4100
4101	ice_set_rx_mode(vsi->netdev);
 
4102
4103	err = ice_restore_vlan(vsi);
4104	if (err)
4105		return err;
 
 
 
4106
4107	err = ice_vsi_cfg_txqs(vsi);
 
 
4108	if (!err)
4109		err = ice_vsi_cfg_rxqs(vsi);
4110
4111	return err;
4112}
4113
4114/**
4115 * ice_vsi_stop_tx_rings - Disable Tx rings
4116 * @vsi: the VSI being configured
4117 */
4118static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
4119{
4120	struct ice_pf *pf = vsi->back;
4121	struct ice_hw *hw = &pf->hw;
4122	enum ice_status status;
4123	u32 *q_teids, val;
4124	u16 *q_ids, i;
4125	int err = 0;
4126
4127	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
4128		return -EINVAL;
4129
4130	q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
4131			       GFP_KERNEL);
4132	if (!q_teids)
4133		return -ENOMEM;
4134
4135	q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
4136			     GFP_KERNEL);
4137	if (!q_ids) {
4138		err = -ENOMEM;
4139		goto err_alloc_q_ids;
4140	}
4141
4142	/* set up the tx queue list to be disabled */
4143	ice_for_each_txq(vsi, i) {
4144		u16 v_idx;
4145
4146		if (!vsi->tx_rings || !vsi->tx_rings[i]) {
4147			err = -EINVAL;
4148			goto err_out;
4149		}
4150
4151		q_ids[i] = vsi->txq_map[i];
4152		q_teids[i] = vsi->tx_rings[i]->txq_teid;
4153
4154		/* clear cause_ena bit for disabled queues */
4155		val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4156		val &= ~QINT_TQCTL_CAUSE_ENA_M;
4157		wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4158
4159		/* software is expected to wait for 100 ns */
4160		ndelay(100);
4161
4162		/* trigger a software interrupt for the vector associated to
4163		 * the queue to schedule napi handler
4164		 */
4165		v_idx = vsi->tx_rings[i]->q_vector->v_idx;
4166		wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx),
4167		     GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
4168	}
4169	status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
4170				 NULL);
4171	if (status) {
4172		dev_err(&pf->pdev->dev,
4173			"Failed to disable LAN Tx queues, error: %d\n",
4174			status);
4175		err = -ENODEV;
4176	}
4177
4178err_out:
4179	devm_kfree(&pf->pdev->dev, q_ids);
4180
4181err_alloc_q_ids:
4182	devm_kfree(&pf->pdev->dev, q_teids);
4183
4184	return err;
4185}
 
 
 
 
 
 
 
 
 
 
 
 
 
4186
4187/**
4188 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4189 * @pf: the PF being configured
4190 * @pf_q: the PF queue
4191 * @ena: enable or disable state of the queue
4192 *
4193 * This routine will wait for the given Rx queue of the PF to reach the
4194 * enabled or disabled state.
4195 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4196 * multiple retries; else will return 0 in case of success.
4197 */
4198static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
4199{
4200	int i;
4201
4202	for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
4203		u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
4204
4205		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4206			break;
4207
4208		usleep_range(10, 20);
4209	}
4210	if (i >= ICE_Q_WAIT_RETRY_LIMIT)
4211		return -ETIMEDOUT;
4212
4213	return 0;
4214}
4215
4216/**
4217 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings
4218 * @vsi: the VSI being configured
4219 * @ena: start or stop the rx rings
4220 */
4221static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
4222{
4223	struct ice_pf *pf = vsi->back;
4224	struct ice_hw *hw = &pf->hw;
4225	int i, j, ret = 0;
4226
4227	for (i = 0; i < vsi->num_rxq; i++) {
4228		int pf_q = vsi->rxq_map[i];
4229		u32 rx_reg;
4230
4231		for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
4232			rx_reg = rd32(hw, QRX_CTRL(pf_q));
4233			if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
4234			    ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
4235				break;
4236			usleep_range(1000, 2000);
4237		}
4238
4239		/* Skip if the queue is already in the requested state */
4240		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4241			continue;
4242
4243		/* turn on/off the queue */
4244		if (ena)
4245			rx_reg |= QRX_CTRL_QENA_REQ_M;
4246		else
4247			rx_reg &= ~QRX_CTRL_QENA_REQ_M;
4248		wr32(hw, QRX_CTRL(pf_q), rx_reg);
4249
4250		/* wait for the change to finish */
4251		ret = ice_pf_rxq_wait(pf, pf_q, ena);
4252		if (ret) {
4253			dev_err(&pf->pdev->dev,
4254				"VSI idx %d Rx ring %d %sable timeout\n",
4255				vsi->idx, pf_q, (ena ? "en" : "dis"));
4256			break;
4257		}
4258	}
4259
4260	return ret;
4261}
 
4262
4263/**
4264 * ice_vsi_start_rx_rings - start VSI's rx rings
4265 * @vsi: the VSI whose rings are to be started
4266 *
4267 * Returns 0 on success and a negative value on error
4268 */
4269static int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
4270{
4271	return ice_vsi_ctrl_rx_rings(vsi, true);
4272}
4273
4274/**
4275 * ice_vsi_stop_rx_rings - stop VSI's rx rings
4276 * @vsi: the VSI
4277 *
4278 * Returns 0 on success and a negative value on error
4279 */
4280static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
4281{
4282	return ice_vsi_ctrl_rx_rings(vsi, false);
4283}
 
 
4284
4285/**
4286 * ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings
4287 * @vsi: the VSI
4288 * Returns 0 on success and a negative value on error
4289 */
4290static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi)
4291{
4292	int err_tx, err_rx;
4293
4294	err_tx = ice_vsi_stop_tx_rings(vsi);
4295	if (err_tx)
4296		dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n");
4297
4298	err_rx = ice_vsi_stop_rx_rings(vsi);
4299	if (err_rx)
4300		dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n");
4301
4302	if (err_tx || err_rx)
4303		return -EIO;
 
4304
4305	return 0;
4306}
4307
4308/**
4309 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4310 * @vsi: the VSI being configured
4311 */
4312static void ice_napi_enable_all(struct ice_vsi *vsi)
4313{
4314	int q_idx;
4315
4316	if (!vsi->netdev)
4317		return;
4318
4319	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4320		napi_enable(&vsi->q_vectors[q_idx]->napi);
 
 
 
 
 
 
 
 
 
 
4321}
4322
4323/**
4324 * ice_up_complete - Finish the last steps of bringing up a connection
4325 * @vsi: The VSI being configured
4326 *
4327 * Return 0 on success and negative value on error
4328 */
4329static int ice_up_complete(struct ice_vsi *vsi)
4330{
4331	struct ice_pf *pf = vsi->back;
4332	int err;
4333
4334	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4335		ice_vsi_cfg_msix(vsi);
4336	else
4337		return -ENOTSUPP;
4338
4339	/* Enable only Rx rings, Tx rings were enabled by the FW when the
4340	 * Tx queue group list was configured and the context bits were
4341	 * programmed using ice_vsi_cfg_txqs
4342	 */
4343	err = ice_vsi_start_rx_rings(vsi);
4344	if (err)
4345		return err;
4346
4347	clear_bit(__ICE_DOWN, vsi->state);
4348	ice_napi_enable_all(vsi);
4349	ice_vsi_ena_irq(vsi);
4350
4351	if (vsi->port_info &&
4352	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4353	    vsi->netdev) {
4354		ice_print_link_msg(vsi, true);
4355		netif_tx_start_all_queues(vsi->netdev);
4356		netif_carrier_on(vsi->netdev);
4357	}
4358
4359	ice_service_task_schedule(pf);
4360
4361	return err;
4362}
4363
4364/**
4365 * ice_up - Bring the connection back up after being down
4366 * @vsi: VSI being configured
4367 */
4368int ice_up(struct ice_vsi *vsi)
4369{
4370	int err;
4371
4372	err = ice_vsi_cfg(vsi);
4373	if (!err)
4374		err = ice_up_complete(vsi);
4375
4376	return err;
4377}
4378
4379/**
4380 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4381 * @ring: Tx or Rx ring to read stats from
4382 * @pkts: packets stats counter
4383 * @bytes: bytes stats counter
4384 *
4385 * This function fetches stats from the ring considering the atomic operations
4386 * that needs to be performed to read u64 values in 32 bit machine.
4387 */
4388static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
4389					 u64 *bytes)
4390{
4391	unsigned int start;
4392	*pkts = 0;
4393	*bytes = 0;
4394
4395	if (!ring)
4396		return;
4397	do {
4398		start = u64_stats_fetch_begin_irq(&ring->syncp);
4399		*pkts = ring->stats.pkts;
4400		*bytes = ring->stats.bytes;
4401	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4402}
4403
4404/**
4405 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4406 * @hw: ptr to the hardware info
4407 * @hireg: high 32 bit HW register to read from
4408 * @loreg: low 32 bit HW register to read from
4409 * @prev_stat_loaded: bool to specify if previous stats are loaded
4410 * @prev_stat: ptr to previous loaded stat value
4411 * @cur_stat: ptr to current stat value
4412 */
4413static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
4414			      bool prev_stat_loaded, u64 *prev_stat,
4415			      u64 *cur_stat)
4416{
4417	u64 new_data;
4418
4419	new_data = rd32(hw, loreg);
4420	new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
4421
4422	/* device stats are not reset at PFR, they likely will not be zeroed
4423	 * when the driver starts. So save the first values read and use them as
4424	 * offsets to be subtracted from the raw values in order to report stats
4425	 * that count from zero.
4426	 */
4427	if (!prev_stat_loaded)
4428		*prev_stat = new_data;
4429	if (likely(new_data >= *prev_stat))
4430		*cur_stat = new_data - *prev_stat;
4431	else
4432		/* to manage the potential roll-over */
4433		*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
4434	*cur_stat &= 0xFFFFFFFFFFULL;
4435}
4436
4437/**
4438 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4439 * @hw: ptr to the hardware info
4440 * @reg: HW register to read from
4441 * @prev_stat_loaded: bool to specify if previous stats are loaded
4442 * @prev_stat: ptr to previous loaded stat value
4443 * @cur_stat: ptr to current stat value
4444 */
4445static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4446			      u64 *prev_stat, u64 *cur_stat)
4447{
4448	u32 new_data;
4449
4450	new_data = rd32(hw, reg);
4451
4452	/* device stats are not reset at PFR, they likely will not be zeroed
4453	 * when the driver starts. So save the first values read and use them as
4454	 * offsets to be subtracted from the raw values in order to report stats
4455	 * that count from zero.
4456	 */
4457	if (!prev_stat_loaded)
4458		*prev_stat = new_data;
4459	if (likely(new_data >= *prev_stat))
4460		*cur_stat = new_data - *prev_stat;
4461	else
4462		/* to manage the potential roll-over */
4463		*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
4464}
4465
4466/**
4467 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
4468 * @vsi: the VSI to be updated
 
 
4469 */
4470static void ice_update_eth_stats(struct ice_vsi *vsi)
 
 
4471{
4472	struct ice_eth_stats *prev_es, *cur_es;
4473	struct ice_hw *hw = &vsi->back->hw;
4474	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
4475
4476	prev_es = &vsi->eth_stats_prev;
4477	cur_es = &vsi->eth_stats;
4478
4479	ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
4480			  vsi->stat_offsets_loaded, &prev_es->rx_bytes,
4481			  &cur_es->rx_bytes);
4482
4483	ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
4484			  vsi->stat_offsets_loaded, &prev_es->rx_unicast,
4485			  &cur_es->rx_unicast);
4486
4487	ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
4488			  vsi->stat_offsets_loaded, &prev_es->rx_multicast,
4489			  &cur_es->rx_multicast);
4490
4491	ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
4492			  vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
4493			  &cur_es->rx_broadcast);
4494
4495	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
4496			  &prev_es->rx_discards, &cur_es->rx_discards);
4497
4498	ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
4499			  vsi->stat_offsets_loaded, &prev_es->tx_bytes,
4500			  &cur_es->tx_bytes);
4501
4502	ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
4503			  vsi->stat_offsets_loaded, &prev_es->tx_unicast,
4504			  &cur_es->tx_unicast);
4505
4506	ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
4507			  vsi->stat_offsets_loaded, &prev_es->tx_multicast,
4508			  &cur_es->tx_multicast);
4509
4510	ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
4511			  vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
4512			  &cur_es->tx_broadcast);
4513
4514	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
4515			  &prev_es->tx_errors, &cur_es->tx_errors);
 
4516
4517	vsi->stat_offsets_loaded = true;
 
 
 
 
 
 
 
4518}
4519
4520/**
4521 * ice_update_vsi_ring_stats - Update VSI stats counters
4522 * @vsi: the VSI to be updated
4523 */
4524static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4525{
4526	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4527	struct ice_ring *ring;
4528	u64 pkts, bytes;
4529	int i;
4530
4531	/* reset netdev stats */
4532	vsi_stats->tx_packets = 0;
4533	vsi_stats->tx_bytes = 0;
4534	vsi_stats->rx_packets = 0;
4535	vsi_stats->rx_bytes = 0;
4536
4537	/* reset non-netdev (extended) stats */
4538	vsi->tx_restart = 0;
4539	vsi->tx_busy = 0;
4540	vsi->tx_linearize = 0;
4541	vsi->rx_buf_failed = 0;
4542	vsi->rx_page_failed = 0;
4543
4544	rcu_read_lock();
4545
4546	/* update Tx rings counters */
4547	ice_for_each_txq(vsi, i) {
4548		ring = READ_ONCE(vsi->tx_rings[i]);
4549		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4550		vsi_stats->tx_packets += pkts;
4551		vsi_stats->tx_bytes += bytes;
4552		vsi->tx_restart += ring->tx_stats.restart_q;
4553		vsi->tx_busy += ring->tx_stats.tx_busy;
4554		vsi->tx_linearize += ring->tx_stats.tx_linearize;
4555	}
4556
4557	/* update Rx rings counters */
4558	ice_for_each_rxq(vsi, i) {
4559		ring = READ_ONCE(vsi->rx_rings[i]);
 
4560		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4561		vsi_stats->rx_packets += pkts;
4562		vsi_stats->rx_bytes += bytes;
4563		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4564		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4565	}
4566
 
 
 
 
 
4567	rcu_read_unlock();
4568}
4569
4570/**
4571 * ice_update_vsi_stats - Update VSI stats counters
4572 * @vsi: the VSI to be updated
4573 */
4574static void ice_update_vsi_stats(struct ice_vsi *vsi)
4575{
4576	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4577	struct ice_eth_stats *cur_es = &vsi->eth_stats;
4578	struct ice_pf *pf = vsi->back;
4579
4580	if (test_bit(__ICE_DOWN, vsi->state) ||
4581	    test_bit(__ICE_CFG_BUSY, pf->state))
4582		return;
4583
4584	/* get stats as recorded by Tx/Rx rings */
4585	ice_update_vsi_ring_stats(vsi);
4586
4587	/* get VSI stats as recorded by the hardware */
4588	ice_update_eth_stats(vsi);
4589
4590	cur_ns->tx_errors = cur_es->tx_errors;
4591	cur_ns->rx_dropped = cur_es->rx_discards;
4592	cur_ns->tx_dropped = cur_es->tx_discards;
4593	cur_ns->multicast = cur_es->rx_multicast;
4594
4595	/* update some more netdev stats if this is main VSI */
4596	if (vsi->type == ICE_VSI_PF) {
4597		cur_ns->rx_crc_errors = pf->stats.crc_errors;
4598		cur_ns->rx_errors = pf->stats.crc_errors +
4599				    pf->stats.illegal_bytes;
 
 
 
 
 
 
4600		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
 
 
4601	}
4602}
4603
4604/**
4605 * ice_update_pf_stats - Update PF port stats counters
4606 * @pf: PF whose stats needs to be updated
4607 */
4608static void ice_update_pf_stats(struct ice_pf *pf)
4609{
4610	struct ice_hw_port_stats *prev_ps, *cur_ps;
4611	struct ice_hw *hw = &pf->hw;
4612	u8 pf_id;
 
4613
 
4614	prev_ps = &pf->stats_prev;
4615	cur_ps = &pf->stats;
4616	pf_id = hw->pf_id;
4617
4618	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
4619			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
4620			  &cur_ps->eth.rx_bytes);
4621
4622	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
4623			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
4624			  &cur_ps->eth.rx_unicast);
4625
4626	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
4627			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
4628			  &cur_ps->eth.rx_multicast);
4629
4630	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
4631			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
4632			  &cur_ps->eth.rx_broadcast);
4633
4634	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
4635			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
 
 
 
 
4636			  &cur_ps->eth.tx_bytes);
4637
4638	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
4639			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
4640			  &cur_ps->eth.tx_unicast);
4641
4642	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
4643			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
4644			  &cur_ps->eth.tx_multicast);
4645
4646	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
4647			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
4648			  &cur_ps->eth.tx_broadcast);
4649
4650	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
4651			  &prev_ps->tx_dropped_link_down,
4652			  &cur_ps->tx_dropped_link_down);
4653
4654	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
4655			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
4656			  &cur_ps->rx_size_64);
4657
4658	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
4659			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
4660			  &cur_ps->rx_size_127);
4661
4662	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
4663			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
4664			  &cur_ps->rx_size_255);
4665
4666	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
4667			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
4668			  &cur_ps->rx_size_511);
4669
4670	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
4671			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
 
 
4672			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4673
4674	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
4675			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
4676			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4677
4678	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
4679			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
4680			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4681
4682	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
4683			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
4684			  &cur_ps->tx_size_64);
4685
4686	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
4687			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
4688			  &cur_ps->tx_size_127);
4689
4690	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
4691			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
4692			  &cur_ps->tx_size_255);
4693
4694	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
4695			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
4696			  &cur_ps->tx_size_511);
4697
4698	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
4699			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
 
 
 
 
 
4700			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4701
4702	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
4703			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
4704			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4705
4706	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
4707			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
4708			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4709
4710	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
 
 
 
 
 
 
4711			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4712
4713	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
4714			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4715
4716	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
4717			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4718
4719	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
4720			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4721
4722	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
 
 
4723			  &prev_ps->crc_errors, &cur_ps->crc_errors);
4724
4725	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
4726			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4727
4728	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
4729			  &prev_ps->mac_local_faults,
4730			  &cur_ps->mac_local_faults);
4731
4732	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
4733			  &prev_ps->mac_remote_faults,
4734			  &cur_ps->mac_remote_faults);
4735
4736	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
4737			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4738
4739	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
4740			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4741
4742	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
4743			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4744
4745	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
4746			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4747
4748	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
4749			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4750
 
 
4751	pf->stat_prev_loaded = true;
4752}
4753
4754/**
4755 * ice_get_stats64 - get statistics for network device structure
4756 * @netdev: network interface device structure
4757 * @stats: main device statistics structure
4758 */
4759static
4760void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4761{
4762	struct ice_netdev_priv *np = netdev_priv(netdev);
4763	struct rtnl_link_stats64 *vsi_stats;
4764	struct ice_vsi *vsi = np->vsi;
4765
4766	vsi_stats = &vsi->net_stats;
4767
4768	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
4769		return;
 
4770	/* netdev packet/byte stats come from ring counter. These are obtained
4771	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
 
 
4772	 */
4773	ice_update_vsi_ring_stats(vsi);
 
4774	stats->tx_packets = vsi_stats->tx_packets;
4775	stats->tx_bytes = vsi_stats->tx_bytes;
4776	stats->rx_packets = vsi_stats->rx_packets;
4777	stats->rx_bytes = vsi_stats->rx_bytes;
4778
4779	/* The rest of the stats can be read from the hardware but instead we
4780	 * just return values that the watchdog task has already obtained from
4781	 * the hardware.
4782	 */
4783	stats->multicast = vsi_stats->multicast;
4784	stats->tx_errors = vsi_stats->tx_errors;
4785	stats->tx_dropped = vsi_stats->tx_dropped;
4786	stats->rx_errors = vsi_stats->rx_errors;
4787	stats->rx_dropped = vsi_stats->rx_dropped;
4788	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4789	stats->rx_length_errors = vsi_stats->rx_length_errors;
4790}
4791
4792#ifdef CONFIG_NET_POLL_CONTROLLER
4793/**
4794 * ice_netpoll - polling "interrupt" handler
4795 * @netdev: network interface device structure
4796 *
4797 * Used by netconsole to send skbs without having to re-enable interrupts.
4798 * This is not called in the normal interrupt path.
4799 */
4800static void ice_netpoll(struct net_device *netdev)
4801{
4802	struct ice_netdev_priv *np = netdev_priv(netdev);
4803	struct ice_vsi *vsi = np->vsi;
4804	struct ice_pf *pf = vsi->back;
4805	int i;
4806
4807	if (test_bit(__ICE_DOWN, vsi->state) ||
4808	    !test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4809		return;
4810
4811	for (i = 0; i < vsi->num_q_vectors; i++)
4812		ice_msix_clean_rings(0, vsi->q_vectors[i]);
4813}
4814#endif /* CONFIG_NET_POLL_CONTROLLER */
4815
4816/**
4817 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4818 * @vsi: VSI having NAPI disabled
4819 */
4820static void ice_napi_disable_all(struct ice_vsi *vsi)
4821{
4822	int q_idx;
4823
4824	if (!vsi->netdev)
4825		return;
4826
4827	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4828		napi_disable(&vsi->q_vectors[q_idx]->napi);
 
 
 
 
 
 
 
4829}
4830
4831/**
4832 * ice_down - Shutdown the connection
4833 * @vsi: The VSI being stopped
4834 */
4835int ice_down(struct ice_vsi *vsi)
4836{
4837	int i, err;
4838
4839	/* Caller of this function is expected to set the
4840	 * vsi->state __ICE_DOWN bit
4841	 */
4842	if (vsi->netdev) {
4843		netif_carrier_off(vsi->netdev);
4844		netif_tx_disable(vsi->netdev);
4845	}
4846
4847	ice_vsi_dis_irq(vsi);
4848	err = ice_vsi_stop_tx_rx_rings(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4849	ice_napi_disable_all(vsi);
4850
 
 
 
 
 
 
 
4851	ice_for_each_txq(vsi, i)
4852		ice_clean_tx_ring(vsi->tx_rings[i]);
4853
4854	ice_for_each_rxq(vsi, i)
4855		ice_clean_rx_ring(vsi->rx_rings[i]);
4856
4857	if (err)
4858		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4859			   vsi->vsi_num, vsi->vsw->sw_id);
4860	return err;
 
 
 
4861}
4862
4863/**
4864 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4865 * @vsi: VSI having resources allocated
4866 *
4867 * Return 0 on success, negative on failure
4868 */
4869static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4870{
4871	int i, err;
4872
4873	if (!vsi->num_txq) {
4874		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
4875			vsi->vsi_num);
4876		return -EINVAL;
4877	}
4878
4879	ice_for_each_txq(vsi, i) {
4880		err = ice_setup_tx_ring(vsi->tx_rings[i]);
 
 
 
 
 
 
4881		if (err)
4882			break;
4883	}
4884
4885	return err;
4886}
4887
4888/**
4889 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4890 * @vsi: VSI having resources allocated
4891 *
4892 * Return 0 on success, negative on failure
4893 */
4894static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4895{
4896	int i, err;
4897
4898	if (!vsi->num_rxq) {
4899		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
4900			vsi->vsi_num);
4901		return -EINVAL;
4902	}
4903
4904	ice_for_each_rxq(vsi, i) {
4905		err = ice_setup_rx_ring(vsi->rx_rings[i]);
 
 
 
 
 
 
4906		if (err)
4907			break;
4908	}
4909
4910	return err;
4911}
4912
4913/**
4914 * ice_vsi_req_irq - Request IRQ from the OS
4915 * @vsi: The VSI IRQ is being requested for
4916 * @basename: name for the vector
 
4917 *
4918 * Return 0 on success and a negative value on error
4919 */
4920static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
4921{
 
4922	struct ice_pf *pf = vsi->back;
4923	int err = -EINVAL;
 
4924
4925	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4926		err = ice_vsi_req_irq_msix(vsi, basename);
 
 
 
4927
4928	return err;
4929}
 
4930
4931/**
4932 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
4933 * @vsi: the VSI having resources freed
4934 */
4935static void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
4936{
4937	int i;
4938
4939	if (!vsi->tx_rings)
4940		return;
 
 
 
4941
4942	ice_for_each_txq(vsi, i)
4943		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4944			ice_free_tx_ring(vsi->tx_rings[i]);
4945}
4946
4947/**
4948 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
4949 * @vsi: the VSI having resources freed
4950 */
4951static void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
4952{
4953	int i;
4954
4955	if (!vsi->rx_rings)
4956		return;
4957
4958	ice_for_each_rxq(vsi, i)
4959		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
4960			ice_free_rx_ring(vsi->rx_rings[i]);
 
 
 
 
 
 
 
4961}
4962
4963/**
4964 * ice_vsi_open - Called when a network interface is made active
4965 * @vsi: the VSI to open
4966 *
4967 * Initialization of the VSI
4968 *
4969 * Returns 0 on success, negative value on error
4970 */
4971static int ice_vsi_open(struct ice_vsi *vsi)
4972{
4973	char int_name[ICE_INT_NAME_STR_LEN];
4974	struct ice_pf *pf = vsi->back;
4975	int err;
4976
4977	/* allocate descriptors */
4978	err = ice_vsi_setup_tx_rings(vsi);
4979	if (err)
4980		goto err_setup_tx;
4981
4982	err = ice_vsi_setup_rx_rings(vsi);
4983	if (err)
4984		goto err_setup_rx;
4985
4986	err = ice_vsi_cfg(vsi);
4987	if (err)
4988		goto err_setup_rx;
4989
4990	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4991		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4992	err = ice_vsi_req_irq(vsi, int_name);
4993	if (err)
4994		goto err_setup_rx;
4995
4996	/* Notify the stack of the actual queue counts. */
4997	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4998	if (err)
4999		goto err_set_qs;
5000
5001	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5002	if (err)
5003		goto err_set_qs;
5004
5005	err = ice_up_complete(vsi);
5006	if (err)
5007		goto err_up_complete;
5008
5009	return 0;
5010
5011err_up_complete:
5012	ice_down(vsi);
5013err_set_qs:
5014	ice_vsi_free_irq(vsi);
5015err_setup_rx:
5016	ice_vsi_free_rx_rings(vsi);
5017err_setup_tx:
5018	ice_vsi_free_tx_rings(vsi);
5019
5020	return err;
5021}
5022
5023/**
5024 * ice_vsi_close - Shut down a VSI
5025 * @vsi: the VSI being shut down
5026 */
5027static void ice_vsi_close(struct ice_vsi *vsi)
5028{
5029	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
5030		ice_down(vsi);
5031
5032	ice_vsi_free_irq(vsi);
5033	ice_vsi_free_tx_rings(vsi);
5034	ice_vsi_free_rx_rings(vsi);
5035}
5036
5037/**
5038 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
5039 * @vsi: the VSI being removed
5040 */
5041static void ice_rss_clean(struct ice_vsi *vsi)
5042{
5043	struct ice_pf *pf;
5044
5045	pf = vsi->back;
 
 
5046
5047	if (vsi->rss_hkey_user)
5048		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
5049	if (vsi->rss_lut_user)
5050		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
 
5051}
5052
5053/**
5054 * ice_vsi_release - Delete a VSI and free its resources
5055 * @vsi: the VSI being removed
 
5056 *
5057 * Returns 0 on success or < 0 on error
5058 */
5059static int ice_vsi_release(struct ice_vsi *vsi)
5060{
5061	struct ice_pf *pf;
5062
5063	if (!vsi->back)
5064		return -ENODEV;
5065	pf = vsi->back;
5066
5067	if (vsi->netdev) {
5068		unregister_netdev(vsi->netdev);
5069		free_netdev(vsi->netdev);
5070		vsi->netdev = NULL;
5071	}
5072
5073	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
5074		ice_rss_clean(vsi);
5075
5076	/* Disable VSI and free resources */
5077	ice_vsi_dis_irq(vsi);
5078	ice_vsi_close(vsi);
5079
5080	/* reclaim interrupt vectors back to PF */
5081	ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
5082	pf->num_avail_msix += vsi->num_q_vectors;
5083
5084	ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num);
5085	ice_vsi_delete(vsi);
5086	ice_vsi_free_q_vectors(vsi);
5087	ice_vsi_clear_rings(vsi);
5088
5089	ice_vsi_put_qs(vsi);
5090	pf->q_left_tx += vsi->alloc_txq;
5091	pf->q_left_rx += vsi->alloc_rxq;
5092
5093	ice_vsi_clear(vsi);
 
5094
5095	return 0;
5096}
5097
5098/**
5099 * ice_dis_vsi - pause a VSI
5100 * @vsi: the VSI being paused
5101 */
5102static void ice_dis_vsi(struct ice_vsi *vsi)
5103{
5104	if (test_bit(__ICE_DOWN, vsi->state))
5105		return;
5106
5107	set_bit(__ICE_NEEDS_RESTART, vsi->state);
 
 
 
 
 
 
 
5108
5109	if (vsi->netdev && netif_running(vsi->netdev) &&
5110	    vsi->type == ICE_VSI_PF)
5111		vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
 
5112
5113	ice_vsi_close(vsi);
5114}
 
 
 
 
 
5115
5116/**
5117 * ice_ena_vsi - resume a VSI
5118 * @vsi: the VSI being resume
5119 */
5120static void ice_ena_vsi(struct ice_vsi *vsi)
5121{
5122	if (!test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
5123		return;
5124
5125	if (vsi->netdev && netif_running(vsi->netdev))
5126		vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5127	else if (ice_vsi_open(vsi))
5128		/* this clears the DOWN bit */
5129		dev_dbg(&vsi->back->pdev->dev, "Failed open VSI 0x%04X on switch 0x%04X\n",
5130			vsi->vsi_num, vsi->vsw->sw_id);
5131}
5132
5133/**
5134 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
5135 * @pf: the PF
5136 */
5137static void ice_pf_dis_all_vsi(struct ice_pf *pf)
5138{
5139	int v;
 
5140
5141	ice_for_each_vsi(pf, v)
5142		if (pf->vsi[v])
5143			ice_dis_vsi(pf->vsi[v]);
5144}
5145
5146/**
5147 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
5148 * @pf: the PF
5149 */
5150static void ice_pf_ena_all_vsi(struct ice_pf *pf)
5151{
5152	int v;
5153
5154	ice_for_each_vsi(pf, v)
5155		if (pf->vsi[v])
5156			ice_ena_vsi(pf->vsi[v]);
 
 
 
 
 
 
5157}
5158
5159/**
5160 * ice_rebuild - rebuild after reset
5161 * @pf: pf to rebuild
 
 
 
 
 
 
5162 */
5163static void ice_rebuild(struct ice_pf *pf)
5164{
5165	struct device *dev = &pf->pdev->dev;
5166	struct ice_hw *hw = &pf->hw;
5167	enum ice_status ret;
5168	int err;
5169
5170	if (test_bit(__ICE_DOWN, pf->state))
5171		goto clear_recovery;
5172
5173	dev_dbg(dev, "rebuilding pf\n");
5174
5175	ret = ice_init_all_ctrlq(hw);
5176	if (ret) {
5177		dev_err(dev, "control queues init failed %d\n", ret);
5178		goto fail_reset;
 
 
 
 
 
 
 
 
 
 
 
5179	}
5180
5181	ret = ice_clear_pf_cfg(hw);
5182	if (ret) {
5183		dev_err(dev, "clear PF configuration failed %d\n", ret);
5184		goto fail_reset;
 
5185	}
5186
 
 
 
 
 
 
5187	ice_clear_pxe_mode(hw);
5188
 
 
 
 
 
 
5189	ret = ice_get_caps(hw);
5190	if (ret) {
5191		dev_err(dev, "ice_get_caps failed %d\n", ret);
5192		goto fail_reset;
5193	}
5194
5195	/* basic nic switch setup */
5196	err = ice_setup_pf_sw(pf);
5197	if (err) {
5198		dev_err(dev, "ice_setup_pf_sw failed\n");
5199		goto fail_reset;
5200	}
5201
 
 
 
 
5202	/* start misc vector */
5203	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
5204		err = ice_req_irq_msix_misc(pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5205		if (err) {
5206			dev_err(dev, "misc vector setup failed: %d\n", err);
5207			goto fail_reset;
5208		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5209	}
5210
5211	/* restart the VSIs that were rebuilt and running before the reset */
5212	ice_pf_ena_all_vsi(pf);
 
 
5213
 
5214	return;
5215
5216fail_reset:
 
 
 
5217	ice_shutdown_all_ctrlq(hw);
5218	set_bit(__ICE_RESET_FAILED, pf->state);
5219clear_recovery:
5220	set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5221}
5222
5223/**
5224 * ice_change_mtu - NDO callback to change the MTU
5225 * @netdev: network interface device structure
5226 * @new_mtu: new value for maximum frame size
5227 *
5228 * Returns 0 on success, negative on failure
5229 */
5230static int ice_change_mtu(struct net_device *netdev, int new_mtu)
5231{
5232	struct ice_netdev_priv *np = netdev_priv(netdev);
5233	struct ice_vsi *vsi = np->vsi;
5234	struct ice_pf *pf = vsi->back;
 
5235	u8 count = 0;
 
5236
5237	if (new_mtu == netdev->mtu) {
5238		netdev_warn(netdev, "mtu is already %d\n", netdev->mtu);
5239		return 0;
5240	}
5241
5242	if (new_mtu < netdev->min_mtu) {
5243		netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
5244			   netdev->min_mtu);
5245		return -EINVAL;
5246	} else if (new_mtu > netdev->max_mtu) {
5247		netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
5248			   netdev->min_mtu);
5249		return -EINVAL;
5250	}
 
5251	/* if a reset is in progress, wait for some time for it to complete */
5252	do {
5253		if (ice_is_reset_recovery_pending(pf->state)) {
5254			count++;
5255			usleep_range(1000, 2000);
5256		} else {
5257			break;
5258		}
5259
5260	} while (count < 100);
5261
5262	if (count == 100) {
5263		netdev_err(netdev, "can't change mtu. Device is busy\n");
5264		return -EBUSY;
5265	}
5266
5267	netdev->mtu = new_mtu;
 
 
5268
5269	/* if VSI is up, bring it down and then back up */
5270	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
5271		int err;
 
 
5272
 
 
5273		err = ice_down(vsi);
5274		if (err) {
5275			netdev_err(netdev, "change mtu if_up err %d\n", err);
5276			return err;
5277		}
5278
5279		err = ice_up(vsi);
5280		if (err) {
5281			netdev_err(netdev, "change mtu if_up err %d\n", err);
5282			return err;
5283		}
5284	}
5285
5286	netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
5287	return 0;
 
 
 
 
 
5288}
5289
5290/**
5291 * ice_set_rss - Set RSS keys and lut
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5292 * @vsi: Pointer to VSI structure
5293 * @seed: RSS hash seed
5294 * @lut: Lookup table
5295 * @lut_size: Lookup table size
5296 *
5297 * Returns 0 on success, negative on failure
5298 */
5299int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5300{
5301	struct ice_pf *pf = vsi->back;
5302	struct ice_hw *hw = &pf->hw;
5303	enum ice_status status;
5304
5305	if (seed) {
5306		struct ice_aqc_get_set_rss_keys *buf =
5307				  (struct ice_aqc_get_set_rss_keys *)seed;
5308
5309		status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf);
 
 
 
5310
5311		if (status) {
5312			dev_err(&pf->pdev->dev,
5313				"Cannot set RSS key, err %d aq_err %d\n",
5314				status, hw->adminq.rq_last_status);
5315			return -EIO;
5316		}
5317	}
5318
5319	if (lut) {
5320		status = ice_aq_set_rss_lut(hw, vsi->vsi_num,
5321					    vsi->rss_lut_type, lut, lut_size);
5322		if (status) {
5323			dev_err(&pf->pdev->dev,
5324				"Cannot set RSS lut, err %d aq_err %d\n",
5325				status, hw->adminq.rq_last_status);
5326			return -EIO;
5327		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5328	}
5329
5330	return 0;
5331}
5332
5333/**
5334 * ice_get_rss - Get RSS keys and lut
5335 * @vsi: Pointer to VSI structure
5336 * @seed: Buffer to store the keys
5337 * @lut: Buffer to store the lookup table entries
5338 * @lut_size: Size of buffer to store the lookup table entries
5339 *
5340 * Returns 0 on success, negative on failure
5341 */
5342int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5343{
 
 
5344	struct ice_pf *pf = vsi->back;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5345	struct ice_hw *hw = &pf->hw;
5346	enum ice_status status;
 
 
5347
5348	if (seed) {
5349		struct ice_aqc_get_set_rss_keys *buf =
5350				  (struct ice_aqc_get_set_rss_keys *)seed;
5351
5352		status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf);
5353		if (status) {
5354			dev_err(&pf->pdev->dev,
5355				"Cannot get RSS key, err %d aq_err %d\n",
5356				status, hw->adminq.rq_last_status);
5357			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5358		}
5359	}
5360
5361	if (lut) {
5362		status = ice_aq_get_rss_lut(hw, vsi->vsi_num,
5363					    vsi->rss_lut_type, lut, lut_size);
 
 
5364		if (status) {
5365			dev_err(&pf->pdev->dev,
5366				"Cannot get RSS lut, err %d aq_err %d\n",
5367				status, hw->adminq.rq_last_status);
 
 
5368			return -EIO;
5369		}
 
 
5370	}
5371
5372	return 0;
5373}
5374
5375/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5376 * ice_open - Called when a network interface becomes active
5377 * @netdev: network interface device structure
5378 *
5379 * The open entry point is called when a network interface is made
5380 * active by the system (IFF_UP).  At this point all resources needed
5381 * for transmit and receive operations are allocated, the interrupt
5382 * handler is registered with the OS, the netdev watchdog is enabled,
5383 * and the stack is notified that the interface is ready.
5384 *
5385 * Returns 0 on success, negative value on failure
5386 */
5387static int ice_open(struct net_device *netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388{
5389	struct ice_netdev_priv *np = netdev_priv(netdev);
5390	struct ice_vsi *vsi = np->vsi;
 
 
 
5391	int err;
5392
 
 
 
 
 
5393	netif_carrier_off(netdev);
5394
5395	err = ice_vsi_open(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5396
 
 
 
 
 
 
 
 
 
 
 
 
5397	if (err)
5398		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5399			   vsi->vsi_num, vsi->vsw->sw_id);
 
 
 
 
5400	return err;
5401}
5402
5403/**
5404 * ice_stop - Disables a network interface
5405 * @netdev: network interface device structure
5406 *
5407 * The stop entry point is called when an interface is de-activated by the OS,
5408 * and the netdevice enters the DOWN state.  The hardware is still under the
5409 * driver's control, but the netdev interface is disabled.
5410 *
5411 * Returns success only - not allowed to fail
5412 */
5413static int ice_stop(struct net_device *netdev)
5414{
5415	struct ice_netdev_priv *np = netdev_priv(netdev);
5416	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
5417
5418	ice_vsi_close(vsi);
5419
5420	return 0;
5421}
5422
5423/**
5424 * ice_features_check - Validate encapsulated packet conforms to limits
5425 * @skb: skb buffer
5426 * @netdev: This port's netdev
5427 * @features: Offload features that the stack believes apply
5428 */
5429static netdev_features_t
5430ice_features_check(struct sk_buff *skb,
5431		   struct net_device __always_unused *netdev,
5432		   netdev_features_t features)
5433{
5434	size_t len;
5435
5436	/* No point in doing any of this if neither checksum nor GSO are
5437	 * being requested for this frame.  We can rule out both by just
5438	 * checking for CHECKSUM_PARTIAL
5439	 */
5440	if (skb->ip_summed != CHECKSUM_PARTIAL)
5441		return features;
5442
5443	/* We cannot support GSO if the MSS is going to be less than
5444	 * 64 bytes.  If it is then we need to drop support for GSO.
5445	 */
5446	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5447		features &= ~NETIF_F_GSO_MASK;
5448
5449	len = skb_network_header(skb) - skb->data;
5450	if (len & ~(ICE_TXD_MACLEN_MAX))
5451		goto out_rm_features;
5452
5453	len = skb_transport_header(skb) - skb_network_header(skb);
5454	if (len & ~(ICE_TXD_IPLEN_MAX))
5455		goto out_rm_features;
5456
5457	if (skb->encapsulation) {
5458		len = skb_inner_network_header(skb) - skb_transport_header(skb);
5459		if (len & ~(ICE_TXD_L4LEN_MAX))
5460			goto out_rm_features;
5461
5462		len = skb_inner_transport_header(skb) -
5463		      skb_inner_network_header(skb);
5464		if (len & ~(ICE_TXD_IPLEN_MAX))
5465			goto out_rm_features;
5466	}
5467
5468	return features;
5469out_rm_features:
5470	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5471}
5472
 
 
 
 
 
 
 
 
 
 
 
 
5473static const struct net_device_ops ice_netdev_ops = {
5474	.ndo_open = ice_open,
5475	.ndo_stop = ice_stop,
5476	.ndo_start_xmit = ice_start_xmit,
5477	.ndo_features_check = ice_features_check,
5478	.ndo_set_rx_mode = ice_set_rx_mode,
5479	.ndo_set_mac_address = ice_set_mac_address,
5480	.ndo_validate_addr = eth_validate_addr,
5481	.ndo_change_mtu = ice_change_mtu,
5482	.ndo_get_stats64 = ice_get_stats64,
5483#ifdef CONFIG_NET_POLL_CONTROLLER
5484	.ndo_poll_controller = ice_netpoll,
5485#endif /* CONFIG_NET_POLL_CONTROLLER */
 
 
 
 
 
 
5486	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5487	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5488	.ndo_set_features = ice_set_features,
 
 
5489	.ndo_fdb_add = ice_fdb_add,
5490	.ndo_fdb_del = ice_fdb_del,
 
 
 
 
 
 
 
5491};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
  16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
  17 * ice tracepoint functions. This must be done exactly once across the
  18 * ice driver.
  19 */
  20#define CREATE_TRACE_POINTS
  21#include "ice_trace.h"
  22
 
  23#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
 
  24static const char ice_driver_string[] = DRV_SUMMARY;
  25static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  26
  27/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  28#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  29#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  30
  31MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  32MODULE_DESCRIPTION(DRV_SUMMARY);
  33MODULE_LICENSE("GPL v2");
  34MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  35
  36static int debug = -1;
  37module_param(debug, int, 0644);
  38#ifndef CONFIG_DYNAMIC_DEBUG
  39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  40#else
  41MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  42#endif /* !CONFIG_DYNAMIC_DEBUG */
  43
  44static DEFINE_IDA(ice_aux_ida);
  45
  46static struct workqueue_struct *ice_wq;
  47static const struct net_device_ops ice_netdev_safe_mode_ops;
  48static const struct net_device_ops ice_netdev_ops;
  49static int ice_vsi_open(struct ice_vsi *vsi);
  50
  51static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
 
 
 
 
  52
  53static void ice_vsi_release_all(struct ice_pf *pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55bool netif_is_ice(struct net_device *dev)
  56{
  57	return dev && (dev->netdev_ops == &ice_netdev_ops);
 
 
 
 
 
  58}
  59
  60/**
  61 * ice_get_tx_pending - returns number of Tx descriptors not processed
  62 * @ring: the ring of descriptors
 
 
 
  63 */
  64static u16 ice_get_tx_pending(struct ice_ring *ring)
  65{
  66	u16 head, tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	head = ring->next_to_clean;
  69	tail = ring->next_to_use;
 
 
 
 
 
  70
  71	if (head != tail)
  72		return (head < tail) ?
  73			tail - head : (tail + ring->count - head);
  74	return 0;
  75}
  76
  77/**
  78 * ice_check_for_hang_subtask - check for and recover hung queues
  79 * @pf: pointer to PF struct
 
 
 
 
 
 
 
 
  80 */
  81static void ice_check_for_hang_subtask(struct ice_pf *pf)
 
  82{
  83	struct ice_vsi *vsi = NULL;
  84	struct ice_hw *hw;
  85	unsigned int i;
  86	int packets;
  87	u32 v;
  88
  89	ice_for_each_vsi(pf, v)
  90		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  91			vsi = pf->vsi[v];
  92			break;
  93		}
 
  94
  95	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
  96		return;
  97
  98	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  99		return;
 
 
 
 100
 101	hw = &vsi->back->hw;
 
 102
 103	for (i = 0; i < vsi->num_txq; i++) {
 104		struct ice_ring *tx_ring = vsi->tx_rings[i];
 
 
 
 
 
 
 
 
 
 105
 106		if (tx_ring && tx_ring->desc) {
 107			/* If packet counter has not changed the queue is
 108			 * likely stalled, so force an interrupt for this
 109			 * queue.
 110			 *
 111			 * prev_pkt would be negative if there was no
 112			 * pending work.
 113			 */
 114			packets = tx_ring->stats.pkts & INT_MAX;
 115			if (tx_ring->tx_stats.prev_pkt == packets) {
 116				/* Trigger sw interrupt to revive the queue */
 117				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 118				continue;
 119			}
 120
 121			/* Memory barrier between read of packet count and call
 122			 * to ice_get_tx_pending()
 123			 */
 124			smp_rmb();
 125			tx_ring->tx_stats.prev_pkt =
 126			    ice_get_tx_pending(tx_ring) ? packets : -1;
 127		}
 128	}
 
 
 129}
 130
 131/**
 132 * ice_init_mac_fltr - Set initial MAC filters
 133 * @pf: board private structure
 
 
 
 
 134 *
 135 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 136 * address and broadcast address. If an error is encountered, netdevice will be
 137 * unregistered.
 138 */
 139static int ice_init_mac_fltr(struct ice_pf *pf)
 
 140{
 141	enum ice_status status;
 142	struct ice_vsi *vsi;
 143	u8 *perm_addr;
 
 
 
 144
 145	vsi = ice_get_main_vsi(pf);
 146	if (!vsi)
 147		return -EINVAL;
 
 
 
 148
 149	perm_addr = vsi->port_info->mac.perm_addr;
 150	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 151	if (status)
 152		return -EIO;
 153
 154	return 0;
 155}
 156
 157/**
 158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 159 * @netdev: the net device on which the sync is happening
 160 * @addr: MAC address to sync
 161 *
 162 * This is a callback function which is called by the in kernel device sync
 163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 165 * MAC filters from the hardware.
 166 */
 167static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 168{
 169	struct ice_netdev_priv *np = netdev_priv(netdev);
 170	struct ice_vsi *vsi = np->vsi;
 171
 172	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 173				     ICE_FWD_TO_VSI))
 174		return -EINVAL;
 175
 176	return 0;
 177}
 178
 179/**
 180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 181 * @netdev: the net device on which the unsync is happening
 182 * @addr: MAC address to unsync
 183 *
 184 * This is a callback function which is called by the in kernel device unsync
 185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 187 * delete the MAC filters from the hardware.
 188 */
 189static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 190{
 191	struct ice_netdev_priv *np = netdev_priv(netdev);
 192	struct ice_vsi *vsi = np->vsi;
 193
 194	/* Under some circumstances, we might receive a request to delete our
 195	 * own device address from our uc list. Because we store the device
 196	 * address in the VSI's MAC filter list, we need to ignore such
 197	 * requests and not delete our device address from this list.
 198	 */
 199	if (ether_addr_equal(addr, netdev->dev_addr))
 200		return 0;
 201
 202	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 203				     ICE_FWD_TO_VSI))
 204		return -EINVAL;
 205
 206	return 0;
 207}
 208
 209/**
 210 * ice_vsi_fltr_changed - check if filter state changed
 211 * @vsi: VSI to be checked
 
 212 *
 213 * returns true if filter state has changed, false otherwise.
 
 214 */
 215static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 216{
 217	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
 218	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
 219	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 
 
 
 220}
 221
 222/**
 223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 224 * @vsi: the VSI being configured
 225 * @promisc_m: mask of promiscuous config bits
 226 * @set_promisc: enable or disable promisc flag request
 227 *
 
 228 */
 229static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 230{
 231	struct ice_hw *hw = &vsi->back->hw;
 232	enum ice_status status = 0;
 233
 234	if (vsi->type != ICE_VSI_PF)
 235		return 0;
 236
 237	if (vsi->num_vlan > 1) {
 238		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 239						  set_promisc);
 240	} else {
 241		if (set_promisc)
 242			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 243						     0);
 244		else
 245			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 246						       0);
 247	}
 248
 249	if (status)
 250		return -EIO;
 251
 252	return 0;
 253}
 254
 255/**
 256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 257 * @vsi: ptr to the VSI
 258 *
 259 * Push any outstanding VSI filter changes through the AdminQ.
 260 */
 261static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 262{
 263	struct device *dev = ice_pf_to_dev(vsi->back);
 264	struct net_device *netdev = vsi->netdev;
 265	bool promisc_forced_on = false;
 266	struct ice_pf *pf = vsi->back;
 267	struct ice_hw *hw = &pf->hw;
 268	enum ice_status status = 0;
 269	u32 changed_flags = 0;
 270	u8 promisc_m;
 271	int err = 0;
 272
 273	if (!vsi->netdev)
 274		return -EINVAL;
 275
 276	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
 277		usleep_range(1000, 2000);
 278
 279	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 280	vsi->current_netdev_flags = vsi->netdev->flags;
 281
 282	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 283	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 284
 285	if (ice_vsi_fltr_changed(vsi)) {
 286		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 287		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 288		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 289
 290		/* grab the netdev's addr_list_lock */
 291		netif_addr_lock_bh(netdev);
 292		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 293			      ice_add_mac_to_unsync_list);
 294		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 295			      ice_add_mac_to_unsync_list);
 296		/* our temp lists are populated. release lock */
 297		netif_addr_unlock_bh(netdev);
 298	}
 299
 300	/* Remove MAC addresses in the unsync list */
 301	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 302	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 303	if (status) {
 304		netdev_err(netdev, "Failed to delete MAC filters\n");
 305		/* if we failed because of alloc failures, just bail */
 306		if (status == ICE_ERR_NO_MEMORY) {
 307			err = -ENOMEM;
 308			goto out;
 309		}
 310	}
 311
 312	/* Add MAC addresses in the sync list */
 313	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 314	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 315	/* If filter is added successfully or already exists, do not go into
 316	 * 'if' condition and report it as error. Instead continue processing
 317	 * rest of the function.
 318	 */
 319	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 320		netdev_err(netdev, "Failed to add MAC filters\n");
 321		/* If there is no more space for new umac filters, VSI
 322		 * should go into promiscuous mode. There should be some
 323		 * space reserved for promiscuous filters.
 324		 */
 325		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 326		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
 327				      vsi->state)) {
 328			promisc_forced_on = true;
 329			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 
 330				    vsi->vsi_num);
 331		} else {
 332			err = -EIO;
 333			goto out;
 334		}
 335	}
 336	/* check for changes in promiscuous modes */
 337	if (changed_flags & IFF_ALLMULTI) {
 338		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 339			if (vsi->num_vlan > 1)
 340				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 341			else
 342				promisc_m = ICE_MCAST_PROMISC_BITS;
 343
 344			err = ice_cfg_promisc(vsi, promisc_m, true);
 345			if (err) {
 346				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 
 
 
 
 
 
 347					   vsi->vsi_num);
 348				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 
 
 
 
 
 
 
 
 
 
 
 349				goto out_promisc;
 350			}
 351		} else {
 352			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 353			if (vsi->num_vlan > 1)
 354				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 355			else
 356				promisc_m = ICE_MCAST_PROMISC_BITS;
 357
 358			err = ice_cfg_promisc(vsi, promisc_m, false);
 359			if (err) {
 360				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 361					   vsi->vsi_num);
 362				vsi->current_netdev_flags |= IFF_ALLMULTI;
 
 363				goto out_promisc;
 364			}
 365		}
 366	}
 367
 368	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 369	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
 370		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 371		if (vsi->current_netdev_flags & IFF_PROMISC) {
 372			/* Apply Rx filter rule to get traffic from wire */
 373			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 374				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 375				if (err && err != -EEXIST) {
 376					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 377						   err, vsi->vsi_num);
 378					vsi->current_netdev_flags &=
 379						~IFF_PROMISC;
 380					goto out_promisc;
 381				}
 382				ice_cfg_vlan_pruning(vsi, false, false);
 383			}
 384		} else {
 385			/* Clear Rx filter to remove traffic from wire */
 386			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 387				err = ice_clear_dflt_vsi(pf->first_sw);
 388				if (err) {
 389					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 390						   err, vsi->vsi_num);
 391					vsi->current_netdev_flags |=
 392						IFF_PROMISC;
 393					goto out_promisc;
 394				}
 395				if (vsi->num_vlan > 1)
 396					ice_cfg_vlan_pruning(vsi, true, false);
 397			}
 398		}
 399	}
 400	goto exit;
 401
 402out_promisc:
 403	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 404	goto exit;
 405out:
 406	/* if something went wrong then set the changed flag so we try again */
 407	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 408	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 409exit:
 410	clear_bit(ICE_CFG_BUSY, vsi->state);
 411	return err;
 412}
 413
 414/**
 415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 416 * @pf: board private structure
 417 */
 418static void ice_sync_fltr_subtask(struct ice_pf *pf)
 419{
 420	int v;
 421
 422	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 423		return;
 424
 425	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 426
 427	ice_for_each_vsi(pf, v)
 428		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 429		    ice_vsi_sync_fltr(pf->vsi[v])) {
 430			/* come back and try again later */
 431			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 432			break;
 433		}
 434}
 435
 436/**
 437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 438 * @pf: the PF
 439 * @locked: is the rtnl_lock already held
 440 */
 441static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 442{
 443	int node;
 444	int v;
 445
 446	ice_for_each_vsi(pf, v)
 447		if (pf->vsi[v])
 448			ice_dis_vsi(pf->vsi[v], locked);
 449
 450	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
 451		pf->pf_agg_node[node].num_vsis = 0;
 452
 453	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
 454		pf->vf_agg_node[node].num_vsis = 0;
 455}
 456
 457/**
 458 * ice_prepare_for_reset - prep for the core to reset
 459 * @pf: board private structure
 460 *
 461 * Inform or close all dependent features in prep for reset.
 462 */
 463static void
 464ice_prepare_for_reset(struct ice_pf *pf)
 465{
 466	struct ice_hw *hw = &pf->hw;
 467	unsigned int i;
 468
 469	/* already prepared for reset */
 470	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
 471		return;
 472
 473	ice_unplug_aux_dev(pf);
 474
 475	/* Notify VFs of impending reset */
 476	if (ice_check_sq_alive(hw, &hw->mailboxq))
 477		ice_vc_notify_reset(pf);
 478
 479	/* Disable VFs until reset is completed */
 480	ice_for_each_vf(pf, i)
 481		ice_set_vf_state_qs_dis(&pf->vf[i]);
 482
 483	/* clear SW filtering DB */
 484	ice_clear_hw_tbls(hw);
 485	/* disable the VSIs and their queues that are not already DOWN */
 486	ice_pf_dis_all_vsi(pf, false);
 
 487
 488	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
 489		ice_ptp_release(pf);
 490
 491	if (hw->port_info)
 492		ice_sched_clear_port(hw->port_info);
 493
 494	ice_shutdown_all_ctrlq(hw);
 495
 496	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
 497}
 498
 499/**
 500 * ice_do_reset - Initiate one of many types of resets
 501 * @pf: board private structure
 502 * @reset_type: reset type requested
 503 * before this function was called.
 504 */
 505static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 506{
 507	struct device *dev = ice_pf_to_dev(pf);
 508	struct ice_hw *hw = &pf->hw;
 509
 510	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 
 511
 512	ice_prepare_for_reset(pf);
 
 
 
 
 
 
 
 513
 514	/* trigger the reset */
 515	if (ice_reset(hw, reset_type)) {
 516		dev_err(dev, "reset %d failed\n", reset_type);
 517		set_bit(ICE_RESET_FAILED, pf->state);
 518		clear_bit(ICE_RESET_OICR_RECV, pf->state);
 519		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 520		clear_bit(ICE_PFR_REQ, pf->state);
 521		clear_bit(ICE_CORER_REQ, pf->state);
 522		clear_bit(ICE_GLOBR_REQ, pf->state);
 523		wake_up(&pf->reset_wait_queue);
 524		return;
 525	}
 526
 527	/* PFR is a bit of a special case because it doesn't result in an OICR
 528	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 529	 * associated state bits.
 530	 */
 531	if (reset_type == ICE_RESET_PFR) {
 532		pf->pfr_count++;
 533		ice_rebuild(pf, reset_type);
 534		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 535		clear_bit(ICE_PFR_REQ, pf->state);
 536		wake_up(&pf->reset_wait_queue);
 537		ice_reset_all_vfs(pf, true);
 538	}
 539}
 540
 541/**
 542 * ice_reset_subtask - Set up for resetting the device and driver
 543 * @pf: board private structure
 544 */
 545static void ice_reset_subtask(struct ice_pf *pf)
 546{
 547	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 
 
 548
 549	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 550	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 551	 * of reset is pending and sets bits in pf->state indicating the reset
 552	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
 553	 * prepare for pending reset if not already (for PF software-initiated
 554	 * global resets the software should already be prepared for it as
 555	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
 556	 * by firmware or software on other PFs, that bit is not set so prepare
 557	 * for the reset now), poll for reset done, rebuild and return.
 558	 */
 559	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
 560		/* Perform the largest reset requested */
 561		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
 562			reset_type = ICE_RESET_CORER;
 563		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
 564			reset_type = ICE_RESET_GLOBR;
 565		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
 566			reset_type = ICE_RESET_EMPR;
 567		/* return if no valid reset type requested */
 568		if (reset_type == ICE_RESET_INVAL)
 569			return;
 570		ice_prepare_for_reset(pf);
 571
 572		/* make sure we are ready to rebuild */
 573		if (ice_check_reset(&pf->hw)) {
 574			set_bit(ICE_RESET_FAILED, pf->state);
 575		} else {
 576			/* done with reset. start rebuild */
 577			pf->hw.reset_ongoing = false;
 578			ice_rebuild(pf, reset_type);
 579			/* clear bit to resume normal operations, but
 580			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 581			 */
 582			clear_bit(ICE_RESET_OICR_RECV, pf->state);
 583			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 584			clear_bit(ICE_PFR_REQ, pf->state);
 585			clear_bit(ICE_CORER_REQ, pf->state);
 586			clear_bit(ICE_GLOBR_REQ, pf->state);
 587			wake_up(&pf->reset_wait_queue);
 588			ice_reset_all_vfs(pf, true);
 589		}
 590
 591		return;
 592	}
 593
 594	/* No pending resets to finish processing. Check for new resets */
 595	if (test_bit(ICE_PFR_REQ, pf->state))
 
 
 
 
 596		reset_type = ICE_RESET_PFR;
 597	if (test_bit(ICE_CORER_REQ, pf->state))
 598		reset_type = ICE_RESET_CORER;
 599	if (test_bit(ICE_GLOBR_REQ, pf->state))
 600		reset_type = ICE_RESET_GLOBR;
 601	/* If no valid reset type requested just return */
 602	if (reset_type == ICE_RESET_INVAL)
 603		return;
 604
 605	/* reset if not already down or busy */
 606	if (!test_bit(ICE_DOWN, pf->state) &&
 607	    !test_bit(ICE_CFG_BUSY, pf->state)) {
 608		ice_do_reset(pf, reset_type);
 609	}
 
 
 
 610}
 611
 612/**
 613 * ice_print_topo_conflict - print topology conflict message
 614 * @vsi: the VSI whose topology status is being checked
 615 */
 616static void ice_print_topo_conflict(struct ice_vsi *vsi)
 617{
 618	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 619	case ICE_AQ_LINK_TOPO_CONFLICT:
 620	case ICE_AQ_LINK_MEDIA_CONFLICT:
 621	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 622	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 623	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 624		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
 625		break;
 626	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 627		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 628		break;
 629	default:
 630		break;
 631	}
 
 
 
 
 
 
 
 632}
 633
 634/**
 635 * ice_print_link_msg - print link up or down message
 636 * @vsi: the VSI whose link status is being queried
 637 * @isup: boolean for if the link is now up or down
 638 */
 639void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 640{
 641	struct ice_aqc_get_phy_caps_data *caps;
 642	const char *an_advertised;
 643	enum ice_status status;
 644	const char *fec_req;
 645	const char *speed;
 646	const char *fec;
 647	const char *fc;
 648	const char *an;
 649
 650	if (!vsi)
 651		return;
 652
 653	if (vsi->current_isup == isup)
 654		return;
 655
 656	vsi->current_isup = isup;
 657
 658	if (!isup) {
 659		netdev_info(vsi->netdev, "NIC Link is Down\n");
 660		return;
 661	}
 662
 663	switch (vsi->port_info->phy.link_info.link_speed) {
 664	case ICE_AQ_LINK_SPEED_100GB:
 665		speed = "100 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_50GB:
 668		speed = "50 G";
 669		break;
 670	case ICE_AQ_LINK_SPEED_40GB:
 671		speed = "40 G";
 672		break;
 673	case ICE_AQ_LINK_SPEED_25GB:
 674		speed = "25 G";
 675		break;
 676	case ICE_AQ_LINK_SPEED_20GB:
 677		speed = "20 G";
 678		break;
 679	case ICE_AQ_LINK_SPEED_10GB:
 680		speed = "10 G";
 681		break;
 682	case ICE_AQ_LINK_SPEED_5GB:
 683		speed = "5 G";
 684		break;
 685	case ICE_AQ_LINK_SPEED_2500MB:
 686		speed = "2.5 G";
 687		break;
 688	case ICE_AQ_LINK_SPEED_1000MB:
 689		speed = "1 G";
 690		break;
 691	case ICE_AQ_LINK_SPEED_100MB:
 692		speed = "100 M";
 693		break;
 694	default:
 695		speed = "Unknown ";
 696		break;
 697	}
 698
 699	switch (vsi->port_info->fc.current_mode) {
 700	case ICE_FC_FULL:
 701		fc = "Rx/Tx";
 702		break;
 703	case ICE_FC_TX_PAUSE:
 704		fc = "Tx";
 705		break;
 706	case ICE_FC_RX_PAUSE:
 707		fc = "Rx";
 708		break;
 709	case ICE_FC_NONE:
 710		fc = "None";
 711		break;
 712	default:
 713		fc = "Unknown";
 714		break;
 715	}
 716
 717	/* Get FEC mode based on negotiated link info */
 718	switch (vsi->port_info->phy.link_info.fec_info) {
 719	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 720	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 721		fec = "RS-FEC";
 722		break;
 723	case ICE_AQ_LINK_25G_KR_FEC_EN:
 724		fec = "FC-FEC/BASE-R";
 725		break;
 726	default:
 727		fec = "NONE";
 728		break;
 729	}
 730
 731	/* check if autoneg completed, might be false due to not supported */
 732	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 733		an = "True";
 734	else
 735		an = "False";
 736
 737	/* Get FEC mode requested based on PHY caps last SW configuration */
 738	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 739	if (!caps) {
 740		fec_req = "Unknown";
 741		an_advertised = "Unknown";
 742		goto done;
 743	}
 744
 745	status = ice_aq_get_phy_caps(vsi->port_info, false,
 746				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
 747	if (status)
 748		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 
 
 749
 750	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 751
 752	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 753	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 754		fec_req = "RS-FEC";
 755	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 756		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 757		fec_req = "FC-FEC/BASE-R";
 758	else
 759		fec_req = "NONE";
 760
 761	kfree(caps);
 762
 763done:
 764	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 765		    speed, fec_req, fec, an_advertised, an, fc);
 766	ice_print_topo_conflict(vsi);
 767}
 768
 769/**
 770 * ice_vsi_link_event - update the VSI's netdev
 771 * @vsi: the VSI on which the link event occurred
 772 * @link_up: whether or not the VSI needs to be set up or down
 773 */
 774static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 775{
 776	if (!vsi)
 777		return;
 778
 779	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
 780		return;
 781
 782	if (vsi->type == ICE_VSI_PF) {
 783		if (link_up == netif_carrier_ok(vsi->netdev))
 
 
 784			return;
 785
 786		if (link_up) {
 787			netif_carrier_on(vsi->netdev);
 788			netif_tx_wake_all_queues(vsi->netdev);
 789		} else {
 790			netif_carrier_off(vsi->netdev);
 791			netif_tx_stop_all_queues(vsi->netdev);
 792		}
 793	}
 794}
 795
 796/**
 797 * ice_set_dflt_mib - send a default config MIB to the FW
 798 * @pf: private PF struct
 799 *
 800 * This function sends a default configuration MIB to the FW.
 801 *
 802 * If this function errors out at any point, the driver is still able to
 803 * function.  The main impact is that LFC may not operate as expected.
 804 * Therefore an error state in this function should be treated with a DBG
 805 * message and continue on with driver rebuild/reenable.
 806 */
 807static void ice_set_dflt_mib(struct ice_pf *pf)
 808{
 809	struct device *dev = ice_pf_to_dev(pf);
 810	u8 mib_type, *buf, *lldpmib = NULL;
 811	u16 len, typelen, offset = 0;
 812	struct ice_lldp_org_tlv *tlv;
 813	struct ice_hw *hw = &pf->hw;
 814	u32 ouisubtype;
 815
 816	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 817	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 818	if (!lldpmib) {
 819		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 820			__func__);
 821		return;
 822	}
 823
 824	/* Add ETS CFG TLV */
 825	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 826	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 827		   ICE_IEEE_ETS_TLV_LEN);
 828	tlv->typelen = htons(typelen);
 829	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 830		      ICE_IEEE_SUBTYPE_ETS_CFG);
 831	tlv->ouisubtype = htonl(ouisubtype);
 832
 833	buf = tlv->tlvinfo;
 834	buf[0] = 0;
 835
 836	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 837	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 838	 * Octets 13 - 20 are TSA values - leave as zeros
 839	 */
 840	buf[5] = 0x64;
 841	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add ETS REC TLV */
 847	buf = tlv->tlvinfo;
 848	tlv->typelen = htons(typelen);
 849
 850	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 851		      ICE_IEEE_SUBTYPE_ETS_REC);
 852	tlv->ouisubtype = htonl(ouisubtype);
 853
 854	/* First octet of buf is reserved
 855	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 856	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 857	 * Octets 13 - 20 are TSA value - leave as zeros
 858	 */
 859	buf[5] = 0x64;
 860	offset += len + 2;
 861	tlv = (struct ice_lldp_org_tlv *)
 862		((char *)tlv + sizeof(tlv->typelen) + len);
 863
 864	/* Add PFC CFG TLV */
 865	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 866		   ICE_IEEE_PFC_TLV_LEN);
 867	tlv->typelen = htons(typelen);
 868
 869	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 870		      ICE_IEEE_SUBTYPE_PFC_CFG);
 871	tlv->ouisubtype = htonl(ouisubtype);
 872
 873	/* Octet 1 left as all zeros - PFC disabled */
 874	buf[0] = 0x08;
 875	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 876	offset += len + 2;
 877
 878	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 879		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 880
 881	kfree(lldpmib);
 882}
 883
 884/**
 885 * ice_check_module_power
 886 * @pf: pointer to PF struct
 887 * @link_cfg_err: bitmap from the link info structure
 888 *
 889 * check module power level returned by a previous call to aq_get_link_info
 890 * and print error messages if module power level is not supported
 891 */
 892static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
 893{
 894	/* if module power level is supported, clear the flag */
 895	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
 896			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
 897		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 898		return;
 899	}
 900
 901	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
 902	 * above block didn't clear this bit, there's nothing to do
 903	 */
 904	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
 905		return;
 906
 907	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
 908		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
 909		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 910	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
 911		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
 912		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 913	}
 914}
 915
 916/**
 917 * ice_link_event - process the link event
 918 * @pf: PF that the link event is associated with
 919 * @pi: port_info for the port that the link event is associated with
 920 * @link_up: true if the physical link is up and false if it is down
 921 * @link_speed: current link speed received from the link event
 922 *
 923 * Returns 0 on success and negative on failure
 
 924 */
 925static int
 926ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 927	       u16 link_speed)
 928{
 929	struct device *dev = ice_pf_to_dev(pf);
 930	struct ice_phy_info *phy_info;
 931	enum ice_status status;
 932	struct ice_vsi *vsi;
 933	u16 old_link_speed;
 934	bool old_link;
 935
 936	phy_info = &pi->phy;
 937	phy_info->link_info_old = phy_info->link_info;
 
 
 938
 939	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 940	old_link_speed = phy_info->link_info_old.link_speed;
 941
 942	/* update the link info structures and re-enable link events,
 943	 * don't bail on failure due to other book keeping needed
 944	 */
 945	status = ice_update_link_info(pi);
 946	if (status)
 947		dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
 948			pi->lport, ice_stat_str(status),
 949			ice_aq_str(pi->hw->adminq.sq_last_status));
 950
 951	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
 952
 953	/* Check if the link state is up after updating link info, and treat
 954	 * this event as an UP event since the link is actually UP now.
 955	 */
 956	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 957		link_up = true;
 958
 959	vsi = ice_get_main_vsi(pf);
 960	if (!vsi || !vsi->port_info)
 961		return -EINVAL;
 962
 963	/* turn off PHY if media was removed */
 964	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 965	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 966		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 967		ice_set_link(vsi, false);
 968	}
 969
 970	/* if the old link up/down and speed is the same as the new */
 971	if (link_up == old_link && link_speed == old_link_speed)
 972		return 0;
 973
 974	if (ice_is_dcb_active(pf)) {
 975		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 976			ice_dcb_rebuild(pf);
 977	} else {
 978		if (link_up)
 979			ice_set_dflt_mib(pf);
 980	}
 981	ice_vsi_link_event(vsi, link_up);
 982	ice_print_link_msg(vsi, link_up);
 983
 984	ice_vc_notify_link_state(pf);
 
 985
 986	return 0;
 987}
 988
 989/**
 990 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 991 * @pf: board private structure
 992 */
 993static void ice_watchdog_subtask(struct ice_pf *pf)
 994{
 995	int i;
 996
 997	/* if interface is down do nothing */
 998	if (test_bit(ICE_DOWN, pf->state) ||
 999	    test_bit(ICE_CFG_BUSY, pf->state))
1000		return;
1001
1002	/* make sure we don't do these things too often */
1003	if (time_before(jiffies,
1004			pf->serv_tmr_prev + pf->serv_tmr_period))
1005		return;
1006
1007	pf->serv_tmr_prev = jiffies;
1008
1009	/* Update the stats for active netdevs so the network stack
1010	 * can look at updated numbers whenever it cares to
1011	 */
1012	ice_update_pf_stats(pf);
1013	ice_for_each_vsi(pf, i)
1014		if (pf->vsi[i] && pf->vsi[i]->netdev)
1015			ice_update_vsi_stats(pf->vsi[i]);
1016}
1017
1018/**
1019 * ice_init_link_events - enable/initialize link events
1020 * @pi: pointer to the port_info instance
1021 *
1022 * Returns -EIO on failure, 0 on success
1023 */
1024static int ice_init_link_events(struct ice_port_info *pi)
1025{
1026	u16 mask;
1027
1028	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1029		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1030
1031	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1032		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1033			pi->lport);
1034		return -EIO;
1035	}
1036
1037	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1038		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1039			pi->lport);
1040		return -EIO;
1041	}
1042
1043	return 0;
1044}
1045
1046/**
1047 * ice_handle_link_event - handle link event via ARQ
1048 * @pf: PF that the link event is associated with
1049 * @event: event structure containing link status info
 
 
1050 */
1051static int
1052ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1053{
1054	struct ice_aqc_get_link_status_data *link_data;
1055	struct ice_port_info *port_info;
1056	int status;
1057
1058	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1059	port_info = pf->hw.port_info;
1060	if (!port_info)
1061		return -EINVAL;
1062
1063	status = ice_link_event(pf, port_info,
1064				!!(link_data->link_info & ICE_AQ_LINK_UP),
1065				le16_to_cpu(link_data->link_speed));
1066	if (status)
1067		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1068			status);
1069
1070	return status;
1071}
1072
1073enum ice_aq_task_state {
1074	ICE_AQ_TASK_WAITING = 0,
1075	ICE_AQ_TASK_COMPLETE,
1076	ICE_AQ_TASK_CANCELED,
1077};
1078
1079struct ice_aq_task {
1080	struct hlist_node entry;
1081
1082	u16 opcode;
1083	struct ice_rq_event_info *event;
1084	enum ice_aq_task_state state;
1085};
1086
1087/**
1088 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1089 * @pf: pointer to the PF private structure
1090 * @opcode: the opcode to wait for
1091 * @timeout: how long to wait, in jiffies
1092 * @event: storage for the event info
1093 *
1094 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1095 * current thread will be put to sleep until the specified event occurs or
1096 * until the given timeout is reached.
1097 *
1098 * To obtain only the descriptor contents, pass an event without an allocated
1099 * msg_buf. If the complete data buffer is desired, allocate the
1100 * event->msg_buf with enough space ahead of time.
1101 *
1102 * Returns: zero on success, or a negative error code on failure.
1103 */
1104int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1105			  struct ice_rq_event_info *event)
1106{
1107	struct device *dev = ice_pf_to_dev(pf);
1108	struct ice_aq_task *task;
1109	unsigned long start;
1110	long ret;
1111	int err;
1112
1113	task = kzalloc(sizeof(*task), GFP_KERNEL);
1114	if (!task)
1115		return -ENOMEM;
1116
1117	INIT_HLIST_NODE(&task->entry);
1118	task->opcode = opcode;
1119	task->event = event;
1120	task->state = ICE_AQ_TASK_WAITING;
1121
1122	spin_lock_bh(&pf->aq_wait_lock);
1123	hlist_add_head(&task->entry, &pf->aq_wait_list);
1124	spin_unlock_bh(&pf->aq_wait_lock);
1125
1126	start = jiffies;
1127
1128	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1129					       timeout);
1130	switch (task->state) {
1131	case ICE_AQ_TASK_WAITING:
1132		err = ret < 0 ? ret : -ETIMEDOUT;
1133		break;
1134	case ICE_AQ_TASK_CANCELED:
1135		err = ret < 0 ? ret : -ECANCELED;
1136		break;
1137	case ICE_AQ_TASK_COMPLETE:
1138		err = ret < 0 ? ret : 0;
1139		break;
1140	default:
1141		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1142		err = -EINVAL;
1143		break;
1144	}
1145
1146	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1147		jiffies_to_msecs(jiffies - start),
1148		jiffies_to_msecs(timeout),
1149		opcode);
1150
1151	spin_lock_bh(&pf->aq_wait_lock);
1152	hlist_del(&task->entry);
1153	spin_unlock_bh(&pf->aq_wait_lock);
1154	kfree(task);
1155
1156	return err;
1157}
1158
1159/**
1160 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1161 * @pf: pointer to the PF private structure
1162 * @opcode: the opcode of the event
1163 * @event: the event to check
1164 *
1165 * Loops over the current list of pending threads waiting for an AdminQ event.
1166 * For each matching task, copy the contents of the event into the task
1167 * structure and wake up the thread.
1168 *
1169 * If multiple threads wait for the same opcode, they will all be woken up.
1170 *
1171 * Note that event->msg_buf will only be duplicated if the event has a buffer
1172 * with enough space already allocated. Otherwise, only the descriptor and
1173 * message length will be copied.
1174 *
1175 * Returns: true if an event was found, false otherwise
1176 */
1177static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1178				struct ice_rq_event_info *event)
1179{
1180	struct ice_aq_task *task;
1181	bool found = false;
1182
1183	spin_lock_bh(&pf->aq_wait_lock);
1184	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1185		if (task->state || task->opcode != opcode)
1186			continue;
1187
1188		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1189		task->event->msg_len = event->msg_len;
1190
1191		/* Only copy the data buffer if a destination was set */
1192		if (task->event->msg_buf &&
1193		    task->event->buf_len > event->buf_len) {
1194			memcpy(task->event->msg_buf, event->msg_buf,
1195			       event->buf_len);
1196			task->event->buf_len = event->buf_len;
1197		}
1198
1199		task->state = ICE_AQ_TASK_COMPLETE;
1200		found = true;
1201	}
1202	spin_unlock_bh(&pf->aq_wait_lock);
1203
1204	if (found)
1205		wake_up(&pf->aq_wait_queue);
1206}
1207
1208/**
1209 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1210 * @pf: the PF private structure
1211 *
1212 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1213 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1214 */
1215static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1216{
1217	struct ice_aq_task *task;
1218
1219	spin_lock_bh(&pf->aq_wait_lock);
1220	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1221		task->state = ICE_AQ_TASK_CANCELED;
1222	spin_unlock_bh(&pf->aq_wait_lock);
1223
1224	wake_up(&pf->aq_wait_queue);
1225}
1226
1227/**
1228 * __ice_clean_ctrlq - helper function to clean controlq rings
1229 * @pf: ptr to struct ice_pf
1230 * @q_type: specific Control queue type
1231 */
1232static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1233{
1234	struct device *dev = ice_pf_to_dev(pf);
1235	struct ice_rq_event_info event;
1236	struct ice_hw *hw = &pf->hw;
1237	struct ice_ctl_q_info *cq;
1238	u16 pending, i = 0;
1239	const char *qtype;
1240	u32 oldval, val;
1241
1242	/* Do not clean control queue if/when PF reset fails */
1243	if (test_bit(ICE_RESET_FAILED, pf->state))
1244		return 0;
1245
1246	switch (q_type) {
1247	case ICE_CTL_Q_ADMIN:
1248		cq = &hw->adminq;
1249		qtype = "Admin";
1250		break;
1251	case ICE_CTL_Q_SB:
1252		cq = &hw->sbq;
1253		qtype = "Sideband";
1254		break;
1255	case ICE_CTL_Q_MAILBOX:
1256		cq = &hw->mailboxq;
1257		qtype = "Mailbox";
1258		/* we are going to try to detect a malicious VF, so set the
1259		 * state to begin detection
1260		 */
1261		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1262		break;
1263	default:
1264		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
 
1265		return 0;
1266	}
1267
1268	/* check for error indications - PF_xx_AxQLEN register layout for
1269	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1270	 */
1271	val = rd32(hw, cq->rq.len);
1272	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1273		   PF_FW_ARQLEN_ARQCRIT_M)) {
1274		oldval = val;
1275		if (val & PF_FW_ARQLEN_ARQVFE_M)
1276			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1277				qtype);
1278		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1279			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
 
1280				qtype);
1281		}
1282		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1283			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
 
1284				qtype);
1285		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1286			 PF_FW_ARQLEN_ARQCRIT_M);
1287		if (oldval != val)
1288			wr32(hw, cq->rq.len, val);
1289	}
1290
1291	val = rd32(hw, cq->sq.len);
1292	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1293		   PF_FW_ATQLEN_ATQCRIT_M)) {
1294		oldval = val;
1295		if (val & PF_FW_ATQLEN_ATQVFE_M)
1296			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1297				qtype);
1298		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1299			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
 
1300				qtype);
1301		}
1302		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1303			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
 
1304				qtype);
1305		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1306			 PF_FW_ATQLEN_ATQCRIT_M);
1307		if (oldval != val)
1308			wr32(hw, cq->sq.len, val);
1309	}
1310
1311	event.buf_len = cq->rq_buf_size;
1312	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
 
1313	if (!event.msg_buf)
1314		return 0;
1315
1316	do {
1317		enum ice_status ret;
1318		u16 opcode;
1319
1320		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1321		if (ret == ICE_ERR_AQ_NO_WORK)
1322			break;
1323		if (ret) {
1324			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1325				ice_stat_str(ret));
 
1326			break;
1327		}
1328
1329		opcode = le16_to_cpu(event.desc.opcode);
1330
1331		/* Notify any thread that might be waiting for this event */
1332		ice_aq_check_events(pf, opcode, &event);
1333
1334		switch (opcode) {
1335		case ice_aqc_opc_get_link_status:
1336			if (ice_handle_link_event(pf, &event))
1337				dev_err(dev, "Could not handle link event\n");
1338			break;
1339		case ice_aqc_opc_event_lan_overflow:
1340			ice_vf_lan_overflow_event(pf, &event);
1341			break;
1342		case ice_mbx_opc_send_msg_to_pf:
1343			if (!ice_is_malicious_vf(pf, &event, i, pending))
1344				ice_vc_process_vf_msg(pf, &event);
1345			break;
1346		case ice_aqc_opc_fw_logging:
1347			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1348			break;
1349		case ice_aqc_opc_lldp_set_mib_change:
1350			ice_dcb_process_lldp_set_mib_change(pf, &event);
1351			break;
1352		default:
1353			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
 
1354				qtype, opcode);
1355			break;
1356		}
1357	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1358
1359	kfree(event.msg_buf);
1360
1361	return pending && (i == ICE_DFLT_IRQ_WORK);
1362}
1363
1364/**
1365 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1366 * @hw: pointer to hardware info
1367 * @cq: control queue information
1368 *
1369 * returns true if there are pending messages in a queue, false if there aren't
1370 */
1371static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1372{
1373	u16 ntu;
1374
1375	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1376	return cq->rq.next_to_clean != ntu;
1377}
1378
1379/**
1380 * ice_clean_adminq_subtask - clean the AdminQ rings
1381 * @pf: board private structure
1382 */
1383static void ice_clean_adminq_subtask(struct ice_pf *pf)
1384{
1385	struct ice_hw *hw = &pf->hw;
 
1386
1387	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1388		return;
1389
1390	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1391		return;
1392
1393	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1394
1395	/* There might be a situation where new messages arrive to a control
1396	 * queue between processing the last message and clearing the
1397	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1398	 * ice_ctrlq_pending) and process new messages if any.
1399	 */
1400	if (ice_ctrlq_pending(hw, &hw->adminq))
1401		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1402
1403	ice_flush(hw);
1404}
1405
1406/**
1407 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1408 * @pf: board private structure
1409 */
1410static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1411{
1412	struct ice_hw *hw = &pf->hw;
1413
1414	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1415		return;
1416
1417	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1418		return;
1419
1420	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1421
1422	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1423		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1424
1425	ice_flush(hw);
1426}
1427
1428/**
1429 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1430 * @pf: board private structure
1431 */
1432static void ice_clean_sbq_subtask(struct ice_pf *pf)
1433{
1434	struct ice_hw *hw = &pf->hw;
1435
1436	/* Nothing to do here if sideband queue is not supported */
1437	if (!ice_is_sbq_supported(hw)) {
1438		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1439		return;
1440	}
1441
1442	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1443		return;
1444
1445	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1446		return;
1447
1448	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1449
1450	if (ice_ctrlq_pending(hw, &hw->sbq))
1451		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
 
1452
1453	ice_flush(hw);
1454}
1455
1456/**
1457 * ice_service_task_schedule - schedule the service task to wake up
1458 * @pf: board private structure
1459 *
1460 * If not already scheduled, this puts the task into the work queue.
1461 */
1462void ice_service_task_schedule(struct ice_pf *pf)
1463{
1464	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1465	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1466	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1467		queue_work(ice_wq, &pf->serv_task);
1468}
1469
1470/**
1471 * ice_service_task_complete - finish up the service task
1472 * @pf: board private structure
1473 */
1474static void ice_service_task_complete(struct ice_pf *pf)
1475{
1476	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1477
1478	/* force memory (pf->state) to sync before next service task */
1479	smp_mb__before_atomic();
1480	clear_bit(ICE_SERVICE_SCHED, pf->state);
1481}
1482
1483/**
1484 * ice_service_task_stop - stop service task and cancel works
1485 * @pf: board private structure
1486 *
1487 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1488 * 1 otherwise.
1489 */
1490static int ice_service_task_stop(struct ice_pf *pf)
1491{
1492	int ret;
1493
1494	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1495
1496	if (pf->serv_tmr.function)
1497		del_timer_sync(&pf->serv_tmr);
1498	if (pf->serv_task.func)
1499		cancel_work_sync(&pf->serv_task);
1500
1501	clear_bit(ICE_SERVICE_SCHED, pf->state);
1502	return ret;
1503}
1504
1505/**
1506 * ice_service_task_restart - restart service task and schedule works
1507 * @pf: board private structure
1508 *
1509 * This function is needed for suspend and resume works (e.g WoL scenario)
1510 */
1511static void ice_service_task_restart(struct ice_pf *pf)
1512{
1513	clear_bit(ICE_SERVICE_DIS, pf->state);
1514	ice_service_task_schedule(pf);
1515}
1516
1517/**
1518 * ice_service_timer - timer callback to schedule service task
1519 * @t: pointer to timer_list
1520 */
1521static void ice_service_timer(struct timer_list *t)
1522{
1523	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1524
1525	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1526	ice_service_task_schedule(pf);
1527}
1528
1529/**
1530 * ice_handle_mdd_event - handle malicious driver detect event
1531 * @pf: pointer to the PF structure
1532 *
1533 * Called from service task. OICR interrupt handler indicates MDD event.
1534 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1535 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1536 * disable the queue, the PF can be configured to reset the VF using ethtool
1537 * private flag mdd-auto-reset-vf.
1538 */
1539static void ice_handle_mdd_event(struct ice_pf *pf)
1540{
1541	struct device *dev = ice_pf_to_dev(pf);
1542	struct ice_hw *hw = &pf->hw;
1543	unsigned int i;
1544	u32 reg;
1545
1546	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1547		/* Since the VF MDD event logging is rate limited, check if
1548		 * there are pending MDD events.
1549		 */
1550		ice_print_vfs_mdd_events(pf);
1551		return;
1552	}
1553
1554	/* find what triggered an MDD event */
1555	reg = rd32(hw, GL_MDET_TX_PQM);
1556	if (reg & GL_MDET_TX_PQM_VALID_M) {
1557		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1558				GL_MDET_TX_PQM_PF_NUM_S;
1559		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1560				GL_MDET_TX_PQM_VF_NUM_S;
1561		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1562				GL_MDET_TX_PQM_MAL_TYPE_S;
1563		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1564				GL_MDET_TX_PQM_QNUM_S);
1565
1566		if (netif_msg_tx_err(pf))
1567			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1568				 event, queue, pf_num, vf_num);
1569		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1570	}
1571
1572	reg = rd32(hw, GL_MDET_TX_TCLAN);
1573	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1574		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1575				GL_MDET_TX_TCLAN_PF_NUM_S;
1576		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1577				GL_MDET_TX_TCLAN_VF_NUM_S;
1578		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1579				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1580		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1581				GL_MDET_TX_TCLAN_QNUM_S);
1582
1583		if (netif_msg_tx_err(pf))
1584			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1585				 event, queue, pf_num, vf_num);
1586		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1587	}
1588
1589	reg = rd32(hw, GL_MDET_RX);
1590	if (reg & GL_MDET_RX_VALID_M) {
1591		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1592				GL_MDET_RX_PF_NUM_S;
1593		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1594				GL_MDET_RX_VF_NUM_S;
1595		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1596				GL_MDET_RX_MAL_TYPE_S;
1597		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1598				GL_MDET_RX_QNUM_S);
1599
1600		if (netif_msg_rx_err(pf))
1601			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1602				 event, queue, pf_num, vf_num);
1603		wr32(hw, GL_MDET_RX, 0xffffffff);
1604	}
1605
1606	/* check to see if this PF caused an MDD event */
1607	reg = rd32(hw, PF_MDET_TX_PQM);
1608	if (reg & PF_MDET_TX_PQM_VALID_M) {
1609		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1610		if (netif_msg_tx_err(pf))
1611			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1612	}
1613
1614	reg = rd32(hw, PF_MDET_TX_TCLAN);
1615	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1616		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1617		if (netif_msg_tx_err(pf))
1618			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1619	}
1620
1621	reg = rd32(hw, PF_MDET_RX);
1622	if (reg & PF_MDET_RX_VALID_M) {
1623		wr32(hw, PF_MDET_RX, 0xFFFF);
1624		if (netif_msg_rx_err(pf))
1625			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1626	}
1627
1628	/* Check to see if one of the VFs caused an MDD event, and then
1629	 * increment counters and set print pending
1630	 */
1631	ice_for_each_vf(pf, i) {
1632		struct ice_vf *vf = &pf->vf[i];
1633
1634		reg = rd32(hw, VP_MDET_TX_PQM(i));
1635		if (reg & VP_MDET_TX_PQM_VALID_M) {
1636			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1637			vf->mdd_tx_events.count++;
1638			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1639			if (netif_msg_tx_err(pf))
1640				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1641					 i);
1642		}
1643
1644		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1645		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1646			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1647			vf->mdd_tx_events.count++;
1648			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1649			if (netif_msg_tx_err(pf))
1650				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1651					 i);
1652		}
1653
1654		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1655		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1656			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1657			vf->mdd_tx_events.count++;
1658			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1659			if (netif_msg_tx_err(pf))
1660				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1661					 i);
1662		}
1663
1664		reg = rd32(hw, VP_MDET_RX(i));
1665		if (reg & VP_MDET_RX_VALID_M) {
1666			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1667			vf->mdd_rx_events.count++;
1668			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1669			if (netif_msg_rx_err(pf))
1670				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1671					 i);
1672
1673			/* Since the queue is disabled on VF Rx MDD events, the
1674			 * PF can be configured to reset the VF through ethtool
1675			 * private flag mdd-auto-reset-vf.
1676			 */
1677			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1678				/* VF MDD event counters will be cleared by
1679				 * reset, so print the event prior to reset.
1680				 */
1681				ice_print_vf_rx_mdd_event(vf);
1682				ice_reset_vf(&pf->vf[i], false);
1683			}
1684		}
1685	}
1686
1687	ice_print_vfs_mdd_events(pf);
1688}
1689
1690/**
1691 * ice_force_phys_link_state - Force the physical link state
1692 * @vsi: VSI to force the physical link state to up/down
1693 * @link_up: true/false indicates to set the physical link to up/down
1694 *
1695 * Force the physical link state by getting the current PHY capabilities from
1696 * hardware and setting the PHY config based on the determined capabilities. If
1697 * link changes a link event will be triggered because both the Enable Automatic
1698 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1699 *
1700 * Returns 0 on success, negative on failure
1701 */
1702static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1703{
1704	struct ice_aqc_get_phy_caps_data *pcaps;
1705	struct ice_aqc_set_phy_cfg_data *cfg;
1706	struct ice_port_info *pi;
1707	struct device *dev;
1708	int retcode;
1709
1710	if (!vsi || !vsi->port_info || !vsi->back)
1711		return -EINVAL;
1712	if (vsi->type != ICE_VSI_PF)
1713		return 0;
1714
1715	dev = ice_pf_to_dev(vsi->back);
1716
1717	pi = vsi->port_info;
1718
1719	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1720	if (!pcaps)
1721		return -ENOMEM;
1722
1723	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1724				      NULL);
1725	if (retcode) {
1726		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1727			vsi->vsi_num, retcode);
1728		retcode = -EIO;
1729		goto out;
1730	}
1731
1732	/* No change in link */
1733	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1734	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1735		goto out;
1736
1737	/* Use the current user PHY configuration. The current user PHY
1738	 * configuration is initialized during probe from PHY capabilities
1739	 * software mode, and updated on set PHY configuration.
1740	 */
1741	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1742	if (!cfg) {
1743		retcode = -ENOMEM;
1744		goto out;
1745	}
1746
1747	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1748	if (link_up)
1749		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1750	else
1751		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1752
1753	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1754	if (retcode) {
1755		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1756			vsi->vsi_num, retcode);
1757		retcode = -EIO;
1758	}
1759
1760	kfree(cfg);
1761out:
1762	kfree(pcaps);
1763	return retcode;
1764}
1765
1766/**
1767 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1768 * @pi: port info structure
1769 *
1770 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1771 */
1772static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1773{
1774	struct ice_aqc_get_phy_caps_data *pcaps;
1775	struct ice_pf *pf = pi->hw->back;
1776	enum ice_status status;
1777	int err = 0;
1778
1779	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1780	if (!pcaps)
1781		return -ENOMEM;
1782
1783	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1784				     NULL);
1785
1786	if (status) {
1787		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1788		err = -EIO;
1789		goto out;
1790	}
1791
1792	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1793	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1794
1795out:
1796	kfree(pcaps);
1797	return err;
1798}
1799
1800/**
1801 * ice_init_link_dflt_override - Initialize link default override
1802 * @pi: port info structure
1803 *
1804 * Initialize link default override and PHY total port shutdown during probe
1805 */
1806static void ice_init_link_dflt_override(struct ice_port_info *pi)
1807{
1808	struct ice_link_default_override_tlv *ldo;
1809	struct ice_pf *pf = pi->hw->back;
1810
1811	ldo = &pf->link_dflt_override;
1812	if (ice_get_link_default_override(ldo, pi))
1813		return;
1814
1815	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1816		return;
1817
1818	/* Enable Total Port Shutdown (override/replace link-down-on-close
1819	 * ethtool private flag) for ports with Port Disable bit set.
1820	 */
1821	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1822	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1823}
1824
1825/**
1826 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1827 * @pi: port info structure
1828 *
1829 * If default override is enabled, initialize the user PHY cfg speed and FEC
1830 * settings using the default override mask from the NVM.
1831 *
1832 * The PHY should only be configured with the default override settings the
1833 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1834 * is used to indicate that the user PHY cfg default override is initialized
1835 * and the PHY has not been configured with the default override settings. The
1836 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1837 * configured.
1838 *
1839 * This function should be called only if the FW doesn't support default
1840 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1841 */
1842static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1843{
1844	struct ice_link_default_override_tlv *ldo;
1845	struct ice_aqc_set_phy_cfg_data *cfg;
1846	struct ice_phy_info *phy = &pi->phy;
1847	struct ice_pf *pf = pi->hw->back;
1848
1849	ldo = &pf->link_dflt_override;
1850
1851	/* If link default override is enabled, use to mask NVM PHY capabilities
1852	 * for speed and FEC default configuration.
1853	 */
1854	cfg = &phy->curr_user_phy_cfg;
1855
1856	if (ldo->phy_type_low || ldo->phy_type_high) {
1857		cfg->phy_type_low = pf->nvm_phy_type_lo &
1858				    cpu_to_le64(ldo->phy_type_low);
1859		cfg->phy_type_high = pf->nvm_phy_type_hi &
1860				     cpu_to_le64(ldo->phy_type_high);
1861	}
1862	cfg->link_fec_opt = ldo->fec_options;
1863	phy->curr_user_fec_req = ICE_FEC_AUTO;
1864
1865	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1866}
1867
1868/**
1869 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1870 * @pi: port info structure
1871 *
1872 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1873 * mode to default. The PHY defaults are from get PHY capabilities topology
1874 * with media so call when media is first available. An error is returned if
1875 * called when media is not available. The PHY initialization completed state is
1876 * set here.
1877 *
1878 * These configurations are used when setting PHY
1879 * configuration. The user PHY configuration is updated on set PHY
1880 * configuration. Returns 0 on success, negative on failure
1881 */
1882static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1883{
1884	struct ice_aqc_get_phy_caps_data *pcaps;
1885	struct ice_phy_info *phy = &pi->phy;
1886	struct ice_pf *pf = pi->hw->back;
1887	enum ice_status status;
1888	int err = 0;
1889
1890	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1891		return -EIO;
1892
1893	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1894	if (!pcaps)
1895		return -ENOMEM;
1896
1897	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1898		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1899					     pcaps, NULL);
1900	else
1901		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1902					     pcaps, NULL);
1903	if (status) {
1904		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1905		err = -EIO;
1906		goto err_out;
1907	}
1908
1909	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1910
1911	/* check if lenient mode is supported and enabled */
1912	if (ice_fw_supports_link_override(pi->hw) &&
1913	    !(pcaps->module_compliance_enforcement &
1914	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1915		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1916
1917		/* if the FW supports default PHY configuration mode, then the driver
1918		 * does not have to apply link override settings. If not,
1919		 * initialize user PHY configuration with link override values
1920		 */
1921		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1922		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1923			ice_init_phy_cfg_dflt_override(pi);
1924			goto out;
1925		}
1926	}
1927
1928	/* if link default override is not enabled, set user flow control and
1929	 * FEC settings based on what get_phy_caps returned
1930	 */
1931	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1932						      pcaps->link_fec_options);
1933	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1934
1935out:
1936	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1937	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1938err_out:
1939	kfree(pcaps);
1940	return err;
1941}
1942
1943/**
1944 * ice_configure_phy - configure PHY
1945 * @vsi: VSI of PHY
1946 *
1947 * Set the PHY configuration. If the current PHY configuration is the same as
1948 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1949 * configure the based get PHY capabilities for topology with media.
1950 */
1951static int ice_configure_phy(struct ice_vsi *vsi)
1952{
1953	struct device *dev = ice_pf_to_dev(vsi->back);
1954	struct ice_port_info *pi = vsi->port_info;
1955	struct ice_aqc_get_phy_caps_data *pcaps;
1956	struct ice_aqc_set_phy_cfg_data *cfg;
1957	struct ice_phy_info *phy = &pi->phy;
1958	struct ice_pf *pf = vsi->back;
1959	enum ice_status status;
1960	int err = 0;
1961
1962	/* Ensure we have media as we cannot configure a medialess port */
1963	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1964		return -EPERM;
1965
1966	ice_print_topo_conflict(vsi);
1967
1968	if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1969		return -EPERM;
1970
1971	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1972		return ice_force_phys_link_state(vsi, true);
1973
1974	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1975	if (!pcaps)
1976		return -ENOMEM;
1977
1978	/* Get current PHY config */
1979	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1980				     NULL);
1981	if (status) {
1982		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1983			vsi->vsi_num, ice_stat_str(status));
1984		err = -EIO;
1985		goto done;
1986	}
1987
1988	/* If PHY enable link is configured and configuration has not changed,
1989	 * there's nothing to do
1990	 */
1991	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1992	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1993		goto done;
1994
1995	/* Use PHY topology as baseline for configuration */
1996	memset(pcaps, 0, sizeof(*pcaps));
1997	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1998		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1999					     pcaps, NULL);
2000	else
2001		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2002					     pcaps, NULL);
2003	if (status) {
2004		dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2005			vsi->vsi_num, ice_stat_str(status));
2006		err = -EIO;
2007		goto done;
2008	}
2009
2010	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2011	if (!cfg) {
2012		err = -ENOMEM;
2013		goto done;
2014	}
2015
2016	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2017
2018	/* Speed - If default override pending, use curr_user_phy_cfg set in
2019	 * ice_init_phy_user_cfg_ldo.
2020	 */
2021	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2022			       vsi->back->state)) {
2023		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2024		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2025	} else {
2026		u64 phy_low = 0, phy_high = 0;
2027
2028		ice_update_phy_type(&phy_low, &phy_high,
2029				    pi->phy.curr_user_speed_req);
2030		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2031		cfg->phy_type_high = pcaps->phy_type_high &
2032				     cpu_to_le64(phy_high);
2033	}
2034
2035	/* Can't provide what was requested; use PHY capabilities */
2036	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2037		cfg->phy_type_low = pcaps->phy_type_low;
2038		cfg->phy_type_high = pcaps->phy_type_high;
2039	}
2040
2041	/* FEC */
2042	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2043
2044	/* Can't provide what was requested; use PHY capabilities */
2045	if (cfg->link_fec_opt !=
2046	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2047		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2048		cfg->link_fec_opt = pcaps->link_fec_options;
2049	}
2050
2051	/* Flow Control - always supported; no need to check against
2052	 * capabilities
2053	 */
2054	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2055
2056	/* Enable link and link update */
2057	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2058
2059	status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2060	if (status) {
2061		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2062			vsi->vsi_num, ice_stat_str(status));
2063		err = -EIO;
2064	}
2065
2066	kfree(cfg);
2067done:
2068	kfree(pcaps);
2069	return err;
2070}
2071
2072/**
2073 * ice_check_media_subtask - Check for media
2074 * @pf: pointer to PF struct
2075 *
2076 * If media is available, then initialize PHY user configuration if it is not
2077 * been, and configure the PHY if the interface is up.
2078 */
2079static void ice_check_media_subtask(struct ice_pf *pf)
2080{
2081	struct ice_port_info *pi;
2082	struct ice_vsi *vsi;
2083	int err;
2084
2085	/* No need to check for media if it's already present */
2086	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2087		return;
2088
2089	vsi = ice_get_main_vsi(pf);
2090	if (!vsi)
2091		return;
2092
2093	/* Refresh link info and check if media is present */
2094	pi = vsi->port_info;
2095	err = ice_update_link_info(pi);
2096	if (err)
2097		return;
2098
2099	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2100
2101	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2102		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2103			ice_init_phy_user_cfg(pi);
2104
2105		/* PHY settings are reset on media insertion, reconfigure
2106		 * PHY to preserve settings.
2107		 */
2108		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2109		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2110			return;
2111
2112		err = ice_configure_phy(vsi);
2113		if (!err)
2114			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2115
2116		/* A Link Status Event will be generated; the event handler
2117		 * will complete bringing the interface up
2118		 */
2119	}
2120}
2121
2122/**
2123 * ice_service_task - manage and run subtasks
2124 * @work: pointer to work_struct contained by the PF struct
2125 */
2126static void ice_service_task(struct work_struct *work)
2127{
2128	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2129	unsigned long start_time = jiffies;
2130
2131	/* subtasks */
2132
2133	/* process reset requests first */
2134	ice_reset_subtask(pf);
2135
2136	/* bail if a reset/recovery cycle is pending or rebuild failed */
2137	if (ice_is_reset_in_progress(pf->state) ||
2138	    test_bit(ICE_SUSPENDED, pf->state) ||
2139	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2140		ice_service_task_complete(pf);
2141		return;
2142	}
2143
2144	ice_clean_adminq_subtask(pf);
2145	ice_check_media_subtask(pf);
2146	ice_check_for_hang_subtask(pf);
2147	ice_sync_fltr_subtask(pf);
2148	ice_handle_mdd_event(pf);
2149	ice_watchdog_subtask(pf);
 
2150
2151	if (ice_is_safe_mode(pf)) {
2152		ice_service_task_complete(pf);
2153		return;
2154	}
2155
2156	ice_process_vflr_event(pf);
2157	ice_clean_mailboxq_subtask(pf);
2158	ice_clean_sbq_subtask(pf);
2159	ice_sync_arfs_fltrs(pf);
2160	ice_flush_fdir_ctx(pf);
2161
2162	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2163	ice_service_task_complete(pf);
2164
2165	/* If the tasks have taken longer than one service timer period
2166	 * or there is more work to be done, reset the service timer to
2167	 * schedule the service task now.
2168	 */
2169	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2170	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2171	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2172	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2173	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2174	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2175	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2176		mod_timer(&pf->serv_tmr, jiffies);
2177}
2178
2179/**
2180 * ice_set_ctrlq_len - helper function to set controlq length
2181 * @hw: pointer to the HW instance
2182 */
2183static void ice_set_ctrlq_len(struct ice_hw *hw)
2184{
2185	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2186	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2187	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2188	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2189	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2190	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2191	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2192	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2193	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2194	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2195	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2196	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2197}
2198
2199/**
2200 * ice_schedule_reset - schedule a reset
2201 * @pf: board private structure
2202 * @reset: reset being requested
2203 */
2204int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2205{
2206	struct device *dev = ice_pf_to_dev(pf);
2207
2208	/* bail out if earlier reset has failed */
2209	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2210		dev_dbg(dev, "earlier reset has failed\n");
2211		return -EIO;
2212	}
2213	/* bail if reset/recovery already in progress */
2214	if (ice_is_reset_in_progress(pf->state)) {
2215		dev_dbg(dev, "Reset already in progress\n");
2216		return -EBUSY;
2217	}
2218
2219	ice_unplug_aux_dev(pf);
2220
2221	switch (reset) {
2222	case ICE_RESET_PFR:
2223		set_bit(ICE_PFR_REQ, pf->state);
2224		break;
2225	case ICE_RESET_CORER:
2226		set_bit(ICE_CORER_REQ, pf->state);
2227		break;
2228	case ICE_RESET_GLOBR:
2229		set_bit(ICE_GLOBR_REQ, pf->state);
2230		break;
2231	default:
2232		return -EINVAL;
2233	}
2234
2235	ice_service_task_schedule(pf);
2236	return 0;
2237}
2238
2239/**
2240 * ice_irq_affinity_notify - Callback for affinity changes
2241 * @notify: context as to what irq was changed
2242 * @mask: the new affinity mask
2243 *
2244 * This is a callback function used by the irq_set_affinity_notifier function
2245 * so that we may register to receive changes to the irq affinity masks.
2246 */
2247static void
2248ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2249			const cpumask_t *mask)
2250{
2251	struct ice_q_vector *q_vector =
2252		container_of(notify, struct ice_q_vector, affinity_notify);
2253
2254	cpumask_copy(&q_vector->affinity_mask, mask);
2255}
2256
2257/**
2258 * ice_irq_affinity_release - Callback for affinity notifier release
2259 * @ref: internal core kernel usage
2260 *
2261 * This is a callback function used by the irq_set_affinity_notifier function
2262 * to inform the current notification subscriber that they will no longer
2263 * receive notifications.
2264 */
2265static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2266
2267/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2268 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2269 * @vsi: the VSI being configured
2270 */
2271static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2272{
2273	struct ice_hw *hw = &vsi->back->hw;
2274	int i;
 
 
 
2275
2276	ice_for_each_q_vector(vsi, i)
2277		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
 
2278
2279	ice_flush(hw);
2280	return 0;
2281}
2282
2283/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2285 * @vsi: the VSI being configured
2286 * @basename: name for the vector
2287 */
2288static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2289{
2290	int q_vectors = vsi->num_q_vectors;
2291	struct ice_pf *pf = vsi->back;
2292	int base = vsi->base_vector;
2293	struct device *dev;
2294	int rx_int_idx = 0;
2295	int tx_int_idx = 0;
2296	int vector, err;
2297	int irq_num;
2298
2299	dev = ice_pf_to_dev(pf);
2300	for (vector = 0; vector < q_vectors; vector++) {
2301		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2302
2303		irq_num = pf->msix_entries[base + vector].vector;
2304
2305		if (q_vector->tx.ring && q_vector->rx.ring) {
2306			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2307				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2308			tx_int_idx++;
2309		} else if (q_vector->rx.ring) {
2310			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2311				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2312		} else if (q_vector->tx.ring) {
2313			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2314				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2315		} else {
2316			/* skip this unused q_vector */
2317			continue;
2318		}
2319		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2320			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2321					       IRQF_SHARED, q_vector->name,
2322					       q_vector);
2323		else
2324			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2325					       0, q_vector->name, q_vector);
2326		if (err) {
2327			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2328				   err);
2329			goto free_q_irqs;
2330		}
2331
2332		/* register for affinity change notifications */
2333		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2334			struct irq_affinity_notify *affinity_notify;
2335
2336			affinity_notify = &q_vector->affinity_notify;
2337			affinity_notify->notify = ice_irq_affinity_notify;
2338			affinity_notify->release = ice_irq_affinity_release;
2339			irq_set_affinity_notifier(irq_num, affinity_notify);
2340		}
2341
2342		/* assign the mask for this irq */
2343		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2344	}
2345
2346	vsi->irqs_ready = true;
2347	return 0;
2348
2349free_q_irqs:
2350	while (vector) {
2351		vector--;
2352		irq_num = pf->msix_entries[base + vector].vector;
2353		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2354			irq_set_affinity_notifier(irq_num, NULL);
2355		irq_set_affinity_hint(irq_num, NULL);
2356		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2357	}
2358	return err;
2359}
2360
2361/**
2362 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2363 * @vsi: VSI to setup Tx rings used by XDP
2364 *
2365 * Return 0 on success and negative value on error
2366 */
2367static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2368{
2369	struct device *dev = ice_pf_to_dev(vsi->back);
2370	int i;
2371
2372	for (i = 0; i < vsi->num_xdp_txq; i++) {
2373		u16 xdp_q_idx = vsi->alloc_txq + i;
2374		struct ice_ring *xdp_ring;
2375
2376		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2377
2378		if (!xdp_ring)
2379			goto free_xdp_rings;
2380
2381		xdp_ring->q_index = xdp_q_idx;
2382		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2383		xdp_ring->ring_active = false;
2384		xdp_ring->vsi = vsi;
2385		xdp_ring->netdev = NULL;
2386		xdp_ring->dev = dev;
2387		xdp_ring->count = vsi->num_tx_desc;
2388		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2389		if (ice_setup_tx_ring(xdp_ring))
2390			goto free_xdp_rings;
2391		ice_set_ring_xdp(xdp_ring);
2392		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2393	}
2394
2395	return 0;
2396
2397free_xdp_rings:
2398	for (; i >= 0; i--)
2399		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2400			ice_free_tx_ring(vsi->xdp_rings[i]);
2401	return -ENOMEM;
 
 
 
 
 
 
2402}
2403
2404/**
2405 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2406 * @vsi: VSI to set the bpf prog on
2407 * @prog: the bpf prog pointer
2408 */
2409static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2410{
2411	struct bpf_prog *old_prog;
 
 
 
 
2412	int i;
2413
2414	old_prog = xchg(&vsi->xdp_prog, prog);
2415	if (old_prog)
2416		bpf_prog_put(old_prog);
 
 
 
 
2417
2418	ice_for_each_rxq(vsi, i)
2419		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2420}
2421
2422/**
2423 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2424 * @vsi: VSI to bring up Tx rings used by XDP
2425 * @prog: bpf program that will be assigned to VSI
2426 *
2427 * Return 0 on success and negative value on error
2428 */
2429int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2430{
2431	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432	int xdp_rings_rem = vsi->num_xdp_txq;
2433	struct ice_pf *pf = vsi->back;
2434	struct ice_qs_cfg xdp_qs_cfg = {
2435		.qs_mutex = &pf->avail_q_mutex,
2436		.pf_map = pf->avail_txqs,
2437		.pf_map_size = pf->max_pf_txqs,
2438		.q_count = vsi->num_xdp_txq,
2439		.scatter_count = ICE_MAX_SCATTER_TXQS,
2440		.vsi_map = vsi->txq_map,
2441		.vsi_map_offset = vsi->alloc_txq,
2442		.mapping_mode = ICE_VSI_MAP_CONTIG
2443	};
2444	enum ice_status status;
2445	struct device *dev;
2446	int i, v_idx;
2447
2448	dev = ice_pf_to_dev(pf);
2449	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2450				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2451	if (!vsi->xdp_rings)
2452		return -ENOMEM;
2453
2454	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2455	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2456		goto err_map_xdp;
 
 
 
 
 
 
 
 
2457
2458	if (ice_xdp_alloc_setup_rings(vsi))
2459		goto clear_xdp_rings;
 
 
 
 
2460
2461	/* follow the logic from ice_vsi_map_rings_to_vectors */
2462	ice_for_each_q_vector(vsi, v_idx) {
2463		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2464		int xdp_rings_per_v, q_id, q_base;
 
2465
2466		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2467					       vsi->num_q_vectors - v_idx);
2468		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2469
2470		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2471			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2472
2473			xdp_ring->q_vector = q_vector;
2474			xdp_ring->next = q_vector->tx.ring;
2475			q_vector->tx.ring = xdp_ring;
 
 
 
 
2476		}
2477		xdp_rings_rem -= xdp_rings_per_v;
2478	}
2479
2480	/* omit the scheduler update if in reset path; XDP queues will be
2481	 * taken into account at the end of ice_vsi_rebuild, where
2482	 * ice_cfg_vsi_lan is being called
2483	 */
2484	if (ice_is_reset_in_progress(pf->state))
2485		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486
2487	/* tell the Tx scheduler that right now we have
2488	 * additional queues
2489	 */
2490	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2491		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
 
 
 
2492
2493	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2494				 max_txqs);
2495	if (status) {
2496		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2497			ice_stat_str(status));
2498		goto clear_xdp_rings;
 
 
 
 
2499	}
2500	ice_vsi_assign_bpf_prog(vsi, prog);
2501
2502	return 0;
2503clear_xdp_rings:
2504	for (i = 0; i < vsi->num_xdp_txq; i++)
2505		if (vsi->xdp_rings[i]) {
2506			kfree_rcu(vsi->xdp_rings[i], rcu);
2507			vsi->xdp_rings[i] = NULL;
2508		}
2509
2510err_map_xdp:
2511	mutex_lock(&pf->avail_q_mutex);
2512	for (i = 0; i < vsi->num_xdp_txq; i++) {
2513		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2514		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2515	}
2516	mutex_unlock(&pf->avail_q_mutex);
2517
2518	devm_kfree(dev, vsi->xdp_rings);
2519	return -ENOMEM;
2520}
2521
2522/**
2523 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2524 * @vsi: VSI to remove XDP rings
2525 *
2526 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2527 * resources
2528 */
2529int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2530{
2531	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2532	struct ice_pf *pf = vsi->back;
2533	int i, v_idx;
 
2534
2535	/* q_vectors are freed in reset path so there's no point in detaching
2536	 * rings; in case of rebuild being triggered not from reset bits
2537	 * in pf->state won't be set, so additionally check first q_vector
2538	 * against NULL
2539	 */
2540	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2541		goto free_qmap;
2542
2543	ice_for_each_q_vector(vsi, v_idx) {
2544		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2545		struct ice_ring *ring;
 
 
 
 
 
2546
2547		ice_for_each_ring(ring, q_vector->tx)
2548			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2549				break;
2550
2551		/* restore the value of last node prior to XDP setup */
2552		q_vector->tx.ring = ring;
 
 
 
2553	}
 
 
2554
2555free_qmap:
2556	mutex_lock(&pf->avail_q_mutex);
2557	for (i = 0; i < vsi->num_xdp_txq; i++) {
2558		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2559		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2560	}
2561	mutex_unlock(&pf->avail_q_mutex);
2562
2563	for (i = 0; i < vsi->num_xdp_txq; i++)
2564		if (vsi->xdp_rings[i]) {
2565			if (vsi->xdp_rings[i]->desc)
2566				ice_free_tx_ring(vsi->xdp_rings[i]);
2567			kfree_rcu(vsi->xdp_rings[i], rcu);
2568			vsi->xdp_rings[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569		}
 
2570
2571	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2572	vsi->xdp_rings = NULL;
2573
2574	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2575		return 0;
2576
2577	ice_vsi_assign_bpf_prog(vsi, NULL);
2578
2579	/* notify Tx scheduler that we destroyed XDP queues and bring
2580	 * back the old number of child nodes
2581	 */
2582	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2583		max_txqs[i] = vsi->num_txq;
2584
2585	/* change number of XDP Tx queues to 0 */
2586	vsi->num_xdp_txq = 0;
2587
2588	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2589			       max_txqs);
2590}
2591
2592/**
2593 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2594 * @vsi: VSI to schedule napi on
2595 */
2596static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2597{
2598	int i;
2599
2600	ice_for_each_rxq(vsi, i) {
2601		struct ice_ring *rx_ring = vsi->rx_rings[i];
2602
2603		if (rx_ring->xsk_pool)
2604			napi_schedule(&rx_ring->q_vector->napi);
 
 
 
 
 
 
 
 
 
 
2605	}
2606}
2607
2608/**
2609 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2610 * @vsi: VSI to setup XDP for
2611 * @prog: XDP program
2612 * @extack: netlink extended ack
2613 */
2614static int
2615ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2616		   struct netlink_ext_ack *extack)
2617{
2618	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2619	bool if_running = netif_running(vsi->netdev);
2620	int ret = 0, xdp_ring_err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621
2622	if (frame_size > vsi->rx_buf_len) {
2623		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2624		return -EOPNOTSUPP;
2625	}
2626
2627	/* need to stop netdev while setting up the program for Rx rings */
2628	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2629		ret = ice_down(vsi);
2630		if (ret) {
2631			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2632			return ret;
2633		}
2634	}
2635
2636	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2637		vsi->num_xdp_txq = vsi->alloc_rxq;
2638		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2639		if (xdp_ring_err)
2640			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2641	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2642		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2643		if (xdp_ring_err)
2644			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2645	} else {
2646		ice_vsi_assign_bpf_prog(vsi, prog);
2647	}
2648
2649	if (if_running)
2650		ret = ice_up(vsi);
2651
2652	if (!ret && prog)
2653		ice_vsi_rx_napi_schedule(vsi);
2654
2655	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2656}
2657
2658/**
2659 * ice_xdp_safe_mode - XDP handler for safe mode
2660 * @dev: netdevice
2661 * @xdp: XDP command
2662 */
2663static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2664			     struct netdev_bpf *xdp)
2665{
2666	NL_SET_ERR_MSG_MOD(xdp->extack,
2667			   "Please provide working DDP firmware package in order to use XDP\n"
2668			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2669	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2670}
2671
2672/**
2673 * ice_xdp - implements XDP handler
2674 * @dev: netdevice
2675 * @xdp: XDP command
2676 */
2677static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2678{
2679	struct ice_netdev_priv *np = netdev_priv(dev);
2680	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681
2682	if (vsi->type != ICE_VSI_PF) {
2683		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2684		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685	}
2686
2687	switch (xdp->command) {
2688	case XDP_SETUP_PROG:
2689		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2690	case XDP_SETUP_XSK_POOL:
2691		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2692					  xdp->xsk.queue_id);
2693	default:
2694		return -EINVAL;
2695	}
2696}
2697
2698/**
2699 * ice_ena_misc_vector - enable the non-queue interrupts
2700 * @pf: board private structure
2701 */
2702static void ice_ena_misc_vector(struct ice_pf *pf)
2703{
2704	struct ice_hw *hw = &pf->hw;
2705	u32 val;
2706
2707	/* Disable anti-spoof detection interrupt to prevent spurious event
2708	 * interrupts during a function reset. Anti-spoof functionally is
2709	 * still supported.
2710	 */
2711	val = rd32(hw, GL_MDCK_TX_TDPU);
2712	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2713	wr32(hw, GL_MDCK_TX_TDPU, val);
2714
2715	/* clear things first */
2716	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2717	rd32(hw, PFINT_OICR);		/* read to clear */
2718
2719	val = (PFINT_OICR_ECC_ERR_M |
 
 
2720	       PFINT_OICR_MAL_DETECT_M |
2721	       PFINT_OICR_GRST_M |
2722	       PFINT_OICR_PCI_EXCEPTION_M |
2723	       PFINT_OICR_VFLR_M |
2724	       PFINT_OICR_HMC_ERR_M |
2725	       PFINT_OICR_PE_PUSH_M |
2726	       PFINT_OICR_PE_CRITERR_M);
2727
2728	wr32(hw, PFINT_OICR_ENA, val);
2729
2730	/* SW_ITR_IDX = 0, but don't change INTENA */
2731	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2732	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2733}
2734
2735/**
2736 * ice_misc_intr - misc interrupt handler
2737 * @irq: interrupt number
2738 * @data: pointer to a q_vector
2739 */
2740static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2741{
2742	struct ice_pf *pf = (struct ice_pf *)data;
2743	struct ice_hw *hw = &pf->hw;
2744	irqreturn_t ret = IRQ_NONE;
2745	struct device *dev;
2746	u32 oicr, ena_mask;
2747
2748	dev = ice_pf_to_dev(pf);
2749	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2750	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2751	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2752
2753	oicr = rd32(hw, PFINT_OICR);
2754	ena_mask = rd32(hw, PFINT_OICR_ENA);
2755
2756	if (oicr & PFINT_OICR_SWINT_M) {
2757		ena_mask &= ~PFINT_OICR_SWINT_M;
2758		pf->sw_int_count++;
2759	}
2760
2761	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2762		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2763		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2764	}
2765	if (oicr & PFINT_OICR_VFLR_M) {
2766		/* disable any further VFLR event notifications */
2767		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2768			u32 reg = rd32(hw, PFINT_OICR_ENA);
2769
2770			reg &= ~PFINT_OICR_VFLR_M;
2771			wr32(hw, PFINT_OICR_ENA, reg);
2772		} else {
2773			ena_mask &= ~PFINT_OICR_VFLR_M;
2774			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2775		}
2776	}
2777
2778	if (oicr & PFINT_OICR_GRST_M) {
2779		u32 reset;
2780
2781		/* we have a reset warning */
2782		ena_mask &= ~PFINT_OICR_GRST_M;
2783		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2784			GLGEN_RSTAT_RESET_TYPE_S;
2785
2786		if (reset == ICE_RESET_CORER)
2787			pf->corer_count++;
2788		else if (reset == ICE_RESET_GLOBR)
2789			pf->globr_count++;
2790		else if (reset == ICE_RESET_EMPR)
2791			pf->empr_count++;
2792		else
2793			dev_dbg(dev, "Invalid reset type %d\n", reset);
2794
2795		/* If a reset cycle isn't already in progress, we set a bit in
2796		 * pf->state so that the service task can start a reset/rebuild.
 
 
2797		 */
2798		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2799			if (reset == ICE_RESET_CORER)
2800				set_bit(ICE_CORER_RECV, pf->state);
2801			else if (reset == ICE_RESET_GLOBR)
2802				set_bit(ICE_GLOBR_RECV, pf->state);
2803			else
2804				set_bit(ICE_EMPR_RECV, pf->state);
2805
2806			/* There are couple of different bits at play here.
2807			 * hw->reset_ongoing indicates whether the hardware is
2808			 * in reset. This is set to true when a reset interrupt
2809			 * is received and set back to false after the driver
2810			 * has determined that the hardware is out of reset.
2811			 *
2812			 * ICE_RESET_OICR_RECV in pf->state indicates
2813			 * that a post reset rebuild is required before the
2814			 * driver is operational again. This is set above.
2815			 *
2816			 * As this is the start of the reset/rebuild cycle, set
2817			 * both to indicate that.
2818			 */
2819			hw->reset_ongoing = true;
2820		}
2821	}
2822
2823	if (oicr & PFINT_OICR_TSYN_TX_M) {
2824		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2825		ice_ptp_process_ts(pf);
2826	}
2827
2828	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2829		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2830		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2831
2832		/* Save EVENTs from GTSYN register */
2833		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2834						     GLTSYN_STAT_EVENT1_M |
2835						     GLTSYN_STAT_EVENT2_M);
2836		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2837		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2838	}
2839
2840#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2841	if (oicr & ICE_AUX_CRIT_ERR) {
2842		struct iidc_event *event;
2843
2844		ena_mask &= ~ICE_AUX_CRIT_ERR;
2845		event = kzalloc(sizeof(*event), GFP_KERNEL);
2846		if (event) {
2847			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2848			/* report the entire OICR value to AUX driver */
2849			event->reg = oicr;
2850			ice_send_event_to_aux(pf, event);
2851			kfree(event);
2852		}
2853	}
2854
2855	/* Report any remaining unexpected interrupts */
2856	oicr &= ena_mask;
2857	if (oicr) {
2858		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
 
2859		/* If a critical error is pending there is no choice but to
2860		 * reset the device.
2861		 */
2862		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
 
2863			    PFINT_OICR_ECC_ERR_M)) {
2864			set_bit(ICE_PFR_REQ, pf->state);
2865			ice_service_task_schedule(pf);
2866		}
 
2867	}
2868	ret = IRQ_HANDLED;
2869
2870	ice_service_task_schedule(pf);
2871	ice_irq_dynamic_ena(hw, NULL, NULL);
 
 
 
 
2872
2873	return ret;
2874}
2875
2876/**
2877 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2878 * @hw: pointer to HW structure
 
 
 
 
2879 */
2880static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2881{
2882	/* disable Admin queue Interrupt causes */
2883	wr32(hw, PFINT_FW_CTL,
2884	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
 
 
 
 
2885
2886	/* disable Mailbox queue Interrupt causes */
2887	wr32(hw, PFINT_MBX_CTL,
2888	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2889
2890	wr32(hw, PFINT_SB_CTL,
2891	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
 
 
 
2892
2893	/* disable Control queue Interrupt causes */
2894	wr32(hw, PFINT_OICR_CTL,
2895	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2896
2897	ice_flush(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898}
2899
2900/**
2901 * ice_free_irq_msix_misc - Unroll misc vector setup
2902 * @pf: board private structure
 
 
2903 */
2904static void ice_free_irq_msix_misc(struct ice_pf *pf)
2905{
2906	struct ice_hw *hw = &pf->hw;
2907
2908	ice_dis_ctrlq_interrupts(hw);
 
 
 
 
 
 
 
 
 
 
 
 
2909
2910	/* disable OICR interrupt */
2911	wr32(hw, PFINT_OICR_ENA, 0);
2912	ice_flush(hw);
 
 
 
 
 
 
 
 
2913
2914	if (pf->msix_entries) {
2915		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2916		devm_free_irq(ice_pf_to_dev(pf),
2917			      pf->msix_entries[pf->oicr_idx].vector, pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918	}
2919
2920	pf->num_avail_sw_msix += 1;
2921	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922}
2923
2924/**
2925 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2926 * @hw: pointer to HW structure
2927 * @reg_idx: HW vector index to associate the control queue interrupts with
 
 
2928 */
2929static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2930{
2931	u32 val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932
2933	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2934	       PFINT_OICR_CTL_CAUSE_ENA_M);
2935	wr32(hw, PFINT_OICR_CTL, val);
 
 
 
 
 
 
 
 
 
2936
2937	/* enable Admin queue Interrupt causes */
2938	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2939	       PFINT_FW_CTL_CAUSE_ENA_M);
2940	wr32(hw, PFINT_FW_CTL, val);
 
 
 
 
 
2941
2942	/* enable Mailbox queue Interrupt causes */
2943	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2944	       PFINT_MBX_CTL_CAUSE_ENA_M);
2945	wr32(hw, PFINT_MBX_CTL, val);
2946
2947	/* This enables Sideband queue Interrupt causes */
2948	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2949	       PFINT_SB_CTL_CAUSE_ENA_M);
2950	wr32(hw, PFINT_SB_CTL, val);
2951
2952	ice_flush(hw);
2953}
2954
2955/**
2956 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2957 * @pf: board private structure
2958 *
2959 * This sets up the handler for MSIX 0, which is used to manage the
2960 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2961 * when in MSI or Legacy interrupt mode.
2962 */
2963static int ice_req_irq_msix_misc(struct ice_pf *pf)
2964{
2965	struct device *dev = ice_pf_to_dev(pf);
2966	struct ice_hw *hw = &pf->hw;
2967	int oicr_idx, err = 0;
 
 
2968
2969	if (!pf->int_name[0])
2970		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2971			 dev_driver_string(dev), dev_name(dev));
 
2972
2973	/* Do not request IRQ but do enable OICR interrupt since settings are
2974	 * lost during reset. Note that this function is called only during
2975	 * rebuild path and not while reset is in progress.
2976	 */
2977	if (ice_is_reset_in_progress(pf->state))
2978		goto skip_req_irq;
2979
2980	/* reserve one vector in irq_tracker for misc interrupts */
2981	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2982	if (oicr_idx < 0)
2983		return oicr_idx;
2984
2985	pf->num_avail_sw_msix -= 1;
2986	pf->oicr_idx = (u16)oicr_idx;
2987
2988	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
 
2989			       ice_misc_intr, 0, pf->int_name, pf);
2990	if (err) {
2991		dev_err(dev, "devm_request_irq for %s failed: %d\n",
 
2992			pf->int_name, err);
2993		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2994		pf->num_avail_sw_msix += 1;
2995		return err;
2996	}
2997
2998skip_req_irq:
2999	ice_ena_misc_vector(pf);
3000
3001	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
 
 
 
 
 
 
 
 
 
 
 
 
3002	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3003	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3004
3005	ice_flush(hw);
3006	ice_irq_dynamic_ena(hw, NULL, NULL);
3007
3008	return 0;
3009}
3010
3011/**
3012 * ice_napi_add - register NAPI handler for the VSI
3013 * @vsi: VSI for which NAPI handler is to be registered
3014 *
3015 * This function is only called in the driver's load path. Registering the NAPI
3016 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3017 * reset/rebuild, etc.)
3018 */
3019static void ice_napi_add(struct ice_vsi *vsi)
3020{
3021	int v_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022
3023	if (!vsi->netdev)
3024		return;
 
 
3025
3026	ice_for_each_q_vector(vsi, v_idx)
3027		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3028			       ice_napi_poll, NAPI_POLL_WEIGHT);
3029}
3030
3031/**
3032 * ice_set_ops - set netdev and ethtools ops for the given netdev
3033 * @netdev: netdev instance
 
3034 */
3035static void ice_set_ops(struct net_device *netdev)
3036{
3037	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 
3038
3039	if (ice_is_safe_mode(pf)) {
3040		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3041		ice_set_ethtool_safe_mode_ops(netdev);
3042		return;
3043	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044
3045	netdev->netdev_ops = &ice_netdev_ops;
3046	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3047	ice_set_ethtool_ops(netdev);
3048}
3049
3050/**
3051 * ice_set_netdev_features - set features for the given netdev
3052 * @netdev: netdev instance
 
 
3053 */
3054static void ice_set_netdev_features(struct net_device *netdev)
3055{
3056	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3057	netdev_features_t csumo_features;
3058	netdev_features_t vlano_features;
3059	netdev_features_t dflt_features;
3060	netdev_features_t tso_features;
 
 
 
3061
3062	if (ice_is_safe_mode(pf)) {
3063		/* safe mode */
3064		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3065		netdev->hw_features = netdev->features;
3066		return;
3067	}
 
 
3068
3069	dflt_features = NETIF_F_SG	|
3070			NETIF_F_HIGHDMA	|
3071			NETIF_F_NTUPLE	|
3072			NETIF_F_RXHASH;
3073
3074	csumo_features = NETIF_F_RXCSUM	  |
3075			 NETIF_F_IP_CSUM  |
3076			 NETIF_F_SCTP_CRC |
3077			 NETIF_F_IPV6_CSUM;
3078
3079	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3080			 NETIF_F_HW_VLAN_CTAG_TX     |
3081			 NETIF_F_HW_VLAN_CTAG_RX;
3082
3083	tso_features = NETIF_F_TSO			|
3084		       NETIF_F_TSO_ECN			|
3085		       NETIF_F_TSO6			|
3086		       NETIF_F_GSO_GRE			|
3087		       NETIF_F_GSO_UDP_TUNNEL		|
3088		       NETIF_F_GSO_GRE_CSUM		|
3089		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3090		       NETIF_F_GSO_PARTIAL		|
3091		       NETIF_F_GSO_IPXIP4		|
3092		       NETIF_F_GSO_IPXIP6		|
3093		       NETIF_F_GSO_UDP_L4;
3094
3095	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3096					NETIF_F_GSO_GRE_CSUM;
3097	/* set features that user can change */
3098	netdev->hw_features = dflt_features | csumo_features |
3099			      vlano_features | tso_features;
3100
3101	/* add support for HW_CSUM on packets with MPLS header */
3102	netdev->mpls_features =  NETIF_F_HW_CSUM;
3103
3104	/* enable features */
3105	netdev->features |= netdev->hw_features;
3106	/* encap and VLAN devices inherit default, csumo and tso features */
3107	netdev->hw_enc_features |= dflt_features | csumo_features |
3108				   tso_features;
3109	netdev->vlan_features |= dflt_features | csumo_features |
3110				 tso_features;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111}
3112
3113/**
3114 * ice_cfg_netdev - Allocate, configure and register a netdev
3115 * @vsi: the VSI associated with the new netdev
 
 
 
3116 *
3117 * Returns 0 on success, negative value on failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3118 */
3119static int ice_cfg_netdev(struct ice_vsi *vsi)
3120{
3121	struct ice_netdev_priv *np;
3122	struct net_device *netdev;
3123	u8 mac_addr[ETH_ALEN];
3124
3125	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3126				    vsi->alloc_rxq);
3127	if (!netdev)
3128		return -ENOMEM;
3129
3130	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3131	vsi->netdev = netdev;
3132	np = netdev_priv(netdev);
3133	np->vsi = vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134
3135	ice_set_netdev_features(netdev);
 
 
3136
3137	ice_set_ops(netdev);
 
 
 
 
 
3138
3139	if (vsi->type == ICE_VSI_PF) {
3140		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3141		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3142		ether_addr_copy(netdev->dev_addr, mac_addr);
3143		ether_addr_copy(netdev->perm_addr, mac_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3144	}
3145
3146	netdev->priv_flags |= IFF_UNICAST_FLT;
 
3147
3148	/* Setup netdev TC information */
3149	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
 
 
 
 
 
 
 
3150
3151	/* setup watchdog timeout value to be 5 second */
3152	netdev->watchdog_timeo = 5 * HZ;
 
3153
3154	netdev->min_mtu = ETH_MIN_MTU;
3155	netdev->max_mtu = ICE_MAX_MTU;
 
 
 
 
3156
3157	return 0;
3158}
3159
3160/**
3161 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3162 * @lut: Lookup table
3163 * @rss_table_size: Lookup table size
3164 * @rss_size: Range of queue number for hashing
3165 */
3166void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3167{
3168	u16 i;
3169
3170	for (i = 0; i < rss_table_size; i++)
3171		lut[i] = i % rss_size;
3172}
3173
3174/**
3175 * ice_pf_vsi_setup - Set up a PF VSI
3176 * @pf: board private structure
3177 * @pi: pointer to the port_info instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3178 *
3179 * Returns pointer to the successfully allocated VSI software struct
3180 * on success, otherwise returns NULL on failure.
3181 */
3182static struct ice_vsi *
3183ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3184{
3185	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3186}
3187
3188/**
3189 * ice_ctrl_vsi_setup - Set up a control VSI
3190 * @pf: board private structure
 
3191 * @pi: pointer to the port_info instance
3192 *
3193 * Returns pointer to the successfully allocated VSI software struct
3194 * on success, otherwise returns NULL on failure.
 
 
3195 */
3196static struct ice_vsi *
3197ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
 
3198{
3199	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200}
3201
3202/**
3203 * ice_lb_vsi_setup - Set up a loopback VSI
3204 * @pf: board private structure
3205 * @pi: pointer to the port_info instance
3206 *
3207 * Returns pointer to the successfully allocated VSI software struct
3208 * on success, otherwise returns NULL on failure.
3209 */
3210struct ice_vsi *
3211ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3212{
3213	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214}
3215
3216/**
3217 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3218 * @netdev: network interface to be adjusted
3219 * @proto: unused protocol
3220 * @vid: VLAN ID to be added
3221 *
3222 * net_device_ops implementation for adding VLAN IDs
3223 */
3224static int
3225ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3226		    u16 vid)
3227{
3228	struct ice_netdev_priv *np = netdev_priv(netdev);
3229	struct ice_vsi *vsi = np->vsi;
3230	int ret;
3231
3232	/* VLAN 0 is added by default during load/reset */
3233	if (!vid)
3234		return 0;
 
 
3235
3236	/* Enable VLAN pruning when a VLAN other than 0 is added */
3237	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3238		ret = ice_cfg_vlan_pruning(vsi, true, false);
3239		if (ret)
3240			return ret;
3241	}
3242
3243	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3244	 * packets aren't pruned by the device's internal switch on Rx
 
3245	 */
3246	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
 
3247	if (!ret)
3248		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3249
3250	return ret;
3251}
3252
3253/**
3254 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3255 * @netdev: network interface to be adjusted
3256 * @proto: unused protocol
3257 * @vid: VLAN ID to be removed
3258 *
3259 * net_device_ops implementation for removing VLAN IDs
3260 */
3261static int
3262ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3263		     u16 vid)
3264{
3265	struct ice_netdev_priv *np = netdev_priv(netdev);
3266	struct ice_vsi *vsi = np->vsi;
3267	int ret;
3268
3269	/* don't allow removal of VLAN 0 */
3270	if (!vid)
3271		return 0;
3272
3273	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3274	 * information
 
3275	 */
3276	ret = ice_vsi_kill_vlan(vsi, vid);
3277	if (ret)
3278		return ret;
3279
3280	/* Disable pruning when VLAN 0 is the only VLAN rule */
3281	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3282		ret = ice_cfg_vlan_pruning(vsi, false, false);
3283
3284	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
3285	return ret;
3286}
3287
3288/**
3289 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3290 * @pf: board private structure
3291 *
3292 * Returns 0 on success, negative value on failure
3293 */
3294static int ice_setup_pf_sw(struct ice_pf *pf)
3295{
 
 
3296	struct ice_vsi *vsi;
3297	int status = 0;
3298
3299	if (ice_is_reset_in_progress(pf->state))
3300		return -EBUSY;
3301
3302	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3303	if (!vsi)
3304		return -ENOMEM;
3305
3306	status = ice_cfg_netdev(vsi);
3307	if (status) {
3308		status = -ENODEV;
3309		goto unroll_vsi_setup;
3310	}
3311	/* netdev has to be configured before setting frame size */
3312	ice_vsi_cfg_frame_size(vsi);
3313
3314	/* Setup DCB netlink interface */
3315	ice_dcbnl_setup(vsi);
 
 
 
 
 
 
3316
3317	/* registering the NAPI handler requires both the queues and
3318	 * netdev to be created, which are done in ice_pf_vsi_setup()
3319	 * and ice_cfg_netdev() respectively
3320	 */
3321	ice_napi_add(vsi);
 
 
 
3322
3323	status = ice_set_cpu_rx_rmap(vsi);
 
3324	if (status) {
3325		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3326			vsi->vsi_num, status);
3327		status = -EINVAL;
3328		goto unroll_napi_add;
3329	}
3330	status = ice_init_mac_fltr(pf);
3331	if (status)
3332		goto free_cpu_rx_map;
3333
 
3334	return status;
3335
3336free_cpu_rx_map:
3337	ice_free_cpu_rx_rmap(vsi);
3338
3339unroll_napi_add:
3340	if (vsi) {
3341		ice_napi_del(vsi);
 
 
3342		if (vsi->netdev) {
3343			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3344			free_netdev(vsi->netdev);
3345			vsi->netdev = NULL;
3346		}
 
 
 
 
 
 
3347	}
3348
3349unroll_vsi_setup:
3350	ice_vsi_release(vsi);
3351	return status;
3352}
3353
3354/**
3355 * ice_get_avail_q_count - Get count of queues in use
3356 * @pf_qmap: bitmap to get queue use count from
3357 * @lock: pointer to a mutex that protects access to pf_qmap
3358 * @size: size of the bitmap
3359 */
3360static u16
3361ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3362{
3363	unsigned long bit;
3364	u16 count = 0;
3365
3366	mutex_lock(lock);
3367	for_each_clear_bit(bit, pf_qmap, size)
3368		count++;
3369	mutex_unlock(lock);
3370
3371	return count;
3372}
3373
3374/**
3375 * ice_get_avail_txq_count - Get count of Tx queues in use
3376 * @pf: pointer to an ice_pf instance
3377 */
3378u16 ice_get_avail_txq_count(struct ice_pf *pf)
3379{
3380	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3381				     pf->max_pf_txqs);
3382}
3383
3384/**
3385 * ice_get_avail_rxq_count - Get count of Rx queues in use
3386 * @pf: pointer to an ice_pf instance
3387 */
3388u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3389{
3390	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3391				     pf->max_pf_rxqs);
3392}
3393
3394/**
3395 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3396 * @pf: board private structure to initialize
3397 */
3398static void ice_deinit_pf(struct ice_pf *pf)
3399{
3400	ice_service_task_stop(pf);
 
 
 
3401	mutex_destroy(&pf->sw_mutex);
3402	mutex_destroy(&pf->tc_mutex);
3403	mutex_destroy(&pf->avail_q_mutex);
3404
3405	if (pf->avail_txqs) {
3406		bitmap_free(pf->avail_txqs);
3407		pf->avail_txqs = NULL;
3408	}
3409
3410	if (pf->avail_rxqs) {
3411		bitmap_free(pf->avail_rxqs);
3412		pf->avail_rxqs = NULL;
3413	}
3414
3415	if (pf->ptp.clock)
3416		ptp_clock_unregister(pf->ptp.clock);
3417}
3418
3419/**
3420 * ice_set_pf_caps - set PFs capability flags
3421 * @pf: pointer to the PF instance
3422 */
3423static void ice_set_pf_caps(struct ice_pf *pf)
3424{
3425	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3426
3427	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3428	clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3429	if (func_caps->common_cap.rdma) {
3430		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3431		set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3432	}
3433	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3434	if (func_caps->common_cap.dcb)
3435		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3436	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3437	if (func_caps->common_cap.sr_iov_1_1) {
3438		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3439		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3440					      ICE_MAX_VF_COUNT);
3441	}
3442	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3443	if (func_caps->common_cap.rss_table_size)
3444		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3445
3446	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3447	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3448		u16 unused;
3449
3450		/* ctrl_vsi_idx will be set to a valid value when flow director
3451		 * is setup by ice_init_fdir
3452		 */
3453		pf->ctrl_vsi_idx = ICE_NO_VSI;
3454		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3455		/* force guaranteed filter pool for PF */
3456		ice_alloc_fd_guar_item(&pf->hw, &unused,
3457				       func_caps->fd_fltr_guar);
3458		/* force shared filter pool for PF */
3459		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3460				       func_caps->fd_fltr_best_effort);
3461	}
3462
3463	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3464	if (func_caps->common_cap.ieee_1588)
3465		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3466
3467	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3468	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3469}
3470
3471/**
3472 * ice_init_pf - Initialize general software structures (struct ice_pf)
3473 * @pf: board private structure to initialize
3474 */
3475static int ice_init_pf(struct ice_pf *pf)
3476{
3477	ice_set_pf_caps(pf);
 
3478
3479	mutex_init(&pf->sw_mutex);
3480	mutex_init(&pf->tc_mutex);
3481
3482	INIT_HLIST_HEAD(&pf->aq_wait_list);
3483	spin_lock_init(&pf->aq_wait_lock);
3484	init_waitqueue_head(&pf->aq_wait_queue);
 
 
3485
3486	init_waitqueue_head(&pf->reset_wait_queue);
 
3487
3488	/* setup service timer and periodic service task */
3489	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3490	pf->serv_tmr_period = HZ;
3491	INIT_WORK(&pf->serv_task, ice_service_task);
3492	clear_bit(ICE_SERVICE_SCHED, pf->state);
3493
3494	mutex_init(&pf->avail_q_mutex);
3495	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3496	if (!pf->avail_txqs)
3497		return -ENOMEM;
3498
3499	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3500	if (!pf->avail_rxqs) {
3501		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3502		pf->avail_txqs = NULL;
3503		return -ENOMEM;
3504	}
3505
3506	return 0;
3507}
3508
3509/**
3510 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3511 * @pf: board private structure
3512 *
3513 * compute the number of MSIX vectors required (v_budget) and request from
3514 * the OS. Return the number of vectors reserved or negative on failure
3515 */
3516static int ice_ena_msix_range(struct ice_pf *pf)
3517{
3518	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3519	struct device *dev = ice_pf_to_dev(pf);
3520	int needed, err, i;
3521
3522	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3523	num_cpus = num_online_cpus();
3524
3525	/* reserve for LAN miscellaneous handler */
3526	needed = ICE_MIN_LAN_OICR_MSIX;
3527	if (v_left < needed)
3528		goto no_hw_vecs_left_err;
3529	v_budget += needed;
3530	v_left -= needed;
3531
3532	/* reserve for flow director */
3533	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3534		needed = ICE_FDIR_MSIX;
3535		if (v_left < needed)
3536			goto no_hw_vecs_left_err;
3537		v_budget += needed;
3538		v_left -= needed;
3539	}
3540
3541	/* total used for non-traffic vectors */
3542	v_other = v_budget;
3543
3544	/* reserve vectors for LAN traffic */
3545	needed = num_cpus;
3546	if (v_left < needed)
3547		goto no_hw_vecs_left_err;
3548	pf->num_lan_msix = needed;
3549	v_budget += needed;
3550	v_left -= needed;
3551
3552	/* reserve vectors for RDMA auxiliary driver */
3553	if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3554		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3555		if (v_left < needed)
3556			goto no_hw_vecs_left_err;
3557		pf->num_rdma_msix = needed;
3558		v_budget += needed;
3559		v_left -= needed;
3560	}
3561
3562	pf->msix_entries = devm_kcalloc(dev, v_budget,
3563					sizeof(*pf->msix_entries), GFP_KERNEL);
3564	if (!pf->msix_entries) {
3565		err = -ENOMEM;
3566		goto exit_err;
3567	}
3568
3569	for (i = 0; i < v_budget; i++)
3570		pf->msix_entries[i].entry = i;
3571
3572	/* actually reserve the vectors */
3573	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3574					 ICE_MIN_MSIX, v_budget);
 
3575	if (v_actual < 0) {
3576		dev_err(dev, "unable to reserve MSI-X vectors\n");
3577		err = v_actual;
3578		goto msix_err;
3579	}
3580
3581	if (v_actual < v_budget) {
3582		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
 
3583			 v_budget, v_actual);
3584
3585		if (v_actual < ICE_MIN_MSIX) {
3586			/* error if we can't get minimum vectors */
 
 
 
3587			pci_disable_msix(pf->pdev);
3588			err = -ERANGE;
3589			goto msix_err;
3590		} else {
3591			int v_remain = v_actual - v_other;
3592			int v_rdma = 0, v_min_rdma = 0;
3593
3594			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3595				/* Need at least 1 interrupt in addition to
3596				 * AEQ MSIX
3597				 */
3598				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3599				v_min_rdma = ICE_MIN_RDMA_MSIX;
3600			}
3601
3602			if (v_actual == ICE_MIN_MSIX ||
3603			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3604				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3605				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3606
3607				pf->num_rdma_msix = 0;
3608				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3609			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3610				   (v_remain - v_rdma < v_rdma)) {
3611				/* Support minimum RDMA and give remaining
3612				 * vectors to LAN MSIX
3613				 */
3614				pf->num_rdma_msix = v_min_rdma;
3615				pf->num_lan_msix = v_remain - v_min_rdma;
3616			} else {
3617				/* Split remaining MSIX with RDMA after
3618				 * accounting for AEQ MSIX
3619				 */
3620				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3621						    ICE_RDMA_NUM_AEQ_MSIX;
3622				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3623			}
3624
3625			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3626				   pf->num_lan_msix);
3627
3628			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3629				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3630					   pf->num_rdma_msix);
3631		}
3632	}
3633
3634	return v_actual;
3635
3636msix_err:
3637	devm_kfree(dev, pf->msix_entries);
3638	goto exit_err;
3639
3640no_hw_vecs_left_err:
3641	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3642		needed, v_left);
3643	err = -ERANGE;
3644exit_err:
3645	pf->num_rdma_msix = 0;
3646	pf->num_lan_msix = 0;
 
3647	return err;
3648}
3649
3650/**
3651 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3652 * @pf: board private structure
3653 */
3654static void ice_dis_msix(struct ice_pf *pf)
3655{
3656	pci_disable_msix(pf->pdev);
3657	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3658	pf->msix_entries = NULL;
3659}
3660
3661/**
3662 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3663 * @pf: board private structure
3664 */
3665static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3666{
3667	ice_dis_msix(pf);
3668
3669	if (pf->irq_tracker) {
3670		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3671		pf->irq_tracker = NULL;
3672	}
3673}
3674
3675/**
3676 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3677 * @pf: board private structure to initialize
3678 */
3679static int ice_init_interrupt_scheme(struct ice_pf *pf)
3680{
3681	int vectors;
 
3682
3683	vectors = ice_ena_msix_range(pf);
 
 
 
3684
3685	if (vectors < 0)
3686		return vectors;
3687
3688	/* set up vector assignment tracking */
3689	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3690				       struct_size(pf->irq_tracker, list, vectors),
3691				       GFP_KERNEL);
3692	if (!pf->irq_tracker) {
3693		ice_dis_msix(pf);
3694		return -ENOMEM;
3695	}
3696
3697	/* populate SW interrupts pool with number of OS granted IRQs. */
3698	pf->num_avail_sw_msix = (u16)vectors;
3699	pf->irq_tracker->num_entries = (u16)vectors;
3700	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3701
3702	return 0;
3703}
3704
3705/**
3706 * ice_is_wol_supported - check if WoL is supported
3707 * @hw: pointer to hardware info
3708 *
3709 * Check if WoL is supported based on the HW configuration.
3710 * Returns true if NVM supports and enables WoL for this port, false otherwise
3711 */
3712bool ice_is_wol_supported(struct ice_hw *hw)
3713{
3714	u16 wol_ctrl;
3715
3716	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3717	 * word) indicates WoL is not supported on the corresponding PF ID.
3718	 */
3719	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3720		return false;
3721
3722	return !(BIT(hw->port_info->lport) & wol_ctrl);
3723}
3724
3725/**
3726 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3727 * @vsi: VSI being changed
3728 * @new_rx: new number of Rx queues
3729 * @new_tx: new number of Tx queues
3730 *
3731 * Only change the number of queues if new_tx, or new_rx is non-0.
3732 *
3733 * Returns 0 on success.
3734 */
3735int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3736{
3737	struct ice_pf *pf = vsi->back;
3738	int err = 0, timeout = 50;
3739
3740	if (!new_rx && !new_tx)
3741		return -EINVAL;
3742
3743	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3744		timeout--;
3745		if (!timeout)
3746			return -EBUSY;
3747		usleep_range(1000, 2000);
3748	}
3749
3750	if (new_tx)
3751		vsi->req_txq = (u16)new_tx;
3752	if (new_rx)
3753		vsi->req_rxq = (u16)new_rx;
3754
3755	/* set for the next time the netdev is started */
3756	if (!netif_running(vsi->netdev)) {
3757		ice_vsi_rebuild(vsi, false);
3758		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3759		goto done;
3760	}
3761
3762	ice_vsi_close(vsi);
3763	ice_vsi_rebuild(vsi, false);
3764	ice_pf_dcb_recfg(pf);
3765	ice_vsi_open(vsi);
3766done:
3767	clear_bit(ICE_CFG_BUSY, pf->state);
3768	return err;
3769}
3770
3771/**
3772 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3773 * @pf: PF to configure
3774 *
3775 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3776 * VSI can still Tx/Rx VLAN tagged packets.
3777 */
3778static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3779{
3780	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3781	struct ice_vsi_ctx *ctxt;
3782	enum ice_status status;
3783	struct ice_hw *hw;
3784
3785	if (!vsi)
3786		return;
3787
3788	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3789	if (!ctxt)
3790		return;
3791
3792	hw = &pf->hw;
3793	ctxt->info = vsi->info;
3794
3795	ctxt->info.valid_sections =
3796		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3797			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3798			    ICE_AQ_VSI_PROP_SW_VALID);
3799
3800	/* disable VLAN anti-spoof */
3801	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3802				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3803
3804	/* disable VLAN pruning and keep all other settings */
3805	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3806
3807	/* allow all VLANs on Tx and don't strip on Rx */
3808	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3809		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3810
3811	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3812	if (status) {
3813		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3814			ice_stat_str(status),
3815			ice_aq_str(hw->adminq.sq_last_status));
3816	} else {
3817		vsi->info.sec_flags = ctxt->info.sec_flags;
3818		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3819		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3820	}
3821
3822	kfree(ctxt);
3823}
3824
3825/**
3826 * ice_log_pkg_init - log result of DDP package load
3827 * @hw: pointer to hardware info
3828 * @status: status of package load
3829 */
3830static void
3831ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3832{
3833	struct ice_pf *pf = (struct ice_pf *)hw->back;
3834	struct device *dev = ice_pf_to_dev(pf);
3835
3836	switch (*status) {
3837	case ICE_SUCCESS:
3838		/* The package download AdminQ command returned success because
3839		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3840		 * already a package loaded on the device.
3841		 */
3842		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3843		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3844		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3845		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3846		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3847			    sizeof(hw->pkg_name))) {
3848			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3849				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3850					 hw->active_pkg_name,
3851					 hw->active_pkg_ver.major,
3852					 hw->active_pkg_ver.minor,
3853					 hw->active_pkg_ver.update,
3854					 hw->active_pkg_ver.draft);
3855			else
3856				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3857					 hw->active_pkg_name,
3858					 hw->active_pkg_ver.major,
3859					 hw->active_pkg_ver.minor,
3860					 hw->active_pkg_ver.update,
3861					 hw->active_pkg_ver.draft);
3862		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3863			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3864			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3865				hw->active_pkg_name,
3866				hw->active_pkg_ver.major,
3867				hw->active_pkg_ver.minor,
3868				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3869			*status = ICE_ERR_NOT_SUPPORTED;
3870		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3871			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3872			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3873				 hw->active_pkg_name,
3874				 hw->active_pkg_ver.major,
3875				 hw->active_pkg_ver.minor,
3876				 hw->active_pkg_ver.update,
3877				 hw->active_pkg_ver.draft,
3878				 hw->pkg_name,
3879				 hw->pkg_ver.major,
3880				 hw->pkg_ver.minor,
3881				 hw->pkg_ver.update,
3882				 hw->pkg_ver.draft);
3883		} else {
3884			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3885			*status = ICE_ERR_NOT_SUPPORTED;
3886		}
3887		break;
3888	case ICE_ERR_FW_DDP_MISMATCH:
3889		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3890		break;
3891	case ICE_ERR_BUF_TOO_SHORT:
3892	case ICE_ERR_CFG:
3893		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3894		break;
3895	case ICE_ERR_NOT_SUPPORTED:
3896		/* Package File version not supported */
3897		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3898		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3899		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3900			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3901		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3902			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3903			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3904			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3905				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3906		break;
3907	case ICE_ERR_AQ_ERROR:
3908		switch (hw->pkg_dwnld_status) {
3909		case ICE_AQ_RC_ENOSEC:
3910		case ICE_AQ_RC_EBADSIG:
3911			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3912			return;
3913		case ICE_AQ_RC_ESVN:
3914			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3915			return;
3916		case ICE_AQ_RC_EBADMAN:
3917		case ICE_AQ_RC_EBADBUF:
3918			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3919			/* poll for reset to complete */
3920			if (ice_check_reset(hw))
3921				dev_err(dev, "Error resetting device. Please reload the driver\n");
3922			return;
3923		default:
3924			break;
3925		}
3926		fallthrough;
3927	default:
3928		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3929			*status);
3930		break;
3931	}
3932}
3933
3934/**
3935 * ice_load_pkg - load/reload the DDP Package file
3936 * @firmware: firmware structure when firmware requested or NULL for reload
3937 * @pf: pointer to the PF instance
3938 *
3939 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3940 * initialize HW tables.
3941 */
3942static void
3943ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3944{
3945	enum ice_status status = ICE_ERR_PARAM;
3946	struct device *dev = ice_pf_to_dev(pf);
3947	struct ice_hw *hw = &pf->hw;
3948
3949	/* Load DDP Package */
3950	if (firmware && !hw->pkg_copy) {
3951		status = ice_copy_and_init_pkg(hw, firmware->data,
3952					       firmware->size);
3953		ice_log_pkg_init(hw, &status);
3954	} else if (!firmware && hw->pkg_copy) {
3955		/* Reload package during rebuild after CORER/GLOBR reset */
3956		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3957		ice_log_pkg_init(hw, &status);
3958	} else {
3959		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3960	}
3961
3962	if (status) {
3963		/* Safe Mode */
3964		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3965		return;
3966	}
3967
3968	/* Successful download package is the precondition for advanced
3969	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3970	 */
3971	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3972}
3973
3974/**
3975 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3976 * @pf: pointer to the PF structure
3977 *
3978 * There is no error returned here because the driver should be able to handle
3979 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3980 * specifically with Tx.
3981 */
3982static void ice_verify_cacheline_size(struct ice_pf *pf)
3983{
3984	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3985		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3986			 ICE_CACHE_LINE_BYTES);
3987}
3988
3989/**
3990 * ice_send_version - update firmware with driver version
3991 * @pf: PF struct
3992 *
3993 * Returns ICE_SUCCESS on success, else error code
3994 */
3995static enum ice_status ice_send_version(struct ice_pf *pf)
3996{
3997	struct ice_driver_ver dv;
3998
3999	dv.major_ver = 0xff;
4000	dv.minor_ver = 0xff;
4001	dv.build_ver = 0xff;
4002	dv.subbuild_ver = 0;
4003	strscpy((char *)dv.driver_string, UTS_RELEASE,
4004		sizeof(dv.driver_string));
4005	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4006}
4007
4008/**
4009 * ice_init_fdir - Initialize flow director VSI and configuration
4010 * @pf: pointer to the PF instance
4011 *
4012 * returns 0 on success, negative on error
4013 */
4014static int ice_init_fdir(struct ice_pf *pf)
4015{
4016	struct device *dev = ice_pf_to_dev(pf);
4017	struct ice_vsi *ctrl_vsi;
4018	int err;
4019
4020	/* Side Band Flow Director needs to have a control VSI.
4021	 * Allocate it and store it in the PF.
4022	 */
4023	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4024	if (!ctrl_vsi) {
4025		dev_dbg(dev, "could not create control VSI\n");
4026		return -ENOMEM;
4027	}
4028
4029	err = ice_vsi_open_ctrl(ctrl_vsi);
4030	if (err) {
4031		dev_dbg(dev, "could not open control VSI\n");
4032		goto err_vsi_open;
4033	}
4034
4035	mutex_init(&pf->hw.fdir_fltr_lock);
4036
4037	err = ice_fdir_create_dflt_rules(pf);
4038	if (err)
4039		goto err_fdir_rule;
4040
4041	return 0;
4042
4043err_fdir_rule:
4044	ice_fdir_release_flows(&pf->hw);
4045	ice_vsi_close(ctrl_vsi);
4046err_vsi_open:
4047	ice_vsi_release(ctrl_vsi);
4048	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4049		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4050		pf->ctrl_vsi_idx = ICE_NO_VSI;
4051	}
4052	return err;
4053}
4054
4055/**
4056 * ice_get_opt_fw_name - return optional firmware file name or NULL
4057 * @pf: pointer to the PF instance
4058 */
4059static char *ice_get_opt_fw_name(struct ice_pf *pf)
4060{
4061	/* Optional firmware name same as default with additional dash
4062	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4063	 */
4064	struct pci_dev *pdev = pf->pdev;
4065	char *opt_fw_filename;
4066	u64 dsn;
4067
4068	/* Determine the name of the optional file using the DSN (two
4069	 * dwords following the start of the DSN Capability).
4070	 */
4071	dsn = pci_get_dsn(pdev);
4072	if (!dsn)
4073		return NULL;
4074
4075	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4076	if (!opt_fw_filename)
4077		return NULL;
4078
4079	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4080		 ICE_DDP_PKG_PATH, dsn);
4081
4082	return opt_fw_filename;
4083}
4084
4085/**
4086 * ice_request_fw - Device initialization routine
4087 * @pf: pointer to the PF instance
4088 */
4089static void ice_request_fw(struct ice_pf *pf)
4090{
4091	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4092	const struct firmware *firmware = NULL;
4093	struct device *dev = ice_pf_to_dev(pf);
4094	int err = 0;
4095
4096	/* optional device-specific DDP (if present) overrides the default DDP
4097	 * package file. kernel logs a debug message if the file doesn't exist,
4098	 * and warning messages for other errors.
4099	 */
4100	if (opt_fw_filename) {
4101		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4102		if (err) {
4103			kfree(opt_fw_filename);
4104			goto dflt_pkg_load;
4105		}
4106
4107		/* request for firmware was successful. Download to device */
4108		ice_load_pkg(firmware, pf);
4109		kfree(opt_fw_filename);
4110		release_firmware(firmware);
4111		return;
4112	}
4113
4114dflt_pkg_load:
4115	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4116	if (err) {
4117		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4118		return;
4119	}
4120
4121	/* request for firmware was successful. Download to device */
4122	ice_load_pkg(firmware, pf);
4123	release_firmware(firmware);
4124}
4125
4126/**
4127 * ice_print_wake_reason - show the wake up cause in the log
4128 * @pf: pointer to the PF struct
4129 */
4130static void ice_print_wake_reason(struct ice_pf *pf)
4131{
4132	u32 wus = pf->wakeup_reason;
4133	const char *wake_str;
4134
4135	/* if no wake event, nothing to print */
4136	if (!wus)
4137		return;
4138
4139	if (wus & PFPM_WUS_LNKC_M)
4140		wake_str = "Link\n";
4141	else if (wus & PFPM_WUS_MAG_M)
4142		wake_str = "Magic Packet\n";
4143	else if (wus & PFPM_WUS_MNG_M)
4144		wake_str = "Management\n";
4145	else if (wus & PFPM_WUS_FW_RST_WK_M)
4146		wake_str = "Firmware Reset\n";
4147	else
4148		wake_str = "Unknown\n";
4149
4150	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4151}
4152
4153/**
4154 * ice_register_netdev - register netdev and devlink port
4155 * @pf: pointer to the PF struct
4156 */
4157static int ice_register_netdev(struct ice_pf *pf)
4158{
4159	struct ice_vsi *vsi;
4160	int err = 0;
4161
4162	vsi = ice_get_main_vsi(pf);
4163	if (!vsi || !vsi->netdev)
4164		return -EIO;
4165
4166	err = register_netdev(vsi->netdev);
4167	if (err)
4168		goto err_register_netdev;
4169
4170	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4171	netif_carrier_off(vsi->netdev);
4172	netif_tx_stop_all_queues(vsi->netdev);
4173	err = ice_devlink_create_port(vsi);
4174	if (err)
4175		goto err_devlink_create;
4176
4177	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
4178
4179	return 0;
4180err_devlink_create:
4181	unregister_netdev(vsi->netdev);
4182	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4183err_register_netdev:
4184	free_netdev(vsi->netdev);
4185	vsi->netdev = NULL;
4186	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4187	return err;
4188}
4189
4190/**
4191 * ice_probe - Device initialization routine
4192 * @pdev: PCI device information struct
4193 * @ent: entry in ice_pci_tbl
4194 *
4195 * Returns 0 on success, negative on failure
4196 */
4197static int
4198ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4199{
4200	struct device *dev = &pdev->dev;
4201	struct ice_pf *pf;
4202	struct ice_hw *hw;
4203	int i, err;
4204
4205	if (pdev->is_virtfn) {
4206		dev_err(dev, "can't probe a virtual function\n");
4207		return -EINVAL;
4208	}
4209
4210	/* this driver uses devres, see
4211	 * Documentation/driver-api/driver-model/devres.rst
4212	 */
4213	err = pcim_enable_device(pdev);
4214	if (err)
4215		return err;
4216
4217	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4218	if (err) {
4219		dev_err(dev, "BAR0 I/O map error %d\n", err);
4220		return err;
4221	}
4222
4223	pf = ice_allocate_pf(dev);
4224	if (!pf)
4225		return -ENOMEM;
4226
4227	/* initialize Auxiliary index to invalid value */
4228	pf->aux_idx = -1;
4229
4230	/* set up for high or low DMA */
4231	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4232	if (err)
4233		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4234	if (err) {
4235		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4236		return err;
4237	}
4238
4239	pci_enable_pcie_error_reporting(pdev);
4240	pci_set_master(pdev);
4241
4242	pf->pdev = pdev;
4243	pci_set_drvdata(pdev, pf);
4244	set_bit(ICE_DOWN, pf->state);
4245	/* Disable service task until DOWN bit is cleared */
4246	set_bit(ICE_SERVICE_DIS, pf->state);
4247
4248	hw = &pf->hw;
4249	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4250	pci_save_state(pdev);
4251
4252	hw->back = pf;
4253	hw->vendor_id = pdev->vendor;
4254	hw->device_id = pdev->device;
4255	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4256	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4257	hw->subsystem_device_id = pdev->subsystem_device;
4258	hw->bus.device = PCI_SLOT(pdev->devfn);
4259	hw->bus.func = PCI_FUNC(pdev->devfn);
4260	ice_set_ctrlq_len(hw);
4261
4262	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4263
4264	err = ice_devlink_register(pf);
4265	if (err) {
4266		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4267		goto err_exit_unroll;
4268	}
4269
4270#ifndef CONFIG_DYNAMIC_DEBUG
4271	if (debug < -1)
4272		hw->debug_mask = debug;
4273#endif
4274
4275	err = ice_init_hw(hw);
4276	if (err) {
4277		dev_err(dev, "ice_init_hw failed: %d\n", err);
4278		err = -EIO;
4279		goto err_exit_unroll;
4280	}
4281
4282	ice_request_fw(pf);
4283
4284	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4285	 * set in pf->state, which will cause ice_is_safe_mode to return
4286	 * true
4287	 */
4288	if (ice_is_safe_mode(pf)) {
4289		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4290		/* we already got function/device capabilities but these don't
4291		 * reflect what the driver needs to do in safe mode. Instead of
4292		 * adding conditional logic everywhere to ignore these
4293		 * device/function capabilities, override them.
4294		 */
4295		ice_set_safe_mode_caps(hw);
4296	}
4297
4298	err = ice_init_pf(pf);
4299	if (err) {
4300		dev_err(dev, "ice_init_pf failed: %d\n", err);
4301		goto err_init_pf_unroll;
4302	}
4303
4304	ice_devlink_init_regions(pf);
4305
4306	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4307	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4308	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4309	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4310	i = 0;
4311	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4312		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4313			pf->hw.tnl.valid_count[TNL_VXLAN];
4314		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4315			UDP_TUNNEL_TYPE_VXLAN;
4316		i++;
4317	}
4318	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4319		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4320			pf->hw.tnl.valid_count[TNL_GENEVE];
4321		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4322			UDP_TUNNEL_TYPE_GENEVE;
4323		i++;
4324	}
4325
4326	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
 
4327	if (!pf->num_alloc_vsi) {
4328		err = -EIO;
4329		goto err_init_pf_unroll;
4330	}
4331	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4332		dev_warn(&pf->pdev->dev,
4333			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4334			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4335		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4336	}
4337
4338	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4339			       GFP_KERNEL);
4340	if (!pf->vsi) {
4341		err = -ENOMEM;
4342		goto err_init_pf_unroll;
4343	}
4344
4345	err = ice_init_interrupt_scheme(pf);
4346	if (err) {
4347		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
 
4348		err = -EIO;
4349		goto err_init_vsi_unroll;
4350	}
4351
4352	/* In case of MSIX we are going to setup the misc vector right here
4353	 * to handle admin queue events etc. In case of legacy and MSI
4354	 * the misc functionality and queue processing is combined in
4355	 * the same vector and that gets setup at open.
4356	 */
4357	err = ice_req_irq_msix_misc(pf);
4358	if (err) {
4359		dev_err(dev, "setup of misc vector failed: %d\n", err);
4360		goto err_init_interrupt_unroll;
 
 
 
4361	}
4362
4363	/* create switch struct for the switch element created by FW on boot */
4364	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
 
4365	if (!pf->first_sw) {
4366		err = -ENOMEM;
4367		goto err_msix_misc_unroll;
4368	}
4369
4370	if (hw->evb_veb)
4371		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4372	else
4373		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4374
4375	pf->first_sw->pf = pf;
4376
4377	/* record the sw_id available for later use */
4378	pf->first_sw->sw_id = hw->port_info->sw_id;
4379
4380	err = ice_setup_pf_sw(pf);
4381	if (err) {
4382		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
 
4383		goto err_alloc_sw_unroll;
4384	}
4385
4386	clear_bit(ICE_SERVICE_DIS, pf->state);
4387
4388	/* tell the firmware we are up */
4389	err = ice_send_version(pf);
4390	if (err) {
4391		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4392			UTS_RELEASE, err);
4393		goto err_send_version_unroll;
4394	}
4395
4396	/* since everything is good, start the service timer */
4397	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4398
4399	err = ice_init_link_events(pf->hw.port_info);
4400	if (err) {
4401		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4402		goto err_send_version_unroll;
4403	}
4404
4405	/* not a fatal error if this fails */
4406	err = ice_init_nvm_phy_type(pf->hw.port_info);
4407	if (err)
4408		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4409
4410	/* not a fatal error if this fails */
4411	err = ice_update_link_info(pf->hw.port_info);
4412	if (err)
4413		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4414
4415	ice_init_link_dflt_override(pf->hw.port_info);
4416
4417	ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4418
4419	/* if media available, initialize PHY settings */
4420	if (pf->hw.port_info->phy.link_info.link_info &
4421	    ICE_AQ_MEDIA_AVAILABLE) {
4422		/* not a fatal error if this fails */
4423		err = ice_init_phy_user_cfg(pf->hw.port_info);
4424		if (err)
4425			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4426
4427		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4428			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4429
4430			if (vsi)
4431				ice_configure_phy(vsi);
4432		}
4433	} else {
4434		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4435	}
4436
4437	ice_verify_cacheline_size(pf);
4438
4439	/* Save wakeup reason register for later use */
4440	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4441
4442	/* check for a power management event */
4443	ice_print_wake_reason(pf);
4444
4445	/* clear wake status, all bits */
4446	wr32(hw, PFPM_WUS, U32_MAX);
4447
4448	/* Disable WoL at init, wait for user to enable */
4449	device_set_wakeup_enable(dev, false);
4450
4451	if (ice_is_safe_mode(pf)) {
4452		ice_set_safe_mode_vlan_cfg(pf);
4453		goto probe_done;
4454	}
4455
4456	/* initialize DDP driven features */
4457	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4458		ice_ptp_init(pf);
4459
4460	/* Note: Flow director init failure is non-fatal to load */
4461	if (ice_init_fdir(pf))
4462		dev_err(dev, "could not initialize flow director\n");
4463
4464	/* Note: DCB init failure is non-fatal to load */
4465	if (ice_init_pf_dcb(pf, false)) {
4466		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4467		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4468	} else {
4469		ice_cfg_lldp_mib_change(&pf->hw, true);
4470	}
4471
4472	if (ice_init_lag(pf))
4473		dev_warn(dev, "Failed to init link aggregation support\n");
4474
4475	/* print PCI link speed and width */
4476	pcie_print_link_status(pf->pdev);
4477
4478probe_done:
4479	err = ice_register_netdev(pf);
4480	if (err)
4481		goto err_netdev_reg;
4482
4483	/* ready to go, so clear down state bit */
4484	clear_bit(ICE_DOWN, pf->state);
4485	if (ice_is_aux_ena(pf)) {
4486		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4487		if (pf->aux_idx < 0) {
4488			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4489			err = -ENOMEM;
4490			goto err_netdev_reg;
4491		}
4492
4493		err = ice_init_rdma(pf);
4494		if (err) {
4495			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4496			err = -EIO;
4497			goto err_init_aux_unroll;
4498		}
4499	} else {
4500		dev_warn(dev, "RDMA is not supported on this device\n");
4501	}
4502
4503	return 0;
4504
4505err_init_aux_unroll:
4506	pf->adev = NULL;
4507	ida_free(&ice_aux_ida, pf->aux_idx);
4508err_netdev_reg:
4509err_send_version_unroll:
4510	ice_vsi_release_all(pf);
4511err_alloc_sw_unroll:
4512	set_bit(ICE_SERVICE_DIS, pf->state);
4513	set_bit(ICE_DOWN, pf->state);
4514	devm_kfree(dev, pf->first_sw);
4515err_msix_misc_unroll:
4516	ice_free_irq_msix_misc(pf);
4517err_init_interrupt_unroll:
4518	ice_clear_interrupt_scheme(pf);
4519err_init_vsi_unroll:
4520	devm_kfree(dev, pf->vsi);
4521err_init_pf_unroll:
4522	ice_deinit_pf(pf);
4523	ice_devlink_destroy_regions(pf);
4524	ice_deinit_hw(hw);
4525err_exit_unroll:
4526	ice_devlink_unregister(pf);
4527	pci_disable_pcie_error_reporting(pdev);
4528	pci_disable_device(pdev);
4529	return err;
4530}
4531
4532/**
4533 * ice_set_wake - enable or disable Wake on LAN
4534 * @pf: pointer to the PF struct
4535 *
4536 * Simple helper for WoL control
4537 */
4538static void ice_set_wake(struct ice_pf *pf)
4539{
4540	struct ice_hw *hw = &pf->hw;
4541	bool wol = pf->wol_ena;
4542
4543	/* clear wake state, otherwise new wake events won't fire */
4544	wr32(hw, PFPM_WUS, U32_MAX);
4545
4546	/* enable / disable APM wake up, no RMW needed */
4547	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4548
4549	/* set magic packet filter enabled */
4550	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4551}
4552
4553/**
4554 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4555 * @pf: pointer to the PF struct
4556 *
4557 * Issue firmware command to enable multicast magic wake, making
4558 * sure that any locally administered address (LAA) is used for
4559 * wake, and that PF reset doesn't undo the LAA.
4560 */
4561static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4562{
4563	struct device *dev = ice_pf_to_dev(pf);
4564	struct ice_hw *hw = &pf->hw;
4565	enum ice_status status;
4566	u8 mac_addr[ETH_ALEN];
4567	struct ice_vsi *vsi;
4568	u8 flags;
4569
4570	if (!pf->wol_ena)
4571		return;
4572
4573	vsi = ice_get_main_vsi(pf);
4574	if (!vsi)
4575		return;
4576
4577	/* Get current MAC address in case it's an LAA */
4578	if (vsi->netdev)
4579		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4580	else
4581		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4582
4583	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4584		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4585		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4586
4587	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4588	if (status)
4589		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4590			ice_stat_str(status),
4591			ice_aq_str(hw->adminq.sq_last_status));
4592}
4593
4594/**
4595 * ice_remove - Device removal routine
4596 * @pdev: PCI device information struct
4597 */
4598static void ice_remove(struct pci_dev *pdev)
4599{
4600	struct ice_pf *pf = pci_get_drvdata(pdev);
4601	int i;
 
4602
4603	if (!pf)
4604		return;
4605
4606	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4607		if (!ice_is_reset_in_progress(pf->state))
4608			break;
4609		msleep(100);
4610	}
4611
4612	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4613		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4614		ice_free_vfs(pf);
4615	}
4616
4617	ice_service_task_stop(pf);
4618
4619	ice_aq_cancel_waiting_tasks(pf);
4620	ice_unplug_aux_dev(pf);
4621	if (pf->aux_idx >= 0)
4622		ida_free(&ice_aux_ida, pf->aux_idx);
4623	set_bit(ICE_DOWN, pf->state);
4624
4625	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4626	ice_deinit_lag(pf);
4627	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4628		ice_ptp_release(pf);
4629	if (!ice_is_safe_mode(pf))
4630		ice_remove_arfs(pf);
4631	ice_setup_mc_magic_wake(pf);
4632	ice_vsi_release_all(pf);
4633	ice_set_wake(pf);
4634	ice_free_irq_msix_misc(pf);
4635	ice_for_each_vsi(pf, i) {
4636		if (!pf->vsi[i])
4637			continue;
4638		ice_vsi_free_q_vectors(pf->vsi[i]);
4639	}
4640	ice_deinit_pf(pf);
4641	ice_devlink_destroy_regions(pf);
4642	ice_deinit_hw(&pf->hw);
4643	ice_devlink_unregister(pf);
4644
4645	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4646	 * do it via ice_schedule_reset() since there is no need to rebuild
4647	 * and the service task is already stopped.
4648	 */
4649	ice_reset(&pf->hw, ICE_RESET_PFR);
4650	pci_wait_for_pending_transaction(pdev);
4651	ice_clear_interrupt_scheme(pf);
4652	pci_disable_pcie_error_reporting(pdev);
4653	pci_disable_device(pdev);
4654}
4655
4656/**
4657 * ice_shutdown - PCI callback for shutting down device
4658 * @pdev: PCI device information struct
4659 */
4660static void ice_shutdown(struct pci_dev *pdev)
4661{
4662	struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664	ice_remove(pdev);
4665
4666	if (system_state == SYSTEM_POWER_OFF) {
4667		pci_wake_from_d3(pdev, pf->wol_ena);
4668		pci_set_power_state(pdev, PCI_D3hot);
4669	}
4670}
4671
4672#ifdef CONFIG_PM
4673/**
4674 * ice_prepare_for_shutdown - prep for PCI shutdown
4675 * @pf: board private structure
4676 *
4677 * Inform or close all dependent features in prep for PCI device shutdown
4678 */
4679static void ice_prepare_for_shutdown(struct ice_pf *pf)
4680{
4681	struct ice_hw *hw = &pf->hw;
4682	u32 v;
4683
4684	/* Notify VFs of impending reset */
4685	if (ice_check_sq_alive(hw, &hw->mailboxq))
4686		ice_vc_notify_reset(pf);
4687
4688	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4689
4690	/* disable the VSIs and their queues that are not already DOWN */
4691	ice_pf_dis_all_vsi(pf, false);
4692
4693	ice_for_each_vsi(pf, v)
4694		if (pf->vsi[v])
4695			pf->vsi[v]->vsi_num = 0;
4696
4697	ice_shutdown_all_ctrlq(hw);
4698}
4699
4700/**
4701 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4702 * @pf: board private structure to reinitialize
4703 *
4704 * This routine reinitialize interrupt scheme that was cleared during
4705 * power management suspend callback.
4706 *
4707 * This should be called during resume routine to re-allocate the q_vectors
4708 * and reacquire interrupts.
4709 */
4710static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4711{
4712	struct device *dev = ice_pf_to_dev(pf);
4713	int ret, v;
4714
4715	/* Since we clear MSIX flag during suspend, we need to
4716	 * set it back during resume...
4717	 */
4718
4719	ret = ice_init_interrupt_scheme(pf);
4720	if (ret) {
4721		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4722		return ret;
4723	}
4724
4725	/* Remap vectors and rings, after successful re-init interrupts */
4726	ice_for_each_vsi(pf, v) {
4727		if (!pf->vsi[v])
4728			continue;
4729
4730		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4731		if (ret)
4732			goto err_reinit;
4733		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4734	}
4735
4736	ret = ice_req_irq_msix_misc(pf);
4737	if (ret) {
4738		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4739			ret);
4740		goto err_reinit;
4741	}
4742
4743	return 0;
4744
4745err_reinit:
4746	while (v--)
4747		if (pf->vsi[v])
4748			ice_vsi_free_q_vectors(pf->vsi[v]);
4749
4750	return ret;
4751}
4752
4753/**
4754 * ice_suspend
4755 * @dev: generic device information structure
4756 *
4757 * Power Management callback to quiesce the device and prepare
4758 * for D3 transition.
4759 */
4760static int __maybe_unused ice_suspend(struct device *dev)
4761{
4762	struct pci_dev *pdev = to_pci_dev(dev);
4763	struct ice_pf *pf;
4764	int disabled, v;
4765
4766	pf = pci_get_drvdata(pdev);
4767
4768	if (!ice_pf_state_is_nominal(pf)) {
4769		dev_err(dev, "Device is not ready, no need to suspend it\n");
4770		return -EBUSY;
4771	}
4772
4773	/* Stop watchdog tasks until resume completion.
4774	 * Even though it is most likely that the service task is
4775	 * disabled if the device is suspended or down, the service task's
4776	 * state is controlled by a different state bit, and we should
4777	 * store and honor whatever state that bit is in at this point.
4778	 */
4779	disabled = ice_service_task_stop(pf);
4780
4781	ice_unplug_aux_dev(pf);
4782
4783	/* Already suspended?, then there is nothing to do */
4784	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4785		if (!disabled)
4786			ice_service_task_restart(pf);
4787		return 0;
4788	}
4789
4790	if (test_bit(ICE_DOWN, pf->state) ||
4791	    ice_is_reset_in_progress(pf->state)) {
4792		dev_err(dev, "can't suspend device in reset or already down\n");
4793		if (!disabled)
4794			ice_service_task_restart(pf);
4795		return 0;
4796	}
4797
4798	ice_setup_mc_magic_wake(pf);
4799
4800	ice_prepare_for_shutdown(pf);
4801
4802	ice_set_wake(pf);
4803
4804	/* Free vectors, clear the interrupt scheme and release IRQs
4805	 * for proper hibernation, especially with large number of CPUs.
4806	 * Otherwise hibernation might fail when mapping all the vectors back
4807	 * to CPU0.
4808	 */
4809	ice_free_irq_msix_misc(pf);
4810	ice_for_each_vsi(pf, v) {
4811		if (!pf->vsi[v])
4812			continue;
4813		ice_vsi_free_q_vectors(pf->vsi[v]);
4814	}
4815	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4816	ice_clear_interrupt_scheme(pf);
4817
4818	pci_save_state(pdev);
4819	pci_wake_from_d3(pdev, pf->wol_ena);
4820	pci_set_power_state(pdev, PCI_D3hot);
4821	return 0;
4822}
4823
4824/**
4825 * ice_resume - PM callback for waking up from D3
4826 * @dev: generic device information structure
4827 */
4828static int __maybe_unused ice_resume(struct device *dev)
4829{
4830	struct pci_dev *pdev = to_pci_dev(dev);
4831	enum ice_reset_req reset_type;
4832	struct ice_pf *pf;
4833	struct ice_hw *hw;
4834	int ret;
4835
4836	pci_set_power_state(pdev, PCI_D0);
4837	pci_restore_state(pdev);
4838	pci_save_state(pdev);
4839
4840	if (!pci_device_is_present(pdev))
4841		return -ENODEV;
4842
4843	ret = pci_enable_device_mem(pdev);
4844	if (ret) {
4845		dev_err(dev, "Cannot enable device after suspend\n");
4846		return ret;
4847	}
4848
4849	pf = pci_get_drvdata(pdev);
4850	hw = &pf->hw;
4851
4852	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4853	ice_print_wake_reason(pf);
4854
4855	/* We cleared the interrupt scheme when we suspended, so we need to
4856	 * restore it now to resume device functionality.
4857	 */
4858	ret = ice_reinit_interrupt_scheme(pf);
4859	if (ret)
4860		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4861
4862	clear_bit(ICE_DOWN, pf->state);
4863	/* Now perform PF reset and rebuild */
4864	reset_type = ICE_RESET_PFR;
4865	/* re-enable service task for reset, but allow reset to schedule it */
4866	clear_bit(ICE_SERVICE_DIS, pf->state);
4867
4868	if (ice_schedule_reset(pf, reset_type))
4869		dev_err(dev, "Reset during resume failed.\n");
4870
4871	clear_bit(ICE_SUSPENDED, pf->state);
4872	ice_service_task_restart(pf);
4873
4874	/* Restart the service task */
4875	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4876
4877	return 0;
4878}
4879#endif /* CONFIG_PM */
4880
4881/**
4882 * ice_pci_err_detected - warning that PCI error has been detected
4883 * @pdev: PCI device information struct
4884 * @err: the type of PCI error
4885 *
4886 * Called to warn that something happened on the PCI bus and the error handling
4887 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4888 */
4889static pci_ers_result_t
4890ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4891{
4892	struct ice_pf *pf = pci_get_drvdata(pdev);
4893
4894	if (!pf) {
4895		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4896			__func__, err);
4897		return PCI_ERS_RESULT_DISCONNECT;
4898	}
4899
4900	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4901		ice_service_task_stop(pf);
4902
4903		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4904			set_bit(ICE_PFR_REQ, pf->state);
4905			ice_prepare_for_reset(pf);
4906		}
4907	}
4908
4909	return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4914 * @pdev: PCI device information struct
4915 *
4916 * Called to determine if the driver can recover from the PCI slot reset by
4917 * using a register read to determine if the device is recoverable.
4918 */
4919static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4920{
4921	struct ice_pf *pf = pci_get_drvdata(pdev);
4922	pci_ers_result_t result;
4923	int err;
4924	u32 reg;
4925
4926	err = pci_enable_device_mem(pdev);
4927	if (err) {
4928		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4929			err);
4930		result = PCI_ERS_RESULT_DISCONNECT;
4931	} else {
4932		pci_set_master(pdev);
4933		pci_restore_state(pdev);
4934		pci_save_state(pdev);
4935		pci_wake_from_d3(pdev, false);
4936
4937		/* Check for life */
4938		reg = rd32(&pf->hw, GLGEN_RTRIG);
4939		if (!reg)
4940			result = PCI_ERS_RESULT_RECOVERED;
4941		else
4942			result = PCI_ERS_RESULT_DISCONNECT;
4943	}
4944
4945	err = pci_aer_clear_nonfatal_status(pdev);
4946	if (err)
4947		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4948			err);
4949		/* non-fatal, continue */
4950
4951	return result;
4952}
4953
4954/**
4955 * ice_pci_err_resume - restart operations after PCI error recovery
4956 * @pdev: PCI device information struct
4957 *
4958 * Called to allow the driver to bring things back up after PCI error and/or
4959 * reset recovery have finished
4960 */
4961static void ice_pci_err_resume(struct pci_dev *pdev)
4962{
4963	struct ice_pf *pf = pci_get_drvdata(pdev);
4964
4965	if (!pf) {
4966		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4967			__func__);
4968		return;
4969	}
4970
4971	if (test_bit(ICE_SUSPENDED, pf->state)) {
4972		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4973			__func__);
4974		return;
4975	}
4976
4977	ice_restore_all_vfs_msi_state(pdev);
4978
4979	ice_do_reset(pf, ICE_RESET_PFR);
4980	ice_service_task_restart(pf);
4981	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4982}
4983
4984/**
4985 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4986 * @pdev: PCI device information struct
4987 */
4988static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4989{
4990	struct ice_pf *pf = pci_get_drvdata(pdev);
4991
4992	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4993		ice_service_task_stop(pf);
4994
4995		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4996			set_bit(ICE_PFR_REQ, pf->state);
4997			ice_prepare_for_reset(pf);
4998		}
4999	}
5000}
5001
5002/**
5003 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5004 * @pdev: PCI device information struct
5005 */
5006static void ice_pci_err_reset_done(struct pci_dev *pdev)
5007{
5008	ice_pci_err_resume(pdev);
5009}
5010
5011/* ice_pci_tbl - PCI Device ID Table
5012 *
5013 * Wildcard entries (PCI_ANY_ID) should come last
5014 * Last entry must be all 0s
5015 *
5016 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5017 *   Class, Class Mask, private data (not used) }
5018 */
5019static const struct pci_device_id ice_pci_tbl[] = {
5020	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5021	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5022	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5023	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5024	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5025	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5026	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5027	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5028	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5029	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5030	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5031	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5032	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5033	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5034	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5035	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5036	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5037	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5038	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5039	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5040	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5041	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5042	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5043	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5044	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5045	/* required last entry */
5046	{ 0, }
5047};
5048MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5049
5050static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5051
5052static const struct pci_error_handlers ice_pci_err_handler = {
5053	.error_detected = ice_pci_err_detected,
5054	.slot_reset = ice_pci_err_slot_reset,
5055	.reset_prepare = ice_pci_err_reset_prepare,
5056	.reset_done = ice_pci_err_reset_done,
5057	.resume = ice_pci_err_resume
5058};
5059
5060static struct pci_driver ice_driver = {
5061	.name = KBUILD_MODNAME,
5062	.id_table = ice_pci_tbl,
5063	.probe = ice_probe,
5064	.remove = ice_remove,
5065#ifdef CONFIG_PM
5066	.driver.pm = &ice_pm_ops,
5067#endif /* CONFIG_PM */
5068	.shutdown = ice_shutdown,
5069	.sriov_configure = ice_sriov_configure,
5070	.err_handler = &ice_pci_err_handler
5071};
5072
5073/**
5074 * ice_module_init - Driver registration routine
5075 *
5076 * ice_module_init is the first routine called when the driver is
5077 * loaded. All it does is register with the PCI subsystem.
5078 */
5079static int __init ice_module_init(void)
5080{
5081	int status;
5082
5083	pr_info("%s\n", ice_driver_string);
5084	pr_info("%s\n", ice_copyright);
5085
5086	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5087	if (!ice_wq) {
5088		pr_err("Failed to create workqueue\n");
5089		return -ENOMEM;
5090	}
5091
5092	status = pci_register_driver(&ice_driver);
5093	if (status) {
5094		pr_err("failed to register PCI driver, err %d\n", status);
5095		destroy_workqueue(ice_wq);
5096	}
5097
5098	return status;
5099}
5100module_init(ice_module_init);
5101
5102/**
5103 * ice_module_exit - Driver exit cleanup routine
5104 *
5105 * ice_module_exit is called just before the driver is removed
5106 * from memory.
5107 */
5108static void __exit ice_module_exit(void)
5109{
5110	pci_unregister_driver(&ice_driver);
5111	destroy_workqueue(ice_wq);
5112	pr_info("module unloaded\n");
5113}
5114module_exit(ice_module_exit);
5115
5116/**
5117 * ice_set_mac_address - NDO callback to set MAC address
5118 * @netdev: network interface device structure
5119 * @pi: pointer to an address structure
5120 *
5121 * Returns 0 on success, negative on failure
5122 */
5123static int ice_set_mac_address(struct net_device *netdev, void *pi)
5124{
5125	struct ice_netdev_priv *np = netdev_priv(netdev);
5126	struct ice_vsi *vsi = np->vsi;
5127	struct ice_pf *pf = vsi->back;
5128	struct ice_hw *hw = &pf->hw;
5129	struct sockaddr *addr = pi;
5130	enum ice_status status;
5131	u8 old_mac[ETH_ALEN];
 
5132	u8 flags = 0;
5133	int err = 0;
5134	u8 *mac;
5135
5136	mac = (u8 *)addr->sa_data;
5137
5138	if (!is_valid_ether_addr(mac))
5139		return -EADDRNOTAVAIL;
5140
5141	if (ether_addr_equal(netdev->dev_addr, mac)) {
5142		netdev_dbg(netdev, "already using mac %pM\n", mac);
5143		return 0;
5144	}
5145
5146	if (test_bit(ICE_DOWN, pf->state) ||
5147	    ice_is_reset_in_progress(pf->state)) {
5148		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5149			   mac);
5150		return -EBUSY;
5151	}
5152
5153	netif_addr_lock_bh(netdev);
5154	ether_addr_copy(old_mac, netdev->dev_addr);
5155	/* change the netdev's MAC address */
5156	memcpy(netdev->dev_addr, mac, netdev->addr_len);
5157	netif_addr_unlock_bh(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5158
5159	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5160	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5161	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5162		err = -EADDRNOTAVAIL;
5163		goto err_update_filters;
5164	}
5165
5166	/* Add filter for new MAC. If filter exists, return success */
5167	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5168	if (status == ICE_ERR_ALREADY_EXISTS)
5169		/* Although this MAC filter is already present in hardware it's
5170		 * possible in some cases (e.g. bonding) that dev_addr was
5171		 * modified outside of the driver and needs to be restored back
5172		 * to this value.
5173		 */
5174		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5175	else if (status)
5176		/* error if the new filter addition failed */
5177		err = -EADDRNOTAVAIL;
 
 
 
 
 
 
 
5178
5179err_update_filters:
5180	if (err) {
5181		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5182			   mac);
5183		netif_addr_lock_bh(netdev);
5184		ether_addr_copy(netdev->dev_addr, old_mac);
5185		netif_addr_unlock_bh(netdev);
5186		return err;
5187	}
5188
5189	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
 
 
5190		   netdev->dev_addr);
5191
5192	/* write new MAC address to the firmware */
5193	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5194	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5195	if (status) {
5196		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5197			   mac, ice_stat_str(status));
5198	}
5199	return 0;
5200}
5201
5202/**
5203 * ice_set_rx_mode - NDO callback to set the netdev filters
5204 * @netdev: network interface device structure
5205 */
5206static void ice_set_rx_mode(struct net_device *netdev)
5207{
5208	struct ice_netdev_priv *np = netdev_priv(netdev);
5209	struct ice_vsi *vsi = np->vsi;
5210
5211	if (!vsi)
5212		return;
5213
5214	/* Set the flags to synchronize filters
5215	 * ndo_set_rx_mode may be triggered even without a change in netdev
5216	 * flags
5217	 */
5218	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5219	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5220	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5221
5222	/* schedule our worker thread which will take care of
5223	 * applying the new filter changes
5224	 */
5225	ice_service_task_schedule(vsi->back);
5226}
5227
5228/**
5229 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5230 * @netdev: network interface device structure
5231 * @queue_index: Queue ID
5232 * @maxrate: maximum bandwidth in Mbps
5233 */
5234static int
5235ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5236{
5237	struct ice_netdev_priv *np = netdev_priv(netdev);
5238	struct ice_vsi *vsi = np->vsi;
5239	enum ice_status status;
5240	u16 q_handle;
5241	u8 tc;
5242
5243	/* Validate maxrate requested is within permitted range */
5244	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5245		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5246			   maxrate, queue_index);
5247		return -EINVAL;
5248	}
5249
5250	q_handle = vsi->tx_rings[queue_index]->q_handle;
5251	tc = ice_dcb_get_tc(vsi, queue_index);
5252
5253	/* Set BW back to default, when user set maxrate to 0 */
5254	if (!maxrate)
5255		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5256					       q_handle, ICE_MAX_BW);
5257	else
5258		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5259					  q_handle, ICE_MAX_BW, maxrate * 1000);
5260	if (status) {
5261		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5262			   ice_stat_str(status));
5263		return -EIO;
5264	}
5265
5266	return 0;
5267}
5268
5269/**
5270 * ice_fdb_add - add an entry to the hardware database
5271 * @ndm: the input from the stack
5272 * @tb: pointer to array of nladdr (unused)
5273 * @dev: the net device pointer
5274 * @addr: the MAC address entry being added
5275 * @vid: VLAN ID
5276 * @flags: instructions from stack about fdb operation
5277 * @extack: netlink extended ack
5278 */
5279static int
5280ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5281	    struct net_device *dev, const unsigned char *addr, u16 vid,
5282	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5283{
5284	int err;
5285
5286	if (vid) {
5287		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5288		return -EINVAL;
5289	}
5290	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5291		netdev_err(dev, "FDB only supports static addresses\n");
5292		return -EINVAL;
5293	}
5294
5295	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5296		err = dev_uc_add_excl(dev, addr);
5297	else if (is_multicast_ether_addr(addr))
5298		err = dev_mc_add_excl(dev, addr);
5299	else
5300		err = -EINVAL;
5301
5302	/* Only return duplicate errors if NLM_F_EXCL is set */
5303	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5304		err = 0;
5305
5306	return err;
5307}
5308
5309/**
5310 * ice_fdb_del - delete an entry from the hardware database
5311 * @ndm: the input from the stack
5312 * @tb: pointer to array of nladdr (unused)
5313 * @dev: the net device pointer
5314 * @addr: the MAC address entry being added
5315 * @vid: VLAN ID
5316 */
5317static int
5318ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5319	    struct net_device *dev, const unsigned char *addr,
5320	    __always_unused u16 vid)
5321{
5322	int err;
5323
5324	if (ndm->ndm_state & NUD_PERMANENT) {
5325		netdev_err(dev, "FDB only supports static addresses\n");
5326		return -EINVAL;
5327	}
5328
5329	if (is_unicast_ether_addr(addr))
5330		err = dev_uc_del(dev, addr);
5331	else if (is_multicast_ether_addr(addr))
5332		err = dev_mc_del(dev, addr);
5333	else
5334		err = -EINVAL;
5335
5336	return err;
5337}
5338
5339/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5340 * ice_set_features - set the netdev feature flags
5341 * @netdev: ptr to the netdev being adjusted
5342 * @features: the feature set that the stack is suggesting
5343 */
5344static int
5345ice_set_features(struct net_device *netdev, netdev_features_t features)
5346{
5347	struct ice_netdev_priv *np = netdev_priv(netdev);
5348	struct ice_vsi *vsi = np->vsi;
5349	struct ice_pf *pf = vsi->back;
5350	int ret = 0;
5351
5352	/* Don't set any netdev advanced features with device in Safe Mode */
5353	if (ice_is_safe_mode(vsi->back)) {
5354		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5355		return ret;
5356	}
5357
5358	/* Do not change setting during reset */
5359	if (ice_is_reset_in_progress(pf->state)) {
5360		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5361		return -EBUSY;
5362	}
5363
5364	/* Multiple features can be changed in one call so keep features in
5365	 * separate if/else statements to guarantee each feature is checked
5366	 */
5367	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5368		ice_vsi_manage_rss_lut(vsi, true);
5369	else if (!(features & NETIF_F_RXHASH) &&
5370		 netdev->features & NETIF_F_RXHASH)
5371		ice_vsi_manage_rss_lut(vsi, false);
5372
5373	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5374	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5375		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5376	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5377		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5378		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5379
5380	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5381	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5382		ret = ice_vsi_manage_vlan_insertion(vsi);
5383	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5384		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5385		ret = ice_vsi_manage_vlan_insertion(vsi);
5386
5387	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5388	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5389		ret = ice_cfg_vlan_pruning(vsi, true, false);
5390	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5391		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5392		ret = ice_cfg_vlan_pruning(vsi, false, false);
5393
5394	if ((features & NETIF_F_NTUPLE) &&
5395	    !(netdev->features & NETIF_F_NTUPLE)) {
5396		ice_vsi_manage_fdir(vsi, true);
5397		ice_init_arfs(vsi);
5398	} else if (!(features & NETIF_F_NTUPLE) &&
5399		 (netdev->features & NETIF_F_NTUPLE)) {
5400		ice_vsi_manage_fdir(vsi, false);
5401		ice_clear_arfs(vsi);
5402	}
5403
5404	return ret;
5405}
5406
5407/**
5408 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5409 * @vsi: VSI to setup VLAN properties for
5410 */
5411static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5412{
5413	int ret = 0;
5414
5415	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5416		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5417	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5418		ret = ice_vsi_manage_vlan_insertion(vsi);
5419
5420	return ret;
5421}
5422
5423/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5424 * ice_vsi_cfg - Setup the VSI
5425 * @vsi: the VSI being configured
5426 *
5427 * Return 0 on success and negative value on error
5428 */
5429int ice_vsi_cfg(struct ice_vsi *vsi)
5430{
5431	int err;
5432
5433	if (vsi->netdev) {
5434		ice_set_rx_mode(vsi->netdev);
5435
5436		err = ice_vsi_vlan_setup(vsi);
5437
5438		if (err)
5439			return err;
5440	}
5441	ice_vsi_cfg_dcb_rings(vsi);
5442
5443	err = ice_vsi_cfg_lan_txqs(vsi);
5444	if (!err && ice_is_xdp_ena_vsi(vsi))
5445		err = ice_vsi_cfg_xdp_txqs(vsi);
5446	if (!err)
5447		err = ice_vsi_cfg_rxqs(vsi);
5448
5449	return err;
5450}
5451
5452/* THEORY OF MODERATION:
5453 * The below code creates custom DIM profiles for use by this driver, because
5454 * the ice driver hardware works differently than the hardware that DIMLIB was
5455 * originally made for. ice hardware doesn't have packet count limits that
5456 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5457 * and this code adds that capability to be used by the driver when it's using
5458 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5459 * for how to "respond" to traffic and interrupts, so this driver uses a
5460 * slightly different set of moderation parameters to get best performance.
5461 */
5462struct ice_dim {
5463	/* the throttle rate for interrupts, basically worst case delay before
5464	 * an initial interrupt fires, value is stored in microseconds.
5465	 */
5466	u16 itr;
5467	/* the rate limit for interrupts, which can cap a delay from a small
5468	 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5469	 * could yield as much as 500,000 interrupts per second, but with a
5470	 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5471	 * is stored in microseconds.
5472	 */
5473	u16 intrl;
5474};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5475
5476/* Make a different profile for Rx that doesn't allow quite so aggressive
5477 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5478 * second. The INTRL/rate parameters here are only useful to cap small ITR
5479 * values, which is why for larger ITR's - like 128, which can only generate
5480 * 8k interrupts per second, there is no point to rate limit and the values
5481 * are set to zero. The rate limit values do affect latency, and so must
5482 * be reasonably small so to not impact latency sensitive tests.
5483 */
5484static const struct ice_dim rx_profile[] = {
5485	{2, 10},
5486	{8, 16},
5487	{32, 0},
5488	{96, 0},
5489	{128, 0}
5490};
5491
5492/* The transmit profile, which has the same sorts of values
5493 * as the previous struct
 
 
 
 
 
 
 
 
5494 */
5495static const struct ice_dim tx_profile[] = {
5496	{2, 10},
5497	{8, 16},
5498	{64, 0},
5499	{128, 0},
5500	{256, 0}
5501};
 
 
 
 
 
 
 
 
 
 
5502
5503static void ice_tx_dim_work(struct work_struct *work)
 
 
 
 
 
5504{
5505	struct ice_ring_container *rc;
5506	struct ice_q_vector *q_vector;
5507	struct dim *dim;
5508	u16 itr, intrl;
 
 
 
 
 
 
 
 
 
 
 
5509
5510	dim = container_of(work, struct dim, work);
5511	rc = container_of(dim, struct ice_ring_container, dim);
5512	q_vector = container_of(rc, struct ice_q_vector, tx);
5513
5514	if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5515		dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
 
 
 
 
5516
5517	/* look up the values in our local table */
5518	itr = tx_profile[dim->profile_ix].itr;
5519	intrl = tx_profile[dim->profile_ix].intrl;
 
 
 
 
 
 
5520
5521	ice_trace(tx_dim_work, q_vector, dim);
5522	ice_write_itr(rc, itr);
5523	ice_write_intrl(q_vector, intrl);
5524
5525	dim->state = DIM_START_MEASURE;
 
 
 
 
 
 
 
 
5526}
5527
5528static void ice_rx_dim_work(struct work_struct *work)
 
 
 
 
 
 
5529{
5530	struct ice_ring_container *rc;
5531	struct ice_q_vector *q_vector;
5532	struct dim *dim;
5533	u16 itr, intrl;
5534
5535	dim = container_of(work, struct dim, work);
5536	rc = container_of(dim, struct ice_ring_container, dim);
5537	q_vector = container_of(rc, struct ice_q_vector, rx);
 
 
 
 
 
5538
5539	if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5540		dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
 
5541
5542	/* look up the values in our local table */
5543	itr = rx_profile[dim->profile_ix].itr;
5544	intrl = rx_profile[dim->profile_ix].intrl;
5545
5546	ice_trace(rx_dim_work, q_vector, dim);
5547	ice_write_itr(rc, itr);
5548	ice_write_intrl(q_vector, intrl);
5549
5550	dim->state = DIM_START_MEASURE;
5551}
5552
5553/**
5554 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5555 * @vsi: the VSI being configured
5556 */
5557static void ice_napi_enable_all(struct ice_vsi *vsi)
5558{
5559	int q_idx;
5560
5561	if (!vsi->netdev)
5562		return;
5563
5564	ice_for_each_q_vector(vsi, q_idx) {
5565		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5566
5567		INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5568		q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5569
5570		INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5571		q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5572
5573		if (q_vector->rx.ring || q_vector->tx.ring)
5574			napi_enable(&q_vector->napi);
5575	}
5576}
5577
5578/**
5579 * ice_up_complete - Finish the last steps of bringing up a connection
5580 * @vsi: The VSI being configured
5581 *
5582 * Return 0 on success and negative value on error
5583 */
5584static int ice_up_complete(struct ice_vsi *vsi)
5585{
5586	struct ice_pf *pf = vsi->back;
5587	int err;
5588
5589	ice_vsi_cfg_msix(vsi);
 
 
 
5590
5591	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5592	 * Tx queue group list was configured and the context bits were
5593	 * programmed using ice_vsi_cfg_txqs
5594	 */
5595	err = ice_vsi_start_all_rx_rings(vsi);
5596	if (err)
5597		return err;
5598
5599	clear_bit(ICE_VSI_DOWN, vsi->state);
5600	ice_napi_enable_all(vsi);
5601	ice_vsi_ena_irq(vsi);
5602
5603	if (vsi->port_info &&
5604	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5605	    vsi->netdev) {
5606		ice_print_link_msg(vsi, true);
5607		netif_tx_start_all_queues(vsi->netdev);
5608		netif_carrier_on(vsi->netdev);
5609	}
5610
5611	ice_service_task_schedule(pf);
5612
5613	return 0;
5614}
5615
5616/**
5617 * ice_up - Bring the connection back up after being down
5618 * @vsi: VSI being configured
5619 */
5620int ice_up(struct ice_vsi *vsi)
5621{
5622	int err;
5623
5624	err = ice_vsi_cfg(vsi);
5625	if (!err)
5626		err = ice_up_complete(vsi);
5627
5628	return err;
5629}
5630
5631/**
5632 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5633 * @ring: Tx or Rx ring to read stats from
5634 * @pkts: packets stats counter
5635 * @bytes: bytes stats counter
5636 *
5637 * This function fetches stats from the ring considering the atomic operations
5638 * that needs to be performed to read u64 values in 32 bit machine.
5639 */
5640static void
5641ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5642{
5643	unsigned int start;
5644	*pkts = 0;
5645	*bytes = 0;
5646
5647	if (!ring)
5648		return;
5649	do {
5650		start = u64_stats_fetch_begin_irq(&ring->syncp);
5651		*pkts = ring->stats.pkts;
5652		*bytes = ring->stats.bytes;
5653	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5654}
5655
5656/**
5657 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5658 * @vsi: the VSI to be updated
5659 * @rings: rings to work on
5660 * @count: number of rings
5661 */
5662static void
5663ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5664			     u16 count)
5665{
5666	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5667	u16 i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5668
5669	for (i = 0; i < count; i++) {
5670		struct ice_ring *ring;
5671		u64 pkts, bytes;
5672
5673		ring = READ_ONCE(rings[i]);
5674		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5675		vsi_stats->tx_packets += pkts;
5676		vsi_stats->tx_bytes += bytes;
5677		vsi->tx_restart += ring->tx_stats.restart_q;
5678		vsi->tx_busy += ring->tx_stats.tx_busy;
5679		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5680	}
5681}
5682
5683/**
5684 * ice_update_vsi_ring_stats - Update VSI stats counters
5685 * @vsi: the VSI to be updated
5686 */
5687static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5688{
5689	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
 
5690	u64 pkts, bytes;
5691	int i;
5692
5693	/* reset netdev stats */
5694	vsi_stats->tx_packets = 0;
5695	vsi_stats->tx_bytes = 0;
5696	vsi_stats->rx_packets = 0;
5697	vsi_stats->rx_bytes = 0;
5698
5699	/* reset non-netdev (extended) stats */
5700	vsi->tx_restart = 0;
5701	vsi->tx_busy = 0;
5702	vsi->tx_linearize = 0;
5703	vsi->rx_buf_failed = 0;
5704	vsi->rx_page_failed = 0;
5705
5706	rcu_read_lock();
5707
5708	/* update Tx rings counters */
5709	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
 
 
 
 
 
 
 
 
5710
5711	/* update Rx rings counters */
5712	ice_for_each_rxq(vsi, i) {
5713		struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5714
5715		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5716		vsi_stats->rx_packets += pkts;
5717		vsi_stats->rx_bytes += bytes;
5718		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5719		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5720	}
5721
5722	/* update XDP Tx rings counters */
5723	if (ice_is_xdp_ena_vsi(vsi))
5724		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5725					     vsi->num_xdp_txq);
5726
5727	rcu_read_unlock();
5728}
5729
5730/**
5731 * ice_update_vsi_stats - Update VSI stats counters
5732 * @vsi: the VSI to be updated
5733 */
5734void ice_update_vsi_stats(struct ice_vsi *vsi)
5735{
5736	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5737	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5738	struct ice_pf *pf = vsi->back;
5739
5740	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5741	    test_bit(ICE_CFG_BUSY, pf->state))
5742		return;
5743
5744	/* get stats as recorded by Tx/Rx rings */
5745	ice_update_vsi_ring_stats(vsi);
5746
5747	/* get VSI stats as recorded by the hardware */
5748	ice_update_eth_stats(vsi);
5749
5750	cur_ns->tx_errors = cur_es->tx_errors;
5751	cur_ns->rx_dropped = cur_es->rx_discards;
5752	cur_ns->tx_dropped = cur_es->tx_discards;
5753	cur_ns->multicast = cur_es->rx_multicast;
5754
5755	/* update some more netdev stats if this is main VSI */
5756	if (vsi->type == ICE_VSI_PF) {
5757		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5758		cur_ns->rx_errors = pf->stats.crc_errors +
5759				    pf->stats.illegal_bytes +
5760				    pf->stats.rx_len_errors +
5761				    pf->stats.rx_undersize +
5762				    pf->hw_csum_rx_error +
5763				    pf->stats.rx_jabber +
5764				    pf->stats.rx_fragments +
5765				    pf->stats.rx_oversize;
5766		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5767		/* record drops from the port level */
5768		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5769	}
5770}
5771
5772/**
5773 * ice_update_pf_stats - Update PF port stats counters
5774 * @pf: PF whose stats needs to be updated
5775 */
5776void ice_update_pf_stats(struct ice_pf *pf)
5777{
5778	struct ice_hw_port_stats *prev_ps, *cur_ps;
5779	struct ice_hw *hw = &pf->hw;
5780	u16 fd_ctr_base;
5781	u8 port;
5782
5783	port = hw->port_info->lport;
5784	prev_ps = &pf->stats_prev;
5785	cur_ps = &pf->stats;
 
5786
5787	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5788			  &prev_ps->eth.rx_bytes,
5789			  &cur_ps->eth.rx_bytes);
5790
5791	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5792			  &prev_ps->eth.rx_unicast,
5793			  &cur_ps->eth.rx_unicast);
5794
5795	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5796			  &prev_ps->eth.rx_multicast,
5797			  &cur_ps->eth.rx_multicast);
5798
5799	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5800			  &prev_ps->eth.rx_broadcast,
5801			  &cur_ps->eth.rx_broadcast);
5802
5803	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5804			  &prev_ps->eth.rx_discards,
5805			  &cur_ps->eth.rx_discards);
5806
5807	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5808			  &prev_ps->eth.tx_bytes,
5809			  &cur_ps->eth.tx_bytes);
5810
5811	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5812			  &prev_ps->eth.tx_unicast,
5813			  &cur_ps->eth.tx_unicast);
5814
5815	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5816			  &prev_ps->eth.tx_multicast,
5817			  &cur_ps->eth.tx_multicast);
5818
5819	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5820			  &prev_ps->eth.tx_broadcast,
5821			  &cur_ps->eth.tx_broadcast);
5822
5823	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5824			  &prev_ps->tx_dropped_link_down,
5825			  &cur_ps->tx_dropped_link_down);
5826
5827	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5828			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5829
5830	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5831			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5832
5833	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5834			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
 
 
 
 
 
 
 
5835
5836	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5837			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5838
5839	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5840			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5841
5842	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
 
5843			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5844
5845	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
 
5846			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5847
5848	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5849			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5850
5851	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5852			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
 
 
 
 
 
 
 
 
 
 
5853
5854	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5855			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5856
5857	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5858			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5859
5860	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5861			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5862
5863	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
 
5864			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5865
5866	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
 
5867			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5868
5869	fd_ctr_base = hw->fd_ctr_base;
5870
5871	ice_stat_update40(hw,
5872			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5873			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5874			  &cur_ps->fd_sb_match);
5875	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5876			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5877
5878	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5879			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5880
5881	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5882			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5883
5884	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5885			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5886
5887	ice_update_dcb_stats(pf);
5888
5889	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5890			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5891
5892	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5893			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5894
5895	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5896			  &prev_ps->mac_local_faults,
5897			  &cur_ps->mac_local_faults);
5898
5899	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5900			  &prev_ps->mac_remote_faults,
5901			  &cur_ps->mac_remote_faults);
5902
5903	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5904			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5905
5906	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5907			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5908
5909	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5910			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5911
5912	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5913			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5914
5915	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5916			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5917
5918	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5919
5920	pf->stat_prev_loaded = true;
5921}
5922
5923/**
5924 * ice_get_stats64 - get statistics for network device structure
5925 * @netdev: network interface device structure
5926 * @stats: main device statistics structure
5927 */
5928static
5929void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5930{
5931	struct ice_netdev_priv *np = netdev_priv(netdev);
5932	struct rtnl_link_stats64 *vsi_stats;
5933	struct ice_vsi *vsi = np->vsi;
5934
5935	vsi_stats = &vsi->net_stats;
5936
5937	if (!vsi->num_txq || !vsi->num_rxq)
5938		return;
5939
5940	/* netdev packet/byte stats come from ring counter. These are obtained
5941	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5942	 * But, only call the update routine and read the registers if VSI is
5943	 * not down.
5944	 */
5945	if (!test_bit(ICE_VSI_DOWN, vsi->state))
5946		ice_update_vsi_ring_stats(vsi);
5947	stats->tx_packets = vsi_stats->tx_packets;
5948	stats->tx_bytes = vsi_stats->tx_bytes;
5949	stats->rx_packets = vsi_stats->rx_packets;
5950	stats->rx_bytes = vsi_stats->rx_bytes;
5951
5952	/* The rest of the stats can be read from the hardware but instead we
5953	 * just return values that the watchdog task has already obtained from
5954	 * the hardware.
5955	 */
5956	stats->multicast = vsi_stats->multicast;
5957	stats->tx_errors = vsi_stats->tx_errors;
5958	stats->tx_dropped = vsi_stats->tx_dropped;
5959	stats->rx_errors = vsi_stats->rx_errors;
5960	stats->rx_dropped = vsi_stats->rx_dropped;
5961	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5962	stats->rx_length_errors = vsi_stats->rx_length_errors;
5963}
5964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5965/**
5966 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5967 * @vsi: VSI having NAPI disabled
5968 */
5969static void ice_napi_disable_all(struct ice_vsi *vsi)
5970{
5971	int q_idx;
5972
5973	if (!vsi->netdev)
5974		return;
5975
5976	ice_for_each_q_vector(vsi, q_idx) {
5977		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5978
5979		if (q_vector->rx.ring || q_vector->tx.ring)
5980			napi_disable(&q_vector->napi);
5981
5982		cancel_work_sync(&q_vector->tx.dim.work);
5983		cancel_work_sync(&q_vector->rx.dim.work);
5984	}
5985}
5986
5987/**
5988 * ice_down - Shutdown the connection
5989 * @vsi: The VSI being stopped
5990 */
5991int ice_down(struct ice_vsi *vsi)
5992{
5993	int i, tx_err, rx_err, link_err = 0;
5994
5995	/* Caller of this function is expected to set the
5996	 * vsi->state ICE_DOWN bit
5997	 */
5998	if (vsi->netdev) {
5999		netif_carrier_off(vsi->netdev);
6000		netif_tx_disable(vsi->netdev);
6001	}
6002
6003	ice_vsi_dis_irq(vsi);
6004
6005	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6006	if (tx_err)
6007		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6008			   vsi->vsi_num, tx_err);
6009	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6010		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6011		if (tx_err)
6012			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6013				   vsi->vsi_num, tx_err);
6014	}
6015
6016	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6017	if (rx_err)
6018		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6019			   vsi->vsi_num, rx_err);
6020
6021	ice_napi_disable_all(vsi);
6022
6023	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6024		link_err = ice_force_phys_link_state(vsi, false);
6025		if (link_err)
6026			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6027				   vsi->vsi_num, link_err);
6028	}
6029
6030	ice_for_each_txq(vsi, i)
6031		ice_clean_tx_ring(vsi->tx_rings[i]);
6032
6033	ice_for_each_rxq(vsi, i)
6034		ice_clean_rx_ring(vsi->rx_rings[i]);
6035
6036	if (tx_err || rx_err || link_err) {
6037		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6038			   vsi->vsi_num, vsi->vsw->sw_id);
6039		return -EIO;
6040	}
6041
6042	return 0;
6043}
6044
6045/**
6046 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6047 * @vsi: VSI having resources allocated
6048 *
6049 * Return 0 on success, negative on failure
6050 */
6051int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6052{
6053	int i, err = 0;
6054
6055	if (!vsi->num_txq) {
6056		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6057			vsi->vsi_num);
6058		return -EINVAL;
6059	}
6060
6061	ice_for_each_txq(vsi, i) {
6062		struct ice_ring *ring = vsi->tx_rings[i];
6063
6064		if (!ring)
6065			return -EINVAL;
6066
6067		ring->netdev = vsi->netdev;
6068		err = ice_setup_tx_ring(ring);
6069		if (err)
6070			break;
6071	}
6072
6073	return err;
6074}
6075
6076/**
6077 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6078 * @vsi: VSI having resources allocated
6079 *
6080 * Return 0 on success, negative on failure
6081 */
6082int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6083{
6084	int i, err = 0;
6085
6086	if (!vsi->num_rxq) {
6087		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6088			vsi->vsi_num);
6089		return -EINVAL;
6090	}
6091
6092	ice_for_each_rxq(vsi, i) {
6093		struct ice_ring *ring = vsi->rx_rings[i];
6094
6095		if (!ring)
6096			return -EINVAL;
6097
6098		ring->netdev = vsi->netdev;
6099		err = ice_setup_rx_ring(ring);
6100		if (err)
6101			break;
6102	}
6103
6104	return err;
6105}
6106
6107/**
6108 * ice_vsi_open_ctrl - open control VSI for use
6109 * @vsi: the VSI to open
6110 *
6111 * Initialization of the Control VSI
6112 *
6113 * Returns 0 on success, negative value on error
6114 */
6115int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6116{
6117	char int_name[ICE_INT_NAME_STR_LEN];
6118	struct ice_pf *pf = vsi->back;
6119	struct device *dev;
6120	int err;
6121
6122	dev = ice_pf_to_dev(pf);
6123	/* allocate descriptors */
6124	err = ice_vsi_setup_tx_rings(vsi);
6125	if (err)
6126		goto err_setup_tx;
6127
6128	err = ice_vsi_setup_rx_rings(vsi);
6129	if (err)
6130		goto err_setup_rx;
6131
6132	err = ice_vsi_cfg(vsi);
6133	if (err)
6134		goto err_setup_rx;
 
 
 
 
6135
6136	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6137		 dev_driver_string(dev), dev_name(dev));
6138	err = ice_vsi_req_irq_msix(vsi, int_name);
6139	if (err)
6140		goto err_setup_rx;
6141
6142	ice_vsi_cfg_msix(vsi);
 
 
 
6143
6144	err = ice_vsi_start_all_rx_rings(vsi);
6145	if (err)
6146		goto err_up_complete;
 
 
 
 
6147
6148	clear_bit(ICE_VSI_DOWN, vsi->state);
6149	ice_vsi_ena_irq(vsi);
6150
6151	return 0;
6152
6153err_up_complete:
6154	ice_down(vsi);
6155err_setup_rx:
6156	ice_vsi_free_rx_rings(vsi);
6157err_setup_tx:
6158	ice_vsi_free_tx_rings(vsi);
6159
6160	return err;
6161}
6162
6163/**
6164 * ice_vsi_open - Called when a network interface is made active
6165 * @vsi: the VSI to open
6166 *
6167 * Initialization of the VSI
6168 *
6169 * Returns 0 on success, negative value on error
6170 */
6171static int ice_vsi_open(struct ice_vsi *vsi)
6172{
6173	char int_name[ICE_INT_NAME_STR_LEN];
6174	struct ice_pf *pf = vsi->back;
6175	int err;
6176
6177	/* allocate descriptors */
6178	err = ice_vsi_setup_tx_rings(vsi);
6179	if (err)
6180		goto err_setup_tx;
6181
6182	err = ice_vsi_setup_rx_rings(vsi);
6183	if (err)
6184		goto err_setup_rx;
6185
6186	err = ice_vsi_cfg(vsi);
6187	if (err)
6188		goto err_setup_rx;
6189
6190	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6191		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6192	err = ice_vsi_req_irq_msix(vsi, int_name);
6193	if (err)
6194		goto err_setup_rx;
6195
6196	/* Notify the stack of the actual queue counts. */
6197	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6198	if (err)
6199		goto err_set_qs;
6200
6201	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6202	if (err)
6203		goto err_set_qs;
6204
6205	err = ice_up_complete(vsi);
6206	if (err)
6207		goto err_up_complete;
6208
6209	return 0;
6210
6211err_up_complete:
6212	ice_down(vsi);
6213err_set_qs:
6214	ice_vsi_free_irq(vsi);
6215err_setup_rx:
6216	ice_vsi_free_rx_rings(vsi);
6217err_setup_tx:
6218	ice_vsi_free_tx_rings(vsi);
6219
6220	return err;
6221}
6222
6223/**
6224 * ice_vsi_release_all - Delete all VSIs
6225 * @pf: PF from which all VSIs are being removed
6226 */
6227static void ice_vsi_release_all(struct ice_pf *pf)
6228{
6229	int err, i;
 
 
 
 
 
 
6230
6231	if (!pf->vsi)
6232		return;
 
 
 
 
 
6233
6234	ice_for_each_vsi(pf, i) {
6235		if (!pf->vsi[i])
6236			continue;
6237
6238		err = ice_vsi_release(pf->vsi[i]);
6239		if (err)
6240			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6241				i, err, pf->vsi[i]->vsi_num);
6242	}
6243}
6244
6245/**
6246 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6247 * @pf: pointer to the PF instance
6248 * @type: VSI type to rebuild
6249 *
6250 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6251 */
6252static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6253{
6254	struct device *dev = ice_pf_to_dev(pf);
6255	enum ice_status status;
6256	int i, err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6257
6258	ice_for_each_vsi(pf, i) {
6259		struct ice_vsi *vsi = pf->vsi[i];
6260
6261		if (!vsi || vsi->type != type)
6262			continue;
6263
6264		/* rebuild the VSI */
6265		err = ice_vsi_rebuild(vsi, true);
6266		if (err) {
6267			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6268				err, vsi->idx, ice_vsi_type_str(type));
6269			return err;
6270		}
 
6271
6272		/* replay filters for the VSI */
6273		status = ice_replay_vsi(&pf->hw, vsi->idx);
6274		if (status) {
6275			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6276				ice_stat_str(status), vsi->idx,
6277				ice_vsi_type_str(type));
6278			return -EIO;
6279		}
6280
6281		/* Re-map HW VSI number, using VSI handle that has been
6282		 * previously validated in ice_replay_vsi() call above
6283		 */
6284		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6285
6286		/* enable the VSI */
6287		err = ice_ena_vsi(vsi, false);
6288		if (err) {
6289			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6290				err, vsi->idx, ice_vsi_type_str(type));
6291			return err;
6292		}
6293
6294		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6295			 ice_vsi_type_str(type));
6296	}
 
 
 
 
 
6297
6298	return 0;
 
 
 
 
 
6299}
6300
6301/**
6302 * ice_update_pf_netdev_link - Update PF netdev link status
6303 * @pf: pointer to the PF instance
6304 */
6305static void ice_update_pf_netdev_link(struct ice_pf *pf)
6306{
6307	bool link_up;
6308	int i;
6309
6310	ice_for_each_vsi(pf, i) {
6311		struct ice_vsi *vsi = pf->vsi[i];
 
 
6312
6313		if (!vsi || vsi->type != ICE_VSI_PF)
6314			return;
 
 
 
 
 
6315
6316		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6317		if (link_up) {
6318			netif_carrier_on(pf->vsi[i]->netdev);
6319			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6320		} else {
6321			netif_carrier_off(pf->vsi[i]->netdev);
6322			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6323		}
6324	}
6325}
6326
6327/**
6328 * ice_rebuild - rebuild after reset
6329 * @pf: PF to rebuild
6330 * @reset_type: type of reset
6331 *
6332 * Do not rebuild VF VSI in this flow because that is already handled via
6333 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6334 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6335 * to reset/rebuild all the VF VSI twice.
6336 */
6337static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6338{
6339	struct device *dev = ice_pf_to_dev(pf);
6340	struct ice_hw *hw = &pf->hw;
6341	enum ice_status ret;
6342	int err;
6343
6344	if (test_bit(ICE_DOWN, pf->state))
6345		goto clear_recovery;
6346
6347	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6348
6349	ret = ice_init_all_ctrlq(hw);
6350	if (ret) {
6351		dev_err(dev, "control queues init failed %s\n",
6352			ice_stat_str(ret));
6353		goto err_init_ctrlq;
6354	}
6355
6356	/* if DDP was previously loaded successfully */
6357	if (!ice_is_safe_mode(pf)) {
6358		/* reload the SW DB of filter tables */
6359		if (reset_type == ICE_RESET_PFR)
6360			ice_fill_blk_tbls(hw);
6361		else
6362			/* Reload DDP Package after CORER/GLOBR reset */
6363			ice_load_pkg(NULL, pf);
6364	}
6365
6366	ret = ice_clear_pf_cfg(hw);
6367	if (ret) {
6368		dev_err(dev, "clear PF configuration failed %s\n",
6369			ice_stat_str(ret));
6370		goto err_init_ctrlq;
6371	}
6372
6373	if (pf->first_sw->dflt_vsi_ena)
6374		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6375	/* clear the default VSI configuration if it exists */
6376	pf->first_sw->dflt_vsi = NULL;
6377	pf->first_sw->dflt_vsi_ena = false;
6378
6379	ice_clear_pxe_mode(hw);
6380
6381	ret = ice_init_nvm(hw);
6382	if (ret) {
6383		dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6384		goto err_init_ctrlq;
6385	}
6386
6387	ret = ice_get_caps(hw);
6388	if (ret) {
6389		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6390		goto err_init_ctrlq;
6391	}
6392
6393	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6394	if (ret) {
6395		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6396		goto err_init_ctrlq;
 
6397	}
6398
6399	err = ice_sched_init_port(hw->port_info);
6400	if (err)
6401		goto err_sched_init_port;
6402
6403	/* start misc vector */
6404	err = ice_req_irq_msix_misc(pf);
6405	if (err) {
6406		dev_err(dev, "misc vector setup failed: %d\n", err);
6407		goto err_sched_init_port;
6408	}
6409
6410	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6411		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6412		if (!rd32(hw, PFQF_FD_SIZE)) {
6413			u16 unused, guar, b_effort;
6414
6415			guar = hw->func_caps.fd_fltr_guar;
6416			b_effort = hw->func_caps.fd_fltr_best_effort;
6417
6418			/* force guaranteed filter pool for PF */
6419			ice_alloc_fd_guar_item(hw, &unused, guar);
6420			/* force shared filter pool for PF */
6421			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6422		}
6423	}
6424
6425	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6426		ice_dcb_rebuild(pf);
6427
6428	/* If the PF previously had enabled PTP, PTP init needs to happen before
6429	 * the VSI rebuild. If not, this causes the PTP link status events to
6430	 * fail.
6431	 */
6432	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6433		ice_ptp_init(pf);
6434
6435	/* rebuild PF VSI */
6436	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6437	if (err) {
6438		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6439		goto err_vsi_rebuild;
6440	}
6441
6442	/* If Flow Director is active */
6443	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6444		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6445		if (err) {
6446			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6447			goto err_vsi_rebuild;
6448		}
6449
6450		/* replay HW Flow Director recipes */
6451		if (hw->fdir_prof)
6452			ice_fdir_replay_flows(hw);
6453
6454		/* replay Flow Director filters */
6455		ice_fdir_replay_fltrs(pf);
6456
6457		ice_rebuild_arfs(pf);
6458	}
6459
6460	ice_update_pf_netdev_link(pf);
6461
6462	/* tell the firmware we are up */
6463	ret = ice_send_version(pf);
6464	if (ret) {
6465		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6466			ice_stat_str(ret));
6467		goto err_vsi_rebuild;
6468	}
6469
6470	ice_replay_post(hw);
6471
6472	/* if we get here, reset flow is successful */
6473	clear_bit(ICE_RESET_FAILED, pf->state);
6474
6475	ice_plug_aux_dev(pf);
6476	return;
6477
6478err_vsi_rebuild:
6479err_sched_init_port:
6480	ice_sched_cleanup_all(hw);
6481err_init_ctrlq:
6482	ice_shutdown_all_ctrlq(hw);
6483	set_bit(ICE_RESET_FAILED, pf->state);
6484clear_recovery:
6485	/* set this bit in PF state to control service task scheduling */
6486	set_bit(ICE_NEEDS_RESTART, pf->state);
6487	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6488}
6489
6490/**
6491 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6492 * @vsi: Pointer to VSI structure
6493 */
6494static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6495{
6496	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6497		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6498	else
6499		return ICE_RXBUF_3072;
6500}
6501
6502/**
6503 * ice_change_mtu - NDO callback to change the MTU
6504 * @netdev: network interface device structure
6505 * @new_mtu: new value for maximum frame size
6506 *
6507 * Returns 0 on success, negative on failure
6508 */
6509static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6510{
6511	struct ice_netdev_priv *np = netdev_priv(netdev);
6512	struct ice_vsi *vsi = np->vsi;
6513	struct ice_pf *pf = vsi->back;
6514	struct iidc_event *event;
6515	u8 count = 0;
6516	int err = 0;
6517
6518	if (new_mtu == (int)netdev->mtu) {
6519		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6520		return 0;
6521	}
6522
6523	if (ice_is_xdp_ena_vsi(vsi)) {
6524		int frame_size = ice_max_xdp_frame_size(vsi);
6525
6526		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6527			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6528				   frame_size - ICE_ETH_PKT_HDR_PAD);
6529			return -EINVAL;
6530		}
6531	}
6532
6533	/* if a reset is in progress, wait for some time for it to complete */
6534	do {
6535		if (ice_is_reset_in_progress(pf->state)) {
6536			count++;
6537			usleep_range(1000, 2000);
6538		} else {
6539			break;
6540		}
6541
6542	} while (count < 100);
6543
6544	if (count == 100) {
6545		netdev_err(netdev, "can't change MTU. Device is busy\n");
6546		return -EBUSY;
6547	}
6548
6549	event = kzalloc(sizeof(*event), GFP_KERNEL);
6550	if (!event)
6551		return -ENOMEM;
6552
6553	set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6554	ice_send_event_to_aux(pf, event);
6555	clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6556
6557	netdev->mtu = (unsigned int)new_mtu;
6558
6559	/* if VSI is up, bring it down and then back up */
6560	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6561		err = ice_down(vsi);
6562		if (err) {
6563			netdev_err(netdev, "change MTU if_down err %d\n", err);
6564			goto event_after;
6565		}
6566
6567		err = ice_up(vsi);
6568		if (err) {
6569			netdev_err(netdev, "change MTU if_up err %d\n", err);
6570			goto event_after;
6571		}
6572	}
6573
6574	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6575event_after:
6576	set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6577	ice_send_event_to_aux(pf, event);
6578	kfree(event);
6579
6580	return err;
6581}
6582
6583/**
6584 * ice_do_ioctl - Access the hwtstamp interface
6585 * @netdev: network interface device structure
6586 * @ifr: interface request data
6587 * @cmd: ioctl command
6588 */
6589static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6590{
6591	struct ice_netdev_priv *np = netdev_priv(netdev);
6592	struct ice_pf *pf = np->vsi->back;
6593
6594	switch (cmd) {
6595	case SIOCGHWTSTAMP:
6596		return ice_ptp_get_ts_config(pf, ifr);
6597	case SIOCSHWTSTAMP:
6598		return ice_ptp_set_ts_config(pf, ifr);
6599	default:
6600		return -EOPNOTSUPP;
6601	}
6602}
6603
6604/**
6605 * ice_aq_str - convert AQ err code to a string
6606 * @aq_err: the AQ error code to convert
6607 */
6608const char *ice_aq_str(enum ice_aq_err aq_err)
6609{
6610	switch (aq_err) {
6611	case ICE_AQ_RC_OK:
6612		return "OK";
6613	case ICE_AQ_RC_EPERM:
6614		return "ICE_AQ_RC_EPERM";
6615	case ICE_AQ_RC_ENOENT:
6616		return "ICE_AQ_RC_ENOENT";
6617	case ICE_AQ_RC_ENOMEM:
6618		return "ICE_AQ_RC_ENOMEM";
6619	case ICE_AQ_RC_EBUSY:
6620		return "ICE_AQ_RC_EBUSY";
6621	case ICE_AQ_RC_EEXIST:
6622		return "ICE_AQ_RC_EEXIST";
6623	case ICE_AQ_RC_EINVAL:
6624		return "ICE_AQ_RC_EINVAL";
6625	case ICE_AQ_RC_ENOSPC:
6626		return "ICE_AQ_RC_ENOSPC";
6627	case ICE_AQ_RC_ENOSYS:
6628		return "ICE_AQ_RC_ENOSYS";
6629	case ICE_AQ_RC_EMODE:
6630		return "ICE_AQ_RC_EMODE";
6631	case ICE_AQ_RC_ENOSEC:
6632		return "ICE_AQ_RC_ENOSEC";
6633	case ICE_AQ_RC_EBADSIG:
6634		return "ICE_AQ_RC_EBADSIG";
6635	case ICE_AQ_RC_ESVN:
6636		return "ICE_AQ_RC_ESVN";
6637	case ICE_AQ_RC_EBADMAN:
6638		return "ICE_AQ_RC_EBADMAN";
6639	case ICE_AQ_RC_EBADBUF:
6640		return "ICE_AQ_RC_EBADBUF";
6641	}
6642
6643	return "ICE_AQ_RC_UNKNOWN";
6644}
6645
6646/**
6647 * ice_stat_str - convert status err code to a string
6648 * @stat_err: the status error code to convert
6649 */
6650const char *ice_stat_str(enum ice_status stat_err)
6651{
6652	switch (stat_err) {
6653	case ICE_SUCCESS:
6654		return "OK";
6655	case ICE_ERR_PARAM:
6656		return "ICE_ERR_PARAM";
6657	case ICE_ERR_NOT_IMPL:
6658		return "ICE_ERR_NOT_IMPL";
6659	case ICE_ERR_NOT_READY:
6660		return "ICE_ERR_NOT_READY";
6661	case ICE_ERR_NOT_SUPPORTED:
6662		return "ICE_ERR_NOT_SUPPORTED";
6663	case ICE_ERR_BAD_PTR:
6664		return "ICE_ERR_BAD_PTR";
6665	case ICE_ERR_INVAL_SIZE:
6666		return "ICE_ERR_INVAL_SIZE";
6667	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6668		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6669	case ICE_ERR_RESET_FAILED:
6670		return "ICE_ERR_RESET_FAILED";
6671	case ICE_ERR_FW_API_VER:
6672		return "ICE_ERR_FW_API_VER";
6673	case ICE_ERR_NO_MEMORY:
6674		return "ICE_ERR_NO_MEMORY";
6675	case ICE_ERR_CFG:
6676		return "ICE_ERR_CFG";
6677	case ICE_ERR_OUT_OF_RANGE:
6678		return "ICE_ERR_OUT_OF_RANGE";
6679	case ICE_ERR_ALREADY_EXISTS:
6680		return "ICE_ERR_ALREADY_EXISTS";
6681	case ICE_ERR_NVM:
6682		return "ICE_ERR_NVM";
6683	case ICE_ERR_NVM_CHECKSUM:
6684		return "ICE_ERR_NVM_CHECKSUM";
6685	case ICE_ERR_BUF_TOO_SHORT:
6686		return "ICE_ERR_BUF_TOO_SHORT";
6687	case ICE_ERR_NVM_BLANK_MODE:
6688		return "ICE_ERR_NVM_BLANK_MODE";
6689	case ICE_ERR_IN_USE:
6690		return "ICE_ERR_IN_USE";
6691	case ICE_ERR_MAX_LIMIT:
6692		return "ICE_ERR_MAX_LIMIT";
6693	case ICE_ERR_RESET_ONGOING:
6694		return "ICE_ERR_RESET_ONGOING";
6695	case ICE_ERR_HW_TABLE:
6696		return "ICE_ERR_HW_TABLE";
6697	case ICE_ERR_DOES_NOT_EXIST:
6698		return "ICE_ERR_DOES_NOT_EXIST";
6699	case ICE_ERR_FW_DDP_MISMATCH:
6700		return "ICE_ERR_FW_DDP_MISMATCH";
6701	case ICE_ERR_AQ_ERROR:
6702		return "ICE_ERR_AQ_ERROR";
6703	case ICE_ERR_AQ_TIMEOUT:
6704		return "ICE_ERR_AQ_TIMEOUT";
6705	case ICE_ERR_AQ_FULL:
6706		return "ICE_ERR_AQ_FULL";
6707	case ICE_ERR_AQ_NO_WORK:
6708		return "ICE_ERR_AQ_NO_WORK";
6709	case ICE_ERR_AQ_EMPTY:
6710		return "ICE_ERR_AQ_EMPTY";
6711	case ICE_ERR_AQ_FW_CRITICAL:
6712		return "ICE_ERR_AQ_FW_CRITICAL";
6713	}
6714
6715	return "ICE_ERR_UNKNOWN";
6716}
6717
6718/**
6719 * ice_set_rss_lut - Set RSS LUT
6720 * @vsi: Pointer to VSI structure
 
6721 * @lut: Lookup table
6722 * @lut_size: Lookup table size
6723 *
6724 * Returns 0 on success, negative on failure
6725 */
6726int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6727{
6728	struct ice_aq_get_set_rss_lut_params params = {};
6729	struct ice_hw *hw = &vsi->back->hw;
6730	enum ice_status status;
6731
6732	if (!lut)
6733		return -EINVAL;
 
6734
6735	params.vsi_handle = vsi->idx;
6736	params.lut_size = lut_size;
6737	params.lut_type = vsi->rss_lut_type;
6738	params.lut = lut;
6739
6740	status = ice_aq_set_rss_lut(hw, &params);
6741	if (status) {
6742		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6743			ice_stat_str(status),
6744			ice_aq_str(hw->adminq.sq_last_status));
6745		return -EIO;
6746	}
6747
6748	return 0;
6749}
6750
6751/**
6752 * ice_set_rss_key - Set RSS key
6753 * @vsi: Pointer to the VSI structure
6754 * @seed: RSS hash seed
6755 *
6756 * Returns 0 on success, negative on failure
6757 */
6758int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6759{
6760	struct ice_hw *hw = &vsi->back->hw;
6761	enum ice_status status;
6762
6763	if (!seed)
6764		return -EINVAL;
6765
6766	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6767	if (status) {
6768		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6769			ice_stat_str(status),
6770			ice_aq_str(hw->adminq.sq_last_status));
6771		return -EIO;
6772	}
6773
6774	return 0;
6775}
6776
6777/**
6778 * ice_get_rss_lut - Get RSS LUT
6779 * @vsi: Pointer to VSI structure
 
6780 * @lut: Buffer to store the lookup table entries
6781 * @lut_size: Size of buffer to store the lookup table entries
6782 *
6783 * Returns 0 on success, negative on failure
6784 */
6785int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6786{
6787	struct ice_aq_get_set_rss_lut_params params = {};
6788	struct ice_hw *hw = &vsi->back->hw;
6789	enum ice_status status;
6790
6791	if (!lut)
6792		return -EINVAL;
6793
6794	params.vsi_handle = vsi->idx;
6795	params.lut_size = lut_size;
6796	params.lut_type = vsi->rss_lut_type;
6797	params.lut = lut;
6798
6799	status = ice_aq_get_rss_lut(hw, &params);
6800	if (status) {
6801		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6802			ice_stat_str(status),
6803			ice_aq_str(hw->adminq.sq_last_status));
6804		return -EIO;
6805	}
6806
6807	return 0;
6808}
6809
6810/**
6811 * ice_get_rss_key - Get RSS key
6812 * @vsi: Pointer to VSI structure
6813 * @seed: Buffer to store the key in
6814 *
6815 * Returns 0 on success, negative on failure
6816 */
6817int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6818{
6819	struct ice_hw *hw = &vsi->back->hw;
6820	enum ice_status status;
6821
6822	if (!seed)
6823		return -EINVAL;
6824
6825	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6826	if (status) {
6827		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6828			ice_stat_str(status),
6829			ice_aq_str(hw->adminq.sq_last_status));
6830		return -EIO;
6831	}
6832
6833	return 0;
6834}
6835
6836/**
6837 * ice_bridge_getlink - Get the hardware bridge mode
6838 * @skb: skb buff
6839 * @pid: process ID
6840 * @seq: RTNL message seq
6841 * @dev: the netdev being configured
6842 * @filter_mask: filter mask passed in
6843 * @nlflags: netlink flags passed in
6844 *
6845 * Return the bridge mode (VEB/VEPA)
6846 */
6847static int
6848ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6849		   struct net_device *dev, u32 filter_mask, int nlflags)
6850{
6851	struct ice_netdev_priv *np = netdev_priv(dev);
6852	struct ice_vsi *vsi = np->vsi;
6853	struct ice_pf *pf = vsi->back;
6854	u16 bmode;
6855
6856	bmode = pf->first_sw->bridge_mode;
6857
6858	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6859				       filter_mask, NULL);
6860}
6861
6862/**
6863 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6864 * @vsi: Pointer to VSI structure
6865 * @bmode: Hardware bridge mode (VEB/VEPA)
6866 *
6867 * Returns 0 on success, negative on failure
6868 */
6869static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6870{
6871	struct ice_aqc_vsi_props *vsi_props;
6872	struct ice_hw *hw = &vsi->back->hw;
6873	struct ice_vsi_ctx *ctxt;
6874	enum ice_status status;
6875	int ret = 0;
6876
6877	vsi_props = &vsi->info;
6878
6879	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6880	if (!ctxt)
6881		return -ENOMEM;
6882
6883	ctxt->info = vsi->info;
6884
6885	if (bmode == BRIDGE_MODE_VEB)
6886		/* change from VEPA to VEB mode */
6887		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6888	else
6889		/* change from VEB to VEPA mode */
6890		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6891	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6892
6893	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6894	if (status) {
6895		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6896			bmode, ice_stat_str(status),
6897			ice_aq_str(hw->adminq.sq_last_status));
6898		ret = -EIO;
6899		goto out;
6900	}
6901	/* Update sw flags for book keeping */
6902	vsi_props->sw_flags = ctxt->info.sw_flags;
6903
6904out:
6905	kfree(ctxt);
6906	return ret;
6907}
6908
6909/**
6910 * ice_bridge_setlink - Set the hardware bridge mode
6911 * @dev: the netdev being configured
6912 * @nlh: RTNL message
6913 * @flags: bridge setlink flags
6914 * @extack: netlink extended ack
6915 *
6916 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6917 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6918 * not already set for all VSIs connected to this switch. And also update the
6919 * unicast switch filter rules for the corresponding switch of the netdev.
6920 */
6921static int
6922ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6923		   u16 __always_unused flags,
6924		   struct netlink_ext_ack __always_unused *extack)
6925{
6926	struct ice_netdev_priv *np = netdev_priv(dev);
6927	struct ice_pf *pf = np->vsi->back;
6928	struct nlattr *attr, *br_spec;
6929	struct ice_hw *hw = &pf->hw;
6930	enum ice_status status;
6931	struct ice_sw *pf_sw;
6932	int rem, v, err = 0;
6933
6934	pf_sw = pf->first_sw;
6935	/* find the attribute in the netlink message */
6936	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6937
6938	nla_for_each_nested(attr, br_spec, rem) {
6939		__u16 mode;
6940
6941		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6942			continue;
6943		mode = nla_get_u16(attr);
6944		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6945			return -EINVAL;
6946		/* Continue  if bridge mode is not being flipped */
6947		if (mode == pf_sw->bridge_mode)
6948			continue;
6949		/* Iterates through the PF VSI list and update the loopback
6950		 * mode of the VSI
6951		 */
6952		ice_for_each_vsi(pf, v) {
6953			if (!pf->vsi[v])
6954				continue;
6955			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6956			if (err)
6957				return err;
6958		}
 
6959
6960		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6961		/* Update the unicast switch filter rules for the corresponding
6962		 * switch of the netdev
6963		 */
6964		status = ice_update_sw_rule_bridge_mode(hw);
6965		if (status) {
6966			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6967				   mode, ice_stat_str(status),
6968				   ice_aq_str(hw->adminq.sq_last_status));
6969			/* revert hw->evb_veb */
6970			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6971			return -EIO;
6972		}
6973
6974		pf_sw->bridge_mode = mode;
6975	}
6976
6977	return 0;
6978}
6979
6980/**
6981 * ice_tx_timeout - Respond to a Tx Hang
6982 * @netdev: network interface device structure
6983 * @txqueue: Tx queue
6984 */
6985static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6986{
6987	struct ice_netdev_priv *np = netdev_priv(netdev);
6988	struct ice_ring *tx_ring = NULL;
6989	struct ice_vsi *vsi = np->vsi;
6990	struct ice_pf *pf = vsi->back;
6991	u32 i;
6992
6993	pf->tx_timeout_count++;
6994
6995	/* Check if PFC is enabled for the TC to which the queue belongs
6996	 * to. If yes then Tx timeout is not caused by a hung queue, no
6997	 * need to reset and rebuild
6998	 */
6999	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7000		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7001			 txqueue);
7002		return;
7003	}
7004
7005	/* now that we have an index, find the tx_ring struct */
7006	for (i = 0; i < vsi->num_txq; i++)
7007		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7008			if (txqueue == vsi->tx_rings[i]->q_index) {
7009				tx_ring = vsi->tx_rings[i];
7010				break;
7011			}
7012
7013	/* Reset recovery level if enough time has elapsed after last timeout.
7014	 * Also ensure no new reset action happens before next timeout period.
7015	 */
7016	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7017		pf->tx_timeout_recovery_level = 1;
7018	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7019				       netdev->watchdog_timeo)))
7020		return;
7021
7022	if (tx_ring) {
7023		struct ice_hw *hw = &pf->hw;
7024		u32 head, val = 0;
7025
7026		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7027			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7028		/* Read interrupt register */
7029		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7030
7031		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7032			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7033			    head, tx_ring->next_to_use, val);
7034	}
7035
7036	pf->tx_timeout_last_recovery = jiffies;
7037	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7038		    pf->tx_timeout_recovery_level, txqueue);
7039
7040	switch (pf->tx_timeout_recovery_level) {
7041	case 1:
7042		set_bit(ICE_PFR_REQ, pf->state);
7043		break;
7044	case 2:
7045		set_bit(ICE_CORER_REQ, pf->state);
7046		break;
7047	case 3:
7048		set_bit(ICE_GLOBR_REQ, pf->state);
7049		break;
7050	default:
7051		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7052		set_bit(ICE_DOWN, pf->state);
7053		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7054		set_bit(ICE_SERVICE_DIS, pf->state);
7055		break;
7056	}
7057
7058	ice_service_task_schedule(pf);
7059	pf->tx_timeout_recovery_level++;
7060}
7061
7062/**
7063 * ice_open - Called when a network interface becomes active
7064 * @netdev: network interface device structure
7065 *
7066 * The open entry point is called when a network interface is made
7067 * active by the system (IFF_UP). At this point all resources needed
7068 * for transmit and receive operations are allocated, the interrupt
7069 * handler is registered with the OS, the netdev watchdog is enabled,
7070 * and the stack is notified that the interface is ready.
7071 *
7072 * Returns 0 on success, negative value on failure
7073 */
7074int ice_open(struct net_device *netdev)
7075{
7076	struct ice_netdev_priv *np = netdev_priv(netdev);
7077	struct ice_pf *pf = np->vsi->back;
7078
7079	if (ice_is_reset_in_progress(pf->state)) {
7080		netdev_err(netdev, "can't open net device while reset is in progress");
7081		return -EBUSY;
7082	}
7083
7084	return ice_open_internal(netdev);
7085}
7086
7087/**
7088 * ice_open_internal - Called when a network interface becomes active
7089 * @netdev: network interface device structure
7090 *
7091 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7092 * handling routine
7093 *
7094 * Returns 0 on success, negative value on failure
7095 */
7096int ice_open_internal(struct net_device *netdev)
7097{
7098	struct ice_netdev_priv *np = netdev_priv(netdev);
7099	struct ice_vsi *vsi = np->vsi;
7100	struct ice_pf *pf = vsi->back;
7101	struct ice_port_info *pi;
7102	enum ice_status status;
7103	int err;
7104
7105	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7106		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7107		return -EIO;
7108	}
7109
7110	netif_carrier_off(netdev);
7111
7112	pi = vsi->port_info;
7113	status = ice_update_link_info(pi);
7114	if (status) {
7115		netdev_err(netdev, "Failed to get link info, error %s\n",
7116			   ice_stat_str(status));
7117		return -EIO;
7118	}
7119
7120	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7121
7122	/* Set PHY if there is media, otherwise, turn off PHY */
7123	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7124		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7125		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7126			err = ice_init_phy_user_cfg(pi);
7127			if (err) {
7128				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7129					   err);
7130				return err;
7131			}
7132		}
7133
7134		err = ice_configure_phy(vsi);
7135		if (err) {
7136			netdev_err(netdev, "Failed to set physical link up, error %d\n",
7137				   err);
7138			return err;
7139		}
7140	} else {
7141		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7142		ice_set_link(vsi, false);
7143	}
7144
7145	err = ice_vsi_open(vsi);
7146	if (err)
7147		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7148			   vsi->vsi_num, vsi->vsw->sw_id);
7149
7150	/* Update existing tunnels information */
7151	udp_tunnel_get_rx_info(netdev);
7152
7153	return err;
7154}
7155
7156/**
7157 * ice_stop - Disables a network interface
7158 * @netdev: network interface device structure
7159 *
7160 * The stop entry point is called when an interface is de-activated by the OS,
7161 * and the netdevice enters the DOWN state. The hardware is still under the
7162 * driver's control, but the netdev interface is disabled.
7163 *
7164 * Returns success only - not allowed to fail
7165 */
7166int ice_stop(struct net_device *netdev)
7167{
7168	struct ice_netdev_priv *np = netdev_priv(netdev);
7169	struct ice_vsi *vsi = np->vsi;
7170	struct ice_pf *pf = vsi->back;
7171
7172	if (ice_is_reset_in_progress(pf->state)) {
7173		netdev_err(netdev, "can't stop net device while reset is in progress");
7174		return -EBUSY;
7175	}
7176
7177	ice_vsi_close(vsi);
7178
7179	return 0;
7180}
7181
7182/**
7183 * ice_features_check - Validate encapsulated packet conforms to limits
7184 * @skb: skb buffer
7185 * @netdev: This port's netdev
7186 * @features: Offload features that the stack believes apply
7187 */
7188static netdev_features_t
7189ice_features_check(struct sk_buff *skb,
7190		   struct net_device __always_unused *netdev,
7191		   netdev_features_t features)
7192{
7193	size_t len;
7194
7195	/* No point in doing any of this if neither checksum nor GSO are
7196	 * being requested for this frame. We can rule out both by just
7197	 * checking for CHECKSUM_PARTIAL
7198	 */
7199	if (skb->ip_summed != CHECKSUM_PARTIAL)
7200		return features;
7201
7202	/* We cannot support GSO if the MSS is going to be less than
7203	 * 64 bytes. If it is then we need to drop support for GSO.
7204	 */
7205	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
7206		features &= ~NETIF_F_GSO_MASK;
7207
7208	len = skb_network_header(skb) - skb->data;
7209	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7210		goto out_rm_features;
7211
7212	len = skb_transport_header(skb) - skb_network_header(skb);
7213	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7214		goto out_rm_features;
7215
7216	if (skb->encapsulation) {
7217		len = skb_inner_network_header(skb) - skb_transport_header(skb);
7218		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7219			goto out_rm_features;
7220
7221		len = skb_inner_transport_header(skb) -
7222		      skb_inner_network_header(skb);
7223		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7224			goto out_rm_features;
7225	}
7226
7227	return features;
7228out_rm_features:
7229	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7230}
7231
7232static const struct net_device_ops ice_netdev_safe_mode_ops = {
7233	.ndo_open = ice_open,
7234	.ndo_stop = ice_stop,
7235	.ndo_start_xmit = ice_start_xmit,
7236	.ndo_set_mac_address = ice_set_mac_address,
7237	.ndo_validate_addr = eth_validate_addr,
7238	.ndo_change_mtu = ice_change_mtu,
7239	.ndo_get_stats64 = ice_get_stats64,
7240	.ndo_tx_timeout = ice_tx_timeout,
7241	.ndo_bpf = ice_xdp_safe_mode,
7242};
7243
7244static const struct net_device_ops ice_netdev_ops = {
7245	.ndo_open = ice_open,
7246	.ndo_stop = ice_stop,
7247	.ndo_start_xmit = ice_start_xmit,
7248	.ndo_features_check = ice_features_check,
7249	.ndo_set_rx_mode = ice_set_rx_mode,
7250	.ndo_set_mac_address = ice_set_mac_address,
7251	.ndo_validate_addr = eth_validate_addr,
7252	.ndo_change_mtu = ice_change_mtu,
7253	.ndo_get_stats64 = ice_get_stats64,
7254	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
7255	.ndo_do_ioctl = ice_do_ioctl,
7256	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7257	.ndo_set_vf_mac = ice_set_vf_mac,
7258	.ndo_get_vf_config = ice_get_vf_cfg,
7259	.ndo_set_vf_trust = ice_set_vf_trust,
7260	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
7261	.ndo_set_vf_link_state = ice_set_vf_link_state,
7262	.ndo_get_vf_stats = ice_get_vf_stats,
7263	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7264	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7265	.ndo_set_features = ice_set_features,
7266	.ndo_bridge_getlink = ice_bridge_getlink,
7267	.ndo_bridge_setlink = ice_bridge_setlink,
7268	.ndo_fdb_add = ice_fdb_add,
7269	.ndo_fdb_del = ice_fdb_del,
7270#ifdef CONFIG_RFS_ACCEL
7271	.ndo_rx_flow_steer = ice_rx_flow_steer,
7272#endif
7273	.ndo_tx_timeout = ice_tx_timeout,
7274	.ndo_bpf = ice_xdp,
7275	.ndo_xdp_xmit = ice_xdp_xmit,
7276	.ndo_xsk_wakeup = ice_xsk_wakeup,
7277};