Loading...
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/mutex.h>
24#include <linux/log2.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/slab.h>
29#include <linux/amd-iommu.h>
30#include <linux/notifier.h>
31#include <linux/compat.h>
32#include <linux/mman.h>
33#include <linux/file.h>
34
35struct mm_struct;
36
37#include "kfd_priv.h"
38#include "kfd_device_queue_manager.h"
39#include "kfd_dbgmgr.h"
40#include "kfd_iommu.h"
41
42/*
43 * List of struct kfd_process (field kfd_process).
44 * Unique/indexed by mm_struct*
45 */
46DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
47static DEFINE_MUTEX(kfd_processes_mutex);
48
49DEFINE_SRCU(kfd_processes_srcu);
50
51/* For process termination handling */
52static struct workqueue_struct *kfd_process_wq;
53
54/* Ordered, single-threaded workqueue for restoring evicted
55 * processes. Restoring multiple processes concurrently under memory
56 * pressure can lead to processes blocking each other from validating
57 * their BOs and result in a live-lock situation where processes
58 * remain evicted indefinitely.
59 */
60static struct workqueue_struct *kfd_restore_wq;
61
62static struct kfd_process *find_process(const struct task_struct *thread);
63static void kfd_process_ref_release(struct kref *ref);
64static struct kfd_process *create_process(const struct task_struct *thread,
65 struct file *filep);
66
67static void evict_process_worker(struct work_struct *work);
68static void restore_process_worker(struct work_struct *work);
69
70
71int kfd_process_create_wq(void)
72{
73 if (!kfd_process_wq)
74 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
75 if (!kfd_restore_wq)
76 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
77
78 if (!kfd_process_wq || !kfd_restore_wq) {
79 kfd_process_destroy_wq();
80 return -ENOMEM;
81 }
82
83 return 0;
84}
85
86void kfd_process_destroy_wq(void)
87{
88 if (kfd_process_wq) {
89 destroy_workqueue(kfd_process_wq);
90 kfd_process_wq = NULL;
91 }
92 if (kfd_restore_wq) {
93 destroy_workqueue(kfd_restore_wq);
94 kfd_restore_wq = NULL;
95 }
96}
97
98static void kfd_process_free_gpuvm(struct kgd_mem *mem,
99 struct kfd_process_device *pdd)
100{
101 struct kfd_dev *dev = pdd->dev;
102
103 dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
104 dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
105}
106
107/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
108 * This function should be only called right after the process
109 * is created and when kfd_processes_mutex is still being held
110 * to avoid concurrency. Because of that exclusiveness, we do
111 * not need to take p->mutex.
112 */
113static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
114 uint64_t gpu_va, uint32_t size,
115 uint32_t flags, void **kptr)
116{
117 struct kfd_dev *kdev = pdd->dev;
118 struct kgd_mem *mem = NULL;
119 int handle;
120 int err;
121
122 err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
123 pdd->vm, &mem, NULL, flags);
124 if (err)
125 goto err_alloc_mem;
126
127 err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
128 if (err)
129 goto err_map_mem;
130
131 err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
132 if (err) {
133 pr_debug("Sync memory failed, wait interrupted by user signal\n");
134 goto sync_memory_failed;
135 }
136
137 /* Create an obj handle so kfd_process_device_remove_obj_handle
138 * will take care of the bo removal when the process finishes.
139 * We do not need to take p->mutex, because the process is just
140 * created and the ioctls have not had the chance to run.
141 */
142 handle = kfd_process_device_create_obj_handle(pdd, mem);
143
144 if (handle < 0) {
145 err = handle;
146 goto free_gpuvm;
147 }
148
149 if (kptr) {
150 err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
151 (struct kgd_mem *)mem, kptr, NULL);
152 if (err) {
153 pr_debug("Map GTT BO to kernel failed\n");
154 goto free_obj_handle;
155 }
156 }
157
158 return err;
159
160free_obj_handle:
161 kfd_process_device_remove_obj_handle(pdd, handle);
162free_gpuvm:
163sync_memory_failed:
164 kfd_process_free_gpuvm(mem, pdd);
165 return err;
166
167err_map_mem:
168 kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
169err_alloc_mem:
170 *kptr = NULL;
171 return err;
172}
173
174/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
175 * process for IB usage The memory reserved is for KFD to submit
176 * IB to AMDGPU from kernel. If the memory is reserved
177 * successfully, ib_kaddr will have the CPU/kernel
178 * address. Check ib_kaddr before accessing the memory.
179 */
180static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
181{
182 struct qcm_process_device *qpd = &pdd->qpd;
183 uint32_t flags = ALLOC_MEM_FLAGS_GTT |
184 ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
185 ALLOC_MEM_FLAGS_WRITABLE |
186 ALLOC_MEM_FLAGS_EXECUTABLE;
187 void *kaddr;
188 int ret;
189
190 if (qpd->ib_kaddr || !qpd->ib_base)
191 return 0;
192
193 /* ib_base is only set for dGPU */
194 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
195 &kaddr);
196 if (ret)
197 return ret;
198
199 qpd->ib_kaddr = kaddr;
200
201 return 0;
202}
203
204struct kfd_process *kfd_create_process(struct file *filep)
205{
206 struct kfd_process *process;
207 struct task_struct *thread = current;
208
209 if (!thread->mm)
210 return ERR_PTR(-EINVAL);
211
212 /* Only the pthreads threading model is supported. */
213 if (thread->group_leader->mm != thread->mm)
214 return ERR_PTR(-EINVAL);
215
216 /*
217 * take kfd processes mutex before starting of process creation
218 * so there won't be a case where two threads of the same process
219 * create two kfd_process structures
220 */
221 mutex_lock(&kfd_processes_mutex);
222
223 /* A prior open of /dev/kfd could have already created the process. */
224 process = find_process(thread);
225 if (process)
226 pr_debug("Process already found\n");
227 else
228 process = create_process(thread, filep);
229
230 mutex_unlock(&kfd_processes_mutex);
231
232 return process;
233}
234
235struct kfd_process *kfd_get_process(const struct task_struct *thread)
236{
237 struct kfd_process *process;
238
239 if (!thread->mm)
240 return ERR_PTR(-EINVAL);
241
242 /* Only the pthreads threading model is supported. */
243 if (thread->group_leader->mm != thread->mm)
244 return ERR_PTR(-EINVAL);
245
246 process = find_process(thread);
247
248 return process;
249}
250
251static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
252{
253 struct kfd_process *process;
254
255 hash_for_each_possible_rcu(kfd_processes_table, process,
256 kfd_processes, (uintptr_t)mm)
257 if (process->mm == mm)
258 return process;
259
260 return NULL;
261}
262
263static struct kfd_process *find_process(const struct task_struct *thread)
264{
265 struct kfd_process *p;
266 int idx;
267
268 idx = srcu_read_lock(&kfd_processes_srcu);
269 p = find_process_by_mm(thread->mm);
270 srcu_read_unlock(&kfd_processes_srcu, idx);
271
272 return p;
273}
274
275void kfd_unref_process(struct kfd_process *p)
276{
277 kref_put(&p->ref, kfd_process_ref_release);
278}
279
280static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
281{
282 struct kfd_process *p = pdd->process;
283 void *mem;
284 int id;
285
286 /*
287 * Remove all handles from idr and release appropriate
288 * local memory object
289 */
290 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
291 struct kfd_process_device *peer_pdd;
292
293 list_for_each_entry(peer_pdd, &p->per_device_data,
294 per_device_list) {
295 if (!peer_pdd->vm)
296 continue;
297 peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
298 peer_pdd->dev->kgd, mem, peer_pdd->vm);
299 }
300
301 pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
302 kfd_process_device_remove_obj_handle(pdd, id);
303 }
304}
305
306static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
307{
308 struct kfd_process_device *pdd;
309
310 list_for_each_entry(pdd, &p->per_device_data, per_device_list)
311 kfd_process_device_free_bos(pdd);
312}
313
314static void kfd_process_destroy_pdds(struct kfd_process *p)
315{
316 struct kfd_process_device *pdd, *temp;
317
318 list_for_each_entry_safe(pdd, temp, &p->per_device_data,
319 per_device_list) {
320 pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
321 pdd->dev->id, p->pasid);
322
323 if (pdd->drm_file)
324 fput(pdd->drm_file);
325 else if (pdd->vm)
326 pdd->dev->kfd2kgd->destroy_process_vm(
327 pdd->dev->kgd, pdd->vm);
328
329 list_del(&pdd->per_device_list);
330
331 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
332 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
333 get_order(KFD_CWSR_TBA_TMA_SIZE));
334
335 idr_destroy(&pdd->alloc_idr);
336
337 kfree(pdd);
338 }
339}
340
341/* No process locking is needed in this function, because the process
342 * is not findable any more. We must assume that no other thread is
343 * using it any more, otherwise we couldn't safely free the process
344 * structure in the end.
345 */
346static void kfd_process_wq_release(struct work_struct *work)
347{
348 struct kfd_process *p = container_of(work, struct kfd_process,
349 release_work);
350
351 kfd_iommu_unbind_process(p);
352
353 kfd_process_free_outstanding_kfd_bos(p);
354
355 kfd_process_destroy_pdds(p);
356 dma_fence_put(p->ef);
357
358 kfd_event_free_process(p);
359
360 kfd_pasid_free(p->pasid);
361 kfd_free_process_doorbells(p);
362
363 mutex_destroy(&p->mutex);
364
365 put_task_struct(p->lead_thread);
366
367 kfree(p);
368}
369
370static void kfd_process_ref_release(struct kref *ref)
371{
372 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
373
374 INIT_WORK(&p->release_work, kfd_process_wq_release);
375 queue_work(kfd_process_wq, &p->release_work);
376}
377
378static void kfd_process_destroy_delayed(struct rcu_head *rcu)
379{
380 struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
381
382 kfd_unref_process(p);
383}
384
385static void kfd_process_notifier_release(struct mmu_notifier *mn,
386 struct mm_struct *mm)
387{
388 struct kfd_process *p;
389 struct kfd_process_device *pdd = NULL;
390
391 /*
392 * The kfd_process structure can not be free because the
393 * mmu_notifier srcu is read locked
394 */
395 p = container_of(mn, struct kfd_process, mmu_notifier);
396 if (WARN_ON(p->mm != mm))
397 return;
398
399 mutex_lock(&kfd_processes_mutex);
400 hash_del_rcu(&p->kfd_processes);
401 mutex_unlock(&kfd_processes_mutex);
402 synchronize_srcu(&kfd_processes_srcu);
403
404 cancel_delayed_work_sync(&p->eviction_work);
405 cancel_delayed_work_sync(&p->restore_work);
406
407 mutex_lock(&p->mutex);
408
409 /* Iterate over all process device data structures and if the
410 * pdd is in debug mode, we should first force unregistration,
411 * then we will be able to destroy the queues
412 */
413 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
414 struct kfd_dev *dev = pdd->dev;
415
416 mutex_lock(kfd_get_dbgmgr_mutex());
417 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
418 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
419 kfd_dbgmgr_destroy(dev->dbgmgr);
420 dev->dbgmgr = NULL;
421 }
422 }
423 mutex_unlock(kfd_get_dbgmgr_mutex());
424 }
425
426 kfd_process_dequeue_from_all_devices(p);
427 pqm_uninit(&p->pqm);
428
429 /* Indicate to other users that MM is no longer valid */
430 p->mm = NULL;
431
432 mutex_unlock(&p->mutex);
433
434 mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
435 mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
436}
437
438static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
439 .release = kfd_process_notifier_release,
440};
441
442static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
443{
444 unsigned long offset;
445 struct kfd_process_device *pdd;
446
447 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
448 struct kfd_dev *dev = pdd->dev;
449 struct qcm_process_device *qpd = &pdd->qpd;
450
451 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
452 continue;
453
454 offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
455 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
456 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
457 MAP_SHARED, offset);
458
459 if (IS_ERR_VALUE(qpd->tba_addr)) {
460 int err = qpd->tba_addr;
461
462 pr_err("Failure to set tba address. error %d.\n", err);
463 qpd->tba_addr = 0;
464 qpd->cwsr_kaddr = NULL;
465 return err;
466 }
467
468 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
469
470 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
471 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
472 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
473 }
474
475 return 0;
476}
477
478static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
479{
480 struct kfd_dev *dev = pdd->dev;
481 struct qcm_process_device *qpd = &pdd->qpd;
482 uint32_t flags = ALLOC_MEM_FLAGS_GTT |
483 ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
484 void *kaddr;
485 int ret;
486
487 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
488 return 0;
489
490 /* cwsr_base is only set for dGPU */
491 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
492 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
493 if (ret)
494 return ret;
495
496 qpd->cwsr_kaddr = kaddr;
497 qpd->tba_addr = qpd->cwsr_base;
498
499 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
500
501 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
502 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
503 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
504
505 return 0;
506}
507
508static struct kfd_process *create_process(const struct task_struct *thread,
509 struct file *filep)
510{
511 struct kfd_process *process;
512 int err = -ENOMEM;
513
514 process = kzalloc(sizeof(*process), GFP_KERNEL);
515
516 if (!process)
517 goto err_alloc_process;
518
519 process->pasid = kfd_pasid_alloc();
520 if (process->pasid == 0)
521 goto err_alloc_pasid;
522
523 if (kfd_alloc_process_doorbells(process) < 0)
524 goto err_alloc_doorbells;
525
526 kref_init(&process->ref);
527
528 mutex_init(&process->mutex);
529
530 process->mm = thread->mm;
531
532 /* register notifier */
533 process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
534 err = mmu_notifier_register(&process->mmu_notifier, process->mm);
535 if (err)
536 goto err_mmu_notifier;
537
538 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
539 (uintptr_t)process->mm);
540
541 process->lead_thread = thread->group_leader;
542 get_task_struct(process->lead_thread);
543
544 INIT_LIST_HEAD(&process->per_device_data);
545
546 kfd_event_init_process(process);
547
548 err = pqm_init(&process->pqm, process);
549 if (err != 0)
550 goto err_process_pqm_init;
551
552 /* init process apertures*/
553 process->is_32bit_user_mode = in_compat_syscall();
554 err = kfd_init_apertures(process);
555 if (err != 0)
556 goto err_init_apertures;
557
558 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
559 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
560 process->last_restore_timestamp = get_jiffies_64();
561
562 err = kfd_process_init_cwsr_apu(process, filep);
563 if (err)
564 goto err_init_cwsr;
565
566 return process;
567
568err_init_cwsr:
569 kfd_process_free_outstanding_kfd_bos(process);
570 kfd_process_destroy_pdds(process);
571err_init_apertures:
572 pqm_uninit(&process->pqm);
573err_process_pqm_init:
574 hash_del_rcu(&process->kfd_processes);
575 synchronize_rcu();
576 mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
577err_mmu_notifier:
578 mutex_destroy(&process->mutex);
579 kfd_free_process_doorbells(process);
580err_alloc_doorbells:
581 kfd_pasid_free(process->pasid);
582err_alloc_pasid:
583 kfree(process);
584err_alloc_process:
585 return ERR_PTR(err);
586}
587
588struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
589 struct kfd_process *p)
590{
591 struct kfd_process_device *pdd = NULL;
592
593 list_for_each_entry(pdd, &p->per_device_data, per_device_list)
594 if (pdd->dev == dev)
595 return pdd;
596
597 return NULL;
598}
599
600struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
601 struct kfd_process *p)
602{
603 struct kfd_process_device *pdd = NULL;
604
605 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
606 if (!pdd)
607 return NULL;
608
609 pdd->dev = dev;
610 INIT_LIST_HEAD(&pdd->qpd.queues_list);
611 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
612 pdd->qpd.dqm = dev->dqm;
613 pdd->qpd.pqm = &p->pqm;
614 pdd->qpd.evicted = 0;
615 pdd->process = p;
616 pdd->bound = PDD_UNBOUND;
617 pdd->already_dequeued = false;
618 list_add(&pdd->per_device_list, &p->per_device_data);
619
620 /* Init idr used for memory handle translation */
621 idr_init(&pdd->alloc_idr);
622
623 return pdd;
624}
625
626/**
627 * kfd_process_device_init_vm - Initialize a VM for a process-device
628 *
629 * @pdd: The process-device
630 * @drm_file: Optional pointer to a DRM file descriptor
631 *
632 * If @drm_file is specified, it will be used to acquire the VM from
633 * that file descriptor. If successful, the @pdd takes ownership of
634 * the file descriptor.
635 *
636 * If @drm_file is NULL, a new VM is created.
637 *
638 * Returns 0 on success, -errno on failure.
639 */
640int kfd_process_device_init_vm(struct kfd_process_device *pdd,
641 struct file *drm_file)
642{
643 struct kfd_process *p;
644 struct kfd_dev *dev;
645 int ret;
646
647 if (pdd->vm)
648 return drm_file ? -EBUSY : 0;
649
650 p = pdd->process;
651 dev = pdd->dev;
652
653 if (drm_file)
654 ret = dev->kfd2kgd->acquire_process_vm(
655 dev->kgd, drm_file,
656 &pdd->vm, &p->kgd_process_info, &p->ef);
657 else
658 ret = dev->kfd2kgd->create_process_vm(
659 dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
660 if (ret) {
661 pr_err("Failed to create process VM object\n");
662 return ret;
663 }
664
665 ret = kfd_process_device_reserve_ib_mem(pdd);
666 if (ret)
667 goto err_reserve_ib_mem;
668 ret = kfd_process_device_init_cwsr_dgpu(pdd);
669 if (ret)
670 goto err_init_cwsr;
671
672 pdd->drm_file = drm_file;
673
674 return 0;
675
676err_init_cwsr:
677err_reserve_ib_mem:
678 kfd_process_device_free_bos(pdd);
679 if (!drm_file)
680 dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
681 pdd->vm = NULL;
682
683 return ret;
684}
685
686/*
687 * Direct the IOMMU to bind the process (specifically the pasid->mm)
688 * to the device.
689 * Unbinding occurs when the process dies or the device is removed.
690 *
691 * Assumes that the process lock is held.
692 */
693struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
694 struct kfd_process *p)
695{
696 struct kfd_process_device *pdd;
697 int err;
698
699 pdd = kfd_get_process_device_data(dev, p);
700 if (!pdd) {
701 pr_err("Process device data doesn't exist\n");
702 return ERR_PTR(-ENOMEM);
703 }
704
705 err = kfd_iommu_bind_process_to_device(pdd);
706 if (err)
707 return ERR_PTR(err);
708
709 err = kfd_process_device_init_vm(pdd, NULL);
710 if (err)
711 return ERR_PTR(err);
712
713 return pdd;
714}
715
716struct kfd_process_device *kfd_get_first_process_device_data(
717 struct kfd_process *p)
718{
719 return list_first_entry(&p->per_device_data,
720 struct kfd_process_device,
721 per_device_list);
722}
723
724struct kfd_process_device *kfd_get_next_process_device_data(
725 struct kfd_process *p,
726 struct kfd_process_device *pdd)
727{
728 if (list_is_last(&pdd->per_device_list, &p->per_device_data))
729 return NULL;
730 return list_next_entry(pdd, per_device_list);
731}
732
733bool kfd_has_process_device_data(struct kfd_process *p)
734{
735 return !(list_empty(&p->per_device_data));
736}
737
738/* Create specific handle mapped to mem from process local memory idr
739 * Assumes that the process lock is held.
740 */
741int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
742 void *mem)
743{
744 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
745}
746
747/* Translate specific handle from process local memory idr
748 * Assumes that the process lock is held.
749 */
750void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
751 int handle)
752{
753 if (handle < 0)
754 return NULL;
755
756 return idr_find(&pdd->alloc_idr, handle);
757}
758
759/* Remove specific handle from process local memory idr
760 * Assumes that the process lock is held.
761 */
762void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
763 int handle)
764{
765 if (handle >= 0)
766 idr_remove(&pdd->alloc_idr, handle);
767}
768
769/* This increments the process->ref counter. */
770struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
771{
772 struct kfd_process *p, *ret_p = NULL;
773 unsigned int temp;
774
775 int idx = srcu_read_lock(&kfd_processes_srcu);
776
777 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
778 if (p->pasid == pasid) {
779 kref_get(&p->ref);
780 ret_p = p;
781 break;
782 }
783 }
784
785 srcu_read_unlock(&kfd_processes_srcu, idx);
786
787 return ret_p;
788}
789
790/* This increments the process->ref counter. */
791struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
792{
793 struct kfd_process *p;
794
795 int idx = srcu_read_lock(&kfd_processes_srcu);
796
797 p = find_process_by_mm(mm);
798 if (p)
799 kref_get(&p->ref);
800
801 srcu_read_unlock(&kfd_processes_srcu, idx);
802
803 return p;
804}
805
806/* process_evict_queues - Evict all user queues of a process
807 *
808 * Eviction is reference-counted per process-device. This means multiple
809 * evictions from different sources can be nested safely.
810 */
811static int process_evict_queues(struct kfd_process *p)
812{
813 struct kfd_process_device *pdd;
814 int r = 0;
815 unsigned int n_evicted = 0;
816
817 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
818 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
819 &pdd->qpd);
820 if (r) {
821 pr_err("Failed to evict process queues\n");
822 goto fail;
823 }
824 n_evicted++;
825 }
826
827 return r;
828
829fail:
830 /* To keep state consistent, roll back partial eviction by
831 * restoring queues
832 */
833 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
834 if (n_evicted == 0)
835 break;
836 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
837 &pdd->qpd))
838 pr_err("Failed to restore queues\n");
839
840 n_evicted--;
841 }
842
843 return r;
844}
845
846/* process_restore_queues - Restore all user queues of a process */
847static int process_restore_queues(struct kfd_process *p)
848{
849 struct kfd_process_device *pdd;
850 int r, ret = 0;
851
852 list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
853 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
854 &pdd->qpd);
855 if (r) {
856 pr_err("Failed to restore process queues\n");
857 if (!ret)
858 ret = r;
859 }
860 }
861
862 return ret;
863}
864
865static void evict_process_worker(struct work_struct *work)
866{
867 int ret;
868 struct kfd_process *p;
869 struct delayed_work *dwork;
870
871 dwork = to_delayed_work(work);
872
873 /* Process termination destroys this worker thread. So during the
874 * lifetime of this thread, kfd_process p will be valid
875 */
876 p = container_of(dwork, struct kfd_process, eviction_work);
877 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
878 "Eviction fence mismatch\n");
879
880 /* Narrow window of overlap between restore and evict work
881 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
882 * unreserves KFD BOs, it is possible to evicted again. But
883 * restore has few more steps of finish. So lets wait for any
884 * previous restore work to complete
885 */
886 flush_delayed_work(&p->restore_work);
887
888 pr_debug("Started evicting pasid %d\n", p->pasid);
889 ret = process_evict_queues(p);
890 if (!ret) {
891 dma_fence_signal(p->ef);
892 dma_fence_put(p->ef);
893 p->ef = NULL;
894 queue_delayed_work(kfd_restore_wq, &p->restore_work,
895 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
896
897 pr_debug("Finished evicting pasid %d\n", p->pasid);
898 } else
899 pr_err("Failed to evict queues of pasid %d\n", p->pasid);
900}
901
902static void restore_process_worker(struct work_struct *work)
903{
904 struct delayed_work *dwork;
905 struct kfd_process *p;
906 struct kfd_process_device *pdd;
907 int ret = 0;
908
909 dwork = to_delayed_work(work);
910
911 /* Process termination destroys this worker thread. So during the
912 * lifetime of this thread, kfd_process p will be valid
913 */
914 p = container_of(dwork, struct kfd_process, restore_work);
915
916 /* Call restore_process_bos on the first KGD device. This function
917 * takes care of restoring the whole process including other devices.
918 * Restore can fail if enough memory is not available. If so,
919 * reschedule again.
920 */
921 pdd = list_first_entry(&p->per_device_data,
922 struct kfd_process_device,
923 per_device_list);
924
925 pr_debug("Started restoring pasid %d\n", p->pasid);
926
927 /* Setting last_restore_timestamp before successful restoration.
928 * Otherwise this would have to be set by KGD (restore_process_bos)
929 * before KFD BOs are unreserved. If not, the process can be evicted
930 * again before the timestamp is set.
931 * If restore fails, the timestamp will be set again in the next
932 * attempt. This would mean that the minimum GPU quanta would be
933 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
934 * functions)
935 */
936
937 p->last_restore_timestamp = get_jiffies_64();
938 ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info,
939 &p->ef);
940 if (ret) {
941 pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
942 p->pasid, PROCESS_BACK_OFF_TIME_MS);
943 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
944 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
945 WARN(!ret, "reschedule restore work failed\n");
946 return;
947 }
948
949 ret = process_restore_queues(p);
950 if (!ret)
951 pr_debug("Finished restoring pasid %d\n", p->pasid);
952 else
953 pr_err("Failed to restore queues of pasid %d\n", p->pasid);
954}
955
956void kfd_suspend_all_processes(void)
957{
958 struct kfd_process *p;
959 unsigned int temp;
960 int idx = srcu_read_lock(&kfd_processes_srcu);
961
962 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
963 cancel_delayed_work_sync(&p->eviction_work);
964 cancel_delayed_work_sync(&p->restore_work);
965
966 if (process_evict_queues(p))
967 pr_err("Failed to suspend process %d\n", p->pasid);
968 dma_fence_signal(p->ef);
969 dma_fence_put(p->ef);
970 p->ef = NULL;
971 }
972 srcu_read_unlock(&kfd_processes_srcu, idx);
973}
974
975int kfd_resume_all_processes(void)
976{
977 struct kfd_process *p;
978 unsigned int temp;
979 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
980
981 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
982 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
983 pr_err("Restore process %d failed during resume\n",
984 p->pasid);
985 ret = -EFAULT;
986 }
987 }
988 srcu_read_unlock(&kfd_processes_srcu, idx);
989 return ret;
990}
991
992int kfd_reserved_mem_mmap(struct kfd_process *process,
993 struct vm_area_struct *vma)
994{
995 struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff);
996 struct kfd_process_device *pdd;
997 struct qcm_process_device *qpd;
998
999 if (!dev)
1000 return -EINVAL;
1001 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1002 pr_err("Incorrect CWSR mapping size.\n");
1003 return -EINVAL;
1004 }
1005
1006 pdd = kfd_get_process_device_data(dev, process);
1007 if (!pdd)
1008 return -EINVAL;
1009 qpd = &pdd->qpd;
1010
1011 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012 get_order(KFD_CWSR_TBA_TMA_SIZE));
1013 if (!qpd->cwsr_kaddr) {
1014 pr_err("Error allocating per process CWSR buffer.\n");
1015 return -ENOMEM;
1016 }
1017
1018 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1019 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1020 /* Mapping pages to user process */
1021 return remap_pfn_range(vma, vma->vm_start,
1022 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1023 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1024}
1025
1026void kfd_flush_tlb(struct kfd_process_device *pdd)
1027{
1028 struct kfd_dev *dev = pdd->dev;
1029 const struct kfd2kgd_calls *f2g = dev->kfd2kgd;
1030
1031 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1032 /* Nothing to flush until a VMID is assigned, which
1033 * only happens when the first queue is created.
1034 */
1035 if (pdd->qpd.vmid)
1036 f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid);
1037 } else {
1038 f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid);
1039 }
1040}
1041
1042#if defined(CONFIG_DEBUG_FS)
1043
1044int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1045{
1046 struct kfd_process *p;
1047 unsigned int temp;
1048 int r = 0;
1049
1050 int idx = srcu_read_lock(&kfd_processes_srcu);
1051
1052 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1053 seq_printf(m, "Process %d PASID %d:\n",
1054 p->lead_thread->tgid, p->pasid);
1055
1056 mutex_lock(&p->mutex);
1057 r = pqm_debugfs_mqds(m, &p->pqm);
1058 mutex_unlock(&p->mutex);
1059
1060 if (r)
1061 break;
1062 }
1063
1064 srcu_read_unlock(&kfd_processes_srcu, idx);
1065
1066 return r;
1067}
1068
1069#endif
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/mutex.h>
24#include <linux/log2.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/mmu_context.h>
29#include <linux/slab.h>
30#include <linux/amd-iommu.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_dbgmgr.h"
44#include "kfd_iommu.h"
45#include "kfd_svm.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52static DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread);
68static void kfd_process_ref_release(struct kref *ref);
69static struct kfd_process *create_process(const struct task_struct *thread);
70static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75struct kfd_procfs_tree {
76 struct kobject *kobj;
77};
78
79static struct kfd_procfs_tree procfs;
80
81/*
82 * Structure for SDMA activity tracking
83 */
84struct kfd_sdma_activity_handler_workarea {
85 struct work_struct sdma_activity_work;
86 struct kfd_process_device *pdd;
87 uint64_t sdma_activity_counter;
88};
89
90struct temp_sdma_queue_list {
91 uint64_t __user *rptr;
92 uint64_t sdma_val;
93 unsigned int queue_id;
94 struct list_head list;
95};
96
97static void kfd_sdma_activity_worker(struct work_struct *work)
98{
99 struct kfd_sdma_activity_handler_workarea *workarea;
100 struct kfd_process_device *pdd;
101 uint64_t val;
102 struct mm_struct *mm;
103 struct queue *q;
104 struct qcm_process_device *qpd;
105 struct device_queue_manager *dqm;
106 int ret = 0;
107 struct temp_sdma_queue_list sdma_q_list;
108 struct temp_sdma_queue_list *sdma_q, *next;
109
110 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
111 sdma_activity_work);
112
113 pdd = workarea->pdd;
114 if (!pdd)
115 return;
116 dqm = pdd->dev->dqm;
117 qpd = &pdd->qpd;
118 if (!dqm || !qpd)
119 return;
120 /*
121 * Total SDMA activity is current SDMA activity + past SDMA activity
122 * Past SDMA count is stored in pdd.
123 * To get the current activity counters for all active SDMA queues,
124 * we loop over all SDMA queues and get their counts from user-space.
125 *
126 * We cannot call get_user() with dqm_lock held as it can cause
127 * a circular lock dependency situation. To read the SDMA stats,
128 * we need to do the following:
129 *
130 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
131 * with dqm_lock/dqm_unlock().
132 * 2. Call get_user() for each node in temporary list without dqm_lock.
133 * Save the SDMA count for each node and also add the count to the total
134 * SDMA count counter.
135 * Its possible, during this step, a few SDMA queue nodes got deleted
136 * from the qpd->queues_list.
137 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
138 * If any node got deleted, its SDMA count would be captured in the sdma
139 * past activity counter. So subtract the SDMA counter stored in step 2
140 * for this node from the total SDMA count.
141 */
142 INIT_LIST_HEAD(&sdma_q_list.list);
143
144 /*
145 * Create the temp list of all SDMA queues
146 */
147 dqm_lock(dqm);
148
149 list_for_each_entry(q, &qpd->queues_list, list) {
150 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
151 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
152 continue;
153
154 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
155 if (!sdma_q) {
156 dqm_unlock(dqm);
157 goto cleanup;
158 }
159
160 INIT_LIST_HEAD(&sdma_q->list);
161 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
162 sdma_q->queue_id = q->properties.queue_id;
163 list_add_tail(&sdma_q->list, &sdma_q_list.list);
164 }
165
166 /*
167 * If the temp list is empty, then no SDMA queues nodes were found in
168 * qpd->queues_list. Return the past activity count as the total sdma
169 * count
170 */
171 if (list_empty(&sdma_q_list.list)) {
172 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
173 dqm_unlock(dqm);
174 return;
175 }
176
177 dqm_unlock(dqm);
178
179 /*
180 * Get the usage count for each SDMA queue in temp_list.
181 */
182 mm = get_task_mm(pdd->process->lead_thread);
183 if (!mm)
184 goto cleanup;
185
186 kthread_use_mm(mm);
187
188 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
189 val = 0;
190 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
191 if (ret) {
192 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
193 sdma_q->queue_id);
194 } else {
195 sdma_q->sdma_val = val;
196 workarea->sdma_activity_counter += val;
197 }
198 }
199
200 kthread_unuse_mm(mm);
201 mmput(mm);
202
203 /*
204 * Do a second iteration over qpd_queues_list to check if any SDMA
205 * nodes got deleted while fetching SDMA counter.
206 */
207 dqm_lock(dqm);
208
209 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
210
211 list_for_each_entry(q, &qpd->queues_list, list) {
212 if (list_empty(&sdma_q_list.list))
213 break;
214
215 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
216 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
217 continue;
218
219 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
220 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
221 (sdma_q->queue_id == q->properties.queue_id)) {
222 list_del(&sdma_q->list);
223 kfree(sdma_q);
224 break;
225 }
226 }
227 }
228
229 dqm_unlock(dqm);
230
231 /*
232 * If temp list is not empty, it implies some queues got deleted
233 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
234 * count for each node from the total SDMA count.
235 */
236 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
237 workarea->sdma_activity_counter -= sdma_q->sdma_val;
238 list_del(&sdma_q->list);
239 kfree(sdma_q);
240 }
241
242 return;
243
244cleanup:
245 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
246 list_del(&sdma_q->list);
247 kfree(sdma_q);
248 }
249}
250
251/**
252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
253 * by current process. Translates acquired wave count into number of compute units
254 * that are occupied.
255 *
256 * @atr: Handle of attribute that allows reporting of wave count. The attribute
257 * handle encapsulates GPU device it is associated with, thereby allowing collection
258 * of waves in flight, etc
259 *
260 * @buffer: Handle of user provided buffer updated with wave count
261 *
262 * Return: Number of bytes written to user buffer or an error value
263 */
264static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
265{
266 int cu_cnt;
267 int wave_cnt;
268 int max_waves_per_cu;
269 struct kfd_dev *dev = NULL;
270 struct kfd_process *proc = NULL;
271 struct kfd_process_device *pdd = NULL;
272
273 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
274 dev = pdd->dev;
275 if (dev->kfd2kgd->get_cu_occupancy == NULL)
276 return -EINVAL;
277
278 cu_cnt = 0;
279 proc = pdd->process;
280 if (pdd->qpd.queue_count == 0) {
281 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
282 dev->id, proc->pasid);
283 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
284 }
285
286 /* Collect wave count from device if it supports */
287 wave_cnt = 0;
288 max_waves_per_cu = 0;
289 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
290 &max_waves_per_cu);
291
292 /* Translate wave count to number of compute units */
293 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
294 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
295}
296
297static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
298 char *buffer)
299{
300 if (strcmp(attr->name, "pasid") == 0) {
301 struct kfd_process *p = container_of(attr, struct kfd_process,
302 attr_pasid);
303
304 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
305 } else if (strncmp(attr->name, "vram_", 5) == 0) {
306 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
307 attr_vram);
308 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
309 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
310 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
311 attr_sdma);
312 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
313
314 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
315 kfd_sdma_activity_worker);
316
317 sdma_activity_work_handler.pdd = pdd;
318 sdma_activity_work_handler.sdma_activity_counter = 0;
319
320 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
321
322 flush_work(&sdma_activity_work_handler.sdma_activity_work);
323
324 return snprintf(buffer, PAGE_SIZE, "%llu\n",
325 (sdma_activity_work_handler.sdma_activity_counter)/
326 SDMA_ACTIVITY_DIVISOR);
327 } else {
328 pr_err("Invalid attribute");
329 return -EINVAL;
330 }
331
332 return 0;
333}
334
335static void kfd_procfs_kobj_release(struct kobject *kobj)
336{
337 kfree(kobj);
338}
339
340static const struct sysfs_ops kfd_procfs_ops = {
341 .show = kfd_procfs_show,
342};
343
344static struct kobj_type procfs_type = {
345 .release = kfd_procfs_kobj_release,
346 .sysfs_ops = &kfd_procfs_ops,
347};
348
349void kfd_procfs_init(void)
350{
351 int ret = 0;
352
353 procfs.kobj = kfd_alloc_struct(procfs.kobj);
354 if (!procfs.kobj)
355 return;
356
357 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
358 &kfd_device->kobj, "proc");
359 if (ret) {
360 pr_warn("Could not create procfs proc folder");
361 /* If we fail to create the procfs, clean up */
362 kfd_procfs_shutdown();
363 }
364}
365
366void kfd_procfs_shutdown(void)
367{
368 if (procfs.kobj) {
369 kobject_del(procfs.kobj);
370 kobject_put(procfs.kobj);
371 procfs.kobj = NULL;
372 }
373}
374
375static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
376 struct attribute *attr, char *buffer)
377{
378 struct queue *q = container_of(kobj, struct queue, kobj);
379
380 if (!strcmp(attr->name, "size"))
381 return snprintf(buffer, PAGE_SIZE, "%llu",
382 q->properties.queue_size);
383 else if (!strcmp(attr->name, "type"))
384 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
385 else if (!strcmp(attr->name, "gpuid"))
386 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
387 else
388 pr_err("Invalid attribute");
389
390 return 0;
391}
392
393static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
394 struct attribute *attr, char *buffer)
395{
396 if (strcmp(attr->name, "evicted_ms") == 0) {
397 struct kfd_process_device *pdd = container_of(attr,
398 struct kfd_process_device,
399 attr_evict);
400 uint64_t evict_jiffies;
401
402 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
403
404 return snprintf(buffer,
405 PAGE_SIZE,
406 "%llu\n",
407 jiffies64_to_msecs(evict_jiffies));
408
409 /* Sysfs handle that gets CU occupancy is per device */
410 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
411 return kfd_get_cu_occupancy(attr, buffer);
412 } else {
413 pr_err("Invalid attribute");
414 }
415
416 return 0;
417}
418
419static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
420 struct attribute *attr, char *buf)
421{
422 struct kfd_process_device *pdd;
423
424 if (!strcmp(attr->name, "faults")) {
425 pdd = container_of(attr, struct kfd_process_device,
426 attr_faults);
427 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
428 }
429 if (!strcmp(attr->name, "page_in")) {
430 pdd = container_of(attr, struct kfd_process_device,
431 attr_page_in);
432 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
433 }
434 if (!strcmp(attr->name, "page_out")) {
435 pdd = container_of(attr, struct kfd_process_device,
436 attr_page_out);
437 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
438 }
439 return 0;
440}
441
442static struct attribute attr_queue_size = {
443 .name = "size",
444 .mode = KFD_SYSFS_FILE_MODE
445};
446
447static struct attribute attr_queue_type = {
448 .name = "type",
449 .mode = KFD_SYSFS_FILE_MODE
450};
451
452static struct attribute attr_queue_gpuid = {
453 .name = "gpuid",
454 .mode = KFD_SYSFS_FILE_MODE
455};
456
457static struct attribute *procfs_queue_attrs[] = {
458 &attr_queue_size,
459 &attr_queue_type,
460 &attr_queue_gpuid,
461 NULL
462};
463
464static const struct sysfs_ops procfs_queue_ops = {
465 .show = kfd_procfs_queue_show,
466};
467
468static struct kobj_type procfs_queue_type = {
469 .sysfs_ops = &procfs_queue_ops,
470 .default_attrs = procfs_queue_attrs,
471};
472
473static const struct sysfs_ops procfs_stats_ops = {
474 .show = kfd_procfs_stats_show,
475};
476
477static struct kobj_type procfs_stats_type = {
478 .sysfs_ops = &procfs_stats_ops,
479 .release = kfd_procfs_kobj_release,
480};
481
482static const struct sysfs_ops sysfs_counters_ops = {
483 .show = kfd_sysfs_counters_show,
484};
485
486static struct kobj_type sysfs_counters_type = {
487 .sysfs_ops = &sysfs_counters_ops,
488 .release = kfd_procfs_kobj_release,
489};
490
491int kfd_procfs_add_queue(struct queue *q)
492{
493 struct kfd_process *proc;
494 int ret;
495
496 if (!q || !q->process)
497 return -EINVAL;
498 proc = q->process;
499
500 /* Create proc/<pid>/queues/<queue id> folder */
501 if (!proc->kobj_queues)
502 return -EFAULT;
503 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
504 proc->kobj_queues, "%u", q->properties.queue_id);
505 if (ret < 0) {
506 pr_warn("Creating proc/<pid>/queues/%u failed",
507 q->properties.queue_id);
508 kobject_put(&q->kobj);
509 return ret;
510 }
511
512 return 0;
513}
514
515static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
516 char *name)
517{
518 int ret;
519
520 if (!kobj || !attr || !name)
521 return;
522
523 attr->name = name;
524 attr->mode = KFD_SYSFS_FILE_MODE;
525 sysfs_attr_init(attr);
526
527 ret = sysfs_create_file(kobj, attr);
528 if (ret)
529 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
530}
531
532static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
533{
534 int ret;
535 int i;
536 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
537
538 if (!p || !p->kobj)
539 return;
540
541 /*
542 * Create sysfs files for each GPU:
543 * - proc/<pid>/stats_<gpuid>/
544 * - proc/<pid>/stats_<gpuid>/evicted_ms
545 * - proc/<pid>/stats_<gpuid>/cu_occupancy
546 */
547 for (i = 0; i < p->n_pdds; i++) {
548 struct kfd_process_device *pdd = p->pdds[i];
549
550 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
551 "stats_%u", pdd->dev->id);
552 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
553 if (!pdd->kobj_stats)
554 return;
555
556 ret = kobject_init_and_add(pdd->kobj_stats,
557 &procfs_stats_type,
558 p->kobj,
559 stats_dir_filename);
560
561 if (ret) {
562 pr_warn("Creating KFD proc/stats_%s folder failed",
563 stats_dir_filename);
564 kobject_put(pdd->kobj_stats);
565 pdd->kobj_stats = NULL;
566 return;
567 }
568
569 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
570 "evicted_ms");
571 /* Add sysfs file to report compute unit occupancy */
572 if (pdd->dev->kfd2kgd->get_cu_occupancy)
573 kfd_sysfs_create_file(pdd->kobj_stats,
574 &pdd->attr_cu_occupancy,
575 "cu_occupancy");
576 }
577}
578
579static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
580{
581 int ret = 0;
582 int i;
583 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
584
585 if (!p || !p->kobj)
586 return;
587
588 /*
589 * Create sysfs files for each GPU which supports SVM
590 * - proc/<pid>/counters_<gpuid>/
591 * - proc/<pid>/counters_<gpuid>/faults
592 * - proc/<pid>/counters_<gpuid>/page_in
593 * - proc/<pid>/counters_<gpuid>/page_out
594 */
595 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
596 struct kfd_process_device *pdd = p->pdds[i];
597 struct kobject *kobj_counters;
598
599 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
600 "counters_%u", pdd->dev->id);
601 kobj_counters = kfd_alloc_struct(kobj_counters);
602 if (!kobj_counters)
603 return;
604
605 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
606 p->kobj, counters_dir_filename);
607 if (ret) {
608 pr_warn("Creating KFD proc/%s folder failed",
609 counters_dir_filename);
610 kobject_put(kobj_counters);
611 return;
612 }
613
614 pdd->kobj_counters = kobj_counters;
615 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
616 "faults");
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
618 "page_in");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
620 "page_out");
621 }
622}
623
624static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
625{
626 int i;
627
628 if (!p || !p->kobj)
629 return;
630
631 /*
632 * Create sysfs files for each GPU:
633 * - proc/<pid>/vram_<gpuid>
634 * - proc/<pid>/sdma_<gpuid>
635 */
636 for (i = 0; i < p->n_pdds; i++) {
637 struct kfd_process_device *pdd = p->pdds[i];
638
639 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
640 pdd->dev->id);
641 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
642 pdd->vram_filename);
643
644 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
645 pdd->dev->id);
646 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
647 pdd->sdma_filename);
648 }
649}
650
651void kfd_procfs_del_queue(struct queue *q)
652{
653 if (!q)
654 return;
655
656 kobject_del(&q->kobj);
657 kobject_put(&q->kobj);
658}
659
660int kfd_process_create_wq(void)
661{
662 if (!kfd_process_wq)
663 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
664 if (!kfd_restore_wq)
665 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
666
667 if (!kfd_process_wq || !kfd_restore_wq) {
668 kfd_process_destroy_wq();
669 return -ENOMEM;
670 }
671
672 return 0;
673}
674
675void kfd_process_destroy_wq(void)
676{
677 if (kfd_process_wq) {
678 destroy_workqueue(kfd_process_wq);
679 kfd_process_wq = NULL;
680 }
681 if (kfd_restore_wq) {
682 destroy_workqueue(kfd_restore_wq);
683 kfd_restore_wq = NULL;
684 }
685}
686
687static void kfd_process_free_gpuvm(struct kgd_mem *mem,
688 struct kfd_process_device *pdd)
689{
690 struct kfd_dev *dev = pdd->dev;
691
692 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
693 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
694 NULL);
695}
696
697/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
698 * This function should be only called right after the process
699 * is created and when kfd_processes_mutex is still being held
700 * to avoid concurrency. Because of that exclusiveness, we do
701 * not need to take p->mutex.
702 */
703static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
704 uint64_t gpu_va, uint32_t size,
705 uint32_t flags, void **kptr)
706{
707 struct kfd_dev *kdev = pdd->dev;
708 struct kgd_mem *mem = NULL;
709 int handle;
710 int err;
711
712 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
713 pdd->drm_priv, &mem, NULL, flags);
714 if (err)
715 goto err_alloc_mem;
716
717 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
718 if (err)
719 goto err_map_mem;
720
721 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
722 if (err) {
723 pr_debug("Sync memory failed, wait interrupted by user signal\n");
724 goto sync_memory_failed;
725 }
726
727 /* Create an obj handle so kfd_process_device_remove_obj_handle
728 * will take care of the bo removal when the process finishes.
729 * We do not need to take p->mutex, because the process is just
730 * created and the ioctls have not had the chance to run.
731 */
732 handle = kfd_process_device_create_obj_handle(pdd, mem);
733
734 if (handle < 0) {
735 err = handle;
736 goto free_gpuvm;
737 }
738
739 if (kptr) {
740 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
741 (struct kgd_mem *)mem, kptr, NULL);
742 if (err) {
743 pr_debug("Map GTT BO to kernel failed\n");
744 goto free_obj_handle;
745 }
746 }
747
748 return err;
749
750free_obj_handle:
751 kfd_process_device_remove_obj_handle(pdd, handle);
752free_gpuvm:
753sync_memory_failed:
754 kfd_process_free_gpuvm(mem, pdd);
755 return err;
756
757err_map_mem:
758 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
759 NULL);
760err_alloc_mem:
761 *kptr = NULL;
762 return err;
763}
764
765/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
766 * process for IB usage The memory reserved is for KFD to submit
767 * IB to AMDGPU from kernel. If the memory is reserved
768 * successfully, ib_kaddr will have the CPU/kernel
769 * address. Check ib_kaddr before accessing the memory.
770 */
771static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
772{
773 struct qcm_process_device *qpd = &pdd->qpd;
774 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
775 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
776 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
777 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
778 void *kaddr;
779 int ret;
780
781 if (qpd->ib_kaddr || !qpd->ib_base)
782 return 0;
783
784 /* ib_base is only set for dGPU */
785 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
786 &kaddr);
787 if (ret)
788 return ret;
789
790 qpd->ib_kaddr = kaddr;
791
792 return 0;
793}
794
795struct kfd_process *kfd_create_process(struct file *filep)
796{
797 struct kfd_process *process;
798 struct task_struct *thread = current;
799 int ret;
800
801 if (!thread->mm)
802 return ERR_PTR(-EINVAL);
803
804 /* Only the pthreads threading model is supported. */
805 if (thread->group_leader->mm != thread->mm)
806 return ERR_PTR(-EINVAL);
807
808 /*
809 * take kfd processes mutex before starting of process creation
810 * so there won't be a case where two threads of the same process
811 * create two kfd_process structures
812 */
813 mutex_lock(&kfd_processes_mutex);
814
815 /* A prior open of /dev/kfd could have already created the process. */
816 process = find_process(thread);
817 if (process) {
818 pr_debug("Process already found\n");
819 } else {
820 process = create_process(thread);
821 if (IS_ERR(process))
822 goto out;
823
824 ret = kfd_process_init_cwsr_apu(process, filep);
825 if (ret)
826 goto out_destroy;
827
828 if (!procfs.kobj)
829 goto out;
830
831 process->kobj = kfd_alloc_struct(process->kobj);
832 if (!process->kobj) {
833 pr_warn("Creating procfs kobject failed");
834 goto out;
835 }
836 ret = kobject_init_and_add(process->kobj, &procfs_type,
837 procfs.kobj, "%d",
838 (int)process->lead_thread->pid);
839 if (ret) {
840 pr_warn("Creating procfs pid directory failed");
841 kobject_put(process->kobj);
842 goto out;
843 }
844
845 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
846 "pasid");
847
848 process->kobj_queues = kobject_create_and_add("queues",
849 process->kobj);
850 if (!process->kobj_queues)
851 pr_warn("Creating KFD proc/queues folder failed");
852
853 kfd_procfs_add_sysfs_stats(process);
854 kfd_procfs_add_sysfs_files(process);
855 kfd_procfs_add_sysfs_counters(process);
856 }
857out:
858 if (!IS_ERR(process))
859 kref_get(&process->ref);
860 mutex_unlock(&kfd_processes_mutex);
861
862 return process;
863
864out_destroy:
865 hash_del_rcu(&process->kfd_processes);
866 mutex_unlock(&kfd_processes_mutex);
867 synchronize_srcu(&kfd_processes_srcu);
868 /* kfd_process_free_notifier will trigger the cleanup */
869 mmu_notifier_put(&process->mmu_notifier);
870 return ERR_PTR(ret);
871}
872
873struct kfd_process *kfd_get_process(const struct task_struct *thread)
874{
875 struct kfd_process *process;
876
877 if (!thread->mm)
878 return ERR_PTR(-EINVAL);
879
880 /* Only the pthreads threading model is supported. */
881 if (thread->group_leader->mm != thread->mm)
882 return ERR_PTR(-EINVAL);
883
884 process = find_process(thread);
885 if (!process)
886 return ERR_PTR(-EINVAL);
887
888 return process;
889}
890
891static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
892{
893 struct kfd_process *process;
894
895 hash_for_each_possible_rcu(kfd_processes_table, process,
896 kfd_processes, (uintptr_t)mm)
897 if (process->mm == mm)
898 return process;
899
900 return NULL;
901}
902
903static struct kfd_process *find_process(const struct task_struct *thread)
904{
905 struct kfd_process *p;
906 int idx;
907
908 idx = srcu_read_lock(&kfd_processes_srcu);
909 p = find_process_by_mm(thread->mm);
910 srcu_read_unlock(&kfd_processes_srcu, idx);
911
912 return p;
913}
914
915void kfd_unref_process(struct kfd_process *p)
916{
917 kref_put(&p->ref, kfd_process_ref_release);
918}
919
920
921static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
922{
923 struct kfd_process *p = pdd->process;
924 void *mem;
925 int id;
926 int i;
927
928 /*
929 * Remove all handles from idr and release appropriate
930 * local memory object
931 */
932 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
933
934 for (i = 0; i < p->n_pdds; i++) {
935 struct kfd_process_device *peer_pdd = p->pdds[i];
936
937 if (!peer_pdd->drm_priv)
938 continue;
939 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
940 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
941 }
942
943 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
944 pdd->drm_priv, NULL);
945 kfd_process_device_remove_obj_handle(pdd, id);
946 }
947}
948
949static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
950{
951 int i;
952
953 for (i = 0; i < p->n_pdds; i++)
954 kfd_process_device_free_bos(p->pdds[i]);
955}
956
957static void kfd_process_destroy_pdds(struct kfd_process *p)
958{
959 int i;
960
961 for (i = 0; i < p->n_pdds; i++) {
962 struct kfd_process_device *pdd = p->pdds[i];
963
964 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
965 pdd->dev->id, p->pasid);
966
967 if (pdd->drm_file) {
968 amdgpu_amdkfd_gpuvm_release_process_vm(
969 pdd->dev->kgd, pdd->drm_priv);
970 fput(pdd->drm_file);
971 }
972
973 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
974 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
975 get_order(KFD_CWSR_TBA_TMA_SIZE));
976
977 kfree(pdd->qpd.doorbell_bitmap);
978 idr_destroy(&pdd->alloc_idr);
979
980 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
981
982 /*
983 * before destroying pdd, make sure to report availability
984 * for auto suspend
985 */
986 if (pdd->runtime_inuse) {
987 pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
988 pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
989 pdd->runtime_inuse = false;
990 }
991
992 kfree(pdd);
993 p->pdds[i] = NULL;
994 }
995 p->n_pdds = 0;
996}
997
998static void kfd_process_remove_sysfs(struct kfd_process *p)
999{
1000 struct kfd_process_device *pdd;
1001 int i;
1002
1003 if (!p->kobj)
1004 return;
1005
1006 sysfs_remove_file(p->kobj, &p->attr_pasid);
1007 kobject_del(p->kobj_queues);
1008 kobject_put(p->kobj_queues);
1009 p->kobj_queues = NULL;
1010
1011 for (i = 0; i < p->n_pdds; i++) {
1012 pdd = p->pdds[i];
1013
1014 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019 sysfs_remove_file(pdd->kobj_stats,
1020 &pdd->attr_cu_occupancy);
1021 kobject_del(pdd->kobj_stats);
1022 kobject_put(pdd->kobj_stats);
1023 pdd->kobj_stats = NULL;
1024 }
1025
1026 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027 pdd = p->pdds[i];
1028
1029 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032 kobject_del(pdd->kobj_counters);
1033 kobject_put(pdd->kobj_counters);
1034 pdd->kobj_counters = NULL;
1035 }
1036
1037 kobject_del(p->kobj);
1038 kobject_put(p->kobj);
1039 p->kobj = NULL;
1040}
1041
1042/* No process locking is needed in this function, because the process
1043 * is not findable any more. We must assume that no other thread is
1044 * using it any more, otherwise we couldn't safely free the process
1045 * structure in the end.
1046 */
1047static void kfd_process_wq_release(struct work_struct *work)
1048{
1049 struct kfd_process *p = container_of(work, struct kfd_process,
1050 release_work);
1051 kfd_process_remove_sysfs(p);
1052 kfd_iommu_unbind_process(p);
1053
1054 kfd_process_free_outstanding_kfd_bos(p);
1055 svm_range_list_fini(p);
1056
1057 kfd_process_destroy_pdds(p);
1058 dma_fence_put(p->ef);
1059
1060 kfd_event_free_process(p);
1061
1062 kfd_pasid_free(p->pasid);
1063 mutex_destroy(&p->mutex);
1064
1065 put_task_struct(p->lead_thread);
1066
1067 kfree(p);
1068}
1069
1070static void kfd_process_ref_release(struct kref *ref)
1071{
1072 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074 INIT_WORK(&p->release_work, kfd_process_wq_release);
1075 queue_work(kfd_process_wq, &p->release_work);
1076}
1077
1078static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079{
1080 int idx = srcu_read_lock(&kfd_processes_srcu);
1081 struct kfd_process *p = find_process_by_mm(mm);
1082
1083 srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086}
1087
1088static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089{
1090 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091}
1092
1093static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094 struct mm_struct *mm)
1095{
1096 struct kfd_process *p;
1097 int i;
1098
1099 /*
1100 * The kfd_process structure can not be free because the
1101 * mmu_notifier srcu is read locked
1102 */
1103 p = container_of(mn, struct kfd_process, mmu_notifier);
1104 if (WARN_ON(p->mm != mm))
1105 return;
1106
1107 mutex_lock(&kfd_processes_mutex);
1108 hash_del_rcu(&p->kfd_processes);
1109 mutex_unlock(&kfd_processes_mutex);
1110 synchronize_srcu(&kfd_processes_srcu);
1111
1112 cancel_delayed_work_sync(&p->eviction_work);
1113 cancel_delayed_work_sync(&p->restore_work);
1114 cancel_delayed_work_sync(&p->svms.restore_work);
1115
1116 mutex_lock(&p->mutex);
1117
1118 /* Iterate over all process device data structures and if the
1119 * pdd is in debug mode, we should first force unregistration,
1120 * then we will be able to destroy the queues
1121 */
1122 for (i = 0; i < p->n_pdds; i++) {
1123 struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125 mutex_lock(kfd_get_dbgmgr_mutex());
1126 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128 kfd_dbgmgr_destroy(dev->dbgmgr);
1129 dev->dbgmgr = NULL;
1130 }
1131 }
1132 mutex_unlock(kfd_get_dbgmgr_mutex());
1133 }
1134
1135 kfd_process_dequeue_from_all_devices(p);
1136 pqm_uninit(&p->pqm);
1137
1138 /* Indicate to other users that MM is no longer valid */
1139 p->mm = NULL;
1140 /* Signal the eviction fence after user mode queues are
1141 * destroyed. This allows any BOs to be freed without
1142 * triggering pointless evictions or waiting for fences.
1143 */
1144 dma_fence_signal(p->ef);
1145
1146 mutex_unlock(&p->mutex);
1147
1148 mmu_notifier_put(&p->mmu_notifier);
1149}
1150
1151static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152 .release = kfd_process_notifier_release,
1153 .alloc_notifier = kfd_process_alloc_notifier,
1154 .free_notifier = kfd_process_free_notifier,
1155};
1156
1157static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158{
1159 unsigned long offset;
1160 int i;
1161
1162 for (i = 0; i < p->n_pdds; i++) {
1163 struct kfd_dev *dev = p->pdds[i]->dev;
1164 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167 continue;
1168
1169 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172 MAP_SHARED, offset);
1173
1174 if (IS_ERR_VALUE(qpd->tba_addr)) {
1175 int err = qpd->tba_addr;
1176
1177 pr_err("Failure to set tba address. error %d.\n", err);
1178 qpd->tba_addr = 0;
1179 qpd->cwsr_kaddr = NULL;
1180 return err;
1181 }
1182
1183 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184
1185 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188 }
1189
1190 return 0;
1191}
1192
1193static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194{
1195 struct kfd_dev *dev = pdd->dev;
1196 struct qcm_process_device *qpd = &pdd->qpd;
1197 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1200 void *kaddr;
1201 int ret;
1202
1203 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204 return 0;
1205
1206 /* cwsr_base is only set for dGPU */
1207 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209 if (ret)
1210 return ret;
1211
1212 qpd->cwsr_kaddr = kaddr;
1213 qpd->tba_addr = qpd->cwsr_base;
1214
1215 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216
1217 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221 return 0;
1222}
1223
1224void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225 uint64_t tba_addr,
1226 uint64_t tma_addr)
1227{
1228 if (qpd->cwsr_kaddr) {
1229 /* KFD trap handler is bound, record as second-level TBA/TMA
1230 * in first-level TMA. First-level trap will jump to second.
1231 */
1232 uint64_t *tma =
1233 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234 tma[0] = tba_addr;
1235 tma[1] = tma_addr;
1236 } else {
1237 /* No trap handler bound, bind as first-level TBA/TMA. */
1238 qpd->tba_addr = tba_addr;
1239 qpd->tma_addr = tma_addr;
1240 }
1241}
1242
1243bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244{
1245 int i;
1246
1247 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248 * boot time retry setting. Mixing processes with different
1249 * XNACK/retry settings can hang the GPU.
1250 *
1251 * Different GPUs can have different noretry settings depending
1252 * on HW bugs or limitations. We need to find at least one
1253 * XNACK mode for this process that's compatible with all GPUs.
1254 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255 * built for XNACK-off. On GFXv9 it may perform slower.
1256 *
1257 * Therefore applications built for XNACK-off can always be
1258 * supported and will be our fallback if any GPU does not
1259 * support retry.
1260 */
1261 for (i = 0; i < p->n_pdds; i++) {
1262 struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265 * support the SVM APIs and don't need to be considered
1266 * for the XNACK mode selection.
1267 */
1268 if (dev->device_info->asic_family < CHIP_VEGA10)
1269 continue;
1270 /* Aldebaran can always support XNACK because it can support
1271 * per-process XNACK mode selection. But let the dev->noretry
1272 * setting still influence the default XNACK mode.
1273 */
1274 if (supported &&
1275 dev->device_info->asic_family == CHIP_ALDEBARAN)
1276 continue;
1277
1278 /* GFXv10 and later GPUs do not support shader preemption
1279 * during page faults. This can lead to poor QoS for queue
1280 * management and memory-manager-related preemptions or
1281 * even deadlocks.
1282 */
1283 if (dev->device_info->asic_family >= CHIP_NAVI10)
1284 return false;
1285
1286 if (dev->noretry)
1287 return false;
1288 }
1289
1290 return true;
1291}
1292
1293/*
1294 * On return the kfd_process is fully operational and will be freed when the
1295 * mm is released
1296 */
1297static struct kfd_process *create_process(const struct task_struct *thread)
1298{
1299 struct kfd_process *process;
1300 struct mmu_notifier *mn;
1301 int err = -ENOMEM;
1302
1303 process = kzalloc(sizeof(*process), GFP_KERNEL);
1304 if (!process)
1305 goto err_alloc_process;
1306
1307 kref_init(&process->ref);
1308 mutex_init(&process->mutex);
1309 process->mm = thread->mm;
1310 process->lead_thread = thread->group_leader;
1311 process->n_pdds = 0;
1312 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314 process->last_restore_timestamp = get_jiffies_64();
1315 kfd_event_init_process(process);
1316 process->is_32bit_user_mode = in_compat_syscall();
1317
1318 process->pasid = kfd_pasid_alloc();
1319 if (process->pasid == 0)
1320 goto err_alloc_pasid;
1321
1322 err = pqm_init(&process->pqm, process);
1323 if (err != 0)
1324 goto err_process_pqm_init;
1325
1326 /* init process apertures*/
1327 err = kfd_init_apertures(process);
1328 if (err != 0)
1329 goto err_init_apertures;
1330
1331 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1332 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333
1334 err = svm_range_list_init(process);
1335 if (err)
1336 goto err_init_svm_range_list;
1337
1338 /* alloc_notifier needs to find the process in the hash table */
1339 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340 (uintptr_t)process->mm);
1341
1342 /* MMU notifier registration must be the last call that can fail
1343 * because after this point we cannot unwind the process creation.
1344 * After this point, mmu_notifier_put will trigger the cleanup by
1345 * dropping the last process reference in the free_notifier.
1346 */
1347 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348 if (IS_ERR(mn)) {
1349 err = PTR_ERR(mn);
1350 goto err_register_notifier;
1351 }
1352 BUG_ON(mn != &process->mmu_notifier);
1353
1354 get_task_struct(process->lead_thread);
1355
1356 return process;
1357
1358err_register_notifier:
1359 hash_del_rcu(&process->kfd_processes);
1360 svm_range_list_fini(process);
1361err_init_svm_range_list:
1362 kfd_process_free_outstanding_kfd_bos(process);
1363 kfd_process_destroy_pdds(process);
1364err_init_apertures:
1365 pqm_uninit(&process->pqm);
1366err_process_pqm_init:
1367 kfd_pasid_free(process->pasid);
1368err_alloc_pasid:
1369 mutex_destroy(&process->mutex);
1370 kfree(process);
1371err_alloc_process:
1372 return ERR_PTR(err);
1373}
1374
1375static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376 struct kfd_dev *dev)
1377{
1378 unsigned int i;
1379 int range_start = dev->shared_resources.non_cp_doorbells_start;
1380 int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382 if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383 return 0;
1384
1385 qpd->doorbell_bitmap =
1386 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387 BITS_PER_BYTE), GFP_KERNEL);
1388 if (!qpd->doorbell_bitmap)
1389 return -ENOMEM;
1390
1391 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398 if (i >= range_start && i <= range_end) {
1399 set_bit(i, qpd->doorbell_bitmap);
1400 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401 qpd->doorbell_bitmap);
1402 }
1403 }
1404
1405 return 0;
1406}
1407
1408struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409 struct kfd_process *p)
1410{
1411 int i;
1412
1413 for (i = 0; i < p->n_pdds; i++)
1414 if (p->pdds[i]->dev == dev)
1415 return p->pdds[i];
1416
1417 return NULL;
1418}
1419
1420struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421 struct kfd_process *p)
1422{
1423 struct kfd_process_device *pdd = NULL;
1424
1425 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426 return NULL;
1427 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428 if (!pdd)
1429 return NULL;
1430
1431 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432 pr_err("Failed to alloc doorbell for pdd\n");
1433 goto err_free_pdd;
1434 }
1435
1436 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437 pr_err("Failed to init doorbell for process\n");
1438 goto err_free_pdd;
1439 }
1440
1441 pdd->dev = dev;
1442 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444 pdd->qpd.dqm = dev->dqm;
1445 pdd->qpd.pqm = &p->pqm;
1446 pdd->qpd.evicted = 0;
1447 pdd->qpd.mapped_gws_queue = false;
1448 pdd->process = p;
1449 pdd->bound = PDD_UNBOUND;
1450 pdd->already_dequeued = false;
1451 pdd->runtime_inuse = false;
1452 pdd->vram_usage = 0;
1453 pdd->sdma_past_activity_counter = 0;
1454 atomic64_set(&pdd->evict_duration_counter, 0);
1455 p->pdds[p->n_pdds++] = pdd;
1456
1457 /* Init idr used for memory handle translation */
1458 idr_init(&pdd->alloc_idr);
1459
1460 return pdd;
1461
1462err_free_pdd:
1463 kfree(pdd);
1464 return NULL;
1465}
1466
1467/**
1468 * kfd_process_device_init_vm - Initialize a VM for a process-device
1469 *
1470 * @pdd: The process-device
1471 * @drm_file: Optional pointer to a DRM file descriptor
1472 *
1473 * If @drm_file is specified, it will be used to acquire the VM from
1474 * that file descriptor. If successful, the @pdd takes ownership of
1475 * the file descriptor.
1476 *
1477 * If @drm_file is NULL, a new VM is created.
1478 *
1479 * Returns 0 on success, -errno on failure.
1480 */
1481int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482 struct file *drm_file)
1483{
1484 struct kfd_process *p;
1485 struct kfd_dev *dev;
1486 int ret;
1487
1488 if (!drm_file)
1489 return -EINVAL;
1490
1491 if (pdd->drm_priv)
1492 return -EBUSY;
1493
1494 p = pdd->process;
1495 dev = pdd->dev;
1496
1497 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498 dev->kgd, drm_file, p->pasid,
1499 &p->kgd_process_info, &p->ef);
1500 if (ret) {
1501 pr_err("Failed to create process VM object\n");
1502 return ret;
1503 }
1504 pdd->drm_priv = drm_file->private_data;
1505
1506 ret = kfd_process_device_reserve_ib_mem(pdd);
1507 if (ret)
1508 goto err_reserve_ib_mem;
1509 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510 if (ret)
1511 goto err_init_cwsr;
1512
1513 pdd->drm_file = drm_file;
1514
1515 return 0;
1516
1517err_init_cwsr:
1518err_reserve_ib_mem:
1519 kfd_process_device_free_bos(pdd);
1520 pdd->drm_priv = NULL;
1521
1522 return ret;
1523}
1524
1525/*
1526 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527 * to the device.
1528 * Unbinding occurs when the process dies or the device is removed.
1529 *
1530 * Assumes that the process lock is held.
1531 */
1532struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533 struct kfd_process *p)
1534{
1535 struct kfd_process_device *pdd;
1536 int err;
1537
1538 pdd = kfd_get_process_device_data(dev, p);
1539 if (!pdd) {
1540 pr_err("Process device data doesn't exist\n");
1541 return ERR_PTR(-ENOMEM);
1542 }
1543
1544 if (!pdd->drm_priv)
1545 return ERR_PTR(-ENODEV);
1546
1547 /*
1548 * signal runtime-pm system to auto resume and prevent
1549 * further runtime suspend once device pdd is created until
1550 * pdd is destroyed.
1551 */
1552 if (!pdd->runtime_inuse) {
1553 err = pm_runtime_get_sync(dev->ddev->dev);
1554 if (err < 0) {
1555 pm_runtime_put_autosuspend(dev->ddev->dev);
1556 return ERR_PTR(err);
1557 }
1558 }
1559
1560 err = kfd_iommu_bind_process_to_device(pdd);
1561 if (err)
1562 goto out;
1563
1564 /*
1565 * make sure that runtime_usage counter is incremented just once
1566 * per pdd
1567 */
1568 pdd->runtime_inuse = true;
1569
1570 return pdd;
1571
1572out:
1573 /* balance runpm reference count and exit with error */
1574 if (!pdd->runtime_inuse) {
1575 pm_runtime_mark_last_busy(dev->ddev->dev);
1576 pm_runtime_put_autosuspend(dev->ddev->dev);
1577 }
1578
1579 return ERR_PTR(err);
1580}
1581
1582/* Create specific handle mapped to mem from process local memory idr
1583 * Assumes that the process lock is held.
1584 */
1585int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586 void *mem)
1587{
1588 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589}
1590
1591/* Translate specific handle from process local memory idr
1592 * Assumes that the process lock is held.
1593 */
1594void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595 int handle)
1596{
1597 if (handle < 0)
1598 return NULL;
1599
1600 return idr_find(&pdd->alloc_idr, handle);
1601}
1602
1603/* Remove specific handle from process local memory idr
1604 * Assumes that the process lock is held.
1605 */
1606void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607 int handle)
1608{
1609 if (handle >= 0)
1610 idr_remove(&pdd->alloc_idr, handle);
1611}
1612
1613/* This increments the process->ref counter. */
1614struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615{
1616 struct kfd_process *p, *ret_p = NULL;
1617 unsigned int temp;
1618
1619 int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622 if (p->pasid == pasid) {
1623 kref_get(&p->ref);
1624 ret_p = p;
1625 break;
1626 }
1627 }
1628
1629 srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631 return ret_p;
1632}
1633
1634/* This increments the process->ref counter. */
1635struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636{
1637 struct kfd_process *p;
1638
1639 int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641 p = find_process_by_mm(mm);
1642 if (p)
1643 kref_get(&p->ref);
1644
1645 srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647 return p;
1648}
1649
1650/* kfd_process_evict_queues - Evict all user queues of a process
1651 *
1652 * Eviction is reference-counted per process-device. This means multiple
1653 * evictions from different sources can be nested safely.
1654 */
1655int kfd_process_evict_queues(struct kfd_process *p)
1656{
1657 int r = 0;
1658 int i;
1659 unsigned int n_evicted = 0;
1660
1661 for (i = 0; i < p->n_pdds; i++) {
1662 struct kfd_process_device *pdd = p->pdds[i];
1663
1664 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665 &pdd->qpd);
1666 if (r) {
1667 pr_err("Failed to evict process queues\n");
1668 goto fail;
1669 }
1670 n_evicted++;
1671 }
1672
1673 return r;
1674
1675fail:
1676 /* To keep state consistent, roll back partial eviction by
1677 * restoring queues
1678 */
1679 for (i = 0; i < p->n_pdds; i++) {
1680 struct kfd_process_device *pdd = p->pdds[i];
1681
1682 if (n_evicted == 0)
1683 break;
1684 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685 &pdd->qpd))
1686 pr_err("Failed to restore queues\n");
1687
1688 n_evicted--;
1689 }
1690
1691 return r;
1692}
1693
1694/* kfd_process_restore_queues - Restore all user queues of a process */
1695int kfd_process_restore_queues(struct kfd_process *p)
1696{
1697 int r, ret = 0;
1698 int i;
1699
1700 for (i = 0; i < p->n_pdds; i++) {
1701 struct kfd_process_device *pdd = p->pdds[i];
1702
1703 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704 &pdd->qpd);
1705 if (r) {
1706 pr_err("Failed to restore process queues\n");
1707 if (!ret)
1708 ret = r;
1709 }
1710 }
1711
1712 return ret;
1713}
1714
1715int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716{
1717 int i;
1718
1719 for (i = 0; i < p->n_pdds; i++)
1720 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721 return i;
1722 return -EINVAL;
1723}
1724
1725int
1726kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727 uint32_t *gpuid, uint32_t *gpuidx)
1728{
1729 struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730 int i;
1731
1732 for (i = 0; i < p->n_pdds; i++)
1733 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734 *gpuid = p->pdds[i]->dev->id;
1735 *gpuidx = i;
1736 return 0;
1737 }
1738 return -EINVAL;
1739}
1740
1741static void evict_process_worker(struct work_struct *work)
1742{
1743 int ret;
1744 struct kfd_process *p;
1745 struct delayed_work *dwork;
1746
1747 dwork = to_delayed_work(work);
1748
1749 /* Process termination destroys this worker thread. So during the
1750 * lifetime of this thread, kfd_process p will be valid
1751 */
1752 p = container_of(dwork, struct kfd_process, eviction_work);
1753 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754 "Eviction fence mismatch\n");
1755
1756 /* Narrow window of overlap between restore and evict work
1757 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758 * unreserves KFD BOs, it is possible to evicted again. But
1759 * restore has few more steps of finish. So lets wait for any
1760 * previous restore work to complete
1761 */
1762 flush_delayed_work(&p->restore_work);
1763
1764 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765 ret = kfd_process_evict_queues(p);
1766 if (!ret) {
1767 dma_fence_signal(p->ef);
1768 dma_fence_put(p->ef);
1769 p->ef = NULL;
1770 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772
1773 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774 } else
1775 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776}
1777
1778static void restore_process_worker(struct work_struct *work)
1779{
1780 struct delayed_work *dwork;
1781 struct kfd_process *p;
1782 int ret = 0;
1783
1784 dwork = to_delayed_work(work);
1785
1786 /* Process termination destroys this worker thread. So during the
1787 * lifetime of this thread, kfd_process p will be valid
1788 */
1789 p = container_of(dwork, struct kfd_process, restore_work);
1790 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791
1792 /* Setting last_restore_timestamp before successful restoration.
1793 * Otherwise this would have to be set by KGD (restore_process_bos)
1794 * before KFD BOs are unreserved. If not, the process can be evicted
1795 * again before the timestamp is set.
1796 * If restore fails, the timestamp will be set again in the next
1797 * attempt. This would mean that the minimum GPU quanta would be
1798 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799 * functions)
1800 */
1801
1802 p->last_restore_timestamp = get_jiffies_64();
1803 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804 &p->ef);
1805 if (ret) {
1806 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810 WARN(!ret, "reschedule restore work failed\n");
1811 return;
1812 }
1813
1814 ret = kfd_process_restore_queues(p);
1815 if (!ret)
1816 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817 else
1818 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819}
1820
1821void kfd_suspend_all_processes(void)
1822{
1823 struct kfd_process *p;
1824 unsigned int temp;
1825 int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827 WARN(debug_evictions, "Evicting all processes");
1828 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829 cancel_delayed_work_sync(&p->eviction_work);
1830 cancel_delayed_work_sync(&p->restore_work);
1831
1832 if (kfd_process_evict_queues(p))
1833 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834 dma_fence_signal(p->ef);
1835 dma_fence_put(p->ef);
1836 p->ef = NULL;
1837 }
1838 srcu_read_unlock(&kfd_processes_srcu, idx);
1839}
1840
1841int kfd_resume_all_processes(void)
1842{
1843 struct kfd_process *p;
1844 unsigned int temp;
1845 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849 pr_err("Restore process %d failed during resume\n",
1850 p->pasid);
1851 ret = -EFAULT;
1852 }
1853 }
1854 srcu_read_unlock(&kfd_processes_srcu, idx);
1855 return ret;
1856}
1857
1858int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859 struct vm_area_struct *vma)
1860{
1861 struct kfd_process_device *pdd;
1862 struct qcm_process_device *qpd;
1863
1864 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865 pr_err("Incorrect CWSR mapping size.\n");
1866 return -EINVAL;
1867 }
1868
1869 pdd = kfd_get_process_device_data(dev, process);
1870 if (!pdd)
1871 return -EINVAL;
1872 qpd = &pdd->qpd;
1873
1874 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875 get_order(KFD_CWSR_TBA_TMA_SIZE));
1876 if (!qpd->cwsr_kaddr) {
1877 pr_err("Error allocating per process CWSR buffer.\n");
1878 return -ENOMEM;
1879 }
1880
1881 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883 /* Mapping pages to user process */
1884 return remap_pfn_range(vma, vma->vm_start,
1885 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887}
1888
1889void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890{
1891 struct kfd_dev *dev = pdd->dev;
1892
1893 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894 /* Nothing to flush until a VMID is assigned, which
1895 * only happens when the first queue is created.
1896 */
1897 if (pdd->qpd.vmid)
1898 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899 pdd->qpd.vmid);
1900 } else {
1901 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902 pdd->process->pasid, type);
1903 }
1904}
1905
1906#if defined(CONFIG_DEBUG_FS)
1907
1908int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909{
1910 struct kfd_process *p;
1911 unsigned int temp;
1912 int r = 0;
1913
1914 int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917 seq_printf(m, "Process %d PASID 0x%x:\n",
1918 p->lead_thread->tgid, p->pasid);
1919
1920 mutex_lock(&p->mutex);
1921 r = pqm_debugfs_mqds(m, &p->pqm);
1922 mutex_unlock(&p->mutex);
1923
1924 if (r)
1925 break;
1926 }
1927
1928 srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930 return r;
1931}
1932
1933#endif
1934