Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * Header file for the BFQ I/O scheduler: data structures and
  3 * prototypes of interface functions among BFQ components.
  4 *
  5 *  This program is free software; you can redistribute it and/or
  6 *  modify it under the terms of the GNU General Public License as
  7 *  published by the Free Software Foundation; either version 2 of the
  8 *  License, or (at your option) any later version.
  9 *
 10 *  This program is distributed in the hope that it will be useful,
 11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 13 *  General Public License for more details.
 14 */
 15#ifndef _BFQ_H
 16#define _BFQ_H
 17
 18#include <linux/blktrace_api.h>
 19#include <linux/hrtimer.h>
 20#include <linux/blk-cgroup.h>
 21
 
 
 22#define BFQ_IOPRIO_CLASSES	3
 23#define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
 24
 25#define BFQ_MIN_WEIGHT			1
 26#define BFQ_MAX_WEIGHT			1000
 27#define BFQ_WEIGHT_CONVERSION_COEFF	10
 28
 29#define BFQ_DEFAULT_QUEUE_IOPRIO	4
 30
 31#define BFQ_WEIGHT_LEGACY_DFL	100
 32#define BFQ_DEFAULT_GRP_IOPRIO	0
 33#define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
 34
 
 
 35/*
 36 * Soft real-time applications are extremely more latency sensitive
 37 * than interactive ones. Over-raise the weight of the former to
 38 * privilege them against the latter.
 39 */
 40#define BFQ_SOFTRT_WEIGHT_FACTOR	100
 41
 42struct bfq_entity;
 43
 44/**
 45 * struct bfq_service_tree - per ioprio_class service tree.
 46 *
 47 * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
 48 * ioprio_class has its own independent scheduler, and so its own
 49 * bfq_service_tree.  All the fields are protected by the queue lock
 50 * of the containing bfqd.
 51 */
 52struct bfq_service_tree {
 53	/* tree for active entities (i.e., those backlogged) */
 54	struct rb_root active;
 55	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
 56	struct rb_root idle;
 57
 58	/* idle entity with minimum F_i */
 59	struct bfq_entity *first_idle;
 60	/* idle entity with maximum F_i */
 61	struct bfq_entity *last_idle;
 62
 63	/* scheduler virtual time */
 64	u64 vtime;
 65	/* scheduler weight sum; active and idle entities contribute to it */
 66	unsigned long wsum;
 67};
 68
 69/**
 70 * struct bfq_sched_data - multi-class scheduler.
 71 *
 72 * bfq_sched_data is the basic scheduler queue.  It supports three
 73 * ioprio_classes, and can be used either as a toplevel queue or as an
 74 * intermediate queue in a hierarchical setup.
 75 *
 76 * The supported ioprio_classes are the same as in CFQ, in descending
 77 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
 78 * Requests from higher priority queues are served before all the
 79 * requests from lower priority queues; among requests of the same
 80 * queue requests are served according to B-WF2Q+.
 81 *
 82 * The schedule is implemented by the service trees, plus the field
 83 * @next_in_service, which points to the entity on the active trees
 84 * that will be served next, if 1) no changes in the schedule occurs
 85 * before the current in-service entity is expired, 2) the in-service
 86 * queue becomes idle when it expires, and 3) if the entity pointed by
 87 * in_service_entity is not a queue, then the in-service child entity
 88 * of the entity pointed by in_service_entity becomes idle on
 89 * expiration. This peculiar definition allows for the following
 90 * optimization, not yet exploited: while a given entity is still in
 91 * service, we already know which is the best candidate for next
 92 * service among the other active entitities in the same parent
 93 * entity. We can then quickly compare the timestamps of the
 94 * in-service entity with those of such best candidate.
 95 *
 96 * All fields are protected by the lock of the containing bfqd.
 97 */
 98struct bfq_sched_data {
 99	/* entity in service */
100	struct bfq_entity *in_service_entity;
101	/* head-of-line entity (see comments above) */
102	struct bfq_entity *next_in_service;
103	/* array of service trees, one per ioprio_class */
104	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
105	/* last time CLASS_IDLE was served */
106	unsigned long bfq_class_idle_last_service;
107
108};
109
110/**
111 * struct bfq_weight_counter - counter of the number of all active entities
112 *                             with a given weight.
113 */
114struct bfq_weight_counter {
115	unsigned int weight; /* weight of the entities this counter refers to */
116	unsigned int num_active; /* nr of active entities with this weight */
117	/*
118	 * Weights tree member (see bfq_data's @queue_weights_tree and
119	 * @group_weights_tree)
120	 */
121	struct rb_node weights_node;
122};
123
124/**
125 * struct bfq_entity - schedulable entity.
126 *
127 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
128 * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
129 * entity belongs to the sched_data of the parent group in the cgroup
130 * hierarchy.  Non-leaf entities have also their own sched_data, stored
131 * in @my_sched_data.
132 *
133 * Each entity stores independently its priority values; this would
134 * allow different weights on different devices, but this
135 * functionality is not exported to userspace by now.  Priorities and
136 * weights are updated lazily, first storing the new values into the
137 * new_* fields, then setting the @prio_changed flag.  As soon as
138 * there is a transition in the entity state that allows the priority
139 * update to take place the effective and the requested priority
140 * values are synchronized.
141 *
142 * Unless cgroups are used, the weight value is calculated from the
143 * ioprio to export the same interface as CFQ.  When dealing with
144 * ``well-behaved'' queues (i.e., queues that do not spend too much
145 * time to consume their budget and have true sequential behavior, and
146 * when there are no external factors breaking anticipation) the
147 * relative weights at each level of the cgroups hierarchy should be
148 * guaranteed.  All the fields are protected by the queue lock of the
149 * containing bfqd.
150 */
151struct bfq_entity {
152	/* service_tree member */
153	struct rb_node rb_node;
154	/* pointer to the weight counter associated with this entity */
155	struct bfq_weight_counter *weight_counter;
156
157	/*
158	 * Flag, true if the entity is on a tree (either the active or
159	 * the idle one of its service_tree) or is in service.
160	 */
161	bool on_st;
162
163	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
164	u64 start, finish;
165
166	/* tree the entity is enqueued into; %NULL if not on a tree */
167	struct rb_root *tree;
168
169	/*
170	 * minimum start time of the (active) subtree rooted at this
171	 * entity; used for O(log N) lookups into active trees
172	 */
173	u64 min_start;
174
175	/* amount of service received during the last service slot */
176	int service;
177
178	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
179	int budget;
180
 
 
 
181	/* weight of the queue */
182	int weight;
183	/* next weight if a change is in progress */
184	int new_weight;
185
186	/* original weight, used to implement weight boosting */
187	int orig_weight;
188
189	/* parent entity, for hierarchical scheduling */
190	struct bfq_entity *parent;
191
192	/*
193	 * For non-leaf nodes in the hierarchy, the associated
194	 * scheduler queue, %NULL on leaf nodes.
195	 */
196	struct bfq_sched_data *my_sched_data;
197	/* the scheduler queue this entity belongs to */
198	struct bfq_sched_data *sched_data;
199
200	/* flag, set to request a weight, ioprio or ioprio_class change  */
201	int prio_changed;
 
 
 
 
 
 
202};
203
204struct bfq_group;
205
206/**
207 * struct bfq_ttime - per process thinktime stats.
208 */
209struct bfq_ttime {
210	/* completion time of the last request */
211	u64 last_end_request;
212
213	/* total process thinktime */
214	u64 ttime_total;
215	/* number of thinktime samples */
216	unsigned long ttime_samples;
217	/* average process thinktime */
218	u64 ttime_mean;
219};
220
221/**
222 * struct bfq_queue - leaf schedulable entity.
223 *
224 * A bfq_queue is a leaf request queue; it can be associated with an
225 * io_context or more, if it  is  async or shared  between  cooperating
226 * processes. @cgroup holds a reference to the cgroup, to be sure that it
227 * does not disappear while a bfqq still references it (mostly to avoid
228 * races between request issuing and task migration followed by cgroup
229 * destruction).
230 * All the fields are protected by the queue lock of the containing bfqd.
231 */
232struct bfq_queue {
233	/* reference counter */
234	int ref;
 
 
235	/* parent bfq_data */
236	struct bfq_data *bfqd;
237
238	/* current ioprio and ioprio class */
239	unsigned short ioprio, ioprio_class;
240	/* next ioprio and ioprio class if a change is in progress */
241	unsigned short new_ioprio, new_ioprio_class;
242
 
 
 
 
 
 
 
243	/*
244	 * Shared bfq_queue if queue is cooperating with one or more
245	 * other queues.
246	 */
247	struct bfq_queue *new_bfqq;
248	/* request-position tree member (see bfq_group's @rq_pos_tree) */
249	struct rb_node pos_node;
250	/* request-position tree root (see bfq_group's @rq_pos_tree) */
251	struct rb_root *pos_root;
252
253	/* sorted list of pending requests */
254	struct rb_root sort_list;
255	/* if fifo isn't expired, next request to serve */
256	struct request *next_rq;
257	/* number of sync and async requests queued */
258	int queued[2];
259	/* number of requests currently allocated */
260	int allocated;
261	/* number of pending metadata requests */
262	int meta_pending;
263	/* fifo list of requests in sort_list */
264	struct list_head fifo;
265
266	/* entity representing this queue in the scheduler */
267	struct bfq_entity entity;
268
 
 
 
269	/* maximum budget allowed from the feedback mechanism */
270	int max_budget;
271	/* budget expiration (in jiffies) */
272	unsigned long budget_timeout;
273
274	/* number of requests on the dispatch list or inside driver */
275	int dispatched;
276
277	/* status flags */
278	unsigned long flags;
279
280	/* node for active/idle bfqq list inside parent bfqd */
281	struct list_head bfqq_list;
282
283	/* associated @bfq_ttime struct */
284	struct bfq_ttime ttime;
285
 
 
 
 
 
286	/* bit vector: a 1 for each seeky requests in history */
287	u32 seek_history;
288
289	/* node for the device's burst list */
290	struct hlist_node burst_list_node;
291
292	/* position of the last request enqueued */
293	sector_t last_request_pos;
294
295	/* Number of consecutive pairs of request completion and
296	 * arrival, such that the queue becomes idle after the
297	 * completion, but the next request arrives within an idle
298	 * time slice; used only if the queue's IO_bound flag has been
299	 * cleared.
300	 */
301	unsigned int requests_within_timer;
302
303	/* pid of the process owning the queue, used for logging purposes */
304	pid_t pid;
305
306	/*
307	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
308	 * if the queue is shared.
309	 */
310	struct bfq_io_cq *bic;
311
312	/* current maximum weight-raising time for this queue */
313	unsigned long wr_cur_max_time;
314	/*
315	 * Minimum time instant such that, only if a new request is
316	 * enqueued after this time instant in an idle @bfq_queue with
317	 * no outstanding requests, then the task associated with the
318	 * queue it is deemed as soft real-time (see the comments on
319	 * the function bfq_bfqq_softrt_next_start())
320	 */
321	unsigned long soft_rt_next_start;
322	/*
323	 * Start time of the current weight-raising period if
324	 * the @bfq-queue is being weight-raised, otherwise
325	 * finish time of the last weight-raising period.
326	 */
327	unsigned long last_wr_start_finish;
328	/* factor by which the weight of this queue is multiplied */
329	unsigned int wr_coeff;
330	/*
331	 * Time of the last transition of the @bfq_queue from idle to
332	 * backlogged.
333	 */
334	unsigned long last_idle_bklogged;
335	/*
336	 * Cumulative service received from the @bfq_queue since the
337	 * last transition from idle to backlogged.
338	 */
339	unsigned long service_from_backlogged;
340	/*
341	 * Cumulative service received from the @bfq_queue since its
342	 * last transition to weight-raised state.
343	 */
344	unsigned long service_from_wr;
345
346	/*
347	 * Value of wr start time when switching to soft rt
348	 */
349	unsigned long wr_start_at_switch_to_srt;
350
351	unsigned long split_time; /* time of last split */
352
353	unsigned long first_IO_time; /* time of first I/O for this queue */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354};
355
356/**
357 * struct bfq_io_cq - per (request_queue, io_context) structure.
358 */
359struct bfq_io_cq {
360	/* associated io_cq structure */
361	struct io_cq icq; /* must be the first member */
362	/* array of two process queues, the sync and the async */
363	struct bfq_queue *bfqq[2];
364	/* per (request_queue, blkcg) ioprio */
365	int ioprio;
366#ifdef CONFIG_BFQ_GROUP_IOSCHED
367	uint64_t blkcg_serial_nr; /* the current blkcg serial */
368#endif
369	/*
370	 * Snapshot of the has_short_time flag before merging; taken
371	 * to remember its value while the queue is merged, so as to
372	 * be able to restore it in case of split.
373	 */
374	bool saved_has_short_ttime;
375	/*
376	 * Same purpose as the previous two fields for the I/O bound
377	 * classification of a queue.
378	 */
379	bool saved_IO_bound;
380
 
 
 
381	/*
382	 * Same purpose as the previous fields for the value of the
383	 * field keeping the queue's belonging to a large burst
384	 */
385	bool saved_in_large_burst;
386	/*
387	 * True if the queue belonged to a burst list before its merge
388	 * with another cooperating queue.
389	 */
390	bool was_in_burst_list;
391
392	/*
 
 
 
 
 
 
 
 
 
393	 * Similar to previous fields: save wr information.
394	 */
395	unsigned long saved_wr_coeff;
396	unsigned long saved_last_wr_start_finish;
 
397	unsigned long saved_wr_start_at_switch_to_srt;
398	unsigned int saved_wr_cur_max_time;
399	struct bfq_ttime saved_ttime;
400};
401
402enum bfq_device_speed {
403	BFQ_BFQD_FAST,
404	BFQ_BFQD_SLOW,
 
 
 
 
 
 
405};
406
407/**
408 * struct bfq_data - per-device data structure.
409 *
410 * All the fields are protected by @lock.
411 */
412struct bfq_data {
413	/* device request queue */
414	struct request_queue *queue;
415	/* dispatch queue */
416	struct list_head dispatch;
417
418	/* root bfq_group for the device */
419	struct bfq_group *root_group;
420
421	/*
422	 * rbtree of weight counters of @bfq_queues, sorted by
423	 * weight. Used to keep track of whether all @bfq_queues have
424	 * the same weight. The tree contains one counter for each
425	 * distinct weight associated to some active and not
426	 * weight-raised @bfq_queue (see the comments to the functions
427	 * bfq_weights_tree_[add|remove] for further details).
428	 */
429	struct rb_root queue_weights_tree;
430	/*
431	 * rbtree of non-queue @bfq_entity weight counters, sorted by
432	 * weight. Used to keep track of whether all @bfq_groups have
433	 * the same weight. The tree contains one counter for each
434	 * distinct weight associated to some active @bfq_group (see
435	 * the comments to the functions bfq_weights_tree_[add|remove]
436	 * for further details).
437	 */
438	struct rb_root group_weights_tree;
439
440	/*
441	 * Number of bfq_queues containing requests (including the
442	 * queue in service, even if it is idling).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443	 */
444	int busy_queues;
445	/* number of weight-raised busy @bfq_queues */
446	int wr_busy_queues;
447	/* number of queued requests */
448	int queued;
449	/* number of requests dispatched and waiting for completion */
450	int rq_in_driver;
451
 
 
 
452	/*
453	 * Maximum number of requests in driver in the last
454	 * @hw_tag_samples completed requests.
455	 */
456	int max_rq_in_driver;
457	/* number of samples used to calculate hw_tag */
458	int hw_tag_samples;
459	/* flag set to one if the driver is showing a queueing behavior */
460	int hw_tag;
461
462	/* number of budgets assigned */
463	int budgets_assigned;
464
465	/*
466	 * Timer set when idling (waiting) for the next request from
467	 * the queue in service.
468	 */
469	struct hrtimer idle_slice_timer;
470
471	/* bfq_queue in service */
472	struct bfq_queue *in_service_queue;
473
474	/* on-disk position of the last served request */
475	sector_t last_position;
476
 
 
 
477	/* time of last request completion (ns) */
478	u64 last_completion;
479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480	/* time of first rq dispatch in current observation interval (ns) */
481	u64 first_dispatch;
482	/* time of last rq dispatch in current observation interval (ns) */
483	u64 last_dispatch;
484
485	/* beginning of the last budget */
486	ktime_t last_budget_start;
487	/* beginning of the last idle slice */
488	ktime_t last_idling_start;
 
489
490	/* number of samples in current observation interval */
491	int peak_rate_samples;
492	/* num of samples of seq dispatches in current observation interval */
493	u32 sequential_samples;
494	/* total num of sectors transferred in current observation interval */
495	u64 tot_sectors_dispatched;
496	/* max rq size seen during current observation interval (sectors) */
497	u32 last_rq_max_size;
498	/* time elapsed from first dispatch in current observ. interval (us) */
499	u64 delta_from_first;
500	/*
501	 * Current estimate of the device peak rate, measured in
502	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
503	 * BFQ_RATE_SHIFT is performed to increase precision in
504	 * fixed-point calculations.
505	 */
506	u32 peak_rate;
507
508	/* maximum budget allotted to a bfq_queue before rescheduling */
509	int bfq_max_budget;
510
511	/* list of all the bfq_queues active on the device */
512	struct list_head active_list;
513	/* list of all the bfq_queues idle on the device */
514	struct list_head idle_list;
515
516	/*
517	 * Timeout for async/sync requests; when it fires, requests
518	 * are served in fifo order.
519	 */
520	u64 bfq_fifo_expire[2];
521	/* weight of backward seeks wrt forward ones */
522	unsigned int bfq_back_penalty;
523	/* maximum allowed backward seek */
524	unsigned int bfq_back_max;
525	/* maximum idling time */
526	u32 bfq_slice_idle;
527
528	/* user-configured max budget value (0 for auto-tuning) */
529	int bfq_user_max_budget;
530	/*
531	 * Timeout for bfq_queues to consume their budget; used to
532	 * prevent seeky queues from imposing long latencies to
533	 * sequential or quasi-sequential ones (this also implies that
534	 * seeky queues cannot receive guarantees in the service
535	 * domain; after a timeout they are charged for the time they
536	 * have been in service, to preserve fairness among them, but
537	 * without service-domain guarantees).
538	 */
539	unsigned int bfq_timeout;
540
541	/*
542	 * Number of consecutive requests that must be issued within
543	 * the idle time slice to set again idling to a queue which
544	 * was marked as non-I/O-bound (see the definition of the
545	 * IO_bound flag for further details).
546	 */
547	unsigned int bfq_requests_within_timer;
548
549	/*
550	 * Force device idling whenever needed to provide accurate
551	 * service guarantees, without caring about throughput
552	 * issues. CAVEAT: this may even increase latencies, in case
553	 * of useless idling for processes that did stop doing I/O.
554	 */
555	bool strict_guarantees;
556
557	/*
558	 * Last time at which a queue entered the current burst of
559	 * queues being activated shortly after each other; for more
560	 * details about this and the following parameters related to
561	 * a burst of activations, see the comments on the function
562	 * bfq_handle_burst.
563	 */
564	unsigned long last_ins_in_burst;
565	/*
566	 * Reference time interval used to decide whether a queue has
567	 * been activated shortly after @last_ins_in_burst.
568	 */
569	unsigned long bfq_burst_interval;
570	/* number of queues in the current burst of queue activations */
571	int burst_size;
572
573	/* common parent entity for the queues in the burst */
574	struct bfq_entity *burst_parent_entity;
575	/* Maximum burst size above which the current queue-activation
576	 * burst is deemed as 'large'.
577	 */
578	unsigned long bfq_large_burst_thresh;
579	/* true if a large queue-activation burst is in progress */
580	bool large_burst;
581	/*
582	 * Head of the burst list (as for the above fields, more
583	 * details in the comments on the function bfq_handle_burst).
584	 */
585	struct hlist_head burst_list;
586
587	/* if set to true, low-latency heuristics are enabled */
588	bool low_latency;
589	/*
590	 * Maximum factor by which the weight of a weight-raised queue
591	 * is multiplied.
592	 */
593	unsigned int bfq_wr_coeff;
594	/* maximum duration of a weight-raising period (jiffies) */
595	unsigned int bfq_wr_max_time;
596
597	/* Maximum weight-raising duration for soft real-time processes */
598	unsigned int bfq_wr_rt_max_time;
599	/*
600	 * Minimum idle period after which weight-raising may be
601	 * reactivated for a queue (in jiffies).
602	 */
603	unsigned int bfq_wr_min_idle_time;
604	/*
605	 * Minimum period between request arrivals after which
606	 * weight-raising may be reactivated for an already busy async
607	 * queue (in jiffies).
608	 */
609	unsigned long bfq_wr_min_inter_arr_async;
610
611	/* Max service-rate for a soft real-time queue, in sectors/sec */
612	unsigned int bfq_wr_max_softrt_rate;
613	/*
614	 * Cached value of the product R*T, used for computing the
615	 * maximum duration of weight raising automatically.
 
616	 */
617	u64 RT_prod;
618	/* device-speed class for the low-latency heuristic */
619	enum bfq_device_speed device_speed;
620
621	/* fallback dummy bfqq for extreme OOM conditions */
622	struct bfq_queue oom_bfqq;
623
624	spinlock_t lock;
625
626	/*
627	 * bic associated with the task issuing current bio for
628	 * merging. This and the next field are used as a support to
629	 * be able to perform the bic lookup, needed by bio-merge
630	 * functions, before the scheduler lock is taken, and thus
631	 * avoid taking the request-queue lock while the scheduler
632	 * lock is being held.
633	 */
634	struct bfq_io_cq *bio_bic;
635	/* bfqq associated with the task issuing current bio for merging */
636	struct bfq_queue *bio_bfqq;
637
638	/*
639	 * Cached sbitmap shift, used to compute depth limits in
640	 * bfq_update_depths.
641	 */
642	unsigned int sb_shift;
643
644	/*
645	 * Depth limits used in bfq_limit_depth (see comments on the
646	 * function)
647	 */
648	unsigned int word_depths[2][2];
649};
650
651enum bfqq_state_flags {
652	BFQQF_just_created = 0,	/* queue just allocated */
653	BFQQF_busy,		/* has requests or is in service */
654	BFQQF_wait_request,	/* waiting for a request */
655	BFQQF_non_blocking_wait_rq, /*
656				     * waiting for a request
657				     * without idling the device
658				     */
659	BFQQF_fifo_expire,	/* FIFO checked in this slice */
660	BFQQF_has_short_ttime,	/* queue has a short think time */
661	BFQQF_sync,		/* synchronous queue */
662	BFQQF_IO_bound,		/*
663				 * bfqq has timed-out at least once
664				 * having consumed at most 2/10 of
665				 * its budget
666				 */
667	BFQQF_in_large_burst,	/*
668				 * bfqq activated in a large burst,
669				 * see comments to bfq_handle_burst.
670				 */
671	BFQQF_softrt_update,	/*
672				 * may need softrt-next-start
673				 * update
674				 */
675	BFQQF_coop,		/* bfqq is shared */
676	BFQQF_split_coop	/* shared bfqq will be split */
677};
678
679#define BFQ_BFQQ_FNS(name)						\
680void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
681void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
682int bfq_bfqq_##name(const struct bfq_queue *bfqq);
683
684BFQ_BFQQ_FNS(just_created);
685BFQ_BFQQ_FNS(busy);
686BFQ_BFQQ_FNS(wait_request);
687BFQ_BFQQ_FNS(non_blocking_wait_rq);
688BFQ_BFQQ_FNS(fifo_expire);
689BFQ_BFQQ_FNS(has_short_ttime);
690BFQ_BFQQ_FNS(sync);
691BFQ_BFQQ_FNS(IO_bound);
692BFQ_BFQQ_FNS(in_large_burst);
693BFQ_BFQQ_FNS(coop);
694BFQ_BFQQ_FNS(split_coop);
695BFQ_BFQQ_FNS(softrt_update);
696#undef BFQ_BFQQ_FNS
697
698/* Expiration reasons. */
699enum bfqq_expiration {
700	BFQQE_TOO_IDLE = 0,		/*
701					 * queue has been idling for
702					 * too long
703					 */
704	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
705	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
706	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
707	BFQQE_PREEMPTED		/* preemption in progress */
708};
709
 
 
 
 
 
710struct bfqg_stats {
711#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
 
 
 
712	/* number of ios merged */
713	struct blkg_rwstat		merged;
714	/* total time spent on device in ns, may not be accurate w/ queueing */
715	struct blkg_rwstat		service_time;
716	/* total time spent waiting in scheduler queue in ns */
717	struct blkg_rwstat		wait_time;
718	/* number of IOs queued up */
719	struct blkg_rwstat		queued;
720	/* total disk time and nr sectors dispatched by this group */
721	struct blkg_stat		time;
722	/* sum of number of ios queued across all samples */
723	struct blkg_stat		avg_queue_size_sum;
724	/* count of samples taken for average */
725	struct blkg_stat		avg_queue_size_samples;
726	/* how many times this group has been removed from service tree */
727	struct blkg_stat		dequeue;
728	/* total time spent waiting for it to be assigned a timeslice. */
729	struct blkg_stat		group_wait_time;
730	/* time spent idling for this blkcg_gq */
731	struct blkg_stat		idle_time;
732	/* total time with empty current active q with other requests queued */
733	struct blkg_stat		empty_time;
734	/* fields after this shouldn't be cleared on stat reset */
735	uint64_t			start_group_wait_time;
736	uint64_t			start_idle_time;
737	uint64_t			start_empty_time;
738	uint16_t			flags;
739#endif	/* CONFIG_BFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
740};
741
742#ifdef CONFIG_BFQ_GROUP_IOSCHED
743
744/*
745 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
746 *
747 * @ps: @blkcg_policy_storage that this structure inherits
748 * @weight: weight of the bfq_group
749 */
750struct bfq_group_data {
751	/* must be the first member */
752	struct blkcg_policy_data pd;
753
754	unsigned int weight;
755};
756
757/**
758 * struct bfq_group - per (device, cgroup) data structure.
759 * @entity: schedulable entity to insert into the parent group sched_data.
760 * @sched_data: own sched_data, to contain child entities (they may be
761 *              both bfq_queues and bfq_groups).
762 * @bfqd: the bfq_data for the device this group acts upon.
763 * @async_bfqq: array of async queues for all the tasks belonging to
764 *              the group, one queue per ioprio value per ioprio_class,
765 *              except for the idle class that has only one queue.
766 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
767 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
768 *             to avoid too many special cases during group creation/
769 *             migration.
770 * @stats: stats for this bfqg.
771 * @active_entities: number of active entities belonging to the group;
772 *                   unused for the root group. Used to know whether there
773 *                   are groups with more than one active @bfq_entity
774 *                   (see the comments to the function
775 *                   bfq_bfqq_may_idle()).
776 * @rq_pos_tree: rbtree sorted by next_request position, used when
777 *               determining if two or more queues have interleaving
778 *               requests (see bfq_find_close_cooperator()).
779 *
780 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
781 * there is a set of bfq_groups, each one collecting the lower-level
782 * entities belonging to the group that are acting on the same device.
783 *
784 * Locking works as follows:
785 *    o @bfqd is protected by the queue lock, RCU is used to access it
786 *      from the readers.
787 *    o All the other fields are protected by the @bfqd queue lock.
788 */
789struct bfq_group {
790	/* must be the first member */
791	struct blkg_policy_data pd;
792
793	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
794	char blkg_path[128];
795
796	/* reference counter (see comments in bfq_bic_update_cgroup) */
797	int ref;
798
799	struct bfq_entity entity;
800	struct bfq_sched_data sched_data;
801
802	void *bfqd;
803
804	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
805	struct bfq_queue *async_idle_bfqq;
806
807	struct bfq_entity *my_entity;
808
809	int active_entities;
810
811	struct rb_root rq_pos_tree;
812
813	struct bfqg_stats stats;
814};
815
816#else
817struct bfq_group {
 
818	struct bfq_sched_data sched_data;
819
820	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
821	struct bfq_queue *async_idle_bfqq;
822
823	struct rb_root rq_pos_tree;
824};
825#endif
826
827struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
828
829/* --------------- main algorithm interface ----------------- */
830
831#define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
832				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
833
834extern const int bfq_timeout;
835
836struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
837void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
838struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
839void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
840void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
841			  struct rb_root *root);
842void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
843			     struct rb_root *root);
 
 
 
844void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
845		     bool compensate, enum bfqq_expiration reason);
846void bfq_put_queue(struct bfq_queue *bfqq);
847void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
 
848void bfq_schedule_dispatch(struct bfq_data *bfqd);
849void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
850
851/* ------------ end of main algorithm interface -------------- */
852
853/* ---------------- cgroups-support interface ---------------- */
854
 
855void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
856			      unsigned int op);
857void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
858void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
859void bfqg_stats_update_completion(struct bfq_group *bfqg, uint64_t start_time,
860				  uint64_t io_start_time, unsigned int op);
861void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
862void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
863void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
864void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
865void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
866void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
867		   struct bfq_group *bfqg);
868
869void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
870void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
871void bfq_end_wr_async(struct bfq_data *bfqd);
872struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
873				     struct blkcg *blkcg);
874struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
875struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
876struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
877void bfqg_and_blkg_put(struct bfq_group *bfqg);
878
879#ifdef CONFIG_BFQ_GROUP_IOSCHED
880extern struct cftype bfq_blkcg_legacy_files[];
881extern struct cftype bfq_blkg_files[];
882extern struct blkcg_policy blkcg_policy_bfq;
883#endif
884
885/* ------------- end of cgroups-support interface ------------- */
886
887/* - interface of the internal hierarchical B-WF2Q+ scheduler - */
888
889#ifdef CONFIG_BFQ_GROUP_IOSCHED
890/* both next loops stop at one of the child entities of the root group */
891#define for_each_entity(entity)	\
892	for (; entity ; entity = entity->parent)
893
894/*
895 * For each iteration, compute parent in advance, so as to be safe if
896 * entity is deallocated during the iteration. Such a deallocation may
897 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
898 * containing entity.
899 */
900#define for_each_entity_safe(entity, parent) \
901	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
902
903#else /* CONFIG_BFQ_GROUP_IOSCHED */
904/*
905 * Next two macros are fake loops when cgroups support is not
906 * enabled. I fact, in such a case, there is only one level to go up
907 * (to reach the root group).
908 */
909#define for_each_entity(entity)	\
910	for (; entity ; entity = NULL)
911
912#define for_each_entity_safe(entity, parent) \
913	for (parent = NULL; entity ; entity = parent)
914#endif /* CONFIG_BFQ_GROUP_IOSCHED */
915
916struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq);
917struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
 
918struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
919struct bfq_entity *bfq_entity_of(struct rb_node *node);
920unsigned short bfq_ioprio_to_weight(int ioprio);
921void bfq_put_idle_entity(struct bfq_service_tree *st,
922			 struct bfq_entity *entity);
923struct bfq_service_tree *
924__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
925				struct bfq_entity *entity,
926				bool update_class_too);
927void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
928void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
929			  unsigned long time_ms);
930bool __bfq_deactivate_entity(struct bfq_entity *entity,
931			     bool ins_into_idle_tree);
932bool next_queue_may_preempt(struct bfq_data *bfqd);
933struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
934void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
935void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
936			 bool ins_into_idle_tree, bool expiration);
937void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
938void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
939		      bool expiration);
940void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
941		       bool expiration);
942void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
943
944/* --------------- end of interface of B-WF2Q+ ---------------- */
945
946/* Logging facilities. */
 
 
 
 
 
 
 
 
947#ifdef CONFIG_BFQ_GROUP_IOSCHED
948struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
949
950#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
 
 
 
 
951	blk_add_cgroup_trace_msg((bfqd)->queue,				\
952			bfqg_to_blkg(bfqq_group(bfqq))->blkcg,		\
953			"bfq%d%c " fmt, (bfqq)->pid,			\
954			bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args);	\
955} while (0)
956
957#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
958	blk_add_cgroup_trace_msg((bfqd)->queue,				\
959		bfqg_to_blkg(bfqg)->blkcg, fmt, ##args);		\
960} while (0)
961
962#else /* CONFIG_BFQ_GROUP_IOSCHED */
963
964#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	\
965	blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid,	\
 
 
 
 
966			bfq_bfqq_sync((bfqq)) ? 'S' : 'A',		\
967				##args)
 
968#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
969
970#endif /* CONFIG_BFQ_GROUP_IOSCHED */
971
972#define bfq_log(bfqd, fmt, args...) \
973	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
974
975#endif /* _BFQ_H */
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Header file for the BFQ I/O scheduler: data structures and
   4 * prototypes of interface functions among BFQ components.
 
 
 
 
 
 
 
 
 
 
   5 */
   6#ifndef _BFQ_H
   7#define _BFQ_H
   8
   9#include <linux/blktrace_api.h>
  10#include <linux/hrtimer.h>
  11#include <linux/blk-cgroup.h>
  12
  13#include "blk-cgroup-rwstat.h"
  14
  15#define BFQ_IOPRIO_CLASSES	3
  16#define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
  17
  18#define BFQ_MIN_WEIGHT			1
  19#define BFQ_MAX_WEIGHT			1000
  20#define BFQ_WEIGHT_CONVERSION_COEFF	10
  21
  22#define BFQ_DEFAULT_QUEUE_IOPRIO	4
  23
  24#define BFQ_WEIGHT_LEGACY_DFL	100
  25#define BFQ_DEFAULT_GRP_IOPRIO	0
  26#define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
  27
  28#define MAX_PID_STR_LENGTH 12
  29
  30/*
  31 * Soft real-time applications are extremely more latency sensitive
  32 * than interactive ones. Over-raise the weight of the former to
  33 * privilege them against the latter.
  34 */
  35#define BFQ_SOFTRT_WEIGHT_FACTOR	100
  36
  37struct bfq_entity;
  38
  39/**
  40 * struct bfq_service_tree - per ioprio_class service tree.
  41 *
  42 * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
  43 * ioprio_class has its own independent scheduler, and so its own
  44 * bfq_service_tree.  All the fields are protected by the queue lock
  45 * of the containing bfqd.
  46 */
  47struct bfq_service_tree {
  48	/* tree for active entities (i.e., those backlogged) */
  49	struct rb_root active;
  50	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
  51	struct rb_root idle;
  52
  53	/* idle entity with minimum F_i */
  54	struct bfq_entity *first_idle;
  55	/* idle entity with maximum F_i */
  56	struct bfq_entity *last_idle;
  57
  58	/* scheduler virtual time */
  59	u64 vtime;
  60	/* scheduler weight sum; active and idle entities contribute to it */
  61	unsigned long wsum;
  62};
  63
  64/**
  65 * struct bfq_sched_data - multi-class scheduler.
  66 *
  67 * bfq_sched_data is the basic scheduler queue.  It supports three
  68 * ioprio_classes, and can be used either as a toplevel queue or as an
  69 * intermediate queue in a hierarchical setup.
  70 *
  71 * The supported ioprio_classes are the same as in CFQ, in descending
  72 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
  73 * Requests from higher priority queues are served before all the
  74 * requests from lower priority queues; among requests of the same
  75 * queue requests are served according to B-WF2Q+.
  76 *
  77 * The schedule is implemented by the service trees, plus the field
  78 * @next_in_service, which points to the entity on the active trees
  79 * that will be served next, if 1) no changes in the schedule occurs
  80 * before the current in-service entity is expired, 2) the in-service
  81 * queue becomes idle when it expires, and 3) if the entity pointed by
  82 * in_service_entity is not a queue, then the in-service child entity
  83 * of the entity pointed by in_service_entity becomes idle on
  84 * expiration. This peculiar definition allows for the following
  85 * optimization, not yet exploited: while a given entity is still in
  86 * service, we already know which is the best candidate for next
  87 * service among the other active entities in the same parent
  88 * entity. We can then quickly compare the timestamps of the
  89 * in-service entity with those of such best candidate.
  90 *
  91 * All fields are protected by the lock of the containing bfqd.
  92 */
  93struct bfq_sched_data {
  94	/* entity in service */
  95	struct bfq_entity *in_service_entity;
  96	/* head-of-line entity (see comments above) */
  97	struct bfq_entity *next_in_service;
  98	/* array of service trees, one per ioprio_class */
  99	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
 100	/* last time CLASS_IDLE was served */
 101	unsigned long bfq_class_idle_last_service;
 102
 103};
 104
 105/**
 106 * struct bfq_weight_counter - counter of the number of all active queues
 107 *                             with a given weight.
 108 */
 109struct bfq_weight_counter {
 110	unsigned int weight; /* weight of the queues this counter refers to */
 111	unsigned int num_active; /* nr of active queues with this weight */
 112	/*
 113	 * Weights tree member (see bfq_data's @queue_weights_tree)
 
 114	 */
 115	struct rb_node weights_node;
 116};
 117
 118/**
 119 * struct bfq_entity - schedulable entity.
 120 *
 121 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
 122 * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
 123 * entity belongs to the sched_data of the parent group in the cgroup
 124 * hierarchy.  Non-leaf entities have also their own sched_data, stored
 125 * in @my_sched_data.
 126 *
 127 * Each entity stores independently its priority values; this would
 128 * allow different weights on different devices, but this
 129 * functionality is not exported to userspace by now.  Priorities and
 130 * weights are updated lazily, first storing the new values into the
 131 * new_* fields, then setting the @prio_changed flag.  As soon as
 132 * there is a transition in the entity state that allows the priority
 133 * update to take place the effective and the requested priority
 134 * values are synchronized.
 135 *
 136 * Unless cgroups are used, the weight value is calculated from the
 137 * ioprio to export the same interface as CFQ.  When dealing with
 138 * "well-behaved" queues (i.e., queues that do not spend too much
 139 * time to consume their budget and have true sequential behavior, and
 140 * when there are no external factors breaking anticipation) the
 141 * relative weights at each level of the cgroups hierarchy should be
 142 * guaranteed.  All the fields are protected by the queue lock of the
 143 * containing bfqd.
 144 */
 145struct bfq_entity {
 146	/* service_tree member */
 147	struct rb_node rb_node;
 
 
 148
 149	/*
 150	 * Flag, true if the entity is on a tree (either the active or
 151	 * the idle one of its service_tree) or is in service.
 152	 */
 153	bool on_st_or_in_serv;
 154
 155	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
 156	u64 start, finish;
 157
 158	/* tree the entity is enqueued into; %NULL if not on a tree */
 159	struct rb_root *tree;
 160
 161	/*
 162	 * minimum start time of the (active) subtree rooted at this
 163	 * entity; used for O(log N) lookups into active trees
 164	 */
 165	u64 min_start;
 166
 167	/* amount of service received during the last service slot */
 168	int service;
 169
 170	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
 171	int budget;
 172
 173	/* device weight, if non-zero, it overrides the default weight of
 174	 * bfq_group_data */
 175	int dev_weight;
 176	/* weight of the queue */
 177	int weight;
 178	/* next weight if a change is in progress */
 179	int new_weight;
 180
 181	/* original weight, used to implement weight boosting */
 182	int orig_weight;
 183
 184	/* parent entity, for hierarchical scheduling */
 185	struct bfq_entity *parent;
 186
 187	/*
 188	 * For non-leaf nodes in the hierarchy, the associated
 189	 * scheduler queue, %NULL on leaf nodes.
 190	 */
 191	struct bfq_sched_data *my_sched_data;
 192	/* the scheduler queue this entity belongs to */
 193	struct bfq_sched_data *sched_data;
 194
 195	/* flag, set to request a weight, ioprio or ioprio_class change  */
 196	int prio_changed;
 197
 198	/* flag, set if the entity is counted in groups_with_pending_reqs */
 199	bool in_groups_with_pending_reqs;
 200
 201	/* last child queue of entity created (for non-leaf entities) */
 202	struct bfq_queue *last_bfqq_created;
 203};
 204
 205struct bfq_group;
 206
 207/**
 208 * struct bfq_ttime - per process thinktime stats.
 209 */
 210struct bfq_ttime {
 211	/* completion time of the last request */
 212	u64 last_end_request;
 213
 214	/* total process thinktime */
 215	u64 ttime_total;
 216	/* number of thinktime samples */
 217	unsigned long ttime_samples;
 218	/* average process thinktime */
 219	u64 ttime_mean;
 220};
 221
 222/**
 223 * struct bfq_queue - leaf schedulable entity.
 224 *
 225 * A bfq_queue is a leaf request queue; it can be associated with an
 226 * io_context or more, if it  is  async or shared  between  cooperating
 227 * processes. @cgroup holds a reference to the cgroup, to be sure that it
 228 * does not disappear while a bfqq still references it (mostly to avoid
 229 * races between request issuing and task migration followed by cgroup
 230 * destruction).
 231 * All the fields are protected by the queue lock of the containing bfqd.
 232 */
 233struct bfq_queue {
 234	/* reference counter */
 235	int ref;
 236	/* counter of references from other queues for delayed stable merge */
 237	int stable_ref;
 238	/* parent bfq_data */
 239	struct bfq_data *bfqd;
 240
 241	/* current ioprio and ioprio class */
 242	unsigned short ioprio, ioprio_class;
 243	/* next ioprio and ioprio class if a change is in progress */
 244	unsigned short new_ioprio, new_ioprio_class;
 245
 246	/* last total-service-time sample, see bfq_update_inject_limit() */
 247	u64 last_serv_time_ns;
 248	/* limit for request injection */
 249	unsigned int inject_limit;
 250	/* last time the inject limit has been decreased, in jiffies */
 251	unsigned long decrease_time_jif;
 252
 253	/*
 254	 * Shared bfq_queue if queue is cooperating with one or more
 255	 * other queues.
 256	 */
 257	struct bfq_queue *new_bfqq;
 258	/* request-position tree member (see bfq_group's @rq_pos_tree) */
 259	struct rb_node pos_node;
 260	/* request-position tree root (see bfq_group's @rq_pos_tree) */
 261	struct rb_root *pos_root;
 262
 263	/* sorted list of pending requests */
 264	struct rb_root sort_list;
 265	/* if fifo isn't expired, next request to serve */
 266	struct request *next_rq;
 267	/* number of sync and async requests queued */
 268	int queued[2];
 269	/* number of requests currently allocated */
 270	int allocated;
 271	/* number of pending metadata requests */
 272	int meta_pending;
 273	/* fifo list of requests in sort_list */
 274	struct list_head fifo;
 275
 276	/* entity representing this queue in the scheduler */
 277	struct bfq_entity entity;
 278
 279	/* pointer to the weight counter associated with this entity */
 280	struct bfq_weight_counter *weight_counter;
 281
 282	/* maximum budget allowed from the feedback mechanism */
 283	int max_budget;
 284	/* budget expiration (in jiffies) */
 285	unsigned long budget_timeout;
 286
 287	/* number of requests on the dispatch list or inside driver */
 288	int dispatched;
 289
 290	/* status flags */
 291	unsigned long flags;
 292
 293	/* node for active/idle bfqq list inside parent bfqd */
 294	struct list_head bfqq_list;
 295
 296	/* associated @bfq_ttime struct */
 297	struct bfq_ttime ttime;
 298
 299	/* when bfqq started to do I/O within the last observation window */
 300	u64 io_start_time;
 301	/* how long bfqq has remained empty during the last observ. window */
 302	u64 tot_idle_time;
 303
 304	/* bit vector: a 1 for each seeky requests in history */
 305	u32 seek_history;
 306
 307	/* node for the device's burst list */
 308	struct hlist_node burst_list_node;
 309
 310	/* position of the last request enqueued */
 311	sector_t last_request_pos;
 312
 313	/* Number of consecutive pairs of request completion and
 314	 * arrival, such that the queue becomes idle after the
 315	 * completion, but the next request arrives within an idle
 316	 * time slice; used only if the queue's IO_bound flag has been
 317	 * cleared.
 318	 */
 319	unsigned int requests_within_timer;
 320
 321	/* pid of the process owning the queue, used for logging purposes */
 322	pid_t pid;
 323
 324	/*
 325	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
 326	 * if the queue is shared.
 327	 */
 328	struct bfq_io_cq *bic;
 329
 330	/* current maximum weight-raising time for this queue */
 331	unsigned long wr_cur_max_time;
 332	/*
 333	 * Minimum time instant such that, only if a new request is
 334	 * enqueued after this time instant in an idle @bfq_queue with
 335	 * no outstanding requests, then the task associated with the
 336	 * queue it is deemed as soft real-time (see the comments on
 337	 * the function bfq_bfqq_softrt_next_start())
 338	 */
 339	unsigned long soft_rt_next_start;
 340	/*
 341	 * Start time of the current weight-raising period if
 342	 * the @bfq-queue is being weight-raised, otherwise
 343	 * finish time of the last weight-raising period.
 344	 */
 345	unsigned long last_wr_start_finish;
 346	/* factor by which the weight of this queue is multiplied */
 347	unsigned int wr_coeff;
 348	/*
 349	 * Time of the last transition of the @bfq_queue from idle to
 350	 * backlogged.
 351	 */
 352	unsigned long last_idle_bklogged;
 353	/*
 354	 * Cumulative service received from the @bfq_queue since the
 355	 * last transition from idle to backlogged.
 356	 */
 357	unsigned long service_from_backlogged;
 358	/*
 359	 * Cumulative service received from the @bfq_queue since its
 360	 * last transition to weight-raised state.
 361	 */
 362	unsigned long service_from_wr;
 363
 364	/*
 365	 * Value of wr start time when switching to soft rt
 366	 */
 367	unsigned long wr_start_at_switch_to_srt;
 368
 369	unsigned long split_time; /* time of last split */
 370
 371	unsigned long first_IO_time; /* time of first I/O for this queue */
 372
 373	unsigned long creation_time; /* when this queue is created */
 374
 375	/* max service rate measured so far */
 376	u32 max_service_rate;
 377
 378	/*
 379	 * Pointer to the waker queue for this queue, i.e., to the
 380	 * queue Q such that this queue happens to get new I/O right
 381	 * after some I/O request of Q is completed. For details, see
 382	 * the comments on the choice of the queue for injection in
 383	 * bfq_select_queue().
 384	 */
 385	struct bfq_queue *waker_bfqq;
 386	/* pointer to the curr. tentative waker queue, see bfq_check_waker() */
 387	struct bfq_queue *tentative_waker_bfqq;
 388	/* number of times the same tentative waker has been detected */
 389	unsigned int num_waker_detections;
 390
 391	/* node for woken_list, see below */
 392	struct hlist_node woken_list_node;
 393	/*
 394	 * Head of the list of the woken queues for this queue, i.e.,
 395	 * of the list of the queues for which this queue is a waker
 396	 * queue. This list is used to reset the waker_bfqq pointer in
 397	 * the woken queues when this queue exits.
 398	 */
 399	struct hlist_head woken_list;
 400};
 401
 402/**
 403 * struct bfq_io_cq - per (request_queue, io_context) structure.
 404 */
 405struct bfq_io_cq {
 406	/* associated io_cq structure */
 407	struct io_cq icq; /* must be the first member */
 408	/* array of two process queues, the sync and the async */
 409	struct bfq_queue *bfqq[2];
 410	/* per (request_queue, blkcg) ioprio */
 411	int ioprio;
 412#ifdef CONFIG_BFQ_GROUP_IOSCHED
 413	uint64_t blkcg_serial_nr; /* the current blkcg serial */
 414#endif
 415	/*
 416	 * Snapshot of the has_short_time flag before merging; taken
 417	 * to remember its value while the queue is merged, so as to
 418	 * be able to restore it in case of split.
 419	 */
 420	bool saved_has_short_ttime;
 421	/*
 422	 * Same purpose as the previous two fields for the I/O bound
 423	 * classification of a queue.
 424	 */
 425	bool saved_IO_bound;
 426
 427	u64 saved_io_start_time;
 428	u64 saved_tot_idle_time;
 429
 430	/*
 431	 * Same purpose as the previous fields for the value of the
 432	 * field keeping the queue's belonging to a large burst
 433	 */
 434	bool saved_in_large_burst;
 435	/*
 436	 * True if the queue belonged to a burst list before its merge
 437	 * with another cooperating queue.
 438	 */
 439	bool was_in_burst_list;
 440
 441	/*
 442	 * Save the weight when a merge occurs, to be able
 443	 * to restore it in case of split. If the weight is not
 444	 * correctly resumed when the queue is recycled,
 445	 * then the weight of the recycled queue could differ
 446	 * from the weight of the original queue.
 447	 */
 448	unsigned int saved_weight;
 449
 450	/*
 451	 * Similar to previous fields: save wr information.
 452	 */
 453	unsigned long saved_wr_coeff;
 454	unsigned long saved_last_wr_start_finish;
 455	unsigned long saved_service_from_wr;
 456	unsigned long saved_wr_start_at_switch_to_srt;
 457	unsigned int saved_wr_cur_max_time;
 458	struct bfq_ttime saved_ttime;
 
 459
 460	/* Save also injection state */
 461	u64 saved_last_serv_time_ns;
 462	unsigned int saved_inject_limit;
 463	unsigned long saved_decrease_time_jif;
 464
 465	/* candidate queue for a stable merge (due to close creation time) */
 466	struct bfq_queue *stable_merge_bfqq;
 467
 468	bool stably_merged;	/* non splittable if true */
 469};
 470
 471/**
 472 * struct bfq_data - per-device data structure.
 473 *
 474 * All the fields are protected by @lock.
 475 */
 476struct bfq_data {
 477	/* device request queue */
 478	struct request_queue *queue;
 479	/* dispatch queue */
 480	struct list_head dispatch;
 481
 482	/* root bfq_group for the device */
 483	struct bfq_group *root_group;
 484
 485	/*
 486	 * rbtree of weight counters of @bfq_queues, sorted by
 487	 * weight. Used to keep track of whether all @bfq_queues have
 488	 * the same weight. The tree contains one counter for each
 489	 * distinct weight associated to some active and not
 490	 * weight-raised @bfq_queue (see the comments to the functions
 491	 * bfq_weights_tree_[add|remove] for further details).
 492	 */
 493	struct rb_root_cached queue_weights_tree;
 
 
 
 
 
 
 
 
 
 494
 495	/*
 496	 * Number of groups with at least one descendant process that
 497	 * has at least one request waiting for completion. Note that
 498	 * this accounts for also requests already dispatched, but not
 499	 * yet completed. Therefore this number of groups may differ
 500	 * (be larger) than the number of active groups, as a group is
 501	 * considered active only if its corresponding entity has
 502	 * descendant queues with at least one request queued. This
 503	 * number is used to decide whether a scenario is symmetric.
 504	 * For a detailed explanation see comments on the computation
 505	 * of the variable asymmetric_scenario in the function
 506	 * bfq_better_to_idle().
 507	 *
 508	 * However, it is hard to compute this number exactly, for
 509	 * groups with multiple descendant processes. Consider a group
 510	 * that is inactive, i.e., that has no descendant process with
 511	 * pending I/O inside BFQ queues. Then suppose that
 512	 * num_groups_with_pending_reqs is still accounting for this
 513	 * group, because the group has descendant processes with some
 514	 * I/O request still in flight. num_groups_with_pending_reqs
 515	 * should be decremented when the in-flight request of the
 516	 * last descendant process is finally completed (assuming that
 517	 * nothing else has changed for the group in the meantime, in
 518	 * terms of composition of the group and active/inactive state of child
 519	 * groups and processes). To accomplish this, an additional
 520	 * pending-request counter must be added to entities, and must
 521	 * be updated correctly. To avoid this additional field and operations,
 522	 * we resort to the following tradeoff between simplicity and
 523	 * accuracy: for an inactive group that is still counted in
 524	 * num_groups_with_pending_reqs, we decrement
 525	 * num_groups_with_pending_reqs when the first descendant
 526	 * process of the group remains with no request waiting for
 527	 * completion.
 528	 *
 529	 * Even this simpler decrement strategy requires a little
 530	 * carefulness: to avoid multiple decrements, we flag a group,
 531	 * more precisely an entity representing a group, as still
 532	 * counted in num_groups_with_pending_reqs when it becomes
 533	 * inactive. Then, when the first descendant queue of the
 534	 * entity remains with no request waiting for completion,
 535	 * num_groups_with_pending_reqs is decremented, and this flag
 536	 * is reset. After this flag is reset for the entity,
 537	 * num_groups_with_pending_reqs won't be decremented any
 538	 * longer in case a new descendant queue of the entity remains
 539	 * with no request waiting for completion.
 540	 */
 541	unsigned int num_groups_with_pending_reqs;
 542
 543	/*
 544	 * Per-class (RT, BE, IDLE) number of bfq_queues containing
 545	 * requests (including the queue in service, even if it is
 546	 * idling).
 547	 */
 548	unsigned int busy_queues[3];
 549	/* number of weight-raised busy @bfq_queues */
 550	int wr_busy_queues;
 551	/* number of queued requests */
 552	int queued;
 553	/* number of requests dispatched and waiting for completion */
 554	int rq_in_driver;
 555
 556	/* true if the device is non rotational and performs queueing */
 557	bool nonrot_with_queueing;
 558
 559	/*
 560	 * Maximum number of requests in driver in the last
 561	 * @hw_tag_samples completed requests.
 562	 */
 563	int max_rq_in_driver;
 564	/* number of samples used to calculate hw_tag */
 565	int hw_tag_samples;
 566	/* flag set to one if the driver is showing a queueing behavior */
 567	int hw_tag;
 568
 569	/* number of budgets assigned */
 570	int budgets_assigned;
 571
 572	/*
 573	 * Timer set when idling (waiting) for the next request from
 574	 * the queue in service.
 575	 */
 576	struct hrtimer idle_slice_timer;
 577
 578	/* bfq_queue in service */
 579	struct bfq_queue *in_service_queue;
 580
 581	/* on-disk position of the last served request */
 582	sector_t last_position;
 583
 584	/* position of the last served request for the in-service queue */
 585	sector_t in_serv_last_pos;
 586
 587	/* time of last request completion (ns) */
 588	u64 last_completion;
 589
 590	/* bfqq owning the last completed rq */
 591	struct bfq_queue *last_completed_rq_bfqq;
 592
 593	/* last bfqq created, among those in the root group */
 594	struct bfq_queue *last_bfqq_created;
 595
 596	/* time of last transition from empty to non-empty (ns) */
 597	u64 last_empty_occupied_ns;
 598
 599	/*
 600	 * Flag set to activate the sampling of the total service time
 601	 * of a just-arrived first I/O request (see
 602	 * bfq_update_inject_limit()). This will cause the setting of
 603	 * waited_rq when the request is finally dispatched.
 604	 */
 605	bool wait_dispatch;
 606	/*
 607	 *  If set, then bfq_update_inject_limit() is invoked when
 608	 *  waited_rq is eventually completed.
 609	 */
 610	struct request *waited_rq;
 611	/*
 612	 * True if some request has been injected during the last service hole.
 613	 */
 614	bool rqs_injected;
 615
 616	/* time of first rq dispatch in current observation interval (ns) */
 617	u64 first_dispatch;
 618	/* time of last rq dispatch in current observation interval (ns) */
 619	u64 last_dispatch;
 620
 621	/* beginning of the last budget */
 622	ktime_t last_budget_start;
 623	/* beginning of the last idle slice */
 624	ktime_t last_idling_start;
 625	unsigned long last_idling_start_jiffies;
 626
 627	/* number of samples in current observation interval */
 628	int peak_rate_samples;
 629	/* num of samples of seq dispatches in current observation interval */
 630	u32 sequential_samples;
 631	/* total num of sectors transferred in current observation interval */
 632	u64 tot_sectors_dispatched;
 633	/* max rq size seen during current observation interval (sectors) */
 634	u32 last_rq_max_size;
 635	/* time elapsed from first dispatch in current observ. interval (us) */
 636	u64 delta_from_first;
 637	/*
 638	 * Current estimate of the device peak rate, measured in
 639	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
 640	 * BFQ_RATE_SHIFT is performed to increase precision in
 641	 * fixed-point calculations.
 642	 */
 643	u32 peak_rate;
 644
 645	/* maximum budget allotted to a bfq_queue before rescheduling */
 646	int bfq_max_budget;
 647
 648	/* list of all the bfq_queues active on the device */
 649	struct list_head active_list;
 650	/* list of all the bfq_queues idle on the device */
 651	struct list_head idle_list;
 652
 653	/*
 654	 * Timeout for async/sync requests; when it fires, requests
 655	 * are served in fifo order.
 656	 */
 657	u64 bfq_fifo_expire[2];
 658	/* weight of backward seeks wrt forward ones */
 659	unsigned int bfq_back_penalty;
 660	/* maximum allowed backward seek */
 661	unsigned int bfq_back_max;
 662	/* maximum idling time */
 663	u32 bfq_slice_idle;
 664
 665	/* user-configured max budget value (0 for auto-tuning) */
 666	int bfq_user_max_budget;
 667	/*
 668	 * Timeout for bfq_queues to consume their budget; used to
 669	 * prevent seeky queues from imposing long latencies to
 670	 * sequential or quasi-sequential ones (this also implies that
 671	 * seeky queues cannot receive guarantees in the service
 672	 * domain; after a timeout they are charged for the time they
 673	 * have been in service, to preserve fairness among them, but
 674	 * without service-domain guarantees).
 675	 */
 676	unsigned int bfq_timeout;
 677
 678	/*
 
 
 
 
 
 
 
 
 679	 * Force device idling whenever needed to provide accurate
 680	 * service guarantees, without caring about throughput
 681	 * issues. CAVEAT: this may even increase latencies, in case
 682	 * of useless idling for processes that did stop doing I/O.
 683	 */
 684	bool strict_guarantees;
 685
 686	/*
 687	 * Last time at which a queue entered the current burst of
 688	 * queues being activated shortly after each other; for more
 689	 * details about this and the following parameters related to
 690	 * a burst of activations, see the comments on the function
 691	 * bfq_handle_burst.
 692	 */
 693	unsigned long last_ins_in_burst;
 694	/*
 695	 * Reference time interval used to decide whether a queue has
 696	 * been activated shortly after @last_ins_in_burst.
 697	 */
 698	unsigned long bfq_burst_interval;
 699	/* number of queues in the current burst of queue activations */
 700	int burst_size;
 701
 702	/* common parent entity for the queues in the burst */
 703	struct bfq_entity *burst_parent_entity;
 704	/* Maximum burst size above which the current queue-activation
 705	 * burst is deemed as 'large'.
 706	 */
 707	unsigned long bfq_large_burst_thresh;
 708	/* true if a large queue-activation burst is in progress */
 709	bool large_burst;
 710	/*
 711	 * Head of the burst list (as for the above fields, more
 712	 * details in the comments on the function bfq_handle_burst).
 713	 */
 714	struct hlist_head burst_list;
 715
 716	/* if set to true, low-latency heuristics are enabled */
 717	bool low_latency;
 718	/*
 719	 * Maximum factor by which the weight of a weight-raised queue
 720	 * is multiplied.
 721	 */
 722	unsigned int bfq_wr_coeff;
 723	/* maximum duration of a weight-raising period (jiffies) */
 724	unsigned int bfq_wr_max_time;
 725
 726	/* Maximum weight-raising duration for soft real-time processes */
 727	unsigned int bfq_wr_rt_max_time;
 728	/*
 729	 * Minimum idle period after which weight-raising may be
 730	 * reactivated for a queue (in jiffies).
 731	 */
 732	unsigned int bfq_wr_min_idle_time;
 733	/*
 734	 * Minimum period between request arrivals after which
 735	 * weight-raising may be reactivated for an already busy async
 736	 * queue (in jiffies).
 737	 */
 738	unsigned long bfq_wr_min_inter_arr_async;
 739
 740	/* Max service-rate for a soft real-time queue, in sectors/sec */
 741	unsigned int bfq_wr_max_softrt_rate;
 742	/*
 743	 * Cached value of the product ref_rate*ref_wr_duration, used
 744	 * for computing the maximum duration of weight raising
 745	 * automatically.
 746	 */
 747	u64 rate_dur_prod;
 
 
 748
 749	/* fallback dummy bfqq for extreme OOM conditions */
 750	struct bfq_queue oom_bfqq;
 751
 752	spinlock_t lock;
 753
 754	/*
 755	 * bic associated with the task issuing current bio for
 756	 * merging. This and the next field are used as a support to
 757	 * be able to perform the bic lookup, needed by bio-merge
 758	 * functions, before the scheduler lock is taken, and thus
 759	 * avoid taking the request-queue lock while the scheduler
 760	 * lock is being held.
 761	 */
 762	struct bfq_io_cq *bio_bic;
 763	/* bfqq associated with the task issuing current bio for merging */
 764	struct bfq_queue *bio_bfqq;
 765
 766	/*
 
 
 
 
 
 
 767	 * Depth limits used in bfq_limit_depth (see comments on the
 768	 * function)
 769	 */
 770	unsigned int word_depths[2][2];
 771};
 772
 773enum bfqq_state_flags {
 774	BFQQF_just_created = 0,	/* queue just allocated */
 775	BFQQF_busy,		/* has requests or is in service */
 776	BFQQF_wait_request,	/* waiting for a request */
 777	BFQQF_non_blocking_wait_rq, /*
 778				     * waiting for a request
 779				     * without idling the device
 780				     */
 781	BFQQF_fifo_expire,	/* FIFO checked in this slice */
 782	BFQQF_has_short_ttime,	/* queue has a short think time */
 783	BFQQF_sync,		/* synchronous queue */
 784	BFQQF_IO_bound,		/*
 785				 * bfqq has timed-out at least once
 786				 * having consumed at most 2/10 of
 787				 * its budget
 788				 */
 789	BFQQF_in_large_burst,	/*
 790				 * bfqq activated in a large burst,
 791				 * see comments to bfq_handle_burst.
 792				 */
 793	BFQQF_softrt_update,	/*
 794				 * may need softrt-next-start
 795				 * update
 796				 */
 797	BFQQF_coop,		/* bfqq is shared */
 798	BFQQF_split_coop,	/* shared bfqq will be split */
 799};
 800
 801#define BFQ_BFQQ_FNS(name)						\
 802void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
 803void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
 804int bfq_bfqq_##name(const struct bfq_queue *bfqq);
 805
 806BFQ_BFQQ_FNS(just_created);
 807BFQ_BFQQ_FNS(busy);
 808BFQ_BFQQ_FNS(wait_request);
 809BFQ_BFQQ_FNS(non_blocking_wait_rq);
 810BFQ_BFQQ_FNS(fifo_expire);
 811BFQ_BFQQ_FNS(has_short_ttime);
 812BFQ_BFQQ_FNS(sync);
 813BFQ_BFQQ_FNS(IO_bound);
 814BFQ_BFQQ_FNS(in_large_burst);
 815BFQ_BFQQ_FNS(coop);
 816BFQ_BFQQ_FNS(split_coop);
 817BFQ_BFQQ_FNS(softrt_update);
 818#undef BFQ_BFQQ_FNS
 819
 820/* Expiration reasons. */
 821enum bfqq_expiration {
 822	BFQQE_TOO_IDLE = 0,		/*
 823					 * queue has been idling for
 824					 * too long
 825					 */
 826	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
 827	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
 828	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
 829	BFQQE_PREEMPTED		/* preemption in progress */
 830};
 831
 832struct bfq_stat {
 833	struct percpu_counter		cpu_cnt;
 834	atomic64_t			aux_cnt;
 835};
 836
 837struct bfqg_stats {
 838	/* basic stats */
 839	struct blkg_rwstat		bytes;
 840	struct blkg_rwstat		ios;
 841#ifdef CONFIG_BFQ_CGROUP_DEBUG
 842	/* number of ios merged */
 843	struct blkg_rwstat		merged;
 844	/* total time spent on device in ns, may not be accurate w/ queueing */
 845	struct blkg_rwstat		service_time;
 846	/* total time spent waiting in scheduler queue in ns */
 847	struct blkg_rwstat		wait_time;
 848	/* number of IOs queued up */
 849	struct blkg_rwstat		queued;
 850	/* total disk time and nr sectors dispatched by this group */
 851	struct bfq_stat		time;
 852	/* sum of number of ios queued across all samples */
 853	struct bfq_stat		avg_queue_size_sum;
 854	/* count of samples taken for average */
 855	struct bfq_stat		avg_queue_size_samples;
 856	/* how many times this group has been removed from service tree */
 857	struct bfq_stat		dequeue;
 858	/* total time spent waiting for it to be assigned a timeslice. */
 859	struct bfq_stat		group_wait_time;
 860	/* time spent idling for this blkcg_gq */
 861	struct bfq_stat		idle_time;
 862	/* total time with empty current active q with other requests queued */
 863	struct bfq_stat		empty_time;
 864	/* fields after this shouldn't be cleared on stat reset */
 865	u64				start_group_wait_time;
 866	u64				start_idle_time;
 867	u64				start_empty_time;
 868	uint16_t			flags;
 869#endif /* CONFIG_BFQ_CGROUP_DEBUG */
 870};
 871
 872#ifdef CONFIG_BFQ_GROUP_IOSCHED
 873
 874/*
 875 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
 876 *
 877 * @ps: @blkcg_policy_storage that this structure inherits
 878 * @weight: weight of the bfq_group
 879 */
 880struct bfq_group_data {
 881	/* must be the first member */
 882	struct blkcg_policy_data pd;
 883
 884	unsigned int weight;
 885};
 886
 887/**
 888 * struct bfq_group - per (device, cgroup) data structure.
 889 * @entity: schedulable entity to insert into the parent group sched_data.
 890 * @sched_data: own sched_data, to contain child entities (they may be
 891 *              both bfq_queues and bfq_groups).
 892 * @bfqd: the bfq_data for the device this group acts upon.
 893 * @async_bfqq: array of async queues for all the tasks belonging to
 894 *              the group, one queue per ioprio value per ioprio_class,
 895 *              except for the idle class that has only one queue.
 896 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
 897 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
 898 *             to avoid too many special cases during group creation/
 899 *             migration.
 900 * @stats: stats for this bfqg.
 901 * @active_entities: number of active entities belonging to the group;
 902 *                   unused for the root group. Used to know whether there
 903 *                   are groups with more than one active @bfq_entity
 904 *                   (see the comments to the function
 905 *                   bfq_bfqq_may_idle()).
 906 * @rq_pos_tree: rbtree sorted by next_request position, used when
 907 *               determining if two or more queues have interleaving
 908 *               requests (see bfq_find_close_cooperator()).
 909 *
 910 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
 911 * there is a set of bfq_groups, each one collecting the lower-level
 912 * entities belonging to the group that are acting on the same device.
 913 *
 914 * Locking works as follows:
 915 *    o @bfqd is protected by the queue lock, RCU is used to access it
 916 *      from the readers.
 917 *    o All the other fields are protected by the @bfqd queue lock.
 918 */
 919struct bfq_group {
 920	/* must be the first member */
 921	struct blkg_policy_data pd;
 922
 923	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
 924	char blkg_path[128];
 925
 926	/* reference counter (see comments in bfq_bic_update_cgroup) */
 927	int ref;
 928
 929	struct bfq_entity entity;
 930	struct bfq_sched_data sched_data;
 931
 932	void *bfqd;
 933
 934	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
 935	struct bfq_queue *async_idle_bfqq;
 936
 937	struct bfq_entity *my_entity;
 938
 939	int active_entities;
 940
 941	struct rb_root rq_pos_tree;
 942
 943	struct bfqg_stats stats;
 944};
 945
 946#else
 947struct bfq_group {
 948	struct bfq_entity entity;
 949	struct bfq_sched_data sched_data;
 950
 951	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
 952	struct bfq_queue *async_idle_bfqq;
 953
 954	struct rb_root rq_pos_tree;
 955};
 956#endif
 957
 958struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
 959
 960/* --------------- main algorithm interface ----------------- */
 961
 962#define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
 963				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
 964
 965extern const int bfq_timeout;
 966
 967struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
 968void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
 969struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
 970void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
 971void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
 972			  struct rb_root_cached *root);
 973void __bfq_weights_tree_remove(struct bfq_data *bfqd,
 974			       struct bfq_queue *bfqq,
 975			       struct rb_root_cached *root);
 976void bfq_weights_tree_remove(struct bfq_data *bfqd,
 977			     struct bfq_queue *bfqq);
 978void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
 979		     bool compensate, enum bfqq_expiration reason);
 980void bfq_put_queue(struct bfq_queue *bfqq);
 981void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
 982void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq);
 983void bfq_schedule_dispatch(struct bfq_data *bfqd);
 984void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
 985
 986/* ------------ end of main algorithm interface -------------- */
 987
 988/* ---------------- cgroups-support interface ---------------- */
 989
 990void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq);
 991void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
 992			      unsigned int op);
 993void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
 994void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
 995void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
 996				  u64 io_start_time_ns, unsigned int op);
 997void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
 998void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
 999void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
1000void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
1001void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
1002void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1003		   struct bfq_group *bfqg);
1004
1005void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
1006void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
1007void bfq_end_wr_async(struct bfq_data *bfqd);
1008struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
1009				     struct blkcg *blkcg);
1010struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
1011struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1012struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
1013void bfqg_and_blkg_put(struct bfq_group *bfqg);
1014
1015#ifdef CONFIG_BFQ_GROUP_IOSCHED
1016extern struct cftype bfq_blkcg_legacy_files[];
1017extern struct cftype bfq_blkg_files[];
1018extern struct blkcg_policy blkcg_policy_bfq;
1019#endif
1020
1021/* ------------- end of cgroups-support interface ------------- */
1022
1023/* - interface of the internal hierarchical B-WF2Q+ scheduler - */
1024
1025#ifdef CONFIG_BFQ_GROUP_IOSCHED
1026/* both next loops stop at one of the child entities of the root group */
1027#define for_each_entity(entity)	\
1028	for (; entity ; entity = entity->parent)
1029
1030/*
1031 * For each iteration, compute parent in advance, so as to be safe if
1032 * entity is deallocated during the iteration. Such a deallocation may
1033 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1034 * containing entity.
1035 */
1036#define for_each_entity_safe(entity, parent) \
1037	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
1038
1039#else /* CONFIG_BFQ_GROUP_IOSCHED */
1040/*
1041 * Next two macros are fake loops when cgroups support is not
1042 * enabled. I fact, in such a case, there is only one level to go up
1043 * (to reach the root group).
1044 */
1045#define for_each_entity(entity)	\
1046	for (; entity ; entity = NULL)
1047
1048#define for_each_entity_safe(entity, parent) \
1049	for (parent = NULL; entity ; entity = parent)
1050#endif /* CONFIG_BFQ_GROUP_IOSCHED */
1051
1052struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq);
1053struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
1054unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
1055struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
1056struct bfq_entity *bfq_entity_of(struct rb_node *node);
1057unsigned short bfq_ioprio_to_weight(int ioprio);
1058void bfq_put_idle_entity(struct bfq_service_tree *st,
1059			 struct bfq_entity *entity);
1060struct bfq_service_tree *
1061__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
1062				struct bfq_entity *entity,
1063				bool update_class_too);
1064void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
1065void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1066			  unsigned long time_ms);
1067bool __bfq_deactivate_entity(struct bfq_entity *entity,
1068			     bool ins_into_idle_tree);
1069bool next_queue_may_preempt(struct bfq_data *bfqd);
1070struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
1071bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
1072void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1073			 bool ins_into_idle_tree, bool expiration);
1074void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1075void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1076		      bool expiration);
1077void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1078		       bool expiration);
1079void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1080
1081/* --------------- end of interface of B-WF2Q+ ---------------- */
1082
1083/* Logging facilities. */
1084static inline void bfq_pid_to_str(int pid, char *str, int len)
1085{
1086	if (pid != -1)
1087		snprintf(str, len, "%d", pid);
1088	else
1089		snprintf(str, len, "SHARED-");
1090}
1091
1092#ifdef CONFIG_BFQ_GROUP_IOSCHED
1093struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1094
1095#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
1096	char pid_str[MAX_PID_STR_LENGTH];	\
1097	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1098		break;							\
1099	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1100	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1101			bfqg_to_blkg(bfqq_group(bfqq))->blkcg,		\
1102			"bfq%s%c " fmt, pid_str,			\
1103			bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args);	\
1104} while (0)
1105
1106#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
1107	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1108		bfqg_to_blkg(bfqg)->blkcg, fmt, ##args);		\
1109} while (0)
1110
1111#else /* CONFIG_BFQ_GROUP_IOSCHED */
1112
1113#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do {	\
1114	char pid_str[MAX_PID_STR_LENGTH];	\
1115	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
1116		break;							\
1117	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1118	blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str,	\
1119			bfq_bfqq_sync((bfqq)) ? 'S' : 'A',		\
1120				##args);	\
1121} while (0)
1122#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
1123
1124#endif /* CONFIG_BFQ_GROUP_IOSCHED */
1125
1126#define bfq_log(bfqd, fmt, args...) \
1127	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
1128
1129#endif /* _BFQ_H */