Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * blk-mq scheduling framework
  3 *
  4 * Copyright (C) 2016 Jens Axboe
  5 */
  6#include <linux/kernel.h>
  7#include <linux/module.h>
  8#include <linux/blk-mq.h>
 
  9
 10#include <trace/events/block.h>
 11
 12#include "blk.h"
 13#include "blk-mq.h"
 14#include "blk-mq-debugfs.h"
 15#include "blk-mq-sched.h"
 16#include "blk-mq-tag.h"
 17#include "blk-wbt.h"
 18
 19void blk_mq_sched_free_hctx_data(struct request_queue *q,
 20				 void (*exit)(struct blk_mq_hw_ctx *))
 21{
 22	struct blk_mq_hw_ctx *hctx;
 23	int i;
 24
 25	queue_for_each_hw_ctx(q, hctx, i) {
 26		if (exit && hctx->sched_data)
 27			exit(hctx);
 28		kfree(hctx->sched_data);
 29		hctx->sched_data = NULL;
 30	}
 31}
 32EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
 33
 34void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
 35{
 36	struct request_queue *q = rq->q;
 37	struct io_context *ioc = rq_ioc(bio);
 38	struct io_cq *icq;
 39
 40	spin_lock_irq(q->queue_lock);
 
 
 
 
 
 
 
 41	icq = ioc_lookup_icq(ioc, q);
 42	spin_unlock_irq(q->queue_lock);
 43
 44	if (!icq) {
 45		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
 46		if (!icq)
 47			return;
 48	}
 49	get_io_context(icq->ioc);
 50	rq->elv.icq = icq;
 51}
 52
 53/*
 54 * Mark a hardware queue as needing a restart. For shared queues, maintain
 55 * a count of how many hardware queues are marked for restart.
 56 */
 57static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 58{
 59	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 60		return;
 61
 62	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
 63		struct request_queue *q = hctx->queue;
 64
 65		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 66			atomic_inc(&q->shared_hctx_restart);
 67	} else
 68		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 69}
 
 70
 71static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
 72{
 73	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 74		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 75
 76	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
 77		struct request_queue *q = hctx->queue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78
 79		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 80			atomic_dec(&q->shared_hctx_restart);
 81	} else
 82		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 
 
 
 
 83
 84	return blk_mq_run_hw_queue(hctx, true);
 
 85}
 86
 
 
 87/*
 88 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 89 * its queue by itself in its completion handler, so we don't need to
 90 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 
 
 
 91 */
 92static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 93{
 94	struct request_queue *q = hctx->queue;
 95	struct elevator_queue *e = q->elevator;
 
 
 
 96	LIST_HEAD(rq_list);
 
 
 
 
 
 
 97
 98	do {
 99		struct request *rq;
 
100
101		if (e->type->ops.mq.has_work &&
102				!e->type->ops.mq.has_work(hctx))
103			break;
104
105		if (!blk_mq_get_dispatch_budget(hctx))
 
106			break;
 
107
108		rq = e->type->ops.mq.dispatch_request(hctx);
 
 
 
 
109		if (!rq) {
110			blk_mq_put_dispatch_budget(hctx);
 
 
 
 
 
 
 
 
111			break;
112		}
113
 
 
114		/*
115		 * Now this rq owns the budget which has to be released
116		 * if this rq won't be queued to driver via .queue_rq()
117		 * in blk_mq_dispatch_rq_list().
118		 */
119		list_add(&rq->queuelist, &rq_list);
120	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121}
122
123static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
124					  struct blk_mq_ctx *ctx)
125{
126	unsigned idx = ctx->index_hw;
127
128	if (++idx == hctx->nr_ctx)
129		idx = 0;
130
131	return hctx->ctxs[idx];
132}
133
134/*
135 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
136 * its queue by itself in its completion handler, so we don't need to
137 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 
 
 
138 */
139static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
140{
141	struct request_queue *q = hctx->queue;
142	LIST_HEAD(rq_list);
143	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
 
 
144
145	do {
146		struct request *rq;
 
 
 
 
 
147
148		if (!sbitmap_any_bit_set(&hctx->ctx_map))
149			break;
150
151		if (!blk_mq_get_dispatch_budget(hctx))
 
152			break;
153
154		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
155		if (!rq) {
156			blk_mq_put_dispatch_budget(hctx);
 
 
 
 
 
 
 
 
157			break;
158		}
159
 
 
160		/*
161		 * Now this rq owns the budget which has to be released
162		 * if this rq won't be queued to driver via .queue_rq()
163		 * in blk_mq_dispatch_rq_list().
164		 */
165		list_add(&rq->queuelist, &rq_list);
166
167		/* round robin for fair dispatch */
168		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
169
170	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
171
172	WRITE_ONCE(hctx->dispatch_from, ctx);
 
173}
174
175void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
176{
177	struct request_queue *q = hctx->queue;
178	struct elevator_queue *e = q->elevator;
179	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
180	LIST_HEAD(rq_list);
181
182	/* RCU or SRCU read lock is needed before checking quiesced flag */
183	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
184		return;
185
186	hctx->run++;
187
188	/*
189	 * If we have previous entries on our dispatch list, grab them first for
190	 * more fair dispatch.
191	 */
192	if (!list_empty_careful(&hctx->dispatch)) {
193		spin_lock(&hctx->lock);
194		if (!list_empty(&hctx->dispatch))
195			list_splice_init(&hctx->dispatch, &rq_list);
196		spin_unlock(&hctx->lock);
197	}
198
199	/*
200	 * Only ask the scheduler for requests, if we didn't have residual
201	 * requests from the dispatch list. This is to avoid the case where
202	 * we only ever dispatch a fraction of the requests available because
203	 * of low device queue depth. Once we pull requests out of the IO
204	 * scheduler, we can no longer merge or sort them. So it's best to
205	 * leave them there for as long as we can. Mark the hw queue as
206	 * needing a restart in that case.
207	 *
208	 * We want to dispatch from the scheduler if there was nothing
209	 * on the dispatch list or we were able to dispatch from the
210	 * dispatch list.
211	 */
212	if (!list_empty(&rq_list)) {
213		blk_mq_sched_mark_restart_hctx(hctx);
214		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
215			if (has_sched_dispatch)
216				blk_mq_do_dispatch_sched(hctx);
217			else
218				blk_mq_do_dispatch_ctx(hctx);
219		}
220	} else if (has_sched_dispatch) {
221		blk_mq_do_dispatch_sched(hctx);
222	} else if (q->mq_ops->get_budget) {
223		/*
224		 * If we need to get budget before queuing request, we
225		 * dequeue request one by one from sw queue for avoiding
226		 * to mess up I/O merge when dispatch runs out of resource.
227		 *
228		 * TODO: get more budgets, and dequeue more requests in
229		 * one time.
230		 */
231		blk_mq_do_dispatch_ctx(hctx);
232	} else {
233		blk_mq_flush_busy_ctxs(hctx, &rq_list);
234		blk_mq_dispatch_rq_list(q, &rq_list, false);
235	}
236}
237
238bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
239			    struct request **merged_request)
240{
241	struct request *rq;
242
243	switch (elv_merge(q, &rq, bio)) {
244	case ELEVATOR_BACK_MERGE:
245		if (!blk_mq_sched_allow_merge(q, rq, bio))
246			return false;
247		if (!bio_attempt_back_merge(q, rq, bio))
248			return false;
249		*merged_request = attempt_back_merge(q, rq);
250		if (!*merged_request)
251			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
252		return true;
253	case ELEVATOR_FRONT_MERGE:
254		if (!blk_mq_sched_allow_merge(q, rq, bio))
255			return false;
256		if (!bio_attempt_front_merge(q, rq, bio))
257			return false;
258		*merged_request = attempt_front_merge(q, rq);
259		if (!*merged_request)
260			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
261		return true;
262	case ELEVATOR_DISCARD_MERGE:
263		return bio_attempt_discard_merge(q, rq, bio);
264	default:
265		return false;
266	}
267}
268EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
269
270/*
271 * Reverse check our software queue for entries that we could potentially
272 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
273 * too much time checking for merges.
274 */
275static bool blk_mq_attempt_merge(struct request_queue *q,
276				 struct blk_mq_ctx *ctx, struct bio *bio)
277{
278	struct request *rq;
279	int checked = 8;
280
281	lockdep_assert_held(&ctx->lock);
282
283	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
284		bool merged = false;
285
286		if (!checked--)
287			break;
288
289		if (!blk_rq_merge_ok(rq, bio))
290			continue;
 
291
292		switch (blk_try_merge(rq, bio)) {
293		case ELEVATOR_BACK_MERGE:
294			if (blk_mq_sched_allow_merge(q, rq, bio))
295				merged = bio_attempt_back_merge(q, rq, bio);
296			break;
297		case ELEVATOR_FRONT_MERGE:
298			if (blk_mq_sched_allow_merge(q, rq, bio))
299				merged = bio_attempt_front_merge(q, rq, bio);
300			break;
301		case ELEVATOR_DISCARD_MERGE:
302			merged = bio_attempt_discard_merge(q, rq, bio);
303			break;
304		default:
305			continue;
306		}
307
308		if (merged)
309			ctx->rq_merged++;
310		return merged;
 
 
 
 
311	}
312
313	return false;
314}
315
316bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
 
317{
318	struct elevator_queue *e = q->elevator;
319	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
320	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
321	bool ret = false;
 
322
323	if (e && e->type->ops.mq.bio_merge) {
324		blk_mq_put_ctx(ctx);
325		return e->type->ops.mq.bio_merge(hctx, bio);
326	}
327
328	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
329		/* default per sw-queue merge */
330		spin_lock(&ctx->lock);
331		ret = blk_mq_attempt_merge(q, ctx, bio);
332		spin_unlock(&ctx->lock);
 
 
 
 
 
 
 
 
 
 
 
 
333	}
334
335	blk_mq_put_ctx(ctx);
 
336	return ret;
337}
338
339bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
 
340{
341	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
342}
343EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
344
345void blk_mq_sched_request_inserted(struct request *rq)
346{
347	trace_block_rq_insert(rq->q, rq);
348}
349EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
350
351static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
352				       bool has_sched,
353				       struct request *rq)
354{
355	/* dispatch flush rq directly */
356	if (rq->rq_flags & RQF_FLUSH_SEQ) {
357		spin_lock(&hctx->lock);
358		list_add(&rq->queuelist, &hctx->dispatch);
359		spin_unlock(&hctx->lock);
 
 
 
 
 
 
 
360		return true;
361	}
362
363	if (has_sched)
364		rq->rq_flags |= RQF_SORTED;
365
366	return false;
367}
368
369/**
370 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
371 * @pos:    loop cursor.
372 * @skip:   the list element that will not be examined. Iteration starts at
373 *          @skip->next.
374 * @head:   head of the list to examine. This list must have at least one
375 *          element, namely @skip.
376 * @member: name of the list_head structure within typeof(*pos).
377 */
378#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
379	for ((pos) = (skip);						\
380	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
381			(pos)->member.next, typeof(*pos), member) :	\
382	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
383	     (pos) != (skip); )
384
385/*
386 * Called after a driver tag has been freed to check whether a hctx needs to
387 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
388 * queues in a round-robin fashion if the tag set of @hctx is shared with other
389 * hardware queues.
390 */
391void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
392{
393	struct blk_mq_tags *const tags = hctx->tags;
394	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
395	struct request_queue *const queue = hctx->queue, *q;
396	struct blk_mq_hw_ctx *hctx2;
397	unsigned int i, j;
398
399	if (set->flags & BLK_MQ_F_TAG_SHARED) {
400		/*
401		 * If this is 0, then we know that no hardware queues
402		 * have RESTART marked. We're done.
403		 */
404		if (!atomic_read(&queue->shared_hctx_restart))
405			return;
406
407		rcu_read_lock();
408		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
409					   tag_set_list) {
410			queue_for_each_hw_ctx(q, hctx2, i)
411				if (hctx2->tags == tags &&
412				    blk_mq_sched_restart_hctx(hctx2))
413					goto done;
414		}
415		j = hctx->queue_num + 1;
416		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
417			if (j == queue->nr_hw_queues)
418				j = 0;
419			hctx2 = queue->queue_hw_ctx[j];
420			if (hctx2->tags == tags &&
421			    blk_mq_sched_restart_hctx(hctx2))
422				break;
423		}
424done:
425		rcu_read_unlock();
426	} else {
427		blk_mq_sched_restart_hctx(hctx);
428	}
429}
430
431void blk_mq_sched_insert_request(struct request *rq, bool at_head,
432				 bool run_queue, bool async)
433{
434	struct request_queue *q = rq->q;
435	struct elevator_queue *e = q->elevator;
436	struct blk_mq_ctx *ctx = rq->mq_ctx;
437	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
438
439	/* flush rq in flush machinery need to be dispatched directly */
440	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
441		blk_insert_flush(rq);
442		goto run;
443	}
444
445	WARN_ON(e && (rq->tag != -1));
446
447	if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448		goto run;
 
449
450	if (e && e->type->ops.mq.insert_requests) {
451		LIST_HEAD(list);
452
453		list_add(&rq->queuelist, &list);
454		e->type->ops.mq.insert_requests(hctx, &list, at_head);
455	} else {
456		spin_lock(&ctx->lock);
457		__blk_mq_insert_request(hctx, rq, at_head);
458		spin_unlock(&ctx->lock);
459	}
460
461run:
462	if (run_queue)
463		blk_mq_run_hw_queue(hctx, async);
464}
465
466void blk_mq_sched_insert_requests(struct request_queue *q,
467				  struct blk_mq_ctx *ctx,
468				  struct list_head *list, bool run_queue_async)
469{
470	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
471	struct elevator_queue *e = hctx->queue->elevator;
472
473	if (e && e->type->ops.mq.insert_requests)
474		e->type->ops.mq.insert_requests(hctx, list, false);
475	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476		blk_mq_insert_requests(hctx, ctx, list);
 
477
478	blk_mq_run_hw_queue(hctx, run_queue_async);
479}
480
481static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
482				   struct blk_mq_hw_ctx *hctx,
483				   unsigned int hctx_idx)
484{
485	if (hctx->sched_tags) {
486		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
487		blk_mq_free_rq_map(hctx->sched_tags);
488		hctx->sched_tags = NULL;
489	}
490}
491
492static int blk_mq_sched_alloc_tags(struct request_queue *q,
493				   struct blk_mq_hw_ctx *hctx,
494				   unsigned int hctx_idx)
495{
496	struct blk_mq_tag_set *set = q->tag_set;
497	int ret;
498
499	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
500					       set->reserved_tags);
501	if (!hctx->sched_tags)
502		return -ENOMEM;
503
504	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
505	if (ret)
506		blk_mq_sched_free_tags(set, hctx, hctx_idx);
 
 
507
508	return ret;
509}
510
 
511static void blk_mq_sched_tags_teardown(struct request_queue *q)
512{
513	struct blk_mq_tag_set *set = q->tag_set;
514	struct blk_mq_hw_ctx *hctx;
515	int i;
516
517	queue_for_each_hw_ctx(q, hctx, i)
518		blk_mq_sched_free_tags(set, hctx, i);
 
 
 
 
519}
520
521int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
522			   unsigned int hctx_idx)
523{
524	struct elevator_queue *e = q->elevator;
525	int ret;
526
527	if (!e)
528		return 0;
529
530	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
 
 
 
 
 
 
 
531	if (ret)
532		return ret;
533
534	if (e->type->ops.mq.init_hctx) {
535		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
536		if (ret) {
537			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
538			return ret;
539		}
540	}
541
542	blk_mq_debugfs_register_sched_hctx(q, hctx);
 
543
544	return 0;
545}
546
547void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
548			    unsigned int hctx_idx)
549{
550	struct elevator_queue *e = q->elevator;
551
552	if (!e)
553		return;
554
555	blk_mq_debugfs_unregister_sched_hctx(hctx);
556
557	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
558		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
559		hctx->sched_data = NULL;
560	}
561
562	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
563}
564
565int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
566{
567	struct blk_mq_hw_ctx *hctx;
568	struct elevator_queue *eq;
569	unsigned int i;
570	int ret;
571
572	if (!e) {
573		q->elevator = NULL;
 
574		return 0;
575	}
576
577	/*
578	 * Default to double of smaller one between hw queue_depth and 128,
579	 * since we don't split into sync/async like the old code did.
580	 * Additionally, this is a per-hw queue depth.
581	 */
582	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
583				   BLKDEV_MAX_RQ);
584
585	queue_for_each_hw_ctx(q, hctx, i) {
586		ret = blk_mq_sched_alloc_tags(q, hctx, i);
587		if (ret)
588			goto err;
589	}
590
591	ret = e->ops.mq.init_sched(q, e);
 
 
 
 
 
 
592	if (ret)
593		goto err;
594
595	blk_mq_debugfs_register_sched(q);
596
597	queue_for_each_hw_ctx(q, hctx, i) {
598		if (e->ops.mq.init_hctx) {
599			ret = e->ops.mq.init_hctx(hctx, i);
600			if (ret) {
601				eq = q->elevator;
 
602				blk_mq_exit_sched(q, eq);
603				kobject_put(&eq->kobj);
604				return ret;
605			}
606		}
607		blk_mq_debugfs_register_sched_hctx(q, hctx);
608	}
609
610	return 0;
611
612err:
 
 
 
 
613	blk_mq_sched_tags_teardown(q);
614	q->elevator = NULL;
615	return ret;
616}
617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
619{
620	struct blk_mq_hw_ctx *hctx;
621	unsigned int i;
 
622
623	queue_for_each_hw_ctx(q, hctx, i) {
624		blk_mq_debugfs_unregister_sched_hctx(hctx);
625		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
626			e->type->ops.mq.exit_hctx(hctx, i);
627			hctx->sched_data = NULL;
628		}
 
629	}
630	blk_mq_debugfs_unregister_sched(q);
631	if (e->type->ops.mq.exit_sched)
632		e->type->ops.mq.exit_sched(e);
633	blk_mq_sched_tags_teardown(q);
 
 
634	q->elevator = NULL;
635}
636
637int blk_mq_sched_init(struct request_queue *q)
638{
639	int ret;
640
641	mutex_lock(&q->sysfs_lock);
642	ret = elevator_init(q, NULL);
643	mutex_unlock(&q->sysfs_lock);
644
645	return ret;
646}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * blk-mq scheduling framework
  4 *
  5 * Copyright (C) 2016 Jens Axboe
  6 */
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/blk-mq.h>
 10#include <linux/list_sort.h>
 11
 12#include <trace/events/block.h>
 13
 14#include "blk.h"
 15#include "blk-mq.h"
 16#include "blk-mq-debugfs.h"
 17#include "blk-mq-sched.h"
 18#include "blk-mq-tag.h"
 19#include "blk-wbt.h"
 20
 21void blk_mq_sched_assign_ioc(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22{
 23	struct request_queue *q = rq->q;
 24	struct io_context *ioc;
 25	struct io_cq *icq;
 26
 27	/*
 28	 * May not have an IO context if it's a passthrough request
 29	 */
 30	ioc = current->io_context;
 31	if (!ioc)
 32		return;
 33
 34	spin_lock_irq(&q->queue_lock);
 35	icq = ioc_lookup_icq(ioc, q);
 36	spin_unlock_irq(&q->queue_lock);
 37
 38	if (!icq) {
 39		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
 40		if (!icq)
 41			return;
 42	}
 43	get_io_context(icq->ioc);
 44	rq->elv.icq = icq;
 45}
 46
 47/*
 48 * Mark a hardware queue as needing a restart. For shared queues, maintain
 49 * a count of how many hardware queues are marked for restart.
 50 */
 51void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
 52{
 53	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 54		return;
 55
 56	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 
 
 
 
 
 
 57}
 58EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
 59
 60void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
 61{
 62	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
 63		return;
 64	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
 65
 66	/*
 67	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
 68	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
 69	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
 70	 * meantime new request added to hctx->dispatch is missed to check in
 71	 * blk_mq_run_hw_queue().
 72	 */
 73	smp_mb();
 74
 75	blk_mq_run_hw_queue(hctx, true);
 76}
 77
 78static int sched_rq_cmp(void *priv, const struct list_head *a,
 79			const struct list_head *b)
 80{
 81	struct request *rqa = container_of(a, struct request, queuelist);
 82	struct request *rqb = container_of(b, struct request, queuelist);
 83
 84	return rqa->mq_hctx > rqb->mq_hctx;
 85}
 86
 87static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
 88{
 89	struct blk_mq_hw_ctx *hctx =
 90		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
 91	struct request *rq;
 92	LIST_HEAD(hctx_list);
 93	unsigned int count = 0;
 94
 95	list_for_each_entry(rq, rq_list, queuelist) {
 96		if (rq->mq_hctx != hctx) {
 97			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
 98			goto dispatch;
 99		}
100		count++;
101	}
102	list_splice_tail_init(rq_list, &hctx_list);
103
104dispatch:
105	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106}
107
108#define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109
110/*
111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112 * its queue by itself in its completion handler, so we don't need to
113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 *
115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116 * be run again.  This is necessary to avoid starving flushes.
117 */
118static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119{
120	struct request_queue *q = hctx->queue;
121	struct elevator_queue *e = q->elevator;
122	bool multi_hctxs = false, run_queue = false;
123	bool dispatched = false, busy = false;
124	unsigned int max_dispatch;
125	LIST_HEAD(rq_list);
126	int count = 0;
127
128	if (hctx->dispatch_busy)
129		max_dispatch = 1;
130	else
131		max_dispatch = hctx->queue->nr_requests;
132
133	do {
134		struct request *rq;
135		int budget_token;
136
137		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
 
138			break;
139
140		if (!list_empty_careful(&hctx->dispatch)) {
141			busy = true;
142			break;
143		}
144
145		budget_token = blk_mq_get_dispatch_budget(q);
146		if (budget_token < 0)
147			break;
148
149		rq = e->type->ops.dispatch_request(hctx);
150		if (!rq) {
151			blk_mq_put_dispatch_budget(q, budget_token);
152			/*
153			 * We're releasing without dispatching. Holding the
154			 * budget could have blocked any "hctx"s with the
155			 * same queue and if we didn't dispatch then there's
156			 * no guarantee anyone will kick the queue.  Kick it
157			 * ourselves.
158			 */
159			run_queue = true;
160			break;
161		}
162
163		blk_mq_set_rq_budget_token(rq, budget_token);
164
165		/*
166		 * Now this rq owns the budget which has to be released
167		 * if this rq won't be queued to driver via .queue_rq()
168		 * in blk_mq_dispatch_rq_list().
169		 */
170		list_add_tail(&rq->queuelist, &rq_list);
171		count++;
172		if (rq->mq_hctx != hctx)
173			multi_hctxs = true;
174
175		/*
176		 * If we cannot get tag for the request, stop dequeueing
177		 * requests from the IO scheduler. We are unlikely to be able
178		 * to submit them anyway and it creates false impression for
179		 * scheduling heuristics that the device can take more IO.
180		 */
181		if (!blk_mq_get_driver_tag(rq))
182			break;
183	} while (count < max_dispatch);
184
185	if (!count) {
186		if (run_queue)
187			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
188	} else if (multi_hctxs) {
189		/*
190		 * Requests from different hctx may be dequeued from some
191		 * schedulers, such as bfq and deadline.
192		 *
193		 * Sort the requests in the list according to their hctx,
194		 * dispatch batching requests from same hctx at a time.
195		 */
196		list_sort(NULL, &rq_list, sched_rq_cmp);
197		do {
198			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
199		} while (!list_empty(&rq_list));
200	} else {
201		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
202	}
203
204	if (busy)
205		return -EAGAIN;
206	return !!dispatched;
207}
208
209static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
210{
211	int ret;
212
213	do {
214		ret = __blk_mq_do_dispatch_sched(hctx);
215	} while (ret == 1);
216
217	return ret;
218}
219
220static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
221					  struct blk_mq_ctx *ctx)
222{
223	unsigned short idx = ctx->index_hw[hctx->type];
224
225	if (++idx == hctx->nr_ctx)
226		idx = 0;
227
228	return hctx->ctxs[idx];
229}
230
231/*
232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
233 * its queue by itself in its completion handler, so we don't need to
234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
235 *
236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
237 * be run again.  This is necessary to avoid starving flushes.
238 */
239static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
240{
241	struct request_queue *q = hctx->queue;
242	LIST_HEAD(rq_list);
243	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
244	int ret = 0;
245	struct request *rq;
246
247	do {
248		int budget_token;
249
250		if (!list_empty_careful(&hctx->dispatch)) {
251			ret = -EAGAIN;
252			break;
253		}
254
255		if (!sbitmap_any_bit_set(&hctx->ctx_map))
256			break;
257
258		budget_token = blk_mq_get_dispatch_budget(q);
259		if (budget_token < 0)
260			break;
261
262		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
263		if (!rq) {
264			blk_mq_put_dispatch_budget(q, budget_token);
265			/*
266			 * We're releasing without dispatching. Holding the
267			 * budget could have blocked any "hctx"s with the
268			 * same queue and if we didn't dispatch then there's
269			 * no guarantee anyone will kick the queue.  Kick it
270			 * ourselves.
271			 */
272			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
273			break;
274		}
275
276		blk_mq_set_rq_budget_token(rq, budget_token);
277
278		/*
279		 * Now this rq owns the budget which has to be released
280		 * if this rq won't be queued to driver via .queue_rq()
281		 * in blk_mq_dispatch_rq_list().
282		 */
283		list_add(&rq->queuelist, &rq_list);
284
285		/* round robin for fair dispatch */
286		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
287
288	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
289
290	WRITE_ONCE(hctx->dispatch_from, ctx);
291	return ret;
292}
293
294static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
295{
296	struct request_queue *q = hctx->queue;
297	const bool has_sched = q->elevator;
298	int ret = 0;
299	LIST_HEAD(rq_list);
300
 
 
 
 
 
 
301	/*
302	 * If we have previous entries on our dispatch list, grab them first for
303	 * more fair dispatch.
304	 */
305	if (!list_empty_careful(&hctx->dispatch)) {
306		spin_lock(&hctx->lock);
307		if (!list_empty(&hctx->dispatch))
308			list_splice_init(&hctx->dispatch, &rq_list);
309		spin_unlock(&hctx->lock);
310	}
311
312	/*
313	 * Only ask the scheduler for requests, if we didn't have residual
314	 * requests from the dispatch list. This is to avoid the case where
315	 * we only ever dispatch a fraction of the requests available because
316	 * of low device queue depth. Once we pull requests out of the IO
317	 * scheduler, we can no longer merge or sort them. So it's best to
318	 * leave them there for as long as we can. Mark the hw queue as
319	 * needing a restart in that case.
320	 *
321	 * We want to dispatch from the scheduler if there was nothing
322	 * on the dispatch list or we were able to dispatch from the
323	 * dispatch list.
324	 */
325	if (!list_empty(&rq_list)) {
326		blk_mq_sched_mark_restart_hctx(hctx);
327		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
328			if (has_sched)
329				ret = blk_mq_do_dispatch_sched(hctx);
330			else
331				ret = blk_mq_do_dispatch_ctx(hctx);
332		}
333	} else if (has_sched) {
334		ret = blk_mq_do_dispatch_sched(hctx);
335	} else if (hctx->dispatch_busy) {
336		/* dequeue request one by one from sw queue if queue is busy */
337		ret = blk_mq_do_dispatch_ctx(hctx);
 
 
 
 
 
 
 
338	} else {
339		blk_mq_flush_busy_ctxs(hctx, &rq_list);
340		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
341	}
 
 
 
 
 
 
342
343	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344}
 
345
346void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
347{
348	struct request_queue *q = hctx->queue;
 
 
 
 
 
 
 
 
 
349
350	/* RCU or SRCU read lock is needed before checking quiesced flag */
351	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
352		return;
353
354	hctx->run++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
356	/*
357	 * A return of -EAGAIN is an indication that hctx->dispatch is not
358	 * empty and we must run again in order to avoid starving flushes.
359	 */
360	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
361		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
362			blk_mq_run_hw_queue(hctx, true);
363	}
 
 
364}
365
366bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
367		unsigned int nr_segs)
368{
369	struct elevator_queue *e = q->elevator;
370	struct blk_mq_ctx *ctx;
371	struct blk_mq_hw_ctx *hctx;
372	bool ret = false;
373	enum hctx_type type;
374
375	if (e && e->type->ops.bio_merge)
376		return e->type->ops.bio_merge(q, bio, nr_segs);
 
 
377
378	ctx = blk_mq_get_ctx(q);
379	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
380	type = hctx->type;
381	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
382	    list_empty_careful(&ctx->rq_lists[type]))
383		return false;
384
385	/* default per sw-queue merge */
386	spin_lock(&ctx->lock);
387	/*
388	 * Reverse check our software queue for entries that we could
389	 * potentially merge with. Currently includes a hand-wavy stop
390	 * count of 8, to not spend too much time checking for merges.
391	 */
392	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
393		ctx->rq_merged++;
394		ret = true;
395	}
396
397	spin_unlock(&ctx->lock);
398
399	return ret;
400}
401
402bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
403				   struct list_head *free)
404{
405	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
406}
407EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
408
 
 
 
 
 
 
409static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
 
410				       struct request *rq)
411{
412	/*
413	 * dispatch flush and passthrough rq directly
414	 *
415	 * passthrough request has to be added to hctx->dispatch directly.
416	 * For some reason, device may be in one situation which can't
417	 * handle FS request, so STS_RESOURCE is always returned and the
418	 * FS request will be added to hctx->dispatch. However passthrough
419	 * request may be required at that time for fixing the problem. If
420	 * passthrough request is added to scheduler queue, there isn't any
421	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
422	 */
423	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
424		return true;
 
 
 
 
425
426	return false;
427}
428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429void blk_mq_sched_insert_request(struct request *rq, bool at_head,
430				 bool run_queue, bool async)
431{
432	struct request_queue *q = rq->q;
433	struct elevator_queue *e = q->elevator;
434	struct blk_mq_ctx *ctx = rq->mq_ctx;
435	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
 
 
 
 
 
436
437	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
438
439	if (blk_mq_sched_bypass_insert(hctx, rq)) {
440		/*
441		 * Firstly normal IO request is inserted to scheduler queue or
442		 * sw queue, meantime we add flush request to dispatch queue(
443		 * hctx->dispatch) directly and there is at most one in-flight
444		 * flush request for each hw queue, so it doesn't matter to add
445		 * flush request to tail or front of the dispatch queue.
446		 *
447		 * Secondly in case of NCQ, flush request belongs to non-NCQ
448		 * command, and queueing it will fail when there is any
449		 * in-flight normal IO request(NCQ command). When adding flush
450		 * rq to the front of hctx->dispatch, it is easier to introduce
451		 * extra time to flush rq's latency because of S_SCHED_RESTART
452		 * compared with adding to the tail of dispatch queue, then
453		 * chance of flush merge is increased, and less flush requests
454		 * will be issued to controller. It is observed that ~10% time
455		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
456		 * drive when adding flush rq to the front of hctx->dispatch.
457		 *
458		 * Simply queue flush rq to the front of hctx->dispatch so that
459		 * intensive flush workloads can benefit in case of NCQ HW.
460		 */
461		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
462		blk_mq_request_bypass_insert(rq, at_head, false);
463		goto run;
464	}
465
466	if (e) {
467		LIST_HEAD(list);
468
469		list_add(&rq->queuelist, &list);
470		e->type->ops.insert_requests(hctx, &list, at_head);
471	} else {
472		spin_lock(&ctx->lock);
473		__blk_mq_insert_request(hctx, rq, at_head);
474		spin_unlock(&ctx->lock);
475	}
476
477run:
478	if (run_queue)
479		blk_mq_run_hw_queue(hctx, async);
480}
481
482void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
483				  struct blk_mq_ctx *ctx,
484				  struct list_head *list, bool run_queue_async)
485{
486	struct elevator_queue *e;
487	struct request_queue *q = hctx->queue;
488
489	/*
490	 * blk_mq_sched_insert_requests() is called from flush plug
491	 * context only, and hold one usage counter to prevent queue
492	 * from being released.
493	 */
494	percpu_ref_get(&q->q_usage_counter);
495
496	e = hctx->queue->elevator;
497	if (e) {
498		e->type->ops.insert_requests(hctx, list, false);
499	} else {
500		/*
501		 * try to issue requests directly if the hw queue isn't
502		 * busy in case of 'none' scheduler, and this way may save
503		 * us one extra enqueue & dequeue to sw queue.
504		 */
505		if (!hctx->dispatch_busy && !e && !run_queue_async) {
506			blk_mq_try_issue_list_directly(hctx, list);
507			if (list_empty(list))
508				goto out;
509		}
510		blk_mq_insert_requests(hctx, ctx, list);
511	}
512
513	blk_mq_run_hw_queue(hctx, run_queue_async);
514 out:
515	percpu_ref_put(&q->q_usage_counter);
 
 
 
 
 
 
 
 
 
516}
517
518static int blk_mq_sched_alloc_tags(struct request_queue *q,
519				   struct blk_mq_hw_ctx *hctx,
520				   unsigned int hctx_idx)
521{
522	struct blk_mq_tag_set *set = q->tag_set;
523	int ret;
524
525	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
526					       set->reserved_tags, set->flags);
527	if (!hctx->sched_tags)
528		return -ENOMEM;
529
530	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
531	if (ret) {
532		blk_mq_free_rq_map(hctx->sched_tags, set->flags);
533		hctx->sched_tags = NULL;
534	}
535
536	return ret;
537}
538
539/* called in queue's release handler, tagset has gone away */
540static void blk_mq_sched_tags_teardown(struct request_queue *q)
541{
 
542	struct blk_mq_hw_ctx *hctx;
543	int i;
544
545	queue_for_each_hw_ctx(q, hctx, i) {
546		if (hctx->sched_tags) {
547			blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
548			hctx->sched_tags = NULL;
549		}
550	}
551}
552
553static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
 
554{
555	struct blk_mq_tag_set *set = queue->tag_set;
556	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
557	struct blk_mq_hw_ctx *hctx;
558	int ret, i;
 
559
560	/*
561	 * Set initial depth at max so that we don't need to reallocate for
562	 * updating nr_requests.
563	 */
564	ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
565				  &queue->sched_breserved_tags,
566				  MAX_SCHED_RQ, set->reserved_tags,
567				  set->numa_node, alloc_policy);
568	if (ret)
569		return ret;
570
571	queue_for_each_hw_ctx(queue, hctx, i) {
572		hctx->sched_tags->bitmap_tags =
573					&queue->sched_bitmap_tags;
574		hctx->sched_tags->breserved_tags =
575					&queue->sched_breserved_tags;
 
576	}
577
578	sbitmap_queue_resize(&queue->sched_bitmap_tags,
579			     queue->nr_requests - set->reserved_tags);
580
581	return 0;
582}
583
584static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
 
585{
586	sbitmap_queue_free(&queue->sched_bitmap_tags);
587	sbitmap_queue_free(&queue->sched_breserved_tags);
 
 
 
 
 
 
 
 
 
 
 
588}
589
590int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
591{
592	struct blk_mq_hw_ctx *hctx;
593	struct elevator_queue *eq;
594	unsigned int i;
595	int ret;
596
597	if (!e) {
598		q->elevator = NULL;
599		q->nr_requests = q->tag_set->queue_depth;
600		return 0;
601	}
602
603	/*
604	 * Default to double of smaller one between hw queue_depth and 128,
605	 * since we don't split into sync/async like the old code did.
606	 * Additionally, this is a per-hw queue depth.
607	 */
608	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
609				   BLKDEV_MAX_RQ);
610
611	queue_for_each_hw_ctx(q, hctx, i) {
612		ret = blk_mq_sched_alloc_tags(q, hctx, i);
613		if (ret)
614			goto err_free_tags;
615	}
616
617	if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
618		ret = blk_mq_init_sched_shared_sbitmap(q);
619		if (ret)
620			goto err_free_tags;
621	}
622
623	ret = e->ops.init_sched(q, e);
624	if (ret)
625		goto err_free_sbitmap;
626
627	blk_mq_debugfs_register_sched(q);
628
629	queue_for_each_hw_ctx(q, hctx, i) {
630		if (e->ops.init_hctx) {
631			ret = e->ops.init_hctx(hctx, i);
632			if (ret) {
633				eq = q->elevator;
634				blk_mq_sched_free_requests(q);
635				blk_mq_exit_sched(q, eq);
636				kobject_put(&eq->kobj);
637				return ret;
638			}
639		}
640		blk_mq_debugfs_register_sched_hctx(q, hctx);
641	}
642
643	return 0;
644
645err_free_sbitmap:
646	if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
647		blk_mq_exit_sched_shared_sbitmap(q);
648err_free_tags:
649	blk_mq_sched_free_requests(q);
650	blk_mq_sched_tags_teardown(q);
651	q->elevator = NULL;
652	return ret;
653}
654
655/*
656 * called in either blk_queue_cleanup or elevator_switch, tagset
657 * is required for freeing requests
658 */
659void blk_mq_sched_free_requests(struct request_queue *q)
660{
661	struct blk_mq_hw_ctx *hctx;
662	int i;
663
664	queue_for_each_hw_ctx(q, hctx, i) {
665		if (hctx->sched_tags)
666			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
667	}
668}
669
670void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
671{
672	struct blk_mq_hw_ctx *hctx;
673	unsigned int i;
674	unsigned int flags = 0;
675
676	queue_for_each_hw_ctx(q, hctx, i) {
677		blk_mq_debugfs_unregister_sched_hctx(hctx);
678		if (e->type->ops.exit_hctx && hctx->sched_data) {
679			e->type->ops.exit_hctx(hctx, i);
680			hctx->sched_data = NULL;
681		}
682		flags = hctx->flags;
683	}
684	blk_mq_debugfs_unregister_sched(q);
685	if (e->type->ops.exit_sched)
686		e->type->ops.exit_sched(e);
687	blk_mq_sched_tags_teardown(q);
688	if (blk_mq_is_sbitmap_shared(flags))
689		blk_mq_exit_sched_shared_sbitmap(q);
690	q->elevator = NULL;
 
 
 
 
 
 
 
 
 
 
 
691}