Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2012 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#include <linux/arm-smccc.h>
  8#include <linux/preempt.h>
  9#include <linux/kvm_host.h>
 10#include <linux/uaccess.h>
 11#include <linux/wait.h>
 12
 13#include <asm/cputype.h>
 14#include <asm/kvm_emulate.h>
 15
 16#include <kvm/arm_psci.h>
 17#include <kvm/arm_hypercalls.h>
 18
 19/*
 20 * This is an implementation of the Power State Coordination Interface
 21 * as described in ARM document number ARM DEN 0022A.
 22 */
 23
 24#define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
 25
 26static unsigned long psci_affinity_mask(unsigned long affinity_level)
 27{
 28	if (affinity_level <= 3)
 29		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
 30
 31	return 0;
 32}
 33
 34static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
 35{
 36	/*
 37	 * NOTE: For simplicity, we make VCPU suspend emulation to be
 38	 * same-as WFI (Wait-for-interrupt) emulation.
 39	 *
 40	 * This means for KVM the wakeup events are interrupts and
 41	 * this is consistent with intended use of StateID as described
 42	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
 43	 *
 44	 * Further, we also treat power-down request to be same as
 45	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
 46	 * specification (ARM DEN 0022A). This means all suspend states
 47	 * for KVM will preserve the register state.
 48	 */
 49	kvm_vcpu_block(vcpu);
 50	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 51
 52	return PSCI_RET_SUCCESS;
 53}
 54
 55static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
 56{
 57	vcpu->arch.power_off = true;
 58	kvm_make_request(KVM_REQ_SLEEP, vcpu);
 59	kvm_vcpu_kick(vcpu);
 60}
 61
 62static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
 63{
 64	struct vcpu_reset_state *reset_state;
 65	struct kvm *kvm = source_vcpu->kvm;
 66	struct kvm_vcpu *vcpu = NULL;
 67	unsigned long cpu_id;
 68
 69	cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK;
 70	if (vcpu_mode_is_32bit(source_vcpu))
 71		cpu_id &= ~((u32) 0);
 72
 73	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
 74
 75	/*
 76	 * Make sure the caller requested a valid CPU and that the CPU is
 77	 * turned off.
 78	 */
 79	if (!vcpu)
 80		return PSCI_RET_INVALID_PARAMS;
 81	if (!vcpu->arch.power_off) {
 82		if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1)
 83			return PSCI_RET_ALREADY_ON;
 84		else
 85			return PSCI_RET_INVALID_PARAMS;
 86	}
 87
 88	reset_state = &vcpu->arch.reset_state;
 89
 90	reset_state->pc = smccc_get_arg2(source_vcpu);
 91
 92	/* Propagate caller endianness */
 93	reset_state->be = kvm_vcpu_is_be(source_vcpu);
 94
 95	/*
 96	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
 97	 * the general purpose registers are undefined upon CPU_ON.
 98	 */
 99	reset_state->r0 = smccc_get_arg3(source_vcpu);
100
101	WRITE_ONCE(reset_state->reset, true);
102	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
103
104	/*
105	 * Make sure the reset request is observed if the change to
106	 * power_state is observed.
107	 */
108	smp_wmb();
109
110	vcpu->arch.power_off = false;
111	kvm_vcpu_wake_up(vcpu);
112
113	return PSCI_RET_SUCCESS;
114}
115
116static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
117{
118	int i, matching_cpus = 0;
119	unsigned long mpidr;
120	unsigned long target_affinity;
121	unsigned long target_affinity_mask;
122	unsigned long lowest_affinity_level;
123	struct kvm *kvm = vcpu->kvm;
124	struct kvm_vcpu *tmp;
125
126	target_affinity = smccc_get_arg1(vcpu);
127	lowest_affinity_level = smccc_get_arg2(vcpu);
128
129	/* Determine target affinity mask */
130	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
131	if (!target_affinity_mask)
132		return PSCI_RET_INVALID_PARAMS;
133
134	/* Ignore other bits of target affinity */
135	target_affinity &= target_affinity_mask;
136
137	/*
138	 * If one or more VCPU matching target affinity are running
139	 * then ON else OFF
140	 */
141	kvm_for_each_vcpu(i, tmp, kvm) {
142		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
143		if ((mpidr & target_affinity_mask) == target_affinity) {
144			matching_cpus++;
145			if (!tmp->arch.power_off)
146				return PSCI_0_2_AFFINITY_LEVEL_ON;
147		}
148	}
149
150	if (!matching_cpus)
151		return PSCI_RET_INVALID_PARAMS;
152
153	return PSCI_0_2_AFFINITY_LEVEL_OFF;
154}
155
156static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
157{
158	int i;
159	struct kvm_vcpu *tmp;
160
161	/*
162	 * The KVM ABI specifies that a system event exit may call KVM_RUN
163	 * again and may perform shutdown/reboot at a later time that when the
164	 * actual request is made.  Since we are implementing PSCI and a
165	 * caller of PSCI reboot and shutdown expects that the system shuts
166	 * down or reboots immediately, let's make sure that VCPUs are not run
167	 * after this call is handled and before the VCPUs have been
168	 * re-initialized.
169	 */
170	kvm_for_each_vcpu(i, tmp, vcpu->kvm)
171		tmp->arch.power_off = true;
172	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
173
174	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
175	vcpu->run->system_event.type = type;
176	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
177}
178
179static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
180{
181	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
182}
183
184static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
185{
186	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
187}
188
189static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
190{
191	int i;
192
193	/*
194	 * Zero the input registers' upper 32 bits. They will be fully
195	 * zeroed on exit, so we're fine changing them in place.
196	 */
197	for (i = 1; i < 4; i++)
198		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
199}
200
201static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
202{
203	switch(fn) {
204	case PSCI_0_2_FN64_CPU_SUSPEND:
205	case PSCI_0_2_FN64_CPU_ON:
206	case PSCI_0_2_FN64_AFFINITY_INFO:
207		/* Disallow these functions for 32bit guests */
208		if (vcpu_mode_is_32bit(vcpu))
209			return PSCI_RET_NOT_SUPPORTED;
210		break;
211	}
212
213	return 0;
214}
215
216static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
217{
218	struct kvm *kvm = vcpu->kvm;
219	u32 psci_fn = smccc_get_function(vcpu);
220	unsigned long val;
221	int ret = 1;
222
223	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
224	if (val)
225		goto out;
226
227	switch (psci_fn) {
228	case PSCI_0_2_FN_PSCI_VERSION:
229		/*
230		 * Bits[31:16] = Major Version = 0
231		 * Bits[15:0] = Minor Version = 2
232		 */
233		val = KVM_ARM_PSCI_0_2;
234		break;
235	case PSCI_0_2_FN_CPU_SUSPEND:
236	case PSCI_0_2_FN64_CPU_SUSPEND:
237		val = kvm_psci_vcpu_suspend(vcpu);
238		break;
239	case PSCI_0_2_FN_CPU_OFF:
240		kvm_psci_vcpu_off(vcpu);
241		val = PSCI_RET_SUCCESS;
242		break;
243	case PSCI_0_2_FN_CPU_ON:
244		kvm_psci_narrow_to_32bit(vcpu);
245		fallthrough;
246	case PSCI_0_2_FN64_CPU_ON:
247		mutex_lock(&kvm->lock);
248		val = kvm_psci_vcpu_on(vcpu);
249		mutex_unlock(&kvm->lock);
250		break;
251	case PSCI_0_2_FN_AFFINITY_INFO:
252		kvm_psci_narrow_to_32bit(vcpu);
253		fallthrough;
254	case PSCI_0_2_FN64_AFFINITY_INFO:
255		val = kvm_psci_vcpu_affinity_info(vcpu);
256		break;
257	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
258		/*
259		 * Trusted OS is MP hence does not require migration
260	         * or
261		 * Trusted OS is not present
262		 */
263		val = PSCI_0_2_TOS_MP;
264		break;
265	case PSCI_0_2_FN_SYSTEM_OFF:
266		kvm_psci_system_off(vcpu);
267		/*
268		 * We shouldn't be going back to guest VCPU after
269		 * receiving SYSTEM_OFF request.
270		 *
271		 * If user space accidentally/deliberately resumes
272		 * guest VCPU after SYSTEM_OFF request then guest
273		 * VCPU should see internal failure from PSCI return
274		 * value. To achieve this, we preload r0 (or x0) with
275		 * PSCI return value INTERNAL_FAILURE.
276		 */
277		val = PSCI_RET_INTERNAL_FAILURE;
278		ret = 0;
279		break;
280	case PSCI_0_2_FN_SYSTEM_RESET:
281		kvm_psci_system_reset(vcpu);
282		/*
283		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
284		 * with PSCI return value INTERNAL_FAILURE.
285		 */
286		val = PSCI_RET_INTERNAL_FAILURE;
287		ret = 0;
288		break;
289	default:
290		val = PSCI_RET_NOT_SUPPORTED;
291		break;
292	}
293
294out:
295	smccc_set_retval(vcpu, val, 0, 0, 0);
296	return ret;
297}
298
299static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu)
300{
301	u32 psci_fn = smccc_get_function(vcpu);
302	u32 feature;
303	unsigned long val;
304	int ret = 1;
305
306	switch(psci_fn) {
307	case PSCI_0_2_FN_PSCI_VERSION:
308		val = KVM_ARM_PSCI_1_0;
309		break;
310	case PSCI_1_0_FN_PSCI_FEATURES:
311		feature = smccc_get_arg1(vcpu);
312		val = kvm_psci_check_allowed_function(vcpu, feature);
313		if (val)
314			break;
315
316		switch(feature) {
317		case PSCI_0_2_FN_PSCI_VERSION:
318		case PSCI_0_2_FN_CPU_SUSPEND:
319		case PSCI_0_2_FN64_CPU_SUSPEND:
320		case PSCI_0_2_FN_CPU_OFF:
321		case PSCI_0_2_FN_CPU_ON:
322		case PSCI_0_2_FN64_CPU_ON:
323		case PSCI_0_2_FN_AFFINITY_INFO:
324		case PSCI_0_2_FN64_AFFINITY_INFO:
325		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
326		case PSCI_0_2_FN_SYSTEM_OFF:
327		case PSCI_0_2_FN_SYSTEM_RESET:
328		case PSCI_1_0_FN_PSCI_FEATURES:
329		case ARM_SMCCC_VERSION_FUNC_ID:
330			val = 0;
331			break;
332		default:
333			val = PSCI_RET_NOT_SUPPORTED;
334			break;
335		}
336		break;
337	default:
338		return kvm_psci_0_2_call(vcpu);
339	}
340
341	smccc_set_retval(vcpu, val, 0, 0, 0);
342	return ret;
343}
344
345static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
346{
347	struct kvm *kvm = vcpu->kvm;
348	u32 psci_fn = smccc_get_function(vcpu);
349	unsigned long val;
350
351	switch (psci_fn) {
352	case KVM_PSCI_FN_CPU_OFF:
353		kvm_psci_vcpu_off(vcpu);
354		val = PSCI_RET_SUCCESS;
355		break;
356	case KVM_PSCI_FN_CPU_ON:
357		mutex_lock(&kvm->lock);
358		val = kvm_psci_vcpu_on(vcpu);
359		mutex_unlock(&kvm->lock);
360		break;
361	default:
362		val = PSCI_RET_NOT_SUPPORTED;
363		break;
364	}
365
366	smccc_set_retval(vcpu, val, 0, 0, 0);
367	return 1;
368}
369
370/**
371 * kvm_psci_call - handle PSCI call if r0 value is in range
372 * @vcpu: Pointer to the VCPU struct
373 *
374 * Handle PSCI calls from guests through traps from HVC instructions.
375 * The calling convention is similar to SMC calls to the secure world
376 * where the function number is placed in r0.
377 *
378 * This function returns: > 0 (success), 0 (success but exit to user
379 * space), and < 0 (errors)
380 *
381 * Errors:
382 * -EINVAL: Unrecognized PSCI function
383 */
384int kvm_psci_call(struct kvm_vcpu *vcpu)
385{
386	switch (kvm_psci_version(vcpu, vcpu->kvm)) {
387	case KVM_ARM_PSCI_1_0:
388		return kvm_psci_1_0_call(vcpu);
389	case KVM_ARM_PSCI_0_2:
390		return kvm_psci_0_2_call(vcpu);
391	case KVM_ARM_PSCI_0_1:
392		return kvm_psci_0_1_call(vcpu);
393	default:
394		return -EINVAL;
395	};
396}
397
398int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
399{
400	return 3;		/* PSCI version and two workaround registers */
401}
402
403int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
404{
405	if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
406		return -EFAULT;
407
408	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
409		return -EFAULT;
410
411	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
412		return -EFAULT;
413
414	return 0;
415}
416
417#define KVM_REG_FEATURE_LEVEL_WIDTH	4
418#define KVM_REG_FEATURE_LEVEL_MASK	(BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)
419
420/*
421 * Convert the workaround level into an easy-to-compare number, where higher
422 * values mean better protection.
423 */
424static int get_kernel_wa_level(u64 regid)
425{
426	switch (regid) {
427	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
428		switch (arm64_get_spectre_v2_state()) {
429		case SPECTRE_VULNERABLE:
430			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
431		case SPECTRE_MITIGATED:
432			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
433		case SPECTRE_UNAFFECTED:
434			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
435		}
436		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
437	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
438		switch (arm64_get_spectre_v4_state()) {
439		case SPECTRE_MITIGATED:
440			/*
441			 * As for the hypercall discovery, we pretend we
442			 * don't have any FW mitigation if SSBS is there at
443			 * all times.
444			 */
445			if (cpus_have_final_cap(ARM64_SSBS))
446				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
447			fallthrough;
448		case SPECTRE_UNAFFECTED:
449			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
450		case SPECTRE_VULNERABLE:
451			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
452		}
453	}
454
455	return -EINVAL;
456}
457
458int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
459{
460	void __user *uaddr = (void __user *)(long)reg->addr;
461	u64 val;
462
463	switch (reg->id) {
464	case KVM_REG_ARM_PSCI_VERSION:
465		val = kvm_psci_version(vcpu, vcpu->kvm);
466		break;
467	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
468	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
469		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
470		break;
471	default:
472		return -ENOENT;
473	}
474
475	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
476		return -EFAULT;
477
478	return 0;
479}
480
481int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
482{
483	void __user *uaddr = (void __user *)(long)reg->addr;
484	u64 val;
485	int wa_level;
486
487	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
488		return -EFAULT;
489
490	switch (reg->id) {
491	case KVM_REG_ARM_PSCI_VERSION:
492	{
493		bool wants_02;
494
495		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
496
497		switch (val) {
498		case KVM_ARM_PSCI_0_1:
499			if (wants_02)
500				return -EINVAL;
501			vcpu->kvm->arch.psci_version = val;
502			return 0;
503		case KVM_ARM_PSCI_0_2:
504		case KVM_ARM_PSCI_1_0:
505			if (!wants_02)
506				return -EINVAL;
507			vcpu->kvm->arch.psci_version = val;
508			return 0;
509		}
510		break;
511	}
512
513	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
514		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
515			return -EINVAL;
516
517		if (get_kernel_wa_level(reg->id) < val)
518			return -EINVAL;
519
520		return 0;
521
522	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
523		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
524			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
525			return -EINVAL;
526
527		/* The enabled bit must not be set unless the level is AVAIL. */
528		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
529		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
530			return -EINVAL;
531
532		/*
533		 * Map all the possible incoming states to the only two we
534		 * really want to deal with.
535		 */
536		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
537		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
538		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
539			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
540			break;
541		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
542		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
543			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
544			break;
545		default:
546			return -EINVAL;
547		}
548
549		/*
550		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
551		 * other way around.
552		 */
553		if (get_kernel_wa_level(reg->id) < wa_level)
554			return -EINVAL;
555
556		return 0;
557	default:
558		return -ENOENT;
559	}
560
561	return -EINVAL;
562}