Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23#include "pp_debug.h"
  24#include <linux/module.h>
  25#include <linux/slab.h>
  26
  27#include "ppatomctrl.h"
  28#include "atombios.h"
  29#include "cgs_common.h"
  30#include "ppevvmath.h"
  31
  32#define MEM_ID_MASK           0xff000000
  33#define MEM_ID_SHIFT          24
  34#define CLOCK_RANGE_MASK      0x00ffffff
  35#define CLOCK_RANGE_SHIFT     0
  36#define LOW_NIBBLE_MASK       0xf
  37#define DATA_EQU_PREV         0
  38#define DATA_FROM_TABLE       4
  39
  40union voltage_object_info {
  41	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
  42	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
  43	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
  44};
  45
  46static int atomctrl_retrieve_ac_timing(
  47		uint8_t index,
  48		ATOM_INIT_REG_BLOCK *reg_block,
  49		pp_atomctrl_mc_reg_table *table)
  50{
  51	uint32_t i, j;
  52	uint8_t tmem_id;
  53	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  54		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
  55
  56	uint8_t num_ranges = 0;
  57
  58	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
  59			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
  60		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
  61
  62		if (index == tmem_id) {
  63			table->mc_reg_table_entry[num_ranges].mclk_max =
  64				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
  65						CLOCK_RANGE_SHIFT);
  66
  67			for (i = 0, j = 1; i < table->last; i++) {
  68				if ((table->mc_reg_address[i].uc_pre_reg_data &
  69							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
  70					table->mc_reg_table_entry[num_ranges].mc_data[i] =
  71						(uint32_t)*((uint32_t *)reg_data + j);
  72					j++;
  73				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
  74							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
  75					table->mc_reg_table_entry[num_ranges].mc_data[i] =
  76						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
  77				}
  78			}
  79			num_ranges++;
  80		}
  81
  82		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  83			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
  84	}
  85
  86	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
  87			"Invalid VramInfo table.", return -1);
  88	table->num_entries = num_ranges;
  89
  90	return 0;
  91}
  92
  93/**
  94 * Get memory clock AC timing registers index from VBIOS table
  95 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  96 * @param    reg_block the address ATOM_INIT_REG_BLOCK
  97 * @param    table the address of MCRegTable
  98 * @return   0
  99 */
 100static int atomctrl_set_mc_reg_address_table(
 101		ATOM_INIT_REG_BLOCK *reg_block,
 102		pp_atomctrl_mc_reg_table *table)
 103{
 104	uint8_t i = 0;
 105	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
 106			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 107	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
 108
 109	num_entries--;        /* subtract 1 data end mark entry */
 110
 111	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
 112			"Invalid VramInfo table.", return -1);
 113
 114	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
 115	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
 116			(i < num_entries)) {
 117		table->mc_reg_address[i].s1 =
 118			(uint16_t)(le16_to_cpu(format->usRegIndex));
 119		table->mc_reg_address[i].uc_pre_reg_data =
 120			format->ucPreRegDataLength;
 121
 122		i++;
 123		format = (ATOM_INIT_REG_INDEX_FORMAT *)
 124			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 125	}
 126
 127	table->last = i;
 128	return 0;
 129}
 130
 131
 132int atomctrl_initialize_mc_reg_table(
 133		struct pp_hwmgr *hwmgr,
 134		uint8_t module_index,
 135		pp_atomctrl_mc_reg_table *table)
 136{
 137	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
 138	ATOM_INIT_REG_BLOCK *reg_block;
 139	int result = 0;
 140	u8 frev, crev;
 141	u16 size;
 142
 143	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
 144		cgs_atom_get_data_table(hwmgr->device,
 145				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
 146
 147	if (module_index >= vram_info->ucNumOfVRAMModule) {
 148		pr_err("Invalid VramInfo table.");
 149		result = -1;
 150	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
 151		pr_err("Invalid VramInfo table.");
 152		result = -1;
 153	}
 154
 155	if (0 == result) {
 156		reg_block = (ATOM_INIT_REG_BLOCK *)
 157			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
 158		result = atomctrl_set_mc_reg_address_table(reg_block, table);
 159	}
 160
 161	if (0 == result) {
 162		result = atomctrl_retrieve_ac_timing(module_index,
 163					reg_block, table);
 164	}
 165
 166	return result;
 167}
 168
 169/**
 170 * Set DRAM timings based on engine clock and memory clock.
 171 */
 172int atomctrl_set_engine_dram_timings_rv770(
 173		struct pp_hwmgr *hwmgr,
 174		uint32_t engine_clock,
 175		uint32_t memory_clock)
 176{
 177	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
 178
 179	/* They are both in 10KHz Units. */
 180	engine_clock_parameters.ulTargetEngineClock =
 181		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
 182			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
 183
 184	/* in 10 khz units.*/
 185	engine_clock_parameters.sReserved.ulClock =
 186		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
 187	return cgs_atom_exec_cmd_table(hwmgr->device,
 188			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
 189			&engine_clock_parameters);
 190}
 191
 192/**
 193 * Private Function to get the PowerPlay Table Address.
 194 * WARNING: The tabled returned by this function is in
 195 * dynamically allocated memory.
 196 * The caller has to release if by calling kfree.
 197 */
 198static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
 199{
 200	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
 201	u8 frev, crev;
 202	u16 size;
 203	union voltage_object_info *voltage_info;
 204
 205	voltage_info = (union voltage_object_info *)
 206		cgs_atom_get_data_table(device, index,
 207			&size, &frev, &crev);
 208
 209	if (voltage_info != NULL)
 210		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
 211	else
 212		return NULL;
 213}
 214
 215static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
 216		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
 217		uint8_t voltage_type, uint8_t voltage_mode)
 218{
 219	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
 220	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
 221	uint8_t *start = (uint8_t *)voltage_object_info_table;
 222
 223	while (offset < size) {
 224		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
 225			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
 226
 227		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
 228			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
 229			return voltage_object;
 230
 231		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
 232	}
 233
 234	return NULL;
 235}
 236
 237/** atomctrl_get_memory_pll_dividers_si().
 238 *
 239 * @param hwmgr                 input parameter: pointer to HwMgr
 240 * @param clock_value             input parameter: memory clock
 241 * @param dividers                 output parameter: memory PLL dividers
 242 * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
 243 */
 244int atomctrl_get_memory_pll_dividers_si(
 245		struct pp_hwmgr *hwmgr,
 246		uint32_t clock_value,
 247		pp_atomctrl_memory_clock_param *mpll_param,
 248		bool strobe_mode)
 249{
 250	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
 251	int result;
 252
 253	mpll_parameters.ulClock = cpu_to_le32(clock_value);
 254	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
 255
 256	result = cgs_atom_exec_cmd_table
 257		(hwmgr->device,
 258		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 259		 &mpll_parameters);
 260
 261	if (0 == result) {
 262		mpll_param->mpll_fb_divider.clk_frac =
 263			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
 264		mpll_param->mpll_fb_divider.cl_kf =
 265			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
 266		mpll_param->mpll_post_divider =
 267			(uint32_t)mpll_parameters.ucPostDiv;
 268		mpll_param->vco_mode =
 269			(uint32_t)(mpll_parameters.ucPllCntlFlag &
 270					MPLL_CNTL_FLAG_VCO_MODE_MASK);
 271		mpll_param->yclk_sel =
 272			(uint32_t)((mpll_parameters.ucPllCntlFlag &
 273						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
 274		mpll_param->qdr =
 275			(uint32_t)((mpll_parameters.ucPllCntlFlag &
 276						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
 277		mpll_param->half_rate =
 278			(uint32_t)((mpll_parameters.ucPllCntlFlag &
 279						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
 280		mpll_param->dll_speed =
 281			(uint32_t)(mpll_parameters.ucDllSpeed);
 282		mpll_param->bw_ctrl =
 283			(uint32_t)(mpll_parameters.ucBWCntl);
 284	}
 285
 286	return result;
 287}
 288
 289/** atomctrl_get_memory_pll_dividers_vi().
 290 *
 291 * @param hwmgr                 input parameter: pointer to HwMgr
 292 * @param clock_value             input parameter: memory clock
 293 * @param dividers               output parameter: memory PLL dividers
 294 */
 295int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
 296		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
 297{
 298	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
 299	int result;
 300
 301	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
 302
 303	result = cgs_atom_exec_cmd_table(hwmgr->device,
 304			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 305			&mpll_parameters);
 306
 307	if (!result)
 308		mpll_param->mpll_post_divider =
 309				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
 310
 311	return result;
 312}
 313
 314int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
 315					  uint32_t clock_value,
 316					  pp_atomctrl_clock_dividers_kong *dividers)
 317{
 318	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
 319	int result;
 320
 321	pll_parameters.ulClock = cpu_to_le32(clock_value);
 322
 323	result = cgs_atom_exec_cmd_table
 324		(hwmgr->device,
 325		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 326		 &pll_parameters);
 327
 328	if (0 == result) {
 329		dividers->pll_post_divider = pll_parameters.ucPostDiv;
 330		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
 331	}
 332
 333	return result;
 334}
 335
 336int atomctrl_get_engine_pll_dividers_vi(
 337		struct pp_hwmgr *hwmgr,
 338		uint32_t clock_value,
 339		pp_atomctrl_clock_dividers_vi *dividers)
 340{
 341	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 342	int result;
 343
 344	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 345	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 346
 347	result = cgs_atom_exec_cmd_table
 348		(hwmgr->device,
 349		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 350		 &pll_patameters);
 351
 352	if (0 == result) {
 353		dividers->pll_post_divider =
 354			pll_patameters.ulClock.ucPostDiv;
 355		dividers->real_clock =
 356			le32_to_cpu(pll_patameters.ulClock.ulClock);
 357
 358		dividers->ul_fb_div.ul_fb_div_frac =
 359			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
 360		dividers->ul_fb_div.ul_fb_div =
 361			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
 362
 363		dividers->uc_pll_ref_div =
 364			pll_patameters.ucPllRefDiv;
 365		dividers->uc_pll_post_div =
 366			pll_patameters.ucPllPostDiv;
 367		dividers->uc_pll_cntl_flag =
 368			pll_patameters.ucPllCntlFlag;
 369	}
 370
 371	return result;
 372}
 373
 374int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
 375		uint32_t clock_value,
 376		pp_atomctrl_clock_dividers_ai *dividers)
 377{
 378	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
 379	int result;
 380
 381	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 382	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 383
 384	result = cgs_atom_exec_cmd_table
 385		(hwmgr->device,
 386		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 387		 &pll_patameters);
 388
 389	if (0 == result) {
 390		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
 391		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
 392		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
 393		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
 394		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
 395		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
 396		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
 397		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
 398		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
 399		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
 400		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
 401	}
 402	return result;
 403}
 404
 405int atomctrl_get_dfs_pll_dividers_vi(
 406		struct pp_hwmgr *hwmgr,
 407		uint32_t clock_value,
 408		pp_atomctrl_clock_dividers_vi *dividers)
 409{
 410	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 411	int result;
 412
 413	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
 414	pll_patameters.ulClock.ucPostDiv =
 415		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
 416
 417	result = cgs_atom_exec_cmd_table
 418		(hwmgr->device,
 419		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 420		 &pll_patameters);
 421
 422	if (0 == result) {
 423		dividers->pll_post_divider =
 424			pll_patameters.ulClock.ucPostDiv;
 425		dividers->real_clock =
 426			le32_to_cpu(pll_patameters.ulClock.ulClock);
 427
 428		dividers->ul_fb_div.ul_fb_div_frac =
 429			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
 430		dividers->ul_fb_div.ul_fb_div =
 431			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
 432
 433		dividers->uc_pll_ref_div =
 434			pll_patameters.ucPllRefDiv;
 435		dividers->uc_pll_post_div =
 436			pll_patameters.ucPllPostDiv;
 437		dividers->uc_pll_cntl_flag =
 438			pll_patameters.ucPllCntlFlag;
 439	}
 440
 441	return result;
 442}
 443
 444/**
 445 * Get the reference clock in 10KHz
 446 */
 447uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
 448{
 449	ATOM_FIRMWARE_INFO *fw_info;
 450	u8 frev, crev;
 451	u16 size;
 452	uint32_t clock;
 453
 454	fw_info = (ATOM_FIRMWARE_INFO *)
 455		cgs_atom_get_data_table(hwmgr->device,
 456			GetIndexIntoMasterTable(DATA, FirmwareInfo),
 457			&size, &frev, &crev);
 458
 459	if (fw_info == NULL)
 460		clock = 2700;
 461	else
 462		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
 463
 464	return clock;
 465}
 466
 467/**
 468 * Returns true if the given voltage type is controlled by GPIO pins.
 469 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
 470 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
 471 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
 472 */
 473bool atomctrl_is_voltage_controlled_by_gpio_v3(
 474		struct pp_hwmgr *hwmgr,
 475		uint8_t voltage_type,
 476		uint8_t voltage_mode)
 477{
 478	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 479		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 480	bool ret;
 481
 482	PP_ASSERT_WITH_CODE((NULL != voltage_info),
 483			"Could not find Voltage Table in BIOS.", return false;);
 484
 485	ret = (NULL != atomctrl_lookup_voltage_type_v3
 486			(voltage_info, voltage_type, voltage_mode)) ? true : false;
 487
 488	return ret;
 489}
 490
 491int atomctrl_get_voltage_table_v3(
 492		struct pp_hwmgr *hwmgr,
 493		uint8_t voltage_type,
 494		uint8_t voltage_mode,
 495		pp_atomctrl_voltage_table *voltage_table)
 496{
 497	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 498		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 499	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
 500	unsigned int i;
 501
 502	PP_ASSERT_WITH_CODE((NULL != voltage_info),
 503			"Could not find Voltage Table in BIOS.", return -1;);
 504
 505	voltage_object = atomctrl_lookup_voltage_type_v3
 506		(voltage_info, voltage_type, voltage_mode);
 507
 508	if (voltage_object == NULL)
 509		return -1;
 510
 511	PP_ASSERT_WITH_CODE(
 512			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
 513			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
 514			"Too many voltage entries!",
 515			return -1;
 516			);
 517
 518	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
 519		voltage_table->entries[i].value =
 520			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
 521		voltage_table->entries[i].smio_low =
 522			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
 523	}
 524
 525	voltage_table->mask_low    =
 526		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
 527	voltage_table->count      =
 528		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
 529	voltage_table->phase_delay =
 530		voltage_object->asGpioVoltageObj.ucPhaseDelay;
 531
 532	return 0;
 533}
 534
 535static bool atomctrl_lookup_gpio_pin(
 536		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
 537		const uint32_t pinId,
 538		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 539{
 540	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
 541	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
 542	uint8_t *start = (uint8_t *)gpio_lookup_table;
 543
 544	while (offset < size) {
 545		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
 546			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
 547
 548		if (pinId == pin_assignment->ucGPIO_ID) {
 549			gpio_pin_assignment->uc_gpio_pin_bit_shift =
 550				pin_assignment->ucGpioPinBitShift;
 551			gpio_pin_assignment->us_gpio_pin_aindex =
 552				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
 553			return true;
 554		}
 555
 556		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
 557	}
 558
 559	return false;
 560}
 561
 562/**
 563 * Private Function to get the PowerPlay Table Address.
 564 * WARNING: The tabled returned by this function is in
 565 * dynamically allocated memory.
 566 * The caller has to release if by calling kfree.
 567 */
 568static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
 569{
 570	u8 frev, crev;
 571	u16 size;
 572	void *table_address;
 573
 574	table_address = (ATOM_GPIO_PIN_LUT *)
 575		cgs_atom_get_data_table(device,
 576				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
 577				&size, &frev, &crev);
 578
 579	PP_ASSERT_WITH_CODE((NULL != table_address),
 580			"Error retrieving BIOS Table Address!", return NULL;);
 581
 582	return (ATOM_GPIO_PIN_LUT *)table_address;
 583}
 584
 585/**
 586 * Returns 1 if the given pin id find in lookup table.
 587 */
 588bool atomctrl_get_pp_assign_pin(
 589		struct pp_hwmgr *hwmgr,
 590		const uint32_t pinId,
 591		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 592{
 593	bool bRet = false;
 594	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
 595		get_gpio_lookup_table(hwmgr->device);
 596
 597	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
 598			"Could not find GPIO lookup Table in BIOS.", return false);
 599
 600	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
 601		gpio_pin_assignment);
 602
 603	return bRet;
 604}
 605
 606int atomctrl_calculate_voltage_evv_on_sclk(
 607		struct pp_hwmgr *hwmgr,
 608		uint8_t voltage_type,
 609		uint32_t sclk,
 610		uint16_t virtual_voltage_Id,
 611		uint16_t *voltage,
 612		uint16_t dpm_level,
 613		bool debug)
 614{
 615	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
 616
 617	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
 618	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
 619	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
 620	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
 621	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
 622	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
 623	EFUSE_INPUT_PARAMETER sInput_FuseValues;
 624	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
 625
 626	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
 627	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
 628	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
 629	fInt fLkg_FT, repeat;
 630	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
 631	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
 632	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
 633	fInt fSclk_margin, fSclk, fEVV_V;
 634	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
 635	uint32_t ul_FT_Lkg_V0NORM;
 636	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
 637	fInt fRoots[2];
 638	fInt fStepSize = GetScaledFraction(625, 100000);
 639
 640	int result;
 641
 642	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
 643			cgs_atom_get_data_table(hwmgr->device,
 644					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
 645					NULL, NULL, NULL);
 646
 647	if (!getASICProfilingInfo)
 648		return -1;
 649
 650	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
 651	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
 652	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
 653		return -1;
 654
 655	/*-----------------------------------------------------------
 656	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
 657	 *-----------------------------------------------------------
 658	 */
 659	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
 660
 661	switch (dpm_level) {
 662	case 1:
 663		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
 664		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
 665		break;
 666	case 2:
 667		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
 668		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
 669		break;
 670	case 3:
 671		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
 672		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
 673		break;
 674	case 4:
 675		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
 676		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
 677		break;
 678	case 5:
 679		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
 680		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
 681		break;
 682	case 6:
 683		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
 684		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
 685		break;
 686	case 7:
 687		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
 688		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
 689		break;
 690	default:
 691		pr_err("DPM Level not supported\n");
 692		fPowerDPMx = Convert_ULONG_ToFraction(1);
 693		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
 694	}
 695
 696	/*-------------------------
 697	 * DECODING FUSE VALUES
 698	 * ------------------------
 699	 */
 700	/*Decode RO_Fused*/
 701	sRO_fuse = getASICProfilingInfo->sRoFuse;
 702
 703	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
 704	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
 705	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
 706
 707	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 708
 709	result = cgs_atom_exec_cmd_table(hwmgr->device,
 710			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 711			&sOutput_FuseValues);
 712
 713	if (result)
 714		return result;
 715
 716	/* Finally, the actual fuse value */
 717	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 718	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
 719	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
 720	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
 721
 722	sCACm_fuse = getASICProfilingInfo->sCACm;
 723
 724	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
 725	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
 726	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
 727
 728	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 729
 730	result = cgs_atom_exec_cmd_table(hwmgr->device,
 731			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 732			&sOutput_FuseValues);
 733
 734	if (result)
 735		return result;
 736
 737	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 738	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
 739	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
 740
 741	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
 742
 743	sCACb_fuse = getASICProfilingInfo->sCACb;
 744
 745	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
 746	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
 747	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
 748	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 749
 750	result = cgs_atom_exec_cmd_table(hwmgr->device,
 751			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 752			&sOutput_FuseValues);
 753
 754	if (result)
 755		return result;
 756
 757	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 758	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
 759	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
 760
 761	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
 762
 763	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
 764
 765	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
 766	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
 767	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
 768
 769	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 770
 771	result = cgs_atom_exec_cmd_table(hwmgr->device,
 772			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 773			&sOutput_FuseValues);
 774
 775	if (result)
 776		return result;
 777
 778	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 779	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
 780	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
 781
 782	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
 783			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
 784
 785	sKv_m_fuse = getASICProfilingInfo->sKv_m;
 786
 787	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
 788	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
 789	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
 790
 791	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 792
 793	result = cgs_atom_exec_cmd_table(hwmgr->device,
 794			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 795			&sOutput_FuseValues);
 796	if (result)
 797		return result;
 798
 799	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 800	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
 801	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
 802	fRange = fMultiply(fRange, ConvertToFraction(-1));
 803
 804	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
 805			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
 806
 807	sKv_b_fuse = getASICProfilingInfo->sKv_b;
 808
 809	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
 810	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
 811	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
 812	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 813
 814	result = cgs_atom_exec_cmd_table(hwmgr->device,
 815			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 816			&sOutput_FuseValues);
 817
 818	if (result)
 819		return result;
 820
 821	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 822	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
 823	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
 824
 825	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
 826			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
 827
 828	/* Decoding the Leakage - No special struct container */
 829	/*
 830	 * usLkgEuseIndex=56
 831	 * ucLkgEfuseBitLSB=6
 832	 * ucLkgEfuseLength=10
 833	 * ulLkgEncodeLn_MaxDivMin=69077
 834	 * ulLkgEncodeMax=1000000
 835	 * ulLkgEncodeMin=1000
 836	 * ulEfuseLogisticAlpha=13
 837	 */
 838
 839	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
 840	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
 841	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
 842
 843	sOutput_FuseValues.sEfuse = sInput_FuseValues;
 844
 845	result = cgs_atom_exec_cmd_table(hwmgr->device,
 846			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 847			&sOutput_FuseValues);
 848
 849	if (result)
 850		return result;
 851
 852	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
 853	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
 854	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
 855
 856	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
 857			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
 858	fLkg_FT = fFT_Lkg_V0NORM;
 859
 860	/*-------------------------------------------
 861	 * PART 2 - Grabbing all required values
 862	 *-------------------------------------------
 863	 */
 864	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
 865			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
 866	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
 867			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
 868	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
 869			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
 870	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
 871			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
 872	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
 873			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
 874	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
 875			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
 876	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
 877			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
 878	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
 879			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
 880
 881	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
 882	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
 883	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
 884
 885	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
 886
 887	fMargin_FMAX_mean = GetScaledFraction(
 888		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
 889	fMargin_Plat_mean = GetScaledFraction(
 890		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
 891	fMargin_FMAX_sigma = GetScaledFraction(
 892		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
 893	fMargin_Plat_sigma = GetScaledFraction(
 894		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
 895
 896	fMargin_DC_sigma = GetScaledFraction(
 897		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
 898	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
 899
 900	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
 901	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
 902	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
 903	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
 904	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
 905
 906	fSclk = GetScaledFraction(sclk, 100);
 907
 908	fV_max = fDivide(GetScaledFraction(
 909				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
 910	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
 911	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
 912	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
 913	fV_FT = fDivide(GetScaledFraction(
 914				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
 915	fV_min = fDivide(GetScaledFraction(
 916				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
 917
 918	/*-----------------------
 919	 * PART 3
 920	 *-----------------------
 921	 */
 922
 923	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
 924	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
 925	fC_Term = fAdd(fMargin_RO_c,
 926			fAdd(fMultiply(fSM_A0, fLkg_FT),
 927			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
 928			fAdd(fMultiply(fSM_A3, fSclk),
 929			fSubtract(fSM_A7, fRO_fused)))));
 930
 931	fVDDC_base = fSubtract(fRO_fused,
 932			fSubtract(fMargin_RO_c,
 933					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
 934	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
 935
 936	repeat = fSubtract(fVDDC_base,
 937			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
 938
 939	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
 940			fGetSquare(repeat)),
 941			fAdd(fMultiply(fMargin_RO_b, repeat),
 942			fMargin_RO_c));
 943
 944	fDC_SCLK = fSubtract(fRO_fused,
 945			fSubtract(fRO_DC_margin,
 946			fSubtract(fSM_A3,
 947			fMultiply(fSM_A2, repeat))));
 948	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
 949
 950	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
 951
 952	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
 953	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
 954	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
 955	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
 956
 957	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
 958	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
 959	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
 960
 961	fSclk_margin = fAdd(fMicro_FMAX,
 962			fAdd(fMicro_CR,
 963			fAdd(fMargin_fixed,
 964			fSqrt(fAdd(fSquared_Sigma_FMAX,
 965			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
 966	/*
 967	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
 968	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
 969	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
 970	 */
 971
 972	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
 973	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
 974	fC_Term = fAdd(fRO_DC_margin,
 975			fAdd(fMultiply(fSM_A0, fLkg_FT),
 976			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
 977			fAdd(fSclk, fSclk_margin)),
 978			fAdd(fMultiply(fSM_A3,
 979			fAdd(fSclk, fSclk_margin)),
 980			fSubtract(fSM_A7, fRO_fused)))));
 981
 982	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
 983
 984	if (GreaterThan(fRoots[0], fRoots[1]))
 985		fEVV_V = fRoots[1];
 986	else
 987		fEVV_V = fRoots[0];
 988
 989	if (GreaterThan(fV_min, fEVV_V))
 990		fEVV_V = fV_min;
 991	else if (GreaterThan(fEVV_V, fV_max))
 992		fEVV_V = fSubtract(fV_max, fStepSize);
 993
 994	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
 995
 996	/*-----------------
 997	 * PART 4
 998	 *-----------------
 999	 */
1000
1001	fV_x = fV_min;
1002
1003	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1004		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1005				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1006				fGetSquare(fV_x)), fDerateTDP);
1007
1008		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1009				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1010				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1011		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1012				fKt_Beta_fused, fT_prod)));
1013		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1014				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1015		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016				fKt_Beta_fused, fT_FT)));
1017
1018		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1019
1020		fTDP_Current = fDivide(fTDP_Power, fV_x);
1021
1022		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1023				ConvertToFraction(10)));
1024
1025		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1026
1027		if (GreaterThan(fV_max, fV_NL) &&
1028			(GreaterThan(fV_NL, fEVV_V) ||
1029			Equal(fV_NL, fEVV_V))) {
1030			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1031
1032			*voltage = (uint16_t)fV_NL.partial.real;
1033			break;
1034		} else
1035			fV_x = fAdd(fV_x, fStepSize);
1036	}
1037
1038	return result;
1039}
1040
1041/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1042 * @param hwmgr	input: pointer to hwManager
1043 * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1044 * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1045 *		which is define in PPTable SCLK/VDDC dependence
1046 *				table associated with this virtual_voltage_Id
1047 * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1048 * @param voltage		       output: real voltage level in unit of mv
1049 */
1050int atomctrl_get_voltage_evv_on_sclk(
1051		struct pp_hwmgr *hwmgr,
1052		uint8_t voltage_type,
1053		uint32_t sclk, uint16_t virtual_voltage_Id,
1054		uint16_t *voltage)
1055{
1056	int result;
1057	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1058
1059	get_voltage_info_param_space.ucVoltageType   =
1060		voltage_type;
1061	get_voltage_info_param_space.ucVoltageMode   =
1062		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1063	get_voltage_info_param_space.usVoltageLevel  =
1064		cpu_to_le16(virtual_voltage_Id);
1065	get_voltage_info_param_space.ulSCLKFreq      =
1066		cpu_to_le32(sclk);
1067
1068	result = cgs_atom_exec_cmd_table(hwmgr->device,
1069			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1070			&get_voltage_info_param_space);
1071
1072	if (0 != result)
1073		return result;
1074
1075	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1076				(&get_voltage_info_param_space))->usVoltageLevel);
1077
1078	return result;
1079}
1080
1081/**
1082 * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1083 * @param hwmgr	input: pointer to hwManager
1084 * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1085 * @param voltage		       output: real voltage level in unit of mv
1086 */
1087int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1088			     uint16_t virtual_voltage_id,
1089			     uint16_t *voltage)
1090{
1091	int result;
1092	int entry_id;
1093	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1094
1095	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1096	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1097		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1098			/* found */
1099			break;
1100		}
1101	}
1102
1103	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1104	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1105	        return -EINVAL;
1106	}
1107
1108	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1109	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1110	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1111	get_voltage_info_param_space.ulSCLKFreq =
1112		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1113
1114	result = cgs_atom_exec_cmd_table(hwmgr->device,
1115			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1116			&get_voltage_info_param_space);
1117
1118	if (0 != result)
1119		return result;
1120
1121	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1122				(&get_voltage_info_param_space))->usVoltageLevel);
1123
1124	return result;
1125}
1126
1127/**
1128 * Get the mpll reference clock in 10KHz
1129 */
1130uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1131{
1132	ATOM_COMMON_TABLE_HEADER *fw_info;
1133	uint32_t clock;
1134	u8 frev, crev;
1135	u16 size;
1136
1137	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1138		cgs_atom_get_data_table(hwmgr->device,
1139				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1140				&size, &frev, &crev);
1141
1142	if (fw_info == NULL)
1143		clock = 2700;
1144	else {
1145		if ((fw_info->ucTableFormatRevision == 2) &&
1146			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1147			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1148				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1149			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1150		} else {
1151			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1152				(ATOM_FIRMWARE_INFO *)fw_info;
1153			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1154		}
1155	}
1156
1157	return clock;
1158}
1159
1160/**
1161 * Get the asic internal spread spectrum table
1162 */
1163static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1164{
1165	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1166	u8 frev, crev;
1167	u16 size;
1168
1169	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1170		cgs_atom_get_data_table(device,
1171			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1172			&size, &frev, &crev);
1173
1174	return table;
1175}
1176
1177/**
1178 * Get the asic internal spread spectrum assignment
1179 */
1180static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1181		const uint8_t clockSource,
1182		const uint32_t clockSpeed,
1183		pp_atomctrl_internal_ss_info *ssEntry)
1184{
1185	ATOM_ASIC_INTERNAL_SS_INFO *table;
1186	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1187	int entry_found = 0;
1188
1189	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1190
1191	table = asic_internal_ss_get_ss_table(hwmgr->device);
1192
1193	if (NULL == table)
1194		return -1;
1195
1196	ssInfo = &table->asSpreadSpectrum[0];
1197
1198	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1199		le16_to_cpu(table->sHeader.usStructureSize)) {
1200		if ((clockSource == ssInfo->ucClockIndication) &&
1201			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1202			entry_found = 1;
1203			break;
1204		}
1205
1206		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1207				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1208	}
1209
1210	if (entry_found) {
1211		ssEntry->speed_spectrum_percentage =
1212			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1213		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1214
1215		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1216			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1217			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1218			ssEntry->speed_spectrum_rate /= 100;
1219		}
1220
1221		switch (ssInfo->ucSpreadSpectrumMode) {
1222		case 0:
1223			ssEntry->speed_spectrum_mode =
1224				pp_atomctrl_spread_spectrum_mode_down;
1225			break;
1226		case 1:
1227			ssEntry->speed_spectrum_mode =
1228				pp_atomctrl_spread_spectrum_mode_center;
1229			break;
1230		default:
1231			ssEntry->speed_spectrum_mode =
1232				pp_atomctrl_spread_spectrum_mode_down;
1233			break;
1234		}
1235	}
1236
1237	return entry_found ? 0 : 1;
1238}
1239
1240/**
1241 * Get the memory clock spread spectrum info
1242 */
1243int atomctrl_get_memory_clock_spread_spectrum(
1244		struct pp_hwmgr *hwmgr,
1245		const uint32_t memory_clock,
1246		pp_atomctrl_internal_ss_info *ssInfo)
1247{
1248	return asic_internal_ss_get_ss_asignment(hwmgr,
1249			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1250}
1251/**
1252 * Get the engine clock spread spectrum info
1253 */
1254int atomctrl_get_engine_clock_spread_spectrum(
1255		struct pp_hwmgr *hwmgr,
1256		const uint32_t engine_clock,
1257		pp_atomctrl_internal_ss_info *ssInfo)
1258{
1259	return asic_internal_ss_get_ss_asignment(hwmgr,
1260			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1261}
1262
1263int atomctrl_read_efuse(void *device, uint16_t start_index,
1264		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1265{
1266	int result;
1267	READ_EFUSE_VALUE_PARAMETER efuse_param;
1268
1269	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1270	efuse_param.sEfuse.ucBitShift = (uint8_t)
1271			(start_index - ((start_index / 32) * 32));
1272	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1273			((end_index - start_index) + 1);
1274
1275	result = cgs_atom_exec_cmd_table(device,
1276			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1277			&efuse_param);
1278	if (!result)
1279		*efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1280
1281	return result;
1282}
1283
1284int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1285			      uint8_t level)
1286{
1287	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1288	int result;
1289
1290	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1291		memory_clock & SET_CLOCK_FREQ_MASK;
1292	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1293		ADJUST_MC_SETTING_PARAM;
1294	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1295
1296	result = cgs_atom_exec_cmd_table
1297		(hwmgr->device,
1298		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1299		 &memory_clock_parameters);
1300
1301	return result;
1302}
1303
1304int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1305				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1306{
1307
1308	int result;
1309	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1310
1311	get_voltage_info_param_space.ucVoltageType = voltage_type;
1312	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1313	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1314	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1315
1316	result = cgs_atom_exec_cmd_table(hwmgr->device,
1317			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1318			&get_voltage_info_param_space);
1319
1320	if (0 != result)
1321		return result;
1322
1323	*voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)
1324				(&get_voltage_info_param_space))->ulVoltageLevel);
1325
1326	return result;
1327}
1328
1329int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1330{
1331
1332	int i;
1333	u8 frev, crev;
1334	u16 size;
1335
1336	ATOM_SMU_INFO_V2_1 *psmu_info =
1337		(ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1338			GetIndexIntoMasterTable(DATA, SMU_Info),
1339			&size, &frev, &crev);
1340
1341
1342	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1343		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1344		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345		table->entry[i].usFcw_pcc =
1346			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1347		table->entry[i].usFcw_trans_upper =
1348			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1349		table->entry[i].usRcw_trans_lower =
1350			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351	}
1352
1353	return 0;
1354}
1355
1356int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1357				  struct pp_atom_ctrl__avfs_parameters *param)
1358{
1359	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1360
1361	if (param == NULL)
1362		return -EINVAL;
1363
1364	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1365			cgs_atom_get_data_table(hwmgr->device,
1366					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1367					NULL, NULL, NULL);
1368	if (!profile)
1369		return -1;
1370
1371	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1372	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1373	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1374	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1375	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1376	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1377	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1378	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1379	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1380	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1381	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1382	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1383	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1384	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1385	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1386	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1387	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1388	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1389	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1391	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1392	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1393	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1396
1397	return 0;
1398}
1399
1400int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1401				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1402				uint16_t *load_line)
1403{
1404	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1405		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
1406
1407	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1408
1409	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1410			"Could not find Voltage Table in BIOS.", return -EINVAL);
1411
1412	voltage_object = atomctrl_lookup_voltage_type_v3
1413		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1414
1415	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1416	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1417	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1418
1419	return 0;
1420}
1421
1422int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1423{
1424	int result;
1425	SET_VOLTAGE_PS_ALLOCATION allocation;
1426	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1427			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1428
1429	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1430
1431	result = cgs_atom_exec_cmd_table(hwmgr->device,
1432			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1433			voltage_parameters);
1434
1435	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1436
1437	return result;
1438}
1439
1440int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1441					uint16_t *vddc, uint16_t *vddci,
1442					uint16_t virtual_voltage_id,
1443					uint16_t efuse_voltage_id)
1444{
1445	int i, j;
1446	int ix;
1447	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1448	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1449
1450	*vddc = 0;
1451	*vddci = 0;
1452
1453	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1454
1455	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1456			cgs_atom_get_data_table(hwmgr->device,
1457					ix,
1458					NULL, NULL, NULL);
1459	if (!profile)
1460		return -EINVAL;
1461
1462	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1463		(profile->asHeader.ucTableContentRevision >= 1) &&
1464		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1465		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1466		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1467		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1468		if (profile->ucElbVDDC_Num > 0) {
1469			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1470				if (vddc_id_buf[i] == virtual_voltage_id) {
1471					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1472						if (efuse_voltage_id <= leakage_bin[j]) {
1473							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1474							break;
1475						}
1476					}
1477					break;
1478				}
1479			}
1480		}
1481
1482		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1483		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1484		if (profile->ucElbVDDCI_Num > 0) {
1485			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1486				if (vddci_id_buf[i] == virtual_voltage_id) {
1487					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1488						if (efuse_voltage_id <= leakage_bin[j]) {
1489							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1490							break;
1491						}
1492					}
1493					break;
1494				}
1495			}
1496		}
1497	}
1498
1499	return 0;
1500}