Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *		Probes initial implementation ( includes contributions from
  22 *		Rusty Russell).
  23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *		interface to access function arguments.
  25 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  26 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  27 * 2005-Mar	Roland McGrath <roland@redhat.com>
  28 *		Fixed to handle %rip-relative addressing mode correctly.
  29 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  30 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  31 *		<prasanna@in.ibm.com> added function-return probes.
  32 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  33 *		Added function return probes functionality
  34 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  35 *		kprobe-booster and kretprobe-booster for i386.
  36 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  37 *		and kretprobe-booster for x86-64
  38 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  39 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  40 *		unified x86 kprobes code.
  41 */
  42#include <linux/kprobes.h>
  43#include <linux/ptrace.h>
  44#include <linux/string.h>
  45#include <linux/slab.h>
  46#include <linux/hardirq.h>
  47#include <linux/preempt.h>
  48#include <linux/sched/debug.h>
 
  49#include <linux/extable.h>
  50#include <linux/kdebug.h>
  51#include <linux/kallsyms.h>
  52#include <linux/ftrace.h>
  53#include <linux/frame.h>
  54#include <linux/kasan.h>
  55#include <linux/moduleloader.h>
 
 
 
  56
  57#include <asm/text-patching.h>
  58#include <asm/cacheflush.h>
  59#include <asm/desc.h>
  60#include <asm/pgtable.h>
  61#include <linux/uaccess.h>
  62#include <asm/alternative.h>
  63#include <asm/insn.h>
  64#include <asm/debugreg.h>
  65#include <asm/set_memory.h>
  66
  67#include "common.h"
  68
  69void jprobe_return_end(void);
  70
  71DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  72DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  73
  74#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
  75
  76#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  77	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  78	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  79	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  80	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  81	 << (row % 32))
  82	/*
  83	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  84	 * Groups, and some special opcodes can not boost.
  85	 * This is non-const and volatile to keep gcc from statically
  86	 * optimizing it out, as variable_test_bit makes gcc think only
  87	 * *(unsigned long*) is used.
  88	 */
  89static volatile u32 twobyte_is_boostable[256 / 32] = {
  90	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  91	/*      ----------------------------------------------          */
  92	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  93	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  94	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  95	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  96	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  97	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  98	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  99	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
 100	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
 101	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 102	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
 103	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
 104	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 105	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
 106	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
 107	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
 108	/*      -----------------------------------------------         */
 109	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 110};
 111#undef W
 112
 113struct kretprobe_blackpoint kretprobe_blacklist[] = {
 114	{"__switch_to", }, /* This function switches only current task, but
 115			      doesn't switch kernel stack.*/
 116	{NULL, NULL}	/* Terminator */
 117};
 118
 119const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 120
 121static nokprobe_inline void
 122__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 123{
 124	struct __arch_relative_insn {
 125		u8 op;
 126		s32 raddr;
 127	} __packed *insn;
 128
 129	insn = (struct __arch_relative_insn *)dest;
 130	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 131	insn->op = op;
 132}
 133
 134/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 135void synthesize_reljump(void *dest, void *from, void *to)
 136{
 137	__synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
 138}
 139NOKPROBE_SYMBOL(synthesize_reljump);
 140
 141/* Insert a call instruction at address 'from', which calls address 'to'.*/
 142void synthesize_relcall(void *dest, void *from, void *to)
 143{
 144	__synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
 145}
 146NOKPROBE_SYMBOL(synthesize_relcall);
 147
 148/*
 149 * Skip the prefixes of the instruction.
 150 */
 151static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
 152{
 153	insn_attr_t attr;
 154
 155	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 156	while (inat_is_legacy_prefix(attr)) {
 157		insn++;
 158		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 159	}
 160#ifdef CONFIG_X86_64
 161	if (inat_is_rex_prefix(attr))
 162		insn++;
 163#endif
 164	return insn;
 165}
 166NOKPROBE_SYMBOL(skip_prefixes);
 167
 168/*
 169 * Returns non-zero if INSN is boostable.
 170 * RIP relative instructions are adjusted at copying time in 64 bits mode
 171 */
 172int can_boost(struct insn *insn, void *addr)
 173{
 174	kprobe_opcode_t opcode;
 
 
 175
 176	if (search_exception_tables((unsigned long)addr))
 177		return 0;	/* Page fault may occur on this address. */
 178
 179	/* 2nd-byte opcode */
 180	if (insn->opcode.nbytes == 2)
 181		return test_bit(insn->opcode.bytes[1],
 182				(unsigned long *)twobyte_is_boostable);
 183
 184	if (insn->opcode.nbytes != 1)
 185		return 0;
 186
 187	/* Can't boost Address-size override prefix */
 188	if (unlikely(inat_is_address_size_prefix(insn->attr)))
 189		return 0;
 
 
 
 
 
 190
 191	opcode = insn->opcode.bytes[0];
 192
 193	switch (opcode & 0xf0) {
 194	case 0x60:
 195		/* can't boost "bound" */
 196		return (opcode != 0x62);
 197	case 0x70:
 198		return 0; /* can't boost conditional jump */
 199	case 0x90:
 200		return opcode != 0x9a;	/* can't boost call far */
 201	case 0xc0:
 202		/* can't boost software-interruptions */
 203		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 204	case 0xd0:
 205		/* can boost AA* and XLAT */
 206		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 207	case 0xe0:
 208		/* can boost in/out and absolute jmps */
 209		return ((opcode & 0x04) || opcode == 0xea);
 210	case 0xf0:
 211		/* clear and set flags are boostable */
 212		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 213	default:
 214		/* CS override prefix and call are not boostable */
 215		return (opcode != 0x2e && opcode != 0x9a);
 216	}
 217}
 218
 219static unsigned long
 220__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 221{
 222	struct kprobe *kp;
 223	unsigned long faddr;
 224
 225	kp = get_kprobe((void *)addr);
 226	faddr = ftrace_location(addr);
 227	/*
 228	 * Addresses inside the ftrace location are refused by
 229	 * arch_check_ftrace_location(). Something went terribly wrong
 230	 * if such an address is checked here.
 231	 */
 232	if (WARN_ON(faddr && faddr != addr))
 233		return 0UL;
 234	/*
 235	 * Use the current code if it is not modified by Kprobe
 236	 * and it cannot be modified by ftrace.
 237	 */
 238	if (!kp && !faddr)
 239		return addr;
 240
 241	/*
 242	 * Basically, kp->ainsn.insn has an original instruction.
 243	 * However, RIP-relative instruction can not do single-stepping
 244	 * at different place, __copy_instruction() tweaks the displacement of
 245	 * that instruction. In that case, we can't recover the instruction
 246	 * from the kp->ainsn.insn.
 247	 *
 248	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 249	 * of the first byte of the probed instruction, which is overwritten
 250	 * by int3. And the instruction at kp->addr is not modified by kprobes
 251	 * except for the first byte, we can recover the original instruction
 252	 * from it and kp->opcode.
 253	 *
 254	 * In case of Kprobes using ftrace, we do not have a copy of
 255	 * the original instruction. In fact, the ftrace location might
 256	 * be modified at anytime and even could be in an inconsistent state.
 257	 * Fortunately, we know that the original code is the ideal 5-byte
 258	 * long NOP.
 259	 */
 260	if (probe_kernel_read(buf, (void *)addr,
 261		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 262		return 0UL;
 263
 264	if (faddr)
 265		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
 266	else
 267		buf[0] = kp->opcode;
 268	return (unsigned long)buf;
 269}
 270
 271/*
 272 * Recover the probed instruction at addr for further analysis.
 273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 274 * for preventing to release referencing kprobes.
 275 * Returns zero if the instruction can not get recovered (or access failed).
 276 */
 277unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 278{
 279	unsigned long __addr;
 280
 281	__addr = __recover_optprobed_insn(buf, addr);
 282	if (__addr != addr)
 283		return __addr;
 284
 285	return __recover_probed_insn(buf, addr);
 286}
 287
 288/* Check if paddr is at an instruction boundary */
 289static int can_probe(unsigned long paddr)
 290{
 291	unsigned long addr, __addr, offset = 0;
 292	struct insn insn;
 293	kprobe_opcode_t buf[MAX_INSN_SIZE];
 294
 295	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 296		return 0;
 297
 298	/* Decode instructions */
 299	addr = paddr - offset;
 300	while (addr < paddr) {
 
 
 301		/*
 302		 * Check if the instruction has been modified by another
 303		 * kprobe, in which case we replace the breakpoint by the
 304		 * original instruction in our buffer.
 305		 * Also, jump optimization will change the breakpoint to
 306		 * relative-jump. Since the relative-jump itself is
 307		 * normally used, we just go through if there is no kprobe.
 308		 */
 309		__addr = recover_probed_instruction(buf, addr);
 310		if (!__addr)
 311			return 0;
 312		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
 313		insn_get_length(&insn);
 
 
 314
 315		/*
 316		 * Another debugging subsystem might insert this breakpoint.
 317		 * In that case, we can't recover it.
 318		 */
 319		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 320			return 0;
 321		addr += insn.length;
 322	}
 323
 324	return (addr == paddr);
 325}
 326
 327/*
 328 * Returns non-zero if opcode modifies the interrupt flag.
 329 */
 330static int is_IF_modifier(kprobe_opcode_t *insn)
 331{
 332	/* Skip prefixes */
 333	insn = skip_prefixes(insn);
 334
 335	switch (*insn) {
 336	case 0xfa:		/* cli */
 337	case 0xfb:		/* sti */
 338	case 0xcf:		/* iret/iretd */
 339	case 0x9d:		/* popf/popfd */
 340		return 1;
 341	}
 342
 343	return 0;
 344}
 345
 346/*
 347 * Copy an instruction with recovering modified instruction by kprobes
 348 * and adjust the displacement if the instruction uses the %rip-relative
 349 * addressing mode. Note that since @real will be the final place of copied
 350 * instruction, displacement must be adjust by @real, not @dest.
 351 * This returns the length of copied instruction, or 0 if it has an error.
 352 */
 353int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 354{
 355	kprobe_opcode_t buf[MAX_INSN_SIZE];
 356	unsigned long recovered_insn =
 357		recover_probed_instruction(buf, (unsigned long)src);
 358
 359	if (!recovered_insn || !insn)
 360		return 0;
 361
 362	/* This can access kernel text if given address is not recovered */
 363	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
 
 
 
 
 
 364		return 0;
 365
 366	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
 367	insn_get_length(insn);
 
 368
 369	/* Another subsystem puts a breakpoint, failed to recover */
 370	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 371		return 0;
 372
 373	/* We should not singlestep on the exception masking instructions */
 374	if (insn_masking_exception(insn))
 375		return 0;
 376
 377#ifdef CONFIG_X86_64
 378	/* Only x86_64 has RIP relative instructions */
 379	if (insn_rip_relative(insn)) {
 380		s64 newdisp;
 381		u8 *disp;
 382		/*
 383		 * The copied instruction uses the %rip-relative addressing
 384		 * mode.  Adjust the displacement for the difference between
 385		 * the original location of this instruction and the location
 386		 * of the copy that will actually be run.  The tricky bit here
 387		 * is making sure that the sign extension happens correctly in
 388		 * this calculation, since we need a signed 32-bit result to
 389		 * be sign-extended to 64 bits when it's added to the %rip
 390		 * value and yield the same 64-bit result that the sign-
 391		 * extension of the original signed 32-bit displacement would
 392		 * have given.
 393		 */
 394		newdisp = (u8 *) src + (s64) insn->displacement.value
 395			  - (u8 *) real;
 396		if ((s64) (s32) newdisp != newdisp) {
 397			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 398			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n",
 399				src, real, insn->displacement.value);
 400			return 0;
 401		}
 402		disp = (u8 *) dest + insn_offset_displacement(insn);
 403		*(s32 *) disp = (s32) newdisp;
 404	}
 405#endif
 406	return insn->length;
 407}
 408
 409/* Prepare reljump right after instruction to boost */
 410static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
 411			  struct insn *insn)
 412{
 413	int len = insn->length;
 414
 415	if (can_boost(insn, p->addr) &&
 416	    MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
 
 417		/*
 418		 * These instructions can be executed directly if it
 419		 * jumps back to correct address.
 420		 */
 421		synthesize_reljump(buf + len, p->ainsn.insn + len,
 422				   p->addr + insn->length);
 423		len += RELATIVEJUMP_SIZE;
 424		p->ainsn.boostable = true;
 425	} else {
 426		p->ainsn.boostable = false;
 
 
 
 
 
 427	}
 428
 429	return len;
 430}
 431
 432/* Make page to RO mode when allocate it */
 433void *alloc_insn_page(void)
 434{
 435	void *page;
 436
 437	page = module_alloc(PAGE_SIZE);
 438	if (page)
 439		set_memory_ro((unsigned long)page & PAGE_MASK, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return page;
 442}
 443
 444/* Recover page to RW mode before releasing it */
 445void free_insn_page(void *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446{
 447	set_memory_nx((unsigned long)page & PAGE_MASK, 1);
 448	set_memory_rw((unsigned long)page & PAGE_MASK, 1);
 449	module_memfree(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452static int arch_copy_kprobe(struct kprobe *p)
 453{
 454	struct insn insn;
 455	kprobe_opcode_t buf[MAX_INSN_SIZE];
 456	int len;
 457
 458	/* Copy an instruction with recovering if other optprobe modifies it.*/
 459	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 460	if (!len)
 461		return -EINVAL;
 462
 463	/*
 464	 * __copy_instruction can modify the displacement of the instruction,
 465	 * but it doesn't affect boostable check.
 466	 */
 467	len = prepare_boost(buf, p, &insn);
 468
 469	/* Check whether the instruction modifies Interrupt Flag or not */
 470	p->ainsn.if_modifier = is_IF_modifier(buf);
 
 
 471
 472	/* Also, displacement change doesn't affect the first byte */
 473	p->opcode = buf[0];
 474
 
 
 
 475	/* OK, write back the instruction(s) into ROX insn buffer */
 476	text_poke(p->ainsn.insn, buf, len);
 477
 478	return 0;
 479}
 480
 481int arch_prepare_kprobe(struct kprobe *p)
 482{
 483	int ret;
 484
 485	if (alternatives_text_reserved(p->addr, p->addr))
 486		return -EINVAL;
 487
 488	if (!can_probe((unsigned long)p->addr))
 489		return -EILSEQ;
 
 
 
 490	/* insn: must be on special executable page on x86. */
 491	p->ainsn.insn = get_insn_slot();
 492	if (!p->ainsn.insn)
 493		return -ENOMEM;
 494
 495	ret = arch_copy_kprobe(p);
 496	if (ret) {
 497		free_insn_slot(p->ainsn.insn, 0);
 498		p->ainsn.insn = NULL;
 499	}
 500
 501	return ret;
 502}
 503
 504void arch_arm_kprobe(struct kprobe *p)
 505{
 506	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 
 
 
 
 507}
 508
 509void arch_disarm_kprobe(struct kprobe *p)
 510{
 
 
 
 511	text_poke(p->addr, &p->opcode, 1);
 
 512}
 513
 514void arch_remove_kprobe(struct kprobe *p)
 515{
 516	if (p->ainsn.insn) {
 
 
 
 517		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 518		p->ainsn.insn = NULL;
 519	}
 520}
 521
 522static nokprobe_inline void
 523save_previous_kprobe(struct kprobe_ctlblk *kcb)
 524{
 525	kcb->prev_kprobe.kp = kprobe_running();
 526	kcb->prev_kprobe.status = kcb->kprobe_status;
 527	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 528	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 529}
 530
 531static nokprobe_inline void
 532restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 533{
 534	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 535	kcb->kprobe_status = kcb->prev_kprobe.status;
 536	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 537	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 538}
 539
 540static nokprobe_inline void
 541set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 542		   struct kprobe_ctlblk *kcb)
 543{
 544	__this_cpu_write(current_kprobe, p);
 545	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 546		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 547	if (p->ainsn.if_modifier)
 548		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 549}
 550
 551static nokprobe_inline void clear_btf(void)
 552{
 553	if (test_thread_flag(TIF_BLOCKSTEP)) {
 554		unsigned long debugctl = get_debugctlmsr();
 555
 556		debugctl &= ~DEBUGCTLMSR_BTF;
 557		update_debugctlmsr(debugctl);
 558	}
 559}
 560
 561static nokprobe_inline void restore_btf(void)
 562{
 563	if (test_thread_flag(TIF_BLOCKSTEP)) {
 564		unsigned long debugctl = get_debugctlmsr();
 565
 566		debugctl |= DEBUGCTLMSR_BTF;
 567		update_debugctlmsr(debugctl);
 568	}
 569}
 570
 571void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 572{
 573	unsigned long *sara = stack_addr(regs);
 574
 575	ri->ret_addr = (kprobe_opcode_t *) *sara;
 
 576
 577	/* Replace the return addr with trampoline addr */
 578	*sara = (unsigned long) &kretprobe_trampoline;
 579}
 580NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 583			     struct kprobe_ctlblk *kcb, int reenter)
 584{
 585	if (setup_detour_execution(p, regs, reenter))
 586		return;
 587
 588#if !defined(CONFIG_PREEMPT)
 589	if (p->ainsn.boostable && !p->post_handler) {
 590		/* Boost up -- we can execute copied instructions directly */
 591		if (!reenter)
 592			reset_current_kprobe();
 593		/*
 594		 * Reentering boosted probe doesn't reset current_kprobe,
 595		 * nor set current_kprobe, because it doesn't use single
 596		 * stepping.
 597		 */
 598		regs->ip = (unsigned long)p->ainsn.insn;
 599		preempt_enable_no_resched();
 600		return;
 601	}
 602#endif
 603	if (reenter) {
 604		save_previous_kprobe(kcb);
 605		set_current_kprobe(p, regs, kcb);
 606		kcb->kprobe_status = KPROBE_REENTER;
 607	} else
 608		kcb->kprobe_status = KPROBE_HIT_SS;
 609	/* Prepare real single stepping */
 610	clear_btf();
 611	regs->flags |= X86_EFLAGS_TF;
 
 
 
 
 
 612	regs->flags &= ~X86_EFLAGS_IF;
 613	/* single step inline if the instruction is an int3 */
 614	if (p->opcode == BREAKPOINT_INSTRUCTION)
 615		regs->ip = (unsigned long)p->addr;
 616	else
 617		regs->ip = (unsigned long)p->ainsn.insn;
 618}
 619NOKPROBE_SYMBOL(setup_singlestep);
 620
 621/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622 * We have reentered the kprobe_handler(), since another probe was hit while
 623 * within the handler. We save the original kprobes variables and just single
 624 * step on the instruction of the new probe without calling any user handlers.
 625 */
 626static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 627			  struct kprobe_ctlblk *kcb)
 628{
 629	switch (kcb->kprobe_status) {
 630	case KPROBE_HIT_SSDONE:
 631	case KPROBE_HIT_ACTIVE:
 632	case KPROBE_HIT_SS:
 633		kprobes_inc_nmissed_count(p);
 634		setup_singlestep(p, regs, kcb, 1);
 635		break;
 636	case KPROBE_REENTER:
 637		/* A probe has been hit in the codepath leading up to, or just
 638		 * after, single-stepping of a probed instruction. This entire
 639		 * codepath should strictly reside in .kprobes.text section.
 640		 * Raise a BUG or we'll continue in an endless reentering loop
 641		 * and eventually a stack overflow.
 642		 */
 643		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
 644		       p->addr);
 645		dump_kprobe(p);
 646		BUG();
 647	default:
 648		/* impossible cases */
 649		WARN_ON(1);
 650		return 0;
 651	}
 652
 653	return 1;
 654}
 655NOKPROBE_SYMBOL(reenter_kprobe);
 656
 
 
 
 
 
 
 657/*
 658 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 659 * remain disabled throughout this function.
 660 */
 661int kprobe_int3_handler(struct pt_regs *regs)
 662{
 663	kprobe_opcode_t *addr;
 664	struct kprobe *p;
 665	struct kprobe_ctlblk *kcb;
 666
 667	if (user_mode(regs))
 668		return 0;
 669
 670	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 671	/*
 672	 * We don't want to be preempted for the entire
 673	 * duration of kprobe processing. We conditionally
 674	 * re-enable preemption at the end of this function,
 675	 * and also in reenter_kprobe() and setup_singlestep().
 676	 */
 677	preempt_disable();
 678
 679	kcb = get_kprobe_ctlblk();
 680	p = get_kprobe(addr);
 681
 682	if (p) {
 683		if (kprobe_running()) {
 684			if (reenter_kprobe(p, regs, kcb))
 685				return 1;
 686		} else {
 687			set_current_kprobe(p, regs, kcb);
 688			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 689
 690			/*
 691			 * If we have no pre-handler or it returned 0, we
 692			 * continue with normal processing.  If we have a
 693			 * pre-handler and it returned non-zero, it prepped
 694			 * for calling the break_handler below on re-entry
 695			 * for jprobe processing, so get out doing nothing
 696			 * more here.
 697			 */
 698			if (!p->pre_handler || !p->pre_handler(p, regs))
 699				setup_singlestep(p, regs, kcb, 0);
 
 
 
 
 
 
 
 
 
 
 
 700			return 1;
 701		}
 702	} else if (*addr != BREAKPOINT_INSTRUCTION) {
 
 
 703		/*
 704		 * The breakpoint instruction was removed right
 705		 * after we hit it.  Another cpu has removed
 706		 * either a probepoint or a debugger breakpoint
 707		 * at this address.  In either case, no further
 708		 * handling of this interrupt is appropriate.
 709		 * Back up over the (now missing) int3 and run
 710		 * the original instruction.
 711		 */
 712		regs->ip = (unsigned long)addr;
 713		preempt_enable_no_resched();
 714		return 1;
 715	} else if (kprobe_running()) {
 716		p = __this_cpu_read(current_kprobe);
 717		if (p->break_handler && p->break_handler(p, regs)) {
 718			if (!skip_singlestep(p, regs, kcb))
 719				setup_singlestep(p, regs, kcb, 0);
 720			return 1;
 721		}
 722	} /* else: not a kprobe fault; let the kernel handle it */
 723
 724	preempt_enable_no_resched();
 725	return 0;
 726}
 727NOKPROBE_SYMBOL(kprobe_int3_handler);
 728
 729/*
 730 * When a retprobed function returns, this code saves registers and
 731 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 732 */
 733asm(
 
 734	".global kretprobe_trampoline\n"
 735	".type kretprobe_trampoline, @function\n"
 736	"kretprobe_trampoline:\n"
 737#ifdef CONFIG_X86_64
 738	/* We don't bother saving the ss register */
 
 739	"	pushq %rsp\n"
 740	"	pushfq\n"
 741	SAVE_REGS_STRING
 742	"	movq %rsp, %rdi\n"
 743	"	call trampoline_handler\n"
 744	/* Replace saved sp with true return address. */
 745	"	movq %rax, 152(%rsp)\n"
 746	RESTORE_REGS_STRING
 747	"	popfq\n"
 748#else
 749	"	pushf\n"
 
 750	SAVE_REGS_STRING
 751	"	movl %esp, %eax\n"
 752	"	call trampoline_handler\n"
 753	/* Move flags to cs */
 754	"	movl 56(%esp), %edx\n"
 755	"	movl %edx, 52(%esp)\n"
 756	/* Replace saved flags with true return address. */
 757	"	movl %eax, 56(%esp)\n"
 758	RESTORE_REGS_STRING
 759	"	popf\n"
 760#endif
 761	"	ret\n"
 762	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
 763);
 764NOKPROBE_SYMBOL(kretprobe_trampoline);
 765STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
 766
 
 767/*
 768 * Called from kretprobe_trampoline
 769 */
 770__visible __used void *trampoline_handler(struct pt_regs *regs)
 771{
 772	struct kretprobe_instance *ri = NULL;
 773	struct hlist_head *head, empty_rp;
 774	struct hlist_node *tmp;
 775	unsigned long flags, orig_ret_address = 0;
 776	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 777	kprobe_opcode_t *correct_ret_addr = NULL;
 778
 779	INIT_HLIST_HEAD(&empty_rp);
 780	kretprobe_hash_lock(current, &head, &flags);
 781	/* fixup registers */
 782#ifdef CONFIG_X86_64
 783	regs->cs = __KERNEL_CS;
 784#else
 785	regs->cs = __KERNEL_CS | get_kernel_rpl();
 786	regs->gs = 0;
 787#endif
 788	regs->ip = trampoline_address;
 789	regs->orig_ax = ~0UL;
 790
 791	/*
 792	 * It is possible to have multiple instances associated with a given
 793	 * task either because multiple functions in the call path have
 794	 * return probes installed on them, and/or more than one
 795	 * return probe was registered for a target function.
 796	 *
 797	 * We can handle this because:
 798	 *     - instances are always pushed into the head of the list
 799	 *     - when multiple return probes are registered for the same
 800	 *	 function, the (chronologically) first instance's ret_addr
 801	 *	 will be the real return address, and all the rest will
 802	 *	 point to kretprobe_trampoline.
 803	 */
 804	hlist_for_each_entry(ri, head, hlist) {
 805		if (ri->task != current)
 806			/* another task is sharing our hash bucket */
 807			continue;
 808
 809		orig_ret_address = (unsigned long)ri->ret_addr;
 810
 811		if (orig_ret_address != trampoline_address)
 812			/*
 813			 * This is the real return address. Any other
 814			 * instances associated with this task are for
 815			 * other calls deeper on the call stack
 816			 */
 817			break;
 818	}
 819
 820	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 821
 822	correct_ret_addr = ri->ret_addr;
 823	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 824		if (ri->task != current)
 825			/* another task is sharing our hash bucket */
 826			continue;
 827
 828		orig_ret_address = (unsigned long)ri->ret_addr;
 829		if (ri->rp && ri->rp->handler) {
 830			__this_cpu_write(current_kprobe, &ri->rp->kp);
 831			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 832			ri->ret_addr = correct_ret_addr;
 833			ri->rp->handler(ri, regs);
 834			__this_cpu_write(current_kprobe, NULL);
 835		}
 836
 837		recycle_rp_inst(ri, &empty_rp);
 838
 839		if (orig_ret_address != trampoline_address)
 840			/*
 841			 * This is the real return address. Any other
 842			 * instances associated with this task are for
 843			 * other calls deeper on the call stack
 844			 */
 845			break;
 846	}
 847
 848	kretprobe_hash_unlock(current, &flags);
 849
 850	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 851		hlist_del(&ri->hlist);
 852		kfree(ri);
 853	}
 854	return (void *)orig_ret_address;
 855}
 856NOKPROBE_SYMBOL(trampoline_handler);
 857
 858/*
 859 * Called after single-stepping.  p->addr is the address of the
 860 * instruction whose first byte has been replaced by the "int 3"
 861 * instruction.  To avoid the SMP problems that can occur when we
 862 * temporarily put back the original opcode to single-step, we
 863 * single-stepped a copy of the instruction.  The address of this
 864 * copy is p->ainsn.insn.
 865 *
 866 * This function prepares to return from the post-single-step
 867 * interrupt.  We have to fix up the stack as follows:
 868 *
 869 * 0) Except in the case of absolute or indirect jump or call instructions,
 870 * the new ip is relative to the copied instruction.  We need to make
 871 * it relative to the original instruction.
 872 *
 873 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 874 * flags are set in the just-pushed flags, and may need to be cleared.
 875 *
 876 * 2) If the single-stepped instruction was a call, the return address
 877 * that is atop the stack is the address following the copied instruction.
 878 * We need to make it the address following the original instruction.
 879 *
 880 * If this is the first time we've single-stepped the instruction at
 881 * this probepoint, and the instruction is boostable, boost it: add a
 882 * jump instruction after the copied instruction, that jumps to the next
 883 * instruction after the probepoint.
 884 */
 885static void resume_execution(struct kprobe *p, struct pt_regs *regs,
 886			     struct kprobe_ctlblk *kcb)
 887{
 888	unsigned long *tos = stack_addr(regs);
 889	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 890	unsigned long orig_ip = (unsigned long)p->addr;
 891	kprobe_opcode_t *insn = p->ainsn.insn;
 892
 893	/* Skip prefixes */
 894	insn = skip_prefixes(insn);
 895
 896	regs->flags &= ~X86_EFLAGS_TF;
 897	switch (*insn) {
 898	case 0x9c:	/* pushfl */
 899		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 900		*tos |= kcb->kprobe_old_flags;
 901		break;
 902	case 0xc2:	/* iret/ret/lret */
 903	case 0xc3:
 904	case 0xca:
 905	case 0xcb:
 906	case 0xcf:
 907	case 0xea:	/* jmp absolute -- ip is correct */
 908		/* ip is already adjusted, no more changes required */
 909		p->ainsn.boostable = true;
 910		goto no_change;
 911	case 0xe8:	/* call relative - Fix return addr */
 912		*tos = orig_ip + (*tos - copy_ip);
 913		break;
 914#ifdef CONFIG_X86_32
 915	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 916		*tos = orig_ip + (*tos - copy_ip);
 917		goto no_change;
 918#endif
 919	case 0xff:
 920		if ((insn[1] & 0x30) == 0x10) {
 921			/*
 922			 * call absolute, indirect
 923			 * Fix return addr; ip is correct.
 924			 * But this is not boostable
 925			 */
 926			*tos = orig_ip + (*tos - copy_ip);
 927			goto no_change;
 928		} else if (((insn[1] & 0x31) == 0x20) ||
 929			   ((insn[1] & 0x31) == 0x21)) {
 930			/*
 931			 * jmp near and far, absolute indirect
 932			 * ip is correct. And this is boostable
 933			 */
 934			p->ainsn.boostable = true;
 935			goto no_change;
 936		}
 937	default:
 938		break;
 939	}
 940
 941	regs->ip += orig_ip - copy_ip;
 942
 943no_change:
 944	restore_btf();
 945}
 946NOKPROBE_SYMBOL(resume_execution);
 947
 948/*
 949 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 950 * remain disabled throughout this function.
 951 */
 952int kprobe_debug_handler(struct pt_regs *regs)
 953{
 954	struct kprobe *cur = kprobe_running();
 955	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 956
 957	if (!cur)
 958		return 0;
 959
 960	resume_execution(cur, regs, kcb);
 961	regs->flags |= kcb->kprobe_saved_flags;
 962
 963	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 964		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 965		cur->post_handler(cur, regs, 0);
 966	}
 967
 968	/* Restore back the original saved kprobes variables and continue. */
 969	if (kcb->kprobe_status == KPROBE_REENTER) {
 970		restore_previous_kprobe(kcb);
 971		goto out;
 972	}
 973	reset_current_kprobe();
 974out:
 975	preempt_enable_no_resched();
 976
 977	/*
 978	 * if somebody else is singlestepping across a probe point, flags
 979	 * will have TF set, in which case, continue the remaining processing
 980	 * of do_debug, as if this is not a probe hit.
 981	 */
 982	if (regs->flags & X86_EFLAGS_TF)
 983		return 0;
 984
 985	return 1;
 986}
 987NOKPROBE_SYMBOL(kprobe_debug_handler);
 988
 989int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 990{
 991	struct kprobe *cur = kprobe_running();
 992	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 993
 994	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
 995		/* This must happen on single-stepping */
 996		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
 997			kcb->kprobe_status != KPROBE_REENTER);
 998		/*
 999		 * We are here because the instruction being single
1000		 * stepped caused a page fault. We reset the current
1001		 * kprobe and the ip points back to the probe address
1002		 * and allow the page fault handler to continue as a
1003		 * normal page fault.
1004		 */
1005		regs->ip = (unsigned long)cur->addr;
1006		/*
1007		 * Trap flag (TF) has been set here because this fault
1008		 * happened where the single stepping will be done.
1009		 * So clear it by resetting the current kprobe:
1010		 */
1011		regs->flags &= ~X86_EFLAGS_TF;
1012
1013		/*
1014		 * If the TF flag was set before the kprobe hit,
1015		 * don't touch it:
1016		 */
1017		regs->flags |= kcb->kprobe_old_flags;
1018
1019		if (kcb->kprobe_status == KPROBE_REENTER)
1020			restore_previous_kprobe(kcb);
1021		else
1022			reset_current_kprobe();
1023		preempt_enable_no_resched();
1024	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1025		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1026		/*
1027		 * We increment the nmissed count for accounting,
1028		 * we can also use npre/npostfault count for accounting
1029		 * these specific fault cases.
1030		 */
1031		kprobes_inc_nmissed_count(cur);
1032
1033		/*
1034		 * We come here because instructions in the pre/post
1035		 * handler caused the page_fault, this could happen
1036		 * if handler tries to access user space by
1037		 * copy_from_user(), get_user() etc. Let the
1038		 * user-specified handler try to fix it first.
1039		 */
1040		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1041			return 1;
1042
1043		/*
1044		 * In case the user-specified fault handler returned
1045		 * zero, try to fix up.
1046		 */
1047		if (fixup_exception(regs, trapnr))
1048			return 1;
1049
1050		/*
1051		 * fixup routine could not handle it,
1052		 * Let do_page_fault() fix it.
1053		 */
1054	}
1055
1056	return 0;
1057}
1058NOKPROBE_SYMBOL(kprobe_fault_handler);
1059
1060/*
1061 * Wrapper routine for handling exceptions.
1062 */
1063int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1064			     void *data)
1065{
1066	struct die_args *args = data;
1067	int ret = NOTIFY_DONE;
1068
1069	if (args->regs && user_mode(args->regs))
1070		return ret;
1071
1072	if (val == DIE_GPF) {
1073		/*
1074		 * To be potentially processing a kprobe fault and to
1075		 * trust the result from kprobe_running(), we have
1076		 * be non-preemptible.
1077		 */
1078		if (!preemptible() && kprobe_running() &&
1079		    kprobe_fault_handler(args->regs, args->trapnr))
1080			ret = NOTIFY_STOP;
1081	}
1082	return ret;
1083}
1084NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1085
1086int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1087{
1088	struct jprobe *jp = container_of(p, struct jprobe, kp);
1089	unsigned long addr;
1090	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1091
1092	kcb->jprobe_saved_regs = *regs;
1093	kcb->jprobe_saved_sp = stack_addr(regs);
1094	addr = (unsigned long)(kcb->jprobe_saved_sp);
1095
1096	/*
1097	 * As Linus pointed out, gcc assumes that the callee
1098	 * owns the argument space and could overwrite it, e.g.
1099	 * tailcall optimization. So, to be absolutely safe
1100	 * we also save and restore enough stack bytes to cover
1101	 * the argument area.
1102	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1103	 * raw stack chunk with redzones:
1104	 */
1105	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1106	regs->ip = (unsigned long)(jp->entry);
1107
1108	/*
1109	 * jprobes use jprobe_return() which skips the normal return
1110	 * path of the function, and this messes up the accounting of the
1111	 * function graph tracer to get messed up.
1112	 *
1113	 * Pause function graph tracing while performing the jprobe function.
1114	 */
1115	pause_graph_tracing();
1116	return 1;
1117}
1118NOKPROBE_SYMBOL(setjmp_pre_handler);
1119
1120void jprobe_return(void)
1121{
1122	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1123
1124	/* Unpoison stack redzones in the frames we are going to jump over. */
1125	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1126
1127	asm volatile (
1128#ifdef CONFIG_X86_64
1129			"       xchg   %%rbx,%%rsp	\n"
1130#else
1131			"       xchgl   %%ebx,%%esp	\n"
1132#endif
1133			"       int3			\n"
1134			"       .globl jprobe_return_end\n"
1135			"       jprobe_return_end:	\n"
1136			"       nop			\n"::"b"
1137			(kcb->jprobe_saved_sp):"memory");
1138}
1139NOKPROBE_SYMBOL(jprobe_return);
1140NOKPROBE_SYMBOL(jprobe_return_end);
1141
1142int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1143{
1144	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1145	u8 *addr = (u8 *) (regs->ip - 1);
1146	struct jprobe *jp = container_of(p, struct jprobe, kp);
1147	void *saved_sp = kcb->jprobe_saved_sp;
1148
1149	if ((addr > (u8 *) jprobe_return) &&
1150	    (addr < (u8 *) jprobe_return_end)) {
1151		if (stack_addr(regs) != saved_sp) {
1152			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1153			printk(KERN_ERR
1154			       "current sp %p does not match saved sp %p\n",
1155			       stack_addr(regs), saved_sp);
1156			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1157			show_regs(saved_regs);
1158			printk(KERN_ERR "Current registers\n");
1159			show_regs(regs);
1160			BUG();
1161		}
1162		/* It's OK to start function graph tracing again */
1163		unpause_graph_tracing();
1164		*regs = kcb->jprobe_saved_regs;
1165		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1166		preempt_enable_no_resched();
1167		return 1;
1168	}
1169	return 0;
1170}
1171NOKPROBE_SYMBOL(longjmp_break_handler);
1172
1173bool arch_within_kprobe_blacklist(unsigned long addr)
1174{
1175	bool is_in_entry_trampoline_section = false;
1176
1177#ifdef CONFIG_X86_64
1178	is_in_entry_trampoline_section =
1179		(addr >= (unsigned long)__entry_trampoline_start &&
1180		 addr < (unsigned long)__entry_trampoline_end);
1181#endif
1182	return  (addr >= (unsigned long)__kprobes_text_start &&
1183		 addr < (unsigned long)__kprobes_text_end) ||
1184		(addr >= (unsigned long)__entry_text_start &&
1185		 addr < (unsigned long)__entry_text_end) ||
1186		is_in_entry_trampoline_section;
1187}
1188
1189int __init arch_init_kprobes(void)
1190{
1191	return 0;
1192}
1193
1194int arch_trampoline_kprobe(struct kprobe *p)
1195{
1196	return 0;
1197}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation ( includes contributions from
   9 *		Rusty Russell).
  10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  11 *		interface to access function arguments.
  12 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  13 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  14 * 2005-Mar	Roland McGrath <roland@redhat.com>
  15 *		Fixed to handle %rip-relative addressing mode correctly.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  20 *		Added function return probes functionality
  21 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  22 *		kprobe-booster and kretprobe-booster for i386.
  23 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  24 *		and kretprobe-booster for x86-64
  25 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  26 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  27 *		unified x86 kprobes code.
  28 */
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/string.h>
  32#include <linux/slab.h>
  33#include <linux/hardirq.h>
  34#include <linux/preempt.h>
  35#include <linux/sched/debug.h>
  36#include <linux/perf_event.h>
  37#include <linux/extable.h>
  38#include <linux/kdebug.h>
  39#include <linux/kallsyms.h>
  40#include <linux/ftrace.h>
 
  41#include <linux/kasan.h>
  42#include <linux/moduleloader.h>
  43#include <linux/objtool.h>
  44#include <linux/vmalloc.h>
  45#include <linux/pgtable.h>
  46
  47#include <asm/text-patching.h>
  48#include <asm/cacheflush.h>
  49#include <asm/desc.h>
 
  50#include <linux/uaccess.h>
  51#include <asm/alternative.h>
  52#include <asm/insn.h>
  53#include <asm/debugreg.h>
  54#include <asm/set_memory.h>
  55
  56#include "common.h"
  57
 
 
  58DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  59DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  60
  61#define stack_addr(regs) ((unsigned long *)regs->sp)
  62
  63#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  64	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  65	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  66	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  67	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  68	 << (row % 32))
  69	/*
  70	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  71	 * Groups, and some special opcodes can not boost.
  72	 * This is non-const and volatile to keep gcc from statically
  73	 * optimizing it out, as variable_test_bit makes gcc think only
  74	 * *(unsigned long*) is used.
  75	 */
  76static volatile u32 twobyte_is_boostable[256 / 32] = {
  77	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  78	/*      ----------------------------------------------          */
  79	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  80	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  81	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  82	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  83	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  84	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  85	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  86	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  87	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  88	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  89	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  90	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  91	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  92	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  93	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  94	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  95	/*      -----------------------------------------------         */
  96	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  97};
  98#undef W
  99
 100struct kretprobe_blackpoint kretprobe_blacklist[] = {
 101	{"__switch_to", }, /* This function switches only current task, but
 102			      doesn't switch kernel stack.*/
 103	{NULL, NULL}	/* Terminator */
 104};
 105
 106const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 107
 108static nokprobe_inline void
 109__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 110{
 111	struct __arch_relative_insn {
 112		u8 op;
 113		s32 raddr;
 114	} __packed *insn;
 115
 116	insn = (struct __arch_relative_insn *)dest;
 117	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 118	insn->op = op;
 119}
 120
 121/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 122void synthesize_reljump(void *dest, void *from, void *to)
 123{
 124	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
 125}
 126NOKPROBE_SYMBOL(synthesize_reljump);
 127
 128/* Insert a call instruction at address 'from', which calls address 'to'.*/
 129void synthesize_relcall(void *dest, void *from, void *to)
 130{
 131	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
 132}
 133NOKPROBE_SYMBOL(synthesize_relcall);
 134
 135/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136 * Returns non-zero if INSN is boostable.
 137 * RIP relative instructions are adjusted at copying time in 64 bits mode
 138 */
 139int can_boost(struct insn *insn, void *addr)
 140{
 141	kprobe_opcode_t opcode;
 142	insn_byte_t prefix;
 143	int i;
 144
 145	if (search_exception_tables((unsigned long)addr))
 146		return 0;	/* Page fault may occur on this address. */
 147
 148	/* 2nd-byte opcode */
 149	if (insn->opcode.nbytes == 2)
 150		return test_bit(insn->opcode.bytes[1],
 151				(unsigned long *)twobyte_is_boostable);
 152
 153	if (insn->opcode.nbytes != 1)
 154		return 0;
 155
 156	for_each_insn_prefix(insn, i, prefix) {
 157		insn_attr_t attr;
 158
 159		attr = inat_get_opcode_attribute(prefix);
 160		/* Can't boost Address-size override prefix and CS override prefix */
 161		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
 162			return 0;
 163	}
 164
 165	opcode = insn->opcode.bytes[0];
 166
 167	switch (opcode) {
 168	case 0x62:		/* bound */
 169	case 0x70 ... 0x7f:	/* Conditional jumps */
 170	case 0x9a:		/* Call far */
 171	case 0xc0 ... 0xc1:	/* Grp2 */
 172	case 0xcc ... 0xce:	/* software exceptions */
 173	case 0xd0 ... 0xd3:	/* Grp2 */
 174	case 0xd6:		/* (UD) */
 175	case 0xd8 ... 0xdf:	/* ESC */
 176	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
 177	case 0xe8 ... 0xe9:	/* near Call, JMP */
 178	case 0xeb:		/* Short JMP */
 179	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
 180	case 0xf6 ... 0xf7:	/* Grp3 */
 181	case 0xfe:		/* Grp4 */
 182		/* ... are not boostable */
 183		return 0;
 184	case 0xff:		/* Grp5 */
 185		/* Only indirect jmp is boostable */
 186		return X86_MODRM_REG(insn->modrm.bytes[0]) == 4;
 187	default:
 188		return 1;
 
 189	}
 190}
 191
 192static unsigned long
 193__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 194{
 195	struct kprobe *kp;
 196	unsigned long faddr;
 197
 198	kp = get_kprobe((void *)addr);
 199	faddr = ftrace_location(addr);
 200	/*
 201	 * Addresses inside the ftrace location are refused by
 202	 * arch_check_ftrace_location(). Something went terribly wrong
 203	 * if such an address is checked here.
 204	 */
 205	if (WARN_ON(faddr && faddr != addr))
 206		return 0UL;
 207	/*
 208	 * Use the current code if it is not modified by Kprobe
 209	 * and it cannot be modified by ftrace.
 210	 */
 211	if (!kp && !faddr)
 212		return addr;
 213
 214	/*
 215	 * Basically, kp->ainsn.insn has an original instruction.
 216	 * However, RIP-relative instruction can not do single-stepping
 217	 * at different place, __copy_instruction() tweaks the displacement of
 218	 * that instruction. In that case, we can't recover the instruction
 219	 * from the kp->ainsn.insn.
 220	 *
 221	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 222	 * of the first byte of the probed instruction, which is overwritten
 223	 * by int3. And the instruction at kp->addr is not modified by kprobes
 224	 * except for the first byte, we can recover the original instruction
 225	 * from it and kp->opcode.
 226	 *
 227	 * In case of Kprobes using ftrace, we do not have a copy of
 228	 * the original instruction. In fact, the ftrace location might
 229	 * be modified at anytime and even could be in an inconsistent state.
 230	 * Fortunately, we know that the original code is the ideal 5-byte
 231	 * long NOP.
 232	 */
 233	if (copy_from_kernel_nofault(buf, (void *)addr,
 234		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 235		return 0UL;
 236
 237	if (faddr)
 238		memcpy(buf, x86_nops[5], 5);
 239	else
 240		buf[0] = kp->opcode;
 241	return (unsigned long)buf;
 242}
 243
 244/*
 245 * Recover the probed instruction at addr for further analysis.
 246 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 247 * for preventing to release referencing kprobes.
 248 * Returns zero if the instruction can not get recovered (or access failed).
 249 */
 250unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 251{
 252	unsigned long __addr;
 253
 254	__addr = __recover_optprobed_insn(buf, addr);
 255	if (__addr != addr)
 256		return __addr;
 257
 258	return __recover_probed_insn(buf, addr);
 259}
 260
 261/* Check if paddr is at an instruction boundary */
 262static int can_probe(unsigned long paddr)
 263{
 264	unsigned long addr, __addr, offset = 0;
 265	struct insn insn;
 266	kprobe_opcode_t buf[MAX_INSN_SIZE];
 267
 268	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 269		return 0;
 270
 271	/* Decode instructions */
 272	addr = paddr - offset;
 273	while (addr < paddr) {
 274		int ret;
 275
 276		/*
 277		 * Check if the instruction has been modified by another
 278		 * kprobe, in which case we replace the breakpoint by the
 279		 * original instruction in our buffer.
 280		 * Also, jump optimization will change the breakpoint to
 281		 * relative-jump. Since the relative-jump itself is
 282		 * normally used, we just go through if there is no kprobe.
 283		 */
 284		__addr = recover_probed_instruction(buf, addr);
 285		if (!__addr)
 286			return 0;
 287
 288		ret = insn_decode_kernel(&insn, (void *)__addr);
 289		if (ret < 0)
 290			return 0;
 291
 292		/*
 293		 * Another debugging subsystem might insert this breakpoint.
 294		 * In that case, we can't recover it.
 295		 */
 296		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
 297			return 0;
 298		addr += insn.length;
 299	}
 300
 301	return (addr == paddr);
 302}
 303
 304/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305 * Copy an instruction with recovering modified instruction by kprobes
 306 * and adjust the displacement if the instruction uses the %rip-relative
 307 * addressing mode. Note that since @real will be the final place of copied
 308 * instruction, displacement must be adjust by @real, not @dest.
 309 * This returns the length of copied instruction, or 0 if it has an error.
 310 */
 311int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 312{
 313	kprobe_opcode_t buf[MAX_INSN_SIZE];
 314	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
 315	int ret;
 316
 317	if (!recovered_insn || !insn)
 318		return 0;
 319
 320	/* This can access kernel text if given address is not recovered */
 321	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
 322			MAX_INSN_SIZE))
 323		return 0;
 324
 325	ret = insn_decode_kernel(insn, dest);
 326	if (ret < 0)
 327		return 0;
 328
 329	/* We can not probe force emulate prefixed instruction */
 330	if (insn_has_emulate_prefix(insn))
 331		return 0;
 332
 333	/* Another subsystem puts a breakpoint, failed to recover */
 334	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
 335		return 0;
 336
 337	/* We should not singlestep on the exception masking instructions */
 338	if (insn_masking_exception(insn))
 339		return 0;
 340
 341#ifdef CONFIG_X86_64
 342	/* Only x86_64 has RIP relative instructions */
 343	if (insn_rip_relative(insn)) {
 344		s64 newdisp;
 345		u8 *disp;
 346		/*
 347		 * The copied instruction uses the %rip-relative addressing
 348		 * mode.  Adjust the displacement for the difference between
 349		 * the original location of this instruction and the location
 350		 * of the copy that will actually be run.  The tricky bit here
 351		 * is making sure that the sign extension happens correctly in
 352		 * this calculation, since we need a signed 32-bit result to
 353		 * be sign-extended to 64 bits when it's added to the %rip
 354		 * value and yield the same 64-bit result that the sign-
 355		 * extension of the original signed 32-bit displacement would
 356		 * have given.
 357		 */
 358		newdisp = (u8 *) src + (s64) insn->displacement.value
 359			  - (u8 *) real;
 360		if ((s64) (s32) newdisp != newdisp) {
 361			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 
 
 362			return 0;
 363		}
 364		disp = (u8 *) dest + insn_offset_displacement(insn);
 365		*(s32 *) disp = (s32) newdisp;
 366	}
 367#endif
 368	return insn->length;
 369}
 370
 371/* Prepare reljump or int3 right after instruction */
 372static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
 373			      struct insn *insn)
 374{
 375	int len = insn->length;
 376
 377	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
 378	    !p->post_handler && can_boost(insn, p->addr) &&
 379	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
 380		/*
 381		 * These instructions can be executed directly if it
 382		 * jumps back to correct address.
 383		 */
 384		synthesize_reljump(buf + len, p->ainsn.insn + len,
 385				   p->addr + insn->length);
 386		len += JMP32_INSN_SIZE;
 387		p->ainsn.boostable = 1;
 388	} else {
 389		/* Otherwise, put an int3 for trapping singlestep */
 390		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
 391			return -ENOSPC;
 392
 393		buf[len] = INT3_INSN_OPCODE;
 394		len += INT3_INSN_SIZE;
 395	}
 396
 397	return len;
 398}
 399
 400/* Make page to RO mode when allocate it */
 401void *alloc_insn_page(void)
 402{
 403	void *page;
 404
 405	page = module_alloc(PAGE_SIZE);
 406	if (!page)
 407		return NULL;
 408
 409	set_vm_flush_reset_perms(page);
 410	/*
 411	 * First make the page read-only, and only then make it executable to
 412	 * prevent it from being W+X in between.
 413	 */
 414	set_memory_ro((unsigned long)page, 1);
 415
 416	/*
 417	 * TODO: Once additional kernel code protection mechanisms are set, ensure
 418	 * that the page was not maliciously altered and it is still zeroed.
 419	 */
 420	set_memory_x((unsigned long)page, 1);
 421
 422	return page;
 423}
 424
 425/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
 426
 427static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
 428{
 429	switch (p->ainsn.opcode) {
 430	case 0xfa:	/* cli */
 431		regs->flags &= ~(X86_EFLAGS_IF);
 432		break;
 433	case 0xfb:	/* sti */
 434		regs->flags |= X86_EFLAGS_IF;
 435		break;
 436	case 0x9c:	/* pushf */
 437		int3_emulate_push(regs, regs->flags);
 438		break;
 439	case 0x9d:	/* popf */
 440		regs->flags = int3_emulate_pop(regs);
 441		break;
 442	}
 443	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 444}
 445NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
 446
 447static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
 448{
 449	int3_emulate_ret(regs);
 450}
 451NOKPROBE_SYMBOL(kprobe_emulate_ret);
 452
 453static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
 454{
 455	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 456
 457	func += p->ainsn.rel32;
 458	int3_emulate_call(regs, func);
 459}
 460NOKPROBE_SYMBOL(kprobe_emulate_call);
 461
 462static nokprobe_inline
 463void __kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs, bool cond)
 464{
 465	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 466
 467	if (cond)
 468		ip += p->ainsn.rel32;
 469	int3_emulate_jmp(regs, ip);
 470}
 471
 472static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
 473{
 474	__kprobe_emulate_jmp(p, regs, true);
 475}
 476NOKPROBE_SYMBOL(kprobe_emulate_jmp);
 477
 478static const unsigned long jcc_mask[6] = {
 479	[0] = X86_EFLAGS_OF,
 480	[1] = X86_EFLAGS_CF,
 481	[2] = X86_EFLAGS_ZF,
 482	[3] = X86_EFLAGS_CF | X86_EFLAGS_ZF,
 483	[4] = X86_EFLAGS_SF,
 484	[5] = X86_EFLAGS_PF,
 485};
 486
 487static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
 488{
 489	bool invert = p->ainsn.jcc.type & 1;
 490	bool match;
 491
 492	if (p->ainsn.jcc.type < 0xc) {
 493		match = regs->flags & jcc_mask[p->ainsn.jcc.type >> 1];
 494	} else {
 495		match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^
 496			((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT);
 497		if (p->ainsn.jcc.type >= 0xe)
 498			match = match && (regs->flags & X86_EFLAGS_ZF);
 499	}
 500	__kprobe_emulate_jmp(p, regs, (match && !invert) || (!match && invert));
 501}
 502NOKPROBE_SYMBOL(kprobe_emulate_jcc);
 503
 504static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
 505{
 506	bool match;
 507
 508	if (p->ainsn.loop.type != 3) {	/* LOOP* */
 509		if (p->ainsn.loop.asize == 32)
 510			match = ((*(u32 *)&regs->cx)--) != 0;
 511#ifdef CONFIG_X86_64
 512		else if (p->ainsn.loop.asize == 64)
 513			match = ((*(u64 *)&regs->cx)--) != 0;
 514#endif
 515		else
 516			match = ((*(u16 *)&regs->cx)--) != 0;
 517	} else {			/* JCXZ */
 518		if (p->ainsn.loop.asize == 32)
 519			match = *(u32 *)(&regs->cx) == 0;
 520#ifdef CONFIG_X86_64
 521		else if (p->ainsn.loop.asize == 64)
 522			match = *(u64 *)(&regs->cx) == 0;
 523#endif
 524		else
 525			match = *(u16 *)(&regs->cx) == 0;
 526	}
 527
 528	if (p->ainsn.loop.type == 0)	/* LOOPNE */
 529		match = match && !(regs->flags & X86_EFLAGS_ZF);
 530	else if (p->ainsn.loop.type == 1)	/* LOOPE */
 531		match = match && (regs->flags & X86_EFLAGS_ZF);
 532
 533	__kprobe_emulate_jmp(p, regs, match);
 534}
 535NOKPROBE_SYMBOL(kprobe_emulate_loop);
 536
 537static const int addrmode_regoffs[] = {
 538	offsetof(struct pt_regs, ax),
 539	offsetof(struct pt_regs, cx),
 540	offsetof(struct pt_regs, dx),
 541	offsetof(struct pt_regs, bx),
 542	offsetof(struct pt_regs, sp),
 543	offsetof(struct pt_regs, bp),
 544	offsetof(struct pt_regs, si),
 545	offsetof(struct pt_regs, di),
 546#ifdef CONFIG_X86_64
 547	offsetof(struct pt_regs, r8),
 548	offsetof(struct pt_regs, r9),
 549	offsetof(struct pt_regs, r10),
 550	offsetof(struct pt_regs, r11),
 551	offsetof(struct pt_regs, r12),
 552	offsetof(struct pt_regs, r13),
 553	offsetof(struct pt_regs, r14),
 554	offsetof(struct pt_regs, r15),
 555#endif
 556};
 557
 558static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
 559{
 560	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
 561
 562	int3_emulate_call(regs, regs_get_register(regs, offs));
 563}
 564NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
 565
 566static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
 567{
 568	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
 569
 570	int3_emulate_jmp(regs, regs_get_register(regs, offs));
 571}
 572NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
 573
 574static int prepare_emulation(struct kprobe *p, struct insn *insn)
 575{
 576	insn_byte_t opcode = insn->opcode.bytes[0];
 577
 578	switch (opcode) {
 579	case 0xfa:		/* cli */
 580	case 0xfb:		/* sti */
 581	case 0x9c:		/* pushfl */
 582	case 0x9d:		/* popf/popfd */
 583		/*
 584		 * IF modifiers must be emulated since it will enable interrupt while
 585		 * int3 single stepping.
 586		 */
 587		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
 588		p->ainsn.opcode = opcode;
 589		break;
 590	case 0xc2:	/* ret/lret */
 591	case 0xc3:
 592	case 0xca:
 593	case 0xcb:
 594		p->ainsn.emulate_op = kprobe_emulate_ret;
 595		break;
 596	case 0x9a:	/* far call absolute -- segment is not supported */
 597	case 0xea:	/* far jmp absolute -- segment is not supported */
 598	case 0xcc:	/* int3 */
 599	case 0xcf:	/* iret -- in-kernel IRET is not supported */
 600		return -EOPNOTSUPP;
 601		break;
 602	case 0xe8:	/* near call relative */
 603		p->ainsn.emulate_op = kprobe_emulate_call;
 604		if (insn->immediate.nbytes == 2)
 605			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 606		else
 607			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 608		break;
 609	case 0xeb:	/* short jump relative */
 610	case 0xe9:	/* near jump relative */
 611		p->ainsn.emulate_op = kprobe_emulate_jmp;
 612		if (insn->immediate.nbytes == 1)
 613			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
 614		else if (insn->immediate.nbytes == 2)
 615			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 616		else
 617			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 618		break;
 619	case 0x70 ... 0x7f:
 620		/* 1 byte conditional jump */
 621		p->ainsn.emulate_op = kprobe_emulate_jcc;
 622		p->ainsn.jcc.type = opcode & 0xf;
 623		p->ainsn.rel32 = *(char *)insn->immediate.bytes;
 624		break;
 625	case 0x0f:
 626		opcode = insn->opcode.bytes[1];
 627		if ((opcode & 0xf0) == 0x80) {
 628			/* 2 bytes Conditional Jump */
 629			p->ainsn.emulate_op = kprobe_emulate_jcc;
 630			p->ainsn.jcc.type = opcode & 0xf;
 631			if (insn->immediate.nbytes == 2)
 632				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 633			else
 634				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 635		} else if (opcode == 0x01 &&
 636			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
 637			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
 638			/* VM extensions - not supported */
 639			return -EOPNOTSUPP;
 640		}
 641		break;
 642	case 0xe0:	/* Loop NZ */
 643	case 0xe1:	/* Loop */
 644	case 0xe2:	/* Loop */
 645	case 0xe3:	/* J*CXZ */
 646		p->ainsn.emulate_op = kprobe_emulate_loop;
 647		p->ainsn.loop.type = opcode & 0x3;
 648		p->ainsn.loop.asize = insn->addr_bytes * 8;
 649		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
 650		break;
 651	case 0xff:
 652		/*
 653		 * Since the 0xff is an extended group opcode, the instruction
 654		 * is determined by the MOD/RM byte.
 655		 */
 656		opcode = insn->modrm.bytes[0];
 657		if ((opcode & 0x30) == 0x10) {
 658			if ((opcode & 0x8) == 0x8)
 659				return -EOPNOTSUPP;	/* far call */
 660			/* call absolute, indirect */
 661			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
 662		} else if ((opcode & 0x30) == 0x20) {
 663			if ((opcode & 0x8) == 0x8)
 664				return -EOPNOTSUPP;	/* far jmp */
 665			/* jmp near absolute indirect */
 666			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
 667		} else
 668			break;
 669
 670		if (insn->addr_bytes != sizeof(unsigned long))
 671			return -EOPNOTSUPP;	/* Don't support different size */
 672		if (X86_MODRM_MOD(opcode) != 3)
 673			return -EOPNOTSUPP;	/* TODO: support memory addressing */
 674
 675		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
 676#ifdef CONFIG_X86_64
 677		if (X86_REX_B(insn->rex_prefix.value))
 678			p->ainsn.indirect.reg += 8;
 679#endif
 680		break;
 681	default:
 682		break;
 683	}
 684	p->ainsn.size = insn->length;
 685
 686	return 0;
 687}
 688
 689static int arch_copy_kprobe(struct kprobe *p)
 690{
 691	struct insn insn;
 692	kprobe_opcode_t buf[MAX_INSN_SIZE];
 693	int ret, len;
 694
 695	/* Copy an instruction with recovering if other optprobe modifies it.*/
 696	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 697	if (!len)
 698		return -EINVAL;
 699
 700	/* Analyze the opcode and setup emulate functions */
 701	ret = prepare_emulation(p, &insn);
 702	if (ret < 0)
 703		return ret;
 
 704
 705	/* Add int3 for single-step or booster jmp */
 706	len = prepare_singlestep(buf, p, &insn);
 707	if (len < 0)
 708		return len;
 709
 710	/* Also, displacement change doesn't affect the first byte */
 711	p->opcode = buf[0];
 712
 713	p->ainsn.tp_len = len;
 714	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
 715
 716	/* OK, write back the instruction(s) into ROX insn buffer */
 717	text_poke(p->ainsn.insn, buf, len);
 718
 719	return 0;
 720}
 721
 722int arch_prepare_kprobe(struct kprobe *p)
 723{
 724	int ret;
 725
 726	if (alternatives_text_reserved(p->addr, p->addr))
 727		return -EINVAL;
 728
 729	if (!can_probe((unsigned long)p->addr))
 730		return -EILSEQ;
 731
 732	memset(&p->ainsn, 0, sizeof(p->ainsn));
 733
 734	/* insn: must be on special executable page on x86. */
 735	p->ainsn.insn = get_insn_slot();
 736	if (!p->ainsn.insn)
 737		return -ENOMEM;
 738
 739	ret = arch_copy_kprobe(p);
 740	if (ret) {
 741		free_insn_slot(p->ainsn.insn, 0);
 742		p->ainsn.insn = NULL;
 743	}
 744
 745	return ret;
 746}
 747
 748void arch_arm_kprobe(struct kprobe *p)
 749{
 750	u8 int3 = INT3_INSN_OPCODE;
 751
 752	text_poke(p->addr, &int3, 1);
 753	text_poke_sync();
 754	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
 755}
 756
 757void arch_disarm_kprobe(struct kprobe *p)
 758{
 759	u8 int3 = INT3_INSN_OPCODE;
 760
 761	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
 762	text_poke(p->addr, &p->opcode, 1);
 763	text_poke_sync();
 764}
 765
 766void arch_remove_kprobe(struct kprobe *p)
 767{
 768	if (p->ainsn.insn) {
 769		/* Record the perf event before freeing the slot */
 770		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
 771				     p->ainsn.tp_len, NULL, 0);
 772		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 773		p->ainsn.insn = NULL;
 774	}
 775}
 776
 777static nokprobe_inline void
 778save_previous_kprobe(struct kprobe_ctlblk *kcb)
 779{
 780	kcb->prev_kprobe.kp = kprobe_running();
 781	kcb->prev_kprobe.status = kcb->kprobe_status;
 782	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 783	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 784}
 785
 786static nokprobe_inline void
 787restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 788{
 789	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 790	kcb->kprobe_status = kcb->prev_kprobe.status;
 791	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 792	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 793}
 794
 795static nokprobe_inline void
 796set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 797		   struct kprobe_ctlblk *kcb)
 798{
 799	__this_cpu_write(current_kprobe, p);
 800	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 801		= (regs->flags & X86_EFLAGS_IF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802}
 803
 804void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 805{
 806	unsigned long *sara = stack_addr(regs);
 807
 808	ri->ret_addr = (kprobe_opcode_t *) *sara;
 809	ri->fp = sara;
 810
 811	/* Replace the return addr with trampoline addr */
 812	*sara = (unsigned long) &kretprobe_trampoline;
 813}
 814NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 815
 816static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
 817			       struct kprobe_ctlblk *kcb)
 818{
 819	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 820		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 821		cur->post_handler(cur, regs, 0);
 822	}
 823
 824	/* Restore back the original saved kprobes variables and continue. */
 825	if (kcb->kprobe_status == KPROBE_REENTER)
 826		restore_previous_kprobe(kcb);
 827	else
 828		reset_current_kprobe();
 829}
 830NOKPROBE_SYMBOL(kprobe_post_process);
 831
 832static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 833			     struct kprobe_ctlblk *kcb, int reenter)
 834{
 835	if (setup_detour_execution(p, regs, reenter))
 836		return;
 837
 838#if !defined(CONFIG_PREEMPTION)
 839	if (p->ainsn.boostable) {
 840		/* Boost up -- we can execute copied instructions directly */
 841		if (!reenter)
 842			reset_current_kprobe();
 843		/*
 844		 * Reentering boosted probe doesn't reset current_kprobe,
 845		 * nor set current_kprobe, because it doesn't use single
 846		 * stepping.
 847		 */
 848		regs->ip = (unsigned long)p->ainsn.insn;
 
 849		return;
 850	}
 851#endif
 852	if (reenter) {
 853		save_previous_kprobe(kcb);
 854		set_current_kprobe(p, regs, kcb);
 855		kcb->kprobe_status = KPROBE_REENTER;
 856	} else
 857		kcb->kprobe_status = KPROBE_HIT_SS;
 858
 859	if (p->ainsn.emulate_op) {
 860		p->ainsn.emulate_op(p, regs);
 861		kprobe_post_process(p, regs, kcb);
 862		return;
 863	}
 864
 865	/* Disable interrupt, and set ip register on trampoline */
 866	regs->flags &= ~X86_EFLAGS_IF;
 867	regs->ip = (unsigned long)p->ainsn.insn;
 
 
 
 
 868}
 869NOKPROBE_SYMBOL(setup_singlestep);
 870
 871/*
 872 * Called after single-stepping.  p->addr is the address of the
 873 * instruction whose first byte has been replaced by the "int3"
 874 * instruction.  To avoid the SMP problems that can occur when we
 875 * temporarily put back the original opcode to single-step, we
 876 * single-stepped a copy of the instruction.  The address of this
 877 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
 878 * right after the copied instruction.
 879 * Different from the trap single-step, "int3" single-step can not
 880 * handle the instruction which changes the ip register, e.g. jmp,
 881 * call, conditional jmp, and the instructions which changes the IF
 882 * flags because interrupt must be disabled around the single-stepping.
 883 * Such instructions are software emulated, but others are single-stepped
 884 * using "int3".
 885 *
 886 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
 887 * be adjusted, so that we can resume execution on correct code.
 888 */
 889static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
 890			      struct kprobe_ctlblk *kcb)
 891{
 892	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 893	unsigned long orig_ip = (unsigned long)p->addr;
 894
 895	/* Restore saved interrupt flag and ip register */
 896	regs->flags |= kcb->kprobe_saved_flags;
 897	/* Note that regs->ip is executed int3 so must be a step back */
 898	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
 899}
 900NOKPROBE_SYMBOL(resume_singlestep);
 901
 902/*
 903 * We have reentered the kprobe_handler(), since another probe was hit while
 904 * within the handler. We save the original kprobes variables and just single
 905 * step on the instruction of the new probe without calling any user handlers.
 906 */
 907static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 908			  struct kprobe_ctlblk *kcb)
 909{
 910	switch (kcb->kprobe_status) {
 911	case KPROBE_HIT_SSDONE:
 912	case KPROBE_HIT_ACTIVE:
 913	case KPROBE_HIT_SS:
 914		kprobes_inc_nmissed_count(p);
 915		setup_singlestep(p, regs, kcb, 1);
 916		break;
 917	case KPROBE_REENTER:
 918		/* A probe has been hit in the codepath leading up to, or just
 919		 * after, single-stepping of a probed instruction. This entire
 920		 * codepath should strictly reside in .kprobes.text section.
 921		 * Raise a BUG or we'll continue in an endless reentering loop
 922		 * and eventually a stack overflow.
 923		 */
 924		pr_err("Unrecoverable kprobe detected.\n");
 
 925		dump_kprobe(p);
 926		BUG();
 927	default:
 928		/* impossible cases */
 929		WARN_ON(1);
 930		return 0;
 931	}
 932
 933	return 1;
 934}
 935NOKPROBE_SYMBOL(reenter_kprobe);
 936
 937static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
 938{
 939	return (kcb->kprobe_status == KPROBE_HIT_SS ||
 940		kcb->kprobe_status == KPROBE_REENTER);
 941}
 942
 943/*
 944 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 945 * remain disabled throughout this function.
 946 */
 947int kprobe_int3_handler(struct pt_regs *regs)
 948{
 949	kprobe_opcode_t *addr;
 950	struct kprobe *p;
 951	struct kprobe_ctlblk *kcb;
 952
 953	if (user_mode(regs))
 954		return 0;
 955
 956	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 957	/*
 958	 * We don't want to be preempted for the entire duration of kprobe
 959	 * processing. Since int3 and debug trap disables irqs and we clear
 960	 * IF while singlestepping, it must be no preemptible.
 
 961	 */
 
 962
 963	kcb = get_kprobe_ctlblk();
 964	p = get_kprobe(addr);
 965
 966	if (p) {
 967		if (kprobe_running()) {
 968			if (reenter_kprobe(p, regs, kcb))
 969				return 1;
 970		} else {
 971			set_current_kprobe(p, regs, kcb);
 972			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 973
 974			/*
 975			 * If we have no pre-handler or it returned 0, we
 976			 * continue with normal processing.  If we have a
 977			 * pre-handler and it returned non-zero, that means
 978			 * user handler setup registers to exit to another
 979			 * instruction, we must skip the single stepping.
 
 980			 */
 981			if (!p->pre_handler || !p->pre_handler(p, regs))
 982				setup_singlestep(p, regs, kcb, 0);
 983			else
 984				reset_current_kprobe();
 985			return 1;
 986		}
 987	} else if (kprobe_is_ss(kcb)) {
 988		p = kprobe_running();
 989		if ((unsigned long)p->ainsn.insn < regs->ip &&
 990		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
 991			/* Most provably this is the second int3 for singlestep */
 992			resume_singlestep(p, regs, kcb);
 993			kprobe_post_process(p, regs, kcb);
 994			return 1;
 995		}
 996	}
 997
 998	if (*addr != INT3_INSN_OPCODE) {
 999		/*
1000		 * The breakpoint instruction was removed right
1001		 * after we hit it.  Another cpu has removed
1002		 * either a probepoint or a debugger breakpoint
1003		 * at this address.  In either case, no further
1004		 * handling of this interrupt is appropriate.
1005		 * Back up over the (now missing) int3 and run
1006		 * the original instruction.
1007		 */
1008		regs->ip = (unsigned long)addr;
 
1009		return 1;
 
 
 
 
 
 
 
1010	} /* else: not a kprobe fault; let the kernel handle it */
1011
 
1012	return 0;
1013}
1014NOKPROBE_SYMBOL(kprobe_int3_handler);
1015
1016/*
1017 * When a retprobed function returns, this code saves registers and
1018 * calls trampoline_handler() runs, which calls the kretprobe's handler.
1019 */
1020asm(
1021	".text\n"
1022	".global kretprobe_trampoline\n"
1023	".type kretprobe_trampoline, @function\n"
1024	"kretprobe_trampoline:\n"
 
1025	/* We don't bother saving the ss register */
1026#ifdef CONFIG_X86_64
1027	"	pushq %rsp\n"
1028	"	pushfq\n"
1029	SAVE_REGS_STRING
1030	"	movq %rsp, %rdi\n"
1031	"	call trampoline_handler\n"
1032	/* Replace saved sp with true return address. */
1033	"	movq %rax, 19*8(%rsp)\n"
1034	RESTORE_REGS_STRING
1035	"	popfq\n"
1036#else
1037	"	pushl %esp\n"
1038	"	pushfl\n"
1039	SAVE_REGS_STRING
1040	"	movl %esp, %eax\n"
1041	"	call trampoline_handler\n"
1042	/* Replace saved sp with true return address. */
1043	"	movl %eax, 15*4(%esp)\n"
 
 
 
1044	RESTORE_REGS_STRING
1045	"	popfl\n"
1046#endif
1047	"	ret\n"
1048	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
1049);
1050NOKPROBE_SYMBOL(kretprobe_trampoline);
1051STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
1052
1053
1054/*
1055 * Called from kretprobe_trampoline
1056 */
1057__used __visible void *trampoline_handler(struct pt_regs *regs)
1058{
 
 
 
 
 
 
 
 
 
1059	/* fixup registers */
 
1060	regs->cs = __KERNEL_CS;
1061#ifdef CONFIG_X86_32
 
1062	regs->gs = 0;
1063#endif
1064	regs->ip = (unsigned long)&kretprobe_trampoline;
1065	regs->orig_ax = ~0UL;
1066
1067	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, &regs->sp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068}
1069NOKPROBE_SYMBOL(trampoline_handler);
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1072{
1073	struct kprobe *cur = kprobe_running();
1074	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1075
1076	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1077		/* This must happen on single-stepping */
1078		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1079			kcb->kprobe_status != KPROBE_REENTER);
1080		/*
1081		 * We are here because the instruction being single
1082		 * stepped caused a page fault. We reset the current
1083		 * kprobe and the ip points back to the probe address
1084		 * and allow the page fault handler to continue as a
1085		 * normal page fault.
1086		 */
1087		regs->ip = (unsigned long)cur->addr;
 
 
 
 
 
 
1088
1089		/*
1090		 * If the IF flag was set before the kprobe hit,
1091		 * don't touch it:
1092		 */
1093		regs->flags |= kcb->kprobe_old_flags;
1094
1095		if (kcb->kprobe_status == KPROBE_REENTER)
1096			restore_previous_kprobe(kcb);
1097		else
1098			reset_current_kprobe();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099	}
1100
1101	return 0;
1102}
1103NOKPROBE_SYMBOL(kprobe_fault_handler);
1104
1105int __init arch_populate_kprobe_blacklist(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106{
1107	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1108					 (unsigned long)__entry_text_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109}
1110
1111int __init arch_init_kprobes(void)
1112{
1113	return 0;
1114}
1115
1116int arch_trampoline_kprobe(struct kprobe *p)
1117{
1118	return 0;
1119}