Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.17
 
   1/* Xilinx CAN device driver
   2 *
   3 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   4 * Copyright (C) 2009 PetaLogix. All rights reserved.
 
   5 *
   6 * Description:
   7 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
   8 * This program is free software: you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation, either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/errno.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/netdevice.h>
  27#include <linux/of.h>
 
  28#include <linux/platform_device.h>
  29#include <linux/skbuff.h>
 
  30#include <linux/string.h>
  31#include <linux/types.h>
  32#include <linux/can/dev.h>
  33#include <linux/can/error.h>
  34#include <linux/can/led.h>
  35#include <linux/pm_runtime.h>
  36
  37#define DRIVER_NAME	"xilinx_can"
  38
  39/* CAN registers set */
  40enum xcan_reg {
  41	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  42	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  43	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  44	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  45	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  46	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  47	XCAN_SR_OFFSET		= 0x18, /* Status */
  48	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  49	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  50	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  51	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
  52	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
  53	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
  54	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
  55	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
  56	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
  57	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
  58	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
 
 
 
 
 
 
 
 
 
 
 
  59};
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  62#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  63#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  64#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  65#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  66#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  67#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  68#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  69#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
 
 
 
  70#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
  71#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
  72#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
  73#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
  74#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
  75#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
  76#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
  77#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
  78#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
  79#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
  80#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
  81#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
  82#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 
  83#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
  84#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
  85#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
  86#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
  87#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
  88#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
  89#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
  90#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
  91#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
  92#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
  93#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
  94#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
  95#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
  96#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
  97#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
  98#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
  99#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 100
 101#define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
 102				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
 103				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
 104				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
 
 
 105
 106/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 107#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 108#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 
 
 109#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 110#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 111#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 112#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 113
 114/* CAN frame length constants */
 115#define XCAN_FRAME_MAX_DATA_LEN		8
 
 116#define XCAN_TIMEOUT			(1 * HZ)
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118/**
 119 * struct xcan_priv - This definition define CAN driver instance
 120 * @can:			CAN private data structure.
 
 121 * @tx_head:			Tx CAN packets ready to send on the queue
 122 * @tx_tail:			Tx CAN packets successfully sended on the queue
 123 * @tx_max:			Maximum number packets the driver can send
 124 * @napi:			NAPI structure
 125 * @read_reg:			For reading data from CAN registers
 126 * @write_reg:			For writing data to CAN registers
 127 * @dev:			Network device data structure
 128 * @reg_base:			Ioremapped address to registers
 129 * @irq_flags:			For request_irq()
 130 * @bus_clk:			Pointer to struct clk
 131 * @can_clk:			Pointer to struct clk
 
 132 */
 133struct xcan_priv {
 134	struct can_priv can;
 
 135	unsigned int tx_head;
 136	unsigned int tx_tail;
 137	unsigned int tx_max;
 138	struct napi_struct napi;
 139	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 140	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 141			u32 val);
 142	struct device *dev;
 143	void __iomem *reg_base;
 144	unsigned long irq_flags;
 145	struct clk *bus_clk;
 146	struct clk *can_clk;
 
 147};
 148
 149/* CAN Bittiming constants as per Xilinx CAN specs */
 150static const struct can_bittiming_const xcan_bittiming_const = {
 151	.name = DRIVER_NAME,
 152	.tseg1_min = 1,
 153	.tseg1_max = 16,
 154	.tseg2_min = 1,
 155	.tseg2_max = 8,
 156	.sjw_max = 4,
 157	.brp_min = 1,
 158	.brp_max = 256,
 159	.brp_inc = 1,
 160};
 161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162/**
 163 * xcan_write_reg_le - Write a value to the device register little endian
 164 * @priv:	Driver private data structure
 165 * @reg:	Register offset
 166 * @val:	Value to write at the Register offset
 167 *
 168 * Write data to the paricular CAN register
 169 */
 170static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 171			u32 val)
 172{
 173	iowrite32(val, priv->reg_base + reg);
 174}
 175
 176/**
 177 * xcan_read_reg_le - Read a value from the device register little endian
 178 * @priv:	Driver private data structure
 179 * @reg:	Register offset
 180 *
 181 * Read data from the particular CAN register
 182 * Return: value read from the CAN register
 183 */
 184static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 185{
 186	return ioread32(priv->reg_base + reg);
 187}
 188
 189/**
 190 * xcan_write_reg_be - Write a value to the device register big endian
 191 * @priv:	Driver private data structure
 192 * @reg:	Register offset
 193 * @val:	Value to write at the Register offset
 194 *
 195 * Write data to the paricular CAN register
 196 */
 197static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 198			u32 val)
 199{
 200	iowrite32be(val, priv->reg_base + reg);
 201}
 202
 203/**
 204 * xcan_read_reg_be - Read a value from the device register big endian
 205 * @priv:	Driver private data structure
 206 * @reg:	Register offset
 207 *
 208 * Read data from the particular CAN register
 209 * Return: value read from the CAN register
 210 */
 211static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 212{
 213	return ioread32be(priv->reg_base + reg);
 214}
 215
 216/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217 * set_reset_mode - Resets the CAN device mode
 218 * @ndev:	Pointer to net_device structure
 219 *
 220 * This is the driver reset mode routine.The driver
 221 * enters into configuration mode.
 222 *
 223 * Return: 0 on success and failure value on error
 224 */
 225static int set_reset_mode(struct net_device *ndev)
 226{
 227	struct xcan_priv *priv = netdev_priv(ndev);
 228	unsigned long timeout;
 229
 230	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 231
 232	timeout = jiffies + XCAN_TIMEOUT;
 233	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 234		if (time_after(jiffies, timeout)) {
 235			netdev_warn(ndev, "timed out for config mode\n");
 236			return -ETIMEDOUT;
 237		}
 238		usleep_range(500, 10000);
 239	}
 240
 
 
 
 
 241	return 0;
 242}
 243
 244/**
 245 * xcan_set_bittiming - CAN set bit timing routine
 246 * @ndev:	Pointer to net_device structure
 247 *
 248 * This is the driver set bittiming  routine.
 249 * Return: 0 on success and failure value on error
 250 */
 251static int xcan_set_bittiming(struct net_device *ndev)
 252{
 253	struct xcan_priv *priv = netdev_priv(ndev);
 254	struct can_bittiming *bt = &priv->can.bittiming;
 
 255	u32 btr0, btr1;
 256	u32 is_config_mode;
 257
 258	/* Check whether Xilinx CAN is in configuration mode.
 259	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 260	 */
 261	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 262				XCAN_SR_CONFIG_MASK;
 263	if (!is_config_mode) {
 264		netdev_alert(ndev,
 265		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 266		return -EPERM;
 267	}
 268
 269	/* Setting Baud Rate prescalar value in BRPR Register */
 270	btr0 = (bt->brp - 1);
 271
 272	/* Setting Time Segment 1 in BTR Register */
 273	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 274
 275	/* Setting Time Segment 2 in BTR Register */
 276	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
 277
 278	/* Setting Synchronous jump width in BTR Register */
 279	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
 280
 281	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 282	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 285			priv->read_reg(priv, XCAN_BRPR_OFFSET),
 286			priv->read_reg(priv, XCAN_BTR_OFFSET));
 287
 288	return 0;
 289}
 290
 291/**
 292 * xcan_chip_start - This the drivers start routine
 293 * @ndev:	Pointer to net_device structure
 294 *
 295 * This is the drivers start routine.
 296 * Based on the State of the CAN device it puts
 297 * the CAN device into a proper mode.
 298 *
 299 * Return: 0 on success and failure value on error
 300 */
 301static int xcan_chip_start(struct net_device *ndev)
 302{
 303	struct xcan_priv *priv = netdev_priv(ndev);
 304	u32 reg_msr, reg_sr_mask;
 305	int err;
 306	unsigned long timeout;
 307
 308	/* Check if it is in reset mode */
 309	err = set_reset_mode(ndev);
 310	if (err < 0)
 311		return err;
 312
 313	err = xcan_set_bittiming(ndev);
 314	if (err < 0)
 315		return err;
 316
 317	/* Enable interrupts */
 318	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319
 320	/* Check whether it is loopback mode or normal mode  */
 321	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 322		reg_msr = XCAN_MSR_LBACK_MASK;
 323		reg_sr_mask = XCAN_SR_LBACK_MASK;
 324	} else {
 325		reg_msr = 0x0;
 326		reg_sr_mask = XCAN_SR_NORMAL_MASK;
 327	}
 
 
 
 
 328
 329	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 330	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 331
 332	timeout = jiffies + XCAN_TIMEOUT;
 333	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
 334		if (time_after(jiffies, timeout)) {
 335			netdev_warn(ndev,
 336				"timed out for correct mode\n");
 337			return -ETIMEDOUT;
 338		}
 339	}
 340	netdev_dbg(ndev, "status:#x%08x\n",
 341			priv->read_reg(priv, XCAN_SR_OFFSET));
 342
 343	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 344	return 0;
 345}
 346
 347/**
 348 * xcan_do_set_mode - This sets the mode of the driver
 349 * @ndev:	Pointer to net_device structure
 350 * @mode:	Tells the mode of the driver
 351 *
 352 * This check the drivers state and calls the
 353 * the corresponding modes to set.
 354 *
 355 * Return: 0 on success and failure value on error
 356 */
 357static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 358{
 359	int ret;
 360
 361	switch (mode) {
 362	case CAN_MODE_START:
 363		ret = xcan_chip_start(ndev);
 364		if (ret < 0) {
 365			netdev_err(ndev, "xcan_chip_start failed!\n");
 366			return ret;
 367		}
 368		netif_wake_queue(ndev);
 369		break;
 370	default:
 371		ret = -EOPNOTSUPP;
 372		break;
 373	}
 374
 375	return ret;
 376}
 377
 378/**
 379 * xcan_start_xmit - Starts the transmission
 380 * @skb:	sk_buff pointer that contains data to be Txed
 381 * @ndev:	Pointer to net_device structure
 382 *
 383 * This function is invoked from upper layers to initiate transmission. This
 384 * function uses the next available free txbuff and populates their fields to
 385 * start the transmission.
 386 *
 387 * Return: 0 on success and failure value on error
 388 */
 389static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 
 390{
 391	struct xcan_priv *priv = netdev_priv(ndev);
 392	struct net_device_stats *stats = &ndev->stats;
 393	struct can_frame *cf = (struct can_frame *)skb->data;
 394	u32 id, dlc, data[2] = {0, 0};
 395
 396	if (can_dropped_invalid_skb(ndev, skb))
 397		return NETDEV_TX_OK;
 398
 399	/* Check if the TX buffer is full */
 400	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 401			XCAN_SR_TXFLL_MASK)) {
 402		netif_stop_queue(ndev);
 403		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
 404		return NETDEV_TX_BUSY;
 405	}
 406
 407	/* Watch carefully on the bit sequence */
 408	if (cf->can_id & CAN_EFF_FLAG) {
 409		/* Extended CAN ID format */
 410		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 411			XCAN_IDR_ID2_MASK;
 412		id |= (((cf->can_id & CAN_EFF_MASK) >>
 413			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
 414			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 415
 416		/* The substibute remote TX request bit should be "1"
 417		 * for extended frames as in the Xilinx CAN datasheet
 418		 */
 419		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 420
 421		if (cf->can_id & CAN_RTR_FLAG)
 422			/* Extended frames remote TX request */
 423			id |= XCAN_IDR_RTR_MASK;
 424	} else {
 425		/* Standard CAN ID format */
 426		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 427			XCAN_IDR_ID1_MASK;
 428
 429		if (cf->can_id & CAN_RTR_FLAG)
 430			/* Standard frames remote TX request */
 431			id |= XCAN_IDR_SRR_MASK;
 432	}
 433
 434	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
 
 
 
 
 
 435
 436	if (cf->can_dlc > 0)
 437		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 438	if (cf->can_dlc > 4)
 439		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 
 440
 441	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
 442	priv->tx_head++;
 443
 444	/* Write the Frame to Xilinx CAN TX FIFO */
 445	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
 446	/* If the CAN frame is RTR frame this write triggers tranmission */
 447	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
 448	if (!(cf->can_id & CAN_RTR_FLAG)) {
 449		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
 450		/* If the CAN frame is Standard/Extended frame this
 451		 * write triggers tranmission
 452		 */
 453		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
 454		stats->tx_bytes += cf->can_dlc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456
 457	/* Check if the TX buffer is full */
 458	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 459		netif_stop_queue(ndev);
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461	return NETDEV_TX_OK;
 462}
 463
 464/**
 465 * xcan_rx -  Is called from CAN isr to complete the received
 466 *		frame  processing
 467 * @ndev:	Pointer to net_device structure
 
 468 *
 469 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 470 * does minimal processing and invokes "netif_receive_skb" to complete further
 471 * processing.
 472 * Return: 1 on success and 0 on failure.
 473 */
 474static int xcan_rx(struct net_device *ndev)
 475{
 476	struct xcan_priv *priv = netdev_priv(ndev);
 477	struct net_device_stats *stats = &ndev->stats;
 478	struct can_frame *cf;
 479	struct sk_buff *skb;
 480	u32 id_xcan, dlc, data[2] = {0, 0};
 481
 482	skb = alloc_can_skb(ndev, &cf);
 483	if (unlikely(!skb)) {
 484		stats->rx_dropped++;
 485		return 0;
 486	}
 487
 488	/* Read a frame from Xilinx zynq CANPS */
 489	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
 490	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
 491				XCAN_DLCR_DLC_SHIFT;
 492
 493	/* Change Xilinx CAN data length format to socketCAN data format */
 494	cf->can_dlc = get_can_dlc(dlc);
 495
 496	/* Change Xilinx CAN ID format to socketCAN ID format */
 497	if (id_xcan & XCAN_IDR_IDE_MASK) {
 498		/* The received frame is an Extended format frame */
 499		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 500		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 501				XCAN_IDR_ID2_SHIFT;
 502		cf->can_id |= CAN_EFF_FLAG;
 503		if (id_xcan & XCAN_IDR_RTR_MASK)
 504			cf->can_id |= CAN_RTR_FLAG;
 505	} else {
 506		/* The received frame is a standard format frame */
 507		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 508				XCAN_IDR_ID1_SHIFT;
 509		if (id_xcan & XCAN_IDR_SRR_MASK)
 510			cf->can_id |= CAN_RTR_FLAG;
 511	}
 512
 513	/* DW1/DW2 must always be read to remove message from RXFIFO */
 514	data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
 515	data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
 516
 517	if (!(cf->can_id & CAN_RTR_FLAG)) {
 518		/* Change Xilinx CAN data format to socketCAN data format */
 519		if (cf->can_dlc > 0)
 520			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 521		if (cf->can_dlc > 4)
 522			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 523	}
 524
 525	stats->rx_bytes += cf->can_dlc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526	stats->rx_packets++;
 527	netif_receive_skb(skb);
 528
 529	return 1;
 530}
 531
 532/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533 * xcan_err_interrupt - error frame Isr
 534 * @ndev:	net_device pointer
 535 * @isr:	interrupt status register value
 536 *
 537 * This is the CAN error interrupt and it will
 538 * check the the type of error and forward the error
 539 * frame to upper layers.
 540 */
 541static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 542{
 543	struct xcan_priv *priv = netdev_priv(ndev);
 544	struct net_device_stats *stats = &ndev->stats;
 545	struct can_frame *cf;
 546	struct sk_buff *skb;
 547	u32 err_status, status, txerr = 0, rxerr = 0;
 548
 549	skb = alloc_can_err_skb(ndev, &cf);
 550
 551	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 552	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 553	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
 554	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
 555			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
 556	status = priv->read_reg(priv, XCAN_SR_OFFSET);
 557
 558	if (isr & XCAN_IXR_BSOFF_MASK) {
 559		priv->can.state = CAN_STATE_BUS_OFF;
 560		priv->can.can_stats.bus_off++;
 561		/* Leave device in Config Mode in bus-off state */
 562		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 563		can_bus_off(ndev);
 564		if (skb)
 565			cf->can_id |= CAN_ERR_BUSOFF;
 566	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
 567		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 568		priv->can.can_stats.error_passive++;
 569		if (skb) {
 570			cf->can_id |= CAN_ERR_CRTL;
 571			cf->data[1] = (rxerr > 127) ?
 572					CAN_ERR_CRTL_RX_PASSIVE :
 573					CAN_ERR_CRTL_TX_PASSIVE;
 574			cf->data[6] = txerr;
 575			cf->data[7] = rxerr;
 576		}
 577	} else if (status & XCAN_SR_ERRWRN_MASK) {
 578		priv->can.state = CAN_STATE_ERROR_WARNING;
 579		priv->can.can_stats.error_warning++;
 580		if (skb) {
 581			cf->can_id |= CAN_ERR_CRTL;
 582			cf->data[1] |= (txerr > rxerr) ?
 583					CAN_ERR_CRTL_TX_WARNING :
 584					CAN_ERR_CRTL_RX_WARNING;
 585			cf->data[6] = txerr;
 586			cf->data[7] = rxerr;
 587		}
 588	}
 589
 590	/* Check for Arbitration lost interrupt */
 591	if (isr & XCAN_IXR_ARBLST_MASK) {
 592		priv->can.can_stats.arbitration_lost++;
 593		if (skb) {
 594			cf->can_id |= CAN_ERR_LOSTARB;
 595			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
 596		}
 597	}
 598
 599	/* Check for RX FIFO Overflow interrupt */
 600	if (isr & XCAN_IXR_RXOFLW_MASK) {
 601		stats->rx_over_errors++;
 602		stats->rx_errors++;
 603		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 604		if (skb) {
 605			cf->can_id |= CAN_ERR_CRTL;
 606			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
 607		}
 
 
 
 
 
 
 608	}
 609
 610	/* Check for error interrupt */
 611	if (isr & XCAN_IXR_ERROR_MASK) {
 612		if (skb)
 613			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 
 
 
 
 614
 615		/* Check for Ack error interrupt */
 616		if (err_status & XCAN_ESR_ACKER_MASK) {
 617			stats->tx_errors++;
 618			if (skb) {
 619				cf->can_id |= CAN_ERR_ACK;
 620				cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 621			}
 622		}
 623
 624		/* Check for Bit error interrupt */
 625		if (err_status & XCAN_ESR_BERR_MASK) {
 626			stats->tx_errors++;
 627			if (skb) {
 628				cf->can_id |= CAN_ERR_PROT;
 629				cf->data[2] = CAN_ERR_PROT_BIT;
 630			}
 631		}
 632
 633		/* Check for Stuff error interrupt */
 634		if (err_status & XCAN_ESR_STER_MASK) {
 635			stats->rx_errors++;
 636			if (skb) {
 637				cf->can_id |= CAN_ERR_PROT;
 638				cf->data[2] = CAN_ERR_PROT_STUFF;
 639			}
 640		}
 641
 642		/* Check for Form error interrupt */
 643		if (err_status & XCAN_ESR_FMER_MASK) {
 644			stats->rx_errors++;
 645			if (skb) {
 646				cf->can_id |= CAN_ERR_PROT;
 647				cf->data[2] = CAN_ERR_PROT_FORM;
 648			}
 649		}
 650
 651		/* Check for CRC error interrupt */
 652		if (err_status & XCAN_ESR_CRCER_MASK) {
 653			stats->rx_errors++;
 654			if (skb) {
 655				cf->can_id |= CAN_ERR_PROT;
 656				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 657			}
 658		}
 659			priv->can.can_stats.bus_error++;
 660	}
 661
 662	if (skb) {
 663		stats->rx_packets++;
 664		stats->rx_bytes += cf->can_dlc;
 665		netif_rx(skb);
 
 
 
 
 
 
 
 666	}
 667
 668	netdev_dbg(ndev, "%s: error status register:0x%x\n",
 669			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
 670}
 671
 672/**
 673 * xcan_state_interrupt - It will check the state of the CAN device
 674 * @ndev:	net_device pointer
 675 * @isr:	interrupt status register value
 676 *
 677 * This will checks the state of the CAN device
 678 * and puts the device into appropriate state.
 679 */
 680static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
 681{
 682	struct xcan_priv *priv = netdev_priv(ndev);
 683
 684	/* Check for Sleep interrupt if set put CAN device in sleep state */
 685	if (isr & XCAN_IXR_SLP_MASK)
 686		priv->can.state = CAN_STATE_SLEEPING;
 687
 688	/* Check for Wake up interrupt if set put CAN device in Active state */
 689	if (isr & XCAN_IXR_WKUP_MASK)
 690		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 691}
 692
 693/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694 * xcan_rx_poll - Poll routine for rx packets (NAPI)
 695 * @napi:	napi structure pointer
 696 * @quota:	Max number of rx packets to be processed.
 697 *
 698 * This is the poll routine for rx part.
 699 * It will process the packets maximux quota value.
 700 *
 701 * Return: number of packets received
 702 */
 703static int xcan_rx_poll(struct napi_struct *napi, int quota)
 704{
 705	struct net_device *ndev = napi->dev;
 706	struct xcan_priv *priv = netdev_priv(ndev);
 707	u32 isr, ier;
 708	int work_done = 0;
 
 709
 710	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 711	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
 712		if (isr & XCAN_IXR_RXOK_MASK) {
 713			priv->write_reg(priv, XCAN_ICR_OFFSET,
 714				XCAN_IXR_RXOK_MASK);
 715			work_done += xcan_rx(ndev);
 716		} else {
 
 
 
 
 
 
 
 
 717			priv->write_reg(priv, XCAN_ICR_OFFSET,
 718				XCAN_IXR_RXNEMP_MASK);
 719			break;
 720		}
 721		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
 722		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 723	}
 724
 725	if (work_done)
 726		can_led_event(ndev, CAN_LED_EVENT_RX);
 
 
 727
 728	if (work_done < quota) {
 729		napi_complete_done(napi, work_done);
 730		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
 731		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
 732		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 733	}
 734	return work_done;
 735}
 736
 737/**
 738 * xcan_tx_interrupt - Tx Done Isr
 739 * @ndev:	net_device pointer
 740 * @isr:	Interrupt status register value
 741 */
 742static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
 743{
 744	struct xcan_priv *priv = netdev_priv(ndev);
 745	struct net_device_stats *stats = &ndev->stats;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746
 747	while ((priv->tx_head - priv->tx_tail > 0) &&
 748			(isr & XCAN_IXR_TXOK_MASK)) {
 749		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
 750		can_get_echo_skb(ndev, priv->tx_tail %
 751					priv->tx_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752		priv->tx_tail++;
 753		stats->tx_packets++;
 754		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 755	}
 756	can_led_event(ndev, CAN_LED_EVENT_TX);
 757	netif_wake_queue(ndev);
 
 
 
 
 
 758}
 759
 760/**
 761 * xcan_interrupt - CAN Isr
 762 * @irq:	irq number
 763 * @dev_id:	device id poniter
 764 *
 765 * This is the xilinx CAN Isr. It checks for the type of interrupt
 766 * and invokes the corresponding ISR.
 767 *
 768 * Return:
 769 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
 770 */
 771static irqreturn_t xcan_interrupt(int irq, void *dev_id)
 772{
 773	struct net_device *ndev = (struct net_device *)dev_id;
 774	struct xcan_priv *priv = netdev_priv(ndev);
 775	u32 isr, ier;
 
 
 776
 777	/* Get the interrupt status from Xilinx CAN */
 778	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
 779	if (!isr)
 780		return IRQ_NONE;
 781
 782	/* Check for the type of interrupt and Processing it */
 783	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
 784		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
 785				XCAN_IXR_WKUP_MASK));
 786		xcan_state_interrupt(ndev, isr);
 787	}
 788
 789	/* Check for Tx interrupt and Processing it */
 790	if (isr & XCAN_IXR_TXOK_MASK)
 791		xcan_tx_interrupt(ndev, isr);
 792
 793	/* Check for the type of error interrupt and Processing it */
 794	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 795			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
 796		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
 797				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
 798				XCAN_IXR_ARBLST_MASK));
 799		xcan_err_interrupt(ndev, isr);
 800	}
 801
 802	/* Check for the type of receive interrupt and Processing it */
 803	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
 804		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
 805		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
 806		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 807		napi_schedule(&priv->napi);
 808	}
 809	return IRQ_HANDLED;
 810}
 811
 812/**
 813 * xcan_chip_stop - Driver stop routine
 814 * @ndev:	Pointer to net_device structure
 815 *
 816 * This is the drivers stop routine. It will disable the
 817 * interrupts and put the device into configuration mode.
 818 */
 819static void xcan_chip_stop(struct net_device *ndev)
 820{
 821	struct xcan_priv *priv = netdev_priv(ndev);
 822	u32 ier;
 823
 824	/* Disable interrupts and leave the can in configuration mode */
 825	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
 826	ier &= ~XCAN_INTR_ALL;
 827	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 828	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 829	priv->can.state = CAN_STATE_STOPPED;
 830}
 831
 832/**
 833 * xcan_open - Driver open routine
 834 * @ndev:	Pointer to net_device structure
 835 *
 836 * This is the driver open routine.
 837 * Return: 0 on success and failure value on error
 838 */
 839static int xcan_open(struct net_device *ndev)
 840{
 841	struct xcan_priv *priv = netdev_priv(ndev);
 842	int ret;
 843
 844	ret = pm_runtime_get_sync(priv->dev);
 845	if (ret < 0) {
 846		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
 847				__func__, ret);
 848		return ret;
 849	}
 850
 851	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
 852			ndev->name, ndev);
 853	if (ret < 0) {
 854		netdev_err(ndev, "irq allocation for CAN failed\n");
 855		goto err;
 856	}
 857
 858	/* Set chip into reset mode */
 859	ret = set_reset_mode(ndev);
 860	if (ret < 0) {
 861		netdev_err(ndev, "mode resetting failed!\n");
 862		goto err_irq;
 863	}
 864
 865	/* Common open */
 866	ret = open_candev(ndev);
 867	if (ret)
 868		goto err_irq;
 869
 870	ret = xcan_chip_start(ndev);
 871	if (ret < 0) {
 872		netdev_err(ndev, "xcan_chip_start failed!\n");
 873		goto err_candev;
 874	}
 875
 876	can_led_event(ndev, CAN_LED_EVENT_OPEN);
 877	napi_enable(&priv->napi);
 878	netif_start_queue(ndev);
 879
 880	return 0;
 881
 882err_candev:
 883	close_candev(ndev);
 884err_irq:
 885	free_irq(ndev->irq, ndev);
 886err:
 887	pm_runtime_put(priv->dev);
 888
 889	return ret;
 890}
 891
 892/**
 893 * xcan_close - Driver close routine
 894 * @ndev:	Pointer to net_device structure
 895 *
 896 * Return: 0 always
 897 */
 898static int xcan_close(struct net_device *ndev)
 899{
 900	struct xcan_priv *priv = netdev_priv(ndev);
 901
 902	netif_stop_queue(ndev);
 903	napi_disable(&priv->napi);
 904	xcan_chip_stop(ndev);
 905	free_irq(ndev->irq, ndev);
 906	close_candev(ndev);
 907
 908	can_led_event(ndev, CAN_LED_EVENT_STOP);
 909	pm_runtime_put(priv->dev);
 910
 911	return 0;
 912}
 913
 914/**
 915 * xcan_get_berr_counter - error counter routine
 916 * @ndev:	Pointer to net_device structure
 917 * @bec:	Pointer to can_berr_counter structure
 918 *
 919 * This is the driver error counter routine.
 920 * Return: 0 on success and failure value on error
 921 */
 922static int xcan_get_berr_counter(const struct net_device *ndev,
 923					struct can_berr_counter *bec)
 924{
 925	struct xcan_priv *priv = netdev_priv(ndev);
 926	int ret;
 927
 928	ret = pm_runtime_get_sync(priv->dev);
 929	if (ret < 0) {
 930		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
 931				__func__, ret);
 
 932		return ret;
 933	}
 934
 935	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
 936	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
 937			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
 938
 939	pm_runtime_put(priv->dev);
 940
 941	return 0;
 942}
 943
 944
 945static const struct net_device_ops xcan_netdev_ops = {
 946	.ndo_open	= xcan_open,
 947	.ndo_stop	= xcan_close,
 948	.ndo_start_xmit	= xcan_start_xmit,
 949	.ndo_change_mtu	= can_change_mtu,
 950};
 951
 952/**
 953 * xcan_suspend - Suspend method for the driver
 954 * @dev:	Address of the device structure
 955 *
 956 * Put the driver into low power mode.
 957 * Return: 0 on success and failure value on error
 958 */
 959static int __maybe_unused xcan_suspend(struct device *dev)
 960{
 961	if (!device_may_wakeup(dev))
 962		return pm_runtime_force_suspend(dev);
 963
 964	return 0;
 
 
 
 
 
 
 965}
 966
 967/**
 968 * xcan_resume - Resume from suspend
 969 * @dev:	Address of the device structure
 970 *
 971 * Resume operation after suspend.
 972 * Return: 0 on success and failure value on error
 973 */
 974static int __maybe_unused xcan_resume(struct device *dev)
 975{
 976	if (!device_may_wakeup(dev))
 977		return pm_runtime_force_resume(dev);
 978
 979	return 0;
 
 
 
 
 980
 
 
 
 
 
 
 
 
 
 
 
 
 981}
 982
 983/**
 984 * xcan_runtime_suspend - Runtime suspend method for the driver
 985 * @dev:	Address of the device structure
 986 *
 987 * Put the driver into low power mode.
 988 * Return: 0 always
 989 */
 990static int __maybe_unused xcan_runtime_suspend(struct device *dev)
 991{
 992	struct net_device *ndev = dev_get_drvdata(dev);
 993	struct xcan_priv *priv = netdev_priv(ndev);
 994
 995	if (netif_running(ndev)) {
 996		netif_stop_queue(ndev);
 997		netif_device_detach(ndev);
 998	}
 999
1000	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
1001	priv->can.state = CAN_STATE_SLEEPING;
1002
1003	clk_disable_unprepare(priv->bus_clk);
1004	clk_disable_unprepare(priv->can_clk);
1005
1006	return 0;
1007}
1008
1009/**
1010 * xcan_runtime_resume - Runtime resume from suspend
1011 * @dev:	Address of the device structure
1012 *
1013 * Resume operation after suspend.
1014 * Return: 0 on success and failure value on error
1015 */
1016static int __maybe_unused xcan_runtime_resume(struct device *dev)
1017{
1018	struct net_device *ndev = dev_get_drvdata(dev);
1019	struct xcan_priv *priv = netdev_priv(ndev);
1020	int ret;
1021	u32 isr, status;
1022
1023	ret = clk_prepare_enable(priv->bus_clk);
1024	if (ret) {
1025		dev_err(dev, "Cannot enable clock.\n");
1026		return ret;
1027	}
1028	ret = clk_prepare_enable(priv->can_clk);
1029	if (ret) {
1030		dev_err(dev, "Cannot enable clock.\n");
1031		clk_disable_unprepare(priv->bus_clk);
1032		return ret;
1033	}
1034
1035	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1036	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1037	status = priv->read_reg(priv, XCAN_SR_OFFSET);
1038
1039	if (netif_running(ndev)) {
1040		if (isr & XCAN_IXR_BSOFF_MASK) {
1041			priv->can.state = CAN_STATE_BUS_OFF;
1042			priv->write_reg(priv, XCAN_SRR_OFFSET,
1043					XCAN_SRR_RESET_MASK);
1044		} else if ((status & XCAN_SR_ESTAT_MASK) ==
1045					XCAN_SR_ESTAT_MASK) {
1046			priv->can.state = CAN_STATE_ERROR_PASSIVE;
1047		} else if (status & XCAN_SR_ERRWRN_MASK) {
1048			priv->can.state = CAN_STATE_ERROR_WARNING;
1049		} else {
1050			priv->can.state = CAN_STATE_ERROR_ACTIVE;
1051		}
1052		netif_device_attach(ndev);
1053		netif_start_queue(ndev);
1054	}
1055
1056	return 0;
1057}
1058
1059static const struct dev_pm_ops xcan_dev_pm_ops = {
1060	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1061	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1062};
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064/**
1065 * xcan_probe - Platform registration call
1066 * @pdev:	Handle to the platform device structure
1067 *
1068 * This function does all the memory allocation and registration for the CAN
1069 * device.
1070 *
1071 * Return: 0 on success and failure value on error
1072 */
1073static int xcan_probe(struct platform_device *pdev)
1074{
1075	struct resource *res; /* IO mem resources */
1076	struct net_device *ndev;
1077	struct xcan_priv *priv;
 
 
1078	void __iomem *addr;
1079	int ret, rx_max, tx_max;
 
 
 
1080
1081	/* Get the virtual base address for the device */
1082	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1083	addr = devm_ioremap_resource(&pdev->dev, res);
1084	if (IS_ERR(addr)) {
1085		ret = PTR_ERR(addr);
1086		goto err;
1087	}
1088
1089	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1090	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
1091		goto err;
 
1092
1093	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1094	if (ret < 0)
 
 
 
1095		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096
1097	/* Create a CAN device instance */
1098	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1099	if (!ndev)
1100		return -ENOMEM;
1101
1102	priv = netdev_priv(ndev);
1103	priv->dev = &pdev->dev;
1104	priv->can.bittiming_const = &xcan_bittiming_const;
1105	priv->can.do_set_mode = xcan_do_set_mode;
1106	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1107	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1108					CAN_CTRLMODE_BERR_REPORTING;
 
 
 
 
 
 
 
 
 
 
 
 
 
1109	priv->reg_base = addr;
1110	priv->tx_max = tx_max;
 
 
1111
1112	/* Get IRQ for the device */
1113	ndev->irq = platform_get_irq(pdev, 0);
1114	ndev->flags |= IFF_ECHO;	/* We support local echo */
1115
1116	platform_set_drvdata(pdev, ndev);
1117	SET_NETDEV_DEV(ndev, &pdev->dev);
1118	ndev->netdev_ops = &xcan_netdev_ops;
1119
1120	/* Getting the CAN can_clk info */
1121	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1122	if (IS_ERR(priv->can_clk)) {
1123		dev_err(&pdev->dev, "Device clock not found.\n");
1124		ret = PTR_ERR(priv->can_clk);
1125		goto err_free;
1126	}
1127	/* Check for type of CAN device */
1128	if (of_device_is_compatible(pdev->dev.of_node,
1129				    "xlnx,zynq-can-1.0")) {
1130		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1131		if (IS_ERR(priv->bus_clk)) {
1132			dev_err(&pdev->dev, "bus clock not found\n");
1133			ret = PTR_ERR(priv->bus_clk);
1134			goto err_free;
1135		}
1136	} else {
1137		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1138		if (IS_ERR(priv->bus_clk)) {
1139			dev_err(&pdev->dev, "bus clock not found\n");
1140			ret = PTR_ERR(priv->bus_clk);
1141			goto err_free;
1142		}
1143	}
1144
1145	priv->write_reg = xcan_write_reg_le;
1146	priv->read_reg = xcan_read_reg_le;
1147
1148	pm_runtime_enable(&pdev->dev);
1149	ret = pm_runtime_get_sync(&pdev->dev);
1150	if (ret < 0) {
1151		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1152			__func__, ret);
1153		goto err_pmdisable;
1154	}
1155
1156	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1157		priv->write_reg = xcan_write_reg_be;
1158		priv->read_reg = xcan_read_reg_be;
1159	}
1160
1161	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1162
1163	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1164
1165	ret = register_candev(ndev);
1166	if (ret) {
1167		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1168		goto err_disableclks;
1169	}
1170
1171	devm_can_led_init(ndev);
1172
1173	pm_runtime_put(&pdev->dev);
1174
1175	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1176			priv->reg_base, ndev->irq, priv->can.clock.freq,
1177			priv->tx_max);
 
 
 
 
 
1178
1179	return 0;
1180
1181err_disableclks:
1182	pm_runtime_put(priv->dev);
1183err_pmdisable:
1184	pm_runtime_disable(&pdev->dev);
1185err_free:
1186	free_candev(ndev);
1187err:
1188	return ret;
1189}
1190
1191/**
1192 * xcan_remove - Unregister the device after releasing the resources
1193 * @pdev:	Handle to the platform device structure
1194 *
1195 * This function frees all the resources allocated to the device.
1196 * Return: 0 always
1197 */
1198static int xcan_remove(struct platform_device *pdev)
1199{
1200	struct net_device *ndev = platform_get_drvdata(pdev);
1201	struct xcan_priv *priv = netdev_priv(ndev);
1202
1203	unregister_candev(ndev);
1204	pm_runtime_disable(&pdev->dev);
1205	netif_napi_del(&priv->napi);
1206	free_candev(ndev);
1207
1208	return 0;
1209}
1210
1211/* Match table for OF platform binding */
1212static const struct of_device_id xcan_of_match[] = {
1213	{ .compatible = "xlnx,zynq-can-1.0", },
1214	{ .compatible = "xlnx,axi-can-1.00.a", },
1215	{ /* end of list */ },
1216};
1217MODULE_DEVICE_TABLE(of, xcan_of_match);
1218
1219static struct platform_driver xcan_driver = {
1220	.probe = xcan_probe,
1221	.remove	= xcan_remove,
1222	.driver	= {
1223		.name = DRIVER_NAME,
1224		.pm = &xcan_dev_pm_ops,
1225		.of_match_table	= xcan_of_match,
1226	},
1227};
1228
1229module_platform_driver(xcan_driver);
1230
1231MODULE_LICENSE("GPL");
1232MODULE_AUTHOR("Xilinx Inc");
1233MODULE_DESCRIPTION("Xilinx CAN interface");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/errno.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/skbuff.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/types.h>
  27#include <linux/can/dev.h>
  28#include <linux/can/error.h>
  29#include <linux/can/led.h>
  30#include <linux/pm_runtime.h>
  31
  32#define DRIVER_NAME	"xilinx_can"
  33
  34/* CAN registers set */
  35enum xcan_reg {
  36	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  37	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  38	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  39	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  40	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  41	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  42	XCAN_SR_OFFSET		= 0x18, /* Status */
  43	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  44	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  45	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  46
  47	/* not on CAN FD cores */
  48	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  49	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  50	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  51
  52	/* only on CAN FD cores */
  53	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  54					  * Prescalar
  55					  */
  56	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  57	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  58	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  59	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  60	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  61	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  62	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  63	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  64	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  65};
  66
  67#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  68#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  69#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  70#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  71#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  72
  73#define XCAN_CANFD_FRAME_SIZE		0x48
  74#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  75					 XCAN_CANFD_FRAME_SIZE * (n))
  76#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  77					 XCAN_CANFD_FRAME_SIZE * (n))
  78#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  79					 XCAN_CANFD_FRAME_SIZE * (n))
  80
  81/* the single TX mailbox used by this driver on CAN FD HW */
  82#define XCAN_TX_MAILBOX_IDX		0
  83
  84/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  85#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  86#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  87#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  88#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  89#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  90#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  91#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  92#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  93#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  94#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
  95#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
  96#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
  97#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
  98#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
  99#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 100#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 101#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 102#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 103#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 104#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 105#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 106#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 107#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 108#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 109#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 110#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 111#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 112#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 113#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 114#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 115#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 116#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 117#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 118#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 119#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 120#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 121#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 122#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 123#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 124#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 125#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 126#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 127#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 128#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 129#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 130#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 131#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 132#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 133#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 134
 135/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 136#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 137#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 138#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 139#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 140#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 141#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 142#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 143#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 144
 145/* CAN frame length constants */
 146#define XCAN_FRAME_MAX_DATA_LEN		8
 147#define XCANFD_DW_BYTES			4
 148#define XCAN_TIMEOUT			(1 * HZ)
 149
 150/* TX-FIFO-empty interrupt available */
 151#define XCAN_FLAG_TXFEMP	0x0001
 152/* RX Match Not Finished interrupt available */
 153#define XCAN_FLAG_RXMNF		0x0002
 154/* Extended acceptance filters with control at 0xE0 */
 155#define XCAN_FLAG_EXT_FILTERS	0x0004
 156/* TX mailboxes instead of TX FIFO */
 157#define XCAN_FLAG_TX_MAILBOXES	0x0008
 158/* RX FIFO with each buffer in separate registers at 0x1100
 159 * instead of the regular FIFO at 0x50
 160 */
 161#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 162#define XCAN_FLAG_CANFD_2	0x0020
 163
 164enum xcan_ip_type {
 165	XAXI_CAN = 0,
 166	XZYNQ_CANPS,
 167	XAXI_CANFD,
 168	XAXI_CANFD_2_0,
 169};
 170
 171struct xcan_devtype_data {
 172	enum xcan_ip_type cantype;
 173	unsigned int flags;
 174	const struct can_bittiming_const *bittiming_const;
 175	const char *bus_clk_name;
 176	unsigned int btr_ts2_shift;
 177	unsigned int btr_sjw_shift;
 178};
 179
 180/**
 181 * struct xcan_priv - This definition define CAN driver instance
 182 * @can:			CAN private data structure.
 183 * @tx_lock:			Lock for synchronizing TX interrupt handling
 184 * @tx_head:			Tx CAN packets ready to send on the queue
 185 * @tx_tail:			Tx CAN packets successfully sended on the queue
 186 * @tx_max:			Maximum number packets the driver can send
 187 * @napi:			NAPI structure
 188 * @read_reg:			For reading data from CAN registers
 189 * @write_reg:			For writing data to CAN registers
 190 * @dev:			Network device data structure
 191 * @reg_base:			Ioremapped address to registers
 192 * @irq_flags:			For request_irq()
 193 * @bus_clk:			Pointer to struct clk
 194 * @can_clk:			Pointer to struct clk
 195 * @devtype:			Device type specific constants
 196 */
 197struct xcan_priv {
 198	struct can_priv can;
 199	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 200	unsigned int tx_head;
 201	unsigned int tx_tail;
 202	unsigned int tx_max;
 203	struct napi_struct napi;
 204	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 205	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 206			  u32 val);
 207	struct device *dev;
 208	void __iomem *reg_base;
 209	unsigned long irq_flags;
 210	struct clk *bus_clk;
 211	struct clk *can_clk;
 212	struct xcan_devtype_data devtype;
 213};
 214
 215/* CAN Bittiming constants as per Xilinx CAN specs */
 216static const struct can_bittiming_const xcan_bittiming_const = {
 217	.name = DRIVER_NAME,
 218	.tseg1_min = 1,
 219	.tseg1_max = 16,
 220	.tseg2_min = 1,
 221	.tseg2_max = 8,
 222	.sjw_max = 4,
 223	.brp_min = 1,
 224	.brp_max = 256,
 225	.brp_inc = 1,
 226};
 227
 228/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 229static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 230	.name = DRIVER_NAME,
 231	.tseg1_min = 1,
 232	.tseg1_max = 64,
 233	.tseg2_min = 1,
 234	.tseg2_max = 16,
 235	.sjw_max = 16,
 236	.brp_min = 1,
 237	.brp_max = 256,
 238	.brp_inc = 1,
 239};
 240
 241/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 242static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 243	.name = DRIVER_NAME,
 244	.tseg1_min = 1,
 245	.tseg1_max = 16,
 246	.tseg2_min = 1,
 247	.tseg2_max = 8,
 248	.sjw_max = 8,
 249	.brp_min = 1,
 250	.brp_max = 256,
 251	.brp_inc = 1,
 252};
 253
 254/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 255static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 256	.name = DRIVER_NAME,
 257	.tseg1_min = 1,
 258	.tseg1_max = 256,
 259	.tseg2_min = 1,
 260	.tseg2_max = 128,
 261	.sjw_max = 128,
 262	.brp_min = 2,
 263	.brp_max = 256,
 264	.brp_inc = 1,
 265};
 266
 267/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 268static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 269	.name = DRIVER_NAME,
 270	.tseg1_min = 1,
 271	.tseg1_max = 32,
 272	.tseg2_min = 1,
 273	.tseg2_max = 16,
 274	.sjw_max = 16,
 275	.brp_min = 2,
 276	.brp_max = 256,
 277	.brp_inc = 1,
 278};
 279
 280/**
 281 * xcan_write_reg_le - Write a value to the device register little endian
 282 * @priv:	Driver private data structure
 283 * @reg:	Register offset
 284 * @val:	Value to write at the Register offset
 285 *
 286 * Write data to the paricular CAN register
 287 */
 288static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 289			      u32 val)
 290{
 291	iowrite32(val, priv->reg_base + reg);
 292}
 293
 294/**
 295 * xcan_read_reg_le - Read a value from the device register little endian
 296 * @priv:	Driver private data structure
 297 * @reg:	Register offset
 298 *
 299 * Read data from the particular CAN register
 300 * Return: value read from the CAN register
 301 */
 302static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 303{
 304	return ioread32(priv->reg_base + reg);
 305}
 306
 307/**
 308 * xcan_write_reg_be - Write a value to the device register big endian
 309 * @priv:	Driver private data structure
 310 * @reg:	Register offset
 311 * @val:	Value to write at the Register offset
 312 *
 313 * Write data to the paricular CAN register
 314 */
 315static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 316			      u32 val)
 317{
 318	iowrite32be(val, priv->reg_base + reg);
 319}
 320
 321/**
 322 * xcan_read_reg_be - Read a value from the device register big endian
 323 * @priv:	Driver private data structure
 324 * @reg:	Register offset
 325 *
 326 * Read data from the particular CAN register
 327 * Return: value read from the CAN register
 328 */
 329static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 330{
 331	return ioread32be(priv->reg_base + reg);
 332}
 333
 334/**
 335 * xcan_rx_int_mask - Get the mask for the receive interrupt
 336 * @priv:	Driver private data structure
 337 *
 338 * Return: The receive interrupt mask used by the driver on this HW
 339 */
 340static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 341{
 342	/* RXNEMP is better suited for our use case as it cannot be cleared
 343	 * while the FIFO is non-empty, but CAN FD HW does not have it
 344	 */
 345	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 346		return XCAN_IXR_RXOK_MASK;
 347	else
 348		return XCAN_IXR_RXNEMP_MASK;
 349}
 350
 351/**
 352 * set_reset_mode - Resets the CAN device mode
 353 * @ndev:	Pointer to net_device structure
 354 *
 355 * This is the driver reset mode routine.The driver
 356 * enters into configuration mode.
 357 *
 358 * Return: 0 on success and failure value on error
 359 */
 360static int set_reset_mode(struct net_device *ndev)
 361{
 362	struct xcan_priv *priv = netdev_priv(ndev);
 363	unsigned long timeout;
 364
 365	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 366
 367	timeout = jiffies + XCAN_TIMEOUT;
 368	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 369		if (time_after(jiffies, timeout)) {
 370			netdev_warn(ndev, "timed out for config mode\n");
 371			return -ETIMEDOUT;
 372		}
 373		usleep_range(500, 10000);
 374	}
 375
 376	/* reset clears FIFOs */
 377	priv->tx_head = 0;
 378	priv->tx_tail = 0;
 379
 380	return 0;
 381}
 382
 383/**
 384 * xcan_set_bittiming - CAN set bit timing routine
 385 * @ndev:	Pointer to net_device structure
 386 *
 387 * This is the driver set bittiming  routine.
 388 * Return: 0 on success and failure value on error
 389 */
 390static int xcan_set_bittiming(struct net_device *ndev)
 391{
 392	struct xcan_priv *priv = netdev_priv(ndev);
 393	struct can_bittiming *bt = &priv->can.bittiming;
 394	struct can_bittiming *dbt = &priv->can.data_bittiming;
 395	u32 btr0, btr1;
 396	u32 is_config_mode;
 397
 398	/* Check whether Xilinx CAN is in configuration mode.
 399	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 400	 */
 401	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 402				XCAN_SR_CONFIG_MASK;
 403	if (!is_config_mode) {
 404		netdev_alert(ndev,
 405			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 406		return -EPERM;
 407	}
 408
 409	/* Setting Baud Rate prescalar value in BRPR Register */
 410	btr0 = (bt->brp - 1);
 411
 412	/* Setting Time Segment 1 in BTR Register */
 413	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 414
 415	/* Setting Time Segment 2 in BTR Register */
 416	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 417
 418	/* Setting Synchronous jump width in BTR Register */
 419	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 420
 421	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 422	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 423
 424	if (priv->devtype.cantype == XAXI_CANFD ||
 425	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 426		/* Setting Baud Rate prescalar value in F_BRPR Register */
 427		btr0 = dbt->brp - 1;
 428
 429		/* Setting Time Segment 1 in BTR Register */
 430		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 431
 432		/* Setting Time Segment 2 in BTR Register */
 433		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 434
 435		/* Setting Synchronous jump width in BTR Register */
 436		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 437
 438		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 439		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 440	}
 441
 442	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 443		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 444		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 445
 446	return 0;
 447}
 448
 449/**
 450 * xcan_chip_start - This the drivers start routine
 451 * @ndev:	Pointer to net_device structure
 452 *
 453 * This is the drivers start routine.
 454 * Based on the State of the CAN device it puts
 455 * the CAN device into a proper mode.
 456 *
 457 * Return: 0 on success and failure value on error
 458 */
 459static int xcan_chip_start(struct net_device *ndev)
 460{
 461	struct xcan_priv *priv = netdev_priv(ndev);
 462	u32 reg_msr;
 463	int err;
 464	u32 ier;
 465
 466	/* Check if it is in reset mode */
 467	err = set_reset_mode(ndev);
 468	if (err < 0)
 469		return err;
 470
 471	err = xcan_set_bittiming(ndev);
 472	if (err < 0)
 473		return err;
 474
 475	/* Enable interrupts
 476	 *
 477	 * We enable the ERROR interrupt even with
 478	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 479	 * dedicated interrupt for a state change to
 480	 * ERROR_WARNING/ERROR_PASSIVE.
 481	 */
 482	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 483		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 484		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 485		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 486
 487	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 488		ier |= XCAN_IXR_RXMNF_MASK;
 489
 490	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 491
 492	/* Check whether it is loopback mode or normal mode  */
 493	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 494		reg_msr = XCAN_MSR_LBACK_MASK;
 495	else
 
 496		reg_msr = 0x0;
 497
 498	/* enable the first extended filter, if any, as cores with extended
 499	 * filtering default to non-receipt if all filters are disabled
 500	 */
 501	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 502		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 503
 504	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 505	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 506
 
 
 
 
 
 
 
 
 507	netdev_dbg(ndev, "status:#x%08x\n",
 508		   priv->read_reg(priv, XCAN_SR_OFFSET));
 509
 510	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 511	return 0;
 512}
 513
 514/**
 515 * xcan_do_set_mode - This sets the mode of the driver
 516 * @ndev:	Pointer to net_device structure
 517 * @mode:	Tells the mode of the driver
 518 *
 519 * This check the drivers state and calls the
 520 * the corresponding modes to set.
 521 *
 522 * Return: 0 on success and failure value on error
 523 */
 524static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 525{
 526	int ret;
 527
 528	switch (mode) {
 529	case CAN_MODE_START:
 530		ret = xcan_chip_start(ndev);
 531		if (ret < 0) {
 532			netdev_err(ndev, "xcan_chip_start failed!\n");
 533			return ret;
 534		}
 535		netif_wake_queue(ndev);
 536		break;
 537	default:
 538		ret = -EOPNOTSUPP;
 539		break;
 540	}
 541
 542	return ret;
 543}
 544
 545/**
 546 * xcan_write_frame - Write a frame to HW
 547 * @ndev:		Pointer to net_device structure
 548 * @skb:		sk_buff pointer that contains data to be Txed
 549 * @frame_offset:	Register offset to write the frame to
 
 
 
 
 
 550 */
 551static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 552			     int frame_offset)
 553{
 
 
 
 554	u32 id, dlc, data[2] = {0, 0};
 555	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 556	u32 ramoff, dwindex = 0, i;
 557	struct xcan_priv *priv = netdev_priv(ndev);
 
 
 
 
 
 
 
 
 558
 559	/* Watch carefully on the bit sequence */
 560	if (cf->can_id & CAN_EFF_FLAG) {
 561		/* Extended CAN ID format */
 562		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 563			XCAN_IDR_ID2_MASK;
 564		id |= (((cf->can_id & CAN_EFF_MASK) >>
 565			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 566			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 567
 568		/* The substibute remote TX request bit should be "1"
 569		 * for extended frames as in the Xilinx CAN datasheet
 570		 */
 571		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 572
 573		if (cf->can_id & CAN_RTR_FLAG)
 574			/* Extended frames remote TX request */
 575			id |= XCAN_IDR_RTR_MASK;
 576	} else {
 577		/* Standard CAN ID format */
 578		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 579			XCAN_IDR_ID1_MASK;
 580
 581		if (cf->can_id & CAN_RTR_FLAG)
 582			/* Standard frames remote TX request */
 583			id |= XCAN_IDR_SRR_MASK;
 584	}
 585
 586	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 587	if (can_is_canfd_skb(skb)) {
 588		if (cf->flags & CANFD_BRS)
 589			dlc |= XCAN_DLCR_BRS_MASK;
 590		dlc |= XCAN_DLCR_EDL_MASK;
 591	}
 592
 593	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 594	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 595		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 596	else
 597		can_put_echo_skb(skb, ndev, 0, 0);
 598
 
 599	priv->tx_head++;
 600
 601	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 602	/* If the CAN frame is RTR frame this write triggers transmission
 603	 * (not on CAN FD)
 604	 */
 605	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 606	if (priv->devtype.cantype == XAXI_CANFD ||
 607	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 608		for (i = 0; i < cf->len; i += 4) {
 609			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 610					(dwindex * XCANFD_DW_BYTES);
 611			priv->write_reg(priv, ramoff,
 612					be32_to_cpup((__be32 *)(cf->data + i)));
 613			dwindex++;
 614		}
 615	} else {
 616		if (cf->len > 0)
 617			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 618		if (cf->len > 4)
 619			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 620
 621		if (!(cf->can_id & CAN_RTR_FLAG)) {
 622			priv->write_reg(priv,
 623					XCAN_FRAME_DW1_OFFSET(frame_offset),
 624					data[0]);
 625			/* If the CAN frame is Standard/Extended frame this
 626			 * write triggers transmission (not on CAN FD)
 627			 */
 628			priv->write_reg(priv,
 629					XCAN_FRAME_DW2_OFFSET(frame_offset),
 630					data[1]);
 631		}
 632	}
 633}
 634
 635/**
 636 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 637 * @skb:	sk_buff pointer that contains data to be Txed
 638 * @ndev:	Pointer to net_device structure
 639 *
 640 * Return: 0 on success, -ENOSPC if FIFO is full.
 641 */
 642static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 643{
 644	struct xcan_priv *priv = netdev_priv(ndev);
 645	unsigned long flags;
 646
 647	/* Check if the TX buffer is full */
 648	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 649			XCAN_SR_TXFLL_MASK))
 650		return -ENOSPC;
 651
 652	spin_lock_irqsave(&priv->tx_lock, flags);
 653
 654	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 655
 656	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 657	if (priv->tx_max > 1)
 658		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 659
 660	/* Check if the TX buffer is full */
 661	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 662		netif_stop_queue(ndev);
 663
 664	spin_unlock_irqrestore(&priv->tx_lock, flags);
 665
 666	return 0;
 667}
 668
 669/**
 670 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 671 * @skb:	sk_buff pointer that contains data to be Txed
 672 * @ndev:	Pointer to net_device structure
 673 *
 674 * Return: 0 on success, -ENOSPC if there is no space
 675 */
 676static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 677{
 678	struct xcan_priv *priv = netdev_priv(ndev);
 679	unsigned long flags;
 680
 681	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 682		     BIT(XCAN_TX_MAILBOX_IDX)))
 683		return -ENOSPC;
 684
 685	spin_lock_irqsave(&priv->tx_lock, flags);
 686
 687	xcan_write_frame(ndev, skb,
 688			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 689
 690	/* Mark buffer as ready for transmit */
 691	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 692
 693	netif_stop_queue(ndev);
 694
 695	spin_unlock_irqrestore(&priv->tx_lock, flags);
 696
 697	return 0;
 698}
 699
 700/**
 701 * xcan_start_xmit - Starts the transmission
 702 * @skb:	sk_buff pointer that contains data to be Txed
 703 * @ndev:	Pointer to net_device structure
 704 *
 705 * This function is invoked from upper layers to initiate transmission.
 706 *
 707 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 708 */
 709static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 710{
 711	struct xcan_priv *priv = netdev_priv(ndev);
 712	int ret;
 713
 714	if (can_dropped_invalid_skb(ndev, skb))
 715		return NETDEV_TX_OK;
 716
 717	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 718		ret = xcan_start_xmit_mailbox(skb, ndev);
 719	else
 720		ret = xcan_start_xmit_fifo(skb, ndev);
 721
 722	if (ret < 0) {
 723		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 724		netif_stop_queue(ndev);
 725		return NETDEV_TX_BUSY;
 726	}
 727
 728	return NETDEV_TX_OK;
 729}
 730
 731/**
 732 * xcan_rx -  Is called from CAN isr to complete the received
 733 *		frame  processing
 734 * @ndev:	Pointer to net_device structure
 735 * @frame_base:	Register offset to the frame to be read
 736 *
 737 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 738 * does minimal processing and invokes "netif_receive_skb" to complete further
 739 * processing.
 740 * Return: 1 on success and 0 on failure.
 741 */
 742static int xcan_rx(struct net_device *ndev, int frame_base)
 743{
 744	struct xcan_priv *priv = netdev_priv(ndev);
 745	struct net_device_stats *stats = &ndev->stats;
 746	struct can_frame *cf;
 747	struct sk_buff *skb;
 748	u32 id_xcan, dlc, data[2] = {0, 0};
 749
 750	skb = alloc_can_skb(ndev, &cf);
 751	if (unlikely(!skb)) {
 752		stats->rx_dropped++;
 753		return 0;
 754	}
 755
 756	/* Read a frame from Xilinx zynq CANPS */
 757	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 758	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 759				   XCAN_DLCR_DLC_SHIFT;
 760
 761	/* Change Xilinx CAN data length format to socketCAN data format */
 762	cf->len = can_cc_dlc2len(dlc);
 763
 764	/* Change Xilinx CAN ID format to socketCAN ID format */
 765	if (id_xcan & XCAN_IDR_IDE_MASK) {
 766		/* The received frame is an Extended format frame */
 767		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 768		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 769				XCAN_IDR_ID2_SHIFT;
 770		cf->can_id |= CAN_EFF_FLAG;
 771		if (id_xcan & XCAN_IDR_RTR_MASK)
 772			cf->can_id |= CAN_RTR_FLAG;
 773	} else {
 774		/* The received frame is a standard format frame */
 775		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 776				XCAN_IDR_ID1_SHIFT;
 777		if (id_xcan & XCAN_IDR_SRR_MASK)
 778			cf->can_id |= CAN_RTR_FLAG;
 779	}
 780
 781	/* DW1/DW2 must always be read to remove message from RXFIFO */
 782	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 783	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 784
 785	if (!(cf->can_id & CAN_RTR_FLAG)) {
 786		/* Change Xilinx CAN data format to socketCAN data format */
 787		if (cf->len > 0)
 788			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 789		if (cf->len > 4)
 790			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 791	}
 792
 793	stats->rx_bytes += cf->len;
 794	stats->rx_packets++;
 795	netif_receive_skb(skb);
 796
 797	return 1;
 798}
 799
 800/**
 801 * xcanfd_rx -  Is called from CAN isr to complete the received
 802 *		frame  processing
 803 * @ndev:	Pointer to net_device structure
 804 * @frame_base:	Register offset to the frame to be read
 805 *
 806 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 807 * does minimal processing and invokes "netif_receive_skb" to complete further
 808 * processing.
 809 * Return: 1 on success and 0 on failure.
 810 */
 811static int xcanfd_rx(struct net_device *ndev, int frame_base)
 812{
 813	struct xcan_priv *priv = netdev_priv(ndev);
 814	struct net_device_stats *stats = &ndev->stats;
 815	struct canfd_frame *cf;
 816	struct sk_buff *skb;
 817	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 818
 819	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 820	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 821	if (dlc & XCAN_DLCR_EDL_MASK)
 822		skb = alloc_canfd_skb(ndev, &cf);
 823	else
 824		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 825
 826	if (unlikely(!skb)) {
 827		stats->rx_dropped++;
 828		return 0;
 829	}
 830
 831	/* Change Xilinx CANFD data length format to socketCAN data
 832	 * format
 833	 */
 834	if (dlc & XCAN_DLCR_EDL_MASK)
 835		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 836				  XCAN_DLCR_DLC_SHIFT);
 837	else
 838		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 839					  XCAN_DLCR_DLC_SHIFT);
 840
 841	/* Change Xilinx CAN ID format to socketCAN ID format */
 842	if (id_xcan & XCAN_IDR_IDE_MASK) {
 843		/* The received frame is an Extended format frame */
 844		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 845		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 846				XCAN_IDR_ID2_SHIFT;
 847		cf->can_id |= CAN_EFF_FLAG;
 848		if (id_xcan & XCAN_IDR_RTR_MASK)
 849			cf->can_id |= CAN_RTR_FLAG;
 850	} else {
 851		/* The received frame is a standard format frame */
 852		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 853				XCAN_IDR_ID1_SHIFT;
 854		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 855					XCAN_IDR_SRR_MASK))
 856			cf->can_id |= CAN_RTR_FLAG;
 857	}
 858
 859	/* Check the frame received is FD or not*/
 860	if (dlc & XCAN_DLCR_EDL_MASK) {
 861		for (i = 0; i < cf->len; i += 4) {
 862			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 863					(dwindex * XCANFD_DW_BYTES);
 864			data[0] = priv->read_reg(priv, dw_offset);
 865			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 866			dwindex++;
 867		}
 868	} else {
 869		for (i = 0; i < cf->len; i += 4) {
 870			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 871			data[0] = priv->read_reg(priv, dw_offset + i);
 872			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 873		}
 874	}
 875	stats->rx_bytes += cf->len;
 876	stats->rx_packets++;
 877	netif_receive_skb(skb);
 878
 879	return 1;
 880}
 881
 882/**
 883 * xcan_current_error_state - Get current error state from HW
 884 * @ndev:	Pointer to net_device structure
 885 *
 886 * Checks the current CAN error state from the HW. Note that this
 887 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 888 *
 889 * Return:
 890 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 891 * otherwise.
 892 */
 893static enum can_state xcan_current_error_state(struct net_device *ndev)
 894{
 895	struct xcan_priv *priv = netdev_priv(ndev);
 896	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 897
 898	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 899		return CAN_STATE_ERROR_PASSIVE;
 900	else if (status & XCAN_SR_ERRWRN_MASK)
 901		return CAN_STATE_ERROR_WARNING;
 902	else
 903		return CAN_STATE_ERROR_ACTIVE;
 904}
 905
 906/**
 907 * xcan_set_error_state - Set new CAN error state
 908 * @ndev:	Pointer to net_device structure
 909 * @new_state:	The new CAN state to be set
 910 * @cf:		Error frame to be populated or NULL
 911 *
 912 * Set new CAN error state for the device, updating statistics and
 913 * populating the error frame if given.
 914 */
 915static void xcan_set_error_state(struct net_device *ndev,
 916				 enum can_state new_state,
 917				 struct can_frame *cf)
 918{
 919	struct xcan_priv *priv = netdev_priv(ndev);
 920	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 921	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 922	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 923	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 924	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 925
 926	/* non-ERROR states are handled elsewhere */
 927	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 928		return;
 929
 930	can_change_state(ndev, cf, tx_state, rx_state);
 931
 932	if (cf) {
 933		cf->data[6] = txerr;
 934		cf->data[7] = rxerr;
 935	}
 936}
 937
 938/**
 939 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 940 * @ndev:	Pointer to net_device structure
 941 *
 942 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 943 * the performed RX/TX has caused it to drop to a lesser state and set
 944 * the interface state accordingly.
 945 */
 946static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 947{
 948	struct xcan_priv *priv = netdev_priv(ndev);
 949	enum can_state old_state = priv->can.state;
 950	enum can_state new_state;
 951
 952	/* changing error state due to successful frame RX/TX can only
 953	 * occur from these states
 954	 */
 955	if (old_state != CAN_STATE_ERROR_WARNING &&
 956	    old_state != CAN_STATE_ERROR_PASSIVE)
 957		return;
 958
 959	new_state = xcan_current_error_state(ndev);
 960
 961	if (new_state != old_state) {
 962		struct sk_buff *skb;
 963		struct can_frame *cf;
 964
 965		skb = alloc_can_err_skb(ndev, &cf);
 966
 967		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
 968
 969		if (skb) {
 970			struct net_device_stats *stats = &ndev->stats;
 971
 972			stats->rx_packets++;
 973			stats->rx_bytes += cf->len;
 974			netif_rx(skb);
 975		}
 976	}
 977}
 978
 979/**
 980 * xcan_err_interrupt - error frame Isr
 981 * @ndev:	net_device pointer
 982 * @isr:	interrupt status register value
 983 *
 984 * This is the CAN error interrupt and it will
 985 * check the the type of error and forward the error
 986 * frame to upper layers.
 987 */
 988static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
 989{
 990	struct xcan_priv *priv = netdev_priv(ndev);
 991	struct net_device_stats *stats = &ndev->stats;
 992	struct can_frame cf = { };
 993	u32 err_status;
 
 
 
 994
 995	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
 996	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
 
 
 
 
 997
 998	if (isr & XCAN_IXR_BSOFF_MASK) {
 999		priv->can.state = CAN_STATE_BUS_OFF;
1000		priv->can.can_stats.bus_off++;
1001		/* Leave device in Config Mode in bus-off state */
1002		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003		can_bus_off(ndev);
1004		cf.can_id |= CAN_ERR_BUSOFF;
1005	} else {
1006		enum can_state new_state = xcan_current_error_state(ndev);
1007
1008		if (new_state != priv->can.state)
1009			xcan_set_error_state(ndev, new_state, &cf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010	}
1011
1012	/* Check for Arbitration lost interrupt */
1013	if (isr & XCAN_IXR_ARBLST_MASK) {
1014		priv->can.can_stats.arbitration_lost++;
1015		cf.can_id |= CAN_ERR_LOSTARB;
1016		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
 
 
1017	}
1018
1019	/* Check for RX FIFO Overflow interrupt */
1020	if (isr & XCAN_IXR_RXOFLW_MASK) {
1021		stats->rx_over_errors++;
1022		stats->rx_errors++;
1023		cf.can_id |= CAN_ERR_CRTL;
1024		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1025	}
1026
1027	/* Check for RX Match Not Finished interrupt */
1028	if (isr & XCAN_IXR_RXMNF_MASK) {
1029		stats->rx_dropped++;
1030		stats->rx_errors++;
1031		netdev_err(ndev, "RX match not finished, frame discarded\n");
1032		cf.can_id |= CAN_ERR_CRTL;
1033		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1034	}
1035
1036	/* Check for error interrupt */
1037	if (isr & XCAN_IXR_ERROR_MASK) {
1038		bool berr_reporting = false;
1039
1040		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1041			berr_reporting = true;
1042			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1043		}
1044
1045		/* Check for Ack error interrupt */
1046		if (err_status & XCAN_ESR_ACKER_MASK) {
1047			stats->tx_errors++;
1048			if (berr_reporting) {
1049				cf.can_id |= CAN_ERR_ACK;
1050				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1051			}
1052		}
1053
1054		/* Check for Bit error interrupt */
1055		if (err_status & XCAN_ESR_BERR_MASK) {
1056			stats->tx_errors++;
1057			if (berr_reporting) {
1058				cf.can_id |= CAN_ERR_PROT;
1059				cf.data[2] = CAN_ERR_PROT_BIT;
1060			}
1061		}
1062
1063		/* Check for Stuff error interrupt */
1064		if (err_status & XCAN_ESR_STER_MASK) {
1065			stats->rx_errors++;
1066			if (berr_reporting) {
1067				cf.can_id |= CAN_ERR_PROT;
1068				cf.data[2] = CAN_ERR_PROT_STUFF;
1069			}
1070		}
1071
1072		/* Check for Form error interrupt */
1073		if (err_status & XCAN_ESR_FMER_MASK) {
1074			stats->rx_errors++;
1075			if (berr_reporting) {
1076				cf.can_id |= CAN_ERR_PROT;
1077				cf.data[2] = CAN_ERR_PROT_FORM;
1078			}
1079		}
1080
1081		/* Check for CRC error interrupt */
1082		if (err_status & XCAN_ESR_CRCER_MASK) {
1083			stats->rx_errors++;
1084			if (berr_reporting) {
1085				cf.can_id |= CAN_ERR_PROT;
1086				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1087			}
1088		}
1089		priv->can.can_stats.bus_error++;
1090	}
1091
1092	if (cf.can_id) {
1093		struct can_frame *skb_cf;
1094		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1095
1096		if (skb) {
1097			skb_cf->can_id |= cf.can_id;
1098			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1099			stats->rx_packets++;
1100			stats->rx_bytes += CAN_ERR_DLC;
1101			netif_rx(skb);
1102		}
1103	}
1104
1105	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1106		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1107}
1108
1109/**
1110 * xcan_state_interrupt - It will check the state of the CAN device
1111 * @ndev:	net_device pointer
1112 * @isr:	interrupt status register value
1113 *
1114 * This will checks the state of the CAN device
1115 * and puts the device into appropriate state.
1116 */
1117static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1118{
1119	struct xcan_priv *priv = netdev_priv(ndev);
1120
1121	/* Check for Sleep interrupt if set put CAN device in sleep state */
1122	if (isr & XCAN_IXR_SLP_MASK)
1123		priv->can.state = CAN_STATE_SLEEPING;
1124
1125	/* Check for Wake up interrupt if set put CAN device in Active state */
1126	if (isr & XCAN_IXR_WKUP_MASK)
1127		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1128}
1129
1130/**
1131 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1132 * @priv:	Driver private data structure
1133 *
1134 * Return: Register offset of the next frame in RX FIFO.
1135 */
1136static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1137{
1138	int offset;
1139
1140	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1141		u32 fsr, mask;
1142
1143		/* clear RXOK before the is-empty check so that any newly
1144		 * received frame will reassert it without a race
1145		 */
1146		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1147
1148		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1149
1150		/* check if RX FIFO is empty */
1151		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1152			mask = XCAN_2_FSR_FL_MASK;
1153		else
1154			mask = XCAN_FSR_FL_MASK;
1155
1156		if (!(fsr & mask))
1157			return -ENOENT;
1158
1159		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160			offset =
1161			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1162		else
1163			offset =
1164			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1165
1166	} else {
1167		/* check if RX FIFO is empty */
1168		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1169		      XCAN_IXR_RXNEMP_MASK))
1170			return -ENOENT;
1171
1172		/* frames are read from a static offset */
1173		offset = XCAN_RXFIFO_OFFSET;
1174	}
1175
1176	return offset;
1177}
1178
1179/**
1180 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1181 * @napi:	napi structure pointer
1182 * @quota:	Max number of rx packets to be processed.
1183 *
1184 * This is the poll routine for rx part.
1185 * It will process the packets maximux quota value.
1186 *
1187 * Return: number of packets received
1188 */
1189static int xcan_rx_poll(struct napi_struct *napi, int quota)
1190{
1191	struct net_device *ndev = napi->dev;
1192	struct xcan_priv *priv = netdev_priv(ndev);
1193	u32 ier;
1194	int work_done = 0;
1195	int frame_offset;
1196
1197	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1198	       (work_done < quota)) {
1199		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1200			work_done += xcanfd_rx(ndev, frame_offset);
1201		else
1202			work_done += xcan_rx(ndev, frame_offset);
1203
1204		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1205			/* increment read index */
1206			priv->write_reg(priv, XCAN_FSR_OFFSET,
1207					XCAN_FSR_IRI_MASK);
1208		else
1209			/* clear rx-not-empty (will actually clear only if
1210			 * empty)
1211			 */
1212			priv->write_reg(priv, XCAN_ICR_OFFSET,
1213					XCAN_IXR_RXNEMP_MASK);
 
 
 
 
1214	}
1215
1216	if (work_done) {
1217		can_led_event(ndev, CAN_LED_EVENT_RX);
1218		xcan_update_error_state_after_rxtx(ndev);
1219	}
1220
1221	if (work_done < quota) {
1222		napi_complete_done(napi, work_done);
1223		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1224		ier |= xcan_rx_int_mask(priv);
1225		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1226	}
1227	return work_done;
1228}
1229
1230/**
1231 * xcan_tx_interrupt - Tx Done Isr
1232 * @ndev:	net_device pointer
1233 * @isr:	Interrupt status register value
1234 */
1235static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1236{
1237	struct xcan_priv *priv = netdev_priv(ndev);
1238	struct net_device_stats *stats = &ndev->stats;
1239	unsigned int frames_in_fifo;
1240	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1241	unsigned long flags;
1242	int retries = 0;
1243
1244	/* Synchronize with xmit as we need to know the exact number
1245	 * of frames in the FIFO to stay in sync due to the TXFEMP
1246	 * handling.
1247	 * This also prevents a race between netif_wake_queue() and
1248	 * netif_stop_queue().
1249	 */
1250	spin_lock_irqsave(&priv->tx_lock, flags);
1251
1252	frames_in_fifo = priv->tx_head - priv->tx_tail;
1253
1254	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1255		/* clear TXOK anyway to avoid getting back here */
1256		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1257		spin_unlock_irqrestore(&priv->tx_lock, flags);
1258		return;
1259	}
1260
1261	/* Check if 2 frames were sent (TXOK only means that at least 1
1262	 * frame was sent).
1263	 */
1264	if (frames_in_fifo > 1) {
1265		WARN_ON(frames_in_fifo > priv->tx_max);
1266
1267		/* Synchronize TXOK and isr so that after the loop:
1268		 * (1) isr variable is up-to-date at least up to TXOK clear
1269		 *     time. This avoids us clearing a TXOK of a second frame
1270		 *     but not noticing that the FIFO is now empty and thus
1271		 *     marking only a single frame as sent.
1272		 * (2) No TXOK is left. Having one could mean leaving a
1273		 *     stray TXOK as we might process the associated frame
1274		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1275		 *     clear to satisfy (1).
1276		 */
1277		while ((isr & XCAN_IXR_TXOK_MASK) &&
1278		       !WARN_ON(++retries == 100)) {
1279			priv->write_reg(priv, XCAN_ICR_OFFSET,
1280					XCAN_IXR_TXOK_MASK);
1281			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1282		}
1283
1284		if (isr & XCAN_IXR_TXFEMP_MASK) {
1285			/* nothing in FIFO anymore */
1286			frames_sent = frames_in_fifo;
1287		}
1288	} else {
1289		/* single frame in fifo, just clear TXOK */
1290		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1291	}
1292
1293	while (frames_sent--) {
1294		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1295						    priv->tx_max, NULL);
1296		priv->tx_tail++;
1297		stats->tx_packets++;
 
1298	}
1299
1300	netif_wake_queue(ndev);
1301
1302	spin_unlock_irqrestore(&priv->tx_lock, flags);
1303
1304	can_led_event(ndev, CAN_LED_EVENT_TX);
1305	xcan_update_error_state_after_rxtx(ndev);
1306}
1307
1308/**
1309 * xcan_interrupt - CAN Isr
1310 * @irq:	irq number
1311 * @dev_id:	device id pointer
1312 *
1313 * This is the xilinx CAN Isr. It checks for the type of interrupt
1314 * and invokes the corresponding ISR.
1315 *
1316 * Return:
1317 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1318 */
1319static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1320{
1321	struct net_device *ndev = (struct net_device *)dev_id;
1322	struct xcan_priv *priv = netdev_priv(ndev);
1323	u32 isr, ier;
1324	u32 isr_errors;
1325	u32 rx_int_mask = xcan_rx_int_mask(priv);
1326
1327	/* Get the interrupt status from Xilinx CAN */
1328	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1329	if (!isr)
1330		return IRQ_NONE;
1331
1332	/* Check for the type of interrupt and Processing it */
1333	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1334		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1335				XCAN_IXR_WKUP_MASK));
1336		xcan_state_interrupt(ndev, isr);
1337	}
1338
1339	/* Check for Tx interrupt and Processing it */
1340	if (isr & XCAN_IXR_TXOK_MASK)
1341		xcan_tx_interrupt(ndev, isr);
1342
1343	/* Check for the type of error interrupt and Processing it */
1344	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1345			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1346			    XCAN_IXR_RXMNF_MASK);
1347	if (isr_errors) {
1348		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1349		xcan_err_interrupt(ndev, isr);
1350	}
1351
1352	/* Check for the type of receive interrupt and Processing it */
1353	if (isr & rx_int_mask) {
1354		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1355		ier &= ~rx_int_mask;
1356		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1357		napi_schedule(&priv->napi);
1358	}
1359	return IRQ_HANDLED;
1360}
1361
1362/**
1363 * xcan_chip_stop - Driver stop routine
1364 * @ndev:	Pointer to net_device structure
1365 *
1366 * This is the drivers stop routine. It will disable the
1367 * interrupts and put the device into configuration mode.
1368 */
1369static void xcan_chip_stop(struct net_device *ndev)
1370{
1371	struct xcan_priv *priv = netdev_priv(ndev);
1372	int ret;
1373
1374	/* Disable interrupts and leave the can in configuration mode */
1375	ret = set_reset_mode(ndev);
1376	if (ret < 0)
1377		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1378
1379	priv->can.state = CAN_STATE_STOPPED;
1380}
1381
1382/**
1383 * xcan_open - Driver open routine
1384 * @ndev:	Pointer to net_device structure
1385 *
1386 * This is the driver open routine.
1387 * Return: 0 on success and failure value on error
1388 */
1389static int xcan_open(struct net_device *ndev)
1390{
1391	struct xcan_priv *priv = netdev_priv(ndev);
1392	int ret;
1393
1394	ret = pm_runtime_get_sync(priv->dev);
1395	if (ret < 0) {
1396		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1397			   __func__, ret);
1398		goto err;
1399	}
1400
1401	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1402			  ndev->name, ndev);
1403	if (ret < 0) {
1404		netdev_err(ndev, "irq allocation for CAN failed\n");
1405		goto err;
1406	}
1407
1408	/* Set chip into reset mode */
1409	ret = set_reset_mode(ndev);
1410	if (ret < 0) {
1411		netdev_err(ndev, "mode resetting failed!\n");
1412		goto err_irq;
1413	}
1414
1415	/* Common open */
1416	ret = open_candev(ndev);
1417	if (ret)
1418		goto err_irq;
1419
1420	ret = xcan_chip_start(ndev);
1421	if (ret < 0) {
1422		netdev_err(ndev, "xcan_chip_start failed!\n");
1423		goto err_candev;
1424	}
1425
1426	can_led_event(ndev, CAN_LED_EVENT_OPEN);
1427	napi_enable(&priv->napi);
1428	netif_start_queue(ndev);
1429
1430	return 0;
1431
1432err_candev:
1433	close_candev(ndev);
1434err_irq:
1435	free_irq(ndev->irq, ndev);
1436err:
1437	pm_runtime_put(priv->dev);
1438
1439	return ret;
1440}
1441
1442/**
1443 * xcan_close - Driver close routine
1444 * @ndev:	Pointer to net_device structure
1445 *
1446 * Return: 0 always
1447 */
1448static int xcan_close(struct net_device *ndev)
1449{
1450	struct xcan_priv *priv = netdev_priv(ndev);
1451
1452	netif_stop_queue(ndev);
1453	napi_disable(&priv->napi);
1454	xcan_chip_stop(ndev);
1455	free_irq(ndev->irq, ndev);
1456	close_candev(ndev);
1457
1458	can_led_event(ndev, CAN_LED_EVENT_STOP);
1459	pm_runtime_put(priv->dev);
1460
1461	return 0;
1462}
1463
1464/**
1465 * xcan_get_berr_counter - error counter routine
1466 * @ndev:	Pointer to net_device structure
1467 * @bec:	Pointer to can_berr_counter structure
1468 *
1469 * This is the driver error counter routine.
1470 * Return: 0 on success and failure value on error
1471 */
1472static int xcan_get_berr_counter(const struct net_device *ndev,
1473				 struct can_berr_counter *bec)
1474{
1475	struct xcan_priv *priv = netdev_priv(ndev);
1476	int ret;
1477
1478	ret = pm_runtime_get_sync(priv->dev);
1479	if (ret < 0) {
1480		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1481			   __func__, ret);
1482		pm_runtime_put(priv->dev);
1483		return ret;
1484	}
1485
1486	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1487	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1488			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1489
1490	pm_runtime_put(priv->dev);
1491
1492	return 0;
1493}
1494
 
1495static const struct net_device_ops xcan_netdev_ops = {
1496	.ndo_open	= xcan_open,
1497	.ndo_stop	= xcan_close,
1498	.ndo_start_xmit	= xcan_start_xmit,
1499	.ndo_change_mtu	= can_change_mtu,
1500};
1501
1502/**
1503 * xcan_suspend - Suspend method for the driver
1504 * @dev:	Address of the device structure
1505 *
1506 * Put the driver into low power mode.
1507 * Return: 0 on success and failure value on error
1508 */
1509static int __maybe_unused xcan_suspend(struct device *dev)
1510{
1511	struct net_device *ndev = dev_get_drvdata(dev);
 
1512
1513	if (netif_running(ndev)) {
1514		netif_stop_queue(ndev);
1515		netif_device_detach(ndev);
1516		xcan_chip_stop(ndev);
1517	}
1518
1519	return pm_runtime_force_suspend(dev);
1520}
1521
1522/**
1523 * xcan_resume - Resume from suspend
1524 * @dev:	Address of the device structure
1525 *
1526 * Resume operation after suspend.
1527 * Return: 0 on success and failure value on error
1528 */
1529static int __maybe_unused xcan_resume(struct device *dev)
1530{
1531	struct net_device *ndev = dev_get_drvdata(dev);
1532	int ret;
1533
1534	ret = pm_runtime_force_resume(dev);
1535	if (ret) {
1536		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1537		return ret;
1538	}
1539
1540	if (netif_running(ndev)) {
1541		ret = xcan_chip_start(ndev);
1542		if (ret) {
1543			dev_err(dev, "xcan_chip_start failed on resume\n");
1544			return ret;
1545		}
1546
1547		netif_device_attach(ndev);
1548		netif_start_queue(ndev);
1549	}
1550
1551	return 0;
1552}
1553
1554/**
1555 * xcan_runtime_suspend - Runtime suspend method for the driver
1556 * @dev:	Address of the device structure
1557 *
1558 * Put the driver into low power mode.
1559 * Return: 0 always
1560 */
1561static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1562{
1563	struct net_device *ndev = dev_get_drvdata(dev);
1564	struct xcan_priv *priv = netdev_priv(ndev);
1565
 
 
 
 
 
 
 
 
1566	clk_disable_unprepare(priv->bus_clk);
1567	clk_disable_unprepare(priv->can_clk);
1568
1569	return 0;
1570}
1571
1572/**
1573 * xcan_runtime_resume - Runtime resume from suspend
1574 * @dev:	Address of the device structure
1575 *
1576 * Resume operation after suspend.
1577 * Return: 0 on success and failure value on error
1578 */
1579static int __maybe_unused xcan_runtime_resume(struct device *dev)
1580{
1581	struct net_device *ndev = dev_get_drvdata(dev);
1582	struct xcan_priv *priv = netdev_priv(ndev);
1583	int ret;
 
1584
1585	ret = clk_prepare_enable(priv->bus_clk);
1586	if (ret) {
1587		dev_err(dev, "Cannot enable clock.\n");
1588		return ret;
1589	}
1590	ret = clk_prepare_enable(priv->can_clk);
1591	if (ret) {
1592		dev_err(dev, "Cannot enable clock.\n");
1593		clk_disable_unprepare(priv->bus_clk);
1594		return ret;
1595	}
1596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597	return 0;
1598}
1599
1600static const struct dev_pm_ops xcan_dev_pm_ops = {
1601	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1602	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1603};
1604
1605static const struct xcan_devtype_data xcan_zynq_data = {
1606	.cantype = XZYNQ_CANPS,
1607	.flags = XCAN_FLAG_TXFEMP,
1608	.bittiming_const = &xcan_bittiming_const,
1609	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1610	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1611	.bus_clk_name = "pclk",
1612};
1613
1614static const struct xcan_devtype_data xcan_axi_data = {
1615	.cantype = XAXI_CAN,
1616	.bittiming_const = &xcan_bittiming_const,
1617	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1618	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1619	.bus_clk_name = "s_axi_aclk",
1620};
1621
1622static const struct xcan_devtype_data xcan_canfd_data = {
1623	.cantype = XAXI_CANFD,
1624	.flags = XCAN_FLAG_EXT_FILTERS |
1625		 XCAN_FLAG_RXMNF |
1626		 XCAN_FLAG_TX_MAILBOXES |
1627		 XCAN_FLAG_RX_FIFO_MULTI,
1628	.bittiming_const = &xcan_bittiming_const_canfd,
1629	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1630	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1631	.bus_clk_name = "s_axi_aclk",
1632};
1633
1634static const struct xcan_devtype_data xcan_canfd2_data = {
1635	.cantype = XAXI_CANFD_2_0,
1636	.flags = XCAN_FLAG_EXT_FILTERS |
1637		 XCAN_FLAG_RXMNF |
1638		 XCAN_FLAG_TX_MAILBOXES |
1639		 XCAN_FLAG_CANFD_2 |
1640		 XCAN_FLAG_RX_FIFO_MULTI,
1641	.bittiming_const = &xcan_bittiming_const_canfd2,
1642	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1643	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1644	.bus_clk_name = "s_axi_aclk",
1645};
1646
1647/* Match table for OF platform binding */
1648static const struct of_device_id xcan_of_match[] = {
1649	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1650	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1651	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1652	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1653	{ /* end of list */ },
1654};
1655MODULE_DEVICE_TABLE(of, xcan_of_match);
1656
1657/**
1658 * xcan_probe - Platform registration call
1659 * @pdev:	Handle to the platform device structure
1660 *
1661 * This function does all the memory allocation and registration for the CAN
1662 * device.
1663 *
1664 * Return: 0 on success and failure value on error
1665 */
1666static int xcan_probe(struct platform_device *pdev)
1667{
 
1668	struct net_device *ndev;
1669	struct xcan_priv *priv;
1670	const struct of_device_id *of_id;
1671	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1672	void __iomem *addr;
1673	int ret;
1674	int rx_max, tx_max;
1675	u32 hw_tx_max = 0, hw_rx_max = 0;
1676	const char *hw_tx_max_property;
1677
1678	/* Get the virtual base address for the device */
1679	addr = devm_platform_ioremap_resource(pdev, 0);
 
1680	if (IS_ERR(addr)) {
1681		ret = PTR_ERR(addr);
1682		goto err;
1683	}
1684
1685	of_id = of_match_device(xcan_of_match, &pdev->dev);
1686	if (of_id && of_id->data)
1687		devtype = of_id->data;
1688
1689	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1690			     "tx-mailbox-count" : "tx-fifo-depth";
1691
1692	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1693				   &hw_tx_max);
1694	if (ret < 0) {
1695		dev_err(&pdev->dev, "missing %s property\n",
1696			hw_tx_max_property);
1697		goto err;
1698	}
1699
1700	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1701				   &hw_rx_max);
1702	if (ret < 0) {
1703		dev_err(&pdev->dev,
1704			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1705		goto err;
1706	}
1707
1708	/* With TX FIFO:
1709	 *
1710	 * There is no way to directly figure out how many frames have been
1711	 * sent when the TXOK interrupt is processed. If TXFEMP
1712	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1713	 * to determine if 1 or 2 frames have been sent.
1714	 * Theoretically we should be able to use TXFWMEMP to determine up
1715	 * to 3 frames, but it seems that after putting a second frame in the
1716	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1717	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1718	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1719	 * completely synchronized with the rest of the bits?
1720	 *
1721	 * With TX mailboxes:
1722	 *
1723	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1724	 * we submit frames one at a time.
1725	 */
1726	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1727	    (devtype->flags & XCAN_FLAG_TXFEMP))
1728		tx_max = min(hw_tx_max, 2U);
1729	else
1730		tx_max = 1;
1731
1732	rx_max = hw_rx_max;
1733
1734	/* Create a CAN device instance */
1735	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1736	if (!ndev)
1737		return -ENOMEM;
1738
1739	priv = netdev_priv(ndev);
1740	priv->dev = &pdev->dev;
1741	priv->can.bittiming_const = devtype->bittiming_const;
1742	priv->can.do_set_mode = xcan_do_set_mode;
1743	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1744	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1745					CAN_CTRLMODE_BERR_REPORTING;
1746
1747	if (devtype->cantype == XAXI_CANFD)
1748		priv->can.data_bittiming_const =
1749			&xcan_data_bittiming_const_canfd;
1750
1751	if (devtype->cantype == XAXI_CANFD_2_0)
1752		priv->can.data_bittiming_const =
1753			&xcan_data_bittiming_const_canfd2;
1754
1755	if (devtype->cantype == XAXI_CANFD ||
1756	    devtype->cantype == XAXI_CANFD_2_0)
1757		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1758
1759	priv->reg_base = addr;
1760	priv->tx_max = tx_max;
1761	priv->devtype = *devtype;
1762	spin_lock_init(&priv->tx_lock);
1763
1764	/* Get IRQ for the device */
1765	ndev->irq = platform_get_irq(pdev, 0);
1766	ndev->flags |= IFF_ECHO;	/* We support local echo */
1767
1768	platform_set_drvdata(pdev, ndev);
1769	SET_NETDEV_DEV(ndev, &pdev->dev);
1770	ndev->netdev_ops = &xcan_netdev_ops;
1771
1772	/* Getting the CAN can_clk info */
1773	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1774	if (IS_ERR(priv->can_clk)) {
1775		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1776				    "device clock not found\n");
1777		goto err_free;
1778	}
1779
1780	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1781	if (IS_ERR(priv->bus_clk)) {
1782		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1783				    "bus clock not found\n");
1784		goto err_free;
 
 
 
 
 
 
 
 
 
 
1785	}
1786
1787	priv->write_reg = xcan_write_reg_le;
1788	priv->read_reg = xcan_read_reg_le;
1789
1790	pm_runtime_enable(&pdev->dev);
1791	ret = pm_runtime_get_sync(&pdev->dev);
1792	if (ret < 0) {
1793		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1794			   __func__, ret);
1795		goto err_disableclks;
1796	}
1797
1798	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1799		priv->write_reg = xcan_write_reg_be;
1800		priv->read_reg = xcan_read_reg_be;
1801	}
1802
1803	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1804
1805	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1806
1807	ret = register_candev(ndev);
1808	if (ret) {
1809		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1810		goto err_disableclks;
1811	}
1812
1813	devm_can_led_init(ndev);
1814
1815	pm_runtime_put(&pdev->dev);
1816
1817	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1818		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1819		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1820	}
1821
1822	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1823		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1824		   hw_tx_max, priv->tx_max);
1825
1826	return 0;
1827
1828err_disableclks:
1829	pm_runtime_put(priv->dev);
 
1830	pm_runtime_disable(&pdev->dev);
1831err_free:
1832	free_candev(ndev);
1833err:
1834	return ret;
1835}
1836
1837/**
1838 * xcan_remove - Unregister the device after releasing the resources
1839 * @pdev:	Handle to the platform device structure
1840 *
1841 * This function frees all the resources allocated to the device.
1842 * Return: 0 always
1843 */
1844static int xcan_remove(struct platform_device *pdev)
1845{
1846	struct net_device *ndev = platform_get_drvdata(pdev);
1847	struct xcan_priv *priv = netdev_priv(ndev);
1848
1849	unregister_candev(ndev);
1850	pm_runtime_disable(&pdev->dev);
1851	netif_napi_del(&priv->napi);
1852	free_candev(ndev);
1853
1854	return 0;
1855}
 
 
 
 
 
 
 
 
1856
1857static struct platform_driver xcan_driver = {
1858	.probe = xcan_probe,
1859	.remove	= xcan_remove,
1860	.driver	= {
1861		.name = DRIVER_NAME,
1862		.pm = &xcan_dev_pm_ops,
1863		.of_match_table	= xcan_of_match,
1864	},
1865};
1866
1867module_platform_driver(xcan_driver);
1868
1869MODULE_LICENSE("GPL");
1870MODULE_AUTHOR("Xilinx Inc");
1871MODULE_DESCRIPTION("Xilinx CAN interface");