Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1/* SPDX-License-Identifier: GPL-2.0
   2 *
   3 * IO cost model based controller.
   4 *
   5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
   6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
   7 * Copyright (C) 2019 Facebook
   8 *
   9 * One challenge of controlling IO resources is the lack of trivially
  10 * observable cost metric.  This is distinguished from CPU and memory where
  11 * wallclock time and the number of bytes can serve as accurate enough
  12 * approximations.
  13 *
  14 * Bandwidth and iops are the most commonly used metrics for IO devices but
  15 * depending on the type and specifics of the device, different IO patterns
  16 * easily lead to multiple orders of magnitude variations rendering them
  17 * useless for the purpose of IO capacity distribution.  While on-device
  18 * time, with a lot of clutches, could serve as a useful approximation for
  19 * non-queued rotational devices, this is no longer viable with modern
  20 * devices, even the rotational ones.
  21 *
  22 * While there is no cost metric we can trivially observe, it isn't a
  23 * complete mystery.  For example, on a rotational device, seek cost
  24 * dominates while a contiguous transfer contributes a smaller amount
  25 * proportional to the size.  If we can characterize at least the relative
  26 * costs of these different types of IOs, it should be possible to
  27 * implement a reasonable work-conserving proportional IO resource
  28 * distribution.
  29 *
  30 * 1. IO Cost Model
  31 *
  32 * IO cost model estimates the cost of an IO given its basic parameters and
  33 * history (e.g. the end sector of the last IO).  The cost is measured in
  34 * device time.  If a given IO is estimated to cost 10ms, the device should
  35 * be able to process ~100 of those IOs in a second.
  36 *
  37 * Currently, there's only one builtin cost model - linear.  Each IO is
  38 * classified as sequential or random and given a base cost accordingly.
  39 * On top of that, a size cost proportional to the length of the IO is
  40 * added.  While simple, this model captures the operational
  41 * characteristics of a wide varienty of devices well enough.  Default
  42 * parameters for several different classes of devices are provided and the
  43 * parameters can be configured from userspace via
  44 * /sys/fs/cgroup/io.cost.model.
  45 *
  46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
  47 * device-specific coefficients.
  48 *
  49 * 2. Control Strategy
  50 *
  51 * The device virtual time (vtime) is used as the primary control metric.
  52 * The control strategy is composed of the following three parts.
  53 *
  54 * 2-1. Vtime Distribution
  55 *
  56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
  57 * calculated.  Please consider the following hierarchy where the numbers
  58 * inside parentheses denote the configured weights.
  59 *
  60 *           root
  61 *         /       \
  62 *      A (w:100)  B (w:300)
  63 *      /       \
  64 *  A0 (w:100)  A1 (w:100)
  65 *
  66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
  67 * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
  68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
  69 * 12.5% each.  The distribution mechanism only cares about these flattened
  70 * shares.  They're called hweights (hierarchical weights) and always add
  71 * upto 1 (WEIGHT_ONE).
  72 *
  73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
  74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
  75 * against the device vtime - an IO which takes 10ms on the underlying
  76 * device is considered to take 80ms on A0.
  77 *
  78 * This constitutes the basis of IO capacity distribution.  Each cgroup's
  79 * vtime is running at a rate determined by its hweight.  A cgroup tracks
  80 * the vtime consumed by past IOs and can issue a new IO if doing so
  81 * wouldn't outrun the current device vtime.  Otherwise, the IO is
  82 * suspended until the vtime has progressed enough to cover it.
  83 *
  84 * 2-2. Vrate Adjustment
  85 *
  86 * It's unrealistic to expect the cost model to be perfect.  There are too
  87 * many devices and even on the same device the overall performance
  88 * fluctuates depending on numerous factors such as IO mixture and device
  89 * internal garbage collection.  The controller needs to adapt dynamically.
  90 *
  91 * This is achieved by adjusting the overall IO rate according to how busy
  92 * the device is.  If the device becomes overloaded, we're sending down too
  93 * many IOs and should generally slow down.  If there are waiting issuers
  94 * but the device isn't saturated, we're issuing too few and should
  95 * generally speed up.
  96 *
  97 * To slow down, we lower the vrate - the rate at which the device vtime
  98 * passes compared to the wall clock.  For example, if the vtime is running
  99 * at the vrate of 75%, all cgroups added up would only be able to issue
 100 * 750ms worth of IOs per second, and vice-versa for speeding up.
 101 *
 102 * Device business is determined using two criteria - rq wait and
 103 * completion latencies.
 104 *
 105 * When a device gets saturated, the on-device and then the request queues
 106 * fill up and a bio which is ready to be issued has to wait for a request
 107 * to become available.  When this delay becomes noticeable, it's a clear
 108 * indication that the device is saturated and we lower the vrate.  This
 109 * saturation signal is fairly conservative as it only triggers when both
 110 * hardware and software queues are filled up, and is used as the default
 111 * busy signal.
 112 *
 113 * As devices can have deep queues and be unfair in how the queued commands
 114 * are executed, soley depending on rq wait may not result in satisfactory
 115 * control quality.  For a better control quality, completion latency QoS
 116 * parameters can be configured so that the device is considered saturated
 117 * if N'th percentile completion latency rises above the set point.
 118 *
 119 * The completion latency requirements are a function of both the
 120 * underlying device characteristics and the desired IO latency quality of
 121 * service.  There is an inherent trade-off - the tighter the latency QoS,
 122 * the higher the bandwidth lossage.  Latency QoS is disabled by default
 123 * and can be set through /sys/fs/cgroup/io.cost.qos.
 124 *
 125 * 2-3. Work Conservation
 126 *
 127 * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
 128 * periodically while B is sending out enough parallel IOs to saturate the
 129 * device on its own.  Let's say A's usage amounts to 100ms worth of IO
 130 * cost per second, i.e., 10% of the device capacity.  The naive
 131 * distribution of half and half would lead to 60% utilization of the
 132 * device, a significant reduction in the total amount of work done
 133 * compared to free-for-all competition.  This is too high a cost to pay
 134 * for IO control.
 135 *
 136 * To conserve the total amount of work done, we keep track of how much
 137 * each active cgroup is actually using and yield part of its weight if
 138 * there are other cgroups which can make use of it.  In the above case,
 139 * A's weight will be lowered so that it hovers above the actual usage and
 140 * B would be able to use the rest.
 141 *
 142 * As we don't want to penalize a cgroup for donating its weight, the
 143 * surplus weight adjustment factors in a margin and has an immediate
 144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
 145 *
 146 * Note that adjusting down surplus weights has the same effects as
 147 * accelerating vtime for other cgroups and work conservation can also be
 148 * implemented by adjusting vrate dynamically.  However, squaring who can
 149 * donate and should take back how much requires hweight propagations
 150 * anyway making it easier to implement and understand as a separate
 151 * mechanism.
 152 *
 153 * 3. Monitoring
 154 *
 155 * Instead of debugfs or other clumsy monitoring mechanisms, this
 156 * controller uses a drgn based monitoring script -
 157 * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
 158 * https://github.com/osandov/drgn.  The output looks like the following.
 159 *
 160 *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
 161 *                 active      weight      hweight% inflt% dbt  delay usages%
 162 *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
 163 *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
 164 *
 165 * - per	: Timer period
 166 * - cur_per	: Internal wall and device vtime clock
 167 * - vrate	: Device virtual time rate against wall clock
 168 * - weight	: Surplus-adjusted and configured weights
 169 * - hweight	: Surplus-adjusted and configured hierarchical weights
 170 * - inflt	: The percentage of in-flight IO cost at the end of last period
 171 * - del_ms	: Deferred issuer delay induction level and duration
 172 * - usages	: Usage history
 173 */
 174
 175#include <linux/kernel.h>
 176#include <linux/module.h>
 177#include <linux/timer.h>
 178#include <linux/time64.h>
 179#include <linux/parser.h>
 180#include <linux/sched/signal.h>
 181#include <linux/blk-cgroup.h>
 182#include <asm/local.h>
 183#include <asm/local64.h>
 184#include "blk-rq-qos.h"
 185#include "blk-stat.h"
 186#include "blk-wbt.h"
 187
 188#ifdef CONFIG_TRACEPOINTS
 189
 190/* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
 191#define TRACE_IOCG_PATH_LEN 1024
 192static DEFINE_SPINLOCK(trace_iocg_path_lock);
 193static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
 194
 195#define TRACE_IOCG_PATH(type, iocg, ...)					\
 196	do {									\
 197		unsigned long flags;						\
 198		if (trace_iocost_##type##_enabled()) {				\
 199			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
 200			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
 201				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
 202			trace_iocost_##type(iocg, trace_iocg_path,		\
 203					      ##__VA_ARGS__);			\
 204			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
 205		}								\
 206	} while (0)
 207
 208#else	/* CONFIG_TRACE_POINTS */
 209#define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
 210#endif	/* CONFIG_TRACE_POINTS */
 211
 212enum {
 213	MILLION			= 1000000,
 214
 215	/* timer period is calculated from latency requirements, bound it */
 216	MIN_PERIOD		= USEC_PER_MSEC,
 217	MAX_PERIOD		= USEC_PER_SEC,
 218
 219	/*
 220	 * iocg->vtime is targeted at 50% behind the device vtime, which
 221	 * serves as its IO credit buffer.  Surplus weight adjustment is
 222	 * immediately canceled if the vtime margin runs below 10%.
 223	 */
 224	MARGIN_MIN_PCT		= 10,
 225	MARGIN_LOW_PCT		= 20,
 226	MARGIN_TARGET_PCT	= 50,
 227
 228	INUSE_ADJ_STEP_PCT	= 25,
 229
 230	/* Have some play in timer operations */
 231	TIMER_SLACK_PCT		= 1,
 232
 233	/* 1/64k is granular enough and can easily be handled w/ u32 */
 234	WEIGHT_ONE		= 1 << 16,
 235
 236	/*
 237	 * As vtime is used to calculate the cost of each IO, it needs to
 238	 * be fairly high precision.  For example, it should be able to
 239	 * represent the cost of a single page worth of discard with
 240	 * suffificient accuracy.  At the same time, it should be able to
 241	 * represent reasonably long enough durations to be useful and
 242	 * convenient during operation.
 243	 *
 244	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
 245	 * granularity and days of wrap-around time even at extreme vrates.
 246	 */
 247	VTIME_PER_SEC_SHIFT	= 37,
 248	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
 249	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
 250	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
 251
 252	/* bound vrate adjustments within two orders of magnitude */
 253	VRATE_MIN_PPM		= 10000,	/* 1% */
 254	VRATE_MAX_PPM		= 100000000,	/* 10000% */
 255
 256	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
 257	VRATE_CLAMP_ADJ_PCT	= 4,
 258
 259	/* if IOs end up waiting for requests, issue less */
 260	RQ_WAIT_BUSY_PCT	= 5,
 261
 262	/* unbusy hysterisis */
 263	UNBUSY_THR_PCT		= 75,
 264
 265	/*
 266	 * The effect of delay is indirect and non-linear and a huge amount of
 267	 * future debt can accumulate abruptly while unthrottled. Linearly scale
 268	 * up delay as debt is going up and then let it decay exponentially.
 269	 * This gives us quick ramp ups while delay is accumulating and long
 270	 * tails which can help reducing the frequency of debt explosions on
 271	 * unthrottle. The parameters are experimentally determined.
 272	 *
 273	 * The delay mechanism provides adequate protection and behavior in many
 274	 * cases. However, this is far from ideal and falls shorts on both
 275	 * fronts. The debtors are often throttled too harshly costing a
 276	 * significant level of fairness and possibly total work while the
 277	 * protection against their impacts on the system can be choppy and
 278	 * unreliable.
 279	 *
 280	 * The shortcoming primarily stems from the fact that, unlike for page
 281	 * cache, the kernel doesn't have well-defined back-pressure propagation
 282	 * mechanism and policies for anonymous memory. Fully addressing this
 283	 * issue will likely require substantial improvements in the area.
 284	 */
 285	MIN_DELAY_THR_PCT	= 500,
 286	MAX_DELAY_THR_PCT	= 25000,
 287	MIN_DELAY		= 250,
 288	MAX_DELAY		= 250 * USEC_PER_MSEC,
 289
 290	/* halve debts if avg usage over 100ms is under 50% */
 291	DFGV_USAGE_PCT		= 50,
 292	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
 293
 294	/* don't let cmds which take a very long time pin lagging for too long */
 295	MAX_LAGGING_PERIODS	= 10,
 296
 297	/* switch iff the conditions are met for longer than this */
 298	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
 299
 300	/*
 301	 * Count IO size in 4k pages.  The 12bit shift helps keeping
 302	 * size-proportional components of cost calculation in closer
 303	 * numbers of digits to per-IO cost components.
 304	 */
 305	IOC_PAGE_SHIFT		= 12,
 306	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
 307	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
 308
 309	/* if apart further than 16M, consider randio for linear model */
 310	LCOEF_RANDIO_PAGES	= 4096,
 311};
 312
 313enum ioc_running {
 314	IOC_IDLE,
 315	IOC_RUNNING,
 316	IOC_STOP,
 317};
 318
 319/* io.cost.qos controls including per-dev enable of the whole controller */
 320enum {
 321	QOS_ENABLE,
 322	QOS_CTRL,
 323	NR_QOS_CTRL_PARAMS,
 324};
 325
 326/* io.cost.qos params */
 327enum {
 328	QOS_RPPM,
 329	QOS_RLAT,
 330	QOS_WPPM,
 331	QOS_WLAT,
 332	QOS_MIN,
 333	QOS_MAX,
 334	NR_QOS_PARAMS,
 335};
 336
 337/* io.cost.model controls */
 338enum {
 339	COST_CTRL,
 340	COST_MODEL,
 341	NR_COST_CTRL_PARAMS,
 342};
 343
 344/* builtin linear cost model coefficients */
 345enum {
 346	I_LCOEF_RBPS,
 347	I_LCOEF_RSEQIOPS,
 348	I_LCOEF_RRANDIOPS,
 349	I_LCOEF_WBPS,
 350	I_LCOEF_WSEQIOPS,
 351	I_LCOEF_WRANDIOPS,
 352	NR_I_LCOEFS,
 353};
 354
 355enum {
 356	LCOEF_RPAGE,
 357	LCOEF_RSEQIO,
 358	LCOEF_RRANDIO,
 359	LCOEF_WPAGE,
 360	LCOEF_WSEQIO,
 361	LCOEF_WRANDIO,
 362	NR_LCOEFS,
 363};
 364
 365enum {
 366	AUTOP_INVALID,
 367	AUTOP_HDD,
 368	AUTOP_SSD_QD1,
 369	AUTOP_SSD_DFL,
 370	AUTOP_SSD_FAST,
 371};
 372
 373struct ioc_params {
 374	u32				qos[NR_QOS_PARAMS];
 375	u64				i_lcoefs[NR_I_LCOEFS];
 376	u64				lcoefs[NR_LCOEFS];
 377	u32				too_fast_vrate_pct;
 378	u32				too_slow_vrate_pct;
 379};
 380
 381struct ioc_margins {
 382	s64				min;
 383	s64				low;
 384	s64				target;
 385};
 386
 387struct ioc_missed {
 388	local_t				nr_met;
 389	local_t				nr_missed;
 390	u32				last_met;
 391	u32				last_missed;
 392};
 393
 394struct ioc_pcpu_stat {
 395	struct ioc_missed		missed[2];
 396
 397	local64_t			rq_wait_ns;
 398	u64				last_rq_wait_ns;
 399};
 400
 401/* per device */
 402struct ioc {
 403	struct rq_qos			rqos;
 404
 405	bool				enabled;
 406
 407	struct ioc_params		params;
 408	struct ioc_margins		margins;
 409	u32				period_us;
 410	u32				timer_slack_ns;
 411	u64				vrate_min;
 412	u64				vrate_max;
 413
 414	spinlock_t			lock;
 415	struct timer_list		timer;
 416	struct list_head		active_iocgs;	/* active cgroups */
 417	struct ioc_pcpu_stat __percpu	*pcpu_stat;
 418
 419	enum ioc_running		running;
 420	atomic64_t			vtime_rate;
 421	u64				vtime_base_rate;
 422	s64				vtime_err;
 423
 424	seqcount_spinlock_t		period_seqcount;
 425	u64				period_at;	/* wallclock starttime */
 426	u64				period_at_vtime; /* vtime starttime */
 427
 428	atomic64_t			cur_period;	/* inc'd each period */
 429	int				busy_level;	/* saturation history */
 430
 431	bool				weights_updated;
 432	atomic_t			hweight_gen;	/* for lazy hweights */
 433
 434	/* debt forgivness */
 435	u64				dfgv_period_at;
 436	u64				dfgv_period_rem;
 437	u64				dfgv_usage_us_sum;
 438
 439	u64				autop_too_fast_at;
 440	u64				autop_too_slow_at;
 441	int				autop_idx;
 442	bool				user_qos_params:1;
 443	bool				user_cost_model:1;
 444};
 445
 446struct iocg_pcpu_stat {
 447	local64_t			abs_vusage;
 448};
 449
 450struct iocg_stat {
 451	u64				usage_us;
 452	u64				wait_us;
 453	u64				indebt_us;
 454	u64				indelay_us;
 455};
 456
 457/* per device-cgroup pair */
 458struct ioc_gq {
 459	struct blkg_policy_data		pd;
 460	struct ioc			*ioc;
 461
 462	/*
 463	 * A iocg can get its weight from two sources - an explicit
 464	 * per-device-cgroup configuration or the default weight of the
 465	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
 466	 * configuration.  `weight` is the effective considering both
 467	 * sources.
 468	 *
 469	 * When an idle cgroup becomes active its `active` goes from 0 to
 470	 * `weight`.  `inuse` is the surplus adjusted active weight.
 471	 * `active` and `inuse` are used to calculate `hweight_active` and
 472	 * `hweight_inuse`.
 473	 *
 474	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
 475	 * surplus adjustments.
 476	 *
 477	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
 478	 * to determine and track adjustments.
 479	 */
 480	u32				cfg_weight;
 481	u32				weight;
 482	u32				active;
 483	u32				inuse;
 484
 485	u32				last_inuse;
 486	s64				saved_margin;
 487
 488	sector_t			cursor;		/* to detect randio */
 489
 490	/*
 491	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
 492	 * issued.  If lagging behind device vtime, the delta represents
 493	 * the currently available IO budget.  If running ahead, the
 494	 * overage.
 495	 *
 496	 * `vtime_done` is the same but progressed on completion rather
 497	 * than issue.  The delta behind `vtime` represents the cost of
 498	 * currently in-flight IOs.
 499	 */
 500	atomic64_t			vtime;
 501	atomic64_t			done_vtime;
 502	u64				abs_vdebt;
 503
 504	/* current delay in effect and when it started */
 505	u64				delay;
 506	u64				delay_at;
 507
 508	/*
 509	 * The period this iocg was last active in.  Used for deactivation
 510	 * and invalidating `vtime`.
 511	 */
 512	atomic64_t			active_period;
 513	struct list_head		active_list;
 514
 515	/* see __propagate_weights() and current_hweight() for details */
 516	u64				child_active_sum;
 517	u64				child_inuse_sum;
 518	u64				child_adjusted_sum;
 519	int				hweight_gen;
 520	u32				hweight_active;
 521	u32				hweight_inuse;
 522	u32				hweight_donating;
 523	u32				hweight_after_donation;
 524
 525	struct list_head		walk_list;
 526	struct list_head		surplus_list;
 527
 528	struct wait_queue_head		waitq;
 529	struct hrtimer			waitq_timer;
 530
 531	/* timestamp at the latest activation */
 532	u64				activated_at;
 533
 534	/* statistics */
 535	struct iocg_pcpu_stat __percpu	*pcpu_stat;
 536	struct iocg_stat		local_stat;
 537	struct iocg_stat		desc_stat;
 538	struct iocg_stat		last_stat;
 539	u64				last_stat_abs_vusage;
 540	u64				usage_delta_us;
 541	u64				wait_since;
 542	u64				indebt_since;
 543	u64				indelay_since;
 544
 545	/* this iocg's depth in the hierarchy and ancestors including self */
 546	int				level;
 547	struct ioc_gq			*ancestors[];
 548};
 549
 550/* per cgroup */
 551struct ioc_cgrp {
 552	struct blkcg_policy_data	cpd;
 553	unsigned int			dfl_weight;
 554};
 555
 556struct ioc_now {
 557	u64				now_ns;
 558	u64				now;
 559	u64				vnow;
 560	u64				vrate;
 561};
 562
 563struct iocg_wait {
 564	struct wait_queue_entry		wait;
 565	struct bio			*bio;
 566	u64				abs_cost;
 567	bool				committed;
 568};
 569
 570struct iocg_wake_ctx {
 571	struct ioc_gq			*iocg;
 572	u32				hw_inuse;
 573	s64				vbudget;
 574};
 575
 576static const struct ioc_params autop[] = {
 577	[AUTOP_HDD] = {
 578		.qos				= {
 579			[QOS_RLAT]		=        250000, /* 250ms */
 580			[QOS_WLAT]		=        250000,
 581			[QOS_MIN]		= VRATE_MIN_PPM,
 582			[QOS_MAX]		= VRATE_MAX_PPM,
 583		},
 584		.i_lcoefs			= {
 585			[I_LCOEF_RBPS]		=     174019176,
 586			[I_LCOEF_RSEQIOPS]	=         41708,
 587			[I_LCOEF_RRANDIOPS]	=           370,
 588			[I_LCOEF_WBPS]		=     178075866,
 589			[I_LCOEF_WSEQIOPS]	=         42705,
 590			[I_LCOEF_WRANDIOPS]	=           378,
 591		},
 592	},
 593	[AUTOP_SSD_QD1] = {
 594		.qos				= {
 595			[QOS_RLAT]		=         25000, /* 25ms */
 596			[QOS_WLAT]		=         25000,
 597			[QOS_MIN]		= VRATE_MIN_PPM,
 598			[QOS_MAX]		= VRATE_MAX_PPM,
 599		},
 600		.i_lcoefs			= {
 601			[I_LCOEF_RBPS]		=     245855193,
 602			[I_LCOEF_RSEQIOPS]	=         61575,
 603			[I_LCOEF_RRANDIOPS]	=          6946,
 604			[I_LCOEF_WBPS]		=     141365009,
 605			[I_LCOEF_WSEQIOPS]	=         33716,
 606			[I_LCOEF_WRANDIOPS]	=         26796,
 607		},
 608	},
 609	[AUTOP_SSD_DFL] = {
 610		.qos				= {
 611			[QOS_RLAT]		=         25000, /* 25ms */
 612			[QOS_WLAT]		=         25000,
 613			[QOS_MIN]		= VRATE_MIN_PPM,
 614			[QOS_MAX]		= VRATE_MAX_PPM,
 615		},
 616		.i_lcoefs			= {
 617			[I_LCOEF_RBPS]		=     488636629,
 618			[I_LCOEF_RSEQIOPS]	=          8932,
 619			[I_LCOEF_RRANDIOPS]	=          8518,
 620			[I_LCOEF_WBPS]		=     427891549,
 621			[I_LCOEF_WSEQIOPS]	=         28755,
 622			[I_LCOEF_WRANDIOPS]	=         21940,
 623		},
 624		.too_fast_vrate_pct		=           500,
 625	},
 626	[AUTOP_SSD_FAST] = {
 627		.qos				= {
 628			[QOS_RLAT]		=          5000, /* 5ms */
 629			[QOS_WLAT]		=          5000,
 630			[QOS_MIN]		= VRATE_MIN_PPM,
 631			[QOS_MAX]		= VRATE_MAX_PPM,
 632		},
 633		.i_lcoefs			= {
 634			[I_LCOEF_RBPS]		=    3102524156LLU,
 635			[I_LCOEF_RSEQIOPS]	=        724816,
 636			[I_LCOEF_RRANDIOPS]	=        778122,
 637			[I_LCOEF_WBPS]		=    1742780862LLU,
 638			[I_LCOEF_WSEQIOPS]	=        425702,
 639			[I_LCOEF_WRANDIOPS]	=	 443193,
 640		},
 641		.too_slow_vrate_pct		=            10,
 642	},
 643};
 644
 645/*
 646 * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
 647 * vtime credit shortage and down on device saturation.
 648 */
 649static u32 vrate_adj_pct[] =
 650	{ 0, 0, 0, 0,
 651	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 652	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 653	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
 654
 655static struct blkcg_policy blkcg_policy_iocost;
 656
 657/* accessors and helpers */
 658static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
 659{
 660	return container_of(rqos, struct ioc, rqos);
 661}
 662
 663static struct ioc *q_to_ioc(struct request_queue *q)
 664{
 665	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
 666}
 667
 668static const char *q_name(struct request_queue *q)
 669{
 670	if (blk_queue_registered(q))
 671		return kobject_name(q->kobj.parent);
 672	else
 673		return "<unknown>";
 674}
 675
 676static const char __maybe_unused *ioc_name(struct ioc *ioc)
 677{
 678	return q_name(ioc->rqos.q);
 679}
 680
 681static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
 682{
 683	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
 684}
 685
 686static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
 687{
 688	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
 689}
 690
 691static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
 692{
 693	return pd_to_blkg(&iocg->pd);
 694}
 695
 696static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
 697{
 698	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
 699			    struct ioc_cgrp, cpd);
 700}
 701
 702/*
 703 * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
 704 * weight, the more expensive each IO.  Must round up.
 705 */
 706static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
 707{
 708	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
 709}
 710
 711/*
 712 * The inverse of abs_cost_to_cost().  Must round up.
 713 */
 714static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
 715{
 716	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
 717}
 718
 719static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
 720			    u64 abs_cost, u64 cost)
 721{
 722	struct iocg_pcpu_stat *gcs;
 723
 724	bio->bi_iocost_cost = cost;
 725	atomic64_add(cost, &iocg->vtime);
 726
 727	gcs = get_cpu_ptr(iocg->pcpu_stat);
 728	local64_add(abs_cost, &gcs->abs_vusage);
 729	put_cpu_ptr(gcs);
 730}
 731
 732static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
 733{
 734	if (lock_ioc) {
 735		spin_lock_irqsave(&iocg->ioc->lock, *flags);
 736		spin_lock(&iocg->waitq.lock);
 737	} else {
 738		spin_lock_irqsave(&iocg->waitq.lock, *flags);
 739	}
 740}
 741
 742static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
 743{
 744	if (unlock_ioc) {
 745		spin_unlock(&iocg->waitq.lock);
 746		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
 747	} else {
 748		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
 749	}
 750}
 751
 752#define CREATE_TRACE_POINTS
 753#include <trace/events/iocost.h>
 754
 755static void ioc_refresh_margins(struct ioc *ioc)
 756{
 757	struct ioc_margins *margins = &ioc->margins;
 758	u32 period_us = ioc->period_us;
 759	u64 vrate = ioc->vtime_base_rate;
 760
 761	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
 762	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
 763	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
 764}
 765
 766/* latency Qos params changed, update period_us and all the dependent params */
 767static void ioc_refresh_period_us(struct ioc *ioc)
 768{
 769	u32 ppm, lat, multi, period_us;
 770
 771	lockdep_assert_held(&ioc->lock);
 772
 773	/* pick the higher latency target */
 774	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
 775		ppm = ioc->params.qos[QOS_RPPM];
 776		lat = ioc->params.qos[QOS_RLAT];
 777	} else {
 778		ppm = ioc->params.qos[QOS_WPPM];
 779		lat = ioc->params.qos[QOS_WLAT];
 780	}
 781
 782	/*
 783	 * We want the period to be long enough to contain a healthy number
 784	 * of IOs while short enough for granular control.  Define it as a
 785	 * multiple of the latency target.  Ideally, the multiplier should
 786	 * be scaled according to the percentile so that it would nominally
 787	 * contain a certain number of requests.  Let's be simpler and
 788	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
 789	 */
 790	if (ppm)
 791		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
 792	else
 793		multi = 2;
 794	period_us = multi * lat;
 795	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
 796
 797	/* calculate dependent params */
 798	ioc->period_us = period_us;
 799	ioc->timer_slack_ns = div64_u64(
 800		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
 801		100);
 802	ioc_refresh_margins(ioc);
 803}
 804
 805static int ioc_autop_idx(struct ioc *ioc)
 806{
 807	int idx = ioc->autop_idx;
 808	const struct ioc_params *p = &autop[idx];
 809	u32 vrate_pct;
 810	u64 now_ns;
 811
 812	/* rotational? */
 813	if (!blk_queue_nonrot(ioc->rqos.q))
 814		return AUTOP_HDD;
 815
 816	/* handle SATA SSDs w/ broken NCQ */
 817	if (blk_queue_depth(ioc->rqos.q) == 1)
 818		return AUTOP_SSD_QD1;
 819
 820	/* use one of the normal ssd sets */
 821	if (idx < AUTOP_SSD_DFL)
 822		return AUTOP_SSD_DFL;
 823
 824	/* if user is overriding anything, maintain what was there */
 825	if (ioc->user_qos_params || ioc->user_cost_model)
 826		return idx;
 827
 828	/* step up/down based on the vrate */
 829	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
 830	now_ns = ktime_get_ns();
 831
 832	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
 833		if (!ioc->autop_too_fast_at)
 834			ioc->autop_too_fast_at = now_ns;
 835		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
 836			return idx + 1;
 837	} else {
 838		ioc->autop_too_fast_at = 0;
 839	}
 840
 841	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
 842		if (!ioc->autop_too_slow_at)
 843			ioc->autop_too_slow_at = now_ns;
 844		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
 845			return idx - 1;
 846	} else {
 847		ioc->autop_too_slow_at = 0;
 848	}
 849
 850	return idx;
 851}
 852
 853/*
 854 * Take the followings as input
 855 *
 856 *  @bps	maximum sequential throughput
 857 *  @seqiops	maximum sequential 4k iops
 858 *  @randiops	maximum random 4k iops
 859 *
 860 * and calculate the linear model cost coefficients.
 861 *
 862 *  *@page	per-page cost		1s / (@bps / 4096)
 863 *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
 864 *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
 865 */
 866static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
 867			u64 *page, u64 *seqio, u64 *randio)
 868{
 869	u64 v;
 870
 871	*page = *seqio = *randio = 0;
 872
 873	if (bps)
 874		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
 875					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
 876
 877	if (seqiops) {
 878		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
 879		if (v > *page)
 880			*seqio = v - *page;
 881	}
 882
 883	if (randiops) {
 884		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
 885		if (v > *page)
 886			*randio = v - *page;
 887	}
 888}
 889
 890static void ioc_refresh_lcoefs(struct ioc *ioc)
 891{
 892	u64 *u = ioc->params.i_lcoefs;
 893	u64 *c = ioc->params.lcoefs;
 894
 895	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
 896		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
 897	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
 898		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
 899}
 900
 901static bool ioc_refresh_params(struct ioc *ioc, bool force)
 902{
 903	const struct ioc_params *p;
 904	int idx;
 905
 906	lockdep_assert_held(&ioc->lock);
 907
 908	idx = ioc_autop_idx(ioc);
 909	p = &autop[idx];
 910
 911	if (idx == ioc->autop_idx && !force)
 912		return false;
 913
 914	if (idx != ioc->autop_idx)
 915		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
 916
 917	ioc->autop_idx = idx;
 918	ioc->autop_too_fast_at = 0;
 919	ioc->autop_too_slow_at = 0;
 920
 921	if (!ioc->user_qos_params)
 922		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
 923	if (!ioc->user_cost_model)
 924		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
 925
 926	ioc_refresh_period_us(ioc);
 927	ioc_refresh_lcoefs(ioc);
 928
 929	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
 930					    VTIME_PER_USEC, MILLION);
 931	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
 932				   VTIME_PER_USEC, MILLION);
 933
 934	return true;
 935}
 936
 937/*
 938 * When an iocg accumulates too much vtime or gets deactivated, we throw away
 939 * some vtime, which lowers the overall device utilization. As the exact amount
 940 * which is being thrown away is known, we can compensate by accelerating the
 941 * vrate accordingly so that the extra vtime generated in the current period
 942 * matches what got lost.
 943 */
 944static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
 945{
 946	s64 pleft = ioc->period_at + ioc->period_us - now->now;
 947	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
 948	s64 vcomp, vcomp_min, vcomp_max;
 949
 950	lockdep_assert_held(&ioc->lock);
 951
 952	/* we need some time left in this period */
 953	if (pleft <= 0)
 954		goto done;
 955
 956	/*
 957	 * Calculate how much vrate should be adjusted to offset the error.
 958	 * Limit the amount of adjustment and deduct the adjusted amount from
 959	 * the error.
 960	 */
 961	vcomp = -div64_s64(ioc->vtime_err, pleft);
 962	vcomp_min = -(ioc->vtime_base_rate >> 1);
 963	vcomp_max = ioc->vtime_base_rate;
 964	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
 965
 966	ioc->vtime_err += vcomp * pleft;
 967
 968	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
 969done:
 970	/* bound how much error can accumulate */
 971	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
 972}
 973
 974static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
 975				  int nr_lagging, int nr_shortages,
 976				  int prev_busy_level, u32 *missed_ppm)
 977{
 978	u64 vrate = ioc->vtime_base_rate;
 979	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
 980
 981	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
 982		if (ioc->busy_level != prev_busy_level || nr_lagging)
 983			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
 984						   missed_ppm, rq_wait_pct,
 985						   nr_lagging, nr_shortages);
 986
 987		return;
 988	}
 989
 990	/*
 991	 * If vrate is out of bounds, apply clamp gradually as the
 992	 * bounds can change abruptly.  Otherwise, apply busy_level
 993	 * based adjustment.
 994	 */
 995	if (vrate < vrate_min) {
 996		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
 997		vrate = min(vrate, vrate_min);
 998	} else if (vrate > vrate_max) {
 999		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
1000		vrate = max(vrate, vrate_max);
1001	} else {
1002		int idx = min_t(int, abs(ioc->busy_level),
1003				ARRAY_SIZE(vrate_adj_pct) - 1);
1004		u32 adj_pct = vrate_adj_pct[idx];
1005
1006		if (ioc->busy_level > 0)
1007			adj_pct = 100 - adj_pct;
1008		else
1009			adj_pct = 100 + adj_pct;
1010
1011		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1012			      vrate_min, vrate_max);
1013	}
1014
1015	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1016				   nr_lagging, nr_shortages);
1017
1018	ioc->vtime_base_rate = vrate;
1019	ioc_refresh_margins(ioc);
1020}
1021
1022/* take a snapshot of the current [v]time and vrate */
1023static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1024{
1025	unsigned seq;
1026
1027	now->now_ns = ktime_get();
1028	now->now = ktime_to_us(now->now_ns);
1029	now->vrate = atomic64_read(&ioc->vtime_rate);
1030
1031	/*
1032	 * The current vtime is
1033	 *
1034	 *   vtime at period start + (wallclock time since the start) * vrate
1035	 *
1036	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1037	 * needed, they're seqcount protected.
1038	 */
1039	do {
1040		seq = read_seqcount_begin(&ioc->period_seqcount);
1041		now->vnow = ioc->period_at_vtime +
1042			(now->now - ioc->period_at) * now->vrate;
1043	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1044}
1045
1046static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1047{
1048	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1049
1050	write_seqcount_begin(&ioc->period_seqcount);
1051	ioc->period_at = now->now;
1052	ioc->period_at_vtime = now->vnow;
1053	write_seqcount_end(&ioc->period_seqcount);
1054
1055	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1056	add_timer(&ioc->timer);
1057}
1058
1059/*
1060 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1061 * weight sums and propagate upwards accordingly. If @save, the current margin
1062 * is saved to be used as reference for later inuse in-period adjustments.
1063 */
1064static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1065				bool save, struct ioc_now *now)
1066{
1067	struct ioc *ioc = iocg->ioc;
1068	int lvl;
1069
1070	lockdep_assert_held(&ioc->lock);
1071
1072	/*
1073	 * For an active leaf node, its inuse shouldn't be zero or exceed
1074	 * @active. An active internal node's inuse is solely determined by the
1075	 * inuse to active ratio of its children regardless of @inuse.
1076	 */
1077	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1078		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1079					   iocg->child_active_sum);
1080	} else {
1081		inuse = clamp_t(u32, inuse, 1, active);
1082	}
1083
1084	iocg->last_inuse = iocg->inuse;
1085	if (save)
1086		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1087
1088	if (active == iocg->active && inuse == iocg->inuse)
1089		return;
1090
1091	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1092		struct ioc_gq *parent = iocg->ancestors[lvl];
1093		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1094		u32 parent_active = 0, parent_inuse = 0;
1095
1096		/* update the level sums */
1097		parent->child_active_sum += (s32)(active - child->active);
1098		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1099		/* apply the updates */
1100		child->active = active;
1101		child->inuse = inuse;
1102
1103		/*
1104		 * The delta between inuse and active sums indicates that
1105		 * much of weight is being given away.  Parent's inuse
1106		 * and active should reflect the ratio.
1107		 */
1108		if (parent->child_active_sum) {
1109			parent_active = parent->weight;
1110			parent_inuse = DIV64_U64_ROUND_UP(
1111				parent_active * parent->child_inuse_sum,
1112				parent->child_active_sum);
1113		}
1114
1115		/* do we need to keep walking up? */
1116		if (parent_active == parent->active &&
1117		    parent_inuse == parent->inuse)
1118			break;
1119
1120		active = parent_active;
1121		inuse = parent_inuse;
1122	}
1123
1124	ioc->weights_updated = true;
1125}
1126
1127static void commit_weights(struct ioc *ioc)
1128{
1129	lockdep_assert_held(&ioc->lock);
1130
1131	if (ioc->weights_updated) {
1132		/* paired with rmb in current_hweight(), see there */
1133		smp_wmb();
1134		atomic_inc(&ioc->hweight_gen);
1135		ioc->weights_updated = false;
1136	}
1137}
1138
1139static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1140			      bool save, struct ioc_now *now)
1141{
1142	__propagate_weights(iocg, active, inuse, save, now);
1143	commit_weights(iocg->ioc);
1144}
1145
1146static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1147{
1148	struct ioc *ioc = iocg->ioc;
1149	int lvl;
1150	u32 hwa, hwi;
1151	int ioc_gen;
1152
1153	/* hot path - if uptodate, use cached */
1154	ioc_gen = atomic_read(&ioc->hweight_gen);
1155	if (ioc_gen == iocg->hweight_gen)
1156		goto out;
1157
1158	/*
1159	 * Paired with wmb in commit_weights(). If we saw the updated
1160	 * hweight_gen, all the weight updates from __propagate_weights() are
1161	 * visible too.
1162	 *
1163	 * We can race with weight updates during calculation and get it
1164	 * wrong.  However, hweight_gen would have changed and a future
1165	 * reader will recalculate and we're guaranteed to discard the
1166	 * wrong result soon.
1167	 */
1168	smp_rmb();
1169
1170	hwa = hwi = WEIGHT_ONE;
1171	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1172		struct ioc_gq *parent = iocg->ancestors[lvl];
1173		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1174		u64 active_sum = READ_ONCE(parent->child_active_sum);
1175		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1176		u32 active = READ_ONCE(child->active);
1177		u32 inuse = READ_ONCE(child->inuse);
1178
1179		/* we can race with deactivations and either may read as zero */
1180		if (!active_sum || !inuse_sum)
1181			continue;
1182
1183		active_sum = max_t(u64, active, active_sum);
1184		hwa = div64_u64((u64)hwa * active, active_sum);
1185
1186		inuse_sum = max_t(u64, inuse, inuse_sum);
1187		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1188	}
1189
1190	iocg->hweight_active = max_t(u32, hwa, 1);
1191	iocg->hweight_inuse = max_t(u32, hwi, 1);
1192	iocg->hweight_gen = ioc_gen;
1193out:
1194	if (hw_activep)
1195		*hw_activep = iocg->hweight_active;
1196	if (hw_inusep)
1197		*hw_inusep = iocg->hweight_inuse;
1198}
1199
1200/*
1201 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1202 * other weights stay unchanged.
1203 */
1204static u32 current_hweight_max(struct ioc_gq *iocg)
1205{
1206	u32 hwm = WEIGHT_ONE;
1207	u32 inuse = iocg->active;
1208	u64 child_inuse_sum;
1209	int lvl;
1210
1211	lockdep_assert_held(&iocg->ioc->lock);
1212
1213	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1214		struct ioc_gq *parent = iocg->ancestors[lvl];
1215		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1216
1217		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1218		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1219		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1220					   parent->child_active_sum);
1221	}
1222
1223	return max_t(u32, hwm, 1);
1224}
1225
1226static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1227{
1228	struct ioc *ioc = iocg->ioc;
1229	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1230	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1231	u32 weight;
1232
1233	lockdep_assert_held(&ioc->lock);
1234
1235	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1236	if (weight != iocg->weight && iocg->active)
1237		propagate_weights(iocg, weight, iocg->inuse, true, now);
1238	iocg->weight = weight;
1239}
1240
1241static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1242{
1243	struct ioc *ioc = iocg->ioc;
1244	u64 last_period, cur_period;
1245	u64 vtime, vtarget;
1246	int i;
1247
1248	/*
1249	 * If seem to be already active, just update the stamp to tell the
1250	 * timer that we're still active.  We don't mind occassional races.
1251	 */
1252	if (!list_empty(&iocg->active_list)) {
1253		ioc_now(ioc, now);
1254		cur_period = atomic64_read(&ioc->cur_period);
1255		if (atomic64_read(&iocg->active_period) != cur_period)
1256			atomic64_set(&iocg->active_period, cur_period);
1257		return true;
1258	}
1259
1260	/* racy check on internal node IOs, treat as root level IOs */
1261	if (iocg->child_active_sum)
1262		return false;
1263
1264	spin_lock_irq(&ioc->lock);
1265
1266	ioc_now(ioc, now);
1267
1268	/* update period */
1269	cur_period = atomic64_read(&ioc->cur_period);
1270	last_period = atomic64_read(&iocg->active_period);
1271	atomic64_set(&iocg->active_period, cur_period);
1272
1273	/* already activated or breaking leaf-only constraint? */
1274	if (!list_empty(&iocg->active_list))
1275		goto succeed_unlock;
1276	for (i = iocg->level - 1; i > 0; i--)
1277		if (!list_empty(&iocg->ancestors[i]->active_list))
1278			goto fail_unlock;
1279
1280	if (iocg->child_active_sum)
1281		goto fail_unlock;
1282
1283	/*
1284	 * Always start with the target budget. On deactivation, we throw away
1285	 * anything above it.
1286	 */
1287	vtarget = now->vnow - ioc->margins.target;
1288	vtime = atomic64_read(&iocg->vtime);
1289
1290	atomic64_add(vtarget - vtime, &iocg->vtime);
1291	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1292	vtime = vtarget;
1293
1294	/*
1295	 * Activate, propagate weight and start period timer if not
1296	 * running.  Reset hweight_gen to avoid accidental match from
1297	 * wrapping.
1298	 */
1299	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1300	list_add(&iocg->active_list, &ioc->active_iocgs);
1301
1302	propagate_weights(iocg, iocg->weight,
1303			  iocg->last_inuse ?: iocg->weight, true, now);
1304
1305	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1306			last_period, cur_period, vtime);
1307
1308	iocg->activated_at = now->now;
1309
1310	if (ioc->running == IOC_IDLE) {
1311		ioc->running = IOC_RUNNING;
1312		ioc->dfgv_period_at = now->now;
1313		ioc->dfgv_period_rem = 0;
1314		ioc_start_period(ioc, now);
1315	}
1316
1317succeed_unlock:
1318	spin_unlock_irq(&ioc->lock);
1319	return true;
1320
1321fail_unlock:
1322	spin_unlock_irq(&ioc->lock);
1323	return false;
1324}
1325
1326static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1327{
1328	struct ioc *ioc = iocg->ioc;
1329	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1330	u64 tdelta, delay, new_delay;
1331	s64 vover, vover_pct;
1332	u32 hwa;
1333
1334	lockdep_assert_held(&iocg->waitq.lock);
1335
1336	/* calculate the current delay in effect - 1/2 every second */
1337	tdelta = now->now - iocg->delay_at;
1338	if (iocg->delay)
1339		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1340	else
1341		delay = 0;
1342
1343	/* calculate the new delay from the debt amount */
1344	current_hweight(iocg, &hwa, NULL);
1345	vover = atomic64_read(&iocg->vtime) +
1346		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1347	vover_pct = div64_s64(100 * vover,
1348			      ioc->period_us * ioc->vtime_base_rate);
1349
1350	if (vover_pct <= MIN_DELAY_THR_PCT)
1351		new_delay = 0;
1352	else if (vover_pct >= MAX_DELAY_THR_PCT)
1353		new_delay = MAX_DELAY;
1354	else
1355		new_delay = MIN_DELAY +
1356			div_u64((MAX_DELAY - MIN_DELAY) *
1357				(vover_pct - MIN_DELAY_THR_PCT),
1358				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1359
1360	/* pick the higher one and apply */
1361	if (new_delay > delay) {
1362		iocg->delay = new_delay;
1363		iocg->delay_at = now->now;
1364		delay = new_delay;
1365	}
1366
1367	if (delay >= MIN_DELAY) {
1368		if (!iocg->indelay_since)
1369			iocg->indelay_since = now->now;
1370		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1371		return true;
1372	} else {
1373		if (iocg->indelay_since) {
1374			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1375			iocg->indelay_since = 0;
1376		}
1377		iocg->delay = 0;
1378		blkcg_clear_delay(blkg);
1379		return false;
1380	}
1381}
1382
1383static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1384			    struct ioc_now *now)
1385{
1386	struct iocg_pcpu_stat *gcs;
1387
1388	lockdep_assert_held(&iocg->ioc->lock);
1389	lockdep_assert_held(&iocg->waitq.lock);
1390	WARN_ON_ONCE(list_empty(&iocg->active_list));
1391
1392	/*
1393	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1394	 * inuse donating all of it share to others until its debt is paid off.
1395	 */
1396	if (!iocg->abs_vdebt && abs_cost) {
1397		iocg->indebt_since = now->now;
1398		propagate_weights(iocg, iocg->active, 0, false, now);
1399	}
1400
1401	iocg->abs_vdebt += abs_cost;
1402
1403	gcs = get_cpu_ptr(iocg->pcpu_stat);
1404	local64_add(abs_cost, &gcs->abs_vusage);
1405	put_cpu_ptr(gcs);
1406}
1407
1408static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1409			  struct ioc_now *now)
1410{
1411	lockdep_assert_held(&iocg->ioc->lock);
1412	lockdep_assert_held(&iocg->waitq.lock);
1413
1414	/* make sure that nobody messed with @iocg */
1415	WARN_ON_ONCE(list_empty(&iocg->active_list));
1416	WARN_ON_ONCE(iocg->inuse > 1);
1417
1418	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1419
1420	/* if debt is paid in full, restore inuse */
1421	if (!iocg->abs_vdebt) {
1422		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1423		iocg->indebt_since = 0;
1424
1425		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1426				  false, now);
1427	}
1428}
1429
1430static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1431			int flags, void *key)
1432{
1433	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1434	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1435	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1436
1437	ctx->vbudget -= cost;
1438
1439	if (ctx->vbudget < 0)
1440		return -1;
1441
1442	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1443	wait->committed = true;
1444
1445	/*
1446	 * autoremove_wake_function() removes the wait entry only when it
1447	 * actually changed the task state. We want the wait always removed.
1448	 * Remove explicitly and use default_wake_function(). Note that the
1449	 * order of operations is important as finish_wait() tests whether
1450	 * @wq_entry is removed without grabbing the lock.
1451	 */
1452	default_wake_function(wq_entry, mode, flags, key);
1453	list_del_init_careful(&wq_entry->entry);
1454	return 0;
1455}
1456
1457/*
1458 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1459 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1460 * addition to iocg->waitq.lock.
1461 */
1462static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1463			    struct ioc_now *now)
1464{
1465	struct ioc *ioc = iocg->ioc;
1466	struct iocg_wake_ctx ctx = { .iocg = iocg };
1467	u64 vshortage, expires, oexpires;
1468	s64 vbudget;
1469	u32 hwa;
1470
1471	lockdep_assert_held(&iocg->waitq.lock);
1472
1473	current_hweight(iocg, &hwa, NULL);
1474	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1475
1476	/* pay off debt */
1477	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1478		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1479		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1480		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1481
1482		lockdep_assert_held(&ioc->lock);
1483
1484		atomic64_add(vpay, &iocg->vtime);
1485		atomic64_add(vpay, &iocg->done_vtime);
1486		iocg_pay_debt(iocg, abs_vpay, now);
1487		vbudget -= vpay;
1488	}
1489
1490	if (iocg->abs_vdebt || iocg->delay)
1491		iocg_kick_delay(iocg, now);
1492
1493	/*
1494	 * Debt can still be outstanding if we haven't paid all yet or the
1495	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1496	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1497	 * not positive.
1498	 */
1499	if (iocg->abs_vdebt) {
1500		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1501		vbudget = min_t(s64, 0, vbudget - vdebt);
1502	}
1503
1504	/*
1505	 * Wake up the ones which are due and see how much vtime we'll need for
1506	 * the next one. As paying off debt restores hw_inuse, it must be read
1507	 * after the above debt payment.
1508	 */
1509	ctx.vbudget = vbudget;
1510	current_hweight(iocg, NULL, &ctx.hw_inuse);
1511
1512	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1513
1514	if (!waitqueue_active(&iocg->waitq)) {
1515		if (iocg->wait_since) {
1516			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1517			iocg->wait_since = 0;
1518		}
1519		return;
1520	}
1521
1522	if (!iocg->wait_since)
1523		iocg->wait_since = now->now;
1524
1525	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1526		return;
1527
1528	/* determine next wakeup, add a timer margin to guarantee chunking */
1529	vshortage = -ctx.vbudget;
1530	expires = now->now_ns +
1531		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1532		NSEC_PER_USEC;
1533	expires += ioc->timer_slack_ns;
1534
1535	/* if already active and close enough, don't bother */
1536	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1537	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1538	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1539		return;
1540
1541	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1542			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1543}
1544
1545static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1546{
1547	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1548	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1549	struct ioc_now now;
1550	unsigned long flags;
1551
1552	ioc_now(iocg->ioc, &now);
1553
1554	iocg_lock(iocg, pay_debt, &flags);
1555	iocg_kick_waitq(iocg, pay_debt, &now);
1556	iocg_unlock(iocg, pay_debt, &flags);
1557
1558	return HRTIMER_NORESTART;
1559}
1560
1561static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1562{
1563	u32 nr_met[2] = { };
1564	u32 nr_missed[2] = { };
1565	u64 rq_wait_ns = 0;
1566	int cpu, rw;
1567
1568	for_each_online_cpu(cpu) {
1569		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1570		u64 this_rq_wait_ns;
1571
1572		for (rw = READ; rw <= WRITE; rw++) {
1573			u32 this_met = local_read(&stat->missed[rw].nr_met);
1574			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1575
1576			nr_met[rw] += this_met - stat->missed[rw].last_met;
1577			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1578			stat->missed[rw].last_met = this_met;
1579			stat->missed[rw].last_missed = this_missed;
1580		}
1581
1582		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1583		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1584		stat->last_rq_wait_ns = this_rq_wait_ns;
1585	}
1586
1587	for (rw = READ; rw <= WRITE; rw++) {
1588		if (nr_met[rw] + nr_missed[rw])
1589			missed_ppm_ar[rw] =
1590				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1591						   nr_met[rw] + nr_missed[rw]);
1592		else
1593			missed_ppm_ar[rw] = 0;
1594	}
1595
1596	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1597				   ioc->period_us * NSEC_PER_USEC);
1598}
1599
1600/* was iocg idle this period? */
1601static bool iocg_is_idle(struct ioc_gq *iocg)
1602{
1603	struct ioc *ioc = iocg->ioc;
1604
1605	/* did something get issued this period? */
1606	if (atomic64_read(&iocg->active_period) ==
1607	    atomic64_read(&ioc->cur_period))
1608		return false;
1609
1610	/* is something in flight? */
1611	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1612		return false;
1613
1614	return true;
1615}
1616
1617/*
1618 * Call this function on the target leaf @iocg's to build pre-order traversal
1619 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1620 * ->walk_list and the caller is responsible for dissolving the list after use.
1621 */
1622static void iocg_build_inner_walk(struct ioc_gq *iocg,
1623				  struct list_head *inner_walk)
1624{
1625	int lvl;
1626
1627	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1628
1629	/* find the first ancestor which hasn't been visited yet */
1630	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1631		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1632			break;
1633	}
1634
1635	/* walk down and visit the inner nodes to get pre-order traversal */
1636	while (++lvl <= iocg->level - 1) {
1637		struct ioc_gq *inner = iocg->ancestors[lvl];
1638
1639		/* record traversal order */
1640		list_add_tail(&inner->walk_list, inner_walk);
1641	}
1642}
1643
1644/* collect per-cpu counters and propagate the deltas to the parent */
1645static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1646{
1647	struct ioc *ioc = iocg->ioc;
1648	struct iocg_stat new_stat;
1649	u64 abs_vusage = 0;
1650	u64 vusage_delta;
1651	int cpu;
1652
1653	lockdep_assert_held(&iocg->ioc->lock);
1654
1655	/* collect per-cpu counters */
1656	for_each_possible_cpu(cpu) {
1657		abs_vusage += local64_read(
1658				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1659	}
1660	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1661	iocg->last_stat_abs_vusage = abs_vusage;
1662
1663	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1664	iocg->local_stat.usage_us += iocg->usage_delta_us;
1665
1666	/* propagate upwards */
1667	new_stat.usage_us =
1668		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1669	new_stat.wait_us =
1670		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1671	new_stat.indebt_us =
1672		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1673	new_stat.indelay_us =
1674		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1675
1676	/* propagate the deltas to the parent */
1677	if (iocg->level > 0) {
1678		struct iocg_stat *parent_stat =
1679			&iocg->ancestors[iocg->level - 1]->desc_stat;
1680
1681		parent_stat->usage_us +=
1682			new_stat.usage_us - iocg->last_stat.usage_us;
1683		parent_stat->wait_us +=
1684			new_stat.wait_us - iocg->last_stat.wait_us;
1685		parent_stat->indebt_us +=
1686			new_stat.indebt_us - iocg->last_stat.indebt_us;
1687		parent_stat->indelay_us +=
1688			new_stat.indelay_us - iocg->last_stat.indelay_us;
1689	}
1690
1691	iocg->last_stat = new_stat;
1692}
1693
1694/* get stat counters ready for reading on all active iocgs */
1695static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1696{
1697	LIST_HEAD(inner_walk);
1698	struct ioc_gq *iocg, *tiocg;
1699
1700	/* flush leaves and build inner node walk list */
1701	list_for_each_entry(iocg, target_iocgs, active_list) {
1702		iocg_flush_stat_one(iocg, now);
1703		iocg_build_inner_walk(iocg, &inner_walk);
1704	}
1705
1706	/* keep flushing upwards by walking the inner list backwards */
1707	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1708		iocg_flush_stat_one(iocg, now);
1709		list_del_init(&iocg->walk_list);
1710	}
1711}
1712
1713/*
1714 * Determine what @iocg's hweight_inuse should be after donating unused
1715 * capacity. @hwm is the upper bound and used to signal no donation. This
1716 * function also throws away @iocg's excess budget.
1717 */
1718static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1719				  u32 usage, struct ioc_now *now)
1720{
1721	struct ioc *ioc = iocg->ioc;
1722	u64 vtime = atomic64_read(&iocg->vtime);
1723	s64 excess, delta, target, new_hwi;
1724
1725	/* debt handling owns inuse for debtors */
1726	if (iocg->abs_vdebt)
1727		return 1;
1728
1729	/* see whether minimum margin requirement is met */
1730	if (waitqueue_active(&iocg->waitq) ||
1731	    time_after64(vtime, now->vnow - ioc->margins.min))
1732		return hwm;
1733
1734	/* throw away excess above target */
1735	excess = now->vnow - vtime - ioc->margins.target;
1736	if (excess > 0) {
1737		atomic64_add(excess, &iocg->vtime);
1738		atomic64_add(excess, &iocg->done_vtime);
1739		vtime += excess;
1740		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1741	}
1742
1743	/*
1744	 * Let's say the distance between iocg's and device's vtimes as a
1745	 * fraction of period duration is delta. Assuming that the iocg will
1746	 * consume the usage determined above, we want to determine new_hwi so
1747	 * that delta equals MARGIN_TARGET at the end of the next period.
1748	 *
1749	 * We need to execute usage worth of IOs while spending the sum of the
1750	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1751	 * (delta):
1752	 *
1753	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1754	 *
1755	 * Therefore, the new_hwi is:
1756	 *
1757	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1758	 */
1759	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1760			  now->vnow - ioc->period_at_vtime);
1761	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1762	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1763
1764	return clamp_t(s64, new_hwi, 1, hwm);
1765}
1766
1767/*
1768 * For work-conservation, an iocg which isn't using all of its share should
1769 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1770 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1771 *
1772 * #1 is mathematically simpler but has the drawback of requiring synchronous
1773 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1774 * change due to donation snapbacks as it has the possibility of grossly
1775 * overshooting what's allowed by the model and vrate.
1776 *
1777 * #2 is inherently safe with local operations. The donating iocg can easily
1778 * snap back to higher weights when needed without worrying about impacts on
1779 * other nodes as the impacts will be inherently correct. This also makes idle
1780 * iocg activations safe. The only effect activations have is decreasing
1781 * hweight_inuse of others, the right solution to which is for those iocgs to
1782 * snap back to higher weights.
1783 *
1784 * So, we go with #2. The challenge is calculating how each donating iocg's
1785 * inuse should be adjusted to achieve the target donation amounts. This is done
1786 * using Andy's method described in the following pdf.
1787 *
1788 *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1789 *
1790 * Given the weights and target after-donation hweight_inuse values, Andy's
1791 * method determines how the proportional distribution should look like at each
1792 * sibling level to maintain the relative relationship between all non-donating
1793 * pairs. To roughly summarize, it divides the tree into donating and
1794 * non-donating parts, calculates global donation rate which is used to
1795 * determine the target hweight_inuse for each node, and then derives per-level
1796 * proportions.
1797 *
1798 * The following pdf shows that global distribution calculated this way can be
1799 * achieved by scaling inuse weights of donating leaves and propagating the
1800 * adjustments upwards proportionally.
1801 *
1802 *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1803 *
1804 * Combining the above two, we can determine how each leaf iocg's inuse should
1805 * be adjusted to achieve the target donation.
1806 *
1807 *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1808 *
1809 * The inline comments use symbols from the last pdf.
1810 *
1811 *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1812 *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1813 *   t is the sum of the absolute budgets of donating nodes in the subtree.
1814 *   w is the weight of the node. w = w_f + w_t
1815 *   w_f is the non-donating portion of w. w_f = w * f / b
1816 *   w_b is the donating portion of w. w_t = w * t / b
1817 *   s is the sum of all sibling weights. s = Sum(w) for siblings
1818 *   s_f and s_t are the non-donating and donating portions of s.
1819 *
1820 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1821 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1822 * after adjustments. Subscript r denotes the root node's values.
1823 */
1824static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1825{
1826	LIST_HEAD(over_hwa);
1827	LIST_HEAD(inner_walk);
1828	struct ioc_gq *iocg, *tiocg, *root_iocg;
1829	u32 after_sum, over_sum, over_target, gamma;
1830
1831	/*
1832	 * It's pretty unlikely but possible for the total sum of
1833	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1834	 * confuse the following calculations. If such condition is detected,
1835	 * scale down everyone over its full share equally to keep the sum below
1836	 * WEIGHT_ONE.
1837	 */
1838	after_sum = 0;
1839	over_sum = 0;
1840	list_for_each_entry(iocg, surpluses, surplus_list) {
1841		u32 hwa;
1842
1843		current_hweight(iocg, &hwa, NULL);
1844		after_sum += iocg->hweight_after_donation;
1845
1846		if (iocg->hweight_after_donation > hwa) {
1847			over_sum += iocg->hweight_after_donation;
1848			list_add(&iocg->walk_list, &over_hwa);
1849		}
1850	}
1851
1852	if (after_sum >= WEIGHT_ONE) {
1853		/*
1854		 * The delta should be deducted from the over_sum, calculate
1855		 * target over_sum value.
1856		 */
1857		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1858		WARN_ON_ONCE(over_sum <= over_delta);
1859		over_target = over_sum - over_delta;
1860	} else {
1861		over_target = 0;
1862	}
1863
1864	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1865		if (over_target)
1866			iocg->hweight_after_donation =
1867				div_u64((u64)iocg->hweight_after_donation *
1868					over_target, over_sum);
1869		list_del_init(&iocg->walk_list);
1870	}
1871
1872	/*
1873	 * Build pre-order inner node walk list and prepare for donation
1874	 * adjustment calculations.
1875	 */
1876	list_for_each_entry(iocg, surpluses, surplus_list) {
1877		iocg_build_inner_walk(iocg, &inner_walk);
1878	}
1879
1880	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1881	WARN_ON_ONCE(root_iocg->level > 0);
1882
1883	list_for_each_entry(iocg, &inner_walk, walk_list) {
1884		iocg->child_adjusted_sum = 0;
1885		iocg->hweight_donating = 0;
1886		iocg->hweight_after_donation = 0;
1887	}
1888
1889	/*
1890	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1891	 * up the hierarchy.
1892	 */
1893	list_for_each_entry(iocg, surpluses, surplus_list) {
1894		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1895
1896		parent->hweight_donating += iocg->hweight_donating;
1897		parent->hweight_after_donation += iocg->hweight_after_donation;
1898	}
1899
1900	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1901		if (iocg->level > 0) {
1902			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1903
1904			parent->hweight_donating += iocg->hweight_donating;
1905			parent->hweight_after_donation += iocg->hweight_after_donation;
1906		}
1907	}
1908
1909	/*
1910	 * Calculate inner hwa's (b) and make sure the donation values are
1911	 * within the accepted ranges as we're doing low res calculations with
1912	 * roundups.
1913	 */
1914	list_for_each_entry(iocg, &inner_walk, walk_list) {
1915		if (iocg->level) {
1916			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1917
1918			iocg->hweight_active = DIV64_U64_ROUND_UP(
1919				(u64)parent->hweight_active * iocg->active,
1920				parent->child_active_sum);
1921
1922		}
1923
1924		iocg->hweight_donating = min(iocg->hweight_donating,
1925					     iocg->hweight_active);
1926		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1927						   iocg->hweight_donating - 1);
1928		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1929				 iocg->hweight_donating <= 1 ||
1930				 iocg->hweight_after_donation == 0)) {
1931			pr_warn("iocg: invalid donation weights in ");
1932			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1933			pr_cont(": active=%u donating=%u after=%u\n",
1934				iocg->hweight_active, iocg->hweight_donating,
1935				iocg->hweight_after_donation);
1936		}
1937	}
1938
1939	/*
1940	 * Calculate the global donation rate (gamma) - the rate to adjust
1941	 * non-donating budgets by.
1942	 *
1943	 * No need to use 64bit multiplication here as the first operand is
1944	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1945	 *
1946	 * We know that there are beneficiary nodes and the sum of the donating
1947	 * hweights can't be whole; however, due to the round-ups during hweight
1948	 * calculations, root_iocg->hweight_donating might still end up equal to
1949	 * or greater than whole. Limit the range when calculating the divider.
1950	 *
1951	 * gamma = (1 - t_r') / (1 - t_r)
1952	 */
1953	gamma = DIV_ROUND_UP(
1954		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1955		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1956
1957	/*
1958	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1959	 * nodes.
1960	 */
1961	list_for_each_entry(iocg, &inner_walk, walk_list) {
1962		struct ioc_gq *parent;
1963		u32 inuse, wpt, wptp;
1964		u64 st, sf;
1965
1966		if (iocg->level == 0) {
1967			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1968			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1969				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1970				WEIGHT_ONE - iocg->hweight_after_donation);
1971			continue;
1972		}
1973
1974		parent = iocg->ancestors[iocg->level - 1];
1975
1976		/* b' = gamma * b_f + b_t' */
1977		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1978			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1979			WEIGHT_ONE) + iocg->hweight_after_donation;
1980
1981		/* w' = s' * b' / b'_p */
1982		inuse = DIV64_U64_ROUND_UP(
1983			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1984			parent->hweight_inuse);
1985
1986		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1987		st = DIV64_U64_ROUND_UP(
1988			iocg->child_active_sum * iocg->hweight_donating,
1989			iocg->hweight_active);
1990		sf = iocg->child_active_sum - st;
1991		wpt = DIV64_U64_ROUND_UP(
1992			(u64)iocg->active * iocg->hweight_donating,
1993			iocg->hweight_active);
1994		wptp = DIV64_U64_ROUND_UP(
1995			(u64)inuse * iocg->hweight_after_donation,
1996			iocg->hweight_inuse);
1997
1998		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1999	}
2000
2001	/*
2002	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
2003	 * we can finally determine leaf adjustments.
2004	 */
2005	list_for_each_entry(iocg, surpluses, surplus_list) {
2006		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2007		u32 inuse;
2008
2009		/*
2010		 * In-debt iocgs participated in the donation calculation with
2011		 * the minimum target hweight_inuse. Configuring inuse
2012		 * accordingly would work fine but debt handling expects
2013		 * @iocg->inuse stay at the minimum and we don't wanna
2014		 * interfere.
2015		 */
2016		if (iocg->abs_vdebt) {
2017			WARN_ON_ONCE(iocg->inuse > 1);
2018			continue;
2019		}
2020
2021		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2022		inuse = DIV64_U64_ROUND_UP(
2023			parent->child_adjusted_sum * iocg->hweight_after_donation,
2024			parent->hweight_inuse);
2025
2026		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2027				iocg->inuse, inuse,
2028				iocg->hweight_inuse,
2029				iocg->hweight_after_donation);
2030
2031		__propagate_weights(iocg, iocg->active, inuse, true, now);
2032	}
2033
2034	/* walk list should be dissolved after use */
2035	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2036		list_del_init(&iocg->walk_list);
2037}
2038
2039/*
2040 * A low weight iocg can amass a large amount of debt, for example, when
2041 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2042 * memory paired with a slow IO device, the debt can span multiple seconds or
2043 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2044 * up blocked paying its debt while the IO device is idle.
2045 *
2046 * The following protects against such cases. If the device has been
2047 * sufficiently idle for a while, the debts are halved and delays are
2048 * recalculated.
2049 */
2050static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2051			      struct ioc_now *now)
2052{
2053	struct ioc_gq *iocg;
2054	u64 dur, usage_pct, nr_cycles;
2055
2056	/* if no debtor, reset the cycle */
2057	if (!nr_debtors) {
2058		ioc->dfgv_period_at = now->now;
2059		ioc->dfgv_period_rem = 0;
2060		ioc->dfgv_usage_us_sum = 0;
2061		return;
2062	}
2063
2064	/*
2065	 * Debtors can pass through a lot of writes choking the device and we
2066	 * don't want to be forgiving debts while the device is struggling from
2067	 * write bursts. If we're missing latency targets, consider the device
2068	 * fully utilized.
2069	 */
2070	if (ioc->busy_level > 0)
2071		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2072
2073	ioc->dfgv_usage_us_sum += usage_us_sum;
2074	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2075		return;
2076
2077	/*
2078	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2079	 * average usage and reset the period counters.
2080	 */
2081	dur = now->now - ioc->dfgv_period_at;
2082	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2083
2084	ioc->dfgv_period_at = now->now;
2085	ioc->dfgv_usage_us_sum = 0;
2086
2087	/* if was too busy, reset everything */
2088	if (usage_pct > DFGV_USAGE_PCT) {
2089		ioc->dfgv_period_rem = 0;
2090		return;
2091	}
2092
2093	/*
2094	 * Usage is lower than threshold. Let's forgive some debts. Debt
2095	 * forgiveness runs off of the usual ioc timer but its period usually
2096	 * doesn't match ioc's. Compensate the difference by performing the
2097	 * reduction as many times as would fit in the duration since the last
2098	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2099	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2100	 * reductions is doubled.
2101	 */
2102	nr_cycles = dur + ioc->dfgv_period_rem;
2103	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2104
2105	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2106		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2107
2108		if (!iocg->abs_vdebt && !iocg->delay)
2109			continue;
2110
2111		spin_lock(&iocg->waitq.lock);
2112
2113		old_debt = iocg->abs_vdebt;
2114		old_delay = iocg->delay;
2115
2116		if (iocg->abs_vdebt)
2117			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2118		if (iocg->delay)
2119			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2120
2121		iocg_kick_waitq(iocg, true, now);
2122
2123		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2124				old_debt, iocg->abs_vdebt,
2125				old_delay, iocg->delay);
2126
2127		spin_unlock(&iocg->waitq.lock);
2128	}
2129}
2130
2131/*
2132 * Check the active iocgs' state to avoid oversleeping and deactive
2133 * idle iocgs.
2134 *
2135 * Since waiters determine the sleep durations based on the vrate
2136 * they saw at the time of sleep, if vrate has increased, some
2137 * waiters could be sleeping for too long. Wake up tardy waiters
2138 * which should have woken up in the last period and expire idle
2139 * iocgs.
2140 */
2141static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2142{
2143	int nr_debtors = 0;
2144	struct ioc_gq *iocg, *tiocg;
2145
2146	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2147		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2148		    !iocg->delay && !iocg_is_idle(iocg))
2149			continue;
2150
2151		spin_lock(&iocg->waitq.lock);
2152
2153		/* flush wait and indebt stat deltas */
2154		if (iocg->wait_since) {
2155			iocg->local_stat.wait_us += now->now - iocg->wait_since;
2156			iocg->wait_since = now->now;
2157		}
2158		if (iocg->indebt_since) {
2159			iocg->local_stat.indebt_us +=
2160				now->now - iocg->indebt_since;
2161			iocg->indebt_since = now->now;
2162		}
2163		if (iocg->indelay_since) {
2164			iocg->local_stat.indelay_us +=
2165				now->now - iocg->indelay_since;
2166			iocg->indelay_since = now->now;
2167		}
2168
2169		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2170		    iocg->delay) {
2171			/* might be oversleeping vtime / hweight changes, kick */
2172			iocg_kick_waitq(iocg, true, now);
2173			if (iocg->abs_vdebt || iocg->delay)
2174				nr_debtors++;
2175		} else if (iocg_is_idle(iocg)) {
2176			/* no waiter and idle, deactivate */
2177			u64 vtime = atomic64_read(&iocg->vtime);
2178			s64 excess;
2179
2180			/*
2181			 * @iocg has been inactive for a full duration and will
2182			 * have a high budget. Account anything above target as
2183			 * error and throw away. On reactivation, it'll start
2184			 * with the target budget.
2185			 */
2186			excess = now->vnow - vtime - ioc->margins.target;
2187			if (excess > 0) {
2188				u32 old_hwi;
2189
2190				current_hweight(iocg, NULL, &old_hwi);
2191				ioc->vtime_err -= div64_u64(excess * old_hwi,
2192							    WEIGHT_ONE);
2193			}
2194
2195			TRACE_IOCG_PATH(iocg_idle, iocg, now,
2196					atomic64_read(&iocg->active_period),
2197					atomic64_read(&ioc->cur_period), vtime);
2198			__propagate_weights(iocg, 0, 0, false, now);
2199			list_del_init(&iocg->active_list);
2200		}
2201
2202		spin_unlock(&iocg->waitq.lock);
2203	}
2204
2205	commit_weights(ioc);
2206	return nr_debtors;
2207}
2208
2209static void ioc_timer_fn(struct timer_list *timer)
2210{
2211	struct ioc *ioc = container_of(timer, struct ioc, timer);
2212	struct ioc_gq *iocg, *tiocg;
2213	struct ioc_now now;
2214	LIST_HEAD(surpluses);
2215	int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2216	u64 usage_us_sum = 0;
2217	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2218	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2219	u32 missed_ppm[2], rq_wait_pct;
2220	u64 period_vtime;
2221	int prev_busy_level;
2222
2223	/* how were the latencies during the period? */
2224	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2225
2226	/* take care of active iocgs */
2227	spin_lock_irq(&ioc->lock);
2228
2229	ioc_now(ioc, &now);
2230
2231	period_vtime = now.vnow - ioc->period_at_vtime;
2232	if (WARN_ON_ONCE(!period_vtime)) {
2233		spin_unlock_irq(&ioc->lock);
2234		return;
2235	}
2236
2237	nr_debtors = ioc_check_iocgs(ioc, &now);
2238
2239	/*
2240	 * Wait and indebt stat are flushed above and the donation calculation
2241	 * below needs updated usage stat. Let's bring stat up-to-date.
2242	 */
2243	iocg_flush_stat(&ioc->active_iocgs, &now);
2244
2245	/* calc usage and see whether some weights need to be moved around */
2246	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2247		u64 vdone, vtime, usage_us;
2248		u32 hw_active, hw_inuse;
2249
2250		/*
2251		 * Collect unused and wind vtime closer to vnow to prevent
2252		 * iocgs from accumulating a large amount of budget.
2253		 */
2254		vdone = atomic64_read(&iocg->done_vtime);
2255		vtime = atomic64_read(&iocg->vtime);
2256		current_hweight(iocg, &hw_active, &hw_inuse);
2257
2258		/*
2259		 * Latency QoS detection doesn't account for IOs which are
2260		 * in-flight for longer than a period.  Detect them by
2261		 * comparing vdone against period start.  If lagging behind
2262		 * IOs from past periods, don't increase vrate.
2263		 */
2264		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2265		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2266		    time_after64(vtime, vdone) &&
2267		    time_after64(vtime, now.vnow -
2268				 MAX_LAGGING_PERIODS * period_vtime) &&
2269		    time_before64(vdone, now.vnow - period_vtime))
2270			nr_lagging++;
2271
2272		/*
2273		 * Determine absolute usage factoring in in-flight IOs to avoid
2274		 * high-latency completions appearing as idle.
2275		 */
2276		usage_us = iocg->usage_delta_us;
2277		usage_us_sum += usage_us;
2278
2279		/* see whether there's surplus vtime */
2280		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2281		if (hw_inuse < hw_active ||
2282		    (!waitqueue_active(&iocg->waitq) &&
2283		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2284			u32 hwa, old_hwi, hwm, new_hwi, usage;
2285			u64 usage_dur;
2286
2287			if (vdone != vtime) {
2288				u64 inflight_us = DIV64_U64_ROUND_UP(
2289					cost_to_abs_cost(vtime - vdone, hw_inuse),
2290					ioc->vtime_base_rate);
2291
2292				usage_us = max(usage_us, inflight_us);
2293			}
2294
2295			/* convert to hweight based usage ratio */
2296			if (time_after64(iocg->activated_at, ioc->period_at))
2297				usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2298			else
2299				usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2300
2301			usage = clamp_t(u32,
2302				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2303						   usage_dur),
2304				1, WEIGHT_ONE);
2305
2306			/*
2307			 * Already donating or accumulated enough to start.
2308			 * Determine the donation amount.
2309			 */
2310			current_hweight(iocg, &hwa, &old_hwi);
2311			hwm = current_hweight_max(iocg);
2312			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2313							 usage, &now);
2314			if (new_hwi < hwm) {
2315				iocg->hweight_donating = hwa;
2316				iocg->hweight_after_donation = new_hwi;
2317				list_add(&iocg->surplus_list, &surpluses);
2318			} else {
2319				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2320						iocg->inuse, iocg->active,
2321						iocg->hweight_inuse, new_hwi);
2322
2323				__propagate_weights(iocg, iocg->active,
2324						    iocg->active, true, &now);
2325				nr_shortages++;
2326			}
2327		} else {
2328			/* genuinely short on vtime */
2329			nr_shortages++;
2330		}
2331	}
2332
2333	if (!list_empty(&surpluses) && nr_shortages)
2334		transfer_surpluses(&surpluses, &now);
2335
2336	commit_weights(ioc);
2337
2338	/* surplus list should be dissolved after use */
2339	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2340		list_del_init(&iocg->surplus_list);
2341
2342	/*
2343	 * If q is getting clogged or we're missing too much, we're issuing
2344	 * too much IO and should lower vtime rate.  If we're not missing
2345	 * and experiencing shortages but not surpluses, we're too stingy
2346	 * and should increase vtime rate.
2347	 */
2348	prev_busy_level = ioc->busy_level;
2349	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2350	    missed_ppm[READ] > ppm_rthr ||
2351	    missed_ppm[WRITE] > ppm_wthr) {
2352		/* clearly missing QoS targets, slow down vrate */
2353		ioc->busy_level = max(ioc->busy_level, 0);
2354		ioc->busy_level++;
2355	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2356		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2357		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2358		/* QoS targets are being met with >25% margin */
2359		if (nr_shortages) {
2360			/*
2361			 * We're throttling while the device has spare
2362			 * capacity.  If vrate was being slowed down, stop.
2363			 */
2364			ioc->busy_level = min(ioc->busy_level, 0);
2365
2366			/*
2367			 * If there are IOs spanning multiple periods, wait
2368			 * them out before pushing the device harder.
2369			 */
2370			if (!nr_lagging)
2371				ioc->busy_level--;
2372		} else {
2373			/*
2374			 * Nobody is being throttled and the users aren't
2375			 * issuing enough IOs to saturate the device.  We
2376			 * simply don't know how close the device is to
2377			 * saturation.  Coast.
2378			 */
2379			ioc->busy_level = 0;
2380		}
2381	} else {
2382		/* inside the hysterisis margin, we're good */
2383		ioc->busy_level = 0;
2384	}
2385
2386	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2387
2388	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2389			      prev_busy_level, missed_ppm);
2390
2391	ioc_refresh_params(ioc, false);
2392
2393	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2394
2395	/*
2396	 * This period is done.  Move onto the next one.  If nothing's
2397	 * going on with the device, stop the timer.
2398	 */
2399	atomic64_inc(&ioc->cur_period);
2400
2401	if (ioc->running != IOC_STOP) {
2402		if (!list_empty(&ioc->active_iocgs)) {
2403			ioc_start_period(ioc, &now);
2404		} else {
2405			ioc->busy_level = 0;
2406			ioc->vtime_err = 0;
2407			ioc->running = IOC_IDLE;
2408		}
2409
2410		ioc_refresh_vrate(ioc, &now);
2411	}
2412
2413	spin_unlock_irq(&ioc->lock);
2414}
2415
2416static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2417				      u64 abs_cost, struct ioc_now *now)
2418{
2419	struct ioc *ioc = iocg->ioc;
2420	struct ioc_margins *margins = &ioc->margins;
2421	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2422	u32 hwi, adj_step;
2423	s64 margin;
2424	u64 cost, new_inuse;
2425
2426	current_hweight(iocg, NULL, &hwi);
2427	old_hwi = hwi;
2428	cost = abs_cost_to_cost(abs_cost, hwi);
2429	margin = now->vnow - vtime - cost;
2430
2431	/* debt handling owns inuse for debtors */
2432	if (iocg->abs_vdebt)
2433		return cost;
2434
2435	/*
2436	 * We only increase inuse during period and do so if the margin has
2437	 * deteriorated since the previous adjustment.
2438	 */
2439	if (margin >= iocg->saved_margin || margin >= margins->low ||
2440	    iocg->inuse == iocg->active)
2441		return cost;
2442
2443	spin_lock_irq(&ioc->lock);
2444
2445	/* we own inuse only when @iocg is in the normal active state */
2446	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2447		spin_unlock_irq(&ioc->lock);
2448		return cost;
2449	}
2450
2451	/*
2452	 * Bump up inuse till @abs_cost fits in the existing budget.
2453	 * adj_step must be determined after acquiring ioc->lock - we might
2454	 * have raced and lost to another thread for activation and could
2455	 * be reading 0 iocg->active before ioc->lock which will lead to
2456	 * infinite loop.
2457	 */
2458	new_inuse = iocg->inuse;
2459	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2460	do {
2461		new_inuse = new_inuse + adj_step;
2462		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2463		current_hweight(iocg, NULL, &hwi);
2464		cost = abs_cost_to_cost(abs_cost, hwi);
2465	} while (time_after64(vtime + cost, now->vnow) &&
2466		 iocg->inuse != iocg->active);
2467
2468	spin_unlock_irq(&ioc->lock);
2469
2470	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2471			old_inuse, iocg->inuse, old_hwi, hwi);
2472
2473	return cost;
2474}
2475
2476static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2477				    bool is_merge, u64 *costp)
2478{
2479	struct ioc *ioc = iocg->ioc;
2480	u64 coef_seqio, coef_randio, coef_page;
2481	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2482	u64 seek_pages = 0;
2483	u64 cost = 0;
2484
2485	switch (bio_op(bio)) {
2486	case REQ_OP_READ:
2487		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2488		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2489		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2490		break;
2491	case REQ_OP_WRITE:
2492		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2493		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2494		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2495		break;
2496	default:
2497		goto out;
2498	}
2499
2500	if (iocg->cursor) {
2501		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2502		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2503	}
2504
2505	if (!is_merge) {
2506		if (seek_pages > LCOEF_RANDIO_PAGES) {
2507			cost += coef_randio;
2508		} else {
2509			cost += coef_seqio;
2510		}
2511	}
2512	cost += pages * coef_page;
2513out:
2514	*costp = cost;
2515}
2516
2517static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2518{
2519	u64 cost;
2520
2521	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2522	return cost;
2523}
2524
2525static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2526					 u64 *costp)
2527{
2528	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2529
2530	switch (req_op(rq)) {
2531	case REQ_OP_READ:
2532		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2533		break;
2534	case REQ_OP_WRITE:
2535		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2536		break;
2537	default:
2538		*costp = 0;
2539	}
2540}
2541
2542static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2543{
2544	u64 cost;
2545
2546	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2547	return cost;
2548}
2549
2550static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2551{
2552	struct blkcg_gq *blkg = bio->bi_blkg;
2553	struct ioc *ioc = rqos_to_ioc(rqos);
2554	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2555	struct ioc_now now;
2556	struct iocg_wait wait;
2557	u64 abs_cost, cost, vtime;
2558	bool use_debt, ioc_locked;
2559	unsigned long flags;
2560
2561	/* bypass IOs if disabled, still initializing, or for root cgroup */
2562	if (!ioc->enabled || !iocg || !iocg->level)
2563		return;
2564
2565	/* calculate the absolute vtime cost */
2566	abs_cost = calc_vtime_cost(bio, iocg, false);
2567	if (!abs_cost)
2568		return;
2569
2570	if (!iocg_activate(iocg, &now))
2571		return;
2572
2573	iocg->cursor = bio_end_sector(bio);
2574	vtime = atomic64_read(&iocg->vtime);
2575	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2576
2577	/*
2578	 * If no one's waiting and within budget, issue right away.  The
2579	 * tests are racy but the races aren't systemic - we only miss once
2580	 * in a while which is fine.
2581	 */
2582	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2583	    time_before_eq64(vtime + cost, now.vnow)) {
2584		iocg_commit_bio(iocg, bio, abs_cost, cost);
2585		return;
2586	}
2587
2588	/*
2589	 * We're over budget. This can be handled in two ways. IOs which may
2590	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2591	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2592	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2593	 * whether debt handling is needed and acquire locks accordingly.
2594	 */
2595	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2596	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2597retry_lock:
2598	iocg_lock(iocg, ioc_locked, &flags);
2599
2600	/*
2601	 * @iocg must stay activated for debt and waitq handling. Deactivation
2602	 * is synchronized against both ioc->lock and waitq.lock and we won't
2603	 * get deactivated as long as we're waiting or has debt, so we're good
2604	 * if we're activated here. In the unlikely cases that we aren't, just
2605	 * issue the IO.
2606	 */
2607	if (unlikely(list_empty(&iocg->active_list))) {
2608		iocg_unlock(iocg, ioc_locked, &flags);
2609		iocg_commit_bio(iocg, bio, abs_cost, cost);
2610		return;
2611	}
2612
2613	/*
2614	 * We're over budget. If @bio has to be issued regardless, remember
2615	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2616	 * off the debt before waking more IOs.
2617	 *
2618	 * This way, the debt is continuously paid off each period with the
2619	 * actual budget available to the cgroup. If we just wound vtime, we
2620	 * would incorrectly use the current hw_inuse for the entire amount
2621	 * which, for example, can lead to the cgroup staying blocked for a
2622	 * long time even with substantially raised hw_inuse.
2623	 *
2624	 * An iocg with vdebt should stay online so that the timer can keep
2625	 * deducting its vdebt and [de]activate use_delay mechanism
2626	 * accordingly. We don't want to race against the timer trying to
2627	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2628	 * penalizing the cgroup and its descendants.
2629	 */
2630	if (use_debt) {
2631		iocg_incur_debt(iocg, abs_cost, &now);
2632		if (iocg_kick_delay(iocg, &now))
2633			blkcg_schedule_throttle(rqos->q,
2634					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2635		iocg_unlock(iocg, ioc_locked, &flags);
2636		return;
2637	}
2638
2639	/* guarantee that iocgs w/ waiters have maximum inuse */
2640	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2641		if (!ioc_locked) {
2642			iocg_unlock(iocg, false, &flags);
2643			ioc_locked = true;
2644			goto retry_lock;
2645		}
2646		propagate_weights(iocg, iocg->active, iocg->active, true,
2647				  &now);
2648	}
2649
2650	/*
2651	 * Append self to the waitq and schedule the wakeup timer if we're
2652	 * the first waiter.  The timer duration is calculated based on the
2653	 * current vrate.  vtime and hweight changes can make it too short
2654	 * or too long.  Each wait entry records the absolute cost it's
2655	 * waiting for to allow re-evaluation using a custom wait entry.
2656	 *
2657	 * If too short, the timer simply reschedules itself.  If too long,
2658	 * the period timer will notice and trigger wakeups.
2659	 *
2660	 * All waiters are on iocg->waitq and the wait states are
2661	 * synchronized using waitq.lock.
2662	 */
2663	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2664	wait.wait.private = current;
2665	wait.bio = bio;
2666	wait.abs_cost = abs_cost;
2667	wait.committed = false;	/* will be set true by waker */
2668
2669	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2670	iocg_kick_waitq(iocg, ioc_locked, &now);
2671
2672	iocg_unlock(iocg, ioc_locked, &flags);
2673
2674	while (true) {
2675		set_current_state(TASK_UNINTERRUPTIBLE);
2676		if (wait.committed)
2677			break;
2678		io_schedule();
2679	}
2680
2681	/* waker already committed us, proceed */
2682	finish_wait(&iocg->waitq, &wait.wait);
2683}
2684
2685static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2686			   struct bio *bio)
2687{
2688	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2689	struct ioc *ioc = rqos_to_ioc(rqos);
2690	sector_t bio_end = bio_end_sector(bio);
2691	struct ioc_now now;
2692	u64 vtime, abs_cost, cost;
2693	unsigned long flags;
2694
2695	/* bypass if disabled, still initializing, or for root cgroup */
2696	if (!ioc->enabled || !iocg || !iocg->level)
2697		return;
2698
2699	abs_cost = calc_vtime_cost(bio, iocg, true);
2700	if (!abs_cost)
2701		return;
2702
2703	ioc_now(ioc, &now);
2704
2705	vtime = atomic64_read(&iocg->vtime);
2706	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2707
2708	/* update cursor if backmerging into the request at the cursor */
2709	if (blk_rq_pos(rq) < bio_end &&
2710	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2711		iocg->cursor = bio_end;
2712
2713	/*
2714	 * Charge if there's enough vtime budget and the existing request has
2715	 * cost assigned.
2716	 */
2717	if (rq->bio && rq->bio->bi_iocost_cost &&
2718	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2719		iocg_commit_bio(iocg, bio, abs_cost, cost);
2720		return;
2721	}
2722
2723	/*
2724	 * Otherwise, account it as debt if @iocg is online, which it should
2725	 * be for the vast majority of cases. See debt handling in
2726	 * ioc_rqos_throttle() for details.
2727	 */
2728	spin_lock_irqsave(&ioc->lock, flags);
2729	spin_lock(&iocg->waitq.lock);
2730
2731	if (likely(!list_empty(&iocg->active_list))) {
2732		iocg_incur_debt(iocg, abs_cost, &now);
2733		if (iocg_kick_delay(iocg, &now))
2734			blkcg_schedule_throttle(rqos->q,
2735					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2736	} else {
2737		iocg_commit_bio(iocg, bio, abs_cost, cost);
2738	}
2739
2740	spin_unlock(&iocg->waitq.lock);
2741	spin_unlock_irqrestore(&ioc->lock, flags);
2742}
2743
2744static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2745{
2746	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2747
2748	if (iocg && bio->bi_iocost_cost)
2749		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2750}
2751
2752static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2753{
2754	struct ioc *ioc = rqos_to_ioc(rqos);
2755	struct ioc_pcpu_stat *ccs;
2756	u64 on_q_ns, rq_wait_ns, size_nsec;
2757	int pidx, rw;
2758
2759	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2760		return;
2761
2762	switch (req_op(rq) & REQ_OP_MASK) {
2763	case REQ_OP_READ:
2764		pidx = QOS_RLAT;
2765		rw = READ;
2766		break;
2767	case REQ_OP_WRITE:
2768		pidx = QOS_WLAT;
2769		rw = WRITE;
2770		break;
2771	default:
2772		return;
2773	}
2774
2775	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2776	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2777	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2778
2779	ccs = get_cpu_ptr(ioc->pcpu_stat);
2780
2781	if (on_q_ns <= size_nsec ||
2782	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2783		local_inc(&ccs->missed[rw].nr_met);
2784	else
2785		local_inc(&ccs->missed[rw].nr_missed);
2786
2787	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2788
2789	put_cpu_ptr(ccs);
2790}
2791
2792static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2793{
2794	struct ioc *ioc = rqos_to_ioc(rqos);
2795
2796	spin_lock_irq(&ioc->lock);
2797	ioc_refresh_params(ioc, false);
2798	spin_unlock_irq(&ioc->lock);
2799}
2800
2801static void ioc_rqos_exit(struct rq_qos *rqos)
2802{
2803	struct ioc *ioc = rqos_to_ioc(rqos);
2804
2805	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2806
2807	spin_lock_irq(&ioc->lock);
2808	ioc->running = IOC_STOP;
2809	spin_unlock_irq(&ioc->lock);
2810
2811	del_timer_sync(&ioc->timer);
2812	free_percpu(ioc->pcpu_stat);
2813	kfree(ioc);
2814}
2815
2816static struct rq_qos_ops ioc_rqos_ops = {
2817	.throttle = ioc_rqos_throttle,
2818	.merge = ioc_rqos_merge,
2819	.done_bio = ioc_rqos_done_bio,
2820	.done = ioc_rqos_done,
2821	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2822	.exit = ioc_rqos_exit,
2823};
2824
2825static int blk_iocost_init(struct request_queue *q)
2826{
2827	struct ioc *ioc;
2828	struct rq_qos *rqos;
2829	int i, cpu, ret;
2830
2831	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2832	if (!ioc)
2833		return -ENOMEM;
2834
2835	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2836	if (!ioc->pcpu_stat) {
2837		kfree(ioc);
2838		return -ENOMEM;
2839	}
2840
2841	for_each_possible_cpu(cpu) {
2842		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2843
2844		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2845			local_set(&ccs->missed[i].nr_met, 0);
2846			local_set(&ccs->missed[i].nr_missed, 0);
2847		}
2848		local64_set(&ccs->rq_wait_ns, 0);
2849	}
2850
2851	rqos = &ioc->rqos;
2852	rqos->id = RQ_QOS_COST;
2853	rqos->ops = &ioc_rqos_ops;
2854	rqos->q = q;
2855
2856	spin_lock_init(&ioc->lock);
2857	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2858	INIT_LIST_HEAD(&ioc->active_iocgs);
2859
2860	ioc->running = IOC_IDLE;
2861	ioc->vtime_base_rate = VTIME_PER_USEC;
2862	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2863	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2864	ioc->period_at = ktime_to_us(ktime_get());
2865	atomic64_set(&ioc->cur_period, 0);
2866	atomic_set(&ioc->hweight_gen, 0);
2867
2868	spin_lock_irq(&ioc->lock);
2869	ioc->autop_idx = AUTOP_INVALID;
2870	ioc_refresh_params(ioc, true);
2871	spin_unlock_irq(&ioc->lock);
2872
2873	/*
2874	 * rqos must be added before activation to allow iocg_pd_init() to
2875	 * lookup the ioc from q. This means that the rqos methods may get
2876	 * called before policy activation completion, can't assume that the
2877	 * target bio has an iocg associated and need to test for NULL iocg.
2878	 */
2879	rq_qos_add(q, rqos);
2880	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2881	if (ret) {
2882		rq_qos_del(q, rqos);
2883		free_percpu(ioc->pcpu_stat);
2884		kfree(ioc);
2885		return ret;
2886	}
2887	return 0;
2888}
2889
2890static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2891{
2892	struct ioc_cgrp *iocc;
2893
2894	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2895	if (!iocc)
2896		return NULL;
2897
2898	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2899	return &iocc->cpd;
2900}
2901
2902static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2903{
2904	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2905}
2906
2907static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2908					     struct blkcg *blkcg)
2909{
2910	int levels = blkcg->css.cgroup->level + 1;
2911	struct ioc_gq *iocg;
2912
2913	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2914	if (!iocg)
2915		return NULL;
2916
2917	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2918	if (!iocg->pcpu_stat) {
2919		kfree(iocg);
2920		return NULL;
2921	}
2922
2923	return &iocg->pd;
2924}
2925
2926static void ioc_pd_init(struct blkg_policy_data *pd)
2927{
2928	struct ioc_gq *iocg = pd_to_iocg(pd);
2929	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2930	struct ioc *ioc = q_to_ioc(blkg->q);
2931	struct ioc_now now;
2932	struct blkcg_gq *tblkg;
2933	unsigned long flags;
2934
2935	ioc_now(ioc, &now);
2936
2937	iocg->ioc = ioc;
2938	atomic64_set(&iocg->vtime, now.vnow);
2939	atomic64_set(&iocg->done_vtime, now.vnow);
2940	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2941	INIT_LIST_HEAD(&iocg->active_list);
2942	INIT_LIST_HEAD(&iocg->walk_list);
2943	INIT_LIST_HEAD(&iocg->surplus_list);
2944	iocg->hweight_active = WEIGHT_ONE;
2945	iocg->hweight_inuse = WEIGHT_ONE;
2946
2947	init_waitqueue_head(&iocg->waitq);
2948	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2949	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2950
2951	iocg->level = blkg->blkcg->css.cgroup->level;
2952
2953	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2954		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2955		iocg->ancestors[tiocg->level] = tiocg;
2956	}
2957
2958	spin_lock_irqsave(&ioc->lock, flags);
2959	weight_updated(iocg, &now);
2960	spin_unlock_irqrestore(&ioc->lock, flags);
2961}
2962
2963static void ioc_pd_free(struct blkg_policy_data *pd)
2964{
2965	struct ioc_gq *iocg = pd_to_iocg(pd);
2966	struct ioc *ioc = iocg->ioc;
2967	unsigned long flags;
2968
2969	if (ioc) {
2970		spin_lock_irqsave(&ioc->lock, flags);
2971
2972		if (!list_empty(&iocg->active_list)) {
2973			struct ioc_now now;
2974
2975			ioc_now(ioc, &now);
2976			propagate_weights(iocg, 0, 0, false, &now);
2977			list_del_init(&iocg->active_list);
2978		}
2979
2980		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2981		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2982
2983		spin_unlock_irqrestore(&ioc->lock, flags);
2984
2985		hrtimer_cancel(&iocg->waitq_timer);
2986	}
2987	free_percpu(iocg->pcpu_stat);
2988	kfree(iocg);
2989}
2990
2991static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2992{
2993	struct ioc_gq *iocg = pd_to_iocg(pd);
2994	struct ioc *ioc = iocg->ioc;
2995	size_t pos = 0;
2996
2997	if (!ioc->enabled)
2998		return 0;
2999
3000	if (iocg->level == 0) {
3001		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3002			ioc->vtime_base_rate * 10000,
3003			VTIME_PER_USEC);
3004		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3005				  vp10k / 100, vp10k % 100);
3006	}
3007
3008	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3009			 iocg->last_stat.usage_us);
3010
3011	if (blkcg_debug_stats)
3012		pos += scnprintf(buf + pos, size - pos,
3013				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3014				 iocg->last_stat.wait_us,
3015				 iocg->last_stat.indebt_us,
3016				 iocg->last_stat.indelay_us);
3017
3018	return pos;
3019}
3020
3021static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3022			     int off)
3023{
3024	const char *dname = blkg_dev_name(pd->blkg);
3025	struct ioc_gq *iocg = pd_to_iocg(pd);
3026
3027	if (dname && iocg->cfg_weight)
3028		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3029	return 0;
3030}
3031
3032
3033static int ioc_weight_show(struct seq_file *sf, void *v)
3034{
3035	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3036	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3037
3038	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3039	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3040			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3041	return 0;
3042}
3043
3044static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3045				size_t nbytes, loff_t off)
3046{
3047	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3048	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3049	struct blkg_conf_ctx ctx;
3050	struct ioc_now now;
3051	struct ioc_gq *iocg;
3052	u32 v;
3053	int ret;
3054
3055	if (!strchr(buf, ':')) {
3056		struct blkcg_gq *blkg;
3057
3058		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3059			return -EINVAL;
3060
3061		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3062			return -EINVAL;
3063
3064		spin_lock_irq(&blkcg->lock);
3065		iocc->dfl_weight = v * WEIGHT_ONE;
3066		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3067			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3068
3069			if (iocg) {
3070				spin_lock(&iocg->ioc->lock);
3071				ioc_now(iocg->ioc, &now);
3072				weight_updated(iocg, &now);
3073				spin_unlock(&iocg->ioc->lock);
3074			}
3075		}
3076		spin_unlock_irq(&blkcg->lock);
3077
3078		return nbytes;
3079	}
3080
3081	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3082	if (ret)
3083		return ret;
3084
3085	iocg = blkg_to_iocg(ctx.blkg);
3086
3087	if (!strncmp(ctx.body, "default", 7)) {
3088		v = 0;
3089	} else {
3090		if (!sscanf(ctx.body, "%u", &v))
3091			goto einval;
3092		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3093			goto einval;
3094	}
3095
3096	spin_lock(&iocg->ioc->lock);
3097	iocg->cfg_weight = v * WEIGHT_ONE;
3098	ioc_now(iocg->ioc, &now);
3099	weight_updated(iocg, &now);
3100	spin_unlock(&iocg->ioc->lock);
3101
3102	blkg_conf_finish(&ctx);
3103	return nbytes;
3104
3105einval:
3106	blkg_conf_finish(&ctx);
3107	return -EINVAL;
3108}
3109
3110static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3111			  int off)
3112{
3113	const char *dname = blkg_dev_name(pd->blkg);
3114	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3115
3116	if (!dname)
3117		return 0;
3118
3119	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3120		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3121		   ioc->params.qos[QOS_RPPM] / 10000,
3122		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3123		   ioc->params.qos[QOS_RLAT],
3124		   ioc->params.qos[QOS_WPPM] / 10000,
3125		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3126		   ioc->params.qos[QOS_WLAT],
3127		   ioc->params.qos[QOS_MIN] / 10000,
3128		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3129		   ioc->params.qos[QOS_MAX] / 10000,
3130		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3131	return 0;
3132}
3133
3134static int ioc_qos_show(struct seq_file *sf, void *v)
3135{
3136	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3137
3138	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3139			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3140	return 0;
3141}
3142
3143static const match_table_t qos_ctrl_tokens = {
3144	{ QOS_ENABLE,		"enable=%u"	},
3145	{ QOS_CTRL,		"ctrl=%s"	},
3146	{ NR_QOS_CTRL_PARAMS,	NULL		},
3147};
3148
3149static const match_table_t qos_tokens = {
3150	{ QOS_RPPM,		"rpct=%s"	},
3151	{ QOS_RLAT,		"rlat=%u"	},
3152	{ QOS_WPPM,		"wpct=%s"	},
3153	{ QOS_WLAT,		"wlat=%u"	},
3154	{ QOS_MIN,		"min=%s"	},
3155	{ QOS_MAX,		"max=%s"	},
3156	{ NR_QOS_PARAMS,	NULL		},
3157};
3158
3159static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3160			     size_t nbytes, loff_t off)
3161{
3162	struct block_device *bdev;
3163	struct ioc *ioc;
3164	u32 qos[NR_QOS_PARAMS];
3165	bool enable, user;
3166	char *p;
3167	int ret;
3168
3169	bdev = blkcg_conf_open_bdev(&input);
3170	if (IS_ERR(bdev))
3171		return PTR_ERR(bdev);
3172
3173	ioc = q_to_ioc(bdev->bd_disk->queue);
3174	if (!ioc) {
3175		ret = blk_iocost_init(bdev->bd_disk->queue);
3176		if (ret)
3177			goto err;
3178		ioc = q_to_ioc(bdev->bd_disk->queue);
3179	}
3180
3181	spin_lock_irq(&ioc->lock);
3182	memcpy(qos, ioc->params.qos, sizeof(qos));
3183	enable = ioc->enabled;
3184	user = ioc->user_qos_params;
3185	spin_unlock_irq(&ioc->lock);
3186
3187	while ((p = strsep(&input, " \t\n"))) {
3188		substring_t args[MAX_OPT_ARGS];
3189		char buf[32];
3190		int tok;
3191		s64 v;
3192
3193		if (!*p)
3194			continue;
3195
3196		switch (match_token(p, qos_ctrl_tokens, args)) {
3197		case QOS_ENABLE:
3198			match_u64(&args[0], &v);
3199			enable = v;
3200			continue;
3201		case QOS_CTRL:
3202			match_strlcpy(buf, &args[0], sizeof(buf));
3203			if (!strcmp(buf, "auto"))
3204				user = false;
3205			else if (!strcmp(buf, "user"))
3206				user = true;
3207			else
3208				goto einval;
3209			continue;
3210		}
3211
3212		tok = match_token(p, qos_tokens, args);
3213		switch (tok) {
3214		case QOS_RPPM:
3215		case QOS_WPPM:
3216			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3217			    sizeof(buf))
3218				goto einval;
3219			if (cgroup_parse_float(buf, 2, &v))
3220				goto einval;
3221			if (v < 0 || v > 10000)
3222				goto einval;
3223			qos[tok] = v * 100;
3224			break;
3225		case QOS_RLAT:
3226		case QOS_WLAT:
3227			if (match_u64(&args[0], &v))
3228				goto einval;
3229			qos[tok] = v;
3230			break;
3231		case QOS_MIN:
3232		case QOS_MAX:
3233			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3234			    sizeof(buf))
3235				goto einval;
3236			if (cgroup_parse_float(buf, 2, &v))
3237				goto einval;
3238			if (v < 0)
3239				goto einval;
3240			qos[tok] = clamp_t(s64, v * 100,
3241					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3242			break;
3243		default:
3244			goto einval;
3245		}
3246		user = true;
3247	}
3248
3249	if (qos[QOS_MIN] > qos[QOS_MAX])
3250		goto einval;
3251
3252	spin_lock_irq(&ioc->lock);
3253
3254	if (enable) {
3255		blk_stat_enable_accounting(ioc->rqos.q);
3256		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3257		ioc->enabled = true;
3258	} else {
3259		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3260		ioc->enabled = false;
3261	}
3262
3263	if (user) {
3264		memcpy(ioc->params.qos, qos, sizeof(qos));
3265		ioc->user_qos_params = true;
3266	} else {
3267		ioc->user_qos_params = false;
3268	}
3269
3270	ioc_refresh_params(ioc, true);
3271	spin_unlock_irq(&ioc->lock);
3272
3273	blkdev_put_no_open(bdev);
3274	return nbytes;
3275einval:
3276	ret = -EINVAL;
3277err:
3278	blkdev_put_no_open(bdev);
3279	return ret;
3280}
3281
3282static u64 ioc_cost_model_prfill(struct seq_file *sf,
3283				 struct blkg_policy_data *pd, int off)
3284{
3285	const char *dname = blkg_dev_name(pd->blkg);
3286	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3287	u64 *u = ioc->params.i_lcoefs;
3288
3289	if (!dname)
3290		return 0;
3291
3292	seq_printf(sf, "%s ctrl=%s model=linear "
3293		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3294		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3295		   dname, ioc->user_cost_model ? "user" : "auto",
3296		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3297		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3298	return 0;
3299}
3300
3301static int ioc_cost_model_show(struct seq_file *sf, void *v)
3302{
3303	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3304
3305	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3306			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3307	return 0;
3308}
3309
3310static const match_table_t cost_ctrl_tokens = {
3311	{ COST_CTRL,		"ctrl=%s"	},
3312	{ COST_MODEL,		"model=%s"	},
3313	{ NR_COST_CTRL_PARAMS,	NULL		},
3314};
3315
3316static const match_table_t i_lcoef_tokens = {
3317	{ I_LCOEF_RBPS,		"rbps=%u"	},
3318	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3319	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3320	{ I_LCOEF_WBPS,		"wbps=%u"	},
3321	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3322	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3323	{ NR_I_LCOEFS,		NULL		},
3324};
3325
3326static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3327				    size_t nbytes, loff_t off)
3328{
3329	struct block_device *bdev;
3330	struct ioc *ioc;
3331	u64 u[NR_I_LCOEFS];
3332	bool user;
3333	char *p;
3334	int ret;
3335
3336	bdev = blkcg_conf_open_bdev(&input);
3337	if (IS_ERR(bdev))
3338		return PTR_ERR(bdev);
3339
3340	ioc = q_to_ioc(bdev->bd_disk->queue);
3341	if (!ioc) {
3342		ret = blk_iocost_init(bdev->bd_disk->queue);
3343		if (ret)
3344			goto err;
3345		ioc = q_to_ioc(bdev->bd_disk->queue);
3346	}
3347
3348	spin_lock_irq(&ioc->lock);
3349	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3350	user = ioc->user_cost_model;
3351	spin_unlock_irq(&ioc->lock);
3352
3353	while ((p = strsep(&input, " \t\n"))) {
3354		substring_t args[MAX_OPT_ARGS];
3355		char buf[32];
3356		int tok;
3357		u64 v;
3358
3359		if (!*p)
3360			continue;
3361
3362		switch (match_token(p, cost_ctrl_tokens, args)) {
3363		case COST_CTRL:
3364			match_strlcpy(buf, &args[0], sizeof(buf));
3365			if (!strcmp(buf, "auto"))
3366				user = false;
3367			else if (!strcmp(buf, "user"))
3368				user = true;
3369			else
3370				goto einval;
3371			continue;
3372		case COST_MODEL:
3373			match_strlcpy(buf, &args[0], sizeof(buf));
3374			if (strcmp(buf, "linear"))
3375				goto einval;
3376			continue;
3377		}
3378
3379		tok = match_token(p, i_lcoef_tokens, args);
3380		if (tok == NR_I_LCOEFS)
3381			goto einval;
3382		if (match_u64(&args[0], &v))
3383			goto einval;
3384		u[tok] = v;
3385		user = true;
3386	}
3387
3388	spin_lock_irq(&ioc->lock);
3389	if (user) {
3390		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3391		ioc->user_cost_model = true;
3392	} else {
3393		ioc->user_cost_model = false;
3394	}
3395	ioc_refresh_params(ioc, true);
3396	spin_unlock_irq(&ioc->lock);
3397
3398	blkdev_put_no_open(bdev);
3399	return nbytes;
3400
3401einval:
3402	ret = -EINVAL;
3403err:
3404	blkdev_put_no_open(bdev);
3405	return ret;
3406}
3407
3408static struct cftype ioc_files[] = {
3409	{
3410		.name = "weight",
3411		.flags = CFTYPE_NOT_ON_ROOT,
3412		.seq_show = ioc_weight_show,
3413		.write = ioc_weight_write,
3414	},
3415	{
3416		.name = "cost.qos",
3417		.flags = CFTYPE_ONLY_ON_ROOT,
3418		.seq_show = ioc_qos_show,
3419		.write = ioc_qos_write,
3420	},
3421	{
3422		.name = "cost.model",
3423		.flags = CFTYPE_ONLY_ON_ROOT,
3424		.seq_show = ioc_cost_model_show,
3425		.write = ioc_cost_model_write,
3426	},
3427	{}
3428};
3429
3430static struct blkcg_policy blkcg_policy_iocost = {
3431	.dfl_cftypes	= ioc_files,
3432	.cpd_alloc_fn	= ioc_cpd_alloc,
3433	.cpd_free_fn	= ioc_cpd_free,
3434	.pd_alloc_fn	= ioc_pd_alloc,
3435	.pd_init_fn	= ioc_pd_init,
3436	.pd_free_fn	= ioc_pd_free,
3437	.pd_stat_fn	= ioc_pd_stat,
3438};
3439
3440static int __init ioc_init(void)
3441{
3442	return blkcg_policy_register(&blkcg_policy_iocost);
3443}
3444
3445static void __exit ioc_exit(void)
3446{
3447	blkcg_policy_unregister(&blkcg_policy_iocost);
3448}
3449
3450module_init(ioc_init);
3451module_exit(ioc_exit);