Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.17
 
  1/*
  2 * Based on arch/arm/kernel/process.c
  3 *
  4 * Original Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <stdarg.h>
 22
 23#include <linux/compat.h>
 24#include <linux/efi.h>
 
 25#include <linux/export.h>
 26#include <linux/sched.h>
 27#include <linux/sched/debug.h>
 28#include <linux/sched/task.h>
 29#include <linux/sched/task_stack.h>
 30#include <linux/kernel.h>
 
 31#include <linux/mm.h>
 
 32#include <linux/stddef.h>
 
 33#include <linux/unistd.h>
 34#include <linux/user.h>
 35#include <linux/delay.h>
 36#include <linux/reboot.h>
 37#include <linux/interrupt.h>
 38#include <linux/init.h>
 39#include <linux/cpu.h>
 40#include <linux/elfcore.h>
 41#include <linux/pm.h>
 42#include <linux/tick.h>
 43#include <linux/utsname.h>
 44#include <linux/uaccess.h>
 45#include <linux/random.h>
 46#include <linux/hw_breakpoint.h>
 47#include <linux/personality.h>
 48#include <linux/notifier.h>
 49#include <trace/events/power.h>
 50#include <linux/percpu.h>
 51#include <linux/thread_info.h>
 
 52
 53#include <asm/alternative.h>
 54#include <asm/compat.h>
 
 55#include <asm/cacheflush.h>
 56#include <asm/exec.h>
 57#include <asm/fpsimd.h>
 58#include <asm/mmu_context.h>
 
 59#include <asm/processor.h>
 
 60#include <asm/stacktrace.h>
 
 
 61
 62#ifdef CONFIG_CC_STACKPROTECTOR
 63#include <linux/stackprotector.h>
 64unsigned long __stack_chk_guard __read_mostly;
 65EXPORT_SYMBOL(__stack_chk_guard);
 66#endif
 67
 68/*
 69 * Function pointers to optional machine specific functions
 70 */
 71void (*pm_power_off)(void);
 72EXPORT_SYMBOL_GPL(pm_power_off);
 73
 74void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
 75
 76/*
 77 * This is our default idle handler.
 78 */
 79void arch_cpu_idle(void)
 80{
 81	/*
 82	 * This should do all the clock switching and wait for interrupt
 83	 * tricks
 84	 */
 85	trace_cpu_idle_rcuidle(1, smp_processor_id());
 86	cpu_do_idle();
 87	local_irq_enable();
 88	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 89}
 90
 91#ifdef CONFIG_HOTPLUG_CPU
 92void arch_cpu_idle_dead(void)
 93{
 94       cpu_die();
 95}
 96#endif
 97
 98/*
 99 * Called by kexec, immediately prior to machine_kexec().
100 *
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
106 */
107void machine_shutdown(void)
108{
109	disable_nonboot_cpus();
110}
111
112/*
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
116 */
117void machine_halt(void)
118{
119	local_irq_disable();
120	smp_send_stop();
121	while (1);
122}
123
124/*
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
129 */
130void machine_power_off(void)
131{
132	local_irq_disable();
133	smp_send_stop();
134	if (pm_power_off)
135		pm_power_off();
136}
137
138/*
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
146 */
147void machine_restart(char *cmd)
148{
149	/* Disable interrupts first */
150	local_irq_disable();
151	smp_send_stop();
152
153	/*
154	 * UpdateCapsule() depends on the system being reset via
155	 * ResetSystem().
156	 */
157	if (efi_enabled(EFI_RUNTIME_SERVICES))
158		efi_reboot(reboot_mode, NULL);
159
160	/* Now call the architecture specific reboot code. */
161	if (arm_pm_restart)
162		arm_pm_restart(reboot_mode, cmd);
163	else
164		do_kernel_restart(cmd);
165
166	/*
167	 * Whoops - the architecture was unable to reboot.
168	 */
169	printk("Reboot failed -- System halted\n");
170	while (1);
171}
172
 
 
 
 
 
 
 
 
 
173static void print_pstate(struct pt_regs *regs)
174{
175	u64 pstate = regs->pstate;
176
177	if (compat_user_mode(regs)) {
178		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
179			pstate,
180			pstate & COMPAT_PSR_N_BIT ? 'N' : 'n',
181			pstate & COMPAT_PSR_Z_BIT ? 'Z' : 'z',
182			pstate & COMPAT_PSR_C_BIT ? 'C' : 'c',
183			pstate & COMPAT_PSR_V_BIT ? 'V' : 'v',
184			pstate & COMPAT_PSR_Q_BIT ? 'Q' : 'q',
185			pstate & COMPAT_PSR_T_BIT ? "T32" : "A32",
186			pstate & COMPAT_PSR_E_BIT ? "BE" : "LE",
187			pstate & COMPAT_PSR_A_BIT ? 'A' : 'a',
188			pstate & COMPAT_PSR_I_BIT ? 'I' : 'i',
189			pstate & COMPAT_PSR_F_BIT ? 'F' : 'f');
190	} else {
191		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
 
 
 
192			pstate,
193			pstate & PSR_N_BIT ? 'N' : 'n',
194			pstate & PSR_Z_BIT ? 'Z' : 'z',
195			pstate & PSR_C_BIT ? 'C' : 'c',
196			pstate & PSR_V_BIT ? 'V' : 'v',
197			pstate & PSR_D_BIT ? 'D' : 'd',
198			pstate & PSR_A_BIT ? 'A' : 'a',
199			pstate & PSR_I_BIT ? 'I' : 'i',
200			pstate & PSR_F_BIT ? 'F' : 'f',
201			pstate & PSR_PAN_BIT ? '+' : '-',
202			pstate & PSR_UAO_BIT ? '+' : '-');
 
 
203	}
204}
205
206void __show_regs(struct pt_regs *regs)
207{
208	int i, top_reg;
209	u64 lr, sp;
210
211	if (compat_user_mode(regs)) {
212		lr = regs->compat_lr;
213		sp = regs->compat_sp;
214		top_reg = 12;
215	} else {
216		lr = regs->regs[30];
217		sp = regs->sp;
218		top_reg = 29;
219	}
220
221	show_regs_print_info(KERN_DEFAULT);
222	print_pstate(regs);
223
224	if (!user_mode(regs)) {
225		printk("pc : %pS\n", (void *)regs->pc);
226		printk("lr : %pS\n", (void *)lr);
227	} else {
228		printk("pc : %016llx\n", regs->pc);
229		printk("lr : %016llx\n", lr);
230	}
231
232	printk("sp : %016llx\n", sp);
233
 
 
 
234	i = top_reg;
235
236	while (i >= 0) {
237		printk("x%-2d: %016llx ", i, regs->regs[i]);
238		i--;
239
240		if (i % 2 == 0) {
241			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
242			i--;
243		}
244
245		pr_cont("\n");
246	}
247}
248
249void show_regs(struct pt_regs * regs)
250{
251	__show_regs(regs);
252	dump_backtrace(regs, NULL);
253}
254
255static void tls_thread_flush(void)
256{
257	write_sysreg(0, tpidr_el0);
258
259	if (is_compat_task()) {
260		current->thread.uw.tp_value = 0;
261
262		/*
263		 * We need to ensure ordering between the shadow state and the
264		 * hardware state, so that we don't corrupt the hardware state
265		 * with a stale shadow state during context switch.
266		 */
267		barrier();
268		write_sysreg(0, tpidrro_el0);
269	}
270}
271
 
 
 
 
 
 
272void flush_thread(void)
273{
274	fpsimd_flush_thread();
275	tls_thread_flush();
276	flush_ptrace_hw_breakpoint(current);
 
277}
278
279void release_thread(struct task_struct *dead_task)
280{
281}
282
283void arch_release_task_struct(struct task_struct *tsk)
284{
285	fpsimd_release_task(tsk);
286}
287
288/*
289 * src and dst may temporarily have aliased sve_state after task_struct
290 * is copied.  We cannot fix this properly here, because src may have
291 * live SVE state and dst's thread_info may not exist yet, so tweaking
292 * either src's or dst's TIF_SVE is not safe.
293 *
294 * The unaliasing is done in copy_thread() instead.  This works because
295 * dst is not schedulable or traceable until both of these functions
296 * have been called.
297 */
298int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
299{
300	if (current->mm)
301		fpsimd_preserve_current_state();
302	*dst = *src;
303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304	return 0;
305}
306
307asmlinkage void ret_from_fork(void) asm("ret_from_fork");
308
309int copy_thread(unsigned long clone_flags, unsigned long stack_start,
310		unsigned long stk_sz, struct task_struct *p)
311{
312	struct pt_regs *childregs = task_pt_regs(p);
313
314	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
315
316	/*
317	 * Unalias p->thread.sve_state (if any) from the parent task
318	 * and disable discard SVE state for p:
319	 */
320	clear_tsk_thread_flag(p, TIF_SVE);
321	p->thread.sve_state = NULL;
322
323	/*
324	 * In case p was allocated the same task_struct pointer as some
325	 * other recently-exited task, make sure p is disassociated from
326	 * any cpu that may have run that now-exited task recently.
327	 * Otherwise we could erroneously skip reloading the FPSIMD
328	 * registers for p.
329	 */
330	fpsimd_flush_task_state(p);
331
332	if (likely(!(p->flags & PF_KTHREAD))) {
 
 
333		*childregs = *current_pt_regs();
334		childregs->regs[0] = 0;
335
336		/*
337		 * Read the current TLS pointer from tpidr_el0 as it may be
338		 * out-of-sync with the saved value.
339		 */
340		*task_user_tls(p) = read_sysreg(tpidr_el0);
341
342		if (stack_start) {
343			if (is_compat_thread(task_thread_info(p)))
344				childregs->compat_sp = stack_start;
345			else
346				childregs->sp = stack_start;
347		}
348
349		/*
350		 * If a TLS pointer was passed to clone (4th argument), use it
351		 * for the new thread.
352		 */
353		if (clone_flags & CLONE_SETTLS)
354			p->thread.uw.tp_value = childregs->regs[3];
355	} else {
 
 
 
 
 
 
 
356		memset(childregs, 0, sizeof(struct pt_regs));
357		childregs->pstate = PSR_MODE_EL1h;
358		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
359		    cpus_have_const_cap(ARM64_HAS_UAO))
360			childregs->pstate |= PSR_UAO_BIT;
361		p->thread.cpu_context.x19 = stack_start;
362		p->thread.cpu_context.x20 = stk_sz;
363	}
364	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
365	p->thread.cpu_context.sp = (unsigned long)childregs;
 
 
 
 
 
366
367	ptrace_hw_copy_thread(p);
368
369	return 0;
370}
371
372void tls_preserve_current_state(void)
373{
374	*task_user_tls(current) = read_sysreg(tpidr_el0);
375}
376
377static void tls_thread_switch(struct task_struct *next)
378{
379	tls_preserve_current_state();
380
381	if (is_compat_thread(task_thread_info(next)))
382		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
383	else if (!arm64_kernel_unmapped_at_el0())
384		write_sysreg(0, tpidrro_el0);
385
386	write_sysreg(*task_user_tls(next), tpidr_el0);
387}
388
389/* Restore the UAO state depending on next's addr_limit */
390void uao_thread_switch(struct task_struct *next)
 
 
 
391{
392	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
393		if (task_thread_info(next)->addr_limit == KERNEL_DS)
394			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
395		else
396			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
397	}
 
 
 
 
 
 
 
 
 
398}
399
400/*
401 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
402 * shadow copy so that we can restore this upon entry from userspace.
403 *
404 * This is *only* for exception entry from EL0, and is not valid until we
405 * __switch_to() a user task.
406 */
407DEFINE_PER_CPU(struct task_struct *, __entry_task);
408
409static void entry_task_switch(struct task_struct *next)
410{
411	__this_cpu_write(__entry_task, next);
412}
413
414/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415 * Thread switching.
416 */
417__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
418				struct task_struct *next)
419{
420	struct task_struct *last;
421
422	fpsimd_thread_switch(next);
423	tls_thread_switch(next);
424	hw_breakpoint_thread_switch(next);
425	contextidr_thread_switch(next);
426	entry_task_switch(next);
427	uao_thread_switch(next);
 
 
 
428
429	/*
430	 * Complete any pending TLB or cache maintenance on this CPU in case
431	 * the thread migrates to a different CPU.
432	 * This full barrier is also required by the membarrier system
433	 * call.
434	 */
435	dsb(ish);
436
 
 
 
 
 
 
 
 
 
 
437	/* the actual thread switch */
438	last = cpu_switch_to(prev, next);
439
440	return last;
441}
442
443unsigned long get_wchan(struct task_struct *p)
444{
445	struct stackframe frame;
446	unsigned long stack_page, ret = 0;
447	int count = 0;
448	if (!p || p == current || p->state == TASK_RUNNING)
449		return 0;
450
451	stack_page = (unsigned long)try_get_task_stack(p);
452	if (!stack_page)
453		return 0;
454
455	frame.fp = thread_saved_fp(p);
456	frame.pc = thread_saved_pc(p);
457#ifdef CONFIG_FUNCTION_GRAPH_TRACER
458	frame.graph = p->curr_ret_stack;
459#endif
460	do {
461		if (unwind_frame(p, &frame))
462			goto out;
463		if (!in_sched_functions(frame.pc)) {
464			ret = frame.pc;
465			goto out;
466		}
467	} while (count ++ < 16);
468
469out:
470	put_task_stack(p);
471	return ret;
472}
473
474unsigned long arch_align_stack(unsigned long sp)
475{
476	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
477		sp -= get_random_int() & ~PAGE_MASK;
478	return sp & ~0xf;
479}
480
481unsigned long arch_randomize_brk(struct mm_struct *mm)
 
 
 
482{
483	if (is_compat_task())
484		return randomize_page(mm->brk, SZ_32M);
485	else
486		return randomize_page(mm->brk, SZ_1G);
 
 
 
 
 
 
 
 
 
 
 
 
487}
488
 
489/*
490 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
491 */
492void arch_setup_new_exec(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493{
494	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
 
 
 
 
 
 
 
 
 
 
 
495}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/process.c
  4 *
  5 * Original Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  7 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <stdarg.h>
 11
 12#include <linux/compat.h>
 13#include <linux/efi.h>
 14#include <linux/elf.h>
 15#include <linux/export.h>
 16#include <linux/sched.h>
 17#include <linux/sched/debug.h>
 18#include <linux/sched/task.h>
 19#include <linux/sched/task_stack.h>
 20#include <linux/kernel.h>
 21#include <linux/mman.h>
 22#include <linux/mm.h>
 23#include <linux/nospec.h>
 24#include <linux/stddef.h>
 25#include <linux/sysctl.h>
 26#include <linux/unistd.h>
 27#include <linux/user.h>
 28#include <linux/delay.h>
 29#include <linux/reboot.h>
 30#include <linux/interrupt.h>
 31#include <linux/init.h>
 32#include <linux/cpu.h>
 33#include <linux/elfcore.h>
 34#include <linux/pm.h>
 35#include <linux/tick.h>
 36#include <linux/utsname.h>
 37#include <linux/uaccess.h>
 38#include <linux/random.h>
 39#include <linux/hw_breakpoint.h>
 40#include <linux/personality.h>
 41#include <linux/notifier.h>
 42#include <trace/events/power.h>
 43#include <linux/percpu.h>
 44#include <linux/thread_info.h>
 45#include <linux/prctl.h>
 46
 47#include <asm/alternative.h>
 48#include <asm/compat.h>
 49#include <asm/cpufeature.h>
 50#include <asm/cacheflush.h>
 51#include <asm/exec.h>
 52#include <asm/fpsimd.h>
 53#include <asm/mmu_context.h>
 54#include <asm/mte.h>
 55#include <asm/processor.h>
 56#include <asm/pointer_auth.h>
 57#include <asm/stacktrace.h>
 58#include <asm/switch_to.h>
 59#include <asm/system_misc.h>
 60
 61#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
 62#include <linux/stackprotector.h>
 63unsigned long __stack_chk_guard __ro_after_init;
 64EXPORT_SYMBOL(__stack_chk_guard);
 65#endif
 66
 67/*
 68 * Function pointers to optional machine specific functions
 69 */
 70void (*pm_power_off)(void);
 71EXPORT_SYMBOL_GPL(pm_power_off);
 72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73#ifdef CONFIG_HOTPLUG_CPU
 74void arch_cpu_idle_dead(void)
 75{
 76       cpu_die();
 77}
 78#endif
 79
 80/*
 81 * Called by kexec, immediately prior to machine_kexec().
 82 *
 83 * This must completely disable all secondary CPUs; simply causing those CPUs
 84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
 88 */
 89void machine_shutdown(void)
 90{
 91	smp_shutdown_nonboot_cpus(reboot_cpu);
 92}
 93
 94/*
 95 * Halting simply requires that the secondary CPUs stop performing any
 96 * activity (executing tasks, handling interrupts). smp_send_stop()
 97 * achieves this.
 98 */
 99void machine_halt(void)
100{
101	local_irq_disable();
102	smp_send_stop();
103	while (1);
104}
105
106/*
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
110 * with it.
111 */
112void machine_power_off(void)
113{
114	local_irq_disable();
115	smp_send_stop();
116	if (pm_power_off)
117		pm_power_off();
118}
119
120/*
121 * Restart requires that the secondary CPUs stop performing any activity
122 * while the primary CPU resets the system. Systems with multiple CPUs must
123 * provide a HW restart implementation, to ensure that all CPUs reset at once.
124 * This is required so that any code running after reset on the primary CPU
125 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126 * executing pre-reset code, and using RAM that the primary CPU's code wishes
127 * to use. Implementing such co-ordination would be essentially impossible.
128 */
129void machine_restart(char *cmd)
130{
131	/* Disable interrupts first */
132	local_irq_disable();
133	smp_send_stop();
134
135	/*
136	 * UpdateCapsule() depends on the system being reset via
137	 * ResetSystem().
138	 */
139	if (efi_enabled(EFI_RUNTIME_SERVICES))
140		efi_reboot(reboot_mode, NULL);
141
142	/* Now call the architecture specific reboot code. */
143	do_kernel_restart(cmd);
 
 
 
144
145	/*
146	 * Whoops - the architecture was unable to reboot.
147	 */
148	printk("Reboot failed -- System halted\n");
149	while (1);
150}
151
152#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153static const char *const btypes[] = {
154	bstr(NONE, "--"),
155	bstr(  JC, "jc"),
156	bstr(   C, "-c"),
157	bstr(  J , "j-")
158};
159#undef bstr
160
161static void print_pstate(struct pt_regs *regs)
162{
163	u64 pstate = regs->pstate;
164
165	if (compat_user_mode(regs)) {
166		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
167			pstate,
168			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
178	} else {
179		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180					       PSR_BTYPE_SHIFT];
181
182		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
183			pstate,
184			pstate & PSR_N_BIT ? 'N' : 'n',
185			pstate & PSR_Z_BIT ? 'Z' : 'z',
186			pstate & PSR_C_BIT ? 'C' : 'c',
187			pstate & PSR_V_BIT ? 'V' : 'v',
188			pstate & PSR_D_BIT ? 'D' : 'd',
189			pstate & PSR_A_BIT ? 'A' : 'a',
190			pstate & PSR_I_BIT ? 'I' : 'i',
191			pstate & PSR_F_BIT ? 'F' : 'f',
192			pstate & PSR_PAN_BIT ? '+' : '-',
193			pstate & PSR_UAO_BIT ? '+' : '-',
194			pstate & PSR_TCO_BIT ? '+' : '-',
195			btype_str);
196	}
197}
198
199void __show_regs(struct pt_regs *regs)
200{
201	int i, top_reg;
202	u64 lr, sp;
203
204	if (compat_user_mode(regs)) {
205		lr = regs->compat_lr;
206		sp = regs->compat_sp;
207		top_reg = 12;
208	} else {
209		lr = regs->regs[30];
210		sp = regs->sp;
211		top_reg = 29;
212	}
213
214	show_regs_print_info(KERN_DEFAULT);
215	print_pstate(regs);
216
217	if (!user_mode(regs)) {
218		printk("pc : %pS\n", (void *)regs->pc);
219		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
220	} else {
221		printk("pc : %016llx\n", regs->pc);
222		printk("lr : %016llx\n", lr);
223	}
224
225	printk("sp : %016llx\n", sp);
226
227	if (system_uses_irq_prio_masking())
228		printk("pmr_save: %08llx\n", regs->pmr_save);
229
230	i = top_reg;
231
232	while (i >= 0) {
233		printk("x%-2d: %016llx", i, regs->regs[i]);
 
234
235		while (i-- % 3)
236			pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
 
 
237
238		pr_cont("\n");
239	}
240}
241
242void show_regs(struct pt_regs *regs)
243{
244	__show_regs(regs);
245	dump_backtrace(regs, NULL, KERN_DEFAULT);
246}
247
248static void tls_thread_flush(void)
249{
250	write_sysreg(0, tpidr_el0);
251
252	if (is_compat_task()) {
253		current->thread.uw.tp_value = 0;
254
255		/*
256		 * We need to ensure ordering between the shadow state and the
257		 * hardware state, so that we don't corrupt the hardware state
258		 * with a stale shadow state during context switch.
259		 */
260		barrier();
261		write_sysreg(0, tpidrro_el0);
262	}
263}
264
265static void flush_tagged_addr_state(void)
266{
267	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
268		clear_thread_flag(TIF_TAGGED_ADDR);
269}
270
271void flush_thread(void)
272{
273	fpsimd_flush_thread();
274	tls_thread_flush();
275	flush_ptrace_hw_breakpoint(current);
276	flush_tagged_addr_state();
277}
278
279void release_thread(struct task_struct *dead_task)
280{
281}
282
283void arch_release_task_struct(struct task_struct *tsk)
284{
285	fpsimd_release_task(tsk);
286}
287
 
 
 
 
 
 
 
 
 
 
288int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
289{
290	if (current->mm)
291		fpsimd_preserve_current_state();
292	*dst = *src;
293
294	/* We rely on the above assignment to initialize dst's thread_flags: */
295	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
296
297	/*
298	 * Detach src's sve_state (if any) from dst so that it does not
299	 * get erroneously used or freed prematurely.  dst's sve_state
300	 * will be allocated on demand later on if dst uses SVE.
301	 * For consistency, also clear TIF_SVE here: this could be done
302	 * later in copy_process(), but to avoid tripping up future
303	 * maintainers it is best not to leave TIF_SVE and sve_state in
304	 * an inconsistent state, even temporarily.
305	 */
306	dst->thread.sve_state = NULL;
307	clear_tsk_thread_flag(dst, TIF_SVE);
308
309	/* clear any pending asynchronous tag fault raised by the parent */
310	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
311
312	return 0;
313}
314
315asmlinkage void ret_from_fork(void) asm("ret_from_fork");
316
317int copy_thread(unsigned long clone_flags, unsigned long stack_start,
318		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
319{
320	struct pt_regs *childregs = task_pt_regs(p);
321
322	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
323
324	/*
 
 
 
 
 
 
 
325	 * In case p was allocated the same task_struct pointer as some
326	 * other recently-exited task, make sure p is disassociated from
327	 * any cpu that may have run that now-exited task recently.
328	 * Otherwise we could erroneously skip reloading the FPSIMD
329	 * registers for p.
330	 */
331	fpsimd_flush_task_state(p);
332
333	ptrauth_thread_init_kernel(p);
334
335	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
336		*childregs = *current_pt_regs();
337		childregs->regs[0] = 0;
338
339		/*
340		 * Read the current TLS pointer from tpidr_el0 as it may be
341		 * out-of-sync with the saved value.
342		 */
343		*task_user_tls(p) = read_sysreg(tpidr_el0);
344
345		if (stack_start) {
346			if (is_compat_thread(task_thread_info(p)))
347				childregs->compat_sp = stack_start;
348			else
349				childregs->sp = stack_start;
350		}
351
352		/*
353		 * If a TLS pointer was passed to clone, use it for the new
354		 * thread.
355		 */
356		if (clone_flags & CLONE_SETTLS)
357			p->thread.uw.tp_value = tls;
358	} else {
359		/*
360		 * A kthread has no context to ERET to, so ensure any buggy
361		 * ERET is treated as an illegal exception return.
362		 *
363		 * When a user task is created from a kthread, childregs will
364		 * be initialized by start_thread() or start_compat_thread().
365		 */
366		memset(childregs, 0, sizeof(struct pt_regs));
367		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
368
 
 
369		p->thread.cpu_context.x19 = stack_start;
370		p->thread.cpu_context.x20 = stk_sz;
371	}
372	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
373	p->thread.cpu_context.sp = (unsigned long)childregs;
374	/*
375	 * For the benefit of the unwinder, set up childregs->stackframe
376	 * as the final frame for the new task.
377	 */
378	p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
379
380	ptrace_hw_copy_thread(p);
381
382	return 0;
383}
384
385void tls_preserve_current_state(void)
386{
387	*task_user_tls(current) = read_sysreg(tpidr_el0);
388}
389
390static void tls_thread_switch(struct task_struct *next)
391{
392	tls_preserve_current_state();
393
394	if (is_compat_thread(task_thread_info(next)))
395		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
396	else if (!arm64_kernel_unmapped_at_el0())
397		write_sysreg(0, tpidrro_el0);
398
399	write_sysreg(*task_user_tls(next), tpidr_el0);
400}
401
402/*
403 * Force SSBS state on context-switch, since it may be lost after migrating
404 * from a CPU which treats the bit as RES0 in a heterogeneous system.
405 */
406static void ssbs_thread_switch(struct task_struct *next)
407{
408	/*
409	 * Nothing to do for kernel threads, but 'regs' may be junk
410	 * (e.g. idle task) so check the flags and bail early.
411	 */
412	if (unlikely(next->flags & PF_KTHREAD))
413		return;
414
415	/*
416	 * If all CPUs implement the SSBS extension, then we just need to
417	 * context-switch the PSTATE field.
418	 */
419	if (cpus_have_const_cap(ARM64_SSBS))
420		return;
421
422	spectre_v4_enable_task_mitigation(next);
423}
424
425/*
426 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
427 * shadow copy so that we can restore this upon entry from userspace.
428 *
429 * This is *only* for exception entry from EL0, and is not valid until we
430 * __switch_to() a user task.
431 */
432DEFINE_PER_CPU(struct task_struct *, __entry_task);
433
434static void entry_task_switch(struct task_struct *next)
435{
436	__this_cpu_write(__entry_task, next);
437}
438
439/*
440 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
441 * Assuming the virtual counter is enabled at the beginning of times:
442 *
443 * - disable access when switching from a 64bit task to a 32bit task
444 * - enable access when switching from a 32bit task to a 64bit task
445 */
446static void erratum_1418040_thread_switch(struct task_struct *prev,
447					  struct task_struct *next)
448{
449	bool prev32, next32;
450	u64 val;
451
452	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
453		return;
454
455	prev32 = is_compat_thread(task_thread_info(prev));
456	next32 = is_compat_thread(task_thread_info(next));
457
458	if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
459		return;
460
461	val = read_sysreg(cntkctl_el1);
462
463	if (!next32)
464		val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
465	else
466		val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
467
468	write_sysreg(val, cntkctl_el1);
469}
470
471static void compat_thread_switch(struct task_struct *next)
472{
473	if (!is_compat_thread(task_thread_info(next)))
474		return;
475
476	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
477		set_tsk_thread_flag(next, TIF_NOTIFY_RESUME);
478}
479
480static void update_sctlr_el1(u64 sctlr)
481{
482	/*
483	 * EnIA must not be cleared while in the kernel as this is necessary for
484	 * in-kernel PAC. It will be cleared on kernel exit if needed.
485	 */
486	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
487
488	/* ISB required for the kernel uaccess routines when setting TCF0. */
489	isb();
490}
491
492void set_task_sctlr_el1(u64 sctlr)
493{
494	/*
495	 * __switch_to() checks current->thread.sctlr as an
496	 * optimisation. Disable preemption so that it does not see
497	 * the variable update before the SCTLR_EL1 one.
498	 */
499	preempt_disable();
500	current->thread.sctlr_user = sctlr;
501	update_sctlr_el1(sctlr);
502	preempt_enable();
503}
504
505/*
506 * Thread switching.
507 */
508__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
509				struct task_struct *next)
510{
511	struct task_struct *last;
512
513	fpsimd_thread_switch(next);
514	tls_thread_switch(next);
515	hw_breakpoint_thread_switch(next);
516	contextidr_thread_switch(next);
517	entry_task_switch(next);
518	ssbs_thread_switch(next);
519	erratum_1418040_thread_switch(prev, next);
520	ptrauth_thread_switch_user(next);
521	compat_thread_switch(next);
522
523	/*
524	 * Complete any pending TLB or cache maintenance on this CPU in case
525	 * the thread migrates to a different CPU.
526	 * This full barrier is also required by the membarrier system
527	 * call.
528	 */
529	dsb(ish);
530
531	/*
532	 * MTE thread switching must happen after the DSB above to ensure that
533	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
534	 * registers.
535	 */
536	mte_thread_switch(next);
537	/* avoid expensive SCTLR_EL1 accesses if no change */
538	if (prev->thread.sctlr_user != next->thread.sctlr_user)
539		update_sctlr_el1(next->thread.sctlr_user);
540
541	/* the actual thread switch */
542	last = cpu_switch_to(prev, next);
543
544	return last;
545}
546
547unsigned long get_wchan(struct task_struct *p)
548{
549	struct stackframe frame;
550	unsigned long stack_page, ret = 0;
551	int count = 0;
552	if (!p || p == current || task_is_running(p))
553		return 0;
554
555	stack_page = (unsigned long)try_get_task_stack(p);
556	if (!stack_page)
557		return 0;
558
559	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
560
 
 
 
561	do {
562		if (unwind_frame(p, &frame))
563			goto out;
564		if (!in_sched_functions(frame.pc)) {
565			ret = frame.pc;
566			goto out;
567		}
568	} while (count++ < 16);
569
570out:
571	put_task_stack(p);
572	return ret;
573}
574
575unsigned long arch_align_stack(unsigned long sp)
576{
577	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
578		sp -= get_random_int() & ~PAGE_MASK;
579	return sp & ~0xf;
580}
581
582/*
583 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
584 */
585void arch_setup_new_exec(void)
586{
587	unsigned long mmflags = 0;
588
589	if (is_compat_task()) {
590		mmflags = MMCF_AARCH32;
591		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
592			set_tsk_thread_flag(current, TIF_NOTIFY_RESUME);
593	}
594
595	current->mm->context.flags = mmflags;
596	ptrauth_thread_init_user();
597	mte_thread_init_user();
598
599	if (task_spec_ssb_noexec(current)) {
600		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
601					 PR_SPEC_ENABLE);
602	}
603}
604
605#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
606/*
607 * Control the relaxed ABI allowing tagged user addresses into the kernel.
608 */
609static unsigned int tagged_addr_disabled;
610
611long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
612{
613	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
614	struct thread_info *ti = task_thread_info(task);
615
616	if (is_compat_thread(ti))
617		return -EINVAL;
618
619	if (system_supports_mte())
620		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
621
622	if (arg & ~valid_mask)
623		return -EINVAL;
624
625	/*
626	 * Do not allow the enabling of the tagged address ABI if globally
627	 * disabled via sysctl abi.tagged_addr_disabled.
628	 */
629	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
630		return -EINVAL;
631
632	if (set_mte_ctrl(task, arg) != 0)
633		return -EINVAL;
634
635	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
636
637	return 0;
638}
639
640long get_tagged_addr_ctrl(struct task_struct *task)
641{
642	long ret = 0;
643	struct thread_info *ti = task_thread_info(task);
644
645	if (is_compat_thread(ti))
646		return -EINVAL;
647
648	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
649		ret = PR_TAGGED_ADDR_ENABLE;
650
651	ret |= get_mte_ctrl(task);
652
653	return ret;
654}
655
656/*
657 * Global sysctl to disable the tagged user addresses support. This control
658 * only prevents the tagged address ABI enabling via prctl() and does not
659 * disable it for tasks that already opted in to the relaxed ABI.
660 */
661
662static struct ctl_table tagged_addr_sysctl_table[] = {
663	{
664		.procname	= "tagged_addr_disabled",
665		.mode		= 0644,
666		.data		= &tagged_addr_disabled,
667		.maxlen		= sizeof(int),
668		.proc_handler	= proc_dointvec_minmax,
669		.extra1		= SYSCTL_ZERO,
670		.extra2		= SYSCTL_ONE,
671	},
672	{ }
673};
674
675static int __init tagged_addr_init(void)
676{
677	if (!register_sysctl("abi", tagged_addr_sysctl_table))
678		return -EINVAL;
679	return 0;
680}
681
682core_initcall(tagged_addr_init);
683#endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
684
685#ifdef CONFIG_BINFMT_ELF
686int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
687			 bool has_interp, bool is_interp)
688{
689	/*
690	 * For dynamically linked executables the interpreter is
691	 * responsible for setting PROT_BTI on everything except
692	 * itself.
693	 */
694	if (is_interp != has_interp)
695		return prot;
696
697	if (!(state->flags & ARM64_ELF_BTI))
698		return prot;
699
700	if (prot & PROT_EXEC)
701		prot |= PROT_BTI;
702
703	return prot;
704}
705#endif