Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.17
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
 
  28#include <linux/slab.h>
  29#include <linux/amd-iommu.h>
  30#include <linux/notifier.h>
  31#include <linux/compat.h>
  32#include <linux/mman.h>
  33#include <linux/file.h>
 
 
 
  34
  35struct mm_struct;
  36
  37#include "kfd_priv.h"
  38#include "kfd_device_queue_manager.h"
  39#include "kfd_dbgmgr.h"
  40#include "kfd_iommu.h"
 
  41
  42/*
  43 * List of struct kfd_process (field kfd_process).
  44 * Unique/indexed by mm_struct*
  45 */
  46DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  47static DEFINE_MUTEX(kfd_processes_mutex);
  48
  49DEFINE_SRCU(kfd_processes_srcu);
  50
  51/* For process termination handling */
  52static struct workqueue_struct *kfd_process_wq;
  53
  54/* Ordered, single-threaded workqueue for restoring evicted
  55 * processes. Restoring multiple processes concurrently under memory
  56 * pressure can lead to processes blocking each other from validating
  57 * their BOs and result in a live-lock situation where processes
  58 * remain evicted indefinitely.
  59 */
  60static struct workqueue_struct *kfd_restore_wq;
  61
  62static struct kfd_process *find_process(const struct task_struct *thread);
  63static void kfd_process_ref_release(struct kref *ref);
  64static struct kfd_process *create_process(const struct task_struct *thread,
  65					struct file *filep);
  66
  67static void evict_process_worker(struct work_struct *work);
  68static void restore_process_worker(struct work_struct *work);
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71int kfd_process_create_wq(void)
  72{
  73	if (!kfd_process_wq)
  74		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
  75	if (!kfd_restore_wq)
  76		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
  77
  78	if (!kfd_process_wq || !kfd_restore_wq) {
  79		kfd_process_destroy_wq();
  80		return -ENOMEM;
  81	}
  82
  83	return 0;
  84}
  85
  86void kfd_process_destroy_wq(void)
  87{
  88	if (kfd_process_wq) {
  89		destroy_workqueue(kfd_process_wq);
  90		kfd_process_wq = NULL;
  91	}
  92	if (kfd_restore_wq) {
  93		destroy_workqueue(kfd_restore_wq);
  94		kfd_restore_wq = NULL;
  95	}
  96}
  97
  98static void kfd_process_free_gpuvm(struct kgd_mem *mem,
  99			struct kfd_process_device *pdd)
 100{
 101	struct kfd_dev *dev = pdd->dev;
 102
 103	dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
 104	dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
 
 105}
 106
 107/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 108 *	This function should be only called right after the process
 109 *	is created and when kfd_processes_mutex is still being held
 110 *	to avoid concurrency. Because of that exclusiveness, we do
 111 *	not need to take p->mutex.
 112 */
 113static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 114				   uint64_t gpu_va, uint32_t size,
 115				   uint32_t flags, void **kptr)
 116{
 117	struct kfd_dev *kdev = pdd->dev;
 118	struct kgd_mem *mem = NULL;
 119	int handle;
 120	int err;
 121
 122	err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 123						 pdd->vm, &mem, NULL, flags);
 124	if (err)
 125		goto err_alloc_mem;
 126
 127	err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
 128	if (err)
 129		goto err_map_mem;
 130
 131	err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
 132	if (err) {
 133		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 134		goto sync_memory_failed;
 135	}
 136
 137	/* Create an obj handle so kfd_process_device_remove_obj_handle
 138	 * will take care of the bo removal when the process finishes.
 139	 * We do not need to take p->mutex, because the process is just
 140	 * created and the ioctls have not had the chance to run.
 141	 */
 142	handle = kfd_process_device_create_obj_handle(pdd, mem);
 143
 144	if (handle < 0) {
 145		err = handle;
 146		goto free_gpuvm;
 147	}
 148
 149	if (kptr) {
 150		err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
 151				(struct kgd_mem *)mem, kptr, NULL);
 152		if (err) {
 153			pr_debug("Map GTT BO to kernel failed\n");
 154			goto free_obj_handle;
 155		}
 156	}
 157
 158	return err;
 159
 160free_obj_handle:
 161	kfd_process_device_remove_obj_handle(pdd, handle);
 162free_gpuvm:
 163sync_memory_failed:
 164	kfd_process_free_gpuvm(mem, pdd);
 165	return err;
 166
 167err_map_mem:
 168	kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
 
 169err_alloc_mem:
 170	*kptr = NULL;
 171	return err;
 172}
 173
 174/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 175 *	process for IB usage The memory reserved is for KFD to submit
 176 *	IB to AMDGPU from kernel.  If the memory is reserved
 177 *	successfully, ib_kaddr will have the CPU/kernel
 178 *	address. Check ib_kaddr before accessing the memory.
 179 */
 180static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 181{
 182	struct qcm_process_device *qpd = &pdd->qpd;
 183	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
 184			 ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 185			 ALLOC_MEM_FLAGS_WRITABLE |
 186			 ALLOC_MEM_FLAGS_EXECUTABLE;
 187	void *kaddr;
 188	int ret;
 189
 190	if (qpd->ib_kaddr || !qpd->ib_base)
 191		return 0;
 192
 193	/* ib_base is only set for dGPU */
 194	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 195				      &kaddr);
 196	if (ret)
 197		return ret;
 198
 199	qpd->ib_kaddr = kaddr;
 200
 201	return 0;
 202}
 203
 204struct kfd_process *kfd_create_process(struct file *filep)
 205{
 206	struct kfd_process *process;
 207	struct task_struct *thread = current;
 
 208
 209	if (!thread->mm)
 210		return ERR_PTR(-EINVAL);
 211
 212	/* Only the pthreads threading model is supported. */
 213	if (thread->group_leader->mm != thread->mm)
 214		return ERR_PTR(-EINVAL);
 215
 216	/*
 217	 * take kfd processes mutex before starting of process creation
 218	 * so there won't be a case where two threads of the same process
 219	 * create two kfd_process structures
 220	 */
 221	mutex_lock(&kfd_processes_mutex);
 222
 223	/* A prior open of /dev/kfd could have already created the process. */
 224	process = find_process(thread);
 225	if (process)
 226		pr_debug("Process already found\n");
 227	else
 228		process = create_process(thread, filep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230	mutex_unlock(&kfd_processes_mutex);
 231
 232	return process;
 
 
 
 
 
 
 
 
 233}
 234
 235struct kfd_process *kfd_get_process(const struct task_struct *thread)
 236{
 237	struct kfd_process *process;
 238
 239	if (!thread->mm)
 240		return ERR_PTR(-EINVAL);
 241
 242	/* Only the pthreads threading model is supported. */
 243	if (thread->group_leader->mm != thread->mm)
 244		return ERR_PTR(-EINVAL);
 245
 246	process = find_process(thread);
 
 
 247
 248	return process;
 249}
 250
 251static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 252{
 253	struct kfd_process *process;
 254
 255	hash_for_each_possible_rcu(kfd_processes_table, process,
 256					kfd_processes, (uintptr_t)mm)
 257		if (process->mm == mm)
 258			return process;
 259
 260	return NULL;
 261}
 262
 263static struct kfd_process *find_process(const struct task_struct *thread)
 264{
 265	struct kfd_process *p;
 266	int idx;
 267
 268	idx = srcu_read_lock(&kfd_processes_srcu);
 269	p = find_process_by_mm(thread->mm);
 270	srcu_read_unlock(&kfd_processes_srcu, idx);
 271
 272	return p;
 273}
 274
 275void kfd_unref_process(struct kfd_process *p)
 276{
 277	kref_put(&p->ref, kfd_process_ref_release);
 278}
 279
 
 280static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 281{
 282	struct kfd_process *p = pdd->process;
 283	void *mem;
 284	int id;
 
 285
 286	/*
 287	 * Remove all handles from idr and release appropriate
 288	 * local memory object
 289	 */
 290	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 291		struct kfd_process_device *peer_pdd;
 292
 293		list_for_each_entry(peer_pdd, &p->per_device_data,
 294				    per_device_list) {
 295			if (!peer_pdd->vm)
 
 296				continue;
 297			peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
 298				peer_pdd->dev->kgd, mem, peer_pdd->vm);
 299		}
 300
 301		pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
 
 302		kfd_process_device_remove_obj_handle(pdd, id);
 303	}
 304}
 305
 306static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 307{
 308	struct kfd_process_device *pdd;
 309
 310	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
 311		kfd_process_device_free_bos(pdd);
 312}
 313
 314static void kfd_process_destroy_pdds(struct kfd_process *p)
 315{
 316	struct kfd_process_device *pdd, *temp;
 
 
 
 317
 318	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
 319				 per_device_list) {
 320		pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
 321				pdd->dev->id, p->pasid);
 322
 323		if (pdd->drm_file)
 
 
 324			fput(pdd->drm_file);
 325		else if (pdd->vm)
 326			pdd->dev->kfd2kgd->destroy_process_vm(
 327				pdd->dev->kgd, pdd->vm);
 328
 329		list_del(&pdd->per_device_list);
 330
 331		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 332			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 333				get_order(KFD_CWSR_TBA_TMA_SIZE));
 334
 
 335		idr_destroy(&pdd->alloc_idr);
 336
 
 
 
 
 
 
 
 
 
 
 
 
 337		kfree(pdd);
 
 338	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339}
 340
 341/* No process locking is needed in this function, because the process
 342 * is not findable any more. We must assume that no other thread is
 343 * using it any more, otherwise we couldn't safely free the process
 344 * structure in the end.
 345 */
 346static void kfd_process_wq_release(struct work_struct *work)
 347{
 348	struct kfd_process *p = container_of(work, struct kfd_process,
 349					     release_work);
 350
 351	kfd_iommu_unbind_process(p);
 352
 353	kfd_process_free_outstanding_kfd_bos(p);
 
 354
 355	kfd_process_destroy_pdds(p);
 356	dma_fence_put(p->ef);
 357
 358	kfd_event_free_process(p);
 359
 360	kfd_pasid_free(p->pasid);
 361	kfd_free_process_doorbells(p);
 362
 363	mutex_destroy(&p->mutex);
 364
 365	put_task_struct(p->lead_thread);
 366
 367	kfree(p);
 368}
 369
 370static void kfd_process_ref_release(struct kref *ref)
 371{
 372	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
 373
 374	INIT_WORK(&p->release_work, kfd_process_wq_release);
 375	queue_work(kfd_process_wq, &p->release_work);
 376}
 377
 378static void kfd_process_destroy_delayed(struct rcu_head *rcu)
 379{
 380	struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
 
 
 
 381
 382	kfd_unref_process(p);
 
 
 
 
 
 383}
 384
 385static void kfd_process_notifier_release(struct mmu_notifier *mn,
 386					struct mm_struct *mm)
 387{
 388	struct kfd_process *p;
 389	struct kfd_process_device *pdd = NULL;
 390
 391	/*
 392	 * The kfd_process structure can not be free because the
 393	 * mmu_notifier srcu is read locked
 394	 */
 395	p = container_of(mn, struct kfd_process, mmu_notifier);
 396	if (WARN_ON(p->mm != mm))
 397		return;
 398
 399	mutex_lock(&kfd_processes_mutex);
 400	hash_del_rcu(&p->kfd_processes);
 401	mutex_unlock(&kfd_processes_mutex);
 402	synchronize_srcu(&kfd_processes_srcu);
 403
 404	cancel_delayed_work_sync(&p->eviction_work);
 405	cancel_delayed_work_sync(&p->restore_work);
 
 406
 407	mutex_lock(&p->mutex);
 408
 409	/* Iterate over all process device data structures and if the
 410	 * pdd is in debug mode, we should first force unregistration,
 411	 * then we will be able to destroy the queues
 412	 */
 413	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 414		struct kfd_dev *dev = pdd->dev;
 415
 416		mutex_lock(kfd_get_dbgmgr_mutex());
 417		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
 418			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
 419				kfd_dbgmgr_destroy(dev->dbgmgr);
 420				dev->dbgmgr = NULL;
 421			}
 422		}
 423		mutex_unlock(kfd_get_dbgmgr_mutex());
 424	}
 425
 426	kfd_process_dequeue_from_all_devices(p);
 427	pqm_uninit(&p->pqm);
 428
 429	/* Indicate to other users that MM is no longer valid */
 430	p->mm = NULL;
 
 
 
 
 
 431
 432	mutex_unlock(&p->mutex);
 433
 434	mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
 435	mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
 436}
 437
 438static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
 439	.release = kfd_process_notifier_release,
 
 
 440};
 441
 442static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 443{
 444	unsigned long  offset;
 445	struct kfd_process_device *pdd;
 446
 447	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 448		struct kfd_dev *dev = pdd->dev;
 449		struct qcm_process_device *qpd = &pdd->qpd;
 450
 451		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
 452			continue;
 453
 454		offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
 455		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
 456			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
 457			MAP_SHARED, offset);
 458
 459		if (IS_ERR_VALUE(qpd->tba_addr)) {
 460			int err = qpd->tba_addr;
 461
 462			pr_err("Failure to set tba address. error %d.\n", err);
 463			qpd->tba_addr = 0;
 464			qpd->cwsr_kaddr = NULL;
 465			return err;
 466		}
 467
 468		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 469
 470		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 471		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 472			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 473	}
 474
 475	return 0;
 476}
 477
 478static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
 479{
 480	struct kfd_dev *dev = pdd->dev;
 481	struct qcm_process_device *qpd = &pdd->qpd;
 482	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
 483		ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
 
 484	void *kaddr;
 485	int ret;
 486
 487	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
 488		return 0;
 489
 490	/* cwsr_base is only set for dGPU */
 491	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
 492				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
 493	if (ret)
 494		return ret;
 495
 496	qpd->cwsr_kaddr = kaddr;
 497	qpd->tba_addr = qpd->cwsr_base;
 498
 499	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 500
 501	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 502	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 503		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 504
 505	return 0;
 506}
 507
 508static struct kfd_process *create_process(const struct task_struct *thread,
 509					struct file *filep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	struct kfd_process *process;
 
 512	int err = -ENOMEM;
 513
 514	process = kzalloc(sizeof(*process), GFP_KERNEL);
 515
 516	if (!process)
 517		goto err_alloc_process;
 518
 519	process->pasid = kfd_pasid_alloc();
 520	if (process->pasid == 0)
 521		goto err_alloc_pasid;
 522
 523	if (kfd_alloc_process_doorbells(process) < 0)
 524		goto err_alloc_doorbells;
 525
 526	kref_init(&process->ref);
 527
 528	mutex_init(&process->mutex);
 529
 530	process->mm = thread->mm;
 531
 532	/* register notifier */
 533	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
 534	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
 535	if (err)
 536		goto err_mmu_notifier;
 537
 538	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
 539			(uintptr_t)process->mm);
 540
 541	process->lead_thread = thread->group_leader;
 542	get_task_struct(process->lead_thread);
 543
 544	INIT_LIST_HEAD(&process->per_device_data);
 545
 546	kfd_event_init_process(process);
 
 
 
 
 
 547
 548	err = pqm_init(&process->pqm, process);
 549	if (err != 0)
 550		goto err_process_pqm_init;
 551
 552	/* init process apertures*/
 553	process->is_32bit_user_mode = in_compat_syscall();
 554	err = kfd_init_apertures(process);
 555	if (err != 0)
 556		goto err_init_apertures;
 557
 558	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
 559	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
 560	process->last_restore_timestamp = get_jiffies_64();
 561
 562	err = kfd_process_init_cwsr_apu(process, filep);
 563	if (err)
 564		goto err_init_cwsr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	return process;
 567
 568err_init_cwsr:
 
 
 
 569	kfd_process_free_outstanding_kfd_bos(process);
 570	kfd_process_destroy_pdds(process);
 571err_init_apertures:
 572	pqm_uninit(&process->pqm);
 573err_process_pqm_init:
 574	hash_del_rcu(&process->kfd_processes);
 575	synchronize_rcu();
 576	mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
 577err_mmu_notifier:
 578	mutex_destroy(&process->mutex);
 579	kfd_free_process_doorbells(process);
 580err_alloc_doorbells:
 581	kfd_pasid_free(process->pasid);
 582err_alloc_pasid:
 
 583	kfree(process);
 584err_alloc_process:
 585	return ERR_PTR(err);
 586}
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 589							struct kfd_process *p)
 590{
 591	struct kfd_process_device *pdd = NULL;
 592
 593	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
 594		if (pdd->dev == dev)
 595			return pdd;
 596
 597	return NULL;
 598}
 599
 600struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 601							struct kfd_process *p)
 602{
 603	struct kfd_process_device *pdd = NULL;
 604
 
 
 605	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
 606	if (!pdd)
 607		return NULL;
 608
 
 
 
 
 
 
 
 
 
 
 609	pdd->dev = dev;
 610	INIT_LIST_HEAD(&pdd->qpd.queues_list);
 611	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
 612	pdd->qpd.dqm = dev->dqm;
 613	pdd->qpd.pqm = &p->pqm;
 614	pdd->qpd.evicted = 0;
 
 615	pdd->process = p;
 616	pdd->bound = PDD_UNBOUND;
 617	pdd->already_dequeued = false;
 618	list_add(&pdd->per_device_list, &p->per_device_data);
 
 
 
 
 619
 620	/* Init idr used for memory handle translation */
 621	idr_init(&pdd->alloc_idr);
 622
 623	return pdd;
 
 
 
 
 624}
 625
 626/**
 627 * kfd_process_device_init_vm - Initialize a VM for a process-device
 628 *
 629 * @pdd: The process-device
 630 * @drm_file: Optional pointer to a DRM file descriptor
 631 *
 632 * If @drm_file is specified, it will be used to acquire the VM from
 633 * that file descriptor. If successful, the @pdd takes ownership of
 634 * the file descriptor.
 635 *
 636 * If @drm_file is NULL, a new VM is created.
 637 *
 638 * Returns 0 on success, -errno on failure.
 639 */
 640int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 641			       struct file *drm_file)
 642{
 643	struct kfd_process *p;
 644	struct kfd_dev *dev;
 645	int ret;
 646
 647	if (pdd->vm)
 648		return drm_file ? -EBUSY : 0;
 
 
 
 649
 650	p = pdd->process;
 651	dev = pdd->dev;
 652
 653	if (drm_file)
 654		ret = dev->kfd2kgd->acquire_process_vm(
 655			dev->kgd, drm_file,
 656			&pdd->vm, &p->kgd_process_info, &p->ef);
 657	else
 658		ret = dev->kfd2kgd->create_process_vm(
 659			dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
 660	if (ret) {
 661		pr_err("Failed to create process VM object\n");
 662		return ret;
 663	}
 
 664
 665	ret = kfd_process_device_reserve_ib_mem(pdd);
 666	if (ret)
 667		goto err_reserve_ib_mem;
 668	ret = kfd_process_device_init_cwsr_dgpu(pdd);
 669	if (ret)
 670		goto err_init_cwsr;
 671
 672	pdd->drm_file = drm_file;
 673
 674	return 0;
 675
 676err_init_cwsr:
 677err_reserve_ib_mem:
 678	kfd_process_device_free_bos(pdd);
 679	if (!drm_file)
 680		dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
 681	pdd->vm = NULL;
 682
 683	return ret;
 684}
 685
 686/*
 687 * Direct the IOMMU to bind the process (specifically the pasid->mm)
 688 * to the device.
 689 * Unbinding occurs when the process dies or the device is removed.
 690 *
 691 * Assumes that the process lock is held.
 692 */
 693struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 694							struct kfd_process *p)
 695{
 696	struct kfd_process_device *pdd;
 697	int err;
 698
 699	pdd = kfd_get_process_device_data(dev, p);
 700	if (!pdd) {
 701		pr_err("Process device data doesn't exist\n");
 702		return ERR_PTR(-ENOMEM);
 703	}
 704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	err = kfd_iommu_bind_process_to_device(pdd);
 706	if (err)
 707		return ERR_PTR(err);
 708
 709	err = kfd_process_device_init_vm(pdd, NULL);
 710	if (err)
 711		return ERR_PTR(err);
 
 
 712
 713	return pdd;
 714}
 715
 716struct kfd_process_device *kfd_get_first_process_device_data(
 717						struct kfd_process *p)
 718{
 719	return list_first_entry(&p->per_device_data,
 720				struct kfd_process_device,
 721				per_device_list);
 722}
 723
 724struct kfd_process_device *kfd_get_next_process_device_data(
 725						struct kfd_process *p,
 726						struct kfd_process_device *pdd)
 727{
 728	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
 729		return NULL;
 730	return list_next_entry(pdd, per_device_list);
 731}
 732
 733bool kfd_has_process_device_data(struct kfd_process *p)
 734{
 735	return !(list_empty(&p->per_device_data));
 736}
 737
 738/* Create specific handle mapped to mem from process local memory idr
 739 * Assumes that the process lock is held.
 740 */
 741int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 742					void *mem)
 743{
 744	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
 745}
 746
 747/* Translate specific handle from process local memory idr
 748 * Assumes that the process lock is held.
 749 */
 750void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
 751					int handle)
 752{
 753	if (handle < 0)
 754		return NULL;
 755
 756	return idr_find(&pdd->alloc_idr, handle);
 757}
 758
 759/* Remove specific handle from process local memory idr
 760 * Assumes that the process lock is held.
 761 */
 762void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 763					int handle)
 764{
 765	if (handle >= 0)
 766		idr_remove(&pdd->alloc_idr, handle);
 767}
 768
 769/* This increments the process->ref counter. */
 770struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
 771{
 772	struct kfd_process *p, *ret_p = NULL;
 773	unsigned int temp;
 774
 775	int idx = srcu_read_lock(&kfd_processes_srcu);
 776
 777	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 778		if (p->pasid == pasid) {
 779			kref_get(&p->ref);
 780			ret_p = p;
 781			break;
 782		}
 783	}
 784
 785	srcu_read_unlock(&kfd_processes_srcu, idx);
 786
 787	return ret_p;
 788}
 789
 790/* This increments the process->ref counter. */
 791struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
 792{
 793	struct kfd_process *p;
 794
 795	int idx = srcu_read_lock(&kfd_processes_srcu);
 796
 797	p = find_process_by_mm(mm);
 798	if (p)
 799		kref_get(&p->ref);
 800
 801	srcu_read_unlock(&kfd_processes_srcu, idx);
 802
 803	return p;
 804}
 805
 806/* process_evict_queues - Evict all user queues of a process
 807 *
 808 * Eviction is reference-counted per process-device. This means multiple
 809 * evictions from different sources can be nested safely.
 810 */
 811static int process_evict_queues(struct kfd_process *p)
 812{
 813	struct kfd_process_device *pdd;
 814	int r = 0;
 
 815	unsigned int n_evicted = 0;
 816
 817	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 818		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
 819							    &pdd->qpd);
 820		if (r) {
 821			pr_err("Failed to evict process queues\n");
 822			goto fail;
 823		}
 824		n_evicted++;
 825	}
 826
 827	return r;
 828
 829fail:
 830	/* To keep state consistent, roll back partial eviction by
 831	 * restoring queues
 832	 */
 833	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 834		if (n_evicted == 0)
 835			break;
 836		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
 837							      &pdd->qpd))
 838			pr_err("Failed to restore queues\n");
 839
 840		n_evicted--;
 841	}
 842
 843	return r;
 844}
 845
 846/* process_restore_queues - Restore all user queues of a process */
 847static  int process_restore_queues(struct kfd_process *p)
 848{
 849	struct kfd_process_device *pdd;
 850	int r, ret = 0;
 
 
 
 
 851
 852	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 853		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
 854							      &pdd->qpd);
 855		if (r) {
 856			pr_err("Failed to restore process queues\n");
 857			if (!ret)
 858				ret = r;
 859		}
 860	}
 861
 862	return ret;
 863}
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865static void evict_process_worker(struct work_struct *work)
 866{
 867	int ret;
 868	struct kfd_process *p;
 869	struct delayed_work *dwork;
 870
 871	dwork = to_delayed_work(work);
 872
 873	/* Process termination destroys this worker thread. So during the
 874	 * lifetime of this thread, kfd_process p will be valid
 875	 */
 876	p = container_of(dwork, struct kfd_process, eviction_work);
 877	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
 878		  "Eviction fence mismatch\n");
 879
 880	/* Narrow window of overlap between restore and evict work
 881	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
 882	 * unreserves KFD BOs, it is possible to evicted again. But
 883	 * restore has few more steps of finish. So lets wait for any
 884	 * previous restore work to complete
 885	 */
 886	flush_delayed_work(&p->restore_work);
 887
 888	pr_debug("Started evicting pasid %d\n", p->pasid);
 889	ret = process_evict_queues(p);
 890	if (!ret) {
 891		dma_fence_signal(p->ef);
 892		dma_fence_put(p->ef);
 893		p->ef = NULL;
 894		queue_delayed_work(kfd_restore_wq, &p->restore_work,
 895				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
 896
 897		pr_debug("Finished evicting pasid %d\n", p->pasid);
 898	} else
 899		pr_err("Failed to evict queues of pasid %d\n", p->pasid);
 900}
 901
 902static void restore_process_worker(struct work_struct *work)
 903{
 904	struct delayed_work *dwork;
 905	struct kfd_process *p;
 906	struct kfd_process_device *pdd;
 907	int ret = 0;
 908
 909	dwork = to_delayed_work(work);
 910
 911	/* Process termination destroys this worker thread. So during the
 912	 * lifetime of this thread, kfd_process p will be valid
 913	 */
 914	p = container_of(dwork, struct kfd_process, restore_work);
 915
 916	/* Call restore_process_bos on the first KGD device. This function
 917	 * takes care of restoring the whole process including other devices.
 918	 * Restore can fail if enough memory is not available. If so,
 919	 * reschedule again.
 920	 */
 921	pdd = list_first_entry(&p->per_device_data,
 922			       struct kfd_process_device,
 923			       per_device_list);
 924
 925	pr_debug("Started restoring pasid %d\n", p->pasid);
 926
 927	/* Setting last_restore_timestamp before successful restoration.
 928	 * Otherwise this would have to be set by KGD (restore_process_bos)
 929	 * before KFD BOs are unreserved. If not, the process can be evicted
 930	 * again before the timestamp is set.
 931	 * If restore fails, the timestamp will be set again in the next
 932	 * attempt. This would mean that the minimum GPU quanta would be
 933	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
 934	 * functions)
 935	 */
 936
 937	p->last_restore_timestamp = get_jiffies_64();
 938	ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info,
 939						     &p->ef);
 940	if (ret) {
 941		pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
 942			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
 943		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
 944				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
 945		WARN(!ret, "reschedule restore work failed\n");
 946		return;
 947	}
 948
 949	ret = process_restore_queues(p);
 950	if (!ret)
 951		pr_debug("Finished restoring pasid %d\n", p->pasid);
 952	else
 953		pr_err("Failed to restore queues of pasid %d\n", p->pasid);
 954}
 955
 956void kfd_suspend_all_processes(void)
 957{
 958	struct kfd_process *p;
 959	unsigned int temp;
 960	int idx = srcu_read_lock(&kfd_processes_srcu);
 961
 
 962	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 963		cancel_delayed_work_sync(&p->eviction_work);
 964		cancel_delayed_work_sync(&p->restore_work);
 965
 966		if (process_evict_queues(p))
 967			pr_err("Failed to suspend process %d\n", p->pasid);
 968		dma_fence_signal(p->ef);
 969		dma_fence_put(p->ef);
 970		p->ef = NULL;
 971	}
 972	srcu_read_unlock(&kfd_processes_srcu, idx);
 973}
 974
 975int kfd_resume_all_processes(void)
 976{
 977	struct kfd_process *p;
 978	unsigned int temp;
 979	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
 980
 981	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 982		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
 983			pr_err("Restore process %d failed during resume\n",
 984			       p->pasid);
 985			ret = -EFAULT;
 986		}
 987	}
 988	srcu_read_unlock(&kfd_processes_srcu, idx);
 989	return ret;
 990}
 991
 992int kfd_reserved_mem_mmap(struct kfd_process *process,
 993			  struct vm_area_struct *vma)
 994{
 995	struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff);
 996	struct kfd_process_device *pdd;
 997	struct qcm_process_device *qpd;
 998
 999	if (!dev)
1000		return -EINVAL;
1001	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1002		pr_err("Incorrect CWSR mapping size.\n");
1003		return -EINVAL;
1004	}
1005
1006	pdd = kfd_get_process_device_data(dev, process);
1007	if (!pdd)
1008		return -EINVAL;
1009	qpd = &pdd->qpd;
1010
1011	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012					get_order(KFD_CWSR_TBA_TMA_SIZE));
1013	if (!qpd->cwsr_kaddr) {
1014		pr_err("Error allocating per process CWSR buffer.\n");
1015		return -ENOMEM;
1016	}
1017
1018	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1019		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1020	/* Mapping pages to user process */
1021	return remap_pfn_range(vma, vma->vm_start,
1022			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1023			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1024}
1025
1026void kfd_flush_tlb(struct kfd_process_device *pdd)
1027{
1028	struct kfd_dev *dev = pdd->dev;
1029	const struct kfd2kgd_calls *f2g = dev->kfd2kgd;
1030
1031	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1032		/* Nothing to flush until a VMID is assigned, which
1033		 * only happens when the first queue is created.
1034		 */
1035		if (pdd->qpd.vmid)
1036			f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid);
 
1037	} else {
1038		f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid);
 
1039	}
1040}
1041
1042#if defined(CONFIG_DEBUG_FS)
1043
1044int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1045{
1046	struct kfd_process *p;
1047	unsigned int temp;
1048	int r = 0;
1049
1050	int idx = srcu_read_lock(&kfd_processes_srcu);
1051
1052	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1053		seq_printf(m, "Process %d PASID %d:\n",
1054			   p->lead_thread->tgid, p->pasid);
1055
1056		mutex_lock(&p->mutex);
1057		r = pqm_debugfs_mqds(m, &p->pqm);
1058		mutex_unlock(&p->mutex);
1059
1060		if (r)
1061			break;
1062	}
1063
1064	srcu_read_unlock(&kfd_processes_srcu, idx);
1065
1066	return r;
1067}
1068
1069#endif
v5.14.15
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/amd-iommu.h>
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_dbgmgr.h"
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52static DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread);
  68static void kfd_process_ref_release(struct kref *ref);
  69static struct kfd_process *create_process(const struct task_struct *thread);
  70static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
  75struct kfd_procfs_tree {
  76	struct kobject *kobj;
  77};
  78
  79static struct kfd_procfs_tree procfs;
  80
  81/*
  82 * Structure for SDMA activity tracking
  83 */
  84struct kfd_sdma_activity_handler_workarea {
  85	struct work_struct sdma_activity_work;
  86	struct kfd_process_device *pdd;
  87	uint64_t sdma_activity_counter;
  88};
  89
  90struct temp_sdma_queue_list {
  91	uint64_t __user *rptr;
  92	uint64_t sdma_val;
  93	unsigned int queue_id;
  94	struct list_head list;
  95};
  96
  97static void kfd_sdma_activity_worker(struct work_struct *work)
  98{
  99	struct kfd_sdma_activity_handler_workarea *workarea;
 100	struct kfd_process_device *pdd;
 101	uint64_t val;
 102	struct mm_struct *mm;
 103	struct queue *q;
 104	struct qcm_process_device *qpd;
 105	struct device_queue_manager *dqm;
 106	int ret = 0;
 107	struct temp_sdma_queue_list sdma_q_list;
 108	struct temp_sdma_queue_list *sdma_q, *next;
 109
 110	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 111				sdma_activity_work);
 112
 113	pdd = workarea->pdd;
 114	if (!pdd)
 115		return;
 116	dqm = pdd->dev->dqm;
 117	qpd = &pdd->qpd;
 118	if (!dqm || !qpd)
 119		return;
 120	/*
 121	 * Total SDMA activity is current SDMA activity + past SDMA activity
 122	 * Past SDMA count is stored in pdd.
 123	 * To get the current activity counters for all active SDMA queues,
 124	 * we loop over all SDMA queues and get their counts from user-space.
 125	 *
 126	 * We cannot call get_user() with dqm_lock held as it can cause
 127	 * a circular lock dependency situation. To read the SDMA stats,
 128	 * we need to do the following:
 129	 *
 130	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 131	 *    with dqm_lock/dqm_unlock().
 132	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 133	 *    Save the SDMA count for each node and also add the count to the total
 134	 *    SDMA count counter.
 135	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 136	 *    from the qpd->queues_list.
 137	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 138	 *    If any node got deleted, its SDMA count would be captured in the sdma
 139	 *    past activity counter. So subtract the SDMA counter stored in step 2
 140	 *    for this node from the total SDMA count.
 141	 */
 142	INIT_LIST_HEAD(&sdma_q_list.list);
 143
 144	/*
 145	 * Create the temp list of all SDMA queues
 146	 */
 147	dqm_lock(dqm);
 148
 149	list_for_each_entry(q, &qpd->queues_list, list) {
 150		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 151		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 152			continue;
 153
 154		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 155		if (!sdma_q) {
 156			dqm_unlock(dqm);
 157			goto cleanup;
 158		}
 159
 160		INIT_LIST_HEAD(&sdma_q->list);
 161		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 162		sdma_q->queue_id = q->properties.queue_id;
 163		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 164	}
 165
 166	/*
 167	 * If the temp list is empty, then no SDMA queues nodes were found in
 168	 * qpd->queues_list. Return the past activity count as the total sdma
 169	 * count
 170	 */
 171	if (list_empty(&sdma_q_list.list)) {
 172		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 173		dqm_unlock(dqm);
 174		return;
 175	}
 176
 177	dqm_unlock(dqm);
 178
 179	/*
 180	 * Get the usage count for each SDMA queue in temp_list.
 181	 */
 182	mm = get_task_mm(pdd->process->lead_thread);
 183	if (!mm)
 184		goto cleanup;
 185
 186	kthread_use_mm(mm);
 187
 188	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 189		val = 0;
 190		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 191		if (ret) {
 192			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 193				 sdma_q->queue_id);
 194		} else {
 195			sdma_q->sdma_val = val;
 196			workarea->sdma_activity_counter += val;
 197		}
 198	}
 199
 200	kthread_unuse_mm(mm);
 201	mmput(mm);
 202
 203	/*
 204	 * Do a second iteration over qpd_queues_list to check if any SDMA
 205	 * nodes got deleted while fetching SDMA counter.
 206	 */
 207	dqm_lock(dqm);
 208
 209	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 210
 211	list_for_each_entry(q, &qpd->queues_list, list) {
 212		if (list_empty(&sdma_q_list.list))
 213			break;
 214
 215		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 216		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 217			continue;
 218
 219		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 220			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 221			     (sdma_q->queue_id == q->properties.queue_id)) {
 222				list_del(&sdma_q->list);
 223				kfree(sdma_q);
 224				break;
 225			}
 226		}
 227	}
 228
 229	dqm_unlock(dqm);
 230
 231	/*
 232	 * If temp list is not empty, it implies some queues got deleted
 233	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 234	 * count for each node from the total SDMA count.
 235	 */
 236	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 237		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 238		list_del(&sdma_q->list);
 239		kfree(sdma_q);
 240	}
 241
 242	return;
 243
 244cleanup:
 245	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 246		list_del(&sdma_q->list);
 247		kfree(sdma_q);
 248	}
 249}
 250
 251/**
 252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 253 * by current process. Translates acquired wave count into number of compute units
 254 * that are occupied.
 255 *
 256 * @atr: Handle of attribute that allows reporting of wave count. The attribute
 257 * handle encapsulates GPU device it is associated with, thereby allowing collection
 258 * of waves in flight, etc
 259 *
 260 * @buffer: Handle of user provided buffer updated with wave count
 261 *
 262 * Return: Number of bytes written to user buffer or an error value
 263 */
 264static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 265{
 266	int cu_cnt;
 267	int wave_cnt;
 268	int max_waves_per_cu;
 269	struct kfd_dev *dev = NULL;
 270	struct kfd_process *proc = NULL;
 271	struct kfd_process_device *pdd = NULL;
 272
 273	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 274	dev = pdd->dev;
 275	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 276		return -EINVAL;
 277
 278	cu_cnt = 0;
 279	proc = pdd->process;
 280	if (pdd->qpd.queue_count == 0) {
 281		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 282			 dev->id, proc->pasid);
 283		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 284	}
 285
 286	/* Collect wave count from device if it supports */
 287	wave_cnt = 0;
 288	max_waves_per_cu = 0;
 289	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
 290			&max_waves_per_cu);
 291
 292	/* Translate wave count to number of compute units */
 293	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 294	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 295}
 296
 297static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 298			       char *buffer)
 299{
 300	if (strcmp(attr->name, "pasid") == 0) {
 301		struct kfd_process *p = container_of(attr, struct kfd_process,
 302						     attr_pasid);
 303
 304		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 305	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 306		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 307							      attr_vram);
 308		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 309	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 310		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 311							      attr_sdma);
 312		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 313
 314		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 315					kfd_sdma_activity_worker);
 316
 317		sdma_activity_work_handler.pdd = pdd;
 318		sdma_activity_work_handler.sdma_activity_counter = 0;
 319
 320		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 321
 322		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 323
 324		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 325				(sdma_activity_work_handler.sdma_activity_counter)/
 326				 SDMA_ACTIVITY_DIVISOR);
 327	} else {
 328		pr_err("Invalid attribute");
 329		return -EINVAL;
 330	}
 331
 332	return 0;
 333}
 334
 335static void kfd_procfs_kobj_release(struct kobject *kobj)
 336{
 337	kfree(kobj);
 338}
 339
 340static const struct sysfs_ops kfd_procfs_ops = {
 341	.show = kfd_procfs_show,
 342};
 343
 344static struct kobj_type procfs_type = {
 345	.release = kfd_procfs_kobj_release,
 346	.sysfs_ops = &kfd_procfs_ops,
 347};
 348
 349void kfd_procfs_init(void)
 350{
 351	int ret = 0;
 352
 353	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 354	if (!procfs.kobj)
 355		return;
 356
 357	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 358				   &kfd_device->kobj, "proc");
 359	if (ret) {
 360		pr_warn("Could not create procfs proc folder");
 361		/* If we fail to create the procfs, clean up */
 362		kfd_procfs_shutdown();
 363	}
 364}
 365
 366void kfd_procfs_shutdown(void)
 367{
 368	if (procfs.kobj) {
 369		kobject_del(procfs.kobj);
 370		kobject_put(procfs.kobj);
 371		procfs.kobj = NULL;
 372	}
 373}
 374
 375static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 376				     struct attribute *attr, char *buffer)
 377{
 378	struct queue *q = container_of(kobj, struct queue, kobj);
 379
 380	if (!strcmp(attr->name, "size"))
 381		return snprintf(buffer, PAGE_SIZE, "%llu",
 382				q->properties.queue_size);
 383	else if (!strcmp(attr->name, "type"))
 384		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 385	else if (!strcmp(attr->name, "gpuid"))
 386		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 387	else
 388		pr_err("Invalid attribute");
 389
 390	return 0;
 391}
 392
 393static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 394				     struct attribute *attr, char *buffer)
 395{
 396	if (strcmp(attr->name, "evicted_ms") == 0) {
 397		struct kfd_process_device *pdd = container_of(attr,
 398				struct kfd_process_device,
 399				attr_evict);
 400		uint64_t evict_jiffies;
 401
 402		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 403
 404		return snprintf(buffer,
 405				PAGE_SIZE,
 406				"%llu\n",
 407				jiffies64_to_msecs(evict_jiffies));
 408
 409	/* Sysfs handle that gets CU occupancy is per device */
 410	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 411		return kfd_get_cu_occupancy(attr, buffer);
 412	} else {
 413		pr_err("Invalid attribute");
 414	}
 415
 416	return 0;
 417}
 418
 419static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 420				       struct attribute *attr, char *buf)
 421{
 422	struct kfd_process_device *pdd;
 423
 424	if (!strcmp(attr->name, "faults")) {
 425		pdd = container_of(attr, struct kfd_process_device,
 426				   attr_faults);
 427		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 428	}
 429	if (!strcmp(attr->name, "page_in")) {
 430		pdd = container_of(attr, struct kfd_process_device,
 431				   attr_page_in);
 432		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 433	}
 434	if (!strcmp(attr->name, "page_out")) {
 435		pdd = container_of(attr, struct kfd_process_device,
 436				   attr_page_out);
 437		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 438	}
 439	return 0;
 440}
 441
 442static struct attribute attr_queue_size = {
 443	.name = "size",
 444	.mode = KFD_SYSFS_FILE_MODE
 445};
 446
 447static struct attribute attr_queue_type = {
 448	.name = "type",
 449	.mode = KFD_SYSFS_FILE_MODE
 450};
 451
 452static struct attribute attr_queue_gpuid = {
 453	.name = "gpuid",
 454	.mode = KFD_SYSFS_FILE_MODE
 455};
 456
 457static struct attribute *procfs_queue_attrs[] = {
 458	&attr_queue_size,
 459	&attr_queue_type,
 460	&attr_queue_gpuid,
 461	NULL
 462};
 463
 464static const struct sysfs_ops procfs_queue_ops = {
 465	.show = kfd_procfs_queue_show,
 466};
 467
 468static struct kobj_type procfs_queue_type = {
 469	.sysfs_ops = &procfs_queue_ops,
 470	.default_attrs = procfs_queue_attrs,
 471};
 472
 473static const struct sysfs_ops procfs_stats_ops = {
 474	.show = kfd_procfs_stats_show,
 475};
 476
 477static struct kobj_type procfs_stats_type = {
 478	.sysfs_ops = &procfs_stats_ops,
 479	.release = kfd_procfs_kobj_release,
 480};
 481
 482static const struct sysfs_ops sysfs_counters_ops = {
 483	.show = kfd_sysfs_counters_show,
 484};
 485
 486static struct kobj_type sysfs_counters_type = {
 487	.sysfs_ops = &sysfs_counters_ops,
 488	.release = kfd_procfs_kobj_release,
 489};
 490
 491int kfd_procfs_add_queue(struct queue *q)
 492{
 493	struct kfd_process *proc;
 494	int ret;
 495
 496	if (!q || !q->process)
 497		return -EINVAL;
 498	proc = q->process;
 499
 500	/* Create proc/<pid>/queues/<queue id> folder */
 501	if (!proc->kobj_queues)
 502		return -EFAULT;
 503	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 504			proc->kobj_queues, "%u", q->properties.queue_id);
 505	if (ret < 0) {
 506		pr_warn("Creating proc/<pid>/queues/%u failed",
 507			q->properties.queue_id);
 508		kobject_put(&q->kobj);
 509		return ret;
 510	}
 511
 512	return 0;
 513}
 514
 515static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 516				 char *name)
 517{
 518	int ret;
 519
 520	if (!kobj || !attr || !name)
 521		return;
 522
 523	attr->name = name;
 524	attr->mode = KFD_SYSFS_FILE_MODE;
 525	sysfs_attr_init(attr);
 526
 527	ret = sysfs_create_file(kobj, attr);
 528	if (ret)
 529		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 530}
 531
 532static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 533{
 534	int ret;
 535	int i;
 536	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 537
 538	if (!p || !p->kobj)
 539		return;
 540
 541	/*
 542	 * Create sysfs files for each GPU:
 543	 * - proc/<pid>/stats_<gpuid>/
 544	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 545	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 546	 */
 547	for (i = 0; i < p->n_pdds; i++) {
 548		struct kfd_process_device *pdd = p->pdds[i];
 549
 550		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 551				"stats_%u", pdd->dev->id);
 552		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 553		if (!pdd->kobj_stats)
 554			return;
 555
 556		ret = kobject_init_and_add(pdd->kobj_stats,
 557					   &procfs_stats_type,
 558					   p->kobj,
 559					   stats_dir_filename);
 560
 561		if (ret) {
 562			pr_warn("Creating KFD proc/stats_%s folder failed",
 563				stats_dir_filename);
 564			kobject_put(pdd->kobj_stats);
 565			pdd->kobj_stats = NULL;
 566			return;
 567		}
 568
 569		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 570				      "evicted_ms");
 571		/* Add sysfs file to report compute unit occupancy */
 572		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 573			kfd_sysfs_create_file(pdd->kobj_stats,
 574					      &pdd->attr_cu_occupancy,
 575					      "cu_occupancy");
 576	}
 577}
 578
 579static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 580{
 581	int ret = 0;
 582	int i;
 583	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 584
 585	if (!p || !p->kobj)
 586		return;
 587
 588	/*
 589	 * Create sysfs files for each GPU which supports SVM
 590	 * - proc/<pid>/counters_<gpuid>/
 591	 * - proc/<pid>/counters_<gpuid>/faults
 592	 * - proc/<pid>/counters_<gpuid>/page_in
 593	 * - proc/<pid>/counters_<gpuid>/page_out
 594	 */
 595	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 596		struct kfd_process_device *pdd = p->pdds[i];
 597		struct kobject *kobj_counters;
 598
 599		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 600			"counters_%u", pdd->dev->id);
 601		kobj_counters = kfd_alloc_struct(kobj_counters);
 602		if (!kobj_counters)
 603			return;
 604
 605		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 606					   p->kobj, counters_dir_filename);
 607		if (ret) {
 608			pr_warn("Creating KFD proc/%s folder failed",
 609				counters_dir_filename);
 610			kobject_put(kobj_counters);
 611			return;
 612		}
 613
 614		pdd->kobj_counters = kobj_counters;
 615		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 616				      "faults");
 617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 618				      "page_in");
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 620				      "page_out");
 621	}
 622}
 623
 624static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 625{
 626	int i;
 627
 628	if (!p || !p->kobj)
 629		return;
 630
 631	/*
 632	 * Create sysfs files for each GPU:
 633	 * - proc/<pid>/vram_<gpuid>
 634	 * - proc/<pid>/sdma_<gpuid>
 635	 */
 636	for (i = 0; i < p->n_pdds; i++) {
 637		struct kfd_process_device *pdd = p->pdds[i];
 638
 639		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 640			 pdd->dev->id);
 641		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 642				      pdd->vram_filename);
 643
 644		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 645			 pdd->dev->id);
 646		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 647					    pdd->sdma_filename);
 648	}
 649}
 650
 651void kfd_procfs_del_queue(struct queue *q)
 652{
 653	if (!q)
 654		return;
 655
 656	kobject_del(&q->kobj);
 657	kobject_put(&q->kobj);
 658}
 659
 660int kfd_process_create_wq(void)
 661{
 662	if (!kfd_process_wq)
 663		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 664	if (!kfd_restore_wq)
 665		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 666
 667	if (!kfd_process_wq || !kfd_restore_wq) {
 668		kfd_process_destroy_wq();
 669		return -ENOMEM;
 670	}
 671
 672	return 0;
 673}
 674
 675void kfd_process_destroy_wq(void)
 676{
 677	if (kfd_process_wq) {
 678		destroy_workqueue(kfd_process_wq);
 679		kfd_process_wq = NULL;
 680	}
 681	if (kfd_restore_wq) {
 682		destroy_workqueue(kfd_restore_wq);
 683		kfd_restore_wq = NULL;
 684	}
 685}
 686
 687static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 688			struct kfd_process_device *pdd)
 689{
 690	struct kfd_dev *dev = pdd->dev;
 691
 692	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
 693	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
 694					       NULL);
 695}
 696
 697/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 698 *	This function should be only called right after the process
 699 *	is created and when kfd_processes_mutex is still being held
 700 *	to avoid concurrency. Because of that exclusiveness, we do
 701 *	not need to take p->mutex.
 702 */
 703static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 704				   uint64_t gpu_va, uint32_t size,
 705				   uint32_t flags, void **kptr)
 706{
 707	struct kfd_dev *kdev = pdd->dev;
 708	struct kgd_mem *mem = NULL;
 709	int handle;
 710	int err;
 711
 712	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 713						 pdd->drm_priv, &mem, NULL, flags);
 714	if (err)
 715		goto err_alloc_mem;
 716
 717	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
 718	if (err)
 719		goto err_map_mem;
 720
 721	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
 722	if (err) {
 723		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 724		goto sync_memory_failed;
 725	}
 726
 727	/* Create an obj handle so kfd_process_device_remove_obj_handle
 728	 * will take care of the bo removal when the process finishes.
 729	 * We do not need to take p->mutex, because the process is just
 730	 * created and the ioctls have not had the chance to run.
 731	 */
 732	handle = kfd_process_device_create_obj_handle(pdd, mem);
 733
 734	if (handle < 0) {
 735		err = handle;
 736		goto free_gpuvm;
 737	}
 738
 739	if (kptr) {
 740		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
 741				(struct kgd_mem *)mem, kptr, NULL);
 742		if (err) {
 743			pr_debug("Map GTT BO to kernel failed\n");
 744			goto free_obj_handle;
 745		}
 746	}
 747
 748	return err;
 749
 750free_obj_handle:
 751	kfd_process_device_remove_obj_handle(pdd, handle);
 752free_gpuvm:
 753sync_memory_failed:
 754	kfd_process_free_gpuvm(mem, pdd);
 755	return err;
 756
 757err_map_mem:
 758	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
 759					       NULL);
 760err_alloc_mem:
 761	*kptr = NULL;
 762	return err;
 763}
 764
 765/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 766 *	process for IB usage The memory reserved is for KFD to submit
 767 *	IB to AMDGPU from kernel.  If the memory is reserved
 768 *	successfully, ib_kaddr will have the CPU/kernel
 769 *	address. Check ib_kaddr before accessing the memory.
 770 */
 771static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 772{
 773	struct qcm_process_device *qpd = &pdd->qpd;
 774	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 775			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 776			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 777			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 778	void *kaddr;
 779	int ret;
 780
 781	if (qpd->ib_kaddr || !qpd->ib_base)
 782		return 0;
 783
 784	/* ib_base is only set for dGPU */
 785	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 786				      &kaddr);
 787	if (ret)
 788		return ret;
 789
 790	qpd->ib_kaddr = kaddr;
 791
 792	return 0;
 793}
 794
 795struct kfd_process *kfd_create_process(struct file *filep)
 796{
 797	struct kfd_process *process;
 798	struct task_struct *thread = current;
 799	int ret;
 800
 801	if (!thread->mm)
 802		return ERR_PTR(-EINVAL);
 803
 804	/* Only the pthreads threading model is supported. */
 805	if (thread->group_leader->mm != thread->mm)
 806		return ERR_PTR(-EINVAL);
 807
 808	/*
 809	 * take kfd processes mutex before starting of process creation
 810	 * so there won't be a case where two threads of the same process
 811	 * create two kfd_process structures
 812	 */
 813	mutex_lock(&kfd_processes_mutex);
 814
 815	/* A prior open of /dev/kfd could have already created the process. */
 816	process = find_process(thread);
 817	if (process) {
 818		pr_debug("Process already found\n");
 819	} else {
 820		process = create_process(thread);
 821		if (IS_ERR(process))
 822			goto out;
 823
 824		ret = kfd_process_init_cwsr_apu(process, filep);
 825		if (ret)
 826			goto out_destroy;
 827
 828		if (!procfs.kobj)
 829			goto out;
 830
 831		process->kobj = kfd_alloc_struct(process->kobj);
 832		if (!process->kobj) {
 833			pr_warn("Creating procfs kobject failed");
 834			goto out;
 835		}
 836		ret = kobject_init_and_add(process->kobj, &procfs_type,
 837					   procfs.kobj, "%d",
 838					   (int)process->lead_thread->pid);
 839		if (ret) {
 840			pr_warn("Creating procfs pid directory failed");
 841			kobject_put(process->kobj);
 842			goto out;
 843		}
 844
 845		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 846				      "pasid");
 847
 848		process->kobj_queues = kobject_create_and_add("queues",
 849							process->kobj);
 850		if (!process->kobj_queues)
 851			pr_warn("Creating KFD proc/queues folder failed");
 852
 853		kfd_procfs_add_sysfs_stats(process);
 854		kfd_procfs_add_sysfs_files(process);
 855		kfd_procfs_add_sysfs_counters(process);
 856	}
 857out:
 858	if (!IS_ERR(process))
 859		kref_get(&process->ref);
 860	mutex_unlock(&kfd_processes_mutex);
 861
 862	return process;
 863
 864out_destroy:
 865	hash_del_rcu(&process->kfd_processes);
 866	mutex_unlock(&kfd_processes_mutex);
 867	synchronize_srcu(&kfd_processes_srcu);
 868	/* kfd_process_free_notifier will trigger the cleanup */
 869	mmu_notifier_put(&process->mmu_notifier);
 870	return ERR_PTR(ret);
 871}
 872
 873struct kfd_process *kfd_get_process(const struct task_struct *thread)
 874{
 875	struct kfd_process *process;
 876
 877	if (!thread->mm)
 878		return ERR_PTR(-EINVAL);
 879
 880	/* Only the pthreads threading model is supported. */
 881	if (thread->group_leader->mm != thread->mm)
 882		return ERR_PTR(-EINVAL);
 883
 884	process = find_process(thread);
 885	if (!process)
 886		return ERR_PTR(-EINVAL);
 887
 888	return process;
 889}
 890
 891static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 892{
 893	struct kfd_process *process;
 894
 895	hash_for_each_possible_rcu(kfd_processes_table, process,
 896					kfd_processes, (uintptr_t)mm)
 897		if (process->mm == mm)
 898			return process;
 899
 900	return NULL;
 901}
 902
 903static struct kfd_process *find_process(const struct task_struct *thread)
 904{
 905	struct kfd_process *p;
 906	int idx;
 907
 908	idx = srcu_read_lock(&kfd_processes_srcu);
 909	p = find_process_by_mm(thread->mm);
 910	srcu_read_unlock(&kfd_processes_srcu, idx);
 911
 912	return p;
 913}
 914
 915void kfd_unref_process(struct kfd_process *p)
 916{
 917	kref_put(&p->ref, kfd_process_ref_release);
 918}
 919
 920
 921static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 922{
 923	struct kfd_process *p = pdd->process;
 924	void *mem;
 925	int id;
 926	int i;
 927
 928	/*
 929	 * Remove all handles from idr and release appropriate
 930	 * local memory object
 931	 */
 932	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 
 933
 934		for (i = 0; i < p->n_pdds; i++) {
 935			struct kfd_process_device *peer_pdd = p->pdds[i];
 936
 937			if (!peer_pdd->drm_priv)
 938				continue;
 939			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 940				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
 941		}
 942
 943		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
 944						       pdd->drm_priv, NULL);
 945		kfd_process_device_remove_obj_handle(pdd, id);
 946	}
 947}
 948
 949static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 950{
 951	int i;
 952
 953	for (i = 0; i < p->n_pdds; i++)
 954		kfd_process_device_free_bos(p->pdds[i]);
 955}
 956
 957static void kfd_process_destroy_pdds(struct kfd_process *p)
 958{
 959	int i;
 960
 961	for (i = 0; i < p->n_pdds; i++) {
 962		struct kfd_process_device *pdd = p->pdds[i];
 963
 964		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
 
 
 965				pdd->dev->id, p->pasid);
 966
 967		if (pdd->drm_file) {
 968			amdgpu_amdkfd_gpuvm_release_process_vm(
 969					pdd->dev->kgd, pdd->drm_priv);
 970			fput(pdd->drm_file);
 971		}
 
 
 
 
 972
 973		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 974			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 975				get_order(KFD_CWSR_TBA_TMA_SIZE));
 976
 977		kfree(pdd->qpd.doorbell_bitmap);
 978		idr_destroy(&pdd->alloc_idr);
 979
 980		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
 981
 982		/*
 983		 * before destroying pdd, make sure to report availability
 984		 * for auto suspend
 985		 */
 986		if (pdd->runtime_inuse) {
 987			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
 988			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
 989			pdd->runtime_inuse = false;
 990		}
 991
 992		kfree(pdd);
 993		p->pdds[i] = NULL;
 994	}
 995	p->n_pdds = 0;
 996}
 997
 998static void kfd_process_remove_sysfs(struct kfd_process *p)
 999{
1000	struct kfd_process_device *pdd;
1001	int i;
1002
1003	if (!p->kobj)
1004		return;
1005
1006	sysfs_remove_file(p->kobj, &p->attr_pasid);
1007	kobject_del(p->kobj_queues);
1008	kobject_put(p->kobj_queues);
1009	p->kobj_queues = NULL;
1010
1011	for (i = 0; i < p->n_pdds; i++) {
1012		pdd = p->pdds[i];
1013
1014		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019			sysfs_remove_file(pdd->kobj_stats,
1020					  &pdd->attr_cu_occupancy);
1021		kobject_del(pdd->kobj_stats);
1022		kobject_put(pdd->kobj_stats);
1023		pdd->kobj_stats = NULL;
1024	}
1025
1026	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027		pdd = p->pdds[i];
1028
1029		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032		kobject_del(pdd->kobj_counters);
1033		kobject_put(pdd->kobj_counters);
1034		pdd->kobj_counters = NULL;
1035	}
1036
1037	kobject_del(p->kobj);
1038	kobject_put(p->kobj);
1039	p->kobj = NULL;
1040}
1041
1042/* No process locking is needed in this function, because the process
1043 * is not findable any more. We must assume that no other thread is
1044 * using it any more, otherwise we couldn't safely free the process
1045 * structure in the end.
1046 */
1047static void kfd_process_wq_release(struct work_struct *work)
1048{
1049	struct kfd_process *p = container_of(work, struct kfd_process,
1050					     release_work);
1051	kfd_process_remove_sysfs(p);
1052	kfd_iommu_unbind_process(p);
1053
1054	kfd_process_free_outstanding_kfd_bos(p);
1055	svm_range_list_fini(p);
1056
1057	kfd_process_destroy_pdds(p);
1058	dma_fence_put(p->ef);
1059
1060	kfd_event_free_process(p);
1061
1062	kfd_pasid_free(p->pasid);
 
 
1063	mutex_destroy(&p->mutex);
1064
1065	put_task_struct(p->lead_thread);
1066
1067	kfree(p);
1068}
1069
1070static void kfd_process_ref_release(struct kref *ref)
1071{
1072	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074	INIT_WORK(&p->release_work, kfd_process_wq_release);
1075	queue_work(kfd_process_wq, &p->release_work);
1076}
1077
1078static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079{
1080	int idx = srcu_read_lock(&kfd_processes_srcu);
1081	struct kfd_process *p = find_process_by_mm(mm);
1082
1083	srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086}
1087
1088static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089{
1090	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091}
1092
1093static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094					struct mm_struct *mm)
1095{
1096	struct kfd_process *p;
1097	int i;
1098
1099	/*
1100	 * The kfd_process structure can not be free because the
1101	 * mmu_notifier srcu is read locked
1102	 */
1103	p = container_of(mn, struct kfd_process, mmu_notifier);
1104	if (WARN_ON(p->mm != mm))
1105		return;
1106
1107	mutex_lock(&kfd_processes_mutex);
1108	hash_del_rcu(&p->kfd_processes);
1109	mutex_unlock(&kfd_processes_mutex);
1110	synchronize_srcu(&kfd_processes_srcu);
1111
1112	cancel_delayed_work_sync(&p->eviction_work);
1113	cancel_delayed_work_sync(&p->restore_work);
1114	cancel_delayed_work_sync(&p->svms.restore_work);
1115
1116	mutex_lock(&p->mutex);
1117
1118	/* Iterate over all process device data structures and if the
1119	 * pdd is in debug mode, we should first force unregistration,
1120	 * then we will be able to destroy the queues
1121	 */
1122	for (i = 0; i < p->n_pdds; i++) {
1123		struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125		mutex_lock(kfd_get_dbgmgr_mutex());
1126		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128				kfd_dbgmgr_destroy(dev->dbgmgr);
1129				dev->dbgmgr = NULL;
1130			}
1131		}
1132		mutex_unlock(kfd_get_dbgmgr_mutex());
1133	}
1134
1135	kfd_process_dequeue_from_all_devices(p);
1136	pqm_uninit(&p->pqm);
1137
1138	/* Indicate to other users that MM is no longer valid */
1139	p->mm = NULL;
1140	/* Signal the eviction fence after user mode queues are
1141	 * destroyed. This allows any BOs to be freed without
1142	 * triggering pointless evictions or waiting for fences.
1143	 */
1144	dma_fence_signal(p->ef);
1145
1146	mutex_unlock(&p->mutex);
1147
1148	mmu_notifier_put(&p->mmu_notifier);
 
1149}
1150
1151static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152	.release = kfd_process_notifier_release,
1153	.alloc_notifier = kfd_process_alloc_notifier,
1154	.free_notifier = kfd_process_free_notifier,
1155};
1156
1157static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158{
1159	unsigned long  offset;
1160	int i;
1161
1162	for (i = 0; i < p->n_pdds; i++) {
1163		struct kfd_dev *dev = p->pdds[i]->dev;
1164		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167			continue;
1168
1169		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172			MAP_SHARED, offset);
1173
1174		if (IS_ERR_VALUE(qpd->tba_addr)) {
1175			int err = qpd->tba_addr;
1176
1177			pr_err("Failure to set tba address. error %d.\n", err);
1178			qpd->tba_addr = 0;
1179			qpd->cwsr_kaddr = NULL;
1180			return err;
1181		}
1182
1183		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184
1185		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188	}
1189
1190	return 0;
1191}
1192
1193static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194{
1195	struct kfd_dev *dev = pdd->dev;
1196	struct qcm_process_device *qpd = &pdd->qpd;
1197	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1200	void *kaddr;
1201	int ret;
1202
1203	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204		return 0;
1205
1206	/* cwsr_base is only set for dGPU */
1207	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209	if (ret)
1210		return ret;
1211
1212	qpd->cwsr_kaddr = kaddr;
1213	qpd->tba_addr = qpd->cwsr_base;
1214
1215	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216
1217	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221	return 0;
1222}
1223
1224void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225				  uint64_t tba_addr,
1226				  uint64_t tma_addr)
1227{
1228	if (qpd->cwsr_kaddr) {
1229		/* KFD trap handler is bound, record as second-level TBA/TMA
1230		 * in first-level TMA. First-level trap will jump to second.
1231		 */
1232		uint64_t *tma =
1233			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234		tma[0] = tba_addr;
1235		tma[1] = tma_addr;
1236	} else {
1237		/* No trap handler bound, bind as first-level TBA/TMA. */
1238		qpd->tba_addr = tba_addr;
1239		qpd->tma_addr = tma_addr;
1240	}
1241}
1242
1243bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244{
1245	int i;
1246
1247	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248	 * boot time retry setting. Mixing processes with different
1249	 * XNACK/retry settings can hang the GPU.
1250	 *
1251	 * Different GPUs can have different noretry settings depending
1252	 * on HW bugs or limitations. We need to find at least one
1253	 * XNACK mode for this process that's compatible with all GPUs.
1254	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255	 * built for XNACK-off. On GFXv9 it may perform slower.
1256	 *
1257	 * Therefore applications built for XNACK-off can always be
1258	 * supported and will be our fallback if any GPU does not
1259	 * support retry.
1260	 */
1261	for (i = 0; i < p->n_pdds; i++) {
1262		struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265		 * support the SVM APIs and don't need to be considered
1266		 * for the XNACK mode selection.
1267		 */
1268		if (dev->device_info->asic_family < CHIP_VEGA10)
1269			continue;
1270		/* Aldebaran can always support XNACK because it can support
1271		 * per-process XNACK mode selection. But let the dev->noretry
1272		 * setting still influence the default XNACK mode.
1273		 */
1274		if (supported &&
1275		    dev->device_info->asic_family == CHIP_ALDEBARAN)
1276			continue;
1277
1278		/* GFXv10 and later GPUs do not support shader preemption
1279		 * during page faults. This can lead to poor QoS for queue
1280		 * management and memory-manager-related preemptions or
1281		 * even deadlocks.
1282		 */
1283		if (dev->device_info->asic_family >= CHIP_NAVI10)
1284			return false;
1285
1286		if (dev->noretry)
1287			return false;
1288	}
1289
1290	return true;
1291}
1292
1293/*
1294 * On return the kfd_process is fully operational and will be freed when the
1295 * mm is released
1296 */
1297static struct kfd_process *create_process(const struct task_struct *thread)
1298{
1299	struct kfd_process *process;
1300	struct mmu_notifier *mn;
1301	int err = -ENOMEM;
1302
1303	process = kzalloc(sizeof(*process), GFP_KERNEL);
 
1304	if (!process)
1305		goto err_alloc_process;
1306
 
 
 
 
 
 
 
1307	kref_init(&process->ref);
 
1308	mutex_init(&process->mutex);
 
1309	process->mm = thread->mm;
 
 
 
 
 
 
 
 
 
 
1310	process->lead_thread = thread->group_leader;
1311	process->n_pdds = 0;
1312	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314	process->last_restore_timestamp = get_jiffies_64();
1315	kfd_event_init_process(process);
1316	process->is_32bit_user_mode = in_compat_syscall();
1317
1318	process->pasid = kfd_pasid_alloc();
1319	if (process->pasid == 0)
1320		goto err_alloc_pasid;
1321
1322	err = pqm_init(&process->pqm, process);
1323	if (err != 0)
1324		goto err_process_pqm_init;
1325
1326	/* init process apertures*/
 
1327	err = kfd_init_apertures(process);
1328	if (err != 0)
1329		goto err_init_apertures;
1330
1331	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1332	process->xnack_enabled = kfd_process_xnack_mode(process, false);
 
1333
1334	err = svm_range_list_init(process);
1335	if (err)
1336		goto err_init_svm_range_list;
1337
1338	/* alloc_notifier needs to find the process in the hash table */
1339	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340			(uintptr_t)process->mm);
1341
1342	/* MMU notifier registration must be the last call that can fail
1343	 * because after this point we cannot unwind the process creation.
1344	 * After this point, mmu_notifier_put will trigger the cleanup by
1345	 * dropping the last process reference in the free_notifier.
1346	 */
1347	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348	if (IS_ERR(mn)) {
1349		err = PTR_ERR(mn);
1350		goto err_register_notifier;
1351	}
1352	BUG_ON(mn != &process->mmu_notifier);
1353
1354	get_task_struct(process->lead_thread);
1355
1356	return process;
1357
1358err_register_notifier:
1359	hash_del_rcu(&process->kfd_processes);
1360	svm_range_list_fini(process);
1361err_init_svm_range_list:
1362	kfd_process_free_outstanding_kfd_bos(process);
1363	kfd_process_destroy_pdds(process);
1364err_init_apertures:
1365	pqm_uninit(&process->pqm);
1366err_process_pqm_init:
 
 
 
 
 
 
 
1367	kfd_pasid_free(process->pasid);
1368err_alloc_pasid:
1369	mutex_destroy(&process->mutex);
1370	kfree(process);
1371err_alloc_process:
1372	return ERR_PTR(err);
1373}
1374
1375static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376			struct kfd_dev *dev)
1377{
1378	unsigned int i;
1379	int range_start = dev->shared_resources.non_cp_doorbells_start;
1380	int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383		return 0;
1384
1385	qpd->doorbell_bitmap =
1386		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387				     BITS_PER_BYTE), GFP_KERNEL);
1388	if (!qpd->doorbell_bitmap)
1389		return -ENOMEM;
1390
1391	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398		if (i >= range_start && i <= range_end) {
1399			set_bit(i, qpd->doorbell_bitmap);
1400			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401				qpd->doorbell_bitmap);
1402		}
1403	}
1404
1405	return 0;
1406}
1407
1408struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409							struct kfd_process *p)
1410{
1411	int i;
1412
1413	for (i = 0; i < p->n_pdds; i++)
1414		if (p->pdds[i]->dev == dev)
1415			return p->pdds[i];
1416
1417	return NULL;
1418}
1419
1420struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421							struct kfd_process *p)
1422{
1423	struct kfd_process_device *pdd = NULL;
1424
1425	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426		return NULL;
1427	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428	if (!pdd)
1429		return NULL;
1430
1431	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432		pr_err("Failed to alloc doorbell for pdd\n");
1433		goto err_free_pdd;
1434	}
1435
1436	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437		pr_err("Failed to init doorbell for process\n");
1438		goto err_free_pdd;
1439	}
1440
1441	pdd->dev = dev;
1442	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444	pdd->qpd.dqm = dev->dqm;
1445	pdd->qpd.pqm = &p->pqm;
1446	pdd->qpd.evicted = 0;
1447	pdd->qpd.mapped_gws_queue = false;
1448	pdd->process = p;
1449	pdd->bound = PDD_UNBOUND;
1450	pdd->already_dequeued = false;
1451	pdd->runtime_inuse = false;
1452	pdd->vram_usage = 0;
1453	pdd->sdma_past_activity_counter = 0;
1454	atomic64_set(&pdd->evict_duration_counter, 0);
1455	p->pdds[p->n_pdds++] = pdd;
1456
1457	/* Init idr used for memory handle translation */
1458	idr_init(&pdd->alloc_idr);
1459
1460	return pdd;
1461
1462err_free_pdd:
1463	kfree(pdd);
1464	return NULL;
1465}
1466
1467/**
1468 * kfd_process_device_init_vm - Initialize a VM for a process-device
1469 *
1470 * @pdd: The process-device
1471 * @drm_file: Optional pointer to a DRM file descriptor
1472 *
1473 * If @drm_file is specified, it will be used to acquire the VM from
1474 * that file descriptor. If successful, the @pdd takes ownership of
1475 * the file descriptor.
1476 *
1477 * If @drm_file is NULL, a new VM is created.
1478 *
1479 * Returns 0 on success, -errno on failure.
1480 */
1481int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482			       struct file *drm_file)
1483{
1484	struct kfd_process *p;
1485	struct kfd_dev *dev;
1486	int ret;
1487
1488	if (!drm_file)
1489		return -EINVAL;
1490
1491	if (pdd->drm_priv)
1492		return -EBUSY;
1493
1494	p = pdd->process;
1495	dev = pdd->dev;
1496
1497	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498		dev->kgd, drm_file, p->pasid,
1499		&p->kgd_process_info, &p->ef);
 
 
 
 
1500	if (ret) {
1501		pr_err("Failed to create process VM object\n");
1502		return ret;
1503	}
1504	pdd->drm_priv = drm_file->private_data;
1505
1506	ret = kfd_process_device_reserve_ib_mem(pdd);
1507	if (ret)
1508		goto err_reserve_ib_mem;
1509	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510	if (ret)
1511		goto err_init_cwsr;
1512
1513	pdd->drm_file = drm_file;
1514
1515	return 0;
1516
1517err_init_cwsr:
1518err_reserve_ib_mem:
1519	kfd_process_device_free_bos(pdd);
1520	pdd->drm_priv = NULL;
 
 
1521
1522	return ret;
1523}
1524
1525/*
1526 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527 * to the device.
1528 * Unbinding occurs when the process dies or the device is removed.
1529 *
1530 * Assumes that the process lock is held.
1531 */
1532struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533							struct kfd_process *p)
1534{
1535	struct kfd_process_device *pdd;
1536	int err;
1537
1538	pdd = kfd_get_process_device_data(dev, p);
1539	if (!pdd) {
1540		pr_err("Process device data doesn't exist\n");
1541		return ERR_PTR(-ENOMEM);
1542	}
1543
1544	if (!pdd->drm_priv)
1545		return ERR_PTR(-ENODEV);
1546
1547	/*
1548	 * signal runtime-pm system to auto resume and prevent
1549	 * further runtime suspend once device pdd is created until
1550	 * pdd is destroyed.
1551	 */
1552	if (!pdd->runtime_inuse) {
1553		err = pm_runtime_get_sync(dev->ddev->dev);
1554		if (err < 0) {
1555			pm_runtime_put_autosuspend(dev->ddev->dev);
1556			return ERR_PTR(err);
1557		}
1558	}
1559
1560	err = kfd_iommu_bind_process_to_device(pdd);
1561	if (err)
1562		goto out;
1563
1564	/*
1565	 * make sure that runtime_usage counter is incremented just once
1566	 * per pdd
1567	 */
1568	pdd->runtime_inuse = true;
1569
1570	return pdd;
 
1571
1572out:
1573	/* balance runpm reference count and exit with error */
1574	if (!pdd->runtime_inuse) {
1575		pm_runtime_mark_last_busy(dev->ddev->dev);
1576		pm_runtime_put_autosuspend(dev->ddev->dev);
1577	}
 
 
 
 
 
 
 
 
 
 
1578
1579	return ERR_PTR(err);
 
 
1580}
1581
1582/* Create specific handle mapped to mem from process local memory idr
1583 * Assumes that the process lock is held.
1584 */
1585int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586					void *mem)
1587{
1588	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589}
1590
1591/* Translate specific handle from process local memory idr
1592 * Assumes that the process lock is held.
1593 */
1594void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595					int handle)
1596{
1597	if (handle < 0)
1598		return NULL;
1599
1600	return idr_find(&pdd->alloc_idr, handle);
1601}
1602
1603/* Remove specific handle from process local memory idr
1604 * Assumes that the process lock is held.
1605 */
1606void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607					int handle)
1608{
1609	if (handle >= 0)
1610		idr_remove(&pdd->alloc_idr, handle);
1611}
1612
1613/* This increments the process->ref counter. */
1614struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615{
1616	struct kfd_process *p, *ret_p = NULL;
1617	unsigned int temp;
1618
1619	int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622		if (p->pasid == pasid) {
1623			kref_get(&p->ref);
1624			ret_p = p;
1625			break;
1626		}
1627	}
1628
1629	srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631	return ret_p;
1632}
1633
1634/* This increments the process->ref counter. */
1635struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636{
1637	struct kfd_process *p;
1638
1639	int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641	p = find_process_by_mm(mm);
1642	if (p)
1643		kref_get(&p->ref);
1644
1645	srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647	return p;
1648}
1649
1650/* kfd_process_evict_queues - Evict all user queues of a process
1651 *
1652 * Eviction is reference-counted per process-device. This means multiple
1653 * evictions from different sources can be nested safely.
1654 */
1655int kfd_process_evict_queues(struct kfd_process *p)
1656{
 
1657	int r = 0;
1658	int i;
1659	unsigned int n_evicted = 0;
1660
1661	for (i = 0; i < p->n_pdds; i++) {
1662		struct kfd_process_device *pdd = p->pdds[i];
1663
1664		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665							    &pdd->qpd);
1666		if (r) {
1667			pr_err("Failed to evict process queues\n");
1668			goto fail;
1669		}
1670		n_evicted++;
1671	}
1672
1673	return r;
1674
1675fail:
1676	/* To keep state consistent, roll back partial eviction by
1677	 * restoring queues
1678	 */
1679	for (i = 0; i < p->n_pdds; i++) {
1680		struct kfd_process_device *pdd = p->pdds[i];
1681
1682		if (n_evicted == 0)
1683			break;
1684		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685							      &pdd->qpd))
1686			pr_err("Failed to restore queues\n");
1687
1688		n_evicted--;
1689	}
1690
1691	return r;
1692}
1693
1694/* kfd_process_restore_queues - Restore all user queues of a process */
1695int kfd_process_restore_queues(struct kfd_process *p)
1696{
 
1697	int r, ret = 0;
1698	int i;
1699
1700	for (i = 0; i < p->n_pdds; i++) {
1701		struct kfd_process_device *pdd = p->pdds[i];
1702
 
1703		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704							      &pdd->qpd);
1705		if (r) {
1706			pr_err("Failed to restore process queues\n");
1707			if (!ret)
1708				ret = r;
1709		}
1710	}
1711
1712	return ret;
1713}
1714
1715int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716{
1717	int i;
1718
1719	for (i = 0; i < p->n_pdds; i++)
1720		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721			return i;
1722	return -EINVAL;
1723}
1724
1725int
1726kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727			   uint32_t *gpuid, uint32_t *gpuidx)
1728{
1729	struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730	int i;
1731
1732	for (i = 0; i < p->n_pdds; i++)
1733		if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734			*gpuid = p->pdds[i]->dev->id;
1735			*gpuidx = i;
1736			return 0;
1737		}
1738	return -EINVAL;
1739}
1740
1741static void evict_process_worker(struct work_struct *work)
1742{
1743	int ret;
1744	struct kfd_process *p;
1745	struct delayed_work *dwork;
1746
1747	dwork = to_delayed_work(work);
1748
1749	/* Process termination destroys this worker thread. So during the
1750	 * lifetime of this thread, kfd_process p will be valid
1751	 */
1752	p = container_of(dwork, struct kfd_process, eviction_work);
1753	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754		  "Eviction fence mismatch\n");
1755
1756	/* Narrow window of overlap between restore and evict work
1757	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758	 * unreserves KFD BOs, it is possible to evicted again. But
1759	 * restore has few more steps of finish. So lets wait for any
1760	 * previous restore work to complete
1761	 */
1762	flush_delayed_work(&p->restore_work);
1763
1764	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765	ret = kfd_process_evict_queues(p);
1766	if (!ret) {
1767		dma_fence_signal(p->ef);
1768		dma_fence_put(p->ef);
1769		p->ef = NULL;
1770		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772
1773		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774	} else
1775		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776}
1777
1778static void restore_process_worker(struct work_struct *work)
1779{
1780	struct delayed_work *dwork;
1781	struct kfd_process *p;
 
1782	int ret = 0;
1783
1784	dwork = to_delayed_work(work);
1785
1786	/* Process termination destroys this worker thread. So during the
1787	 * lifetime of this thread, kfd_process p will be valid
1788	 */
1789	p = container_of(dwork, struct kfd_process, restore_work);
1790	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
 
 
 
 
 
 
 
 
 
 
1791
1792	/* Setting last_restore_timestamp before successful restoration.
1793	 * Otherwise this would have to be set by KGD (restore_process_bos)
1794	 * before KFD BOs are unreserved. If not, the process can be evicted
1795	 * again before the timestamp is set.
1796	 * If restore fails, the timestamp will be set again in the next
1797	 * attempt. This would mean that the minimum GPU quanta would be
1798	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799	 * functions)
1800	 */
1801
1802	p->last_restore_timestamp = get_jiffies_64();
1803	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804						     &p->ef);
1805	if (ret) {
1806		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810		WARN(!ret, "reschedule restore work failed\n");
1811		return;
1812	}
1813
1814	ret = kfd_process_restore_queues(p);
1815	if (!ret)
1816		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817	else
1818		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819}
1820
1821void kfd_suspend_all_processes(void)
1822{
1823	struct kfd_process *p;
1824	unsigned int temp;
1825	int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827	WARN(debug_evictions, "Evicting all processes");
1828	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829		cancel_delayed_work_sync(&p->eviction_work);
1830		cancel_delayed_work_sync(&p->restore_work);
1831
1832		if (kfd_process_evict_queues(p))
1833			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834		dma_fence_signal(p->ef);
1835		dma_fence_put(p->ef);
1836		p->ef = NULL;
1837	}
1838	srcu_read_unlock(&kfd_processes_srcu, idx);
1839}
1840
1841int kfd_resume_all_processes(void)
1842{
1843	struct kfd_process *p;
1844	unsigned int temp;
1845	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849			pr_err("Restore process %d failed during resume\n",
1850			       p->pasid);
1851			ret = -EFAULT;
1852		}
1853	}
1854	srcu_read_unlock(&kfd_processes_srcu, idx);
1855	return ret;
1856}
1857
1858int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859			  struct vm_area_struct *vma)
1860{
 
1861	struct kfd_process_device *pdd;
1862	struct qcm_process_device *qpd;
1863
 
 
1864	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865		pr_err("Incorrect CWSR mapping size.\n");
1866		return -EINVAL;
1867	}
1868
1869	pdd = kfd_get_process_device_data(dev, process);
1870	if (!pdd)
1871		return -EINVAL;
1872	qpd = &pdd->qpd;
1873
1874	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875					get_order(KFD_CWSR_TBA_TMA_SIZE));
1876	if (!qpd->cwsr_kaddr) {
1877		pr_err("Error allocating per process CWSR buffer.\n");
1878		return -ENOMEM;
1879	}
1880
1881	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883	/* Mapping pages to user process */
1884	return remap_pfn_range(vma, vma->vm_start,
1885			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887}
1888
1889void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890{
1891	struct kfd_dev *dev = pdd->dev;
 
1892
1893	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894		/* Nothing to flush until a VMID is assigned, which
1895		 * only happens when the first queue is created.
1896		 */
1897		if (pdd->qpd.vmid)
1898			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899							pdd->qpd.vmid);
1900	} else {
1901		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902					pdd->process->pasid, type);
1903	}
1904}
1905
1906#if defined(CONFIG_DEBUG_FS)
1907
1908int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909{
1910	struct kfd_process *p;
1911	unsigned int temp;
1912	int r = 0;
1913
1914	int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917		seq_printf(m, "Process %d PASID 0x%x:\n",
1918			   p->lead_thread->tgid, p->pasid);
1919
1920		mutex_lock(&p->mutex);
1921		r = pqm_debugfs_mqds(m, &p->pqm);
1922		mutex_unlock(&p->mutex);
1923
1924		if (r)
1925			break;
1926	}
1927
1928	srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930	return r;
1931}
1932
1933#endif
1934