Loading...
1/*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <stdarg.h>
22
23#include <linux/compat.h>
24#include <linux/efi.h>
25#include <linux/export.h>
26#include <linux/sched.h>
27#include <linux/sched/debug.h>
28#include <linux/sched/task.h>
29#include <linux/sched/task_stack.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/stddef.h>
33#include <linux/unistd.h>
34#include <linux/user.h>
35#include <linux/delay.h>
36#include <linux/reboot.h>
37#include <linux/interrupt.h>
38#include <linux/init.h>
39#include <linux/cpu.h>
40#include <linux/elfcore.h>
41#include <linux/pm.h>
42#include <linux/tick.h>
43#include <linux/utsname.h>
44#include <linux/uaccess.h>
45#include <linux/random.h>
46#include <linux/hw_breakpoint.h>
47#include <linux/personality.h>
48#include <linux/notifier.h>
49#include <trace/events/power.h>
50#include <linux/percpu.h>
51#include <linux/thread_info.h>
52
53#include <asm/alternative.h>
54#include <asm/compat.h>
55#include <asm/cacheflush.h>
56#include <asm/exec.h>
57#include <asm/fpsimd.h>
58#include <asm/mmu_context.h>
59#include <asm/processor.h>
60#include <asm/stacktrace.h>
61
62#ifdef CONFIG_CC_STACKPROTECTOR
63#include <linux/stackprotector.h>
64unsigned long __stack_chk_guard __read_mostly;
65EXPORT_SYMBOL(__stack_chk_guard);
66#endif
67
68/*
69 * Function pointers to optional machine specific functions
70 */
71void (*pm_power_off)(void);
72EXPORT_SYMBOL_GPL(pm_power_off);
73
74void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
75
76/*
77 * This is our default idle handler.
78 */
79void arch_cpu_idle(void)
80{
81 /*
82 * This should do all the clock switching and wait for interrupt
83 * tricks
84 */
85 trace_cpu_idle_rcuidle(1, smp_processor_id());
86 cpu_do_idle();
87 local_irq_enable();
88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
89}
90
91#ifdef CONFIG_HOTPLUG_CPU
92void arch_cpu_idle_dead(void)
93{
94 cpu_die();
95}
96#endif
97
98/*
99 * Called by kexec, immediately prior to machine_kexec().
100 *
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
106 */
107void machine_shutdown(void)
108{
109 disable_nonboot_cpus();
110}
111
112/*
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
116 */
117void machine_halt(void)
118{
119 local_irq_disable();
120 smp_send_stop();
121 while (1);
122}
123
124/*
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
129 */
130void machine_power_off(void)
131{
132 local_irq_disable();
133 smp_send_stop();
134 if (pm_power_off)
135 pm_power_off();
136}
137
138/*
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
146 */
147void machine_restart(char *cmd)
148{
149 /* Disable interrupts first */
150 local_irq_disable();
151 smp_send_stop();
152
153 /*
154 * UpdateCapsule() depends on the system being reset via
155 * ResetSystem().
156 */
157 if (efi_enabled(EFI_RUNTIME_SERVICES))
158 efi_reboot(reboot_mode, NULL);
159
160 /* Now call the architecture specific reboot code. */
161 if (arm_pm_restart)
162 arm_pm_restart(reboot_mode, cmd);
163 else
164 do_kernel_restart(cmd);
165
166 /*
167 * Whoops - the architecture was unable to reboot.
168 */
169 printk("Reboot failed -- System halted\n");
170 while (1);
171}
172
173static void print_pstate(struct pt_regs *regs)
174{
175 u64 pstate = regs->pstate;
176
177 if (compat_user_mode(regs)) {
178 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
179 pstate,
180 pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
181 pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
182 pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
183 pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
184 pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
185 pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
186 pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
187 pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
188 pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
189 pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
190 } else {
191 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
192 pstate,
193 pstate & PSR_N_BIT ? 'N' : 'n',
194 pstate & PSR_Z_BIT ? 'Z' : 'z',
195 pstate & PSR_C_BIT ? 'C' : 'c',
196 pstate & PSR_V_BIT ? 'V' : 'v',
197 pstate & PSR_D_BIT ? 'D' : 'd',
198 pstate & PSR_A_BIT ? 'A' : 'a',
199 pstate & PSR_I_BIT ? 'I' : 'i',
200 pstate & PSR_F_BIT ? 'F' : 'f',
201 pstate & PSR_PAN_BIT ? '+' : '-',
202 pstate & PSR_UAO_BIT ? '+' : '-');
203 }
204}
205
206void __show_regs(struct pt_regs *regs)
207{
208 int i, top_reg;
209 u64 lr, sp;
210
211 if (compat_user_mode(regs)) {
212 lr = regs->compat_lr;
213 sp = regs->compat_sp;
214 top_reg = 12;
215 } else {
216 lr = regs->regs[30];
217 sp = regs->sp;
218 top_reg = 29;
219 }
220
221 show_regs_print_info(KERN_DEFAULT);
222 print_pstate(regs);
223
224 if (!user_mode(regs)) {
225 printk("pc : %pS\n", (void *)regs->pc);
226 printk("lr : %pS\n", (void *)lr);
227 } else {
228 printk("pc : %016llx\n", regs->pc);
229 printk("lr : %016llx\n", lr);
230 }
231
232 printk("sp : %016llx\n", sp);
233
234 i = top_reg;
235
236 while (i >= 0) {
237 printk("x%-2d: %016llx ", i, regs->regs[i]);
238 i--;
239
240 if (i % 2 == 0) {
241 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
242 i--;
243 }
244
245 pr_cont("\n");
246 }
247}
248
249void show_regs(struct pt_regs * regs)
250{
251 __show_regs(regs);
252 dump_backtrace(regs, NULL);
253}
254
255static void tls_thread_flush(void)
256{
257 write_sysreg(0, tpidr_el0);
258
259 if (is_compat_task()) {
260 current->thread.uw.tp_value = 0;
261
262 /*
263 * We need to ensure ordering between the shadow state and the
264 * hardware state, so that we don't corrupt the hardware state
265 * with a stale shadow state during context switch.
266 */
267 barrier();
268 write_sysreg(0, tpidrro_el0);
269 }
270}
271
272void flush_thread(void)
273{
274 fpsimd_flush_thread();
275 tls_thread_flush();
276 flush_ptrace_hw_breakpoint(current);
277}
278
279void release_thread(struct task_struct *dead_task)
280{
281}
282
283void arch_release_task_struct(struct task_struct *tsk)
284{
285 fpsimd_release_task(tsk);
286}
287
288/*
289 * src and dst may temporarily have aliased sve_state after task_struct
290 * is copied. We cannot fix this properly here, because src may have
291 * live SVE state and dst's thread_info may not exist yet, so tweaking
292 * either src's or dst's TIF_SVE is not safe.
293 *
294 * The unaliasing is done in copy_thread() instead. This works because
295 * dst is not schedulable or traceable until both of these functions
296 * have been called.
297 */
298int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
299{
300 if (current->mm)
301 fpsimd_preserve_current_state();
302 *dst = *src;
303
304 return 0;
305}
306
307asmlinkage void ret_from_fork(void) asm("ret_from_fork");
308
309int copy_thread(unsigned long clone_flags, unsigned long stack_start,
310 unsigned long stk_sz, struct task_struct *p)
311{
312 struct pt_regs *childregs = task_pt_regs(p);
313
314 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
315
316 /*
317 * Unalias p->thread.sve_state (if any) from the parent task
318 * and disable discard SVE state for p:
319 */
320 clear_tsk_thread_flag(p, TIF_SVE);
321 p->thread.sve_state = NULL;
322
323 /*
324 * In case p was allocated the same task_struct pointer as some
325 * other recently-exited task, make sure p is disassociated from
326 * any cpu that may have run that now-exited task recently.
327 * Otherwise we could erroneously skip reloading the FPSIMD
328 * registers for p.
329 */
330 fpsimd_flush_task_state(p);
331
332 if (likely(!(p->flags & PF_KTHREAD))) {
333 *childregs = *current_pt_regs();
334 childregs->regs[0] = 0;
335
336 /*
337 * Read the current TLS pointer from tpidr_el0 as it may be
338 * out-of-sync with the saved value.
339 */
340 *task_user_tls(p) = read_sysreg(tpidr_el0);
341
342 if (stack_start) {
343 if (is_compat_thread(task_thread_info(p)))
344 childregs->compat_sp = stack_start;
345 else
346 childregs->sp = stack_start;
347 }
348
349 /*
350 * If a TLS pointer was passed to clone (4th argument), use it
351 * for the new thread.
352 */
353 if (clone_flags & CLONE_SETTLS)
354 p->thread.uw.tp_value = childregs->regs[3];
355 } else {
356 memset(childregs, 0, sizeof(struct pt_regs));
357 childregs->pstate = PSR_MODE_EL1h;
358 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
359 cpus_have_const_cap(ARM64_HAS_UAO))
360 childregs->pstate |= PSR_UAO_BIT;
361 p->thread.cpu_context.x19 = stack_start;
362 p->thread.cpu_context.x20 = stk_sz;
363 }
364 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
365 p->thread.cpu_context.sp = (unsigned long)childregs;
366
367 ptrace_hw_copy_thread(p);
368
369 return 0;
370}
371
372void tls_preserve_current_state(void)
373{
374 *task_user_tls(current) = read_sysreg(tpidr_el0);
375}
376
377static void tls_thread_switch(struct task_struct *next)
378{
379 tls_preserve_current_state();
380
381 if (is_compat_thread(task_thread_info(next)))
382 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
383 else if (!arm64_kernel_unmapped_at_el0())
384 write_sysreg(0, tpidrro_el0);
385
386 write_sysreg(*task_user_tls(next), tpidr_el0);
387}
388
389/* Restore the UAO state depending on next's addr_limit */
390void uao_thread_switch(struct task_struct *next)
391{
392 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
393 if (task_thread_info(next)->addr_limit == KERNEL_DS)
394 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
395 else
396 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
397 }
398}
399
400/*
401 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
402 * shadow copy so that we can restore this upon entry from userspace.
403 *
404 * This is *only* for exception entry from EL0, and is not valid until we
405 * __switch_to() a user task.
406 */
407DEFINE_PER_CPU(struct task_struct *, __entry_task);
408
409static void entry_task_switch(struct task_struct *next)
410{
411 __this_cpu_write(__entry_task, next);
412}
413
414/*
415 * Thread switching.
416 */
417__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
418 struct task_struct *next)
419{
420 struct task_struct *last;
421
422 fpsimd_thread_switch(next);
423 tls_thread_switch(next);
424 hw_breakpoint_thread_switch(next);
425 contextidr_thread_switch(next);
426 entry_task_switch(next);
427 uao_thread_switch(next);
428
429 /*
430 * Complete any pending TLB or cache maintenance on this CPU in case
431 * the thread migrates to a different CPU.
432 * This full barrier is also required by the membarrier system
433 * call.
434 */
435 dsb(ish);
436
437 /* the actual thread switch */
438 last = cpu_switch_to(prev, next);
439
440 return last;
441}
442
443unsigned long get_wchan(struct task_struct *p)
444{
445 struct stackframe frame;
446 unsigned long stack_page, ret = 0;
447 int count = 0;
448 if (!p || p == current || p->state == TASK_RUNNING)
449 return 0;
450
451 stack_page = (unsigned long)try_get_task_stack(p);
452 if (!stack_page)
453 return 0;
454
455 frame.fp = thread_saved_fp(p);
456 frame.pc = thread_saved_pc(p);
457#ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 frame.graph = p->curr_ret_stack;
459#endif
460 do {
461 if (unwind_frame(p, &frame))
462 goto out;
463 if (!in_sched_functions(frame.pc)) {
464 ret = frame.pc;
465 goto out;
466 }
467 } while (count ++ < 16);
468
469out:
470 put_task_stack(p);
471 return ret;
472}
473
474unsigned long arch_align_stack(unsigned long sp)
475{
476 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
477 sp -= get_random_int() & ~PAGE_MASK;
478 return sp & ~0xf;
479}
480
481unsigned long arch_randomize_brk(struct mm_struct *mm)
482{
483 if (is_compat_task())
484 return randomize_page(mm->brk, SZ_32M);
485 else
486 return randomize_page(mm->brk, SZ_1G);
487}
488
489/*
490 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
491 */
492void arch_setup_new_exec(void)
493{
494 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
495}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <stdarg.h>
11
12#include <linux/compat.h>
13#include <linux/efi.h>
14#include <linux/elf.h>
15#include <linux/export.h>
16#include <linux/sched.h>
17#include <linux/sched/debug.h>
18#include <linux/sched/task.h>
19#include <linux/sched/task_stack.h>
20#include <linux/kernel.h>
21#include <linux/mman.h>
22#include <linux/mm.h>
23#include <linux/nospec.h>
24#include <linux/stddef.h>
25#include <linux/sysctl.h>
26#include <linux/unistd.h>
27#include <linux/user.h>
28#include <linux/delay.h>
29#include <linux/reboot.h>
30#include <linux/interrupt.h>
31#include <linux/init.h>
32#include <linux/cpu.h>
33#include <linux/elfcore.h>
34#include <linux/pm.h>
35#include <linux/tick.h>
36#include <linux/utsname.h>
37#include <linux/uaccess.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/personality.h>
41#include <linux/notifier.h>
42#include <trace/events/power.h>
43#include <linux/percpu.h>
44#include <linux/thread_info.h>
45#include <linux/prctl.h>
46
47#include <asm/alternative.h>
48#include <asm/compat.h>
49#include <asm/cpufeature.h>
50#include <asm/cacheflush.h>
51#include <asm/exec.h>
52#include <asm/fpsimd.h>
53#include <asm/mmu_context.h>
54#include <asm/mte.h>
55#include <asm/processor.h>
56#include <asm/pointer_auth.h>
57#include <asm/stacktrace.h>
58#include <asm/switch_to.h>
59#include <asm/system_misc.h>
60
61#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62#include <linux/stackprotector.h>
63unsigned long __stack_chk_guard __ro_after_init;
64EXPORT_SYMBOL(__stack_chk_guard);
65#endif
66
67/*
68 * Function pointers to optional machine specific functions
69 */
70void (*pm_power_off)(void);
71EXPORT_SYMBOL_GPL(pm_power_off);
72
73#ifdef CONFIG_HOTPLUG_CPU
74void arch_cpu_idle_dead(void)
75{
76 cpu_die();
77}
78#endif
79
80/*
81 * Called by kexec, immediately prior to machine_kexec().
82 *
83 * This must completely disable all secondary CPUs; simply causing those CPUs
84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88 */
89void machine_shutdown(void)
90{
91 smp_shutdown_nonboot_cpus(reboot_cpu);
92}
93
94/*
95 * Halting simply requires that the secondary CPUs stop performing any
96 * activity (executing tasks, handling interrupts). smp_send_stop()
97 * achieves this.
98 */
99void machine_halt(void)
100{
101 local_irq_disable();
102 smp_send_stop();
103 while (1);
104}
105
106/*
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
110 * with it.
111 */
112void machine_power_off(void)
113{
114 local_irq_disable();
115 smp_send_stop();
116 if (pm_power_off)
117 pm_power_off();
118}
119
120/*
121 * Restart requires that the secondary CPUs stop performing any activity
122 * while the primary CPU resets the system. Systems with multiple CPUs must
123 * provide a HW restart implementation, to ensure that all CPUs reset at once.
124 * This is required so that any code running after reset on the primary CPU
125 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126 * executing pre-reset code, and using RAM that the primary CPU's code wishes
127 * to use. Implementing such co-ordination would be essentially impossible.
128 */
129void machine_restart(char *cmd)
130{
131 /* Disable interrupts first */
132 local_irq_disable();
133 smp_send_stop();
134
135 /*
136 * UpdateCapsule() depends on the system being reset via
137 * ResetSystem().
138 */
139 if (efi_enabled(EFI_RUNTIME_SERVICES))
140 efi_reboot(reboot_mode, NULL);
141
142 /* Now call the architecture specific reboot code. */
143 do_kernel_restart(cmd);
144
145 /*
146 * Whoops - the architecture was unable to reboot.
147 */
148 printk("Reboot failed -- System halted\n");
149 while (1);
150}
151
152#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153static const char *const btypes[] = {
154 bstr(NONE, "--"),
155 bstr( JC, "jc"),
156 bstr( C, "-c"),
157 bstr( J , "j-")
158};
159#undef bstr
160
161static void print_pstate(struct pt_regs *regs)
162{
163 u64 pstate = regs->pstate;
164
165 if (compat_user_mode(regs)) {
166 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
167 pstate,
168 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
178 } else {
179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 PSR_BTYPE_SHIFT];
181
182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
183 pstate,
184 pstate & PSR_N_BIT ? 'N' : 'n',
185 pstate & PSR_Z_BIT ? 'Z' : 'z',
186 pstate & PSR_C_BIT ? 'C' : 'c',
187 pstate & PSR_V_BIT ? 'V' : 'v',
188 pstate & PSR_D_BIT ? 'D' : 'd',
189 pstate & PSR_A_BIT ? 'A' : 'a',
190 pstate & PSR_I_BIT ? 'I' : 'i',
191 pstate & PSR_F_BIT ? 'F' : 'f',
192 pstate & PSR_PAN_BIT ? '+' : '-',
193 pstate & PSR_UAO_BIT ? '+' : '-',
194 pstate & PSR_TCO_BIT ? '+' : '-',
195 btype_str);
196 }
197}
198
199void __show_regs(struct pt_regs *regs)
200{
201 int i, top_reg;
202 u64 lr, sp;
203
204 if (compat_user_mode(regs)) {
205 lr = regs->compat_lr;
206 sp = regs->compat_sp;
207 top_reg = 12;
208 } else {
209 lr = regs->regs[30];
210 sp = regs->sp;
211 top_reg = 29;
212 }
213
214 show_regs_print_info(KERN_DEFAULT);
215 print_pstate(regs);
216
217 if (!user_mode(regs)) {
218 printk("pc : %pS\n", (void *)regs->pc);
219 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
220 } else {
221 printk("pc : %016llx\n", regs->pc);
222 printk("lr : %016llx\n", lr);
223 }
224
225 printk("sp : %016llx\n", sp);
226
227 if (system_uses_irq_prio_masking())
228 printk("pmr_save: %08llx\n", regs->pmr_save);
229
230 i = top_reg;
231
232 while (i >= 0) {
233 printk("x%-2d: %016llx", i, regs->regs[i]);
234
235 while (i-- % 3)
236 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
237
238 pr_cont("\n");
239 }
240}
241
242void show_regs(struct pt_regs *regs)
243{
244 __show_regs(regs);
245 dump_backtrace(regs, NULL, KERN_DEFAULT);
246}
247
248static void tls_thread_flush(void)
249{
250 write_sysreg(0, tpidr_el0);
251
252 if (is_compat_task()) {
253 current->thread.uw.tp_value = 0;
254
255 /*
256 * We need to ensure ordering between the shadow state and the
257 * hardware state, so that we don't corrupt the hardware state
258 * with a stale shadow state during context switch.
259 */
260 barrier();
261 write_sysreg(0, tpidrro_el0);
262 }
263}
264
265static void flush_tagged_addr_state(void)
266{
267 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
268 clear_thread_flag(TIF_TAGGED_ADDR);
269}
270
271void flush_thread(void)
272{
273 fpsimd_flush_thread();
274 tls_thread_flush();
275 flush_ptrace_hw_breakpoint(current);
276 flush_tagged_addr_state();
277}
278
279void release_thread(struct task_struct *dead_task)
280{
281}
282
283void arch_release_task_struct(struct task_struct *tsk)
284{
285 fpsimd_release_task(tsk);
286}
287
288int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
289{
290 if (current->mm)
291 fpsimd_preserve_current_state();
292 *dst = *src;
293
294 /* We rely on the above assignment to initialize dst's thread_flags: */
295 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
296
297 /*
298 * Detach src's sve_state (if any) from dst so that it does not
299 * get erroneously used or freed prematurely. dst's sve_state
300 * will be allocated on demand later on if dst uses SVE.
301 * For consistency, also clear TIF_SVE here: this could be done
302 * later in copy_process(), but to avoid tripping up future
303 * maintainers it is best not to leave TIF_SVE and sve_state in
304 * an inconsistent state, even temporarily.
305 */
306 dst->thread.sve_state = NULL;
307 clear_tsk_thread_flag(dst, TIF_SVE);
308
309 /* clear any pending asynchronous tag fault raised by the parent */
310 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
311
312 return 0;
313}
314
315asmlinkage void ret_from_fork(void) asm("ret_from_fork");
316
317int copy_thread(unsigned long clone_flags, unsigned long stack_start,
318 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
319{
320 struct pt_regs *childregs = task_pt_regs(p);
321
322 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
323
324 /*
325 * In case p was allocated the same task_struct pointer as some
326 * other recently-exited task, make sure p is disassociated from
327 * any cpu that may have run that now-exited task recently.
328 * Otherwise we could erroneously skip reloading the FPSIMD
329 * registers for p.
330 */
331 fpsimd_flush_task_state(p);
332
333 ptrauth_thread_init_kernel(p);
334
335 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
336 *childregs = *current_pt_regs();
337 childregs->regs[0] = 0;
338
339 /*
340 * Read the current TLS pointer from tpidr_el0 as it may be
341 * out-of-sync with the saved value.
342 */
343 *task_user_tls(p) = read_sysreg(tpidr_el0);
344
345 if (stack_start) {
346 if (is_compat_thread(task_thread_info(p)))
347 childregs->compat_sp = stack_start;
348 else
349 childregs->sp = stack_start;
350 }
351
352 /*
353 * If a TLS pointer was passed to clone, use it for the new
354 * thread.
355 */
356 if (clone_flags & CLONE_SETTLS)
357 p->thread.uw.tp_value = tls;
358 } else {
359 /*
360 * A kthread has no context to ERET to, so ensure any buggy
361 * ERET is treated as an illegal exception return.
362 *
363 * When a user task is created from a kthread, childregs will
364 * be initialized by start_thread() or start_compat_thread().
365 */
366 memset(childregs, 0, sizeof(struct pt_regs));
367 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
368
369 p->thread.cpu_context.x19 = stack_start;
370 p->thread.cpu_context.x20 = stk_sz;
371 }
372 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
373 p->thread.cpu_context.sp = (unsigned long)childregs;
374 /*
375 * For the benefit of the unwinder, set up childregs->stackframe
376 * as the final frame for the new task.
377 */
378 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
379
380 ptrace_hw_copy_thread(p);
381
382 return 0;
383}
384
385void tls_preserve_current_state(void)
386{
387 *task_user_tls(current) = read_sysreg(tpidr_el0);
388}
389
390static void tls_thread_switch(struct task_struct *next)
391{
392 tls_preserve_current_state();
393
394 if (is_compat_thread(task_thread_info(next)))
395 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
396 else if (!arm64_kernel_unmapped_at_el0())
397 write_sysreg(0, tpidrro_el0);
398
399 write_sysreg(*task_user_tls(next), tpidr_el0);
400}
401
402/*
403 * Force SSBS state on context-switch, since it may be lost after migrating
404 * from a CPU which treats the bit as RES0 in a heterogeneous system.
405 */
406static void ssbs_thread_switch(struct task_struct *next)
407{
408 /*
409 * Nothing to do for kernel threads, but 'regs' may be junk
410 * (e.g. idle task) so check the flags and bail early.
411 */
412 if (unlikely(next->flags & PF_KTHREAD))
413 return;
414
415 /*
416 * If all CPUs implement the SSBS extension, then we just need to
417 * context-switch the PSTATE field.
418 */
419 if (cpus_have_const_cap(ARM64_SSBS))
420 return;
421
422 spectre_v4_enable_task_mitigation(next);
423}
424
425/*
426 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
427 * shadow copy so that we can restore this upon entry from userspace.
428 *
429 * This is *only* for exception entry from EL0, and is not valid until we
430 * __switch_to() a user task.
431 */
432DEFINE_PER_CPU(struct task_struct *, __entry_task);
433
434static void entry_task_switch(struct task_struct *next)
435{
436 __this_cpu_write(__entry_task, next);
437}
438
439/*
440 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
441 * Assuming the virtual counter is enabled at the beginning of times:
442 *
443 * - disable access when switching from a 64bit task to a 32bit task
444 * - enable access when switching from a 32bit task to a 64bit task
445 */
446static void erratum_1418040_thread_switch(struct task_struct *prev,
447 struct task_struct *next)
448{
449 bool prev32, next32;
450 u64 val;
451
452 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
453 return;
454
455 prev32 = is_compat_thread(task_thread_info(prev));
456 next32 = is_compat_thread(task_thread_info(next));
457
458 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
459 return;
460
461 val = read_sysreg(cntkctl_el1);
462
463 if (!next32)
464 val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
465 else
466 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
467
468 write_sysreg(val, cntkctl_el1);
469}
470
471static void compat_thread_switch(struct task_struct *next)
472{
473 if (!is_compat_thread(task_thread_info(next)))
474 return;
475
476 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
477 set_tsk_thread_flag(next, TIF_NOTIFY_RESUME);
478}
479
480static void update_sctlr_el1(u64 sctlr)
481{
482 /*
483 * EnIA must not be cleared while in the kernel as this is necessary for
484 * in-kernel PAC. It will be cleared on kernel exit if needed.
485 */
486 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
487
488 /* ISB required for the kernel uaccess routines when setting TCF0. */
489 isb();
490}
491
492void set_task_sctlr_el1(u64 sctlr)
493{
494 /*
495 * __switch_to() checks current->thread.sctlr as an
496 * optimisation. Disable preemption so that it does not see
497 * the variable update before the SCTLR_EL1 one.
498 */
499 preempt_disable();
500 current->thread.sctlr_user = sctlr;
501 update_sctlr_el1(sctlr);
502 preempt_enable();
503}
504
505/*
506 * Thread switching.
507 */
508__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
509 struct task_struct *next)
510{
511 struct task_struct *last;
512
513 fpsimd_thread_switch(next);
514 tls_thread_switch(next);
515 hw_breakpoint_thread_switch(next);
516 contextidr_thread_switch(next);
517 entry_task_switch(next);
518 ssbs_thread_switch(next);
519 erratum_1418040_thread_switch(prev, next);
520 ptrauth_thread_switch_user(next);
521 compat_thread_switch(next);
522
523 /*
524 * Complete any pending TLB or cache maintenance on this CPU in case
525 * the thread migrates to a different CPU.
526 * This full barrier is also required by the membarrier system
527 * call.
528 */
529 dsb(ish);
530
531 /*
532 * MTE thread switching must happen after the DSB above to ensure that
533 * any asynchronous tag check faults have been logged in the TFSR*_EL1
534 * registers.
535 */
536 mte_thread_switch(next);
537 /* avoid expensive SCTLR_EL1 accesses if no change */
538 if (prev->thread.sctlr_user != next->thread.sctlr_user)
539 update_sctlr_el1(next->thread.sctlr_user);
540
541 /* the actual thread switch */
542 last = cpu_switch_to(prev, next);
543
544 return last;
545}
546
547unsigned long get_wchan(struct task_struct *p)
548{
549 struct stackframe frame;
550 unsigned long stack_page, ret = 0;
551 int count = 0;
552 if (!p || p == current || task_is_running(p))
553 return 0;
554
555 stack_page = (unsigned long)try_get_task_stack(p);
556 if (!stack_page)
557 return 0;
558
559 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
560
561 do {
562 if (unwind_frame(p, &frame))
563 goto out;
564 if (!in_sched_functions(frame.pc)) {
565 ret = frame.pc;
566 goto out;
567 }
568 } while (count++ < 16);
569
570out:
571 put_task_stack(p);
572 return ret;
573}
574
575unsigned long arch_align_stack(unsigned long sp)
576{
577 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
578 sp -= get_random_int() & ~PAGE_MASK;
579 return sp & ~0xf;
580}
581
582/*
583 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
584 */
585void arch_setup_new_exec(void)
586{
587 unsigned long mmflags = 0;
588
589 if (is_compat_task()) {
590 mmflags = MMCF_AARCH32;
591 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
592 set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
593 }
594
595 current->mm->context.flags = mmflags;
596 ptrauth_thread_init_user();
597 mte_thread_init_user();
598
599 if (task_spec_ssb_noexec(current)) {
600 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
601 PR_SPEC_ENABLE);
602 }
603}
604
605#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
606/*
607 * Control the relaxed ABI allowing tagged user addresses into the kernel.
608 */
609static unsigned int tagged_addr_disabled;
610
611long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
612{
613 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
614 struct thread_info *ti = task_thread_info(task);
615
616 if (is_compat_thread(ti))
617 return -EINVAL;
618
619 if (system_supports_mte())
620 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
621
622 if (arg & ~valid_mask)
623 return -EINVAL;
624
625 /*
626 * Do not allow the enabling of the tagged address ABI if globally
627 * disabled via sysctl abi.tagged_addr_disabled.
628 */
629 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
630 return -EINVAL;
631
632 if (set_mte_ctrl(task, arg) != 0)
633 return -EINVAL;
634
635 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
636
637 return 0;
638}
639
640long get_tagged_addr_ctrl(struct task_struct *task)
641{
642 long ret = 0;
643 struct thread_info *ti = task_thread_info(task);
644
645 if (is_compat_thread(ti))
646 return -EINVAL;
647
648 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
649 ret = PR_TAGGED_ADDR_ENABLE;
650
651 ret |= get_mte_ctrl(task);
652
653 return ret;
654}
655
656/*
657 * Global sysctl to disable the tagged user addresses support. This control
658 * only prevents the tagged address ABI enabling via prctl() and does not
659 * disable it for tasks that already opted in to the relaxed ABI.
660 */
661
662static struct ctl_table tagged_addr_sysctl_table[] = {
663 {
664 .procname = "tagged_addr_disabled",
665 .mode = 0644,
666 .data = &tagged_addr_disabled,
667 .maxlen = sizeof(int),
668 .proc_handler = proc_dointvec_minmax,
669 .extra1 = SYSCTL_ZERO,
670 .extra2 = SYSCTL_ONE,
671 },
672 { }
673};
674
675static int __init tagged_addr_init(void)
676{
677 if (!register_sysctl("abi", tagged_addr_sysctl_table))
678 return -EINVAL;
679 return 0;
680}
681
682core_initcall(tagged_addr_init);
683#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
684
685#ifdef CONFIG_BINFMT_ELF
686int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
687 bool has_interp, bool is_interp)
688{
689 /*
690 * For dynamically linked executables the interpreter is
691 * responsible for setting PROT_BTI on everything except
692 * itself.
693 */
694 if (is_interp != has_interp)
695 return prot;
696
697 if (!(state->flags & ARM64_ELF_BTI))
698 return prot;
699
700 if (prot & PROT_EXEC)
701 prot |= PROT_BTI;
702
703 return prot;
704}
705#endif