Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/segment.h>
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/pgalloc.h>
  31#include <linux/uaccess.h>
  32#include <asm/unistd.h>
  33#include <asm/switch_to.h>
  34#include <asm/runtime_instr.h>
  35#include <asm/facility.h>
  36
  37#include "entry.h"
  38
  39#ifdef CONFIG_COMPAT
  40#include "compat_ptrace.h"
  41#endif
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/syscalls.h>
  45
  46void update_cr_regs(struct task_struct *task)
  47{
  48	struct pt_regs *regs = task_pt_regs(task);
  49	struct thread_struct *thread = &task->thread;
  50	struct per_regs old, new;
  51	union ctlreg0 cr0_old, cr0_new;
  52	union ctlreg2 cr2_old, cr2_new;
  53	int cr0_changed, cr2_changed;
  54
  55	__ctl_store(cr0_old.val, 0, 0);
  56	__ctl_store(cr2_old.val, 2, 2);
  57	cr0_new = cr0_old;
  58	cr2_new = cr2_old;
  59	/* Take care of the enable/disable of transactional execution. */
  60	if (MACHINE_HAS_TE) {
  61		/* Set or clear transaction execution TXC bit 8. */
  62		cr0_new.tcx = 1;
  63		if (task->thread.per_flags & PER_FLAG_NO_TE)
  64			cr0_new.tcx = 0;
  65		/* Set or clear transaction execution TDC bits 62 and 63. */
  66		cr2_new.tdc = 0;
  67		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  68			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  69				cr2_new.tdc = 1;
  70			else
  71				cr2_new.tdc = 2;
  72		}
  73	}
  74	/* Take care of enable/disable of guarded storage. */
  75	if (MACHINE_HAS_GS) {
  76		cr2_new.gse = 0;
  77		if (task->thread.gs_cb)
  78			cr2_new.gse = 1;
  79	}
  80	/* Load control register 0/2 iff changed */
  81	cr0_changed = cr0_new.val != cr0_old.val;
  82	cr2_changed = cr2_new.val != cr2_old.val;
  83	if (cr0_changed)
  84		__ctl_load(cr0_new.val, 0, 0);
  85	if (cr2_changed)
  86		__ctl_load(cr2_new.val, 2, 2);
  87	/* Copy user specified PER registers */
  88	new.control = thread->per_user.control;
  89	new.start = thread->per_user.start;
  90	new.end = thread->per_user.end;
  91
  92	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  93	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  94	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  95		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  96			new.control |= PER_EVENT_BRANCH;
  97		else
  98			new.control |= PER_EVENT_IFETCH;
  99		new.control |= PER_CONTROL_SUSPENSION;
 100		new.control |= PER_EVENT_TRANSACTION_END;
 101		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 102			new.control |= PER_EVENT_IFETCH;
 103		new.start = 0;
 104		new.end = -1UL;
 105	}
 106
 107	/* Take care of the PER enablement bit in the PSW. */
 108	if (!(new.control & PER_EVENT_MASK)) {
 109		regs->psw.mask &= ~PSW_MASK_PER;
 110		return;
 111	}
 112	regs->psw.mask |= PSW_MASK_PER;
 113	__ctl_store(old, 9, 11);
 114	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 115		__ctl_load(new, 9, 11);
 116}
 117
 118void user_enable_single_step(struct task_struct *task)
 119{
 120	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 121	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 122}
 123
 124void user_disable_single_step(struct task_struct *task)
 125{
 126	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 128}
 129
 130void user_enable_block_step(struct task_struct *task)
 131{
 132	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 133	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 134}
 135
 136/*
 137 * Called by kernel/ptrace.c when detaching..
 138 *
 139 * Clear all debugging related fields.
 140 */
 141void ptrace_disable(struct task_struct *task)
 142{
 143	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 144	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 145	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 146	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 147	task->thread.per_flags = 0;
 148}
 149
 150#define __ADDR_MASK 7
 151
 152static inline unsigned long __peek_user_per(struct task_struct *child,
 153					    addr_t addr)
 154{
 155	struct per_struct_kernel *dummy = NULL;
 156
 157	if (addr == (addr_t) &dummy->cr9)
 158		/* Control bits of the active per set. */
 159		return test_thread_flag(TIF_SINGLE_STEP) ?
 160			PER_EVENT_IFETCH : child->thread.per_user.control;
 161	else if (addr == (addr_t) &dummy->cr10)
 162		/* Start address of the active per set. */
 163		return test_thread_flag(TIF_SINGLE_STEP) ?
 164			0 : child->thread.per_user.start;
 165	else if (addr == (addr_t) &dummy->cr11)
 166		/* End address of the active per set. */
 167		return test_thread_flag(TIF_SINGLE_STEP) ?
 168			-1UL : child->thread.per_user.end;
 169	else if (addr == (addr_t) &dummy->bits)
 170		/* Single-step bit. */
 171		return test_thread_flag(TIF_SINGLE_STEP) ?
 172			(1UL << (BITS_PER_LONG - 1)) : 0;
 173	else if (addr == (addr_t) &dummy->starting_addr)
 174		/* Start address of the user specified per set. */
 175		return child->thread.per_user.start;
 176	else if (addr == (addr_t) &dummy->ending_addr)
 177		/* End address of the user specified per set. */
 178		return child->thread.per_user.end;
 179	else if (addr == (addr_t) &dummy->perc_atmid)
 180		/* PER code, ATMID and AI of the last PER trap */
 181		return (unsigned long)
 182			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 183	else if (addr == (addr_t) &dummy->address)
 184		/* Address of the last PER trap */
 185		return child->thread.per_event.address;
 186	else if (addr == (addr_t) &dummy->access_id)
 187		/* Access id of the last PER trap */
 188		return (unsigned long)
 189			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 190	return 0;
 191}
 192
 193/*
 194 * Read the word at offset addr from the user area of a process. The
 195 * trouble here is that the information is littered over different
 196 * locations. The process registers are found on the kernel stack,
 197 * the floating point stuff and the trace settings are stored in
 198 * the task structure. In addition the different structures in
 199 * struct user contain pad bytes that should be read as zeroes.
 200 * Lovely...
 201 */
 202static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 203{
 204	struct user *dummy = NULL;
 205	addr_t offset, tmp;
 206
 207	if (addr < (addr_t) &dummy->regs.acrs) {
 208		/*
 209		 * psw and gprs are stored on the stack
 210		 */
 211		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 212		if (addr == (addr_t) &dummy->regs.psw.mask) {
 213			/* Return a clean psw mask. */
 214			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 215			tmp |= PSW_USER_BITS;
 216		}
 217
 218	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 219		/*
 220		 * access registers are stored in the thread structure
 221		 */
 222		offset = addr - (addr_t) &dummy->regs.acrs;
 223		/*
 224		 * Very special case: old & broken 64 bit gdb reading
 225		 * from acrs[15]. Result is a 64 bit value. Read the
 226		 * 32 bit acrs[15] value and shift it by 32. Sick...
 227		 */
 228		if (addr == (addr_t) &dummy->regs.acrs[15])
 229			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 230		else
 231			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 232
 233	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 234		/*
 235		 * orig_gpr2 is stored on the kernel stack
 236		 */
 237		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 238
 239	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 240		/*
 241		 * prevent reads of padding hole between
 242		 * orig_gpr2 and fp_regs on s390.
 243		 */
 244		tmp = 0;
 245
 246	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 247		/*
 248		 * floating point control reg. is in the thread structure
 249		 */
 250		tmp = child->thread.fpu.fpc;
 251		tmp <<= BITS_PER_LONG - 32;
 252
 253	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 254		/*
 255		 * floating point regs. are either in child->thread.fpu
 256		 * or the child->thread.fpu.vxrs array
 257		 */
 258		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 259		if (MACHINE_HAS_VX)
 260			tmp = *(addr_t *)
 261			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 262		else
 263			tmp = *(addr_t *)
 264			       ((addr_t) child->thread.fpu.fprs + offset);
 265
 266	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 267		/*
 268		 * Handle access to the per_info structure.
 269		 */
 270		addr -= (addr_t) &dummy->regs.per_info;
 271		tmp = __peek_user_per(child, addr);
 272
 273	} else
 274		tmp = 0;
 275
 276	return tmp;
 277}
 278
 279static int
 280peek_user(struct task_struct *child, addr_t addr, addr_t data)
 281{
 282	addr_t tmp, mask;
 283
 284	/*
 285	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 286	 * an alignment of 4. Programmers from hell...
 287	 */
 288	mask = __ADDR_MASK;
 289	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 290	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 291		mask = 3;
 292	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 293		return -EIO;
 294
 295	tmp = __peek_user(child, addr);
 296	return put_user(tmp, (addr_t __user *) data);
 297}
 298
 299static inline void __poke_user_per(struct task_struct *child,
 300				   addr_t addr, addr_t data)
 301{
 302	struct per_struct_kernel *dummy = NULL;
 303
 304	/*
 305	 * There are only three fields in the per_info struct that the
 306	 * debugger user can write to.
 307	 * 1) cr9: the debugger wants to set a new PER event mask
 308	 * 2) starting_addr: the debugger wants to set a new starting
 309	 *    address to use with the PER event mask.
 310	 * 3) ending_addr: the debugger wants to set a new ending
 311	 *    address to use with the PER event mask.
 312	 * The user specified PER event mask and the start and end
 313	 * addresses are used only if single stepping is not in effect.
 314	 * Writes to any other field in per_info are ignored.
 315	 */
 316	if (addr == (addr_t) &dummy->cr9)
 317		/* PER event mask of the user specified per set. */
 318		child->thread.per_user.control =
 319			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 320	else if (addr == (addr_t) &dummy->starting_addr)
 321		/* Starting address of the user specified per set. */
 322		child->thread.per_user.start = data;
 323	else if (addr == (addr_t) &dummy->ending_addr)
 324		/* Ending address of the user specified per set. */
 325		child->thread.per_user.end = data;
 326}
 327
 328/*
 329 * Write a word to the user area of a process at location addr. This
 330 * operation does have an additional problem compared to peek_user.
 331 * Stores to the program status word and on the floating point
 332 * control register needs to get checked for validity.
 333 */
 334static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 335{
 336	struct user *dummy = NULL;
 337	addr_t offset;
 338
 
 339	if (addr < (addr_t) &dummy->regs.acrs) {
 
 340		/*
 341		 * psw and gprs are stored on the stack
 342		 */
 343		if (addr == (addr_t) &dummy->regs.psw.mask) {
 344			unsigned long mask = PSW_MASK_USER;
 345
 346			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 347			if ((data ^ PSW_USER_BITS) & ~mask)
 348				/* Invalid psw mask. */
 349				return -EINVAL;
 350			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 351				/* Invalid address-space-control bits */
 352				return -EINVAL;
 353			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 354				/* Invalid addressing mode bits */
 355				return -EINVAL;
 356		}
 357		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 358
 
 
 
 
 
 
 
 359	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 360		/*
 361		 * access registers are stored in the thread structure
 362		 */
 363		offset = addr - (addr_t) &dummy->regs.acrs;
 364		/*
 365		 * Very special case: old & broken 64 bit gdb writing
 366		 * to acrs[15] with a 64 bit value. Ignore the lower
 367		 * half of the value and write the upper 32 bit to
 368		 * acrs[15]. Sick...
 369		 */
 370		if (addr == (addr_t) &dummy->regs.acrs[15])
 371			child->thread.acrs[15] = (unsigned int) (data >> 32);
 372		else
 373			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 374
 375	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 376		/*
 377		 * orig_gpr2 is stored on the kernel stack
 378		 */
 379		task_pt_regs(child)->orig_gpr2 = data;
 380
 381	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 382		/*
 383		 * prevent writes of padding hole between
 384		 * orig_gpr2 and fp_regs on s390.
 385		 */
 386		return 0;
 387
 388	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 389		/*
 390		 * floating point control reg. is in the thread structure
 391		 */
 392		if ((unsigned int) data != 0 ||
 393		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 394			return -EINVAL;
 395		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 396
 397	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 398		/*
 399		 * floating point regs. are either in child->thread.fpu
 400		 * or the child->thread.fpu.vxrs array
 401		 */
 402		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 403		if (MACHINE_HAS_VX)
 404			*(addr_t *)((addr_t)
 405				child->thread.fpu.vxrs + 2*offset) = data;
 406		else
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.fprs + offset) = data;
 409
 410	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 411		/*
 412		 * Handle access to the per_info structure.
 413		 */
 414		addr -= (addr_t) &dummy->regs.per_info;
 415		__poke_user_per(child, addr, data);
 416
 417	}
 418
 419	return 0;
 420}
 421
 422static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 423{
 424	addr_t mask;
 425
 426	/*
 427	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 428	 * an alignment of 4. Programmers from hell indeed...
 429	 */
 430	mask = __ADDR_MASK;
 431	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 432	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 433		mask = 3;
 434	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 435		return -EIO;
 436
 437	return __poke_user(child, addr, data);
 438}
 439
 440long arch_ptrace(struct task_struct *child, long request,
 441		 unsigned long addr, unsigned long data)
 442{
 443	ptrace_area parea; 
 444	int copied, ret;
 445
 446	switch (request) {
 447	case PTRACE_PEEKUSR:
 448		/* read the word at location addr in the USER area. */
 449		return peek_user(child, addr, data);
 450
 451	case PTRACE_POKEUSR:
 452		/* write the word at location addr in the USER area */
 453		return poke_user(child, addr, data);
 454
 455	case PTRACE_PEEKUSR_AREA:
 456	case PTRACE_POKEUSR_AREA:
 457		if (copy_from_user(&parea, (void __force __user *) addr,
 458							sizeof(parea)))
 459			return -EFAULT;
 460		addr = parea.kernel_addr;
 461		data = parea.process_addr;
 462		copied = 0;
 463		while (copied < parea.len) {
 464			if (request == PTRACE_PEEKUSR_AREA)
 465				ret = peek_user(child, addr, data);
 466			else {
 467				addr_t utmp;
 468				if (get_user(utmp,
 469					     (addr_t __force __user *) data))
 470					return -EFAULT;
 471				ret = poke_user(child, addr, utmp);
 472			}
 473			if (ret)
 474				return ret;
 475			addr += sizeof(unsigned long);
 476			data += sizeof(unsigned long);
 477			copied += sizeof(unsigned long);
 478		}
 479		return 0;
 480	case PTRACE_GET_LAST_BREAK:
 481		put_user(child->thread.last_break,
 482			 (unsigned long __user *) data);
 483		return 0;
 484	case PTRACE_ENABLE_TE:
 485		if (!MACHINE_HAS_TE)
 486			return -EIO;
 487		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 488		return 0;
 489	case PTRACE_DISABLE_TE:
 490		if (!MACHINE_HAS_TE)
 491			return -EIO;
 492		child->thread.per_flags |= PER_FLAG_NO_TE;
 493		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 494		return 0;
 495	case PTRACE_TE_ABORT_RAND:
 496		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 497			return -EIO;
 498		switch (data) {
 499		case 0UL:
 500			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 501			break;
 502		case 1UL:
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 504			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 505			break;
 506		case 2UL:
 507			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 508			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 509			break;
 510		default:
 511			return -EINVAL;
 512		}
 513		return 0;
 514	default:
 515		return ptrace_request(child, request, addr, data);
 516	}
 517}
 518
 519#ifdef CONFIG_COMPAT
 520/*
 521 * Now the fun part starts... a 31 bit program running in the
 522 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 523 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 524 * to handle, the difference to the 64 bit versions of the requests
 525 * is that the access is done in multiples of 4 byte instead of
 526 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 527 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 528 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 529 * is a 31 bit program too, the content of struct user can be
 530 * emulated. A 31 bit program peeking into the struct user of
 531 * a 64 bit program is a no-no.
 532 */
 533
 534/*
 535 * Same as peek_user_per but for a 31 bit program.
 536 */
 537static inline __u32 __peek_user_per_compat(struct task_struct *child,
 538					   addr_t addr)
 539{
 540	struct compat_per_struct_kernel *dummy32 = NULL;
 541
 542	if (addr == (addr_t) &dummy32->cr9)
 543		/* Control bits of the active per set. */
 544		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 545			PER_EVENT_IFETCH : child->thread.per_user.control;
 546	else if (addr == (addr_t) &dummy32->cr10)
 547		/* Start address of the active per set. */
 548		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 549			0 : child->thread.per_user.start;
 550	else if (addr == (addr_t) &dummy32->cr11)
 551		/* End address of the active per set. */
 552		return test_thread_flag(TIF_SINGLE_STEP) ?
 553			PSW32_ADDR_INSN : child->thread.per_user.end;
 554	else if (addr == (addr_t) &dummy32->bits)
 555		/* Single-step bit. */
 556		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 557			0x80000000 : 0;
 558	else if (addr == (addr_t) &dummy32->starting_addr)
 559		/* Start address of the user specified per set. */
 560		return (__u32) child->thread.per_user.start;
 561	else if (addr == (addr_t) &dummy32->ending_addr)
 562		/* End address of the user specified per set. */
 563		return (__u32) child->thread.per_user.end;
 564	else if (addr == (addr_t) &dummy32->perc_atmid)
 565		/* PER code, ATMID and AI of the last PER trap */
 566		return (__u32) child->thread.per_event.cause << 16;
 567	else if (addr == (addr_t) &dummy32->address)
 568		/* Address of the last PER trap */
 569		return (__u32) child->thread.per_event.address;
 570	else if (addr == (addr_t) &dummy32->access_id)
 571		/* Access id of the last PER trap */
 572		return (__u32) child->thread.per_event.paid << 24;
 573	return 0;
 574}
 575
 576/*
 577 * Same as peek_user but for a 31 bit program.
 578 */
 579static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 580{
 581	struct compat_user *dummy32 = NULL;
 582	addr_t offset;
 583	__u32 tmp;
 584
 585	if (addr < (addr_t) &dummy32->regs.acrs) {
 586		struct pt_regs *regs = task_pt_regs(child);
 587		/*
 588		 * psw and gprs are stored on the stack
 589		 */
 590		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 591			/* Fake a 31 bit psw mask. */
 592			tmp = (__u32)(regs->psw.mask >> 32);
 593			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 594			tmp |= PSW32_USER_BITS;
 595		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 596			/* Fake a 31 bit psw address. */
 597			tmp = (__u32) regs->psw.addr |
 598				(__u32)(regs->psw.mask & PSW_MASK_BA);
 599		} else {
 600			/* gpr 0-15 */
 601			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 602		}
 603	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 604		/*
 605		 * access registers are stored in the thread structure
 606		 */
 607		offset = addr - (addr_t) &dummy32->regs.acrs;
 608		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 609
 610	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 611		/*
 612		 * orig_gpr2 is stored on the kernel stack
 613		 */
 614		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 615
 616	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 617		/*
 618		 * prevent reads of padding hole between
 619		 * orig_gpr2 and fp_regs on s390.
 620		 */
 621		tmp = 0;
 622
 623	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 624		/*
 625		 * floating point control reg. is in the thread structure
 626		 */
 627		tmp = child->thread.fpu.fpc;
 628
 629	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 630		/*
 631		 * floating point regs. are either in child->thread.fpu
 632		 * or the child->thread.fpu.vxrs array
 633		 */
 634		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 635		if (MACHINE_HAS_VX)
 636			tmp = *(__u32 *)
 637			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 638		else
 639			tmp = *(__u32 *)
 640			       ((addr_t) child->thread.fpu.fprs + offset);
 641
 642	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 643		/*
 644		 * Handle access to the per_info structure.
 645		 */
 646		addr -= (addr_t) &dummy32->regs.per_info;
 647		tmp = __peek_user_per_compat(child, addr);
 648
 649	} else
 650		tmp = 0;
 651
 652	return tmp;
 653}
 654
 655static int peek_user_compat(struct task_struct *child,
 656			    addr_t addr, addr_t data)
 657{
 658	__u32 tmp;
 659
 660	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 661		return -EIO;
 662
 663	tmp = __peek_user_compat(child, addr);
 664	return put_user(tmp, (__u32 __user *) data);
 665}
 666
 667/*
 668 * Same as poke_user_per but for a 31 bit program.
 669 */
 670static inline void __poke_user_per_compat(struct task_struct *child,
 671					  addr_t addr, __u32 data)
 672{
 673	struct compat_per_struct_kernel *dummy32 = NULL;
 674
 675	if (addr == (addr_t) &dummy32->cr9)
 676		/* PER event mask of the user specified per set. */
 677		child->thread.per_user.control =
 678			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 679	else if (addr == (addr_t) &dummy32->starting_addr)
 680		/* Starting address of the user specified per set. */
 681		child->thread.per_user.start = data;
 682	else if (addr == (addr_t) &dummy32->ending_addr)
 683		/* Ending address of the user specified per set. */
 684		child->thread.per_user.end = data;
 685}
 686
 687/*
 688 * Same as poke_user but for a 31 bit program.
 689 */
 690static int __poke_user_compat(struct task_struct *child,
 691			      addr_t addr, addr_t data)
 692{
 693	struct compat_user *dummy32 = NULL;
 694	__u32 tmp = (__u32) data;
 695	addr_t offset;
 696
 697	if (addr < (addr_t) &dummy32->regs.acrs) {
 698		struct pt_regs *regs = task_pt_regs(child);
 699		/*
 700		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 701		 */
 702		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 703			__u32 mask = PSW32_MASK_USER;
 704
 705			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 706			/* Build a 64 bit psw mask from 31 bit mask. */
 707			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 708				/* Invalid psw mask. */
 709				return -EINVAL;
 710			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 711				/* Invalid address-space-control bits */
 712				return -EINVAL;
 713			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 714				(regs->psw.mask & PSW_MASK_BA) |
 715				(__u64)(tmp & mask) << 32;
 716		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 717			/* Build a 64 bit psw address from 31 bit address. */
 718			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 719			/* Transfer 31 bit amode bit to psw mask. */
 720			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 721				(__u64)(tmp & PSW32_ADDR_AMODE);
 722		} else {
 
 
 
 
 
 
 723			/* gpr 0-15 */
 724			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 725		}
 726	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 727		/*
 728		 * access registers are stored in the thread structure
 729		 */
 730		offset = addr - (addr_t) &dummy32->regs.acrs;
 731		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 732
 733	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 734		/*
 735		 * orig_gpr2 is stored on the kernel stack
 736		 */
 737		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 738
 739	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 740		/*
 741		 * prevent writess of padding hole between
 742		 * orig_gpr2 and fp_regs on s390.
 743		 */
 744		return 0;
 745
 746	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 747		/*
 748		 * floating point control reg. is in the thread structure
 749		 */
 750		if (test_fp_ctl(tmp))
 751			return -EINVAL;
 752		child->thread.fpu.fpc = data;
 753
 754	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 755		/*
 756		 * floating point regs. are either in child->thread.fpu
 757		 * or the child->thread.fpu.vxrs array
 758		 */
 759		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 760		if (MACHINE_HAS_VX)
 761			*(__u32 *)((addr_t)
 762				child->thread.fpu.vxrs + 2*offset) = tmp;
 763		else
 764			*(__u32 *)((addr_t)
 765				child->thread.fpu.fprs + offset) = tmp;
 766
 767	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 768		/*
 769		 * Handle access to the per_info structure.
 770		 */
 771		addr -= (addr_t) &dummy32->regs.per_info;
 772		__poke_user_per_compat(child, addr, data);
 773	}
 774
 775	return 0;
 776}
 777
 778static int poke_user_compat(struct task_struct *child,
 779			    addr_t addr, addr_t data)
 780{
 781	if (!is_compat_task() || (addr & 3) ||
 782	    addr > sizeof(struct compat_user) - 3)
 783		return -EIO;
 784
 785	return __poke_user_compat(child, addr, data);
 786}
 787
 788long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 789			compat_ulong_t caddr, compat_ulong_t cdata)
 790{
 791	unsigned long addr = caddr;
 792	unsigned long data = cdata;
 793	compat_ptrace_area parea;
 794	int copied, ret;
 795
 796	switch (request) {
 797	case PTRACE_PEEKUSR:
 798		/* read the word at location addr in the USER area. */
 799		return peek_user_compat(child, addr, data);
 800
 801	case PTRACE_POKEUSR:
 802		/* write the word at location addr in the USER area */
 803		return poke_user_compat(child, addr, data);
 804
 805	case PTRACE_PEEKUSR_AREA:
 806	case PTRACE_POKEUSR_AREA:
 807		if (copy_from_user(&parea, (void __force __user *) addr,
 808							sizeof(parea)))
 809			return -EFAULT;
 810		addr = parea.kernel_addr;
 811		data = parea.process_addr;
 812		copied = 0;
 813		while (copied < parea.len) {
 814			if (request == PTRACE_PEEKUSR_AREA)
 815				ret = peek_user_compat(child, addr, data);
 816			else {
 817				__u32 utmp;
 818				if (get_user(utmp,
 819					     (__u32 __force __user *) data))
 820					return -EFAULT;
 821				ret = poke_user_compat(child, addr, utmp);
 822			}
 823			if (ret)
 824				return ret;
 825			addr += sizeof(unsigned int);
 826			data += sizeof(unsigned int);
 827			copied += sizeof(unsigned int);
 828		}
 829		return 0;
 830	case PTRACE_GET_LAST_BREAK:
 831		put_user(child->thread.last_break,
 832			 (unsigned int __user *) data);
 833		return 0;
 834	}
 835	return compat_ptrace_request(child, request, addr, data);
 836}
 837#endif
 838
 839asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 840{
 841	unsigned long mask = -1UL;
 842
 843	/*
 844	 * The sysc_tracesys code in entry.S stored the system
 845	 * call number to gprs[2].
 846	 */
 847	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 848	    (tracehook_report_syscall_entry(regs) ||
 849	     regs->gprs[2] >= NR_syscalls)) {
 850		/*
 851		 * Tracing decided this syscall should not happen or the
 852		 * debugger stored an invalid system call number. Skip
 853		 * the system call and the system call restart handling.
 854		 */
 855		clear_pt_regs_flag(regs, PIF_SYSCALL);
 856		return -1;
 857	}
 858
 859	/* Do the secure computing check after ptrace. */
 860	if (secure_computing(NULL)) {
 861		/* seccomp failures shouldn't expose any additional code. */
 862		return -1;
 863	}
 864
 865	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 866		trace_sys_enter(regs, regs->gprs[2]);
 867
 868	if (is_compat_task())
 869		mask = 0xffffffff;
 870
 871	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 872			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 873			    regs->gprs[5] &mask);
 874
 875	return regs->gprs[2];
 876}
 877
 878asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 879{
 880	audit_syscall_exit(regs);
 881
 882	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 883		trace_sys_exit(regs, regs->gprs[2]);
 884
 885	if (test_thread_flag(TIF_SYSCALL_TRACE))
 886		tracehook_report_syscall_exit(regs, 0);
 887}
 888
 889/*
 890 * user_regset definitions.
 891 */
 892
 893static int s390_regs_get(struct task_struct *target,
 894			 const struct user_regset *regset,
 895			 unsigned int pos, unsigned int count,
 896			 void *kbuf, void __user *ubuf)
 897{
 
 898	if (target == current)
 899		save_access_regs(target->thread.acrs);
 900
 901	if (kbuf) {
 902		unsigned long *k = kbuf;
 903		while (count > 0) {
 904			*k++ = __peek_user(target, pos);
 905			count -= sizeof(*k);
 906			pos += sizeof(*k);
 907		}
 908	} else {
 909		unsigned long __user *u = ubuf;
 910		while (count > 0) {
 911			if (__put_user(__peek_user(target, pos), u++))
 912				return -EFAULT;
 913			count -= sizeof(*u);
 914			pos += sizeof(*u);
 915		}
 916	}
 917	return 0;
 918}
 919
 920static int s390_regs_set(struct task_struct *target,
 921			 const struct user_regset *regset,
 922			 unsigned int pos, unsigned int count,
 923			 const void *kbuf, const void __user *ubuf)
 924{
 925	int rc = 0;
 926
 927	if (target == current)
 928		save_access_regs(target->thread.acrs);
 929
 930	if (kbuf) {
 931		const unsigned long *k = kbuf;
 932		while (count > 0 && !rc) {
 933			rc = __poke_user(target, pos, *k++);
 934			count -= sizeof(*k);
 935			pos += sizeof(*k);
 936		}
 937	} else {
 938		const unsigned long  __user *u = ubuf;
 939		while (count > 0 && !rc) {
 940			unsigned long word;
 941			rc = __get_user(word, u++);
 942			if (rc)
 943				break;
 944			rc = __poke_user(target, pos, word);
 945			count -= sizeof(*u);
 946			pos += sizeof(*u);
 947		}
 948	}
 949
 950	if (rc == 0 && target == current)
 951		restore_access_regs(target->thread.acrs);
 952
 953	return rc;
 954}
 955
 956static int s390_fpregs_get(struct task_struct *target,
 957			   const struct user_regset *regset, unsigned int pos,
 958			   unsigned int count, void *kbuf, void __user *ubuf)
 959{
 960	_s390_fp_regs fp_regs;
 961
 962	if (target == current)
 963		save_fpu_regs();
 964
 965	fp_regs.fpc = target->thread.fpu.fpc;
 966	fpregs_store(&fp_regs, &target->thread.fpu);
 967
 968	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 969				   &fp_regs, 0, -1);
 970}
 971
 972static int s390_fpregs_set(struct task_struct *target,
 973			   const struct user_regset *regset, unsigned int pos,
 974			   unsigned int count, const void *kbuf,
 975			   const void __user *ubuf)
 976{
 977	int rc = 0;
 978	freg_t fprs[__NUM_FPRS];
 979
 980	if (target == current)
 981		save_fpu_regs();
 982
 983	if (MACHINE_HAS_VX)
 984		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 985	else
 986		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 987
 988	/* If setting FPC, must validate it first. */
 989	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 990		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 991		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 992					0, offsetof(s390_fp_regs, fprs));
 993		if (rc)
 994			return rc;
 995		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 996			return -EINVAL;
 997		target->thread.fpu.fpc = ufpc[0];
 998	}
 999
1000	if (rc == 0 && count > 0)
1001		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002					fprs, offsetof(s390_fp_regs, fprs), -1);
1003	if (rc)
1004		return rc;
1005
1006	if (MACHINE_HAS_VX)
1007		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1008	else
1009		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1010
1011	return rc;
1012}
1013
1014static int s390_last_break_get(struct task_struct *target,
1015			       const struct user_regset *regset,
1016			       unsigned int pos, unsigned int count,
1017			       void *kbuf, void __user *ubuf)
1018{
1019	if (count > 0) {
1020		if (kbuf) {
1021			unsigned long *k = kbuf;
1022			*k = target->thread.last_break;
1023		} else {
1024			unsigned long  __user *u = ubuf;
1025			if (__put_user(target->thread.last_break, u))
1026				return -EFAULT;
1027		}
1028	}
1029	return 0;
1030}
1031
1032static int s390_last_break_set(struct task_struct *target,
1033			       const struct user_regset *regset,
1034			       unsigned int pos, unsigned int count,
1035			       const void *kbuf, const void __user *ubuf)
1036{
1037	return 0;
1038}
1039
1040static int s390_tdb_get(struct task_struct *target,
1041			const struct user_regset *regset,
1042			unsigned int pos, unsigned int count,
1043			void *kbuf, void __user *ubuf)
1044{
1045	struct pt_regs *regs = task_pt_regs(target);
1046	unsigned char *data;
1047
1048	if (!(regs->int_code & 0x200))
1049		return -ENODATA;
1050	data = target->thread.trap_tdb;
1051	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052}
1053
1054static int s390_tdb_set(struct task_struct *target,
1055			const struct user_regset *regset,
1056			unsigned int pos, unsigned int count,
1057			const void *kbuf, const void __user *ubuf)
1058{
1059	return 0;
1060}
1061
1062static int s390_vxrs_low_get(struct task_struct *target,
1063			     const struct user_regset *regset,
1064			     unsigned int pos, unsigned int count,
1065			     void *kbuf, void __user *ubuf)
1066{
1067	__u64 vxrs[__NUM_VXRS_LOW];
1068	int i;
1069
1070	if (!MACHINE_HAS_VX)
1071		return -ENODEV;
1072	if (target == current)
1073		save_fpu_regs();
1074	for (i = 0; i < __NUM_VXRS_LOW; i++)
1075		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1076	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1077}
1078
1079static int s390_vxrs_low_set(struct task_struct *target,
1080			     const struct user_regset *regset,
1081			     unsigned int pos, unsigned int count,
1082			     const void *kbuf, const void __user *ubuf)
1083{
1084	__u64 vxrs[__NUM_VXRS_LOW];
1085	int i, rc;
1086
1087	if (!MACHINE_HAS_VX)
1088		return -ENODEV;
1089	if (target == current)
1090		save_fpu_regs();
1091
1092	for (i = 0; i < __NUM_VXRS_LOW; i++)
1093		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1094
1095	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1096	if (rc == 0)
1097		for (i = 0; i < __NUM_VXRS_LOW; i++)
1098			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1099
1100	return rc;
1101}
1102
1103static int s390_vxrs_high_get(struct task_struct *target,
1104			      const struct user_regset *regset,
1105			      unsigned int pos, unsigned int count,
1106			      void *kbuf, void __user *ubuf)
1107{
1108	__vector128 vxrs[__NUM_VXRS_HIGH];
1109
1110	if (!MACHINE_HAS_VX)
1111		return -ENODEV;
1112	if (target == current)
1113		save_fpu_regs();
1114	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1115
1116	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1117}
1118
1119static int s390_vxrs_high_set(struct task_struct *target,
1120			      const struct user_regset *regset,
1121			      unsigned int pos, unsigned int count,
1122			      const void *kbuf, const void __user *ubuf)
1123{
1124	int rc;
1125
1126	if (!MACHINE_HAS_VX)
1127		return -ENODEV;
1128	if (target == current)
1129		save_fpu_regs();
1130
1131	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1132				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1133	return rc;
1134}
1135
1136static int s390_system_call_get(struct task_struct *target,
1137				const struct user_regset *regset,
1138				unsigned int pos, unsigned int count,
1139				void *kbuf, void __user *ubuf)
1140{
1141	unsigned int *data = &target->thread.system_call;
1142	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1143				   data, 0, sizeof(unsigned int));
1144}
1145
1146static int s390_system_call_set(struct task_struct *target,
1147				const struct user_regset *regset,
1148				unsigned int pos, unsigned int count,
1149				const void *kbuf, const void __user *ubuf)
1150{
1151	unsigned int *data = &target->thread.system_call;
1152	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1153				  data, 0, sizeof(unsigned int));
1154}
1155
1156static int s390_gs_cb_get(struct task_struct *target,
1157			  const struct user_regset *regset,
1158			  unsigned int pos, unsigned int count,
1159			  void *kbuf, void __user *ubuf)
1160{
1161	struct gs_cb *data = target->thread.gs_cb;
1162
1163	if (!MACHINE_HAS_GS)
1164		return -ENODEV;
1165	if (!data)
1166		return -ENODATA;
1167	if (target == current)
1168		save_gs_cb(data);
1169	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1170				   data, 0, sizeof(struct gs_cb));
1171}
1172
1173static int s390_gs_cb_set(struct task_struct *target,
1174			  const struct user_regset *regset,
1175			  unsigned int pos, unsigned int count,
1176			  const void *kbuf, const void __user *ubuf)
1177{
1178	struct gs_cb gs_cb = { }, *data = NULL;
1179	int rc;
1180
1181	if (!MACHINE_HAS_GS)
1182		return -ENODEV;
1183	if (!target->thread.gs_cb) {
1184		data = kzalloc(sizeof(*data), GFP_KERNEL);
1185		if (!data)
1186			return -ENOMEM;
1187	}
1188	if (!target->thread.gs_cb)
1189		gs_cb.gsd = 25;
1190	else if (target == current)
1191		save_gs_cb(&gs_cb);
1192	else
1193		gs_cb = *target->thread.gs_cb;
1194	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1195				&gs_cb, 0, sizeof(gs_cb));
1196	if (rc) {
1197		kfree(data);
1198		return -EFAULT;
1199	}
1200	preempt_disable();
1201	if (!target->thread.gs_cb)
1202		target->thread.gs_cb = data;
1203	*target->thread.gs_cb = gs_cb;
1204	if (target == current) {
1205		__ctl_set_bit(2, 4);
1206		restore_gs_cb(target->thread.gs_cb);
1207	}
1208	preempt_enable();
1209	return rc;
1210}
1211
1212static int s390_gs_bc_get(struct task_struct *target,
1213			  const struct user_regset *regset,
1214			  unsigned int pos, unsigned int count,
1215			  void *kbuf, void __user *ubuf)
1216{
1217	struct gs_cb *data = target->thread.gs_bc_cb;
1218
1219	if (!MACHINE_HAS_GS)
1220		return -ENODEV;
1221	if (!data)
1222		return -ENODATA;
1223	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1224				   data, 0, sizeof(struct gs_cb));
1225}
1226
1227static int s390_gs_bc_set(struct task_struct *target,
1228			  const struct user_regset *regset,
1229			  unsigned int pos, unsigned int count,
1230			  const void *kbuf, const void __user *ubuf)
1231{
1232	struct gs_cb *data = target->thread.gs_bc_cb;
1233
1234	if (!MACHINE_HAS_GS)
1235		return -ENODEV;
1236	if (!data) {
1237		data = kzalloc(sizeof(*data), GFP_KERNEL);
1238		if (!data)
1239			return -ENOMEM;
1240		target->thread.gs_bc_cb = data;
1241	}
1242	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1243				  data, 0, sizeof(struct gs_cb));
1244}
1245
1246static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1247{
1248	return (cb->rca & 0x1f) == 0 &&
1249		(cb->roa & 0xfff) == 0 &&
1250		(cb->rla & 0xfff) == 0xfff &&
1251		cb->s == 1 &&
1252		cb->k == 1 &&
1253		cb->h == 0 &&
1254		cb->reserved1 == 0 &&
1255		cb->ps == 1 &&
1256		cb->qs == 0 &&
1257		cb->pc == 1 &&
1258		cb->qc == 0 &&
1259		cb->reserved2 == 0 &&
1260		cb->key == PAGE_DEFAULT_KEY &&
1261		cb->reserved3 == 0 &&
1262		cb->reserved4 == 0 &&
1263		cb->reserved5 == 0 &&
1264		cb->reserved6 == 0 &&
1265		cb->reserved7 == 0 &&
1266		cb->reserved8 == 0 &&
1267		cb->rla >= cb->roa &&
1268		cb->rca >= cb->roa &&
1269		cb->rca <= cb->rla+1 &&
1270		cb->m < 3;
1271}
1272
1273static int s390_runtime_instr_get(struct task_struct *target,
1274				const struct user_regset *regset,
1275				unsigned int pos, unsigned int count,
1276				void *kbuf, void __user *ubuf)
1277{
1278	struct runtime_instr_cb *data = target->thread.ri_cb;
1279
1280	if (!test_facility(64))
1281		return -ENODEV;
1282	if (!data)
1283		return -ENODATA;
1284
1285	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286				   data, 0, sizeof(struct runtime_instr_cb));
1287}
1288
1289static int s390_runtime_instr_set(struct task_struct *target,
1290				  const struct user_regset *regset,
1291				  unsigned int pos, unsigned int count,
1292				  const void *kbuf, const void __user *ubuf)
1293{
1294	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1295	int rc;
1296
1297	if (!test_facility(64))
1298		return -ENODEV;
1299
1300	if (!target->thread.ri_cb) {
1301		data = kzalloc(sizeof(*data), GFP_KERNEL);
1302		if (!data)
1303			return -ENOMEM;
1304	}
1305
1306	if (target->thread.ri_cb) {
1307		if (target == current)
1308			store_runtime_instr_cb(&ri_cb);
1309		else
1310			ri_cb = *target->thread.ri_cb;
1311	}
1312
1313	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1314				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1315	if (rc) {
1316		kfree(data);
1317		return -EFAULT;
1318	}
1319
1320	if (!is_ri_cb_valid(&ri_cb)) {
1321		kfree(data);
1322		return -EINVAL;
1323	}
1324
 
 
 
 
1325	preempt_disable();
1326	if (!target->thread.ri_cb)
1327		target->thread.ri_cb = data;
1328	*target->thread.ri_cb = ri_cb;
1329	if (target == current)
1330		load_runtime_instr_cb(target->thread.ri_cb);
1331	preempt_enable();
1332
1333	return 0;
1334}
1335
1336static const struct user_regset s390_regsets[] = {
1337	{
1338		.core_note_type = NT_PRSTATUS,
1339		.n = sizeof(s390_regs) / sizeof(long),
1340		.size = sizeof(long),
1341		.align = sizeof(long),
1342		.get = s390_regs_get,
1343		.set = s390_regs_set,
1344	},
1345	{
1346		.core_note_type = NT_PRFPREG,
1347		.n = sizeof(s390_fp_regs) / sizeof(long),
1348		.size = sizeof(long),
1349		.align = sizeof(long),
1350		.get = s390_fpregs_get,
1351		.set = s390_fpregs_set,
1352	},
1353	{
1354		.core_note_type = NT_S390_SYSTEM_CALL,
1355		.n = 1,
1356		.size = sizeof(unsigned int),
1357		.align = sizeof(unsigned int),
1358		.get = s390_system_call_get,
1359		.set = s390_system_call_set,
1360	},
1361	{
1362		.core_note_type = NT_S390_LAST_BREAK,
1363		.n = 1,
1364		.size = sizeof(long),
1365		.align = sizeof(long),
1366		.get = s390_last_break_get,
1367		.set = s390_last_break_set,
1368	},
1369	{
1370		.core_note_type = NT_S390_TDB,
1371		.n = 1,
1372		.size = 256,
1373		.align = 1,
1374		.get = s390_tdb_get,
1375		.set = s390_tdb_set,
1376	},
1377	{
1378		.core_note_type = NT_S390_VXRS_LOW,
1379		.n = __NUM_VXRS_LOW,
1380		.size = sizeof(__u64),
1381		.align = sizeof(__u64),
1382		.get = s390_vxrs_low_get,
1383		.set = s390_vxrs_low_set,
1384	},
1385	{
1386		.core_note_type = NT_S390_VXRS_HIGH,
1387		.n = __NUM_VXRS_HIGH,
1388		.size = sizeof(__vector128),
1389		.align = sizeof(__vector128),
1390		.get = s390_vxrs_high_get,
1391		.set = s390_vxrs_high_set,
1392	},
1393	{
1394		.core_note_type = NT_S390_GS_CB,
1395		.n = sizeof(struct gs_cb) / sizeof(__u64),
1396		.size = sizeof(__u64),
1397		.align = sizeof(__u64),
1398		.get = s390_gs_cb_get,
1399		.set = s390_gs_cb_set,
1400	},
1401	{
1402		.core_note_type = NT_S390_GS_BC,
1403		.n = sizeof(struct gs_cb) / sizeof(__u64),
1404		.size = sizeof(__u64),
1405		.align = sizeof(__u64),
1406		.get = s390_gs_bc_get,
1407		.set = s390_gs_bc_set,
1408	},
1409	{
1410		.core_note_type = NT_S390_RI_CB,
1411		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1412		.size = sizeof(__u64),
1413		.align = sizeof(__u64),
1414		.get = s390_runtime_instr_get,
1415		.set = s390_runtime_instr_set,
1416	},
1417};
1418
1419static const struct user_regset_view user_s390_view = {
1420	.name = UTS_MACHINE,
1421	.e_machine = EM_S390,
1422	.regsets = s390_regsets,
1423	.n = ARRAY_SIZE(s390_regsets)
1424};
1425
1426#ifdef CONFIG_COMPAT
1427static int s390_compat_regs_get(struct task_struct *target,
1428				const struct user_regset *regset,
1429				unsigned int pos, unsigned int count,
1430				void *kbuf, void __user *ubuf)
1431{
 
 
1432	if (target == current)
1433		save_access_regs(target->thread.acrs);
1434
1435	if (kbuf) {
1436		compat_ulong_t *k = kbuf;
1437		while (count > 0) {
1438			*k++ = __peek_user_compat(target, pos);
1439			count -= sizeof(*k);
1440			pos += sizeof(*k);
1441		}
1442	} else {
1443		compat_ulong_t __user *u = ubuf;
1444		while (count > 0) {
1445			if (__put_user(__peek_user_compat(target, pos), u++))
1446				return -EFAULT;
1447			count -= sizeof(*u);
1448			pos += sizeof(*u);
1449		}
1450	}
1451	return 0;
1452}
1453
1454static int s390_compat_regs_set(struct task_struct *target,
1455				const struct user_regset *regset,
1456				unsigned int pos, unsigned int count,
1457				const void *kbuf, const void __user *ubuf)
1458{
1459	int rc = 0;
1460
1461	if (target == current)
1462		save_access_regs(target->thread.acrs);
1463
1464	if (kbuf) {
1465		const compat_ulong_t *k = kbuf;
1466		while (count > 0 && !rc) {
1467			rc = __poke_user_compat(target, pos, *k++);
1468			count -= sizeof(*k);
1469			pos += sizeof(*k);
1470		}
1471	} else {
1472		const compat_ulong_t  __user *u = ubuf;
1473		while (count > 0 && !rc) {
1474			compat_ulong_t word;
1475			rc = __get_user(word, u++);
1476			if (rc)
1477				break;
1478			rc = __poke_user_compat(target, pos, word);
1479			count -= sizeof(*u);
1480			pos += sizeof(*u);
1481		}
1482	}
1483
1484	if (rc == 0 && target == current)
1485		restore_access_regs(target->thread.acrs);
1486
1487	return rc;
1488}
1489
1490static int s390_compat_regs_high_get(struct task_struct *target,
1491				     const struct user_regset *regset,
1492				     unsigned int pos, unsigned int count,
1493				     void *kbuf, void __user *ubuf)
1494{
1495	compat_ulong_t *gprs_high;
 
1496
1497	gprs_high = (compat_ulong_t *)
1498		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1499	if (kbuf) {
1500		compat_ulong_t *k = kbuf;
1501		while (count > 0) {
1502			*k++ = *gprs_high;
1503			gprs_high += 2;
1504			count -= sizeof(*k);
1505		}
1506	} else {
1507		compat_ulong_t __user *u = ubuf;
1508		while (count > 0) {
1509			if (__put_user(*gprs_high, u++))
1510				return -EFAULT;
1511			gprs_high += 2;
1512			count -= sizeof(*u);
1513		}
1514	}
1515	return 0;
1516}
1517
1518static int s390_compat_regs_high_set(struct task_struct *target,
1519				     const struct user_regset *regset,
1520				     unsigned int pos, unsigned int count,
1521				     const void *kbuf, const void __user *ubuf)
1522{
1523	compat_ulong_t *gprs_high;
1524	int rc = 0;
1525
1526	gprs_high = (compat_ulong_t *)
1527		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1528	if (kbuf) {
1529		const compat_ulong_t *k = kbuf;
1530		while (count > 0) {
1531			*gprs_high = *k++;
1532			*gprs_high += 2;
1533			count -= sizeof(*k);
1534		}
1535	} else {
1536		const compat_ulong_t  __user *u = ubuf;
1537		while (count > 0 && !rc) {
1538			unsigned long word;
1539			rc = __get_user(word, u++);
1540			if (rc)
1541				break;
1542			*gprs_high = word;
1543			*gprs_high += 2;
1544			count -= sizeof(*u);
1545		}
1546	}
1547
1548	return rc;
1549}
1550
1551static int s390_compat_last_break_get(struct task_struct *target,
1552				      const struct user_regset *regset,
1553				      unsigned int pos, unsigned int count,
1554				      void *kbuf, void __user *ubuf)
1555{
1556	compat_ulong_t last_break;
1557
1558	if (count > 0) {
1559		last_break = target->thread.last_break;
1560		if (kbuf) {
1561			unsigned long *k = kbuf;
1562			*k = last_break;
1563		} else {
1564			unsigned long  __user *u = ubuf;
1565			if (__put_user(last_break, u))
1566				return -EFAULT;
1567		}
1568	}
1569	return 0;
1570}
1571
1572static int s390_compat_last_break_set(struct task_struct *target,
1573				      const struct user_regset *regset,
1574				      unsigned int pos, unsigned int count,
1575				      const void *kbuf, const void __user *ubuf)
1576{
1577	return 0;
1578}
1579
1580static const struct user_regset s390_compat_regsets[] = {
1581	{
1582		.core_note_type = NT_PRSTATUS,
1583		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1584		.size = sizeof(compat_long_t),
1585		.align = sizeof(compat_long_t),
1586		.get = s390_compat_regs_get,
1587		.set = s390_compat_regs_set,
1588	},
1589	{
1590		.core_note_type = NT_PRFPREG,
1591		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1592		.size = sizeof(compat_long_t),
1593		.align = sizeof(compat_long_t),
1594		.get = s390_fpregs_get,
1595		.set = s390_fpregs_set,
1596	},
1597	{
1598		.core_note_type = NT_S390_SYSTEM_CALL,
1599		.n = 1,
1600		.size = sizeof(compat_uint_t),
1601		.align = sizeof(compat_uint_t),
1602		.get = s390_system_call_get,
1603		.set = s390_system_call_set,
1604	},
1605	{
1606		.core_note_type = NT_S390_LAST_BREAK,
1607		.n = 1,
1608		.size = sizeof(long),
1609		.align = sizeof(long),
1610		.get = s390_compat_last_break_get,
1611		.set = s390_compat_last_break_set,
1612	},
1613	{
1614		.core_note_type = NT_S390_TDB,
1615		.n = 1,
1616		.size = 256,
1617		.align = 1,
1618		.get = s390_tdb_get,
1619		.set = s390_tdb_set,
1620	},
1621	{
1622		.core_note_type = NT_S390_VXRS_LOW,
1623		.n = __NUM_VXRS_LOW,
1624		.size = sizeof(__u64),
1625		.align = sizeof(__u64),
1626		.get = s390_vxrs_low_get,
1627		.set = s390_vxrs_low_set,
1628	},
1629	{
1630		.core_note_type = NT_S390_VXRS_HIGH,
1631		.n = __NUM_VXRS_HIGH,
1632		.size = sizeof(__vector128),
1633		.align = sizeof(__vector128),
1634		.get = s390_vxrs_high_get,
1635		.set = s390_vxrs_high_set,
1636	},
1637	{
1638		.core_note_type = NT_S390_HIGH_GPRS,
1639		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1640		.size = sizeof(compat_long_t),
1641		.align = sizeof(compat_long_t),
1642		.get = s390_compat_regs_high_get,
1643		.set = s390_compat_regs_high_set,
1644	},
1645	{
1646		.core_note_type = NT_S390_GS_CB,
1647		.n = sizeof(struct gs_cb) / sizeof(__u64),
1648		.size = sizeof(__u64),
1649		.align = sizeof(__u64),
1650		.get = s390_gs_cb_get,
1651		.set = s390_gs_cb_set,
1652	},
1653	{
1654		.core_note_type = NT_S390_GS_BC,
1655		.n = sizeof(struct gs_cb) / sizeof(__u64),
1656		.size = sizeof(__u64),
1657		.align = sizeof(__u64),
1658		.get = s390_gs_bc_get,
1659		.set = s390_gs_bc_set,
1660	},
1661	{
1662		.core_note_type = NT_S390_RI_CB,
1663		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1664		.size = sizeof(__u64),
1665		.align = sizeof(__u64),
1666		.get = s390_runtime_instr_get,
1667		.set = s390_runtime_instr_set,
1668	},
1669};
1670
1671static const struct user_regset_view user_s390_compat_view = {
1672	.name = "s390",
1673	.e_machine = EM_S390,
1674	.regsets = s390_compat_regsets,
1675	.n = ARRAY_SIZE(s390_compat_regsets)
1676};
1677#endif
1678
1679const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1680{
1681#ifdef CONFIG_COMPAT
1682	if (test_tsk_thread_flag(task, TIF_31BIT))
1683		return &user_s390_compat_view;
1684#endif
1685	return &user_s390_view;
1686}
1687
1688static const char *gpr_names[NUM_GPRS] = {
1689	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1690	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1691};
1692
1693unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1694{
1695	if (offset >= NUM_GPRS)
1696		return 0;
1697	return regs->gprs[offset];
1698}
1699
1700int regs_query_register_offset(const char *name)
1701{
1702	unsigned long offset;
1703
1704	if (!name || *name != 'r')
1705		return -EINVAL;
1706	if (kstrtoul(name + 1, 10, &offset))
1707		return -EINVAL;
1708	if (offset >= NUM_GPRS)
1709		return -EINVAL;
1710	return offset;
1711}
1712
1713const char *regs_query_register_name(unsigned int offset)
1714{
1715	if (offset >= NUM_GPRS)
1716		return NULL;
1717	return gpr_names[offset];
1718}
1719
1720static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1721{
1722	unsigned long ksp = kernel_stack_pointer(regs);
1723
1724	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1725}
1726
1727/**
1728 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1729 * @regs:pt_regs which contains kernel stack pointer.
1730 * @n:stack entry number.
1731 *
1732 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1733 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1734 * this returns 0.
1735 */
1736unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1737{
1738	unsigned long addr;
1739
1740	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1741	if (!regs_within_kernel_stack(regs, addr))
1742		return 0;
1743	return *(unsigned long *)addr;
1744}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
  24#include <linux/tracehook.h>
  25#include <linux/seccomp.h>
  26#include <linux/compat.h>
  27#include <trace/syscall.h>
 
  28#include <asm/page.h>
 
 
  29#include <linux/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
  32#include <asm/runtime_instr.h>
  33#include <asm/facility.h>
  34
  35#include "entry.h"
  36
  37#ifdef CONFIG_COMPAT
  38#include "compat_ptrace.h"
  39#endif
  40
 
 
 
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	struct per_regs old, new;
  46	union ctlreg0 cr0_old, cr0_new;
  47	union ctlreg2 cr2_old, cr2_new;
  48	int cr0_changed, cr2_changed;
  49
  50	__ctl_store(cr0_old.val, 0, 0);
  51	__ctl_store(cr2_old.val, 2, 2);
  52	cr0_new = cr0_old;
  53	cr2_new = cr2_old;
  54	/* Take care of the enable/disable of transactional execution. */
  55	if (MACHINE_HAS_TE) {
  56		/* Set or clear transaction execution TXC bit 8. */
  57		cr0_new.tcx = 1;
  58		if (task->thread.per_flags & PER_FLAG_NO_TE)
  59			cr0_new.tcx = 0;
  60		/* Set or clear transaction execution TDC bits 62 and 63. */
  61		cr2_new.tdc = 0;
  62		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  63			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  64				cr2_new.tdc = 1;
  65			else
  66				cr2_new.tdc = 2;
  67		}
  68	}
  69	/* Take care of enable/disable of guarded storage. */
  70	if (MACHINE_HAS_GS) {
  71		cr2_new.gse = 0;
  72		if (task->thread.gs_cb)
  73			cr2_new.gse = 1;
  74	}
  75	/* Load control register 0/2 iff changed */
  76	cr0_changed = cr0_new.val != cr0_old.val;
  77	cr2_changed = cr2_new.val != cr2_old.val;
  78	if (cr0_changed)
  79		__ctl_load(cr0_new.val, 0, 0);
  80	if (cr2_changed)
  81		__ctl_load(cr2_new.val, 2, 2);
  82	/* Copy user specified PER registers */
  83	new.control = thread->per_user.control;
  84	new.start = thread->per_user.start;
  85	new.end = thread->per_user.end;
  86
  87	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  88	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  89	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  90		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  91			new.control |= PER_EVENT_BRANCH;
  92		else
  93			new.control |= PER_EVENT_IFETCH;
  94		new.control |= PER_CONTROL_SUSPENSION;
  95		new.control |= PER_EVENT_TRANSACTION_END;
  96		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  97			new.control |= PER_EVENT_IFETCH;
  98		new.start = 0;
  99		new.end = -1UL;
 100	}
 101
 102	/* Take care of the PER enablement bit in the PSW. */
 103	if (!(new.control & PER_EVENT_MASK)) {
 104		regs->psw.mask &= ~PSW_MASK_PER;
 105		return;
 106	}
 107	regs->psw.mask |= PSW_MASK_PER;
 108	__ctl_store(old, 9, 11);
 109	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 110		__ctl_load(new, 9, 11);
 111}
 112
 113void user_enable_single_step(struct task_struct *task)
 114{
 115	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 116	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 117}
 118
 119void user_disable_single_step(struct task_struct *task)
 120{
 121	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 122	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 123}
 124
 125void user_enable_block_step(struct task_struct *task)
 126{
 127	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 128	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 129}
 130
 131/*
 132 * Called by kernel/ptrace.c when detaching..
 133 *
 134 * Clear all debugging related fields.
 135 */
 136void ptrace_disable(struct task_struct *task)
 137{
 138	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 139	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 140	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 141	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 142	task->thread.per_flags = 0;
 143}
 144
 145#define __ADDR_MASK 7
 146
 147static inline unsigned long __peek_user_per(struct task_struct *child,
 148					    addr_t addr)
 149{
 150	struct per_struct_kernel *dummy = NULL;
 151
 152	if (addr == (addr_t) &dummy->cr9)
 153		/* Control bits of the active per set. */
 154		return test_thread_flag(TIF_SINGLE_STEP) ?
 155			PER_EVENT_IFETCH : child->thread.per_user.control;
 156	else if (addr == (addr_t) &dummy->cr10)
 157		/* Start address of the active per set. */
 158		return test_thread_flag(TIF_SINGLE_STEP) ?
 159			0 : child->thread.per_user.start;
 160	else if (addr == (addr_t) &dummy->cr11)
 161		/* End address of the active per set. */
 162		return test_thread_flag(TIF_SINGLE_STEP) ?
 163			-1UL : child->thread.per_user.end;
 164	else if (addr == (addr_t) &dummy->bits)
 165		/* Single-step bit. */
 166		return test_thread_flag(TIF_SINGLE_STEP) ?
 167			(1UL << (BITS_PER_LONG - 1)) : 0;
 168	else if (addr == (addr_t) &dummy->starting_addr)
 169		/* Start address of the user specified per set. */
 170		return child->thread.per_user.start;
 171	else if (addr == (addr_t) &dummy->ending_addr)
 172		/* End address of the user specified per set. */
 173		return child->thread.per_user.end;
 174	else if (addr == (addr_t) &dummy->perc_atmid)
 175		/* PER code, ATMID and AI of the last PER trap */
 176		return (unsigned long)
 177			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 178	else if (addr == (addr_t) &dummy->address)
 179		/* Address of the last PER trap */
 180		return child->thread.per_event.address;
 181	else if (addr == (addr_t) &dummy->access_id)
 182		/* Access id of the last PER trap */
 183		return (unsigned long)
 184			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 185	return 0;
 186}
 187
 188/*
 189 * Read the word at offset addr from the user area of a process. The
 190 * trouble here is that the information is littered over different
 191 * locations. The process registers are found on the kernel stack,
 192 * the floating point stuff and the trace settings are stored in
 193 * the task structure. In addition the different structures in
 194 * struct user contain pad bytes that should be read as zeroes.
 195 * Lovely...
 196 */
 197static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 198{
 199	struct user *dummy = NULL;
 200	addr_t offset, tmp;
 201
 202	if (addr < (addr_t) &dummy->regs.acrs) {
 203		/*
 204		 * psw and gprs are stored on the stack
 205		 */
 206		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 207		if (addr == (addr_t) &dummy->regs.psw.mask) {
 208			/* Return a clean psw mask. */
 209			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 210			tmp |= PSW_USER_BITS;
 211		}
 212
 213	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 214		/*
 215		 * access registers are stored in the thread structure
 216		 */
 217		offset = addr - (addr_t) &dummy->regs.acrs;
 218		/*
 219		 * Very special case: old & broken 64 bit gdb reading
 220		 * from acrs[15]. Result is a 64 bit value. Read the
 221		 * 32 bit acrs[15] value and shift it by 32. Sick...
 222		 */
 223		if (addr == (addr_t) &dummy->regs.acrs[15])
 224			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 225		else
 226			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 227
 228	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 229		/*
 230		 * orig_gpr2 is stored on the kernel stack
 231		 */
 232		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 233
 234	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 235		/*
 236		 * prevent reads of padding hole between
 237		 * orig_gpr2 and fp_regs on s390.
 238		 */
 239		tmp = 0;
 240
 241	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 242		/*
 243		 * floating point control reg. is in the thread structure
 244		 */
 245		tmp = child->thread.fpu.fpc;
 246		tmp <<= BITS_PER_LONG - 32;
 247
 248	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 249		/*
 250		 * floating point regs. are either in child->thread.fpu
 251		 * or the child->thread.fpu.vxrs array
 252		 */
 253		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 254		if (MACHINE_HAS_VX)
 255			tmp = *(addr_t *)
 256			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 257		else
 258			tmp = *(addr_t *)
 259			       ((addr_t) child->thread.fpu.fprs + offset);
 260
 261	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 262		/*
 263		 * Handle access to the per_info structure.
 264		 */
 265		addr -= (addr_t) &dummy->regs.per_info;
 266		tmp = __peek_user_per(child, addr);
 267
 268	} else
 269		tmp = 0;
 270
 271	return tmp;
 272}
 273
 274static int
 275peek_user(struct task_struct *child, addr_t addr, addr_t data)
 276{
 277	addr_t tmp, mask;
 278
 279	/*
 280	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 281	 * an alignment of 4. Programmers from hell...
 282	 */
 283	mask = __ADDR_MASK;
 284	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 285	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 286		mask = 3;
 287	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 288		return -EIO;
 289
 290	tmp = __peek_user(child, addr);
 291	return put_user(tmp, (addr_t __user *) data);
 292}
 293
 294static inline void __poke_user_per(struct task_struct *child,
 295				   addr_t addr, addr_t data)
 296{
 297	struct per_struct_kernel *dummy = NULL;
 298
 299	/*
 300	 * There are only three fields in the per_info struct that the
 301	 * debugger user can write to.
 302	 * 1) cr9: the debugger wants to set a new PER event mask
 303	 * 2) starting_addr: the debugger wants to set a new starting
 304	 *    address to use with the PER event mask.
 305	 * 3) ending_addr: the debugger wants to set a new ending
 306	 *    address to use with the PER event mask.
 307	 * The user specified PER event mask and the start and end
 308	 * addresses are used only if single stepping is not in effect.
 309	 * Writes to any other field in per_info are ignored.
 310	 */
 311	if (addr == (addr_t) &dummy->cr9)
 312		/* PER event mask of the user specified per set. */
 313		child->thread.per_user.control =
 314			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 315	else if (addr == (addr_t) &dummy->starting_addr)
 316		/* Starting address of the user specified per set. */
 317		child->thread.per_user.start = data;
 318	else if (addr == (addr_t) &dummy->ending_addr)
 319		/* Ending address of the user specified per set. */
 320		child->thread.per_user.end = data;
 321}
 322
 323/*
 324 * Write a word to the user area of a process at location addr. This
 325 * operation does have an additional problem compared to peek_user.
 326 * Stores to the program status word and on the floating point
 327 * control register needs to get checked for validity.
 328 */
 329static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 330{
 331	struct user *dummy = NULL;
 332	addr_t offset;
 333
 334
 335	if (addr < (addr_t) &dummy->regs.acrs) {
 336		struct pt_regs *regs = task_pt_regs(child);
 337		/*
 338		 * psw and gprs are stored on the stack
 339		 */
 340		if (addr == (addr_t) &dummy->regs.psw.mask) {
 341			unsigned long mask = PSW_MASK_USER;
 342
 343			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 344			if ((data ^ PSW_USER_BITS) & ~mask)
 345				/* Invalid psw mask. */
 346				return -EINVAL;
 347			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 348				/* Invalid address-space-control bits */
 349				return -EINVAL;
 350			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 351				/* Invalid addressing mode bits */
 352				return -EINVAL;
 353		}
 
 354
 355		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 356			addr == offsetof(struct user, regs.gprs[2])) {
 357			struct pt_regs *regs = task_pt_regs(child);
 358
 359			regs->int_code = 0x20000 | (data & 0xffff);
 360		}
 361		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 362	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 363		/*
 364		 * access registers are stored in the thread structure
 365		 */
 366		offset = addr - (addr_t) &dummy->regs.acrs;
 367		/*
 368		 * Very special case: old & broken 64 bit gdb writing
 369		 * to acrs[15] with a 64 bit value. Ignore the lower
 370		 * half of the value and write the upper 32 bit to
 371		 * acrs[15]. Sick...
 372		 */
 373		if (addr == (addr_t) &dummy->regs.acrs[15])
 374			child->thread.acrs[15] = (unsigned int) (data >> 32);
 375		else
 376			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 377
 378	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 379		/*
 380		 * orig_gpr2 is stored on the kernel stack
 381		 */
 382		task_pt_regs(child)->orig_gpr2 = data;
 383
 384	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 385		/*
 386		 * prevent writes of padding hole between
 387		 * orig_gpr2 and fp_regs on s390.
 388		 */
 389		return 0;
 390
 391	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 392		/*
 393		 * floating point control reg. is in the thread structure
 394		 */
 395		if ((unsigned int) data != 0 ||
 396		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 397			return -EINVAL;
 398		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 399
 400	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 401		/*
 402		 * floating point regs. are either in child->thread.fpu
 403		 * or the child->thread.fpu.vxrs array
 404		 */
 405		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 406		if (MACHINE_HAS_VX)
 407			*(addr_t *)((addr_t)
 408				child->thread.fpu.vxrs + 2*offset) = data;
 409		else
 410			*(addr_t *)((addr_t)
 411				child->thread.fpu.fprs + offset) = data;
 412
 413	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 414		/*
 415		 * Handle access to the per_info structure.
 416		 */
 417		addr -= (addr_t) &dummy->regs.per_info;
 418		__poke_user_per(child, addr, data);
 419
 420	}
 421
 422	return 0;
 423}
 424
 425static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 426{
 427	addr_t mask;
 428
 429	/*
 430	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 431	 * an alignment of 4. Programmers from hell indeed...
 432	 */
 433	mask = __ADDR_MASK;
 434	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 435	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 436		mask = 3;
 437	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 438		return -EIO;
 439
 440	return __poke_user(child, addr, data);
 441}
 442
 443long arch_ptrace(struct task_struct *child, long request,
 444		 unsigned long addr, unsigned long data)
 445{
 446	ptrace_area parea; 
 447	int copied, ret;
 448
 449	switch (request) {
 450	case PTRACE_PEEKUSR:
 451		/* read the word at location addr in the USER area. */
 452		return peek_user(child, addr, data);
 453
 454	case PTRACE_POKEUSR:
 455		/* write the word at location addr in the USER area */
 456		return poke_user(child, addr, data);
 457
 458	case PTRACE_PEEKUSR_AREA:
 459	case PTRACE_POKEUSR_AREA:
 460		if (copy_from_user(&parea, (void __force __user *) addr,
 461							sizeof(parea)))
 462			return -EFAULT;
 463		addr = parea.kernel_addr;
 464		data = parea.process_addr;
 465		copied = 0;
 466		while (copied < parea.len) {
 467			if (request == PTRACE_PEEKUSR_AREA)
 468				ret = peek_user(child, addr, data);
 469			else {
 470				addr_t utmp;
 471				if (get_user(utmp,
 472					     (addr_t __force __user *) data))
 473					return -EFAULT;
 474				ret = poke_user(child, addr, utmp);
 475			}
 476			if (ret)
 477				return ret;
 478			addr += sizeof(unsigned long);
 479			data += sizeof(unsigned long);
 480			copied += sizeof(unsigned long);
 481		}
 482		return 0;
 483	case PTRACE_GET_LAST_BREAK:
 484		put_user(child->thread.last_break,
 485			 (unsigned long __user *) data);
 486		return 0;
 487	case PTRACE_ENABLE_TE:
 488		if (!MACHINE_HAS_TE)
 489			return -EIO;
 490		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 491		return 0;
 492	case PTRACE_DISABLE_TE:
 493		if (!MACHINE_HAS_TE)
 494			return -EIO;
 495		child->thread.per_flags |= PER_FLAG_NO_TE;
 496		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 497		return 0;
 498	case PTRACE_TE_ABORT_RAND:
 499		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 500			return -EIO;
 501		switch (data) {
 502		case 0UL:
 503			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 504			break;
 505		case 1UL:
 506			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 507			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 508			break;
 509		case 2UL:
 510			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 511			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 512			break;
 513		default:
 514			return -EINVAL;
 515		}
 516		return 0;
 517	default:
 518		return ptrace_request(child, request, addr, data);
 519	}
 520}
 521
 522#ifdef CONFIG_COMPAT
 523/*
 524 * Now the fun part starts... a 31 bit program running in the
 525 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 526 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 527 * to handle, the difference to the 64 bit versions of the requests
 528 * is that the access is done in multiples of 4 byte instead of
 529 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 530 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 531 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 532 * is a 31 bit program too, the content of struct user can be
 533 * emulated. A 31 bit program peeking into the struct user of
 534 * a 64 bit program is a no-no.
 535 */
 536
 537/*
 538 * Same as peek_user_per but for a 31 bit program.
 539 */
 540static inline __u32 __peek_user_per_compat(struct task_struct *child,
 541					   addr_t addr)
 542{
 543	struct compat_per_struct_kernel *dummy32 = NULL;
 544
 545	if (addr == (addr_t) &dummy32->cr9)
 546		/* Control bits of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			PER_EVENT_IFETCH : child->thread.per_user.control;
 549	else if (addr == (addr_t) &dummy32->cr10)
 550		/* Start address of the active per set. */
 551		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 552			0 : child->thread.per_user.start;
 553	else if (addr == (addr_t) &dummy32->cr11)
 554		/* End address of the active per set. */
 555		return test_thread_flag(TIF_SINGLE_STEP) ?
 556			PSW32_ADDR_INSN : child->thread.per_user.end;
 557	else if (addr == (addr_t) &dummy32->bits)
 558		/* Single-step bit. */
 559		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 560			0x80000000 : 0;
 561	else if (addr == (addr_t) &dummy32->starting_addr)
 562		/* Start address of the user specified per set. */
 563		return (__u32) child->thread.per_user.start;
 564	else if (addr == (addr_t) &dummy32->ending_addr)
 565		/* End address of the user specified per set. */
 566		return (__u32) child->thread.per_user.end;
 567	else if (addr == (addr_t) &dummy32->perc_atmid)
 568		/* PER code, ATMID and AI of the last PER trap */
 569		return (__u32) child->thread.per_event.cause << 16;
 570	else if (addr == (addr_t) &dummy32->address)
 571		/* Address of the last PER trap */
 572		return (__u32) child->thread.per_event.address;
 573	else if (addr == (addr_t) &dummy32->access_id)
 574		/* Access id of the last PER trap */
 575		return (__u32) child->thread.per_event.paid << 24;
 576	return 0;
 577}
 578
 579/*
 580 * Same as peek_user but for a 31 bit program.
 581 */
 582static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 583{
 584	struct compat_user *dummy32 = NULL;
 585	addr_t offset;
 586	__u32 tmp;
 587
 588	if (addr < (addr_t) &dummy32->regs.acrs) {
 589		struct pt_regs *regs = task_pt_regs(child);
 590		/*
 591		 * psw and gprs are stored on the stack
 592		 */
 593		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 594			/* Fake a 31 bit psw mask. */
 595			tmp = (__u32)(regs->psw.mask >> 32);
 596			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 597			tmp |= PSW32_USER_BITS;
 598		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 599			/* Fake a 31 bit psw address. */
 600			tmp = (__u32) regs->psw.addr |
 601				(__u32)(regs->psw.mask & PSW_MASK_BA);
 602		} else {
 603			/* gpr 0-15 */
 604			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 605		}
 606	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 607		/*
 608		 * access registers are stored in the thread structure
 609		 */
 610		offset = addr - (addr_t) &dummy32->regs.acrs;
 611		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 612
 613	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 614		/*
 615		 * orig_gpr2 is stored on the kernel stack
 616		 */
 617		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 618
 619	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 620		/*
 621		 * prevent reads of padding hole between
 622		 * orig_gpr2 and fp_regs on s390.
 623		 */
 624		tmp = 0;
 625
 626	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 627		/*
 628		 * floating point control reg. is in the thread structure
 629		 */
 630		tmp = child->thread.fpu.fpc;
 631
 632	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 633		/*
 634		 * floating point regs. are either in child->thread.fpu
 635		 * or the child->thread.fpu.vxrs array
 636		 */
 637		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 638		if (MACHINE_HAS_VX)
 639			tmp = *(__u32 *)
 640			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 641		else
 642			tmp = *(__u32 *)
 643			       ((addr_t) child->thread.fpu.fprs + offset);
 644
 645	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 646		/*
 647		 * Handle access to the per_info structure.
 648		 */
 649		addr -= (addr_t) &dummy32->regs.per_info;
 650		tmp = __peek_user_per_compat(child, addr);
 651
 652	} else
 653		tmp = 0;
 654
 655	return tmp;
 656}
 657
 658static int peek_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	__u32 tmp;
 662
 663	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 664		return -EIO;
 665
 666	tmp = __peek_user_compat(child, addr);
 667	return put_user(tmp, (__u32 __user *) data);
 668}
 669
 670/*
 671 * Same as poke_user_per but for a 31 bit program.
 672 */
 673static inline void __poke_user_per_compat(struct task_struct *child,
 674					  addr_t addr, __u32 data)
 675{
 676	struct compat_per_struct_kernel *dummy32 = NULL;
 677
 678	if (addr == (addr_t) &dummy32->cr9)
 679		/* PER event mask of the user specified per set. */
 680		child->thread.per_user.control =
 681			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 682	else if (addr == (addr_t) &dummy32->starting_addr)
 683		/* Starting address of the user specified per set. */
 684		child->thread.per_user.start = data;
 685	else if (addr == (addr_t) &dummy32->ending_addr)
 686		/* Ending address of the user specified per set. */
 687		child->thread.per_user.end = data;
 688}
 689
 690/*
 691 * Same as poke_user but for a 31 bit program.
 692 */
 693static int __poke_user_compat(struct task_struct *child,
 694			      addr_t addr, addr_t data)
 695{
 696	struct compat_user *dummy32 = NULL;
 697	__u32 tmp = (__u32) data;
 698	addr_t offset;
 699
 700	if (addr < (addr_t) &dummy32->regs.acrs) {
 701		struct pt_regs *regs = task_pt_regs(child);
 702		/*
 703		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 704		 */
 705		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 706			__u32 mask = PSW32_MASK_USER;
 707
 708			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 709			/* Build a 64 bit psw mask from 31 bit mask. */
 710			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 711				/* Invalid psw mask. */
 712				return -EINVAL;
 713			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 714				/* Invalid address-space-control bits */
 715				return -EINVAL;
 716			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 717				(regs->psw.mask & PSW_MASK_BA) |
 718				(__u64)(tmp & mask) << 32;
 719		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 720			/* Build a 64 bit psw address from 31 bit address. */
 721			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 722			/* Transfer 31 bit amode bit to psw mask. */
 723			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 724				(__u64)(tmp & PSW32_ADDR_AMODE);
 725		} else {
 726			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 727				addr == offsetof(struct compat_user, regs.gprs[2])) {
 728				struct pt_regs *regs = task_pt_regs(child);
 729
 730				regs->int_code = 0x20000 | (data & 0xffff);
 731			}
 732			/* gpr 0-15 */
 733			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 734		}
 735	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 736		/*
 737		 * access registers are stored in the thread structure
 738		 */
 739		offset = addr - (addr_t) &dummy32->regs.acrs;
 740		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 741
 742	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 743		/*
 744		 * orig_gpr2 is stored on the kernel stack
 745		 */
 746		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 747
 748	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 749		/*
 750		 * prevent writess of padding hole between
 751		 * orig_gpr2 and fp_regs on s390.
 752		 */
 753		return 0;
 754
 755	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 756		/*
 757		 * floating point control reg. is in the thread structure
 758		 */
 759		if (test_fp_ctl(tmp))
 760			return -EINVAL;
 761		child->thread.fpu.fpc = data;
 762
 763	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 764		/*
 765		 * floating point regs. are either in child->thread.fpu
 766		 * or the child->thread.fpu.vxrs array
 767		 */
 768		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 769		if (MACHINE_HAS_VX)
 770			*(__u32 *)((addr_t)
 771				child->thread.fpu.vxrs + 2*offset) = tmp;
 772		else
 773			*(__u32 *)((addr_t)
 774				child->thread.fpu.fprs + offset) = tmp;
 775
 776	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 777		/*
 778		 * Handle access to the per_info structure.
 779		 */
 780		addr -= (addr_t) &dummy32->regs.per_info;
 781		__poke_user_per_compat(child, addr, data);
 782	}
 783
 784	return 0;
 785}
 786
 787static int poke_user_compat(struct task_struct *child,
 788			    addr_t addr, addr_t data)
 789{
 790	if (!is_compat_task() || (addr & 3) ||
 791	    addr > sizeof(struct compat_user) - 3)
 792		return -EIO;
 793
 794	return __poke_user_compat(child, addr, data);
 795}
 796
 797long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 798			compat_ulong_t caddr, compat_ulong_t cdata)
 799{
 800	unsigned long addr = caddr;
 801	unsigned long data = cdata;
 802	compat_ptrace_area parea;
 803	int copied, ret;
 804
 805	switch (request) {
 806	case PTRACE_PEEKUSR:
 807		/* read the word at location addr in the USER area. */
 808		return peek_user_compat(child, addr, data);
 809
 810	case PTRACE_POKEUSR:
 811		/* write the word at location addr in the USER area */
 812		return poke_user_compat(child, addr, data);
 813
 814	case PTRACE_PEEKUSR_AREA:
 815	case PTRACE_POKEUSR_AREA:
 816		if (copy_from_user(&parea, (void __force __user *) addr,
 817							sizeof(parea)))
 818			return -EFAULT;
 819		addr = parea.kernel_addr;
 820		data = parea.process_addr;
 821		copied = 0;
 822		while (copied < parea.len) {
 823			if (request == PTRACE_PEEKUSR_AREA)
 824				ret = peek_user_compat(child, addr, data);
 825			else {
 826				__u32 utmp;
 827				if (get_user(utmp,
 828					     (__u32 __force __user *) data))
 829					return -EFAULT;
 830				ret = poke_user_compat(child, addr, utmp);
 831			}
 832			if (ret)
 833				return ret;
 834			addr += sizeof(unsigned int);
 835			data += sizeof(unsigned int);
 836			copied += sizeof(unsigned int);
 837		}
 838		return 0;
 839	case PTRACE_GET_LAST_BREAK:
 840		put_user(child->thread.last_break,
 841			 (unsigned int __user *) data);
 842		return 0;
 843	}
 844	return compat_ptrace_request(child, request, addr, data);
 845}
 846#endif
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * user_regset definitions.
 850 */
 851
 852static int s390_regs_get(struct task_struct *target,
 853			 const struct user_regset *regset,
 854			 struct membuf to)
 
 855{
 856	unsigned pos;
 857	if (target == current)
 858		save_access_regs(target->thread.acrs);
 859
 860	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 861		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	return 0;
 863}
 864
 865static int s390_regs_set(struct task_struct *target,
 866			 const struct user_regset *regset,
 867			 unsigned int pos, unsigned int count,
 868			 const void *kbuf, const void __user *ubuf)
 869{
 870	int rc = 0;
 871
 872	if (target == current)
 873		save_access_regs(target->thread.acrs);
 874
 875	if (kbuf) {
 876		const unsigned long *k = kbuf;
 877		while (count > 0 && !rc) {
 878			rc = __poke_user(target, pos, *k++);
 879			count -= sizeof(*k);
 880			pos += sizeof(*k);
 881		}
 882	} else {
 883		const unsigned long  __user *u = ubuf;
 884		while (count > 0 && !rc) {
 885			unsigned long word;
 886			rc = __get_user(word, u++);
 887			if (rc)
 888				break;
 889			rc = __poke_user(target, pos, word);
 890			count -= sizeof(*u);
 891			pos += sizeof(*u);
 892		}
 893	}
 894
 895	if (rc == 0 && target == current)
 896		restore_access_regs(target->thread.acrs);
 897
 898	return rc;
 899}
 900
 901static int s390_fpregs_get(struct task_struct *target,
 902			   const struct user_regset *regset,
 903			   struct membuf to)
 904{
 905	_s390_fp_regs fp_regs;
 906
 907	if (target == current)
 908		save_fpu_regs();
 909
 910	fp_regs.fpc = target->thread.fpu.fpc;
 911	fpregs_store(&fp_regs, &target->thread.fpu);
 912
 913	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 914}
 915
 916static int s390_fpregs_set(struct task_struct *target,
 917			   const struct user_regset *regset, unsigned int pos,
 918			   unsigned int count, const void *kbuf,
 919			   const void __user *ubuf)
 920{
 921	int rc = 0;
 922	freg_t fprs[__NUM_FPRS];
 923
 924	if (target == current)
 925		save_fpu_regs();
 926
 927	if (MACHINE_HAS_VX)
 928		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 929	else
 930		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 931
 932	/* If setting FPC, must validate it first. */
 933	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 934		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 935		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 936					0, offsetof(s390_fp_regs, fprs));
 937		if (rc)
 938			return rc;
 939		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 940			return -EINVAL;
 941		target->thread.fpu.fpc = ufpc[0];
 942	}
 943
 944	if (rc == 0 && count > 0)
 945		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 946					fprs, offsetof(s390_fp_regs, fprs), -1);
 947	if (rc)
 948		return rc;
 949
 950	if (MACHINE_HAS_VX)
 951		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 952	else
 953		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 954
 955	return rc;
 956}
 957
 958static int s390_last_break_get(struct task_struct *target,
 959			       const struct user_regset *regset,
 960			       struct membuf to)
 
 961{
 962	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 963}
 964
 965static int s390_last_break_set(struct task_struct *target,
 966			       const struct user_regset *regset,
 967			       unsigned int pos, unsigned int count,
 968			       const void *kbuf, const void __user *ubuf)
 969{
 970	return 0;
 971}
 972
 973static int s390_tdb_get(struct task_struct *target,
 974			const struct user_regset *regset,
 975			struct membuf to)
 
 976{
 977	struct pt_regs *regs = task_pt_regs(target);
 978	size_t size;
 979
 980	if (!(regs->int_code & 0x200))
 981		return -ENODATA;
 982	size = sizeof(target->thread.trap_tdb.data);
 983	return membuf_write(&to, target->thread.trap_tdb.data, size);
 984}
 985
 986static int s390_tdb_set(struct task_struct *target,
 987			const struct user_regset *regset,
 988			unsigned int pos, unsigned int count,
 989			const void *kbuf, const void __user *ubuf)
 990{
 991	return 0;
 992}
 993
 994static int s390_vxrs_low_get(struct task_struct *target,
 995			     const struct user_regset *regset,
 996			     struct membuf to)
 
 997{
 998	__u64 vxrs[__NUM_VXRS_LOW];
 999	int i;
1000
1001	if (!MACHINE_HAS_VX)
1002		return -ENODEV;
1003	if (target == current)
1004		save_fpu_regs();
1005	for (i = 0; i < __NUM_VXRS_LOW; i++)
1006		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1007	return membuf_write(&to, vxrs, sizeof(vxrs));
1008}
1009
1010static int s390_vxrs_low_set(struct task_struct *target,
1011			     const struct user_regset *regset,
1012			     unsigned int pos, unsigned int count,
1013			     const void *kbuf, const void __user *ubuf)
1014{
1015	__u64 vxrs[__NUM_VXRS_LOW];
1016	int i, rc;
1017
1018	if (!MACHINE_HAS_VX)
1019		return -ENODEV;
1020	if (target == current)
1021		save_fpu_regs();
1022
1023	for (i = 0; i < __NUM_VXRS_LOW; i++)
1024		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1025
1026	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1027	if (rc == 0)
1028		for (i = 0; i < __NUM_VXRS_LOW; i++)
1029			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1030
1031	return rc;
1032}
1033
1034static int s390_vxrs_high_get(struct task_struct *target,
1035			      const struct user_regset *regset,
1036			      struct membuf to)
 
1037{
 
 
1038	if (!MACHINE_HAS_VX)
1039		return -ENODEV;
1040	if (target == current)
1041		save_fpu_regs();
1042	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1043			    __NUM_VXRS_HIGH * sizeof(__vector128));
 
1044}
1045
1046static int s390_vxrs_high_set(struct task_struct *target,
1047			      const struct user_regset *regset,
1048			      unsigned int pos, unsigned int count,
1049			      const void *kbuf, const void __user *ubuf)
1050{
1051	int rc;
1052
1053	if (!MACHINE_HAS_VX)
1054		return -ENODEV;
1055	if (target == current)
1056		save_fpu_regs();
1057
1058	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1059				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1060	return rc;
1061}
1062
1063static int s390_system_call_get(struct task_struct *target,
1064				const struct user_regset *regset,
1065				struct membuf to)
 
1066{
1067	return membuf_store(&to, target->thread.system_call);
 
 
1068}
1069
1070static int s390_system_call_set(struct task_struct *target,
1071				const struct user_regset *regset,
1072				unsigned int pos, unsigned int count,
1073				const void *kbuf, const void __user *ubuf)
1074{
1075	unsigned int *data = &target->thread.system_call;
1076	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1077				  data, 0, sizeof(unsigned int));
1078}
1079
1080static int s390_gs_cb_get(struct task_struct *target,
1081			  const struct user_regset *regset,
1082			  struct membuf to)
 
1083{
1084	struct gs_cb *data = target->thread.gs_cb;
1085
1086	if (!MACHINE_HAS_GS)
1087		return -ENODEV;
1088	if (!data)
1089		return -ENODATA;
1090	if (target == current)
1091		save_gs_cb(data);
1092	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1093}
1094
1095static int s390_gs_cb_set(struct task_struct *target,
1096			  const struct user_regset *regset,
1097			  unsigned int pos, unsigned int count,
1098			  const void *kbuf, const void __user *ubuf)
1099{
1100	struct gs_cb gs_cb = { }, *data = NULL;
1101	int rc;
1102
1103	if (!MACHINE_HAS_GS)
1104		return -ENODEV;
1105	if (!target->thread.gs_cb) {
1106		data = kzalloc(sizeof(*data), GFP_KERNEL);
1107		if (!data)
1108			return -ENOMEM;
1109	}
1110	if (!target->thread.gs_cb)
1111		gs_cb.gsd = 25;
1112	else if (target == current)
1113		save_gs_cb(&gs_cb);
1114	else
1115		gs_cb = *target->thread.gs_cb;
1116	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1117				&gs_cb, 0, sizeof(gs_cb));
1118	if (rc) {
1119		kfree(data);
1120		return -EFAULT;
1121	}
1122	preempt_disable();
1123	if (!target->thread.gs_cb)
1124		target->thread.gs_cb = data;
1125	*target->thread.gs_cb = gs_cb;
1126	if (target == current) {
1127		__ctl_set_bit(2, 4);
1128		restore_gs_cb(target->thread.gs_cb);
1129	}
1130	preempt_enable();
1131	return rc;
1132}
1133
1134static int s390_gs_bc_get(struct task_struct *target,
1135			  const struct user_regset *regset,
1136			  struct membuf to)
 
1137{
1138	struct gs_cb *data = target->thread.gs_bc_cb;
1139
1140	if (!MACHINE_HAS_GS)
1141		return -ENODEV;
1142	if (!data)
1143		return -ENODATA;
1144	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1145}
1146
1147static int s390_gs_bc_set(struct task_struct *target,
1148			  const struct user_regset *regset,
1149			  unsigned int pos, unsigned int count,
1150			  const void *kbuf, const void __user *ubuf)
1151{
1152	struct gs_cb *data = target->thread.gs_bc_cb;
1153
1154	if (!MACHINE_HAS_GS)
1155		return -ENODEV;
1156	if (!data) {
1157		data = kzalloc(sizeof(*data), GFP_KERNEL);
1158		if (!data)
1159			return -ENOMEM;
1160		target->thread.gs_bc_cb = data;
1161	}
1162	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1163				  data, 0, sizeof(struct gs_cb));
1164}
1165
1166static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1167{
1168	return (cb->rca & 0x1f) == 0 &&
1169		(cb->roa & 0xfff) == 0 &&
1170		(cb->rla & 0xfff) == 0xfff &&
1171		cb->s == 1 &&
1172		cb->k == 1 &&
1173		cb->h == 0 &&
1174		cb->reserved1 == 0 &&
1175		cb->ps == 1 &&
1176		cb->qs == 0 &&
1177		cb->pc == 1 &&
1178		cb->qc == 0 &&
1179		cb->reserved2 == 0 &&
 
1180		cb->reserved3 == 0 &&
1181		cb->reserved4 == 0 &&
1182		cb->reserved5 == 0 &&
1183		cb->reserved6 == 0 &&
1184		cb->reserved7 == 0 &&
1185		cb->reserved8 == 0 &&
1186		cb->rla >= cb->roa &&
1187		cb->rca >= cb->roa &&
1188		cb->rca <= cb->rla+1 &&
1189		cb->m < 3;
1190}
1191
1192static int s390_runtime_instr_get(struct task_struct *target,
1193				const struct user_regset *regset,
1194				struct membuf to)
 
1195{
1196	struct runtime_instr_cb *data = target->thread.ri_cb;
1197
1198	if (!test_facility(64))
1199		return -ENODEV;
1200	if (!data)
1201		return -ENODATA;
1202
1203	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
 
1204}
1205
1206static int s390_runtime_instr_set(struct task_struct *target,
1207				  const struct user_regset *regset,
1208				  unsigned int pos, unsigned int count,
1209				  const void *kbuf, const void __user *ubuf)
1210{
1211	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1212	int rc;
1213
1214	if (!test_facility(64))
1215		return -ENODEV;
1216
1217	if (!target->thread.ri_cb) {
1218		data = kzalloc(sizeof(*data), GFP_KERNEL);
1219		if (!data)
1220			return -ENOMEM;
1221	}
1222
1223	if (target->thread.ri_cb) {
1224		if (target == current)
1225			store_runtime_instr_cb(&ri_cb);
1226		else
1227			ri_cb = *target->thread.ri_cb;
1228	}
1229
1230	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1231				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1232	if (rc) {
1233		kfree(data);
1234		return -EFAULT;
1235	}
1236
1237	if (!is_ri_cb_valid(&ri_cb)) {
1238		kfree(data);
1239		return -EINVAL;
1240	}
1241	/*
1242	 * Override access key in any case, since user space should
1243	 * not be able to set it, nor should it care about it.
1244	 */
1245	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1246	preempt_disable();
1247	if (!target->thread.ri_cb)
1248		target->thread.ri_cb = data;
1249	*target->thread.ri_cb = ri_cb;
1250	if (target == current)
1251		load_runtime_instr_cb(target->thread.ri_cb);
1252	preempt_enable();
1253
1254	return 0;
1255}
1256
1257static const struct user_regset s390_regsets[] = {
1258	{
1259		.core_note_type = NT_PRSTATUS,
1260		.n = sizeof(s390_regs) / sizeof(long),
1261		.size = sizeof(long),
1262		.align = sizeof(long),
1263		.regset_get = s390_regs_get,
1264		.set = s390_regs_set,
1265	},
1266	{
1267		.core_note_type = NT_PRFPREG,
1268		.n = sizeof(s390_fp_regs) / sizeof(long),
1269		.size = sizeof(long),
1270		.align = sizeof(long),
1271		.regset_get = s390_fpregs_get,
1272		.set = s390_fpregs_set,
1273	},
1274	{
1275		.core_note_type = NT_S390_SYSTEM_CALL,
1276		.n = 1,
1277		.size = sizeof(unsigned int),
1278		.align = sizeof(unsigned int),
1279		.regset_get = s390_system_call_get,
1280		.set = s390_system_call_set,
1281	},
1282	{
1283		.core_note_type = NT_S390_LAST_BREAK,
1284		.n = 1,
1285		.size = sizeof(long),
1286		.align = sizeof(long),
1287		.regset_get = s390_last_break_get,
1288		.set = s390_last_break_set,
1289	},
1290	{
1291		.core_note_type = NT_S390_TDB,
1292		.n = 1,
1293		.size = 256,
1294		.align = 1,
1295		.regset_get = s390_tdb_get,
1296		.set = s390_tdb_set,
1297	},
1298	{
1299		.core_note_type = NT_S390_VXRS_LOW,
1300		.n = __NUM_VXRS_LOW,
1301		.size = sizeof(__u64),
1302		.align = sizeof(__u64),
1303		.regset_get = s390_vxrs_low_get,
1304		.set = s390_vxrs_low_set,
1305	},
1306	{
1307		.core_note_type = NT_S390_VXRS_HIGH,
1308		.n = __NUM_VXRS_HIGH,
1309		.size = sizeof(__vector128),
1310		.align = sizeof(__vector128),
1311		.regset_get = s390_vxrs_high_get,
1312		.set = s390_vxrs_high_set,
1313	},
1314	{
1315		.core_note_type = NT_S390_GS_CB,
1316		.n = sizeof(struct gs_cb) / sizeof(__u64),
1317		.size = sizeof(__u64),
1318		.align = sizeof(__u64),
1319		.regset_get = s390_gs_cb_get,
1320		.set = s390_gs_cb_set,
1321	},
1322	{
1323		.core_note_type = NT_S390_GS_BC,
1324		.n = sizeof(struct gs_cb) / sizeof(__u64),
1325		.size = sizeof(__u64),
1326		.align = sizeof(__u64),
1327		.regset_get = s390_gs_bc_get,
1328		.set = s390_gs_bc_set,
1329	},
1330	{
1331		.core_note_type = NT_S390_RI_CB,
1332		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1333		.size = sizeof(__u64),
1334		.align = sizeof(__u64),
1335		.regset_get = s390_runtime_instr_get,
1336		.set = s390_runtime_instr_set,
1337	},
1338};
1339
1340static const struct user_regset_view user_s390_view = {
1341	.name = "s390x",
1342	.e_machine = EM_S390,
1343	.regsets = s390_regsets,
1344	.n = ARRAY_SIZE(s390_regsets)
1345};
1346
1347#ifdef CONFIG_COMPAT
1348static int s390_compat_regs_get(struct task_struct *target,
1349				const struct user_regset *regset,
1350				struct membuf to)
 
1351{
1352	unsigned n;
1353
1354	if (target == current)
1355		save_access_regs(target->thread.acrs);
1356
1357	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1358		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359	return 0;
1360}
1361
1362static int s390_compat_regs_set(struct task_struct *target,
1363				const struct user_regset *regset,
1364				unsigned int pos, unsigned int count,
1365				const void *kbuf, const void __user *ubuf)
1366{
1367	int rc = 0;
1368
1369	if (target == current)
1370		save_access_regs(target->thread.acrs);
1371
1372	if (kbuf) {
1373		const compat_ulong_t *k = kbuf;
1374		while (count > 0 && !rc) {
1375			rc = __poke_user_compat(target, pos, *k++);
1376			count -= sizeof(*k);
1377			pos += sizeof(*k);
1378		}
1379	} else {
1380		const compat_ulong_t  __user *u = ubuf;
1381		while (count > 0 && !rc) {
1382			compat_ulong_t word;
1383			rc = __get_user(word, u++);
1384			if (rc)
1385				break;
1386			rc = __poke_user_compat(target, pos, word);
1387			count -= sizeof(*u);
1388			pos += sizeof(*u);
1389		}
1390	}
1391
1392	if (rc == 0 && target == current)
1393		restore_access_regs(target->thread.acrs);
1394
1395	return rc;
1396}
1397
1398static int s390_compat_regs_high_get(struct task_struct *target,
1399				     const struct user_regset *regset,
1400				     struct membuf to)
 
1401{
1402	compat_ulong_t *gprs_high;
1403	int i;
1404
1405	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1406	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1407		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408	return 0;
1409}
1410
1411static int s390_compat_regs_high_set(struct task_struct *target,
1412				     const struct user_regset *regset,
1413				     unsigned int pos, unsigned int count,
1414				     const void *kbuf, const void __user *ubuf)
1415{
1416	compat_ulong_t *gprs_high;
1417	int rc = 0;
1418
1419	gprs_high = (compat_ulong_t *)
1420		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1421	if (kbuf) {
1422		const compat_ulong_t *k = kbuf;
1423		while (count > 0) {
1424			*gprs_high = *k++;
1425			*gprs_high += 2;
1426			count -= sizeof(*k);
1427		}
1428	} else {
1429		const compat_ulong_t  __user *u = ubuf;
1430		while (count > 0 && !rc) {
1431			unsigned long word;
1432			rc = __get_user(word, u++);
1433			if (rc)
1434				break;
1435			*gprs_high = word;
1436			*gprs_high += 2;
1437			count -= sizeof(*u);
1438		}
1439	}
1440
1441	return rc;
1442}
1443
1444static int s390_compat_last_break_get(struct task_struct *target,
1445				      const struct user_regset *regset,
1446				      struct membuf to)
 
1447{
1448	compat_ulong_t last_break = target->thread.last_break;
1449
1450	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static int s390_compat_last_break_set(struct task_struct *target,
1454				      const struct user_regset *regset,
1455				      unsigned int pos, unsigned int count,
1456				      const void *kbuf, const void __user *ubuf)
1457{
1458	return 0;
1459}
1460
1461static const struct user_regset s390_compat_regsets[] = {
1462	{
1463		.core_note_type = NT_PRSTATUS,
1464		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1465		.size = sizeof(compat_long_t),
1466		.align = sizeof(compat_long_t),
1467		.regset_get = s390_compat_regs_get,
1468		.set = s390_compat_regs_set,
1469	},
1470	{
1471		.core_note_type = NT_PRFPREG,
1472		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1473		.size = sizeof(compat_long_t),
1474		.align = sizeof(compat_long_t),
1475		.regset_get = s390_fpregs_get,
1476		.set = s390_fpregs_set,
1477	},
1478	{
1479		.core_note_type = NT_S390_SYSTEM_CALL,
1480		.n = 1,
1481		.size = sizeof(compat_uint_t),
1482		.align = sizeof(compat_uint_t),
1483		.regset_get = s390_system_call_get,
1484		.set = s390_system_call_set,
1485	},
1486	{
1487		.core_note_type = NT_S390_LAST_BREAK,
1488		.n = 1,
1489		.size = sizeof(long),
1490		.align = sizeof(long),
1491		.regset_get = s390_compat_last_break_get,
1492		.set = s390_compat_last_break_set,
1493	},
1494	{
1495		.core_note_type = NT_S390_TDB,
1496		.n = 1,
1497		.size = 256,
1498		.align = 1,
1499		.regset_get = s390_tdb_get,
1500		.set = s390_tdb_set,
1501	},
1502	{
1503		.core_note_type = NT_S390_VXRS_LOW,
1504		.n = __NUM_VXRS_LOW,
1505		.size = sizeof(__u64),
1506		.align = sizeof(__u64),
1507		.regset_get = s390_vxrs_low_get,
1508		.set = s390_vxrs_low_set,
1509	},
1510	{
1511		.core_note_type = NT_S390_VXRS_HIGH,
1512		.n = __NUM_VXRS_HIGH,
1513		.size = sizeof(__vector128),
1514		.align = sizeof(__vector128),
1515		.regset_get = s390_vxrs_high_get,
1516		.set = s390_vxrs_high_set,
1517	},
1518	{
1519		.core_note_type = NT_S390_HIGH_GPRS,
1520		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1521		.size = sizeof(compat_long_t),
1522		.align = sizeof(compat_long_t),
1523		.regset_get = s390_compat_regs_high_get,
1524		.set = s390_compat_regs_high_set,
1525	},
1526	{
1527		.core_note_type = NT_S390_GS_CB,
1528		.n = sizeof(struct gs_cb) / sizeof(__u64),
1529		.size = sizeof(__u64),
1530		.align = sizeof(__u64),
1531		.regset_get = s390_gs_cb_get,
1532		.set = s390_gs_cb_set,
1533	},
1534	{
1535		.core_note_type = NT_S390_GS_BC,
1536		.n = sizeof(struct gs_cb) / sizeof(__u64),
1537		.size = sizeof(__u64),
1538		.align = sizeof(__u64),
1539		.regset_get = s390_gs_bc_get,
1540		.set = s390_gs_bc_set,
1541	},
1542	{
1543		.core_note_type = NT_S390_RI_CB,
1544		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1545		.size = sizeof(__u64),
1546		.align = sizeof(__u64),
1547		.regset_get = s390_runtime_instr_get,
1548		.set = s390_runtime_instr_set,
1549	},
1550};
1551
1552static const struct user_regset_view user_s390_compat_view = {
1553	.name = "s390",
1554	.e_machine = EM_S390,
1555	.regsets = s390_compat_regsets,
1556	.n = ARRAY_SIZE(s390_compat_regsets)
1557};
1558#endif
1559
1560const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1561{
1562#ifdef CONFIG_COMPAT
1563	if (test_tsk_thread_flag(task, TIF_31BIT))
1564		return &user_s390_compat_view;
1565#endif
1566	return &user_s390_view;
1567}
1568
1569static const char *gpr_names[NUM_GPRS] = {
1570	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1571	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1572};
1573
1574unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1575{
1576	if (offset >= NUM_GPRS)
1577		return 0;
1578	return regs->gprs[offset];
1579}
1580
1581int regs_query_register_offset(const char *name)
1582{
1583	unsigned long offset;
1584
1585	if (!name || *name != 'r')
1586		return -EINVAL;
1587	if (kstrtoul(name + 1, 10, &offset))
1588		return -EINVAL;
1589	if (offset >= NUM_GPRS)
1590		return -EINVAL;
1591	return offset;
1592}
1593
1594const char *regs_query_register_name(unsigned int offset)
1595{
1596	if (offset >= NUM_GPRS)
1597		return NULL;
1598	return gpr_names[offset];
1599}
1600
1601static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1602{
1603	unsigned long ksp = kernel_stack_pointer(regs);
1604
1605	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1606}
1607
1608/**
1609 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1610 * @regs:pt_regs which contains kernel stack pointer.
1611 * @n:stack entry number.
1612 *
1613 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1614 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1615 * this returns 0.
1616 */
1617unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1618{
1619	unsigned long addr;
1620
1621	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1622	if (!regs_within_kernel_stack(regs, addr))
1623		return 0;
1624	return *(unsigned long *)addr;
1625}