Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "util.h"
   5#include "string2.h"
   6#include <sys/param.h>
   7#include <sys/types.h>
   8#include <byteswap.h>
   9#include <unistd.h>
  10#include <stdio.h>
  11#include <stdlib.h>
  12#include <linux/compiler.h>
  13#include <linux/list.h>
  14#include <linux/kernel.h>
  15#include <linux/bitops.h>
 
  16#include <linux/stringify.h>
 
  17#include <sys/stat.h>
  18#include <sys/utsname.h>
  19#include <linux/time64.h>
  20#include <dirent.h>
 
 
 
 
  21
 
  22#include "evlist.h"
  23#include "evsel.h"
 
  24#include "header.h"
  25#include "memswap.h"
  26#include "../perf.h"
  27#include "trace-event.h"
  28#include "session.h"
  29#include "symbol.h"
  30#include "debug.h"
  31#include "cpumap.h"
  32#include "pmu.h"
  33#include "vdso.h"
  34#include "strbuf.h"
  35#include "build-id.h"
  36#include "data.h"
  37#include <api/fs/fs.h>
  38#include "asm/bug.h"
  39#include "tool.h"
  40#include "time-utils.h"
  41#include "units.h"
 
 
 
 
 
  42
  43#include "sane_ctype.h"
 
  44
  45/*
  46 * magic2 = "PERFILE2"
  47 * must be a numerical value to let the endianness
  48 * determine the memory layout. That way we are able
  49 * to detect endianness when reading the perf.data file
  50 * back.
  51 *
  52 * we check for legacy (PERFFILE) format.
  53 */
  54static const char *__perf_magic1 = "PERFFILE";
  55static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  56static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  57
  58#define PERF_MAGIC	__perf_magic2
  59
  60const char perf_version_string[] = PERF_VERSION;
  61
  62struct perf_file_attr {
  63	struct perf_event_attr	attr;
  64	struct perf_file_section	ids;
  65};
  66
  67struct feat_fd {
  68	struct perf_header	*ph;
  69	int			fd;
  70	void			*buf;	/* Either buf != NULL or fd >= 0 */
  71	ssize_t			offset;
  72	size_t			size;
  73	struct perf_evsel	*events;
  74};
  75
  76void perf_header__set_feat(struct perf_header *header, int feat)
  77{
  78	set_bit(feat, header->adds_features);
  79}
  80
  81void perf_header__clear_feat(struct perf_header *header, int feat)
  82{
  83	clear_bit(feat, header->adds_features);
  84}
  85
  86bool perf_header__has_feat(const struct perf_header *header, int feat)
  87{
  88	return test_bit(feat, header->adds_features);
  89}
  90
  91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  92{
  93	ssize_t ret = writen(ff->fd, buf, size);
  94
  95	if (ret != (ssize_t)size)
  96		return ret < 0 ? (int)ret : -1;
  97	return 0;
  98}
  99
 100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 101{
 102	/* struct perf_event_header::size is u16 */
 103	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 104	size_t new_size = ff->size;
 105	void *addr;
 106
 107	if (size + ff->offset > max_size)
 108		return -E2BIG;
 109
 110	while (size > (new_size - ff->offset))
 111		new_size <<= 1;
 112	new_size = min(max_size, new_size);
 113
 114	if (ff->size < new_size) {
 115		addr = realloc(ff->buf, new_size);
 116		if (!addr)
 117			return -ENOMEM;
 118		ff->buf = addr;
 119		ff->size = new_size;
 120	}
 121
 122	memcpy(ff->buf + ff->offset, buf, size);
 123	ff->offset += size;
 124
 125	return 0;
 126}
 127
 128/* Return: 0 if succeded, -ERR if failed. */
 129int do_write(struct feat_fd *ff, const void *buf, size_t size)
 130{
 131	if (!ff->buf)
 132		return __do_write_fd(ff, buf, size);
 133	return __do_write_buf(ff, buf, size);
 134}
 135
 136/* Return: 0 if succeded, -ERR if failed. */
 137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 138{
 139	u64 *p = (u64 *) set;
 140	int i, ret;
 141
 142	ret = do_write(ff, &size, sizeof(size));
 143	if (ret < 0)
 144		return ret;
 145
 146	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 147		ret = do_write(ff, p + i, sizeof(*p));
 148		if (ret < 0)
 149			return ret;
 150	}
 151
 152	return 0;
 153}
 154
 155/* Return: 0 if succeded, -ERR if failed. */
 156int write_padded(struct feat_fd *ff, const void *bf,
 157		 size_t count, size_t count_aligned)
 158{
 159	static const char zero_buf[NAME_ALIGN];
 160	int err = do_write(ff, bf, count);
 161
 162	if (!err)
 163		err = do_write(ff, zero_buf, count_aligned - count);
 164
 165	return err;
 166}
 167
 168#define string_size(str)						\
 169	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 170
 171/* Return: 0 if succeded, -ERR if failed. */
 172static int do_write_string(struct feat_fd *ff, const char *str)
 173{
 174	u32 len, olen;
 175	int ret;
 176
 177	olen = strlen(str) + 1;
 178	len = PERF_ALIGN(olen, NAME_ALIGN);
 179
 180	/* write len, incl. \0 */
 181	ret = do_write(ff, &len, sizeof(len));
 182	if (ret < 0)
 183		return ret;
 184
 185	return write_padded(ff, str, olen, len);
 186}
 187
 188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 189{
 190	ssize_t ret = readn(ff->fd, addr, size);
 191
 192	if (ret != size)
 193		return ret < 0 ? (int)ret : -1;
 194	return 0;
 195}
 196
 197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 198{
 199	if (size > (ssize_t)ff->size - ff->offset)
 200		return -1;
 201
 202	memcpy(addr, ff->buf + ff->offset, size);
 203	ff->offset += size;
 204
 205	return 0;
 206
 207}
 208
 209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 210{
 211	if (!ff->buf)
 212		return __do_read_fd(ff, addr, size);
 213	return __do_read_buf(ff, addr, size);
 214}
 215
 216static int do_read_u32(struct feat_fd *ff, u32 *addr)
 217{
 218	int ret;
 219
 220	ret = __do_read(ff, addr, sizeof(*addr));
 221	if (ret)
 222		return ret;
 223
 224	if (ff->ph->needs_swap)
 225		*addr = bswap_32(*addr);
 226	return 0;
 227}
 228
 229static int do_read_u64(struct feat_fd *ff, u64 *addr)
 230{
 231	int ret;
 232
 233	ret = __do_read(ff, addr, sizeof(*addr));
 234	if (ret)
 235		return ret;
 236
 237	if (ff->ph->needs_swap)
 238		*addr = bswap_64(*addr);
 239	return 0;
 240}
 241
 242static char *do_read_string(struct feat_fd *ff)
 243{
 244	u32 len;
 245	char *buf;
 246
 247	if (do_read_u32(ff, &len))
 248		return NULL;
 249
 250	buf = malloc(len);
 251	if (!buf)
 252		return NULL;
 253
 254	if (!__do_read(ff, buf, len)) {
 255		/*
 256		 * strings are padded by zeroes
 257		 * thus the actual strlen of buf
 258		 * may be less than len
 259		 */
 260		return buf;
 261	}
 262
 263	free(buf);
 264	return NULL;
 265}
 266
 267/* Return: 0 if succeded, -ERR if failed. */
 268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 269{
 270	unsigned long *set;
 271	u64 size, *p;
 272	int i, ret;
 273
 274	ret = do_read_u64(ff, &size);
 275	if (ret)
 276		return ret;
 277
 278	set = bitmap_alloc(size);
 279	if (!set)
 280		return -ENOMEM;
 281
 282	bitmap_zero(set, size);
 283
 284	p = (u64 *) set;
 285
 286	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 287		ret = do_read_u64(ff, p + i);
 288		if (ret < 0) {
 289			free(set);
 290			return ret;
 291		}
 292	}
 293
 294	*pset  = set;
 295	*psize = size;
 296	return 0;
 297}
 298
 299static int write_tracing_data(struct feat_fd *ff,
 300			      struct perf_evlist *evlist)
 301{
 302	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 303		return -1;
 304
 305	return read_tracing_data(ff->fd, &evlist->entries);
 306}
 307
 308static int write_build_id(struct feat_fd *ff,
 309			  struct perf_evlist *evlist __maybe_unused)
 310{
 311	struct perf_session *session;
 312	int err;
 313
 314	session = container_of(ff->ph, struct perf_session, header);
 315
 316	if (!perf_session__read_build_ids(session, true))
 317		return -1;
 318
 319	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 320		return -1;
 321
 322	err = perf_session__write_buildid_table(session, ff);
 323	if (err < 0) {
 324		pr_debug("failed to write buildid table\n");
 325		return err;
 326	}
 327	perf_session__cache_build_ids(session);
 328
 329	return 0;
 330}
 331
 332static int write_hostname(struct feat_fd *ff,
 333			  struct perf_evlist *evlist __maybe_unused)
 334{
 335	struct utsname uts;
 336	int ret;
 337
 338	ret = uname(&uts);
 339	if (ret < 0)
 340		return -1;
 341
 342	return do_write_string(ff, uts.nodename);
 343}
 344
 345static int write_osrelease(struct feat_fd *ff,
 346			   struct perf_evlist *evlist __maybe_unused)
 347{
 348	struct utsname uts;
 349	int ret;
 350
 351	ret = uname(&uts);
 352	if (ret < 0)
 353		return -1;
 354
 355	return do_write_string(ff, uts.release);
 356}
 357
 358static int write_arch(struct feat_fd *ff,
 359		      struct perf_evlist *evlist __maybe_unused)
 360{
 361	struct utsname uts;
 362	int ret;
 363
 364	ret = uname(&uts);
 365	if (ret < 0)
 366		return -1;
 367
 368	return do_write_string(ff, uts.machine);
 369}
 370
 371static int write_version(struct feat_fd *ff,
 372			 struct perf_evlist *evlist __maybe_unused)
 373{
 374	return do_write_string(ff, perf_version_string);
 375}
 376
 377static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 378{
 379	FILE *file;
 380	char *buf = NULL;
 381	char *s, *p;
 382	const char *search = cpuinfo_proc;
 383	size_t len = 0;
 384	int ret = -1;
 385
 386	if (!search)
 387		return -1;
 388
 389	file = fopen("/proc/cpuinfo", "r");
 390	if (!file)
 391		return -1;
 392
 393	while (getline(&buf, &len, file) > 0) {
 394		ret = strncmp(buf, search, strlen(search));
 395		if (!ret)
 396			break;
 397	}
 398
 399	if (ret) {
 400		ret = -1;
 401		goto done;
 402	}
 403
 404	s = buf;
 405
 406	p = strchr(buf, ':');
 407	if (p && *(p+1) == ' ' && *(p+2))
 408		s = p + 2;
 409	p = strchr(s, '\n');
 410	if (p)
 411		*p = '\0';
 412
 413	/* squash extra space characters (branding string) */
 414	p = s;
 415	while (*p) {
 416		if (isspace(*p)) {
 417			char *r = p + 1;
 418			char *q = r;
 419			*p = ' ';
 420			while (*q && isspace(*q))
 421				q++;
 422			if (q != (p+1))
 423				while ((*r++ = *q++));
 424		}
 425		p++;
 426	}
 427	ret = do_write_string(ff, s);
 428done:
 429	free(buf);
 430	fclose(file);
 431	return ret;
 432}
 433
 434static int write_cpudesc(struct feat_fd *ff,
 435		       struct perf_evlist *evlist __maybe_unused)
 436{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437	const char *cpuinfo_procs[] = CPUINFO_PROC;
 
 438	unsigned int i;
 439
 440	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 441		int ret;
 442		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 443		if (ret >= 0)
 444			return ret;
 445	}
 446	return -1;
 447}
 448
 449
 450static int write_nrcpus(struct feat_fd *ff,
 451			struct perf_evlist *evlist __maybe_unused)
 452{
 453	long nr;
 454	u32 nrc, nra;
 455	int ret;
 456
 457	nrc = cpu__max_present_cpu();
 458
 459	nr = sysconf(_SC_NPROCESSORS_ONLN);
 460	if (nr < 0)
 461		return -1;
 462
 463	nra = (u32)(nr & UINT_MAX);
 464
 465	ret = do_write(ff, &nrc, sizeof(nrc));
 466	if (ret < 0)
 467		return ret;
 468
 469	return do_write(ff, &nra, sizeof(nra));
 470}
 471
 472static int write_event_desc(struct feat_fd *ff,
 473			    struct perf_evlist *evlist)
 474{
 475	struct perf_evsel *evsel;
 476	u32 nre, nri, sz;
 477	int ret;
 478
 479	nre = evlist->nr_entries;
 480
 481	/*
 482	 * write number of events
 483	 */
 484	ret = do_write(ff, &nre, sizeof(nre));
 485	if (ret < 0)
 486		return ret;
 487
 488	/*
 489	 * size of perf_event_attr struct
 490	 */
 491	sz = (u32)sizeof(evsel->attr);
 492	ret = do_write(ff, &sz, sizeof(sz));
 493	if (ret < 0)
 494		return ret;
 495
 496	evlist__for_each_entry(evlist, evsel) {
 497		ret = do_write(ff, &evsel->attr, sz);
 498		if (ret < 0)
 499			return ret;
 500		/*
 501		 * write number of unique id per event
 502		 * there is one id per instance of an event
 503		 *
 504		 * copy into an nri to be independent of the
 505		 * type of ids,
 506		 */
 507		nri = evsel->ids;
 508		ret = do_write(ff, &nri, sizeof(nri));
 509		if (ret < 0)
 510			return ret;
 511
 512		/*
 513		 * write event string as passed on cmdline
 514		 */
 515		ret = do_write_string(ff, perf_evsel__name(evsel));
 516		if (ret < 0)
 517			return ret;
 518		/*
 519		 * write unique ids for this event
 520		 */
 521		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
 522		if (ret < 0)
 523			return ret;
 524	}
 525	return 0;
 526}
 527
 528static int write_cmdline(struct feat_fd *ff,
 529			 struct perf_evlist *evlist __maybe_unused)
 530{
 531	char buf[MAXPATHLEN];
 532	u32 n;
 533	int i, ret;
 534
 535	/* actual path to perf binary */
 536	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
 537	if (ret <= 0)
 538		return -1;
 539
 540	/* readlink() does not add null termination */
 541	buf[ret] = '\0';
 542
 543	/* account for binary path */
 544	n = perf_env.nr_cmdline + 1;
 545
 546	ret = do_write(ff, &n, sizeof(n));
 547	if (ret < 0)
 548		return ret;
 549
 550	ret = do_write_string(ff, buf);
 551	if (ret < 0)
 552		return ret;
 553
 554	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 555		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 556		if (ret < 0)
 557			return ret;
 558	}
 559	return 0;
 560}
 561
 562#define CORE_SIB_FMT \
 563	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
 564#define THRD_SIB_FMT \
 565	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
 566
 567struct cpu_topo {
 568	u32 cpu_nr;
 569	u32 core_sib;
 570	u32 thread_sib;
 571	char **core_siblings;
 572	char **thread_siblings;
 573};
 574
 575static int build_cpu_topo(struct cpu_topo *tp, int cpu)
 576{
 577	FILE *fp;
 578	char filename[MAXPATHLEN];
 579	char *buf = NULL, *p;
 580	size_t len = 0;
 581	ssize_t sret;
 582	u32 i = 0;
 583	int ret = -1;
 584
 585	sprintf(filename, CORE_SIB_FMT, cpu);
 586	fp = fopen(filename, "r");
 587	if (!fp)
 588		goto try_threads;
 589
 590	sret = getline(&buf, &len, fp);
 591	fclose(fp);
 592	if (sret <= 0)
 593		goto try_threads;
 594
 595	p = strchr(buf, '\n');
 596	if (p)
 597		*p = '\0';
 598
 599	for (i = 0; i < tp->core_sib; i++) {
 600		if (!strcmp(buf, tp->core_siblings[i]))
 601			break;
 602	}
 603	if (i == tp->core_sib) {
 604		tp->core_siblings[i] = buf;
 605		tp->core_sib++;
 606		buf = NULL;
 607		len = 0;
 608	}
 609	ret = 0;
 610
 611try_threads:
 612	sprintf(filename, THRD_SIB_FMT, cpu);
 613	fp = fopen(filename, "r");
 614	if (!fp)
 615		goto done;
 616
 617	if (getline(&buf, &len, fp) <= 0)
 618		goto done;
 619
 620	p = strchr(buf, '\n');
 621	if (p)
 622		*p = '\0';
 623
 624	for (i = 0; i < tp->thread_sib; i++) {
 625		if (!strcmp(buf, tp->thread_siblings[i]))
 626			break;
 627	}
 628	if (i == tp->thread_sib) {
 629		tp->thread_siblings[i] = buf;
 630		tp->thread_sib++;
 631		buf = NULL;
 632	}
 633	ret = 0;
 634done:
 635	if(fp)
 636		fclose(fp);
 637	free(buf);
 638	return ret;
 639}
 640
 641static void free_cpu_topo(struct cpu_topo *tp)
 642{
 643	u32 i;
 644
 645	if (!tp)
 646		return;
 647
 648	for (i = 0 ; i < tp->core_sib; i++)
 649		zfree(&tp->core_siblings[i]);
 650
 651	for (i = 0 ; i < tp->thread_sib; i++)
 652		zfree(&tp->thread_siblings[i]);
 653
 654	free(tp);
 655}
 656
 657static struct cpu_topo *build_cpu_topology(void)
 658{
 659	struct cpu_topo *tp = NULL;
 660	void *addr;
 661	u32 nr, i;
 662	size_t sz;
 663	long ncpus;
 664	int ret = -1;
 665	struct cpu_map *map;
 666
 667	ncpus = cpu__max_present_cpu();
 668
 669	/* build online CPU map */
 670	map = cpu_map__new(NULL);
 671	if (map == NULL) {
 672		pr_debug("failed to get system cpumap\n");
 673		return NULL;
 674	}
 675
 676	nr = (u32)(ncpus & UINT_MAX);
 677
 678	sz = nr * sizeof(char *);
 679	addr = calloc(1, sizeof(*tp) + 2 * sz);
 680	if (!addr)
 681		goto out_free;
 682
 683	tp = addr;
 684	tp->cpu_nr = nr;
 685	addr += sizeof(*tp);
 686	tp->core_siblings = addr;
 687	addr += sz;
 688	tp->thread_siblings = addr;
 689
 690	for (i = 0; i < nr; i++) {
 691		if (!cpu_map__has(map, i))
 692			continue;
 693
 694		ret = build_cpu_topo(tp, i);
 695		if (ret < 0)
 696			break;
 697	}
 698
 699out_free:
 700	cpu_map__put(map);
 701	if (ret) {
 702		free_cpu_topo(tp);
 703		tp = NULL;
 704	}
 705	return tp;
 706}
 707
 708static int write_cpu_topology(struct feat_fd *ff,
 709			      struct perf_evlist *evlist __maybe_unused)
 710{
 711	struct cpu_topo *tp;
 712	u32 i;
 713	int ret, j;
 714
 715	tp = build_cpu_topology();
 716	if (!tp)
 717		return -1;
 718
 719	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 720	if (ret < 0)
 721		goto done;
 722
 723	for (i = 0; i < tp->core_sib; i++) {
 724		ret = do_write_string(ff, tp->core_siblings[i]);
 725		if (ret < 0)
 726			goto done;
 727	}
 728	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 729	if (ret < 0)
 730		goto done;
 731
 732	for (i = 0; i < tp->thread_sib; i++) {
 733		ret = do_write_string(ff, tp->thread_siblings[i]);
 734		if (ret < 0)
 735			break;
 736	}
 737
 738	ret = perf_env__read_cpu_topology_map(&perf_env);
 739	if (ret < 0)
 740		goto done;
 741
 742	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 743		ret = do_write(ff, &perf_env.cpu[j].core_id,
 744			       sizeof(perf_env.cpu[j].core_id));
 745		if (ret < 0)
 746			return ret;
 747		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 748			       sizeof(perf_env.cpu[j].socket_id));
 749		if (ret < 0)
 750			return ret;
 751	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752done:
 753	free_cpu_topo(tp);
 754	return ret;
 755}
 756
 757
 758
 759static int write_total_mem(struct feat_fd *ff,
 760			   struct perf_evlist *evlist __maybe_unused)
 761{
 762	char *buf = NULL;
 763	FILE *fp;
 764	size_t len = 0;
 765	int ret = -1, n;
 766	uint64_t mem;
 767
 768	fp = fopen("/proc/meminfo", "r");
 769	if (!fp)
 770		return -1;
 771
 772	while (getline(&buf, &len, fp) > 0) {
 773		ret = strncmp(buf, "MemTotal:", 9);
 774		if (!ret)
 775			break;
 776	}
 777	if (!ret) {
 778		n = sscanf(buf, "%*s %"PRIu64, &mem);
 779		if (n == 1)
 780			ret = do_write(ff, &mem, sizeof(mem));
 781	} else
 782		ret = -1;
 783	free(buf);
 784	fclose(fp);
 785	return ret;
 786}
 787
 788static int write_topo_node(struct feat_fd *ff, int node)
 789{
 790	char str[MAXPATHLEN];
 791	char field[32];
 792	char *buf = NULL, *p;
 793	size_t len = 0;
 794	FILE *fp;
 795	u64 mem_total, mem_free, mem;
 796	int ret = -1;
 797
 798	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
 799	fp = fopen(str, "r");
 800	if (!fp)
 801		return -1;
 802
 803	while (getline(&buf, &len, fp) > 0) {
 804		/* skip over invalid lines */
 805		if (!strchr(buf, ':'))
 806			continue;
 807		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
 808			goto done;
 809		if (!strcmp(field, "MemTotal:"))
 810			mem_total = mem;
 811		if (!strcmp(field, "MemFree:"))
 812			mem_free = mem;
 813	}
 814
 815	fclose(fp);
 816	fp = NULL;
 817
 818	ret = do_write(ff, &mem_total, sizeof(u64));
 819	if (ret)
 820		goto done;
 821
 822	ret = do_write(ff, &mem_free, sizeof(u64));
 823	if (ret)
 824		goto done;
 825
 826	ret = -1;
 827	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
 828
 829	fp = fopen(str, "r");
 830	if (!fp)
 831		goto done;
 832
 833	if (getline(&buf, &len, fp) <= 0)
 834		goto done;
 835
 836	p = strchr(buf, '\n');
 837	if (p)
 838		*p = '\0';
 839
 840	ret = do_write_string(ff, buf);
 841done:
 842	free(buf);
 843	if (fp)
 844		fclose(fp);
 845	return ret;
 846}
 847
 848static int write_numa_topology(struct feat_fd *ff,
 849			       struct perf_evlist *evlist __maybe_unused)
 850{
 851	char *buf = NULL;
 852	size_t len = 0;
 853	FILE *fp;
 854	struct cpu_map *node_map = NULL;
 855	char *c;
 856	u32 nr, i, j;
 857	int ret = -1;
 
 858
 859	fp = fopen("/sys/devices/system/node/online", "r");
 860	if (!fp)
 861		return -1;
 862
 863	if (getline(&buf, &len, fp) <= 0)
 864		goto done;
 
 865
 866	c = strchr(buf, '\n');
 867	if (c)
 868		*c = '\0';
 869
 870	node_map = cpu_map__new(buf);
 871	if (!node_map)
 872		goto done;
 873
 874	nr = (u32)node_map->nr;
 875
 876	ret = do_write(ff, &nr, sizeof(nr));
 877	if (ret < 0)
 878		goto done;
 879
 880	for (i = 0; i < nr; i++) {
 881		j = (u32)node_map->map[i];
 882		ret = do_write(ff, &j, sizeof(j));
 883		if (ret < 0)
 884			break;
 885
 886		ret = write_topo_node(ff, i);
 887		if (ret < 0)
 888			break;
 889	}
 890done:
 891	free(buf);
 892	fclose(fp);
 893	cpu_map__put(node_map);
 
 894	return ret;
 895}
 896
 897/*
 898 * File format:
 899 *
 900 * struct pmu_mappings {
 901 *	u32	pmu_num;
 902 *	struct pmu_map {
 903 *		u32	type;
 904 *		char	name[];
 905 *	}[pmu_num];
 906 * };
 907 */
 908
 909static int write_pmu_mappings(struct feat_fd *ff,
 910			      struct perf_evlist *evlist __maybe_unused)
 911{
 912	struct perf_pmu *pmu = NULL;
 913	u32 pmu_num = 0;
 914	int ret;
 915
 916	/*
 917	 * Do a first pass to count number of pmu to avoid lseek so this
 918	 * works in pipe mode as well.
 919	 */
 920	while ((pmu = perf_pmu__scan(pmu))) {
 921		if (!pmu->name)
 922			continue;
 923		pmu_num++;
 924	}
 925
 926	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 927	if (ret < 0)
 928		return ret;
 929
 930	while ((pmu = perf_pmu__scan(pmu))) {
 931		if (!pmu->name)
 932			continue;
 933
 934		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 935		if (ret < 0)
 936			return ret;
 937
 938		ret = do_write_string(ff, pmu->name);
 939		if (ret < 0)
 940			return ret;
 941	}
 942
 943	return 0;
 944}
 945
 946/*
 947 * File format:
 948 *
 949 * struct group_descs {
 950 *	u32	nr_groups;
 951 *	struct group_desc {
 952 *		char	name[];
 953 *		u32	leader_idx;
 954 *		u32	nr_members;
 955 *	}[nr_groups];
 956 * };
 957 */
 958static int write_group_desc(struct feat_fd *ff,
 959			    struct perf_evlist *evlist)
 960{
 961	u32 nr_groups = evlist->nr_groups;
 962	struct perf_evsel *evsel;
 963	int ret;
 964
 965	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 966	if (ret < 0)
 967		return ret;
 968
 969	evlist__for_each_entry(evlist, evsel) {
 970		if (perf_evsel__is_group_leader(evsel) &&
 971		    evsel->nr_members > 1) {
 972			const char *name = evsel->group_name ?: "{anon_group}";
 973			u32 leader_idx = evsel->idx;
 974			u32 nr_members = evsel->nr_members;
 975
 976			ret = do_write_string(ff, name);
 977			if (ret < 0)
 978				return ret;
 979
 980			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 981			if (ret < 0)
 982				return ret;
 983
 984			ret = do_write(ff, &nr_members, sizeof(nr_members));
 985			if (ret < 0)
 986				return ret;
 987		}
 988	}
 989	return 0;
 990}
 991
 992/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993 * default get_cpuid(): nothing gets recorded
 994 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 995 */
 996int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 997{
 998	return -1;
 999}
1000
1001static int write_cpuid(struct feat_fd *ff,
1002		       struct perf_evlist *evlist __maybe_unused)
1003{
1004	char buffer[64];
1005	int ret;
1006
1007	ret = get_cpuid(buffer, sizeof(buffer));
1008	if (!ret)
1009		goto write_it;
1010
1011	return -1;
1012write_it:
1013	return do_write_string(ff, buffer);
1014}
1015
1016static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1017			      struct perf_evlist *evlist __maybe_unused)
1018{
1019	return 0;
1020}
1021
1022static int write_auxtrace(struct feat_fd *ff,
1023			  struct perf_evlist *evlist __maybe_unused)
1024{
1025	struct perf_session *session;
1026	int err;
1027
1028	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1029		return -1;
1030
1031	session = container_of(ff->ph, struct perf_session, header);
1032
1033	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1034	if (err < 0)
1035		pr_err("Failed to write auxtrace index\n");
1036	return err;
1037}
1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039static int cpu_cache_level__sort(const void *a, const void *b)
1040{
1041	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1042	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1043
1044	return cache_a->level - cache_b->level;
1045}
1046
1047static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1048{
1049	if (a->level != b->level)
1050		return false;
1051
1052	if (a->line_size != b->line_size)
1053		return false;
1054
1055	if (a->sets != b->sets)
1056		return false;
1057
1058	if (a->ways != b->ways)
1059		return false;
1060
1061	if (strcmp(a->type, b->type))
1062		return false;
1063
1064	if (strcmp(a->size, b->size))
1065		return false;
1066
1067	if (strcmp(a->map, b->map))
1068		return false;
1069
1070	return true;
1071}
1072
1073static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1074{
1075	char path[PATH_MAX], file[PATH_MAX];
1076	struct stat st;
1077	size_t len;
1078
1079	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1080	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1081
1082	if (stat(file, &st))
1083		return 1;
1084
1085	scnprintf(file, PATH_MAX, "%s/level", path);
1086	if (sysfs__read_int(file, (int *) &cache->level))
1087		return -1;
1088
1089	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1090	if (sysfs__read_int(file, (int *) &cache->line_size))
1091		return -1;
1092
1093	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1094	if (sysfs__read_int(file, (int *) &cache->sets))
1095		return -1;
1096
1097	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1098	if (sysfs__read_int(file, (int *) &cache->ways))
1099		return -1;
1100
1101	scnprintf(file, PATH_MAX, "%s/type", path);
1102	if (sysfs__read_str(file, &cache->type, &len))
1103		return -1;
1104
1105	cache->type[len] = 0;
1106	cache->type = rtrim(cache->type);
1107
1108	scnprintf(file, PATH_MAX, "%s/size", path);
1109	if (sysfs__read_str(file, &cache->size, &len)) {
1110		free(cache->type);
1111		return -1;
1112	}
1113
1114	cache->size[len] = 0;
1115	cache->size = rtrim(cache->size);
1116
1117	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1118	if (sysfs__read_str(file, &cache->map, &len)) {
1119		free(cache->map);
1120		free(cache->type);
1121		return -1;
1122	}
1123
1124	cache->map[len] = 0;
1125	cache->map = rtrim(cache->map);
1126	return 0;
1127}
1128
1129static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1130{
1131	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1132}
1133
1134static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
 
 
1135{
1136	u32 i, cnt = 0;
1137	long ncpus;
1138	u32 nr, cpu;
1139	u16 level;
1140
1141	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1142	if (ncpus < 0)
1143		return -1;
1144
1145	nr = (u32)(ncpus & UINT_MAX);
1146
1147	for (cpu = 0; cpu < nr; cpu++) {
1148		for (level = 0; level < 10; level++) {
1149			struct cpu_cache_level c;
1150			int err;
1151
1152			err = cpu_cache_level__read(&c, cpu, level);
1153			if (err < 0)
1154				return err;
1155
1156			if (err == 1)
1157				break;
1158
1159			for (i = 0; i < cnt; i++) {
1160				if (cpu_cache_level__cmp(&c, &caches[i]))
1161					break;
1162			}
1163
1164			if (i == cnt)
1165				caches[cnt++] = c;
1166			else
1167				cpu_cache_level__free(&c);
1168
1169			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1170				goto out;
1171		}
1172	}
1173 out:
1174	*cntp = cnt;
1175	return 0;
1176}
1177
1178#define MAX_CACHES 2000
1179
1180static int write_cache(struct feat_fd *ff,
1181		       struct perf_evlist *evlist __maybe_unused)
1182{
1183	struct cpu_cache_level caches[MAX_CACHES];
 
1184	u32 cnt = 0, i, version = 1;
1185	int ret;
1186
1187	ret = build_caches(caches, MAX_CACHES, &cnt);
1188	if (ret)
1189		goto out;
1190
1191	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1192
1193	ret = do_write(ff, &version, sizeof(u32));
1194	if (ret < 0)
1195		goto out;
1196
1197	ret = do_write(ff, &cnt, sizeof(u32));
1198	if (ret < 0)
1199		goto out;
1200
1201	for (i = 0; i < cnt; i++) {
1202		struct cpu_cache_level *c = &caches[i];
1203
1204		#define _W(v)					\
1205			ret = do_write(ff, &c->v, sizeof(u32));	\
1206			if (ret < 0)				\
1207				goto out;
1208
1209		_W(level)
1210		_W(line_size)
1211		_W(sets)
1212		_W(ways)
1213		#undef _W
1214
1215		#define _W(v)						\
1216			ret = do_write_string(ff, (const char *) c->v);	\
1217			if (ret < 0)					\
1218				goto out;
1219
1220		_W(type)
1221		_W(size)
1222		_W(map)
1223		#undef _W
1224	}
1225
1226out:
1227	for (i = 0; i < cnt; i++)
1228		cpu_cache_level__free(&caches[i]);
1229	return ret;
1230}
1231
1232static int write_stat(struct feat_fd *ff __maybe_unused,
1233		      struct perf_evlist *evlist __maybe_unused)
1234{
1235	return 0;
1236}
1237
1238static int write_sample_time(struct feat_fd *ff,
1239			     struct perf_evlist *evlist)
1240{
1241	int ret;
1242
1243	ret = do_write(ff, &evlist->first_sample_time,
1244		       sizeof(evlist->first_sample_time));
1245	if (ret < 0)
1246		return ret;
1247
1248	return do_write(ff, &evlist->last_sample_time,
1249			sizeof(evlist->last_sample_time));
1250}
1251
1252
1253static int memory_node__read(struct memory_node *n, unsigned long idx)
1254{
1255	unsigned int phys, size = 0;
1256	char path[PATH_MAX];
1257	struct dirent *ent;
1258	DIR *dir;
1259
1260#define for_each_memory(mem, dir)					\
1261	while ((ent = readdir(dir)))					\
1262		if (strcmp(ent->d_name, ".") &&				\
1263		    strcmp(ent->d_name, "..") &&			\
1264		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1265
1266	scnprintf(path, PATH_MAX,
1267		  "%s/devices/system/node/node%lu",
1268		  sysfs__mountpoint(), idx);
1269
1270	dir = opendir(path);
1271	if (!dir) {
1272		pr_warning("failed: cant' open memory sysfs data\n");
1273		return -1;
1274	}
1275
1276	for_each_memory(phys, dir) {
1277		size = max(phys, size);
1278	}
1279
1280	size++;
1281
1282	n->set = bitmap_alloc(size);
1283	if (!n->set) {
1284		closedir(dir);
1285		return -ENOMEM;
1286	}
1287
1288	bitmap_zero(n->set, size);
1289	n->node = idx;
1290	n->size = size;
1291
1292	rewinddir(dir);
1293
1294	for_each_memory(phys, dir) {
1295		set_bit(phys, n->set);
1296	}
1297
1298	closedir(dir);
1299	return 0;
1300}
1301
1302static int memory_node__sort(const void *a, const void *b)
1303{
1304	const struct memory_node *na = a;
1305	const struct memory_node *nb = b;
1306
1307	return na->node - nb->node;
1308}
1309
1310static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1311{
1312	char path[PATH_MAX];
1313	struct dirent *ent;
1314	DIR *dir;
1315	u64 cnt = 0;
1316	int ret = 0;
1317
1318	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1319		  sysfs__mountpoint());
1320
1321	dir = opendir(path);
1322	if (!dir) {
1323		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1324			  __func__, path);
1325		return -1;
1326	}
1327
1328	while (!ret && (ent = readdir(dir))) {
1329		unsigned int idx;
1330		int r;
1331
1332		if (!strcmp(ent->d_name, ".") ||
1333		    !strcmp(ent->d_name, ".."))
1334			continue;
1335
1336		r = sscanf(ent->d_name, "node%u", &idx);
1337		if (r != 1)
1338			continue;
1339
1340		if (WARN_ONCE(cnt >= size,
1341			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
 
1342			return -1;
 
1343
1344		ret = memory_node__read(&nodes[cnt++], idx);
1345	}
1346
1347	*cntp = cnt;
1348	closedir(dir);
1349
1350	if (!ret)
1351		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1352
1353	return ret;
1354}
1355
1356#define MAX_MEMORY_NODES 2000
1357
1358/*
1359 * The MEM_TOPOLOGY holds physical memory map for every
1360 * node in system. The format of data is as follows:
1361 *
1362 *  0 - version          | for future changes
1363 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1364 * 16 - count            | number of nodes
1365 *
1366 * For each node we store map of physical indexes for
1367 * each node:
1368 *
1369 * 32 - node id          | node index
1370 * 40 - size             | size of bitmap
1371 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1372 */
1373static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1374			      struct perf_evlist *evlist __maybe_unused)
1375{
1376	static struct memory_node nodes[MAX_MEMORY_NODES];
1377	u64 bsize, version = 1, i, nr;
1378	int ret;
1379
1380	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1381			      (unsigned long long *) &bsize);
1382	if (ret)
1383		return ret;
1384
1385	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1386	if (ret)
1387		return ret;
1388
1389	ret = do_write(ff, &version, sizeof(version));
1390	if (ret < 0)
1391		goto out;
1392
1393	ret = do_write(ff, &bsize, sizeof(bsize));
1394	if (ret < 0)
1395		goto out;
1396
1397	ret = do_write(ff, &nr, sizeof(nr));
1398	if (ret < 0)
1399		goto out;
1400
1401	for (i = 0; i < nr; i++) {
1402		struct memory_node *n = &nodes[i];
1403
1404		#define _W(v)						\
1405			ret = do_write(ff, &n->v, sizeof(n->v));	\
1406			if (ret < 0)					\
1407				goto out;
1408
1409		_W(node)
1410		_W(size)
1411
1412		#undef _W
1413
1414		ret = do_write_bitmap(ff, n->set, n->size);
1415		if (ret < 0)
1416			goto out;
1417	}
1418
1419out:
1420	return ret;
1421}
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423static void print_hostname(struct feat_fd *ff, FILE *fp)
1424{
1425	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1426}
1427
1428static void print_osrelease(struct feat_fd *ff, FILE *fp)
1429{
1430	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1431}
1432
1433static void print_arch(struct feat_fd *ff, FILE *fp)
1434{
1435	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1436}
1437
1438static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1439{
1440	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1441}
1442
1443static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1444{
1445	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1446	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1447}
1448
1449static void print_version(struct feat_fd *ff, FILE *fp)
1450{
1451	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1452}
1453
1454static void print_cmdline(struct feat_fd *ff, FILE *fp)
1455{
1456	int nr, i;
1457
1458	nr = ff->ph->env.nr_cmdline;
1459
1460	fprintf(fp, "# cmdline : ");
1461
1462	for (i = 0; i < nr; i++)
1463		fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469	struct perf_header *ph = ff->ph;
1470	int cpu_nr = ph->env.nr_cpus_avail;
1471	int nr, i;
1472	char *str;
1473
1474	nr = ph->env.nr_sibling_cores;
1475	str = ph->env.sibling_cores;
1476
1477	for (i = 0; i < nr; i++) {
1478		fprintf(fp, "# sibling cores   : %s\n", str);
1479		str += strlen(str) + 1;
1480	}
1481
 
 
 
 
 
 
 
 
 
 
1482	nr = ph->env.nr_sibling_threads;
1483	str = ph->env.sibling_threads;
1484
1485	for (i = 0; i < nr; i++) {
1486		fprintf(fp, "# sibling threads : %s\n", str);
1487		str += strlen(str) + 1;
1488	}
1489
1490	if (ph->env.cpu != NULL) {
1491		for (i = 0; i < cpu_nr; i++)
1492			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1493				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1494	} else
1495		fprintf(fp, "# Core ID and Socket ID information is not available\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496}
1497
1498static void free_event_desc(struct perf_evsel *events)
1499{
1500	struct perf_evsel *evsel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
1502	if (!events)
1503		return;
1504
1505	for (evsel = events; evsel->attr.size; evsel++) {
1506		zfree(&evsel->name);
1507		zfree(&evsel->id);
1508	}
1509
1510	free(events);
1511}
1512
1513static struct perf_evsel *read_event_desc(struct feat_fd *ff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514{
1515	struct perf_evsel *evsel, *events = NULL;
1516	u64 *id;
1517	void *buf = NULL;
1518	u32 nre, sz, nr, i, j;
1519	size_t msz;
1520
1521	/* number of events */
1522	if (do_read_u32(ff, &nre))
1523		goto error;
1524
1525	if (do_read_u32(ff, &sz))
1526		goto error;
1527
1528	/* buffer to hold on file attr struct */
1529	buf = malloc(sz);
1530	if (!buf)
1531		goto error;
1532
1533	/* the last event terminates with evsel->attr.size == 0: */
1534	events = calloc(nre + 1, sizeof(*events));
1535	if (!events)
1536		goto error;
1537
1538	msz = sizeof(evsel->attr);
1539	if (sz < msz)
1540		msz = sz;
1541
1542	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1543		evsel->idx = i;
1544
1545		/*
1546		 * must read entire on-file attr struct to
1547		 * sync up with layout.
1548		 */
1549		if (__do_read(ff, buf, sz))
1550			goto error;
1551
1552		if (ff->ph->needs_swap)
1553			perf_event__attr_swap(buf);
1554
1555		memcpy(&evsel->attr, buf, msz);
 
 
 
1556
1557		if (do_read_u32(ff, &nr))
1558			goto error;
1559
1560		if (ff->ph->needs_swap)
1561			evsel->needs_swap = true;
1562
1563		evsel->name = do_read_string(ff);
1564		if (!evsel->name)
1565			goto error;
1566
1567		if (!nr)
1568			continue;
1569
1570		id = calloc(nr, sizeof(*id));
1571		if (!id)
1572			goto error;
1573		evsel->ids = nr;
1574		evsel->id = id;
1575
1576		for (j = 0 ; j < nr; j++) {
1577			if (do_read_u64(ff, id))
1578				goto error;
1579			id++;
1580		}
1581	}
1582out:
1583	free(buf);
1584	return events;
1585error:
1586	free_event_desc(events);
1587	events = NULL;
1588	goto out;
1589}
1590
1591static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1592				void *priv __maybe_unused)
1593{
1594	return fprintf(fp, ", %s = %s", name, val);
1595}
1596
1597static void print_event_desc(struct feat_fd *ff, FILE *fp)
1598{
1599	struct perf_evsel *evsel, *events;
1600	u32 j;
1601	u64 *id;
1602
1603	if (ff->events)
1604		events = ff->events;
1605	else
1606		events = read_event_desc(ff);
1607
1608	if (!events) {
1609		fprintf(fp, "# event desc: not available or unable to read\n");
1610		return;
1611	}
1612
1613	for (evsel = events; evsel->attr.size; evsel++) {
1614		fprintf(fp, "# event : name = %s, ", evsel->name);
1615
1616		if (evsel->ids) {
1617			fprintf(fp, ", id = {");
1618			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1619				if (j)
1620					fputc(',', fp);
1621				fprintf(fp, " %"PRIu64, *id);
1622			}
1623			fprintf(fp, " }");
1624		}
1625
1626		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1627
1628		fputc('\n', fp);
1629	}
1630
1631	free_event_desc(events);
1632	ff->events = NULL;
1633}
1634
1635static void print_total_mem(struct feat_fd *ff, FILE *fp)
1636{
1637	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1638}
1639
1640static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1641{
1642	int i;
1643	struct numa_node *n;
1644
1645	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1646		n = &ff->ph->env.numa_nodes[i];
1647
1648		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1649			    " free = %"PRIu64" kB\n",
1650			n->node, n->mem_total, n->mem_free);
1651
1652		fprintf(fp, "# node%u cpu list : ", n->node);
1653		cpu_map__fprintf(n->map, fp);
1654	}
1655}
1656
1657static void print_cpuid(struct feat_fd *ff, FILE *fp)
1658{
1659	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1660}
1661
1662static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1663{
1664	fprintf(fp, "# contains samples with branch stack\n");
1665}
1666
1667static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1668{
1669	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1670}
1671
1672static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1673{
1674	fprintf(fp, "# contains stat data\n");
1675}
1676
1677static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1678{
1679	int i;
1680
1681	fprintf(fp, "# CPU cache info:\n");
1682	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1683		fprintf(fp, "#  ");
1684		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1685	}
1686}
1687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1689{
1690	const char *delimiter = "# pmu mappings: ";
1691	char *str, *tmp;
1692	u32 pmu_num;
1693	u32 type;
1694
1695	pmu_num = ff->ph->env.nr_pmu_mappings;
1696	if (!pmu_num) {
1697		fprintf(fp, "# pmu mappings: not available\n");
1698		return;
1699	}
1700
1701	str = ff->ph->env.pmu_mappings;
1702
1703	while (pmu_num) {
1704		type = strtoul(str, &tmp, 0);
1705		if (*tmp != ':')
1706			goto error;
1707
1708		str = tmp + 1;
1709		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1710
1711		delimiter = ", ";
1712		str += strlen(str) + 1;
1713		pmu_num--;
1714	}
1715
1716	fprintf(fp, "\n");
1717
1718	if (!pmu_num)
1719		return;
1720error:
1721	fprintf(fp, "# pmu mappings: unable to read\n");
1722}
1723
1724static void print_group_desc(struct feat_fd *ff, FILE *fp)
1725{
1726	struct perf_session *session;
1727	struct perf_evsel *evsel;
1728	u32 nr = 0;
1729
1730	session = container_of(ff->ph, struct perf_session, header);
1731
1732	evlist__for_each_entry(session->evlist, evsel) {
1733		if (perf_evsel__is_group_leader(evsel) &&
1734		    evsel->nr_members > 1) {
1735			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1736				perf_evsel__name(evsel));
1737
1738			nr = evsel->nr_members - 1;
1739		} else if (nr) {
1740			fprintf(fp, ",%s", perf_evsel__name(evsel));
1741
1742			if (--nr == 0)
1743				fprintf(fp, "}\n");
1744		}
1745	}
1746}
1747
1748static void print_sample_time(struct feat_fd *ff, FILE *fp)
1749{
1750	struct perf_session *session;
1751	char time_buf[32];
1752	double d;
1753
1754	session = container_of(ff->ph, struct perf_session, header);
1755
1756	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1757				  time_buf, sizeof(time_buf));
1758	fprintf(fp, "# time of first sample : %s\n", time_buf);
1759
1760	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1761				  time_buf, sizeof(time_buf));
1762	fprintf(fp, "# time of last sample : %s\n", time_buf);
1763
1764	d = (double)(session->evlist->last_sample_time -
1765		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1766
1767	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1768}
1769
1770static void memory_node__fprintf(struct memory_node *n,
1771				 unsigned long long bsize, FILE *fp)
1772{
1773	char buf_map[100], buf_size[50];
1774	unsigned long long size;
1775
1776	size = bsize * bitmap_weight(n->set, n->size);
1777	unit_number__scnprintf(buf_size, 50, size);
1778
1779	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1780	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1781}
1782
1783static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1784{
1785	struct memory_node *nodes;
1786	int i, nr;
1787
1788	nodes = ff->ph->env.memory_nodes;
1789	nr    = ff->ph->env.nr_memory_nodes;
1790
1791	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1792		nr, ff->ph->env.memory_bsize);
1793
1794	for (i = 0; i < nr; i++) {
1795		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1796	}
1797}
1798
1799static int __event_process_build_id(struct build_id_event *bev,
1800				    char *filename,
1801				    struct perf_session *session)
1802{
1803	int err = -1;
1804	struct machine *machine;
1805	u16 cpumode;
1806	struct dso *dso;
1807	enum dso_kernel_type dso_type;
1808
1809	machine = perf_session__findnew_machine(session, bev->pid);
1810	if (!machine)
1811		goto out;
1812
1813	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1814
1815	switch (cpumode) {
1816	case PERF_RECORD_MISC_KERNEL:
1817		dso_type = DSO_TYPE_KERNEL;
1818		break;
1819	case PERF_RECORD_MISC_GUEST_KERNEL:
1820		dso_type = DSO_TYPE_GUEST_KERNEL;
1821		break;
1822	case PERF_RECORD_MISC_USER:
1823	case PERF_RECORD_MISC_GUEST_USER:
1824		dso_type = DSO_TYPE_USER;
1825		break;
1826	default:
1827		goto out;
1828	}
1829
1830	dso = machine__findnew_dso(machine, filename);
1831	if (dso != NULL) {
1832		char sbuild_id[SBUILD_ID_SIZE];
 
 
 
 
 
1833
1834		dso__set_build_id(dso, &bev->build_id);
 
1835
1836		if (dso_type != DSO_TYPE_USER) {
1837			struct kmod_path m = { .name = NULL, };
1838
1839			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1840				dso__set_module_info(dso, &m, machine);
1841			else
1842				dso->kernel = dso_type;
1843
 
1844			free(m.name);
1845		}
1846
1847		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1848				  sbuild_id);
1849		pr_debug("build id event received for %s: %s\n",
1850			 dso->long_name, sbuild_id);
1851		dso__put(dso);
1852	}
1853
1854	err = 0;
1855out:
1856	return err;
1857}
1858
1859static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1860						 int input, u64 offset, u64 size)
1861{
1862	struct perf_session *session = container_of(header, struct perf_session, header);
1863	struct {
1864		struct perf_event_header   header;
1865		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1866		char			   filename[0];
1867	} old_bev;
1868	struct build_id_event bev;
1869	char filename[PATH_MAX];
1870	u64 limit = offset + size;
1871
1872	while (offset < limit) {
1873		ssize_t len;
1874
1875		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1876			return -1;
1877
1878		if (header->needs_swap)
1879			perf_event_header__bswap(&old_bev.header);
1880
1881		len = old_bev.header.size - sizeof(old_bev);
1882		if (readn(input, filename, len) != len)
1883			return -1;
1884
1885		bev.header = old_bev.header;
1886
1887		/*
1888		 * As the pid is the missing value, we need to fill
1889		 * it properly. The header.misc value give us nice hint.
1890		 */
1891		bev.pid	= HOST_KERNEL_ID;
1892		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1893		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1894			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1895
1896		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1897		__event_process_build_id(&bev, filename, session);
1898
1899		offset += bev.header.size;
1900	}
1901
1902	return 0;
1903}
1904
1905static int perf_header__read_build_ids(struct perf_header *header,
1906				       int input, u64 offset, u64 size)
1907{
1908	struct perf_session *session = container_of(header, struct perf_session, header);
1909	struct build_id_event bev;
1910	char filename[PATH_MAX];
1911	u64 limit = offset + size, orig_offset = offset;
1912	int err = -1;
1913
1914	while (offset < limit) {
1915		ssize_t len;
1916
1917		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1918			goto out;
1919
1920		if (header->needs_swap)
1921			perf_event_header__bswap(&bev.header);
1922
1923		len = bev.header.size - sizeof(bev);
1924		if (readn(input, filename, len) != len)
1925			goto out;
1926		/*
1927		 * The a1645ce1 changeset:
1928		 *
1929		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1930		 *
1931		 * Added a field to struct build_id_event that broke the file
1932		 * format.
1933		 *
1934		 * Since the kernel build-id is the first entry, process the
1935		 * table using the old format if the well known
1936		 * '[kernel.kallsyms]' string for the kernel build-id has the
1937		 * first 4 characters chopped off (where the pid_t sits).
1938		 */
1939		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1940			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1941				return -1;
1942			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1943		}
1944
1945		__event_process_build_id(&bev, filename, session);
1946
1947		offset += bev.header.size;
1948	}
1949	err = 0;
1950out:
1951	return err;
1952}
1953
1954/* Macro for features that simply need to read and store a string. */
1955#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1956static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1957{\
1958	ff->ph->env.__feat_env = do_read_string(ff); \
1959	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1960}
1961
1962FEAT_PROCESS_STR_FUN(hostname, hostname);
1963FEAT_PROCESS_STR_FUN(osrelease, os_release);
1964FEAT_PROCESS_STR_FUN(version, version);
1965FEAT_PROCESS_STR_FUN(arch, arch);
1966FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1967FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1968
1969static int process_tracing_data(struct feat_fd *ff, void *data)
1970{
1971	ssize_t ret = trace_report(ff->fd, data, false);
1972
1973	return ret < 0 ? -1 : 0;
1974}
1975
1976static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1977{
1978	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1979		pr_debug("Failed to read buildids, continuing...\n");
1980	return 0;
1981}
1982
1983static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1984{
1985	int ret;
1986	u32 nr_cpus_avail, nr_cpus_online;
1987
1988	ret = do_read_u32(ff, &nr_cpus_avail);
1989	if (ret)
1990		return ret;
1991
1992	ret = do_read_u32(ff, &nr_cpus_online);
1993	if (ret)
1994		return ret;
1995	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1996	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1997	return 0;
1998}
1999
2000static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2001{
2002	u64 total_mem;
2003	int ret;
2004
2005	ret = do_read_u64(ff, &total_mem);
2006	if (ret)
2007		return -1;
2008	ff->ph->env.total_mem = (unsigned long long)total_mem;
2009	return 0;
2010}
2011
2012static struct perf_evsel *
2013perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2014{
2015	struct perf_evsel *evsel;
2016
2017	evlist__for_each_entry(evlist, evsel) {
2018		if (evsel->idx == idx)
2019			return evsel;
2020	}
2021
2022	return NULL;
2023}
2024
2025static void
2026perf_evlist__set_event_name(struct perf_evlist *evlist,
2027			    struct perf_evsel *event)
2028{
2029	struct perf_evsel *evsel;
2030
2031	if (!event->name)
2032		return;
2033
2034	evsel = perf_evlist__find_by_index(evlist, event->idx);
2035	if (!evsel)
2036		return;
2037
2038	if (evsel->name)
2039		return;
2040
2041	evsel->name = strdup(event->name);
2042}
2043
2044static int
2045process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2046{
2047	struct perf_session *session;
2048	struct perf_evsel *evsel, *events = read_event_desc(ff);
2049
2050	if (!events)
2051		return 0;
2052
2053	session = container_of(ff->ph, struct perf_session, header);
2054
2055	if (session->data->is_pipe) {
2056		/* Save events for reading later by print_event_desc,
2057		 * since they can't be read again in pipe mode. */
2058		ff->events = events;
2059	}
2060
2061	for (evsel = events; evsel->attr.size; evsel++)
2062		perf_evlist__set_event_name(session->evlist, evsel);
2063
2064	if (!session->data->is_pipe)
2065		free_event_desc(events);
2066
2067	return 0;
2068}
2069
2070static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2071{
2072	char *str, *cmdline = NULL, **argv = NULL;
2073	u32 nr, i, len = 0;
2074
2075	if (do_read_u32(ff, &nr))
2076		return -1;
2077
2078	ff->ph->env.nr_cmdline = nr;
2079
2080	cmdline = zalloc(ff->size + nr + 1);
2081	if (!cmdline)
2082		return -1;
2083
2084	argv = zalloc(sizeof(char *) * (nr + 1));
2085	if (!argv)
2086		goto error;
2087
2088	for (i = 0; i < nr; i++) {
2089		str = do_read_string(ff);
2090		if (!str)
2091			goto error;
2092
2093		argv[i] = cmdline + len;
2094		memcpy(argv[i], str, strlen(str) + 1);
2095		len += strlen(str) + 1;
2096		free(str);
2097	}
2098	ff->ph->env.cmdline = cmdline;
2099	ff->ph->env.cmdline_argv = (const char **) argv;
2100	return 0;
2101
2102error:
2103	free(argv);
2104	free(cmdline);
2105	return -1;
2106}
2107
2108static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2109{
2110	u32 nr, i;
2111	char *str;
2112	struct strbuf sb;
2113	int cpu_nr = ff->ph->env.nr_cpus_avail;
2114	u64 size = 0;
2115	struct perf_header *ph = ff->ph;
 
2116
2117	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2118	if (!ph->env.cpu)
2119		return -1;
2120
2121	if (do_read_u32(ff, &nr))
2122		goto free_cpu;
2123
2124	ph->env.nr_sibling_cores = nr;
2125	size += sizeof(u32);
2126	if (strbuf_init(&sb, 128) < 0)
2127		goto free_cpu;
2128
2129	for (i = 0; i < nr; i++) {
2130		str = do_read_string(ff);
2131		if (!str)
2132			goto error;
2133
2134		/* include a NULL character at the end */
2135		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2136			goto error;
2137		size += string_size(str);
2138		free(str);
2139	}
2140	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2141
2142	if (do_read_u32(ff, &nr))
2143		return -1;
2144
2145	ph->env.nr_sibling_threads = nr;
2146	size += sizeof(u32);
2147
2148	for (i = 0; i < nr; i++) {
2149		str = do_read_string(ff);
2150		if (!str)
2151			goto error;
2152
2153		/* include a NULL character at the end */
2154		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2155			goto error;
2156		size += string_size(str);
2157		free(str);
2158	}
2159	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2160
2161	/*
2162	 * The header may be from old perf,
2163	 * which doesn't include core id and socket id information.
2164	 */
2165	if (ff->size <= size) {
2166		zfree(&ph->env.cpu);
2167		return 0;
2168	}
2169
 
 
 
 
 
 
 
 
 
2170	for (i = 0; i < (u32)cpu_nr; i++) {
2171		if (do_read_u32(ff, &nr))
2172			goto free_cpu;
2173
2174		ph->env.cpu[i].core_id = nr;
 
2175
2176		if (do_read_u32(ff, &nr))
2177			goto free_cpu;
2178
2179		if (nr != (u32)-1 && nr > (u32)cpu_nr) {
2180			pr_debug("socket_id number is too big."
2181				 "You may need to upgrade the perf tool.\n");
2182			goto free_cpu;
2183		}
2184
2185		ph->env.cpu[i].socket_id = nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187
2188	return 0;
2189
2190error:
2191	strbuf_release(&sb);
2192free_cpu:
2193	zfree(&ph->env.cpu);
2194	return -1;
2195}
2196
2197static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2198{
2199	struct numa_node *nodes, *n;
2200	u32 nr, i;
2201	char *str;
2202
2203	/* nr nodes */
2204	if (do_read_u32(ff, &nr))
2205		return -1;
2206
2207	nodes = zalloc(sizeof(*nodes) * nr);
2208	if (!nodes)
2209		return -ENOMEM;
2210
2211	for (i = 0; i < nr; i++) {
2212		n = &nodes[i];
2213
2214		/* node number */
2215		if (do_read_u32(ff, &n->node))
2216			goto error;
2217
2218		if (do_read_u64(ff, &n->mem_total))
2219			goto error;
2220
2221		if (do_read_u64(ff, &n->mem_free))
2222			goto error;
2223
2224		str = do_read_string(ff);
2225		if (!str)
2226			goto error;
2227
2228		n->map = cpu_map__new(str);
2229		if (!n->map)
2230			goto error;
2231
2232		free(str);
2233	}
2234	ff->ph->env.nr_numa_nodes = nr;
2235	ff->ph->env.numa_nodes = nodes;
2236	return 0;
2237
2238error:
2239	free(nodes);
2240	return -1;
2241}
2242
2243static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2244{
2245	char *name;
2246	u32 pmu_num;
2247	u32 type;
2248	struct strbuf sb;
2249
2250	if (do_read_u32(ff, &pmu_num))
2251		return -1;
2252
2253	if (!pmu_num) {
2254		pr_debug("pmu mappings not available\n");
2255		return 0;
2256	}
2257
2258	ff->ph->env.nr_pmu_mappings = pmu_num;
2259	if (strbuf_init(&sb, 128) < 0)
2260		return -1;
2261
2262	while (pmu_num) {
2263		if (do_read_u32(ff, &type))
2264			goto error;
2265
2266		name = do_read_string(ff);
2267		if (!name)
2268			goto error;
2269
2270		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2271			goto error;
2272		/* include a NULL character at the end */
2273		if (strbuf_add(&sb, "", 1) < 0)
2274			goto error;
2275
2276		if (!strcmp(name, "msr"))
2277			ff->ph->env.msr_pmu_type = type;
2278
2279		free(name);
2280		pmu_num--;
2281	}
2282	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2283	return 0;
2284
2285error:
2286	strbuf_release(&sb);
2287	return -1;
2288}
2289
2290static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2291{
2292	size_t ret = -1;
2293	u32 i, nr, nr_groups;
2294	struct perf_session *session;
2295	struct perf_evsel *evsel, *leader = NULL;
2296	struct group_desc {
2297		char *name;
2298		u32 leader_idx;
2299		u32 nr_members;
2300	} *desc;
2301
2302	if (do_read_u32(ff, &nr_groups))
2303		return -1;
2304
2305	ff->ph->env.nr_groups = nr_groups;
2306	if (!nr_groups) {
2307		pr_debug("group desc not available\n");
2308		return 0;
2309	}
2310
2311	desc = calloc(nr_groups, sizeof(*desc));
2312	if (!desc)
2313		return -1;
2314
2315	for (i = 0; i < nr_groups; i++) {
2316		desc[i].name = do_read_string(ff);
2317		if (!desc[i].name)
2318			goto out_free;
2319
2320		if (do_read_u32(ff, &desc[i].leader_idx))
2321			goto out_free;
2322
2323		if (do_read_u32(ff, &desc[i].nr_members))
2324			goto out_free;
2325	}
2326
2327	/*
2328	 * Rebuild group relationship based on the group_desc
2329	 */
2330	session = container_of(ff->ph, struct perf_session, header);
2331	session->evlist->nr_groups = nr_groups;
2332
2333	i = nr = 0;
2334	evlist__for_each_entry(session->evlist, evsel) {
2335		if (evsel->idx == (int) desc[i].leader_idx) {
2336			evsel->leader = evsel;
2337			/* {anon_group} is a dummy name */
2338			if (strcmp(desc[i].name, "{anon_group}")) {
2339				evsel->group_name = desc[i].name;
2340				desc[i].name = NULL;
2341			}
2342			evsel->nr_members = desc[i].nr_members;
2343
2344			if (i >= nr_groups || nr > 0) {
2345				pr_debug("invalid group desc\n");
2346				goto out_free;
2347			}
2348
2349			leader = evsel;
2350			nr = evsel->nr_members - 1;
2351			i++;
2352		} else if (nr) {
2353			/* This is a group member */
2354			evsel->leader = leader;
2355
2356			nr--;
2357		}
2358	}
2359
2360	if (i != nr_groups || nr != 0) {
2361		pr_debug("invalid group desc\n");
2362		goto out_free;
2363	}
2364
2365	ret = 0;
2366out_free:
2367	for (i = 0; i < nr_groups; i++)
2368		zfree(&desc[i].name);
2369	free(desc);
2370
2371	return ret;
2372}
2373
2374static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2375{
2376	struct perf_session *session;
2377	int err;
2378
2379	session = container_of(ff->ph, struct perf_session, header);
2380
2381	err = auxtrace_index__process(ff->fd, ff->size, session,
2382				      ff->ph->needs_swap);
2383	if (err < 0)
2384		pr_err("Failed to process auxtrace index\n");
2385	return err;
2386}
2387
2388static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2389{
2390	struct cpu_cache_level *caches;
2391	u32 cnt, i, version;
2392
2393	if (do_read_u32(ff, &version))
2394		return -1;
2395
2396	if (version != 1)
2397		return -1;
2398
2399	if (do_read_u32(ff, &cnt))
2400		return -1;
2401
2402	caches = zalloc(sizeof(*caches) * cnt);
2403	if (!caches)
2404		return -1;
2405
2406	for (i = 0; i < cnt; i++) {
2407		struct cpu_cache_level c;
2408
2409		#define _R(v)						\
2410			if (do_read_u32(ff, &c.v))\
2411				goto out_free_caches;			\
2412
2413		_R(level)
2414		_R(line_size)
2415		_R(sets)
2416		_R(ways)
2417		#undef _R
2418
2419		#define _R(v)					\
2420			c.v = do_read_string(ff);		\
2421			if (!c.v)				\
2422				goto out_free_caches;
2423
2424		_R(type)
2425		_R(size)
2426		_R(map)
2427		#undef _R
2428
2429		caches[i] = c;
2430	}
2431
2432	ff->ph->env.caches = caches;
2433	ff->ph->env.caches_cnt = cnt;
2434	return 0;
2435out_free_caches:
2436	free(caches);
2437	return -1;
2438}
2439
2440static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2441{
2442	struct perf_session *session;
2443	u64 first_sample_time, last_sample_time;
2444	int ret;
2445
2446	session = container_of(ff->ph, struct perf_session, header);
2447
2448	ret = do_read_u64(ff, &first_sample_time);
2449	if (ret)
2450		return -1;
2451
2452	ret = do_read_u64(ff, &last_sample_time);
2453	if (ret)
2454		return -1;
2455
2456	session->evlist->first_sample_time = first_sample_time;
2457	session->evlist->last_sample_time = last_sample_time;
2458	return 0;
2459}
2460
2461static int process_mem_topology(struct feat_fd *ff,
2462				void *data __maybe_unused)
2463{
2464	struct memory_node *nodes;
2465	u64 version, i, nr, bsize;
2466	int ret = -1;
2467
2468	if (do_read_u64(ff, &version))
2469		return -1;
2470
2471	if (version != 1)
2472		return -1;
2473
2474	if (do_read_u64(ff, &bsize))
2475		return -1;
2476
2477	if (do_read_u64(ff, &nr))
2478		return -1;
2479
2480	nodes = zalloc(sizeof(*nodes) * nr);
2481	if (!nodes)
2482		return -1;
2483
2484	for (i = 0; i < nr; i++) {
2485		struct memory_node n;
2486
2487		#define _R(v)				\
2488			if (do_read_u64(ff, &n.v))	\
2489				goto out;		\
2490
2491		_R(node)
2492		_R(size)
2493
2494		#undef _R
2495
2496		if (do_read_bitmap(ff, &n.set, &n.size))
2497			goto out;
2498
2499		nodes[i] = n;
2500	}
2501
2502	ff->ph->env.memory_bsize    = bsize;
2503	ff->ph->env.memory_nodes    = nodes;
2504	ff->ph->env.nr_memory_nodes = nr;
2505	ret = 0;
2506
2507out:
2508	if (ret)
2509		free(nodes);
2510	return ret;
2511}
2512
2513struct feature_ops {
2514	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2515	void (*print)(struct feat_fd *ff, FILE *fp);
2516	int (*process)(struct feat_fd *ff, void *data);
2517	const char *name;
2518	bool full_only;
2519	bool synthesize;
2520};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521
2522#define FEAT_OPR(n, func, __full_only) \
2523	[HEADER_##n] = {					\
2524		.name	    = __stringify(n),			\
2525		.write	    = write_##func,			\
2526		.print	    = print_##func,			\
2527		.full_only  = __full_only,			\
2528		.process    = process_##func,			\
2529		.synthesize = true				\
2530	}
2531
2532#define FEAT_OPN(n, func, __full_only) \
2533	[HEADER_##n] = {					\
2534		.name	    = __stringify(n),			\
2535		.write	    = write_##func,			\
2536		.print	    = print_##func,			\
2537		.full_only  = __full_only,			\
2538		.process    = process_##func			\
2539	}
2540
2541/* feature_ops not implemented: */
2542#define print_tracing_data	NULL
2543#define print_build_id		NULL
2544
2545#define process_branch_stack	NULL
2546#define process_stat		NULL
2547
 
 
2548
2549static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2550	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2551	FEAT_OPN(BUILD_ID,	build_id,	false),
2552	FEAT_OPR(HOSTNAME,	hostname,	false),
2553	FEAT_OPR(OSRELEASE,	osrelease,	false),
2554	FEAT_OPR(VERSION,	version,	false),
2555	FEAT_OPR(ARCH,		arch,		false),
2556	FEAT_OPR(NRCPUS,	nrcpus,		false),
2557	FEAT_OPR(CPUDESC,	cpudesc,	false),
2558	FEAT_OPR(CPUID,		cpuid,		false),
2559	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2560	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2561	FEAT_OPR(CMDLINE,	cmdline,	false),
2562	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2563	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2564	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2565	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2566	FEAT_OPN(GROUP_DESC,	group_desc,	false),
2567	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2568	FEAT_OPN(STAT,		stat,		false),
2569	FEAT_OPN(CACHE,		cache,		true),
2570	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2571	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
 
 
 
 
 
 
 
 
 
 
 
2572};
2573
2574struct header_print_data {
2575	FILE *fp;
2576	bool full; /* extended list of headers */
2577};
2578
2579static int perf_file_section__fprintf_info(struct perf_file_section *section,
2580					   struct perf_header *ph,
2581					   int feat, int fd, void *data)
2582{
2583	struct header_print_data *hd = data;
2584	struct feat_fd ff;
2585
2586	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2587		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2588				"%d, continuing...\n", section->offset, feat);
2589		return 0;
2590	}
2591	if (feat >= HEADER_LAST_FEATURE) {
2592		pr_warning("unknown feature %d\n", feat);
2593		return 0;
2594	}
2595	if (!feat_ops[feat].print)
2596		return 0;
2597
2598	ff = (struct  feat_fd) {
2599		.fd = fd,
2600		.ph = ph,
2601	};
2602
2603	if (!feat_ops[feat].full_only || hd->full)
2604		feat_ops[feat].print(&ff, hd->fp);
2605	else
2606		fprintf(hd->fp, "# %s info available, use -I to display\n",
2607			feat_ops[feat].name);
2608
2609	return 0;
2610}
2611
2612int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2613{
2614	struct header_print_data hd;
2615	struct perf_header *header = &session->header;
2616	int fd = perf_data__fd(session->data);
2617	struct stat st;
 
2618	int ret, bit;
2619
2620	hd.fp = fp;
2621	hd.full = full;
2622
2623	ret = fstat(fd, &st);
2624	if (ret == -1)
2625		return -1;
2626
2627	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
 
2628
2629	fprintf(fp, "# header version : %u\n", header->version);
2630	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2631	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2632	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2633
2634	perf_header__process_sections(header, fd, &hd,
2635				      perf_file_section__fprintf_info);
2636
2637	if (session->data->is_pipe)
2638		return 0;
2639
2640	fprintf(fp, "# missing features: ");
2641	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2642		if (bit)
2643			fprintf(fp, "%s ", feat_ops[bit].name);
2644	}
2645
2646	fprintf(fp, "\n");
2647	return 0;
2648}
2649
2650static int do_write_feat(struct feat_fd *ff, int type,
2651			 struct perf_file_section **p,
2652			 struct perf_evlist *evlist)
2653{
2654	int err;
2655	int ret = 0;
2656
2657	if (perf_header__has_feat(ff->ph, type)) {
2658		if (!feat_ops[type].write)
2659			return -1;
2660
2661		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2662			return -1;
2663
2664		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2665
2666		err = feat_ops[type].write(ff, evlist);
2667		if (err < 0) {
2668			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2669
2670			/* undo anything written */
2671			lseek(ff->fd, (*p)->offset, SEEK_SET);
2672
2673			return -1;
2674		}
2675		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2676		(*p)++;
2677	}
2678	return ret;
2679}
2680
2681static int perf_header__adds_write(struct perf_header *header,
2682				   struct perf_evlist *evlist, int fd)
2683{
2684	int nr_sections;
2685	struct feat_fd ff;
2686	struct perf_file_section *feat_sec, *p;
2687	int sec_size;
2688	u64 sec_start;
2689	int feat;
2690	int err;
2691
2692	ff = (struct feat_fd){
2693		.fd  = fd,
2694		.ph = header,
2695	};
2696
2697	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2698	if (!nr_sections)
2699		return 0;
2700
2701	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2702	if (feat_sec == NULL)
2703		return -ENOMEM;
2704
2705	sec_size = sizeof(*feat_sec) * nr_sections;
2706
2707	sec_start = header->feat_offset;
2708	lseek(fd, sec_start + sec_size, SEEK_SET);
2709
2710	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2711		if (do_write_feat(&ff, feat, &p, evlist))
2712			perf_header__clear_feat(header, feat);
2713	}
2714
2715	lseek(fd, sec_start, SEEK_SET);
2716	/*
2717	 * may write more than needed due to dropped feature, but
2718	 * this is okay, reader will skip the mising entries
2719	 */
2720	err = do_write(&ff, feat_sec, sec_size);
2721	if (err < 0)
2722		pr_debug("failed to write feature section\n");
2723	free(feat_sec);
2724	return err;
2725}
2726
2727int perf_header__write_pipe(int fd)
2728{
2729	struct perf_pipe_file_header f_header;
2730	struct feat_fd ff;
2731	int err;
2732
2733	ff = (struct feat_fd){ .fd = fd };
2734
2735	f_header = (struct perf_pipe_file_header){
2736		.magic	   = PERF_MAGIC,
2737		.size	   = sizeof(f_header),
2738	};
2739
2740	err = do_write(&ff, &f_header, sizeof(f_header));
2741	if (err < 0) {
2742		pr_debug("failed to write perf pipe header\n");
2743		return err;
2744	}
2745
2746	return 0;
2747}
2748
2749int perf_session__write_header(struct perf_session *session,
2750			       struct perf_evlist *evlist,
2751			       int fd, bool at_exit)
2752{
2753	struct perf_file_header f_header;
2754	struct perf_file_attr   f_attr;
2755	struct perf_header *header = &session->header;
2756	struct perf_evsel *evsel;
2757	struct feat_fd ff;
2758	u64 attr_offset;
2759	int err;
2760
2761	ff = (struct feat_fd){ .fd = fd};
2762	lseek(fd, sizeof(f_header), SEEK_SET);
2763
2764	evlist__for_each_entry(session->evlist, evsel) {
2765		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2766		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2767		if (err < 0) {
2768			pr_debug("failed to write perf header\n");
2769			return err;
2770		}
2771	}
2772
2773	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2774
2775	evlist__for_each_entry(evlist, evsel) {
 
 
 
 
 
 
 
 
2776		f_attr = (struct perf_file_attr){
2777			.attr = evsel->attr,
2778			.ids  = {
2779				.offset = evsel->id_offset,
2780				.size   = evsel->ids * sizeof(u64),
2781			}
2782		};
2783		err = do_write(&ff, &f_attr, sizeof(f_attr));
2784		if (err < 0) {
2785			pr_debug("failed to write perf header attribute\n");
2786			return err;
2787		}
2788	}
2789
2790	if (!header->data_offset)
2791		header->data_offset = lseek(fd, 0, SEEK_CUR);
2792	header->feat_offset = header->data_offset + header->data_size;
2793
2794	if (at_exit) {
2795		err = perf_header__adds_write(header, evlist, fd);
2796		if (err < 0)
2797			return err;
2798	}
2799
2800	f_header = (struct perf_file_header){
2801		.magic	   = PERF_MAGIC,
2802		.size	   = sizeof(f_header),
2803		.attr_size = sizeof(f_attr),
2804		.attrs = {
2805			.offset = attr_offset,
2806			.size   = evlist->nr_entries * sizeof(f_attr),
2807		},
2808		.data = {
2809			.offset = header->data_offset,
2810			.size	= header->data_size,
2811		},
2812		/* event_types is ignored, store zeros */
2813	};
2814
2815	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2816
2817	lseek(fd, 0, SEEK_SET);
2818	err = do_write(&ff, &f_header, sizeof(f_header));
2819	if (err < 0) {
2820		pr_debug("failed to write perf header\n");
2821		return err;
2822	}
2823	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2824
2825	return 0;
2826}
2827
2828static int perf_header__getbuffer64(struct perf_header *header,
2829				    int fd, void *buf, size_t size)
2830{
2831	if (readn(fd, buf, size) <= 0)
2832		return -1;
2833
2834	if (header->needs_swap)
2835		mem_bswap_64(buf, size);
2836
2837	return 0;
2838}
2839
2840int perf_header__process_sections(struct perf_header *header, int fd,
2841				  void *data,
2842				  int (*process)(struct perf_file_section *section,
2843						 struct perf_header *ph,
2844						 int feat, int fd, void *data))
2845{
2846	struct perf_file_section *feat_sec, *sec;
2847	int nr_sections;
2848	int sec_size;
2849	int feat;
2850	int err;
2851
2852	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2853	if (!nr_sections)
2854		return 0;
2855
2856	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2857	if (!feat_sec)
2858		return -1;
2859
2860	sec_size = sizeof(*feat_sec) * nr_sections;
2861
2862	lseek(fd, header->feat_offset, SEEK_SET);
2863
2864	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2865	if (err < 0)
2866		goto out_free;
2867
2868	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2869		err = process(sec++, header, feat, fd, data);
2870		if (err < 0)
2871			goto out_free;
2872	}
2873	err = 0;
2874out_free:
2875	free(feat_sec);
2876	return err;
2877}
2878
2879static const int attr_file_abi_sizes[] = {
2880	[0] = PERF_ATTR_SIZE_VER0,
2881	[1] = PERF_ATTR_SIZE_VER1,
2882	[2] = PERF_ATTR_SIZE_VER2,
2883	[3] = PERF_ATTR_SIZE_VER3,
2884	[4] = PERF_ATTR_SIZE_VER4,
2885	0,
2886};
2887
2888/*
2889 * In the legacy file format, the magic number is not used to encode endianness.
2890 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2891 * on ABI revisions, we need to try all combinations for all endianness to
2892 * detect the endianness.
2893 */
2894static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2895{
2896	uint64_t ref_size, attr_size;
2897	int i;
2898
2899	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2900		ref_size = attr_file_abi_sizes[i]
2901			 + sizeof(struct perf_file_section);
2902		if (hdr_sz != ref_size) {
2903			attr_size = bswap_64(hdr_sz);
2904			if (attr_size != ref_size)
2905				continue;
2906
2907			ph->needs_swap = true;
2908		}
2909		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2910			 i,
2911			 ph->needs_swap);
2912		return 0;
2913	}
2914	/* could not determine endianness */
2915	return -1;
2916}
2917
2918#define PERF_PIPE_HDR_VER0	16
2919
2920static const size_t attr_pipe_abi_sizes[] = {
2921	[0] = PERF_PIPE_HDR_VER0,
2922	0,
2923};
2924
2925/*
2926 * In the legacy pipe format, there is an implicit assumption that endiannesss
2927 * between host recording the samples, and host parsing the samples is the
2928 * same. This is not always the case given that the pipe output may always be
2929 * redirected into a file and analyzed on a different machine with possibly a
2930 * different endianness and perf_event ABI revsions in the perf tool itself.
2931 */
2932static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2933{
2934	u64 attr_size;
2935	int i;
2936
2937	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2938		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2939			attr_size = bswap_64(hdr_sz);
2940			if (attr_size != hdr_sz)
2941				continue;
2942
2943			ph->needs_swap = true;
2944		}
2945		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2946		return 0;
2947	}
2948	return -1;
2949}
2950
2951bool is_perf_magic(u64 magic)
2952{
2953	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2954		|| magic == __perf_magic2
2955		|| magic == __perf_magic2_sw)
2956		return true;
2957
2958	return false;
2959}
2960
2961static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2962			      bool is_pipe, struct perf_header *ph)
2963{
2964	int ret;
2965
2966	/* check for legacy format */
2967	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2968	if (ret == 0) {
2969		ph->version = PERF_HEADER_VERSION_1;
2970		pr_debug("legacy perf.data format\n");
2971		if (is_pipe)
2972			return try_all_pipe_abis(hdr_sz, ph);
2973
2974		return try_all_file_abis(hdr_sz, ph);
2975	}
2976	/*
2977	 * the new magic number serves two purposes:
2978	 * - unique number to identify actual perf.data files
2979	 * - encode endianness of file
2980	 */
2981	ph->version = PERF_HEADER_VERSION_2;
2982
2983	/* check magic number with one endianness */
2984	if (magic == __perf_magic2)
2985		return 0;
2986
2987	/* check magic number with opposite endianness */
2988	if (magic != __perf_magic2_sw)
2989		return -1;
2990
2991	ph->needs_swap = true;
2992
2993	return 0;
2994}
2995
2996int perf_file_header__read(struct perf_file_header *header,
2997			   struct perf_header *ph, int fd)
2998{
2999	ssize_t ret;
3000
3001	lseek(fd, 0, SEEK_SET);
3002
3003	ret = readn(fd, header, sizeof(*header));
3004	if (ret <= 0)
3005		return -1;
3006
3007	if (check_magic_endian(header->magic,
3008			       header->attr_size, false, ph) < 0) {
3009		pr_debug("magic/endian check failed\n");
3010		return -1;
3011	}
3012
3013	if (ph->needs_swap) {
3014		mem_bswap_64(header, offsetof(struct perf_file_header,
3015			     adds_features));
3016	}
3017
3018	if (header->size != sizeof(*header)) {
3019		/* Support the previous format */
3020		if (header->size == offsetof(typeof(*header), adds_features))
3021			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3022		else
3023			return -1;
3024	} else if (ph->needs_swap) {
3025		/*
3026		 * feature bitmap is declared as an array of unsigned longs --
3027		 * not good since its size can differ between the host that
3028		 * generated the data file and the host analyzing the file.
3029		 *
3030		 * We need to handle endianness, but we don't know the size of
3031		 * the unsigned long where the file was generated. Take a best
3032		 * guess at determining it: try 64-bit swap first (ie., file
3033		 * created on a 64-bit host), and check if the hostname feature
3034		 * bit is set (this feature bit is forced on as of fbe96f2).
3035		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3036		 * swap. If the hostname bit is still not set (e.g., older data
3037		 * file), punt and fallback to the original behavior --
3038		 * clearing all feature bits and setting buildid.
3039		 */
3040		mem_bswap_64(&header->adds_features,
3041			    BITS_TO_U64(HEADER_FEAT_BITS));
3042
3043		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3044			/* unswap as u64 */
3045			mem_bswap_64(&header->adds_features,
3046				    BITS_TO_U64(HEADER_FEAT_BITS));
3047
3048			/* unswap as u32 */
3049			mem_bswap_32(&header->adds_features,
3050				    BITS_TO_U32(HEADER_FEAT_BITS));
3051		}
3052
3053		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3054			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3055			set_bit(HEADER_BUILD_ID, header->adds_features);
3056		}
3057	}
3058
3059	memcpy(&ph->adds_features, &header->adds_features,
3060	       sizeof(ph->adds_features));
3061
3062	ph->data_offset  = header->data.offset;
3063	ph->data_size	 = header->data.size;
3064	ph->feat_offset  = header->data.offset + header->data.size;
3065	return 0;
3066}
3067
3068static int perf_file_section__process(struct perf_file_section *section,
3069				      struct perf_header *ph,
3070				      int feat, int fd, void *data)
3071{
3072	struct feat_fd fdd = {
3073		.fd	= fd,
3074		.ph	= ph,
3075		.size	= section->size,
3076		.offset	= section->offset,
3077	};
3078
3079	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3080		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3081			  "%d, continuing...\n", section->offset, feat);
3082		return 0;
3083	}
3084
3085	if (feat >= HEADER_LAST_FEATURE) {
3086		pr_debug("unknown feature %d, continuing...\n", feat);
3087		return 0;
3088	}
3089
3090	if (!feat_ops[feat].process)
3091		return 0;
3092
3093	return feat_ops[feat].process(&fdd, data);
3094}
3095
3096static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3097				       struct perf_header *ph, int fd,
 
3098				       bool repipe)
3099{
3100	struct feat_fd ff = {
3101		.fd = STDOUT_FILENO,
3102		.ph = ph,
3103	};
3104	ssize_t ret;
3105
3106	ret = readn(fd, header, sizeof(*header));
3107	if (ret <= 0)
3108		return -1;
3109
3110	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3111		pr_debug("endian/magic failed\n");
3112		return -1;
3113	}
3114
3115	if (ph->needs_swap)
3116		header->size = bswap_64(header->size);
3117
3118	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3119		return -1;
3120
3121	return 0;
3122}
3123
3124static int perf_header__read_pipe(struct perf_session *session)
3125{
3126	struct perf_header *header = &session->header;
3127	struct perf_pipe_file_header f_header;
3128
3129	if (perf_file_header__read_pipe(&f_header, header,
3130					perf_data__fd(session->data),
3131					session->repipe) < 0) {
3132		pr_debug("incompatible file format\n");
3133		return -EINVAL;
3134	}
3135
3136	return 0;
3137}
3138
3139static int read_attr(int fd, struct perf_header *ph,
3140		     struct perf_file_attr *f_attr)
3141{
3142	struct perf_event_attr *attr = &f_attr->attr;
3143	size_t sz, left;
3144	size_t our_sz = sizeof(f_attr->attr);
3145	ssize_t ret;
3146
3147	memset(f_attr, 0, sizeof(*f_attr));
3148
3149	/* read minimal guaranteed structure */
3150	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3151	if (ret <= 0) {
3152		pr_debug("cannot read %d bytes of header attr\n",
3153			 PERF_ATTR_SIZE_VER0);
3154		return -1;
3155	}
3156
3157	/* on file perf_event_attr size */
3158	sz = attr->size;
3159
3160	if (ph->needs_swap)
3161		sz = bswap_32(sz);
3162
3163	if (sz == 0) {
3164		/* assume ABI0 */
3165		sz =  PERF_ATTR_SIZE_VER0;
3166	} else if (sz > our_sz) {
3167		pr_debug("file uses a more recent and unsupported ABI"
3168			 " (%zu bytes extra)\n", sz - our_sz);
3169		return -1;
3170	}
3171	/* what we have not yet read and that we know about */
3172	left = sz - PERF_ATTR_SIZE_VER0;
3173	if (left) {
3174		void *ptr = attr;
3175		ptr += PERF_ATTR_SIZE_VER0;
3176
3177		ret = readn(fd, ptr, left);
3178	}
3179	/* read perf_file_section, ids are read in caller */
3180	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3181
3182	return ret <= 0 ? -1 : 0;
3183}
3184
3185static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3186						struct pevent *pevent)
3187{
3188	struct event_format *event;
3189	char bf[128];
3190
3191	/* already prepared */
3192	if (evsel->tp_format)
3193		return 0;
3194
3195	if (pevent == NULL) {
3196		pr_debug("broken or missing trace data\n");
3197		return -1;
3198	}
3199
3200	event = pevent_find_event(pevent, evsel->attr.config);
3201	if (event == NULL) {
3202		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3203		return -1;
3204	}
3205
3206	if (!evsel->name) {
3207		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3208		evsel->name = strdup(bf);
3209		if (evsel->name == NULL)
3210			return -1;
3211	}
3212
3213	evsel->tp_format = event;
3214	return 0;
3215}
3216
3217static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3218						  struct pevent *pevent)
3219{
3220	struct perf_evsel *pos;
3221
3222	evlist__for_each_entry(evlist, pos) {
3223		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3224		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3225			return -1;
3226	}
3227
3228	return 0;
3229}
3230
3231int perf_session__read_header(struct perf_session *session)
3232{
3233	struct perf_data *data = session->data;
3234	struct perf_header *header = &session->header;
3235	struct perf_file_header	f_header;
3236	struct perf_file_attr	f_attr;
3237	u64			f_id;
3238	int nr_attrs, nr_ids, i, j;
3239	int fd = perf_data__fd(data);
3240
3241	session->evlist = perf_evlist__new();
3242	if (session->evlist == NULL)
3243		return -ENOMEM;
3244
3245	session->evlist->env = &header->env;
3246	session->machines.host.env = &header->env;
3247	if (perf_data__is_pipe(data))
3248		return perf_header__read_pipe(session);
 
 
 
 
 
 
 
 
3249
3250	if (perf_file_header__read(&f_header, header, fd) < 0)
3251		return -EINVAL;
3252
 
 
 
 
 
3253	/*
3254	 * Sanity check that perf.data was written cleanly; data size is
3255	 * initialized to 0 and updated only if the on_exit function is run.
3256	 * If data size is still 0 then the file contains only partial
3257	 * information.  Just warn user and process it as much as it can.
3258	 */
3259	if (f_header.data.size == 0) {
3260		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3261			   "Was the 'perf record' command properly terminated?\n",
3262			   data->file.path);
3263	}
3264
 
 
 
 
 
 
 
3265	nr_attrs = f_header.attrs.size / f_header.attr_size;
3266	lseek(fd, f_header.attrs.offset, SEEK_SET);
3267
3268	for (i = 0; i < nr_attrs; i++) {
3269		struct perf_evsel *evsel;
3270		off_t tmp;
3271
3272		if (read_attr(fd, header, &f_attr) < 0)
3273			goto out_errno;
3274
3275		if (header->needs_swap) {
3276			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3277			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3278			perf_event__attr_swap(&f_attr.attr);
3279		}
3280
3281		tmp = lseek(fd, 0, SEEK_CUR);
3282		evsel = perf_evsel__new(&f_attr.attr);
3283
3284		if (evsel == NULL)
3285			goto out_delete_evlist;
3286
3287		evsel->needs_swap = header->needs_swap;
3288		/*
3289		 * Do it before so that if perf_evsel__alloc_id fails, this
3290		 * entry gets purged too at perf_evlist__delete().
3291		 */
3292		perf_evlist__add(session->evlist, evsel);
3293
3294		nr_ids = f_attr.ids.size / sizeof(u64);
3295		/*
3296		 * We don't have the cpu and thread maps on the header, so
3297		 * for allocating the perf_sample_id table we fake 1 cpu and
3298		 * hattr->ids threads.
3299		 */
3300		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3301			goto out_delete_evlist;
3302
3303		lseek(fd, f_attr.ids.offset, SEEK_SET);
3304
3305		for (j = 0; j < nr_ids; j++) {
3306			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3307				goto out_errno;
3308
3309			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3310		}
3311
3312		lseek(fd, tmp, SEEK_SET);
3313	}
3314
3315	symbol_conf.nr_events = nr_attrs;
3316
3317	perf_header__process_sections(header, fd, &session->tevent,
3318				      perf_file_section__process);
3319
3320	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3321						   session->tevent.pevent))
3322		goto out_delete_evlist;
3323
3324	return 0;
3325out_errno:
3326	return -errno;
3327
3328out_delete_evlist:
3329	perf_evlist__delete(session->evlist);
3330	session->evlist = NULL;
3331	return -ENOMEM;
3332}
3333
3334int perf_event__synthesize_attr(struct perf_tool *tool,
3335				struct perf_event_attr *attr, u32 ids, u64 *id,
3336				perf_event__handler_t process)
3337{
3338	union perf_event *ev;
3339	size_t size;
3340	int err;
3341
3342	size = sizeof(struct perf_event_attr);
3343	size = PERF_ALIGN(size, sizeof(u64));
3344	size += sizeof(struct perf_event_header);
3345	size += ids * sizeof(u64);
3346
3347	ev = malloc(size);
3348
3349	if (ev == NULL)
3350		return -ENOMEM;
3351
3352	ev->attr.attr = *attr;
3353	memcpy(ev->attr.id, id, ids * sizeof(u64));
3354
3355	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3356	ev->attr.header.size = (u16)size;
3357
3358	if (ev->attr.header.size == size)
3359		err = process(tool, ev, NULL, NULL);
3360	else
3361		err = -E2BIG;
3362
3363	free(ev);
3364
3365	return err;
3366}
3367
3368int perf_event__synthesize_features(struct perf_tool *tool,
3369				    struct perf_session *session,
3370				    struct perf_evlist *evlist,
3371				    perf_event__handler_t process)
3372{
3373	struct perf_header *header = &session->header;
3374	struct feat_fd ff;
3375	struct feature_event *fe;
3376	size_t sz, sz_hdr;
3377	int feat, ret;
3378
3379	sz_hdr = sizeof(fe->header);
3380	sz = sizeof(union perf_event);
3381	/* get a nice alignment */
3382	sz = PERF_ALIGN(sz, page_size);
3383
3384	memset(&ff, 0, sizeof(ff));
3385
3386	ff.buf = malloc(sz);
3387	if (!ff.buf)
3388		return -ENOMEM;
3389
3390	ff.size = sz - sz_hdr;
3391
3392	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3393		if (!feat_ops[feat].synthesize) {
3394			pr_debug("No record header feature for header :%d\n", feat);
3395			continue;
3396		}
3397
3398		ff.offset = sizeof(*fe);
3399
3400		ret = feat_ops[feat].write(&ff, evlist);
3401		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3402			pr_debug("Error writing feature\n");
3403			continue;
3404		}
3405		/* ff.buf may have changed due to realloc in do_write() */
3406		fe = ff.buf;
3407		memset(fe, 0, sizeof(*fe));
3408
3409		fe->feat_id = feat;
3410		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3411		fe->header.size = ff.offset;
3412
3413		ret = process(tool, ff.buf, NULL, NULL);
3414		if (ret) {
3415			free(ff.buf);
3416			return ret;
3417		}
3418	}
3419
3420	/* Send HEADER_LAST_FEATURE mark. */
3421	fe = ff.buf;
3422	fe->feat_id     = HEADER_LAST_FEATURE;
3423	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3424	fe->header.size = sizeof(*fe);
3425
3426	ret = process(tool, ff.buf, NULL, NULL);
3427
3428	free(ff.buf);
3429	return ret;
3430}
3431
3432int perf_event__process_feature(struct perf_tool *tool,
3433				union perf_event *event,
3434				struct perf_session *session __maybe_unused)
3435{
 
3436	struct feat_fd ff = { .fd = 0 };
3437	struct feature_event *fe = (struct feature_event *)event;
3438	int type = fe->header.type;
3439	u64 feat = fe->feat_id;
3440
3441	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3442		pr_warning("invalid record type %d in pipe-mode\n", type);
3443		return 0;
3444	}
3445	if (feat == HEADER_RESERVED || feat > HEADER_LAST_FEATURE) {
3446		pr_warning("invalid record type %d in pipe-mode\n", type);
3447		return -1;
3448	}
3449
3450	if (!feat_ops[feat].process)
3451		return 0;
3452
3453	ff.buf  = (void *)fe->data;
3454	ff.size = event->header.size - sizeof(event->header);
3455	ff.ph = &session->header;
3456
3457	if (feat_ops[feat].process(&ff, NULL))
3458		return -1;
3459
3460	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3461		return 0;
3462
3463	if (!feat_ops[feat].full_only ||
3464	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3465		feat_ops[feat].print(&ff, stdout);
3466	} else {
3467		fprintf(stdout, "# %s info available, use -I to display\n",
3468			feat_ops[feat].name);
3469	}
3470
3471	return 0;
3472}
3473
3474static struct event_update_event *
3475event_update_event__new(size_t size, u64 type, u64 id)
3476{
3477	struct event_update_event *ev;
3478
3479	size += sizeof(*ev);
3480	size  = PERF_ALIGN(size, sizeof(u64));
3481
3482	ev = zalloc(size);
3483	if (ev) {
3484		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3485		ev->header.size = (u16)size;
3486		ev->type = type;
3487		ev->id = id;
3488	}
3489	return ev;
3490}
3491
3492int
3493perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3494					 struct perf_evsel *evsel,
3495					 perf_event__handler_t process)
3496{
3497	struct event_update_event *ev;
3498	size_t size = strlen(evsel->unit);
3499	int err;
3500
3501	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3502	if (ev == NULL)
3503		return -ENOMEM;
3504
3505	strncpy(ev->data, evsel->unit, size);
3506	err = process(tool, (union perf_event *)ev, NULL, NULL);
3507	free(ev);
3508	return err;
3509}
3510
3511int
3512perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3513					  struct perf_evsel *evsel,
3514					  perf_event__handler_t process)
3515{
3516	struct event_update_event *ev;
3517	struct event_update_event_scale *ev_data;
3518	int err;
3519
3520	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3521	if (ev == NULL)
3522		return -ENOMEM;
3523
3524	ev_data = (struct event_update_event_scale *) ev->data;
3525	ev_data->scale = evsel->scale;
3526	err = process(tool, (union perf_event*) ev, NULL, NULL);
3527	free(ev);
3528	return err;
3529}
3530
3531int
3532perf_event__synthesize_event_update_name(struct perf_tool *tool,
3533					 struct perf_evsel *evsel,
3534					 perf_event__handler_t process)
3535{
3536	struct event_update_event *ev;
3537	size_t len = strlen(evsel->name);
3538	int err;
3539
3540	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3541	if (ev == NULL)
3542		return -ENOMEM;
3543
3544	strncpy(ev->data, evsel->name, len);
3545	err = process(tool, (union perf_event*) ev, NULL, NULL);
3546	free(ev);
3547	return err;
3548}
3549
3550int
3551perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3552					struct perf_evsel *evsel,
3553					perf_event__handler_t process)
3554{
3555	size_t size = sizeof(struct event_update_event);
3556	struct event_update_event *ev;
3557	int max, err;
3558	u16 type;
3559
3560	if (!evsel->own_cpus)
3561		return 0;
3562
3563	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3564	if (!ev)
3565		return -ENOMEM;
3566
3567	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3568	ev->header.size = (u16)size;
3569	ev->type = PERF_EVENT_UPDATE__CPUS;
3570	ev->id   = evsel->id[0];
3571
3572	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3573				 evsel->own_cpus,
3574				 type, max);
3575
3576	err = process(tool, (union perf_event*) ev, NULL, NULL);
3577	free(ev);
3578	return err;
3579}
3580
3581size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3582{
3583	struct event_update_event *ev = &event->event_update;
3584	struct event_update_event_scale *ev_scale;
3585	struct event_update_event_cpus *ev_cpus;
3586	struct cpu_map *map;
3587	size_t ret;
3588
3589	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3590
3591	switch (ev->type) {
3592	case PERF_EVENT_UPDATE__SCALE:
3593		ev_scale = (struct event_update_event_scale *) ev->data;
3594		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3595		break;
3596	case PERF_EVENT_UPDATE__UNIT:
3597		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3598		break;
3599	case PERF_EVENT_UPDATE__NAME:
3600		ret += fprintf(fp, "... name:  %s\n", ev->data);
3601		break;
3602	case PERF_EVENT_UPDATE__CPUS:
3603		ev_cpus = (struct event_update_event_cpus *) ev->data;
3604		ret += fprintf(fp, "... ");
3605
3606		map = cpu_map__new_data(&ev_cpus->cpus);
3607		if (map)
3608			ret += cpu_map__fprintf(map, fp);
3609		else
3610			ret += fprintf(fp, "failed to get cpus\n");
3611		break;
3612	default:
3613		ret += fprintf(fp, "... unknown type\n");
3614		break;
3615	}
3616
3617	return ret;
3618}
3619
3620int perf_event__synthesize_attrs(struct perf_tool *tool,
3621				   struct perf_session *session,
3622				   perf_event__handler_t process)
3623{
3624	struct perf_evsel *evsel;
3625	int err = 0;
3626
3627	evlist__for_each_entry(session->evlist, evsel) {
3628		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3629						  evsel->id, process);
3630		if (err) {
3631			pr_debug("failed to create perf header attribute\n");
3632			return err;
3633		}
3634	}
3635
3636	return err;
3637}
3638
3639static bool has_unit(struct perf_evsel *counter)
3640{
3641	return counter->unit && *counter->unit;
3642}
3643
3644static bool has_scale(struct perf_evsel *counter)
3645{
3646	return counter->scale != 1;
3647}
3648
3649int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3650				      struct perf_evlist *evsel_list,
3651				      perf_event__handler_t process,
3652				      bool is_pipe)
3653{
3654	struct perf_evsel *counter;
3655	int err;
3656
3657	/*
3658	 * Synthesize other events stuff not carried within
3659	 * attr event - unit, scale, name
3660	 */
3661	evlist__for_each_entry(evsel_list, counter) {
3662		if (!counter->supported)
3663			continue;
3664
3665		/*
3666		 * Synthesize unit and scale only if it's defined.
3667		 */
3668		if (has_unit(counter)) {
3669			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3670			if (err < 0) {
3671				pr_err("Couldn't synthesize evsel unit.\n");
3672				return err;
3673			}
3674		}
3675
3676		if (has_scale(counter)) {
3677			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3678			if (err < 0) {
3679				pr_err("Couldn't synthesize evsel counter.\n");
3680				return err;
3681			}
3682		}
3683
3684		if (counter->own_cpus) {
3685			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3686			if (err < 0) {
3687				pr_err("Couldn't synthesize evsel cpus.\n");
3688				return err;
3689			}
3690		}
3691
3692		/*
3693		 * Name is needed only for pipe output,
3694		 * perf.data carries event names.
3695		 */
3696		if (is_pipe) {
3697			err = perf_event__synthesize_event_update_name(tool, counter, process);
3698			if (err < 0) {
3699				pr_err("Couldn't synthesize evsel name.\n");
3700				return err;
3701			}
3702		}
3703	}
3704	return 0;
3705}
3706
3707int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3708			     union perf_event *event,
3709			     struct perf_evlist **pevlist)
3710{
3711	u32 i, ids, n_ids;
3712	struct perf_evsel *evsel;
3713	struct perf_evlist *evlist = *pevlist;
3714
3715	if (evlist == NULL) {
3716		*pevlist = evlist = perf_evlist__new();
3717		if (evlist == NULL)
3718			return -ENOMEM;
3719	}
3720
3721	evsel = perf_evsel__new(&event->attr.attr);
3722	if (evsel == NULL)
3723		return -ENOMEM;
3724
3725	perf_evlist__add(evlist, evsel);
3726
3727	ids = event->header.size;
3728	ids -= (void *)&event->attr.id - (void *)event;
3729	n_ids = ids / sizeof(u64);
3730	/*
3731	 * We don't have the cpu and thread maps on the header, so
3732	 * for allocating the perf_sample_id table we fake 1 cpu and
3733	 * hattr->ids threads.
3734	 */
3735	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3736		return -ENOMEM;
3737
3738	for (i = 0; i < n_ids; i++) {
3739		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3740	}
3741
3742	symbol_conf.nr_events = evlist->nr_entries;
3743
3744	return 0;
3745}
3746
3747int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3748				     union perf_event *event,
3749				     struct perf_evlist **pevlist)
3750{
3751	struct event_update_event *ev = &event->event_update;
3752	struct event_update_event_scale *ev_scale;
3753	struct event_update_event_cpus *ev_cpus;
3754	struct perf_evlist *evlist;
3755	struct perf_evsel *evsel;
3756	struct cpu_map *map;
3757
3758	if (!pevlist || *pevlist == NULL)
3759		return -EINVAL;
3760
3761	evlist = *pevlist;
3762
3763	evsel = perf_evlist__id2evsel(evlist, ev->id);
3764	if (evsel == NULL)
3765		return -EINVAL;
3766
3767	switch (ev->type) {
3768	case PERF_EVENT_UPDATE__UNIT:
3769		evsel->unit = strdup(ev->data);
3770		break;
3771	case PERF_EVENT_UPDATE__NAME:
3772		evsel->name = strdup(ev->data);
3773		break;
3774	case PERF_EVENT_UPDATE__SCALE:
3775		ev_scale = (struct event_update_event_scale *) ev->data;
3776		evsel->scale = ev_scale->scale;
3777		break;
3778	case PERF_EVENT_UPDATE__CPUS:
3779		ev_cpus = (struct event_update_event_cpus *) ev->data;
3780
3781		map = cpu_map__new_data(&ev_cpus->cpus);
3782		if (map)
3783			evsel->own_cpus = map;
3784		else
3785			pr_err("failed to get event_update cpus\n");
3786	default:
3787		break;
3788	}
3789
3790	return 0;
3791}
3792
3793int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3794					struct perf_evlist *evlist,
3795					perf_event__handler_t process)
3796{
3797	union perf_event ev;
3798	struct tracing_data *tdata;
3799	ssize_t size = 0, aligned_size = 0, padding;
3800	struct feat_fd ff;
3801	int err __maybe_unused = 0;
3802
3803	/*
3804	 * We are going to store the size of the data followed
3805	 * by the data contents. Since the fd descriptor is a pipe,
3806	 * we cannot seek back to store the size of the data once
3807	 * we know it. Instead we:
3808	 *
3809	 * - write the tracing data to the temp file
3810	 * - get/write the data size to pipe
3811	 * - write the tracing data from the temp file
3812	 *   to the pipe
3813	 */
3814	tdata = tracing_data_get(&evlist->entries, fd, true);
3815	if (!tdata)
3816		return -1;
3817
3818	memset(&ev, 0, sizeof(ev));
3819
3820	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3821	size = tdata->size;
3822	aligned_size = PERF_ALIGN(size, sizeof(u64));
3823	padding = aligned_size - size;
3824	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3825	ev.tracing_data.size = aligned_size;
3826
3827	process(tool, &ev, NULL, NULL);
3828
3829	/*
3830	 * The put function will copy all the tracing data
3831	 * stored in temp file to the pipe.
3832	 */
3833	tracing_data_put(tdata);
3834
3835	ff = (struct feat_fd){ .fd = fd };
3836	if (write_padded(&ff, NULL, 0, padding))
3837		return -1;
3838
3839	return aligned_size;
3840}
3841
3842int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3843				     union perf_event *event,
3844				     struct perf_session *session)
3845{
3846	ssize_t size_read, padding, size = event->tracing_data.size;
3847	int fd = perf_data__fd(session->data);
3848	off_t offset = lseek(fd, 0, SEEK_CUR);
3849	char buf[BUFSIZ];
3850
3851	/* setup for reading amidst mmap */
3852	lseek(fd, offset + sizeof(struct tracing_data_event),
3853	      SEEK_SET);
 
 
 
 
 
 
 
 
 
 
 
3854
3855	size_read = trace_report(fd, &session->tevent,
3856				 session->repipe);
3857	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3858
3859	if (readn(fd, buf, padding) < 0) {
3860		pr_err("%s: reading input file", __func__);
3861		return -1;
3862	}
3863	if (session->repipe) {
3864		int retw = write(STDOUT_FILENO, buf, padding);
3865		if (retw <= 0 || retw != padding) {
3866			pr_err("%s: repiping tracing data padding", __func__);
3867			return -1;
3868		}
3869	}
3870
3871	if (size_read + padding != size) {
3872		pr_err("%s: tracing data size mismatch", __func__);
3873		return -1;
3874	}
3875
3876	perf_evlist__prepare_tracepoint_events(session->evlist,
3877					       session->tevent.pevent);
3878
3879	return size_read + padding;
3880}
3881
3882int perf_event__synthesize_build_id(struct perf_tool *tool,
3883				    struct dso *pos, u16 misc,
3884				    perf_event__handler_t process,
3885				    struct machine *machine)
3886{
3887	union perf_event ev;
3888	size_t len;
3889	int err = 0;
3890
3891	if (!pos->hit)
3892		return err;
3893
3894	memset(&ev, 0, sizeof(ev));
3895
3896	len = pos->long_name_len + 1;
3897	len = PERF_ALIGN(len, NAME_ALIGN);
3898	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3899	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3900	ev.build_id.header.misc = misc;
3901	ev.build_id.pid = machine->pid;
3902	ev.build_id.header.size = sizeof(ev.build_id) + len;
3903	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3904
3905	err = process(tool, &ev, NULL, machine);
3906
3907	return err;
3908}
3909
3910int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3911				 union perf_event *event,
3912				 struct perf_session *session)
3913{
3914	__event_process_build_id(&event->build_id,
3915				 event->build_id.filename,
3916				 session);
3917	return 0;
3918}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
 
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#ifdef HAVE_LIBBPF_SUPPORT
  23#include <bpf/libbpf.h>
  24#endif
  25#include <perf/cpumap.h>
  26
  27#include "dso.h"
  28#include "evlist.h"
  29#include "evsel.h"
  30#include "util/evsel_fprintf.h"
  31#include "header.h"
  32#include "memswap.h"
 
  33#include "trace-event.h"
  34#include "session.h"
  35#include "symbol.h"
  36#include "debug.h"
  37#include "cpumap.h"
  38#include "pmu.h"
  39#include "vdso.h"
  40#include "strbuf.h"
  41#include "build-id.h"
  42#include "data.h"
  43#include <api/fs/fs.h>
  44#include "asm/bug.h"
  45#include "tool.h"
  46#include "time-utils.h"
  47#include "units.h"
  48#include "util/util.h" // perf_exe()
  49#include "cputopo.h"
  50#include "bpf-event.h"
  51#include "clockid.h"
  52#include "pmu-hybrid.h"
  53
  54#include <linux/ctype.h>
  55#include <internal/lib.h>
  56
  57/*
  58 * magic2 = "PERFILE2"
  59 * must be a numerical value to let the endianness
  60 * determine the memory layout. That way we are able
  61 * to detect endianness when reading the perf.data file
  62 * back.
  63 *
  64 * we check for legacy (PERFFILE) format.
  65 */
  66static const char *__perf_magic1 = "PERFFILE";
  67static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  68static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  69
  70#define PERF_MAGIC	__perf_magic2
  71
  72const char perf_version_string[] = PERF_VERSION;
  73
  74struct perf_file_attr {
  75	struct perf_event_attr	attr;
  76	struct perf_file_section	ids;
  77};
  78
 
 
 
 
 
 
 
 
 
  79void perf_header__set_feat(struct perf_header *header, int feat)
  80{
  81	set_bit(feat, header->adds_features);
  82}
  83
  84void perf_header__clear_feat(struct perf_header *header, int feat)
  85{
  86	clear_bit(feat, header->adds_features);
  87}
  88
  89bool perf_header__has_feat(const struct perf_header *header, int feat)
  90{
  91	return test_bit(feat, header->adds_features);
  92}
  93
  94static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  95{
  96	ssize_t ret = writen(ff->fd, buf, size);
  97
  98	if (ret != (ssize_t)size)
  99		return ret < 0 ? (int)ret : -1;
 100	return 0;
 101}
 102
 103static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 104{
 105	/* struct perf_event_header::size is u16 */
 106	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 107	size_t new_size = ff->size;
 108	void *addr;
 109
 110	if (size + ff->offset > max_size)
 111		return -E2BIG;
 112
 113	while (size > (new_size - ff->offset))
 114		new_size <<= 1;
 115	new_size = min(max_size, new_size);
 116
 117	if (ff->size < new_size) {
 118		addr = realloc(ff->buf, new_size);
 119		if (!addr)
 120			return -ENOMEM;
 121		ff->buf = addr;
 122		ff->size = new_size;
 123	}
 124
 125	memcpy(ff->buf + ff->offset, buf, size);
 126	ff->offset += size;
 127
 128	return 0;
 129}
 130
 131/* Return: 0 if succeeded, -ERR if failed. */
 132int do_write(struct feat_fd *ff, const void *buf, size_t size)
 133{
 134	if (!ff->buf)
 135		return __do_write_fd(ff, buf, size);
 136	return __do_write_buf(ff, buf, size);
 137}
 138
 139/* Return: 0 if succeeded, -ERR if failed. */
 140static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 141{
 142	u64 *p = (u64 *) set;
 143	int i, ret;
 144
 145	ret = do_write(ff, &size, sizeof(size));
 146	if (ret < 0)
 147		return ret;
 148
 149	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 150		ret = do_write(ff, p + i, sizeof(*p));
 151		if (ret < 0)
 152			return ret;
 153	}
 154
 155	return 0;
 156}
 157
 158/* Return: 0 if succeeded, -ERR if failed. */
 159int write_padded(struct feat_fd *ff, const void *bf,
 160		 size_t count, size_t count_aligned)
 161{
 162	static const char zero_buf[NAME_ALIGN];
 163	int err = do_write(ff, bf, count);
 164
 165	if (!err)
 166		err = do_write(ff, zero_buf, count_aligned - count);
 167
 168	return err;
 169}
 170
 171#define string_size(str)						\
 172	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 173
 174/* Return: 0 if succeeded, -ERR if failed. */
 175static int do_write_string(struct feat_fd *ff, const char *str)
 176{
 177	u32 len, olen;
 178	int ret;
 179
 180	olen = strlen(str) + 1;
 181	len = PERF_ALIGN(olen, NAME_ALIGN);
 182
 183	/* write len, incl. \0 */
 184	ret = do_write(ff, &len, sizeof(len));
 185	if (ret < 0)
 186		return ret;
 187
 188	return write_padded(ff, str, olen, len);
 189}
 190
 191static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 192{
 193	ssize_t ret = readn(ff->fd, addr, size);
 194
 195	if (ret != size)
 196		return ret < 0 ? (int)ret : -1;
 197	return 0;
 198}
 199
 200static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 201{
 202	if (size > (ssize_t)ff->size - ff->offset)
 203		return -1;
 204
 205	memcpy(addr, ff->buf + ff->offset, size);
 206	ff->offset += size;
 207
 208	return 0;
 209
 210}
 211
 212static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 213{
 214	if (!ff->buf)
 215		return __do_read_fd(ff, addr, size);
 216	return __do_read_buf(ff, addr, size);
 217}
 218
 219static int do_read_u32(struct feat_fd *ff, u32 *addr)
 220{
 221	int ret;
 222
 223	ret = __do_read(ff, addr, sizeof(*addr));
 224	if (ret)
 225		return ret;
 226
 227	if (ff->ph->needs_swap)
 228		*addr = bswap_32(*addr);
 229	return 0;
 230}
 231
 232static int do_read_u64(struct feat_fd *ff, u64 *addr)
 233{
 234	int ret;
 235
 236	ret = __do_read(ff, addr, sizeof(*addr));
 237	if (ret)
 238		return ret;
 239
 240	if (ff->ph->needs_swap)
 241		*addr = bswap_64(*addr);
 242	return 0;
 243}
 244
 245static char *do_read_string(struct feat_fd *ff)
 246{
 247	u32 len;
 248	char *buf;
 249
 250	if (do_read_u32(ff, &len))
 251		return NULL;
 252
 253	buf = malloc(len);
 254	if (!buf)
 255		return NULL;
 256
 257	if (!__do_read(ff, buf, len)) {
 258		/*
 259		 * strings are padded by zeroes
 260		 * thus the actual strlen of buf
 261		 * may be less than len
 262		 */
 263		return buf;
 264	}
 265
 266	free(buf);
 267	return NULL;
 268}
 269
 270/* Return: 0 if succeeded, -ERR if failed. */
 271static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 272{
 273	unsigned long *set;
 274	u64 size, *p;
 275	int i, ret;
 276
 277	ret = do_read_u64(ff, &size);
 278	if (ret)
 279		return ret;
 280
 281	set = bitmap_alloc(size);
 282	if (!set)
 283		return -ENOMEM;
 284
 
 
 285	p = (u64 *) set;
 286
 287	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 288		ret = do_read_u64(ff, p + i);
 289		if (ret < 0) {
 290			free(set);
 291			return ret;
 292		}
 293	}
 294
 295	*pset  = set;
 296	*psize = size;
 297	return 0;
 298}
 299
 300static int write_tracing_data(struct feat_fd *ff,
 301			      struct evlist *evlist)
 302{
 303	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 304		return -1;
 305
 306	return read_tracing_data(ff->fd, &evlist->core.entries);
 307}
 308
 309static int write_build_id(struct feat_fd *ff,
 310			  struct evlist *evlist __maybe_unused)
 311{
 312	struct perf_session *session;
 313	int err;
 314
 315	session = container_of(ff->ph, struct perf_session, header);
 316
 317	if (!perf_session__read_build_ids(session, true))
 318		return -1;
 319
 320	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 321		return -1;
 322
 323	err = perf_session__write_buildid_table(session, ff);
 324	if (err < 0) {
 325		pr_debug("failed to write buildid table\n");
 326		return err;
 327	}
 328	perf_session__cache_build_ids(session);
 329
 330	return 0;
 331}
 332
 333static int write_hostname(struct feat_fd *ff,
 334			  struct evlist *evlist __maybe_unused)
 335{
 336	struct utsname uts;
 337	int ret;
 338
 339	ret = uname(&uts);
 340	if (ret < 0)
 341		return -1;
 342
 343	return do_write_string(ff, uts.nodename);
 344}
 345
 346static int write_osrelease(struct feat_fd *ff,
 347			   struct evlist *evlist __maybe_unused)
 348{
 349	struct utsname uts;
 350	int ret;
 351
 352	ret = uname(&uts);
 353	if (ret < 0)
 354		return -1;
 355
 356	return do_write_string(ff, uts.release);
 357}
 358
 359static int write_arch(struct feat_fd *ff,
 360		      struct evlist *evlist __maybe_unused)
 361{
 362	struct utsname uts;
 363	int ret;
 364
 365	ret = uname(&uts);
 366	if (ret < 0)
 367		return -1;
 368
 369	return do_write_string(ff, uts.machine);
 370}
 371
 372static int write_version(struct feat_fd *ff,
 373			 struct evlist *evlist __maybe_unused)
 374{
 375	return do_write_string(ff, perf_version_string);
 376}
 377
 378static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 379{
 380	FILE *file;
 381	char *buf = NULL;
 382	char *s, *p;
 383	const char *search = cpuinfo_proc;
 384	size_t len = 0;
 385	int ret = -1;
 386
 387	if (!search)
 388		return -1;
 389
 390	file = fopen("/proc/cpuinfo", "r");
 391	if (!file)
 392		return -1;
 393
 394	while (getline(&buf, &len, file) > 0) {
 395		ret = strncmp(buf, search, strlen(search));
 396		if (!ret)
 397			break;
 398	}
 399
 400	if (ret) {
 401		ret = -1;
 402		goto done;
 403	}
 404
 405	s = buf;
 406
 407	p = strchr(buf, ':');
 408	if (p && *(p+1) == ' ' && *(p+2))
 409		s = p + 2;
 410	p = strchr(s, '\n');
 411	if (p)
 412		*p = '\0';
 413
 414	/* squash extra space characters (branding string) */
 415	p = s;
 416	while (*p) {
 417		if (isspace(*p)) {
 418			char *r = p + 1;
 419			char *q = skip_spaces(r);
 420			*p = ' ';
 
 
 421			if (q != (p+1))
 422				while ((*r++ = *q++));
 423		}
 424		p++;
 425	}
 426	ret = do_write_string(ff, s);
 427done:
 428	free(buf);
 429	fclose(file);
 430	return ret;
 431}
 432
 433static int write_cpudesc(struct feat_fd *ff,
 434		       struct evlist *evlist __maybe_unused)
 435{
 436#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 437#define CPUINFO_PROC	{ "cpu", }
 438#elif defined(__s390__)
 439#define CPUINFO_PROC	{ "vendor_id", }
 440#elif defined(__sh__)
 441#define CPUINFO_PROC	{ "cpu type", }
 442#elif defined(__alpha__) || defined(__mips__)
 443#define CPUINFO_PROC	{ "cpu model", }
 444#elif defined(__arm__)
 445#define CPUINFO_PROC	{ "model name", "Processor", }
 446#elif defined(__arc__)
 447#define CPUINFO_PROC	{ "Processor", }
 448#elif defined(__xtensa__)
 449#define CPUINFO_PROC	{ "core ID", }
 450#else
 451#define CPUINFO_PROC	{ "model name", }
 452#endif
 453	const char *cpuinfo_procs[] = CPUINFO_PROC;
 454#undef CPUINFO_PROC
 455	unsigned int i;
 456
 457	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 458		int ret;
 459		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 460		if (ret >= 0)
 461			return ret;
 462	}
 463	return -1;
 464}
 465
 466
 467static int write_nrcpus(struct feat_fd *ff,
 468			struct evlist *evlist __maybe_unused)
 469{
 470	long nr;
 471	u32 nrc, nra;
 472	int ret;
 473
 474	nrc = cpu__max_present_cpu();
 475
 476	nr = sysconf(_SC_NPROCESSORS_ONLN);
 477	if (nr < 0)
 478		return -1;
 479
 480	nra = (u32)(nr & UINT_MAX);
 481
 482	ret = do_write(ff, &nrc, sizeof(nrc));
 483	if (ret < 0)
 484		return ret;
 485
 486	return do_write(ff, &nra, sizeof(nra));
 487}
 488
 489static int write_event_desc(struct feat_fd *ff,
 490			    struct evlist *evlist)
 491{
 492	struct evsel *evsel;
 493	u32 nre, nri, sz;
 494	int ret;
 495
 496	nre = evlist->core.nr_entries;
 497
 498	/*
 499	 * write number of events
 500	 */
 501	ret = do_write(ff, &nre, sizeof(nre));
 502	if (ret < 0)
 503		return ret;
 504
 505	/*
 506	 * size of perf_event_attr struct
 507	 */
 508	sz = (u32)sizeof(evsel->core.attr);
 509	ret = do_write(ff, &sz, sizeof(sz));
 510	if (ret < 0)
 511		return ret;
 512
 513	evlist__for_each_entry(evlist, evsel) {
 514		ret = do_write(ff, &evsel->core.attr, sz);
 515		if (ret < 0)
 516			return ret;
 517		/*
 518		 * write number of unique id per event
 519		 * there is one id per instance of an event
 520		 *
 521		 * copy into an nri to be independent of the
 522		 * type of ids,
 523		 */
 524		nri = evsel->core.ids;
 525		ret = do_write(ff, &nri, sizeof(nri));
 526		if (ret < 0)
 527			return ret;
 528
 529		/*
 530		 * write event string as passed on cmdline
 531		 */
 532		ret = do_write_string(ff, evsel__name(evsel));
 533		if (ret < 0)
 534			return ret;
 535		/*
 536		 * write unique ids for this event
 537		 */
 538		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 539		if (ret < 0)
 540			return ret;
 541	}
 542	return 0;
 543}
 544
 545static int write_cmdline(struct feat_fd *ff,
 546			 struct evlist *evlist __maybe_unused)
 547{
 548	char pbuf[MAXPATHLEN], *buf;
 549	int i, ret, n;
 
 550
 551	/* actual path to perf binary */
 552	buf = perf_exe(pbuf, MAXPATHLEN);
 
 
 
 
 
 553
 554	/* account for binary path */
 555	n = perf_env.nr_cmdline + 1;
 556
 557	ret = do_write(ff, &n, sizeof(n));
 558	if (ret < 0)
 559		return ret;
 560
 561	ret = do_write_string(ff, buf);
 562	if (ret < 0)
 563		return ret;
 564
 565	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 566		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 567		if (ret < 0)
 568			return ret;
 569	}
 570	return 0;
 571}
 572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573
 574static int write_cpu_topology(struct feat_fd *ff,
 575			      struct evlist *evlist __maybe_unused)
 576{
 577	struct cpu_topology *tp;
 578	u32 i;
 579	int ret, j;
 580
 581	tp = cpu_topology__new();
 582	if (!tp)
 583		return -1;
 584
 585	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 586	if (ret < 0)
 587		goto done;
 588
 589	for (i = 0; i < tp->core_sib; i++) {
 590		ret = do_write_string(ff, tp->core_siblings[i]);
 591		if (ret < 0)
 592			goto done;
 593	}
 594	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 595	if (ret < 0)
 596		goto done;
 597
 598	for (i = 0; i < tp->thread_sib; i++) {
 599		ret = do_write_string(ff, tp->thread_siblings[i]);
 600		if (ret < 0)
 601			break;
 602	}
 603
 604	ret = perf_env__read_cpu_topology_map(&perf_env);
 605	if (ret < 0)
 606		goto done;
 607
 608	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 609		ret = do_write(ff, &perf_env.cpu[j].core_id,
 610			       sizeof(perf_env.cpu[j].core_id));
 611		if (ret < 0)
 612			return ret;
 613		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 614			       sizeof(perf_env.cpu[j].socket_id));
 615		if (ret < 0)
 616			return ret;
 617	}
 618
 619	if (!tp->die_sib)
 620		goto done;
 621
 622	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 623	if (ret < 0)
 624		goto done;
 625
 626	for (i = 0; i < tp->die_sib; i++) {
 627		ret = do_write_string(ff, tp->die_siblings[i]);
 628		if (ret < 0)
 629			goto done;
 630	}
 631
 632	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 633		ret = do_write(ff, &perf_env.cpu[j].die_id,
 634			       sizeof(perf_env.cpu[j].die_id));
 635		if (ret < 0)
 636			return ret;
 637	}
 638
 639done:
 640	cpu_topology__delete(tp);
 641	return ret;
 642}
 643
 644
 645
 646static int write_total_mem(struct feat_fd *ff,
 647			   struct evlist *evlist __maybe_unused)
 648{
 649	char *buf = NULL;
 650	FILE *fp;
 651	size_t len = 0;
 652	int ret = -1, n;
 653	uint64_t mem;
 654
 655	fp = fopen("/proc/meminfo", "r");
 656	if (!fp)
 657		return -1;
 658
 659	while (getline(&buf, &len, fp) > 0) {
 660		ret = strncmp(buf, "MemTotal:", 9);
 661		if (!ret)
 662			break;
 663	}
 664	if (!ret) {
 665		n = sscanf(buf, "%*s %"PRIu64, &mem);
 666		if (n == 1)
 667			ret = do_write(ff, &mem, sizeof(mem));
 668	} else
 669		ret = -1;
 670	free(buf);
 671	fclose(fp);
 672	return ret;
 673}
 674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675static int write_numa_topology(struct feat_fd *ff,
 676			       struct evlist *evlist __maybe_unused)
 677{
 678	struct numa_topology *tp;
 
 
 
 
 
 679	int ret = -1;
 680	u32 i;
 681
 682	tp = numa_topology__new();
 683	if (!tp)
 684		return -ENOMEM;
 685
 686	ret = do_write(ff, &tp->nr, sizeof(u32));
 687	if (ret < 0)
 688		goto err;
 689
 690	for (i = 0; i < tp->nr; i++) {
 691		struct numa_topology_node *n = &tp->nodes[i];
 
 692
 693		ret = do_write(ff, &n->node, sizeof(u32));
 694		if (ret < 0)
 695			goto err;
 
 
 696
 697		ret = do_write(ff, &n->mem_total, sizeof(u64));
 698		if (ret)
 699			goto err;
 700
 701		ret = do_write(ff, &n->mem_free, sizeof(u64));
 702		if (ret)
 703			goto err;
 
 
 704
 705		ret = do_write_string(ff, n->cpus);
 706		if (ret < 0)
 707			goto err;
 708	}
 709
 710	ret = 0;
 711
 712err:
 713	numa_topology__delete(tp);
 714	return ret;
 715}
 716
 717/*
 718 * File format:
 719 *
 720 * struct pmu_mappings {
 721 *	u32	pmu_num;
 722 *	struct pmu_map {
 723 *		u32	type;
 724 *		char	name[];
 725 *	}[pmu_num];
 726 * };
 727 */
 728
 729static int write_pmu_mappings(struct feat_fd *ff,
 730			      struct evlist *evlist __maybe_unused)
 731{
 732	struct perf_pmu *pmu = NULL;
 733	u32 pmu_num = 0;
 734	int ret;
 735
 736	/*
 737	 * Do a first pass to count number of pmu to avoid lseek so this
 738	 * works in pipe mode as well.
 739	 */
 740	while ((pmu = perf_pmu__scan(pmu))) {
 741		if (!pmu->name)
 742			continue;
 743		pmu_num++;
 744	}
 745
 746	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 747	if (ret < 0)
 748		return ret;
 749
 750	while ((pmu = perf_pmu__scan(pmu))) {
 751		if (!pmu->name)
 752			continue;
 753
 754		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 755		if (ret < 0)
 756			return ret;
 757
 758		ret = do_write_string(ff, pmu->name);
 759		if (ret < 0)
 760			return ret;
 761	}
 762
 763	return 0;
 764}
 765
 766/*
 767 * File format:
 768 *
 769 * struct group_descs {
 770 *	u32	nr_groups;
 771 *	struct group_desc {
 772 *		char	name[];
 773 *		u32	leader_idx;
 774 *		u32	nr_members;
 775 *	}[nr_groups];
 776 * };
 777 */
 778static int write_group_desc(struct feat_fd *ff,
 779			    struct evlist *evlist)
 780{
 781	u32 nr_groups = evlist->core.nr_groups;
 782	struct evsel *evsel;
 783	int ret;
 784
 785	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 786	if (ret < 0)
 787		return ret;
 788
 789	evlist__for_each_entry(evlist, evsel) {
 790		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 
 791			const char *name = evsel->group_name ?: "{anon_group}";
 792			u32 leader_idx = evsel->core.idx;
 793			u32 nr_members = evsel->core.nr_members;
 794
 795			ret = do_write_string(ff, name);
 796			if (ret < 0)
 797				return ret;
 798
 799			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 800			if (ret < 0)
 801				return ret;
 802
 803			ret = do_write(ff, &nr_members, sizeof(nr_members));
 804			if (ret < 0)
 805				return ret;
 806		}
 807	}
 808	return 0;
 809}
 810
 811/*
 812 * Return the CPU id as a raw string.
 813 *
 814 * Each architecture should provide a more precise id string that
 815 * can be use to match the architecture's "mapfile".
 816 */
 817char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 818{
 819	return NULL;
 820}
 821
 822/* Return zero when the cpuid from the mapfile.csv matches the
 823 * cpuid string generated on this platform.
 824 * Otherwise return non-zero.
 825 */
 826int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 827{
 828	regex_t re;
 829	regmatch_t pmatch[1];
 830	int match;
 831
 832	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 833		/* Warn unable to generate match particular string. */
 834		pr_info("Invalid regular expression %s\n", mapcpuid);
 835		return 1;
 836	}
 837
 838	match = !regexec(&re, cpuid, 1, pmatch, 0);
 839	regfree(&re);
 840	if (match) {
 841		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 842
 843		/* Verify the entire string matched. */
 844		if (match_len == strlen(cpuid))
 845			return 0;
 846	}
 847	return 1;
 848}
 849
 850/*
 851 * default get_cpuid(): nothing gets recorded
 852 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 853 */
 854int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 855{
 856	return ENOSYS; /* Not implemented */
 857}
 858
 859static int write_cpuid(struct feat_fd *ff,
 860		       struct evlist *evlist __maybe_unused)
 861{
 862	char buffer[64];
 863	int ret;
 864
 865	ret = get_cpuid(buffer, sizeof(buffer));
 866	if (ret)
 867		return -1;
 868
 
 
 869	return do_write_string(ff, buffer);
 870}
 871
 872static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 873			      struct evlist *evlist __maybe_unused)
 874{
 875	return 0;
 876}
 877
 878static int write_auxtrace(struct feat_fd *ff,
 879			  struct evlist *evlist __maybe_unused)
 880{
 881	struct perf_session *session;
 882	int err;
 883
 884	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 885		return -1;
 886
 887	session = container_of(ff->ph, struct perf_session, header);
 888
 889	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 890	if (err < 0)
 891		pr_err("Failed to write auxtrace index\n");
 892	return err;
 893}
 894
 895static int write_clockid(struct feat_fd *ff,
 896			 struct evlist *evlist __maybe_unused)
 897{
 898	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 899			sizeof(ff->ph->env.clock.clockid_res_ns));
 900}
 901
 902static int write_clock_data(struct feat_fd *ff,
 903			    struct evlist *evlist __maybe_unused)
 904{
 905	u64 *data64;
 906	u32 data32;
 907	int ret;
 908
 909	/* version */
 910	data32 = 1;
 911
 912	ret = do_write(ff, &data32, sizeof(data32));
 913	if (ret < 0)
 914		return ret;
 915
 916	/* clockid */
 917	data32 = ff->ph->env.clock.clockid;
 918
 919	ret = do_write(ff, &data32, sizeof(data32));
 920	if (ret < 0)
 921		return ret;
 922
 923	/* TOD ref time */
 924	data64 = &ff->ph->env.clock.tod_ns;
 925
 926	ret = do_write(ff, data64, sizeof(*data64));
 927	if (ret < 0)
 928		return ret;
 929
 930	/* clockid ref time */
 931	data64 = &ff->ph->env.clock.clockid_ns;
 932
 933	return do_write(ff, data64, sizeof(*data64));
 934}
 935
 936static int write_hybrid_topology(struct feat_fd *ff,
 937				 struct evlist *evlist __maybe_unused)
 938{
 939	struct hybrid_topology *tp;
 940	int ret;
 941	u32 i;
 942
 943	tp = hybrid_topology__new();
 944	if (!tp)
 945		return -ENOENT;
 946
 947	ret = do_write(ff, &tp->nr, sizeof(u32));
 948	if (ret < 0)
 949		goto err;
 950
 951	for (i = 0; i < tp->nr; i++) {
 952		struct hybrid_topology_node *n = &tp->nodes[i];
 953
 954		ret = do_write_string(ff, n->pmu_name);
 955		if (ret < 0)
 956			goto err;
 957
 958		ret = do_write_string(ff, n->cpus);
 959		if (ret < 0)
 960			goto err;
 961	}
 962
 963	ret = 0;
 964
 965err:
 966	hybrid_topology__delete(tp);
 967	return ret;
 968}
 969
 970static int write_dir_format(struct feat_fd *ff,
 971			    struct evlist *evlist __maybe_unused)
 972{
 973	struct perf_session *session;
 974	struct perf_data *data;
 975
 976	session = container_of(ff->ph, struct perf_session, header);
 977	data = session->data;
 978
 979	if (WARN_ON(!perf_data__is_dir(data)))
 980		return -1;
 981
 982	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 983}
 984
 985#ifdef HAVE_LIBBPF_SUPPORT
 986static int write_bpf_prog_info(struct feat_fd *ff,
 987			       struct evlist *evlist __maybe_unused)
 988{
 989	struct perf_env *env = &ff->ph->env;
 990	struct rb_root *root;
 991	struct rb_node *next;
 992	int ret;
 993
 994	down_read(&env->bpf_progs.lock);
 995
 996	ret = do_write(ff, &env->bpf_progs.infos_cnt,
 997		       sizeof(env->bpf_progs.infos_cnt));
 998	if (ret < 0)
 999		goto out;
1000
1001	root = &env->bpf_progs.infos;
1002	next = rb_first(root);
1003	while (next) {
1004		struct bpf_prog_info_node *node;
1005		size_t len;
1006
1007		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1008		next = rb_next(&node->rb_node);
1009		len = sizeof(struct bpf_prog_info_linear) +
1010			node->info_linear->data_len;
1011
1012		/* before writing to file, translate address to offset */
1013		bpf_program__bpil_addr_to_offs(node->info_linear);
1014		ret = do_write(ff, node->info_linear, len);
1015		/*
1016		 * translate back to address even when do_write() fails,
1017		 * so that this function never changes the data.
1018		 */
1019		bpf_program__bpil_offs_to_addr(node->info_linear);
1020		if (ret < 0)
1021			goto out;
1022	}
1023out:
1024	up_read(&env->bpf_progs.lock);
1025	return ret;
1026}
1027
1028static int write_bpf_btf(struct feat_fd *ff,
1029			 struct evlist *evlist __maybe_unused)
1030{
1031	struct perf_env *env = &ff->ph->env;
1032	struct rb_root *root;
1033	struct rb_node *next;
1034	int ret;
1035
1036	down_read(&env->bpf_progs.lock);
1037
1038	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1039		       sizeof(env->bpf_progs.btfs_cnt));
1040
1041	if (ret < 0)
1042		goto out;
1043
1044	root = &env->bpf_progs.btfs;
1045	next = rb_first(root);
1046	while (next) {
1047		struct btf_node *node;
1048
1049		node = rb_entry(next, struct btf_node, rb_node);
1050		next = rb_next(&node->rb_node);
1051		ret = do_write(ff, &node->id,
1052			       sizeof(u32) * 2 + node->data_size);
1053		if (ret < 0)
1054			goto out;
1055	}
1056out:
1057	up_read(&env->bpf_progs.lock);
1058	return ret;
1059}
1060#endif // HAVE_LIBBPF_SUPPORT
1061
1062static int cpu_cache_level__sort(const void *a, const void *b)
1063{
1064	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1065	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1066
1067	return cache_a->level - cache_b->level;
1068}
1069
1070static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1071{
1072	if (a->level != b->level)
1073		return false;
1074
1075	if (a->line_size != b->line_size)
1076		return false;
1077
1078	if (a->sets != b->sets)
1079		return false;
1080
1081	if (a->ways != b->ways)
1082		return false;
1083
1084	if (strcmp(a->type, b->type))
1085		return false;
1086
1087	if (strcmp(a->size, b->size))
1088		return false;
1089
1090	if (strcmp(a->map, b->map))
1091		return false;
1092
1093	return true;
1094}
1095
1096static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1097{
1098	char path[PATH_MAX], file[PATH_MAX];
1099	struct stat st;
1100	size_t len;
1101
1102	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1103	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1104
1105	if (stat(file, &st))
1106		return 1;
1107
1108	scnprintf(file, PATH_MAX, "%s/level", path);
1109	if (sysfs__read_int(file, (int *) &cache->level))
1110		return -1;
1111
1112	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1113	if (sysfs__read_int(file, (int *) &cache->line_size))
1114		return -1;
1115
1116	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1117	if (sysfs__read_int(file, (int *) &cache->sets))
1118		return -1;
1119
1120	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1121	if (sysfs__read_int(file, (int *) &cache->ways))
1122		return -1;
1123
1124	scnprintf(file, PATH_MAX, "%s/type", path);
1125	if (sysfs__read_str(file, &cache->type, &len))
1126		return -1;
1127
1128	cache->type[len] = 0;
1129	cache->type = strim(cache->type);
1130
1131	scnprintf(file, PATH_MAX, "%s/size", path);
1132	if (sysfs__read_str(file, &cache->size, &len)) {
1133		zfree(&cache->type);
1134		return -1;
1135	}
1136
1137	cache->size[len] = 0;
1138	cache->size = strim(cache->size);
1139
1140	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1141	if (sysfs__read_str(file, &cache->map, &len)) {
1142		zfree(&cache->size);
1143		zfree(&cache->type);
1144		return -1;
1145	}
1146
1147	cache->map[len] = 0;
1148	cache->map = strim(cache->map);
1149	return 0;
1150}
1151
1152static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1153{
1154	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1155}
1156
1157#define MAX_CACHE_LVL 4
1158
1159static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1160{
1161	u32 i, cnt = 0;
 
1162	u32 nr, cpu;
1163	u16 level;
1164
1165	nr = cpu__max_cpu();
 
 
 
 
1166
1167	for (cpu = 0; cpu < nr; cpu++) {
1168		for (level = 0; level < MAX_CACHE_LVL; level++) {
1169			struct cpu_cache_level c;
1170			int err;
1171
1172			err = cpu_cache_level__read(&c, cpu, level);
1173			if (err < 0)
1174				return err;
1175
1176			if (err == 1)
1177				break;
1178
1179			for (i = 0; i < cnt; i++) {
1180				if (cpu_cache_level__cmp(&c, &caches[i]))
1181					break;
1182			}
1183
1184			if (i == cnt)
1185				caches[cnt++] = c;
1186			else
1187				cpu_cache_level__free(&c);
 
 
 
1188		}
1189	}
 
1190	*cntp = cnt;
1191	return 0;
1192}
1193
 
 
1194static int write_cache(struct feat_fd *ff,
1195		       struct evlist *evlist __maybe_unused)
1196{
1197	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1198	struct cpu_cache_level caches[max_caches];
1199	u32 cnt = 0, i, version = 1;
1200	int ret;
1201
1202	ret = build_caches(caches, &cnt);
1203	if (ret)
1204		goto out;
1205
1206	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1207
1208	ret = do_write(ff, &version, sizeof(u32));
1209	if (ret < 0)
1210		goto out;
1211
1212	ret = do_write(ff, &cnt, sizeof(u32));
1213	if (ret < 0)
1214		goto out;
1215
1216	for (i = 0; i < cnt; i++) {
1217		struct cpu_cache_level *c = &caches[i];
1218
1219		#define _W(v)					\
1220			ret = do_write(ff, &c->v, sizeof(u32));	\
1221			if (ret < 0)				\
1222				goto out;
1223
1224		_W(level)
1225		_W(line_size)
1226		_W(sets)
1227		_W(ways)
1228		#undef _W
1229
1230		#define _W(v)						\
1231			ret = do_write_string(ff, (const char *) c->v);	\
1232			if (ret < 0)					\
1233				goto out;
1234
1235		_W(type)
1236		_W(size)
1237		_W(map)
1238		#undef _W
1239	}
1240
1241out:
1242	for (i = 0; i < cnt; i++)
1243		cpu_cache_level__free(&caches[i]);
1244	return ret;
1245}
1246
1247static int write_stat(struct feat_fd *ff __maybe_unused,
1248		      struct evlist *evlist __maybe_unused)
1249{
1250	return 0;
1251}
1252
1253static int write_sample_time(struct feat_fd *ff,
1254			     struct evlist *evlist)
1255{
1256	int ret;
1257
1258	ret = do_write(ff, &evlist->first_sample_time,
1259		       sizeof(evlist->first_sample_time));
1260	if (ret < 0)
1261		return ret;
1262
1263	return do_write(ff, &evlist->last_sample_time,
1264			sizeof(evlist->last_sample_time));
1265}
1266
1267
1268static int memory_node__read(struct memory_node *n, unsigned long idx)
1269{
1270	unsigned int phys, size = 0;
1271	char path[PATH_MAX];
1272	struct dirent *ent;
1273	DIR *dir;
1274
1275#define for_each_memory(mem, dir)					\
1276	while ((ent = readdir(dir)))					\
1277		if (strcmp(ent->d_name, ".") &&				\
1278		    strcmp(ent->d_name, "..") &&			\
1279		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1280
1281	scnprintf(path, PATH_MAX,
1282		  "%s/devices/system/node/node%lu",
1283		  sysfs__mountpoint(), idx);
1284
1285	dir = opendir(path);
1286	if (!dir) {
1287		pr_warning("failed: cant' open memory sysfs data\n");
1288		return -1;
1289	}
1290
1291	for_each_memory(phys, dir) {
1292		size = max(phys, size);
1293	}
1294
1295	size++;
1296
1297	n->set = bitmap_alloc(size);
1298	if (!n->set) {
1299		closedir(dir);
1300		return -ENOMEM;
1301	}
1302
 
1303	n->node = idx;
1304	n->size = size;
1305
1306	rewinddir(dir);
1307
1308	for_each_memory(phys, dir) {
1309		set_bit(phys, n->set);
1310	}
1311
1312	closedir(dir);
1313	return 0;
1314}
1315
1316static int memory_node__sort(const void *a, const void *b)
1317{
1318	const struct memory_node *na = a;
1319	const struct memory_node *nb = b;
1320
1321	return na->node - nb->node;
1322}
1323
1324static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1325{
1326	char path[PATH_MAX];
1327	struct dirent *ent;
1328	DIR *dir;
1329	u64 cnt = 0;
1330	int ret = 0;
1331
1332	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1333		  sysfs__mountpoint());
1334
1335	dir = opendir(path);
1336	if (!dir) {
1337		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1338			  __func__, path);
1339		return -1;
1340	}
1341
1342	while (!ret && (ent = readdir(dir))) {
1343		unsigned int idx;
1344		int r;
1345
1346		if (!strcmp(ent->d_name, ".") ||
1347		    !strcmp(ent->d_name, ".."))
1348			continue;
1349
1350		r = sscanf(ent->d_name, "node%u", &idx);
1351		if (r != 1)
1352			continue;
1353
1354		if (WARN_ONCE(cnt >= size,
1355			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1356			closedir(dir);
1357			return -1;
1358		}
1359
1360		ret = memory_node__read(&nodes[cnt++], idx);
1361	}
1362
1363	*cntp = cnt;
1364	closedir(dir);
1365
1366	if (!ret)
1367		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1368
1369	return ret;
1370}
1371
1372#define MAX_MEMORY_NODES 2000
1373
1374/*
1375 * The MEM_TOPOLOGY holds physical memory map for every
1376 * node in system. The format of data is as follows:
1377 *
1378 *  0 - version          | for future changes
1379 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1380 * 16 - count            | number of nodes
1381 *
1382 * For each node we store map of physical indexes for
1383 * each node:
1384 *
1385 * 32 - node id          | node index
1386 * 40 - size             | size of bitmap
1387 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1388 */
1389static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1390			      struct evlist *evlist __maybe_unused)
1391{
1392	static struct memory_node nodes[MAX_MEMORY_NODES];
1393	u64 bsize, version = 1, i, nr;
1394	int ret;
1395
1396	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1397			      (unsigned long long *) &bsize);
1398	if (ret)
1399		return ret;
1400
1401	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1402	if (ret)
1403		return ret;
1404
1405	ret = do_write(ff, &version, sizeof(version));
1406	if (ret < 0)
1407		goto out;
1408
1409	ret = do_write(ff, &bsize, sizeof(bsize));
1410	if (ret < 0)
1411		goto out;
1412
1413	ret = do_write(ff, &nr, sizeof(nr));
1414	if (ret < 0)
1415		goto out;
1416
1417	for (i = 0; i < nr; i++) {
1418		struct memory_node *n = &nodes[i];
1419
1420		#define _W(v)						\
1421			ret = do_write(ff, &n->v, sizeof(n->v));	\
1422			if (ret < 0)					\
1423				goto out;
1424
1425		_W(node)
1426		_W(size)
1427
1428		#undef _W
1429
1430		ret = do_write_bitmap(ff, n->set, n->size);
1431		if (ret < 0)
1432			goto out;
1433	}
1434
1435out:
1436	return ret;
1437}
1438
1439static int write_compressed(struct feat_fd *ff __maybe_unused,
1440			    struct evlist *evlist __maybe_unused)
1441{
1442	int ret;
1443
1444	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1445	if (ret)
1446		return ret;
1447
1448	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1449	if (ret)
1450		return ret;
1451
1452	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1453	if (ret)
1454		return ret;
1455
1456	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1457	if (ret)
1458		return ret;
1459
1460	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1461}
1462
1463static int write_per_cpu_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1464				  bool write_pmu)
1465{
1466	struct perf_pmu_caps *caps = NULL;
1467	int nr_caps;
1468	int ret;
1469
1470	nr_caps = perf_pmu__caps_parse(pmu);
1471	if (nr_caps < 0)
1472		return nr_caps;
1473
1474	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1475	if (ret < 0)
1476		return ret;
1477
1478	list_for_each_entry(caps, &pmu->caps, list) {
1479		ret = do_write_string(ff, caps->name);
1480		if (ret < 0)
1481			return ret;
1482
1483		ret = do_write_string(ff, caps->value);
1484		if (ret < 0)
1485			return ret;
1486	}
1487
1488	if (write_pmu) {
1489		ret = do_write_string(ff, pmu->name);
1490		if (ret < 0)
1491			return ret;
1492	}
1493
1494	return ret;
1495}
1496
1497static int write_cpu_pmu_caps(struct feat_fd *ff,
1498			      struct evlist *evlist __maybe_unused)
1499{
1500	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1501
1502	if (!cpu_pmu)
1503		return -ENOENT;
1504
1505	return write_per_cpu_pmu_caps(ff, cpu_pmu, false);
1506}
1507
1508static int write_hybrid_cpu_pmu_caps(struct feat_fd *ff,
1509				     struct evlist *evlist __maybe_unused)
1510{
1511	struct perf_pmu *pmu;
1512	u32 nr_pmu = perf_pmu__hybrid_pmu_num();
1513	int ret;
1514
1515	if (nr_pmu == 0)
1516		return -ENOENT;
1517
1518	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1519	if (ret < 0)
1520		return ret;
1521
1522	perf_pmu__for_each_hybrid_pmu(pmu) {
1523		ret = write_per_cpu_pmu_caps(ff, pmu, true);
1524		if (ret < 0)
1525			return ret;
1526	}
1527
1528	return 0;
1529}
1530
1531static void print_hostname(struct feat_fd *ff, FILE *fp)
1532{
1533	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1534}
1535
1536static void print_osrelease(struct feat_fd *ff, FILE *fp)
1537{
1538	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1539}
1540
1541static void print_arch(struct feat_fd *ff, FILE *fp)
1542{
1543	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1544}
1545
1546static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1547{
1548	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1549}
1550
1551static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1552{
1553	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1554	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1555}
1556
1557static void print_version(struct feat_fd *ff, FILE *fp)
1558{
1559	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1560}
1561
1562static void print_cmdline(struct feat_fd *ff, FILE *fp)
1563{
1564	int nr, i;
1565
1566	nr = ff->ph->env.nr_cmdline;
1567
1568	fprintf(fp, "# cmdline : ");
1569
1570	for (i = 0; i < nr; i++) {
1571		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1572		if (!argv_i) {
1573			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1574		} else {
1575			char *mem = argv_i;
1576			do {
1577				char *quote = strchr(argv_i, '\'');
1578				if (!quote)
1579					break;
1580				*quote++ = '\0';
1581				fprintf(fp, "%s\\\'", argv_i);
1582				argv_i = quote;
1583			} while (1);
1584			fprintf(fp, "%s ", argv_i);
1585			free(mem);
1586		}
1587	}
1588	fputc('\n', fp);
1589}
1590
1591static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1592{
1593	struct perf_header *ph = ff->ph;
1594	int cpu_nr = ph->env.nr_cpus_avail;
1595	int nr, i;
1596	char *str;
1597
1598	nr = ph->env.nr_sibling_cores;
1599	str = ph->env.sibling_cores;
1600
1601	for (i = 0; i < nr; i++) {
1602		fprintf(fp, "# sibling sockets : %s\n", str);
1603		str += strlen(str) + 1;
1604	}
1605
1606	if (ph->env.nr_sibling_dies) {
1607		nr = ph->env.nr_sibling_dies;
1608		str = ph->env.sibling_dies;
1609
1610		for (i = 0; i < nr; i++) {
1611			fprintf(fp, "# sibling dies    : %s\n", str);
1612			str += strlen(str) + 1;
1613		}
1614	}
1615
1616	nr = ph->env.nr_sibling_threads;
1617	str = ph->env.sibling_threads;
1618
1619	for (i = 0; i < nr; i++) {
1620		fprintf(fp, "# sibling threads : %s\n", str);
1621		str += strlen(str) + 1;
1622	}
1623
1624	if (ph->env.nr_sibling_dies) {
1625		if (ph->env.cpu != NULL) {
1626			for (i = 0; i < cpu_nr; i++)
1627				fprintf(fp, "# CPU %d: Core ID %d, "
1628					    "Die ID %d, Socket ID %d\n",
1629					    i, ph->env.cpu[i].core_id,
1630					    ph->env.cpu[i].die_id,
1631					    ph->env.cpu[i].socket_id);
1632		} else
1633			fprintf(fp, "# Core ID, Die ID and Socket ID "
1634				    "information is not available\n");
1635	} else {
1636		if (ph->env.cpu != NULL) {
1637			for (i = 0; i < cpu_nr; i++)
1638				fprintf(fp, "# CPU %d: Core ID %d, "
1639					    "Socket ID %d\n",
1640					    i, ph->env.cpu[i].core_id,
1641					    ph->env.cpu[i].socket_id);
1642		} else
1643			fprintf(fp, "# Core ID and Socket ID "
1644				    "information is not available\n");
1645	}
1646}
1647
1648static void print_clockid(struct feat_fd *ff, FILE *fp)
1649{
1650	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1651		ff->ph->env.clock.clockid_res_ns * 1000);
1652}
1653
1654static void print_clock_data(struct feat_fd *ff, FILE *fp)
1655{
1656	struct timespec clockid_ns;
1657	char tstr[64], date[64];
1658	struct timeval tod_ns;
1659	clockid_t clockid;
1660	struct tm ltime;
1661	u64 ref;
1662
1663	if (!ff->ph->env.clock.enabled) {
1664		fprintf(fp, "# reference time disabled\n");
1665		return;
1666	}
1667
1668	/* Compute TOD time. */
1669	ref = ff->ph->env.clock.tod_ns;
1670	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1671	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1672	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1673
1674	/* Compute clockid time. */
1675	ref = ff->ph->env.clock.clockid_ns;
1676	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1677	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1678	clockid_ns.tv_nsec = ref;
1679
1680	clockid = ff->ph->env.clock.clockid;
1681
1682	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1683		snprintf(tstr, sizeof(tstr), "<error>");
1684	else {
1685		strftime(date, sizeof(date), "%F %T", &ltime);
1686		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1687			  date, (int) tod_ns.tv_usec);
1688	}
1689
1690	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1691	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1692		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1693		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1694		    clockid_name(clockid));
1695}
1696
1697static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1698{
1699	int i;
1700	struct hybrid_node *n;
1701
1702	fprintf(fp, "# hybrid cpu system:\n");
1703	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1704		n = &ff->ph->env.hybrid_nodes[i];
1705		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1706	}
1707}
1708
1709static void print_dir_format(struct feat_fd *ff, FILE *fp)
1710{
1711	struct perf_session *session;
1712	struct perf_data *data;
1713
1714	session = container_of(ff->ph, struct perf_session, header);
1715	data = session->data;
1716
1717	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1718}
1719
1720#ifdef HAVE_LIBBPF_SUPPORT
1721static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1722{
1723	struct perf_env *env = &ff->ph->env;
1724	struct rb_root *root;
1725	struct rb_node *next;
1726
1727	down_read(&env->bpf_progs.lock);
1728
1729	root = &env->bpf_progs.infos;
1730	next = rb_first(root);
1731
1732	while (next) {
1733		struct bpf_prog_info_node *node;
1734
1735		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1736		next = rb_next(&node->rb_node);
1737
1738		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1739					       env, fp);
1740	}
1741
1742	up_read(&env->bpf_progs.lock);
1743}
1744
1745static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1746{
1747	struct perf_env *env = &ff->ph->env;
1748	struct rb_root *root;
1749	struct rb_node *next;
1750
1751	down_read(&env->bpf_progs.lock);
1752
1753	root = &env->bpf_progs.btfs;
1754	next = rb_first(root);
1755
1756	while (next) {
1757		struct btf_node *node;
1758
1759		node = rb_entry(next, struct btf_node, rb_node);
1760		next = rb_next(&node->rb_node);
1761		fprintf(fp, "# btf info of id %u\n", node->id);
1762	}
1763
1764	up_read(&env->bpf_progs.lock);
1765}
1766#endif // HAVE_LIBBPF_SUPPORT
1767
1768static void free_event_desc(struct evsel *events)
1769{
1770	struct evsel *evsel;
1771
1772	if (!events)
1773		return;
1774
1775	for (evsel = events; evsel->core.attr.size; evsel++) {
1776		zfree(&evsel->name);
1777		zfree(&evsel->core.id);
1778	}
1779
1780	free(events);
1781}
1782
1783static bool perf_attr_check(struct perf_event_attr *attr)
1784{
1785	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1786		pr_warning("Reserved bits are set unexpectedly. "
1787			   "Please update perf tool.\n");
1788		return false;
1789	}
1790
1791	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1792		pr_warning("Unknown sample type (0x%llx) is detected. "
1793			   "Please update perf tool.\n",
1794			   attr->sample_type);
1795		return false;
1796	}
1797
1798	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1799		pr_warning("Unknown read format (0x%llx) is detected. "
1800			   "Please update perf tool.\n",
1801			   attr->read_format);
1802		return false;
1803	}
1804
1805	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1806	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1807		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1808			   "Please update perf tool.\n",
1809			   attr->branch_sample_type);
1810
1811		return false;
1812	}
1813
1814	return true;
1815}
1816
1817static struct evsel *read_event_desc(struct feat_fd *ff)
1818{
1819	struct evsel *evsel, *events = NULL;
1820	u64 *id;
1821	void *buf = NULL;
1822	u32 nre, sz, nr, i, j;
1823	size_t msz;
1824
1825	/* number of events */
1826	if (do_read_u32(ff, &nre))
1827		goto error;
1828
1829	if (do_read_u32(ff, &sz))
1830		goto error;
1831
1832	/* buffer to hold on file attr struct */
1833	buf = malloc(sz);
1834	if (!buf)
1835		goto error;
1836
1837	/* the last event terminates with evsel->core.attr.size == 0: */
1838	events = calloc(nre + 1, sizeof(*events));
1839	if (!events)
1840		goto error;
1841
1842	msz = sizeof(evsel->core.attr);
1843	if (sz < msz)
1844		msz = sz;
1845
1846	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1847		evsel->core.idx = i;
1848
1849		/*
1850		 * must read entire on-file attr struct to
1851		 * sync up with layout.
1852		 */
1853		if (__do_read(ff, buf, sz))
1854			goto error;
1855
1856		if (ff->ph->needs_swap)
1857			perf_event__attr_swap(buf);
1858
1859		memcpy(&evsel->core.attr, buf, msz);
1860
1861		if (!perf_attr_check(&evsel->core.attr))
1862			goto error;
1863
1864		if (do_read_u32(ff, &nr))
1865			goto error;
1866
1867		if (ff->ph->needs_swap)
1868			evsel->needs_swap = true;
1869
1870		evsel->name = do_read_string(ff);
1871		if (!evsel->name)
1872			goto error;
1873
1874		if (!nr)
1875			continue;
1876
1877		id = calloc(nr, sizeof(*id));
1878		if (!id)
1879			goto error;
1880		evsel->core.ids = nr;
1881		evsel->core.id = id;
1882
1883		for (j = 0 ; j < nr; j++) {
1884			if (do_read_u64(ff, id))
1885				goto error;
1886			id++;
1887		}
1888	}
1889out:
1890	free(buf);
1891	return events;
1892error:
1893	free_event_desc(events);
1894	events = NULL;
1895	goto out;
1896}
1897
1898static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1899				void *priv __maybe_unused)
1900{
1901	return fprintf(fp, ", %s = %s", name, val);
1902}
1903
1904static void print_event_desc(struct feat_fd *ff, FILE *fp)
1905{
1906	struct evsel *evsel, *events;
1907	u32 j;
1908	u64 *id;
1909
1910	if (ff->events)
1911		events = ff->events;
1912	else
1913		events = read_event_desc(ff);
1914
1915	if (!events) {
1916		fprintf(fp, "# event desc: not available or unable to read\n");
1917		return;
1918	}
1919
1920	for (evsel = events; evsel->core.attr.size; evsel++) {
1921		fprintf(fp, "# event : name = %s, ", evsel->name);
1922
1923		if (evsel->core.ids) {
1924			fprintf(fp, ", id = {");
1925			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1926				if (j)
1927					fputc(',', fp);
1928				fprintf(fp, " %"PRIu64, *id);
1929			}
1930			fprintf(fp, " }");
1931		}
1932
1933		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1934
1935		fputc('\n', fp);
1936	}
1937
1938	free_event_desc(events);
1939	ff->events = NULL;
1940}
1941
1942static void print_total_mem(struct feat_fd *ff, FILE *fp)
1943{
1944	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1945}
1946
1947static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1948{
1949	int i;
1950	struct numa_node *n;
1951
1952	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1953		n = &ff->ph->env.numa_nodes[i];
1954
1955		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1956			    " free = %"PRIu64" kB\n",
1957			n->node, n->mem_total, n->mem_free);
1958
1959		fprintf(fp, "# node%u cpu list : ", n->node);
1960		cpu_map__fprintf(n->map, fp);
1961	}
1962}
1963
1964static void print_cpuid(struct feat_fd *ff, FILE *fp)
1965{
1966	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1967}
1968
1969static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1970{
1971	fprintf(fp, "# contains samples with branch stack\n");
1972}
1973
1974static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1975{
1976	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1977}
1978
1979static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1980{
1981	fprintf(fp, "# contains stat data\n");
1982}
1983
1984static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1985{
1986	int i;
1987
1988	fprintf(fp, "# CPU cache info:\n");
1989	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1990		fprintf(fp, "#  ");
1991		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1992	}
1993}
1994
1995static void print_compressed(struct feat_fd *ff, FILE *fp)
1996{
1997	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1998		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1999		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2000}
2001
2002static void print_per_cpu_pmu_caps(FILE *fp, int nr_caps, char *cpu_pmu_caps,
2003				   char *pmu_name)
2004{
2005	const char *delimiter;
2006	char *str, buf[128];
2007
2008	if (!nr_caps) {
2009		if (!pmu_name)
2010			fprintf(fp, "# cpu pmu capabilities: not available\n");
2011		else
2012			fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2013		return;
2014	}
2015
2016	if (!pmu_name)
2017		scnprintf(buf, sizeof(buf), "# cpu pmu capabilities: ");
2018	else
2019		scnprintf(buf, sizeof(buf), "# %s pmu capabilities: ", pmu_name);
2020
2021	delimiter = buf;
2022
2023	str = cpu_pmu_caps;
2024	while (nr_caps--) {
2025		fprintf(fp, "%s%s", delimiter, str);
2026		delimiter = ", ";
2027		str += strlen(str) + 1;
2028	}
2029
2030	fprintf(fp, "\n");
2031}
2032
2033static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2034{
2035	print_per_cpu_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2036			       ff->ph->env.cpu_pmu_caps, NULL);
2037}
2038
2039static void print_hybrid_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2040{
2041	struct hybrid_cpc_node *n;
2042
2043	for (int i = 0; i < ff->ph->env.nr_hybrid_cpc_nodes; i++) {
2044		n = &ff->ph->env.hybrid_cpc_nodes[i];
2045		print_per_cpu_pmu_caps(fp, n->nr_cpu_pmu_caps,
2046				       n->cpu_pmu_caps,
2047				       n->pmu_name);
2048	}
2049}
2050
2051static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2052{
2053	const char *delimiter = "# pmu mappings: ";
2054	char *str, *tmp;
2055	u32 pmu_num;
2056	u32 type;
2057
2058	pmu_num = ff->ph->env.nr_pmu_mappings;
2059	if (!pmu_num) {
2060		fprintf(fp, "# pmu mappings: not available\n");
2061		return;
2062	}
2063
2064	str = ff->ph->env.pmu_mappings;
2065
2066	while (pmu_num) {
2067		type = strtoul(str, &tmp, 0);
2068		if (*tmp != ':')
2069			goto error;
2070
2071		str = tmp + 1;
2072		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2073
2074		delimiter = ", ";
2075		str += strlen(str) + 1;
2076		pmu_num--;
2077	}
2078
2079	fprintf(fp, "\n");
2080
2081	if (!pmu_num)
2082		return;
2083error:
2084	fprintf(fp, "# pmu mappings: unable to read\n");
2085}
2086
2087static void print_group_desc(struct feat_fd *ff, FILE *fp)
2088{
2089	struct perf_session *session;
2090	struct evsel *evsel;
2091	u32 nr = 0;
2092
2093	session = container_of(ff->ph, struct perf_session, header);
2094
2095	evlist__for_each_entry(session->evlist, evsel) {
2096		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2097			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
 
 
2098
2099			nr = evsel->core.nr_members - 1;
2100		} else if (nr) {
2101			fprintf(fp, ",%s", evsel__name(evsel));
2102
2103			if (--nr == 0)
2104				fprintf(fp, "}\n");
2105		}
2106	}
2107}
2108
2109static void print_sample_time(struct feat_fd *ff, FILE *fp)
2110{
2111	struct perf_session *session;
2112	char time_buf[32];
2113	double d;
2114
2115	session = container_of(ff->ph, struct perf_session, header);
2116
2117	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2118				  time_buf, sizeof(time_buf));
2119	fprintf(fp, "# time of first sample : %s\n", time_buf);
2120
2121	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2122				  time_buf, sizeof(time_buf));
2123	fprintf(fp, "# time of last sample : %s\n", time_buf);
2124
2125	d = (double)(session->evlist->last_sample_time -
2126		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2127
2128	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2129}
2130
2131static void memory_node__fprintf(struct memory_node *n,
2132				 unsigned long long bsize, FILE *fp)
2133{
2134	char buf_map[100], buf_size[50];
2135	unsigned long long size;
2136
2137	size = bsize * bitmap_weight(n->set, n->size);
2138	unit_number__scnprintf(buf_size, 50, size);
2139
2140	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2141	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2142}
2143
2144static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2145{
2146	struct memory_node *nodes;
2147	int i, nr;
2148
2149	nodes = ff->ph->env.memory_nodes;
2150	nr    = ff->ph->env.nr_memory_nodes;
2151
2152	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2153		nr, ff->ph->env.memory_bsize);
2154
2155	for (i = 0; i < nr; i++) {
2156		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2157	}
2158}
2159
2160static int __event_process_build_id(struct perf_record_header_build_id *bev,
2161				    char *filename,
2162				    struct perf_session *session)
2163{
2164	int err = -1;
2165	struct machine *machine;
2166	u16 cpumode;
2167	struct dso *dso;
2168	enum dso_space_type dso_space;
2169
2170	machine = perf_session__findnew_machine(session, bev->pid);
2171	if (!machine)
2172		goto out;
2173
2174	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2175
2176	switch (cpumode) {
2177	case PERF_RECORD_MISC_KERNEL:
2178		dso_space = DSO_SPACE__KERNEL;
2179		break;
2180	case PERF_RECORD_MISC_GUEST_KERNEL:
2181		dso_space = DSO_SPACE__KERNEL_GUEST;
2182		break;
2183	case PERF_RECORD_MISC_USER:
2184	case PERF_RECORD_MISC_GUEST_USER:
2185		dso_space = DSO_SPACE__USER;
2186		break;
2187	default:
2188		goto out;
2189	}
2190
2191	dso = machine__findnew_dso(machine, filename);
2192	if (dso != NULL) {
2193		char sbuild_id[SBUILD_ID_SIZE];
2194		struct build_id bid;
2195		size_t size = BUILD_ID_SIZE;
2196
2197		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2198			size = bev->size;
2199
2200		build_id__init(&bid, bev->data, size);
2201		dso__set_build_id(dso, &bid);
2202
2203		if (dso_space != DSO_SPACE__USER) {
2204			struct kmod_path m = { .name = NULL, };
2205
2206			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2207				dso__set_module_info(dso, &m, machine);
 
 
2208
2209			dso->kernel = dso_space;
2210			free(m.name);
2211		}
2212
2213		build_id__sprintf(&dso->bid, sbuild_id);
2214		pr_debug("build id event received for %s: %s [%zu]\n",
2215			 dso->long_name, sbuild_id, size);
 
2216		dso__put(dso);
2217	}
2218
2219	err = 0;
2220out:
2221	return err;
2222}
2223
2224static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2225						 int input, u64 offset, u64 size)
2226{
2227	struct perf_session *session = container_of(header, struct perf_session, header);
2228	struct {
2229		struct perf_event_header   header;
2230		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2231		char			   filename[0];
2232	} old_bev;
2233	struct perf_record_header_build_id bev;
2234	char filename[PATH_MAX];
2235	u64 limit = offset + size;
2236
2237	while (offset < limit) {
2238		ssize_t len;
2239
2240		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2241			return -1;
2242
2243		if (header->needs_swap)
2244			perf_event_header__bswap(&old_bev.header);
2245
2246		len = old_bev.header.size - sizeof(old_bev);
2247		if (readn(input, filename, len) != len)
2248			return -1;
2249
2250		bev.header = old_bev.header;
2251
2252		/*
2253		 * As the pid is the missing value, we need to fill
2254		 * it properly. The header.misc value give us nice hint.
2255		 */
2256		bev.pid	= HOST_KERNEL_ID;
2257		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2258		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2259			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2260
2261		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2262		__event_process_build_id(&bev, filename, session);
2263
2264		offset += bev.header.size;
2265	}
2266
2267	return 0;
2268}
2269
2270static int perf_header__read_build_ids(struct perf_header *header,
2271				       int input, u64 offset, u64 size)
2272{
2273	struct perf_session *session = container_of(header, struct perf_session, header);
2274	struct perf_record_header_build_id bev;
2275	char filename[PATH_MAX];
2276	u64 limit = offset + size, orig_offset = offset;
2277	int err = -1;
2278
2279	while (offset < limit) {
2280		ssize_t len;
2281
2282		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2283			goto out;
2284
2285		if (header->needs_swap)
2286			perf_event_header__bswap(&bev.header);
2287
2288		len = bev.header.size - sizeof(bev);
2289		if (readn(input, filename, len) != len)
2290			goto out;
2291		/*
2292		 * The a1645ce1 changeset:
2293		 *
2294		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2295		 *
2296		 * Added a field to struct perf_record_header_build_id that broke the file
2297		 * format.
2298		 *
2299		 * Since the kernel build-id is the first entry, process the
2300		 * table using the old format if the well known
2301		 * '[kernel.kallsyms]' string for the kernel build-id has the
2302		 * first 4 characters chopped off (where the pid_t sits).
2303		 */
2304		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2305			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2306				return -1;
2307			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2308		}
2309
2310		__event_process_build_id(&bev, filename, session);
2311
2312		offset += bev.header.size;
2313	}
2314	err = 0;
2315out:
2316	return err;
2317}
2318
2319/* Macro for features that simply need to read and store a string. */
2320#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2321static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2322{\
2323	ff->ph->env.__feat_env = do_read_string(ff); \
2324	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2325}
2326
2327FEAT_PROCESS_STR_FUN(hostname, hostname);
2328FEAT_PROCESS_STR_FUN(osrelease, os_release);
2329FEAT_PROCESS_STR_FUN(version, version);
2330FEAT_PROCESS_STR_FUN(arch, arch);
2331FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2332FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2333
2334static int process_tracing_data(struct feat_fd *ff, void *data)
2335{
2336	ssize_t ret = trace_report(ff->fd, data, false);
2337
2338	return ret < 0 ? -1 : 0;
2339}
2340
2341static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2342{
2343	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2344		pr_debug("Failed to read buildids, continuing...\n");
2345	return 0;
2346}
2347
2348static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2349{
2350	int ret;
2351	u32 nr_cpus_avail, nr_cpus_online;
2352
2353	ret = do_read_u32(ff, &nr_cpus_avail);
2354	if (ret)
2355		return ret;
2356
2357	ret = do_read_u32(ff, &nr_cpus_online);
2358	if (ret)
2359		return ret;
2360	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2361	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2362	return 0;
2363}
2364
2365static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2366{
2367	u64 total_mem;
2368	int ret;
2369
2370	ret = do_read_u64(ff, &total_mem);
2371	if (ret)
2372		return -1;
2373	ff->ph->env.total_mem = (unsigned long long)total_mem;
2374	return 0;
2375}
2376
2377static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
 
2378{
2379	struct evsel *evsel;
2380
2381	evlist__for_each_entry(evlist, evsel) {
2382		if (evsel->core.idx == idx)
2383			return evsel;
2384	}
2385
2386	return NULL;
2387}
2388
2389static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
 
 
2390{
2391	struct evsel *evsel;
2392
2393	if (!event->name)
2394		return;
2395
2396	evsel = evlist__find_by_index(evlist, event->core.idx);
2397	if (!evsel)
2398		return;
2399
2400	if (evsel->name)
2401		return;
2402
2403	evsel->name = strdup(event->name);
2404}
2405
2406static int
2407process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2408{
2409	struct perf_session *session;
2410	struct evsel *evsel, *events = read_event_desc(ff);
2411
2412	if (!events)
2413		return 0;
2414
2415	session = container_of(ff->ph, struct perf_session, header);
2416
2417	if (session->data->is_pipe) {
2418		/* Save events for reading later by print_event_desc,
2419		 * since they can't be read again in pipe mode. */
2420		ff->events = events;
2421	}
2422
2423	for (evsel = events; evsel->core.attr.size; evsel++)
2424		evlist__set_event_name(session->evlist, evsel);
2425
2426	if (!session->data->is_pipe)
2427		free_event_desc(events);
2428
2429	return 0;
2430}
2431
2432static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2433{
2434	char *str, *cmdline = NULL, **argv = NULL;
2435	u32 nr, i, len = 0;
2436
2437	if (do_read_u32(ff, &nr))
2438		return -1;
2439
2440	ff->ph->env.nr_cmdline = nr;
2441
2442	cmdline = zalloc(ff->size + nr + 1);
2443	if (!cmdline)
2444		return -1;
2445
2446	argv = zalloc(sizeof(char *) * (nr + 1));
2447	if (!argv)
2448		goto error;
2449
2450	for (i = 0; i < nr; i++) {
2451		str = do_read_string(ff);
2452		if (!str)
2453			goto error;
2454
2455		argv[i] = cmdline + len;
2456		memcpy(argv[i], str, strlen(str) + 1);
2457		len += strlen(str) + 1;
2458		free(str);
2459	}
2460	ff->ph->env.cmdline = cmdline;
2461	ff->ph->env.cmdline_argv = (const char **) argv;
2462	return 0;
2463
2464error:
2465	free(argv);
2466	free(cmdline);
2467	return -1;
2468}
2469
2470static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2471{
2472	u32 nr, i;
2473	char *str;
2474	struct strbuf sb;
2475	int cpu_nr = ff->ph->env.nr_cpus_avail;
2476	u64 size = 0;
2477	struct perf_header *ph = ff->ph;
2478	bool do_core_id_test = true;
2479
2480	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2481	if (!ph->env.cpu)
2482		return -1;
2483
2484	if (do_read_u32(ff, &nr))
2485		goto free_cpu;
2486
2487	ph->env.nr_sibling_cores = nr;
2488	size += sizeof(u32);
2489	if (strbuf_init(&sb, 128) < 0)
2490		goto free_cpu;
2491
2492	for (i = 0; i < nr; i++) {
2493		str = do_read_string(ff);
2494		if (!str)
2495			goto error;
2496
2497		/* include a NULL character at the end */
2498		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2499			goto error;
2500		size += string_size(str);
2501		free(str);
2502	}
2503	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2504
2505	if (do_read_u32(ff, &nr))
2506		return -1;
2507
2508	ph->env.nr_sibling_threads = nr;
2509	size += sizeof(u32);
2510
2511	for (i = 0; i < nr; i++) {
2512		str = do_read_string(ff);
2513		if (!str)
2514			goto error;
2515
2516		/* include a NULL character at the end */
2517		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2518			goto error;
2519		size += string_size(str);
2520		free(str);
2521	}
2522	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2523
2524	/*
2525	 * The header may be from old perf,
2526	 * which doesn't include core id and socket id information.
2527	 */
2528	if (ff->size <= size) {
2529		zfree(&ph->env.cpu);
2530		return 0;
2531	}
2532
2533	/* On s390 the socket_id number is not related to the numbers of cpus.
2534	 * The socket_id number might be higher than the numbers of cpus.
2535	 * This depends on the configuration.
2536	 * AArch64 is the same.
2537	 */
2538	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2539			  || !strncmp(ph->env.arch, "aarch64", 7)))
2540		do_core_id_test = false;
2541
2542	for (i = 0; i < (u32)cpu_nr; i++) {
2543		if (do_read_u32(ff, &nr))
2544			goto free_cpu;
2545
2546		ph->env.cpu[i].core_id = nr;
2547		size += sizeof(u32);
2548
2549		if (do_read_u32(ff, &nr))
2550			goto free_cpu;
2551
2552		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2553			pr_debug("socket_id number is too big."
2554				 "You may need to upgrade the perf tool.\n");
2555			goto free_cpu;
2556		}
2557
2558		ph->env.cpu[i].socket_id = nr;
2559		size += sizeof(u32);
2560	}
2561
2562	/*
2563	 * The header may be from old perf,
2564	 * which doesn't include die information.
2565	 */
2566	if (ff->size <= size)
2567		return 0;
2568
2569	if (do_read_u32(ff, &nr))
2570		return -1;
2571
2572	ph->env.nr_sibling_dies = nr;
2573	size += sizeof(u32);
2574
2575	for (i = 0; i < nr; i++) {
2576		str = do_read_string(ff);
2577		if (!str)
2578			goto error;
2579
2580		/* include a NULL character at the end */
2581		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582			goto error;
2583		size += string_size(str);
2584		free(str);
2585	}
2586	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2587
2588	for (i = 0; i < (u32)cpu_nr; i++) {
2589		if (do_read_u32(ff, &nr))
2590			goto free_cpu;
2591
2592		ph->env.cpu[i].die_id = nr;
2593	}
2594
2595	return 0;
2596
2597error:
2598	strbuf_release(&sb);
2599free_cpu:
2600	zfree(&ph->env.cpu);
2601	return -1;
2602}
2603
2604static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2605{
2606	struct numa_node *nodes, *n;
2607	u32 nr, i;
2608	char *str;
2609
2610	/* nr nodes */
2611	if (do_read_u32(ff, &nr))
2612		return -1;
2613
2614	nodes = zalloc(sizeof(*nodes) * nr);
2615	if (!nodes)
2616		return -ENOMEM;
2617
2618	for (i = 0; i < nr; i++) {
2619		n = &nodes[i];
2620
2621		/* node number */
2622		if (do_read_u32(ff, &n->node))
2623			goto error;
2624
2625		if (do_read_u64(ff, &n->mem_total))
2626			goto error;
2627
2628		if (do_read_u64(ff, &n->mem_free))
2629			goto error;
2630
2631		str = do_read_string(ff);
2632		if (!str)
2633			goto error;
2634
2635		n->map = perf_cpu_map__new(str);
2636		if (!n->map)
2637			goto error;
2638
2639		free(str);
2640	}
2641	ff->ph->env.nr_numa_nodes = nr;
2642	ff->ph->env.numa_nodes = nodes;
2643	return 0;
2644
2645error:
2646	free(nodes);
2647	return -1;
2648}
2649
2650static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2651{
2652	char *name;
2653	u32 pmu_num;
2654	u32 type;
2655	struct strbuf sb;
2656
2657	if (do_read_u32(ff, &pmu_num))
2658		return -1;
2659
2660	if (!pmu_num) {
2661		pr_debug("pmu mappings not available\n");
2662		return 0;
2663	}
2664
2665	ff->ph->env.nr_pmu_mappings = pmu_num;
2666	if (strbuf_init(&sb, 128) < 0)
2667		return -1;
2668
2669	while (pmu_num) {
2670		if (do_read_u32(ff, &type))
2671			goto error;
2672
2673		name = do_read_string(ff);
2674		if (!name)
2675			goto error;
2676
2677		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2678			goto error;
2679		/* include a NULL character at the end */
2680		if (strbuf_add(&sb, "", 1) < 0)
2681			goto error;
2682
2683		if (!strcmp(name, "msr"))
2684			ff->ph->env.msr_pmu_type = type;
2685
2686		free(name);
2687		pmu_num--;
2688	}
2689	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2690	return 0;
2691
2692error:
2693	strbuf_release(&sb);
2694	return -1;
2695}
2696
2697static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2698{
2699	size_t ret = -1;
2700	u32 i, nr, nr_groups;
2701	struct perf_session *session;
2702	struct evsel *evsel, *leader = NULL;
2703	struct group_desc {
2704		char *name;
2705		u32 leader_idx;
2706		u32 nr_members;
2707	} *desc;
2708
2709	if (do_read_u32(ff, &nr_groups))
2710		return -1;
2711
2712	ff->ph->env.nr_groups = nr_groups;
2713	if (!nr_groups) {
2714		pr_debug("group desc not available\n");
2715		return 0;
2716	}
2717
2718	desc = calloc(nr_groups, sizeof(*desc));
2719	if (!desc)
2720		return -1;
2721
2722	for (i = 0; i < nr_groups; i++) {
2723		desc[i].name = do_read_string(ff);
2724		if (!desc[i].name)
2725			goto out_free;
2726
2727		if (do_read_u32(ff, &desc[i].leader_idx))
2728			goto out_free;
2729
2730		if (do_read_u32(ff, &desc[i].nr_members))
2731			goto out_free;
2732	}
2733
2734	/*
2735	 * Rebuild group relationship based on the group_desc
2736	 */
2737	session = container_of(ff->ph, struct perf_session, header);
2738	session->evlist->core.nr_groups = nr_groups;
2739
2740	i = nr = 0;
2741	evlist__for_each_entry(session->evlist, evsel) {
2742		if (evsel->core.idx == (int) desc[i].leader_idx) {
2743			evsel__set_leader(evsel, evsel);
2744			/* {anon_group} is a dummy name */
2745			if (strcmp(desc[i].name, "{anon_group}")) {
2746				evsel->group_name = desc[i].name;
2747				desc[i].name = NULL;
2748			}
2749			evsel->core.nr_members = desc[i].nr_members;
2750
2751			if (i >= nr_groups || nr > 0) {
2752				pr_debug("invalid group desc\n");
2753				goto out_free;
2754			}
2755
2756			leader = evsel;
2757			nr = evsel->core.nr_members - 1;
2758			i++;
2759		} else if (nr) {
2760			/* This is a group member */
2761			evsel__set_leader(evsel, leader);
2762
2763			nr--;
2764		}
2765	}
2766
2767	if (i != nr_groups || nr != 0) {
2768		pr_debug("invalid group desc\n");
2769		goto out_free;
2770	}
2771
2772	ret = 0;
2773out_free:
2774	for (i = 0; i < nr_groups; i++)
2775		zfree(&desc[i].name);
2776	free(desc);
2777
2778	return ret;
2779}
2780
2781static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2782{
2783	struct perf_session *session;
2784	int err;
2785
2786	session = container_of(ff->ph, struct perf_session, header);
2787
2788	err = auxtrace_index__process(ff->fd, ff->size, session,
2789				      ff->ph->needs_swap);
2790	if (err < 0)
2791		pr_err("Failed to process auxtrace index\n");
2792	return err;
2793}
2794
2795static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2796{
2797	struct cpu_cache_level *caches;
2798	u32 cnt, i, version;
2799
2800	if (do_read_u32(ff, &version))
2801		return -1;
2802
2803	if (version != 1)
2804		return -1;
2805
2806	if (do_read_u32(ff, &cnt))
2807		return -1;
2808
2809	caches = zalloc(sizeof(*caches) * cnt);
2810	if (!caches)
2811		return -1;
2812
2813	for (i = 0; i < cnt; i++) {
2814		struct cpu_cache_level c;
2815
2816		#define _R(v)						\
2817			if (do_read_u32(ff, &c.v))\
2818				goto out_free_caches;			\
2819
2820		_R(level)
2821		_R(line_size)
2822		_R(sets)
2823		_R(ways)
2824		#undef _R
2825
2826		#define _R(v)					\
2827			c.v = do_read_string(ff);		\
2828			if (!c.v)				\
2829				goto out_free_caches;
2830
2831		_R(type)
2832		_R(size)
2833		_R(map)
2834		#undef _R
2835
2836		caches[i] = c;
2837	}
2838
2839	ff->ph->env.caches = caches;
2840	ff->ph->env.caches_cnt = cnt;
2841	return 0;
2842out_free_caches:
2843	free(caches);
2844	return -1;
2845}
2846
2847static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2848{
2849	struct perf_session *session;
2850	u64 first_sample_time, last_sample_time;
2851	int ret;
2852
2853	session = container_of(ff->ph, struct perf_session, header);
2854
2855	ret = do_read_u64(ff, &first_sample_time);
2856	if (ret)
2857		return -1;
2858
2859	ret = do_read_u64(ff, &last_sample_time);
2860	if (ret)
2861		return -1;
2862
2863	session->evlist->first_sample_time = first_sample_time;
2864	session->evlist->last_sample_time = last_sample_time;
2865	return 0;
2866}
2867
2868static int process_mem_topology(struct feat_fd *ff,
2869				void *data __maybe_unused)
2870{
2871	struct memory_node *nodes;
2872	u64 version, i, nr, bsize;
2873	int ret = -1;
2874
2875	if (do_read_u64(ff, &version))
2876		return -1;
2877
2878	if (version != 1)
2879		return -1;
2880
2881	if (do_read_u64(ff, &bsize))
2882		return -1;
2883
2884	if (do_read_u64(ff, &nr))
2885		return -1;
2886
2887	nodes = zalloc(sizeof(*nodes) * nr);
2888	if (!nodes)
2889		return -1;
2890
2891	for (i = 0; i < nr; i++) {
2892		struct memory_node n;
2893
2894		#define _R(v)				\
2895			if (do_read_u64(ff, &n.v))	\
2896				goto out;		\
2897
2898		_R(node)
2899		_R(size)
2900
2901		#undef _R
2902
2903		if (do_read_bitmap(ff, &n.set, &n.size))
2904			goto out;
2905
2906		nodes[i] = n;
2907	}
2908
2909	ff->ph->env.memory_bsize    = bsize;
2910	ff->ph->env.memory_nodes    = nodes;
2911	ff->ph->env.nr_memory_nodes = nr;
2912	ret = 0;
2913
2914out:
2915	if (ret)
2916		free(nodes);
2917	return ret;
2918}
2919
2920static int process_clockid(struct feat_fd *ff,
2921			   void *data __maybe_unused)
2922{
2923	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2924		return -1;
2925
2926	return 0;
2927}
2928
2929static int process_clock_data(struct feat_fd *ff,
2930			      void *_data __maybe_unused)
2931{
2932	u32 data32;
2933	u64 data64;
2934
2935	/* version */
2936	if (do_read_u32(ff, &data32))
2937		return -1;
2938
2939	if (data32 != 1)
2940		return -1;
2941
2942	/* clockid */
2943	if (do_read_u32(ff, &data32))
2944		return -1;
2945
2946	ff->ph->env.clock.clockid = data32;
2947
2948	/* TOD ref time */
2949	if (do_read_u64(ff, &data64))
2950		return -1;
2951
2952	ff->ph->env.clock.tod_ns = data64;
2953
2954	/* clockid ref time */
2955	if (do_read_u64(ff, &data64))
2956		return -1;
2957
2958	ff->ph->env.clock.clockid_ns = data64;
2959	ff->ph->env.clock.enabled = true;
2960	return 0;
2961}
2962
2963static int process_hybrid_topology(struct feat_fd *ff,
2964				   void *data __maybe_unused)
2965{
2966	struct hybrid_node *nodes, *n;
2967	u32 nr, i;
2968
2969	/* nr nodes */
2970	if (do_read_u32(ff, &nr))
2971		return -1;
2972
2973	nodes = zalloc(sizeof(*nodes) * nr);
2974	if (!nodes)
2975		return -ENOMEM;
2976
2977	for (i = 0; i < nr; i++) {
2978		n = &nodes[i];
2979
2980		n->pmu_name = do_read_string(ff);
2981		if (!n->pmu_name)
2982			goto error;
2983
2984		n->cpus = do_read_string(ff);
2985		if (!n->cpus)
2986			goto error;
2987	}
2988
2989	ff->ph->env.nr_hybrid_nodes = nr;
2990	ff->ph->env.hybrid_nodes = nodes;
2991	return 0;
2992
2993error:
2994	for (i = 0; i < nr; i++) {
2995		free(nodes[i].pmu_name);
2996		free(nodes[i].cpus);
2997	}
2998
2999	free(nodes);
3000	return -1;
3001}
3002
3003static int process_dir_format(struct feat_fd *ff,
3004			      void *_data __maybe_unused)
3005{
3006	struct perf_session *session;
3007	struct perf_data *data;
3008
3009	session = container_of(ff->ph, struct perf_session, header);
3010	data = session->data;
3011
3012	if (WARN_ON(!perf_data__is_dir(data)))
3013		return -1;
3014
3015	return do_read_u64(ff, &data->dir.version);
3016}
3017
3018#ifdef HAVE_LIBBPF_SUPPORT
3019static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3020{
3021	struct bpf_prog_info_linear *info_linear;
3022	struct bpf_prog_info_node *info_node;
3023	struct perf_env *env = &ff->ph->env;
3024	u32 count, i;
3025	int err = -1;
3026
3027	if (ff->ph->needs_swap) {
3028		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3029		return 0;
3030	}
3031
3032	if (do_read_u32(ff, &count))
3033		return -1;
3034
3035	down_write(&env->bpf_progs.lock);
3036
3037	for (i = 0; i < count; ++i) {
3038		u32 info_len, data_len;
3039
3040		info_linear = NULL;
3041		info_node = NULL;
3042		if (do_read_u32(ff, &info_len))
3043			goto out;
3044		if (do_read_u32(ff, &data_len))
3045			goto out;
3046
3047		if (info_len > sizeof(struct bpf_prog_info)) {
3048			pr_warning("detected invalid bpf_prog_info\n");
3049			goto out;
3050		}
3051
3052		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
3053				     data_len);
3054		if (!info_linear)
3055			goto out;
3056		info_linear->info_len = sizeof(struct bpf_prog_info);
3057		info_linear->data_len = data_len;
3058		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3059			goto out;
3060		if (__do_read(ff, &info_linear->info, info_len))
3061			goto out;
3062		if (info_len < sizeof(struct bpf_prog_info))
3063			memset(((void *)(&info_linear->info)) + info_len, 0,
3064			       sizeof(struct bpf_prog_info) - info_len);
3065
3066		if (__do_read(ff, info_linear->data, data_len))
3067			goto out;
3068
3069		info_node = malloc(sizeof(struct bpf_prog_info_node));
3070		if (!info_node)
3071			goto out;
3072
3073		/* after reading from file, translate offset to address */
3074		bpf_program__bpil_offs_to_addr(info_linear);
3075		info_node->info_linear = info_linear;
3076		perf_env__insert_bpf_prog_info(env, info_node);
3077	}
3078
3079	up_write(&env->bpf_progs.lock);
3080	return 0;
3081out:
3082	free(info_linear);
3083	free(info_node);
3084	up_write(&env->bpf_progs.lock);
3085	return err;
3086}
3087
3088static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3089{
3090	struct perf_env *env = &ff->ph->env;
3091	struct btf_node *node = NULL;
3092	u32 count, i;
3093	int err = -1;
3094
3095	if (ff->ph->needs_swap) {
3096		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3097		return 0;
3098	}
3099
3100	if (do_read_u32(ff, &count))
3101		return -1;
3102
3103	down_write(&env->bpf_progs.lock);
3104
3105	for (i = 0; i < count; ++i) {
3106		u32 id, data_size;
3107
3108		if (do_read_u32(ff, &id))
3109			goto out;
3110		if (do_read_u32(ff, &data_size))
3111			goto out;
3112
3113		node = malloc(sizeof(struct btf_node) + data_size);
3114		if (!node)
3115			goto out;
3116
3117		node->id = id;
3118		node->data_size = data_size;
3119
3120		if (__do_read(ff, node->data, data_size))
3121			goto out;
3122
3123		perf_env__insert_btf(env, node);
3124		node = NULL;
3125	}
3126
3127	err = 0;
3128out:
3129	up_write(&env->bpf_progs.lock);
3130	free(node);
3131	return err;
3132}
3133#endif // HAVE_LIBBPF_SUPPORT
3134
3135static int process_compressed(struct feat_fd *ff,
3136			      void *data __maybe_unused)
3137{
3138	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3139		return -1;
3140
3141	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3142		return -1;
3143
3144	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3145		return -1;
3146
3147	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3148		return -1;
3149
3150	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3151		return -1;
3152
3153	return 0;
3154}
3155
3156static int process_per_cpu_pmu_caps(struct feat_fd *ff, int *nr_cpu_pmu_caps,
3157				    char **cpu_pmu_caps,
3158				    unsigned int *max_branches)
3159{
3160	char *name, *value;
3161	struct strbuf sb;
3162	u32 nr_caps;
3163
3164	if (do_read_u32(ff, &nr_caps))
3165		return -1;
3166
3167	if (!nr_caps) {
3168		pr_debug("cpu pmu capabilities not available\n");
3169		return 0;
3170	}
3171
3172	*nr_cpu_pmu_caps = nr_caps;
3173
3174	if (strbuf_init(&sb, 128) < 0)
3175		return -1;
3176
3177	while (nr_caps--) {
3178		name = do_read_string(ff);
3179		if (!name)
3180			goto error;
3181
3182		value = do_read_string(ff);
3183		if (!value)
3184			goto free_name;
3185
3186		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3187			goto free_value;
3188
3189		/* include a NULL character at the end */
3190		if (strbuf_add(&sb, "", 1) < 0)
3191			goto free_value;
3192
3193		if (!strcmp(name, "branches"))
3194			*max_branches = atoi(value);
3195
3196		free(value);
3197		free(name);
3198	}
3199	*cpu_pmu_caps = strbuf_detach(&sb, NULL);
3200	return 0;
3201
3202free_value:
3203	free(value);
3204free_name:
3205	free(name);
3206error:
3207	strbuf_release(&sb);
3208	return -1;
3209}
3210
3211static int process_cpu_pmu_caps(struct feat_fd *ff,
3212				void *data __maybe_unused)
3213{
3214	return process_per_cpu_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3215					&ff->ph->env.cpu_pmu_caps,
3216					&ff->ph->env.max_branches);
3217}
3218
3219static int process_hybrid_cpu_pmu_caps(struct feat_fd *ff,
3220				       void *data __maybe_unused)
3221{
3222	struct hybrid_cpc_node *nodes;
3223	u32 nr_pmu, i;
3224	int ret;
3225
3226	if (do_read_u32(ff, &nr_pmu))
3227		return -1;
3228
3229	if (!nr_pmu) {
3230		pr_debug("hybrid cpu pmu capabilities not available\n");
3231		return 0;
3232	}
3233
3234	nodes = zalloc(sizeof(*nodes) * nr_pmu);
3235	if (!nodes)
3236		return -ENOMEM;
3237
3238	for (i = 0; i < nr_pmu; i++) {
3239		struct hybrid_cpc_node *n = &nodes[i];
3240
3241		ret = process_per_cpu_pmu_caps(ff, &n->nr_cpu_pmu_caps,
3242					       &n->cpu_pmu_caps,
3243					       &n->max_branches);
3244		if (ret)
3245			goto err;
3246
3247		n->pmu_name = do_read_string(ff);
3248		if (!n->pmu_name) {
3249			ret = -1;
3250			goto err;
3251		}
3252	}
3253
3254	ff->ph->env.nr_hybrid_cpc_nodes = nr_pmu;
3255	ff->ph->env.hybrid_cpc_nodes = nodes;
3256	return 0;
3257
3258err:
3259	for (i = 0; i < nr_pmu; i++) {
3260		free(nodes[i].cpu_pmu_caps);
3261		free(nodes[i].pmu_name);
3262	}
3263
3264	free(nodes);
3265	return ret;
3266}
3267
3268#define FEAT_OPR(n, func, __full_only) \
3269	[HEADER_##n] = {					\
3270		.name	    = __stringify(n),			\
3271		.write	    = write_##func,			\
3272		.print	    = print_##func,			\
3273		.full_only  = __full_only,			\
3274		.process    = process_##func,			\
3275		.synthesize = true				\
3276	}
3277
3278#define FEAT_OPN(n, func, __full_only) \
3279	[HEADER_##n] = {					\
3280		.name	    = __stringify(n),			\
3281		.write	    = write_##func,			\
3282		.print	    = print_##func,			\
3283		.full_only  = __full_only,			\
3284		.process    = process_##func			\
3285	}
3286
3287/* feature_ops not implemented: */
3288#define print_tracing_data	NULL
3289#define print_build_id		NULL
3290
3291#define process_branch_stack	NULL
3292#define process_stat		NULL
3293
3294// Only used in util/synthetic-events.c
3295const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3296
3297const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3298	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3299	FEAT_OPN(BUILD_ID,	build_id,	false),
3300	FEAT_OPR(HOSTNAME,	hostname,	false),
3301	FEAT_OPR(OSRELEASE,	osrelease,	false),
3302	FEAT_OPR(VERSION,	version,	false),
3303	FEAT_OPR(ARCH,		arch,		false),
3304	FEAT_OPR(NRCPUS,	nrcpus,		false),
3305	FEAT_OPR(CPUDESC,	cpudesc,	false),
3306	FEAT_OPR(CPUID,		cpuid,		false),
3307	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3308	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3309	FEAT_OPR(CMDLINE,	cmdline,	false),
3310	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3311	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3312	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3313	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3314	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3315	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3316	FEAT_OPN(STAT,		stat,		false),
3317	FEAT_OPN(CACHE,		cache,		true),
3318	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3319	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3320	FEAT_OPR(CLOCKID,	clockid,	false),
3321	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3322#ifdef HAVE_LIBBPF_SUPPORT
3323	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3324	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3325#endif
3326	FEAT_OPR(COMPRESSED,	compressed,	false),
3327	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3328	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3329	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3330	FEAT_OPR(HYBRID_CPU_PMU_CAPS,	hybrid_cpu_pmu_caps,	false),
3331};
3332
3333struct header_print_data {
3334	FILE *fp;
3335	bool full; /* extended list of headers */
3336};
3337
3338static int perf_file_section__fprintf_info(struct perf_file_section *section,
3339					   struct perf_header *ph,
3340					   int feat, int fd, void *data)
3341{
3342	struct header_print_data *hd = data;
3343	struct feat_fd ff;
3344
3345	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3346		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3347				"%d, continuing...\n", section->offset, feat);
3348		return 0;
3349	}
3350	if (feat >= HEADER_LAST_FEATURE) {
3351		pr_warning("unknown feature %d\n", feat);
3352		return 0;
3353	}
3354	if (!feat_ops[feat].print)
3355		return 0;
3356
3357	ff = (struct  feat_fd) {
3358		.fd = fd,
3359		.ph = ph,
3360	};
3361
3362	if (!feat_ops[feat].full_only || hd->full)
3363		feat_ops[feat].print(&ff, hd->fp);
3364	else
3365		fprintf(hd->fp, "# %s info available, use -I to display\n",
3366			feat_ops[feat].name);
3367
3368	return 0;
3369}
3370
3371int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3372{
3373	struct header_print_data hd;
3374	struct perf_header *header = &session->header;
3375	int fd = perf_data__fd(session->data);
3376	struct stat st;
3377	time_t stctime;
3378	int ret, bit;
3379
3380	hd.fp = fp;
3381	hd.full = full;
3382
3383	ret = fstat(fd, &st);
3384	if (ret == -1)
3385		return -1;
3386
3387	stctime = st.st_mtime;
3388	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3389
3390	fprintf(fp, "# header version : %u\n", header->version);
3391	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3392	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3393	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3394
3395	perf_header__process_sections(header, fd, &hd,
3396				      perf_file_section__fprintf_info);
3397
3398	if (session->data->is_pipe)
3399		return 0;
3400
3401	fprintf(fp, "# missing features: ");
3402	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3403		if (bit)
3404			fprintf(fp, "%s ", feat_ops[bit].name);
3405	}
3406
3407	fprintf(fp, "\n");
3408	return 0;
3409}
3410
3411static int do_write_feat(struct feat_fd *ff, int type,
3412			 struct perf_file_section **p,
3413			 struct evlist *evlist)
3414{
3415	int err;
3416	int ret = 0;
3417
3418	if (perf_header__has_feat(ff->ph, type)) {
3419		if (!feat_ops[type].write)
3420			return -1;
3421
3422		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3423			return -1;
3424
3425		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3426
3427		err = feat_ops[type].write(ff, evlist);
3428		if (err < 0) {
3429			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3430
3431			/* undo anything written */
3432			lseek(ff->fd, (*p)->offset, SEEK_SET);
3433
3434			return -1;
3435		}
3436		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3437		(*p)++;
3438	}
3439	return ret;
3440}
3441
3442static int perf_header__adds_write(struct perf_header *header,
3443				   struct evlist *evlist, int fd)
3444{
3445	int nr_sections;
3446	struct feat_fd ff;
3447	struct perf_file_section *feat_sec, *p;
3448	int sec_size;
3449	u64 sec_start;
3450	int feat;
3451	int err;
3452
3453	ff = (struct feat_fd){
3454		.fd  = fd,
3455		.ph = header,
3456	};
3457
3458	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3459	if (!nr_sections)
3460		return 0;
3461
3462	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3463	if (feat_sec == NULL)
3464		return -ENOMEM;
3465
3466	sec_size = sizeof(*feat_sec) * nr_sections;
3467
3468	sec_start = header->feat_offset;
3469	lseek(fd, sec_start + sec_size, SEEK_SET);
3470
3471	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3472		if (do_write_feat(&ff, feat, &p, evlist))
3473			perf_header__clear_feat(header, feat);
3474	}
3475
3476	lseek(fd, sec_start, SEEK_SET);
3477	/*
3478	 * may write more than needed due to dropped feature, but
3479	 * this is okay, reader will skip the missing entries
3480	 */
3481	err = do_write(&ff, feat_sec, sec_size);
3482	if (err < 0)
3483		pr_debug("failed to write feature section\n");
3484	free(feat_sec);
3485	return err;
3486}
3487
3488int perf_header__write_pipe(int fd)
3489{
3490	struct perf_pipe_file_header f_header;
3491	struct feat_fd ff;
3492	int err;
3493
3494	ff = (struct feat_fd){ .fd = fd };
3495
3496	f_header = (struct perf_pipe_file_header){
3497		.magic	   = PERF_MAGIC,
3498		.size	   = sizeof(f_header),
3499	};
3500
3501	err = do_write(&ff, &f_header, sizeof(f_header));
3502	if (err < 0) {
3503		pr_debug("failed to write perf pipe header\n");
3504		return err;
3505	}
3506
3507	return 0;
3508}
3509
3510int perf_session__write_header(struct perf_session *session,
3511			       struct evlist *evlist,
3512			       int fd, bool at_exit)
3513{
3514	struct perf_file_header f_header;
3515	struct perf_file_attr   f_attr;
3516	struct perf_header *header = &session->header;
3517	struct evsel *evsel;
3518	struct feat_fd ff;
3519	u64 attr_offset;
3520	int err;
3521
3522	ff = (struct feat_fd){ .fd = fd};
3523	lseek(fd, sizeof(f_header), SEEK_SET);
3524
3525	evlist__for_each_entry(session->evlist, evsel) {
3526		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3527		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3528		if (err < 0) {
3529			pr_debug("failed to write perf header\n");
3530			return err;
3531		}
3532	}
3533
3534	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3535
3536	evlist__for_each_entry(evlist, evsel) {
3537		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3538			/*
3539			 * We are likely in "perf inject" and have read
3540			 * from an older file. Update attr size so that
3541			 * reader gets the right offset to the ids.
3542			 */
3543			evsel->core.attr.size = sizeof(evsel->core.attr);
3544		}
3545		f_attr = (struct perf_file_attr){
3546			.attr = evsel->core.attr,
3547			.ids  = {
3548				.offset = evsel->id_offset,
3549				.size   = evsel->core.ids * sizeof(u64),
3550			}
3551		};
3552		err = do_write(&ff, &f_attr, sizeof(f_attr));
3553		if (err < 0) {
3554			pr_debug("failed to write perf header attribute\n");
3555			return err;
3556		}
3557	}
3558
3559	if (!header->data_offset)
3560		header->data_offset = lseek(fd, 0, SEEK_CUR);
3561	header->feat_offset = header->data_offset + header->data_size;
3562
3563	if (at_exit) {
3564		err = perf_header__adds_write(header, evlist, fd);
3565		if (err < 0)
3566			return err;
3567	}
3568
3569	f_header = (struct perf_file_header){
3570		.magic	   = PERF_MAGIC,
3571		.size	   = sizeof(f_header),
3572		.attr_size = sizeof(f_attr),
3573		.attrs = {
3574			.offset = attr_offset,
3575			.size   = evlist->core.nr_entries * sizeof(f_attr),
3576		},
3577		.data = {
3578			.offset = header->data_offset,
3579			.size	= header->data_size,
3580		},
3581		/* event_types is ignored, store zeros */
3582	};
3583
3584	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3585
3586	lseek(fd, 0, SEEK_SET);
3587	err = do_write(&ff, &f_header, sizeof(f_header));
3588	if (err < 0) {
3589		pr_debug("failed to write perf header\n");
3590		return err;
3591	}
3592	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3593
3594	return 0;
3595}
3596
3597static int perf_header__getbuffer64(struct perf_header *header,
3598				    int fd, void *buf, size_t size)
3599{
3600	if (readn(fd, buf, size) <= 0)
3601		return -1;
3602
3603	if (header->needs_swap)
3604		mem_bswap_64(buf, size);
3605
3606	return 0;
3607}
3608
3609int perf_header__process_sections(struct perf_header *header, int fd,
3610				  void *data,
3611				  int (*process)(struct perf_file_section *section,
3612						 struct perf_header *ph,
3613						 int feat, int fd, void *data))
3614{
3615	struct perf_file_section *feat_sec, *sec;
3616	int nr_sections;
3617	int sec_size;
3618	int feat;
3619	int err;
3620
3621	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3622	if (!nr_sections)
3623		return 0;
3624
3625	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3626	if (!feat_sec)
3627		return -1;
3628
3629	sec_size = sizeof(*feat_sec) * nr_sections;
3630
3631	lseek(fd, header->feat_offset, SEEK_SET);
3632
3633	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3634	if (err < 0)
3635		goto out_free;
3636
3637	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3638		err = process(sec++, header, feat, fd, data);
3639		if (err < 0)
3640			goto out_free;
3641	}
3642	err = 0;
3643out_free:
3644	free(feat_sec);
3645	return err;
3646}
3647
3648static const int attr_file_abi_sizes[] = {
3649	[0] = PERF_ATTR_SIZE_VER0,
3650	[1] = PERF_ATTR_SIZE_VER1,
3651	[2] = PERF_ATTR_SIZE_VER2,
3652	[3] = PERF_ATTR_SIZE_VER3,
3653	[4] = PERF_ATTR_SIZE_VER4,
3654	0,
3655};
3656
3657/*
3658 * In the legacy file format, the magic number is not used to encode endianness.
3659 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3660 * on ABI revisions, we need to try all combinations for all endianness to
3661 * detect the endianness.
3662 */
3663static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3664{
3665	uint64_t ref_size, attr_size;
3666	int i;
3667
3668	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3669		ref_size = attr_file_abi_sizes[i]
3670			 + sizeof(struct perf_file_section);
3671		if (hdr_sz != ref_size) {
3672			attr_size = bswap_64(hdr_sz);
3673			if (attr_size != ref_size)
3674				continue;
3675
3676			ph->needs_swap = true;
3677		}
3678		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3679			 i,
3680			 ph->needs_swap);
3681		return 0;
3682	}
3683	/* could not determine endianness */
3684	return -1;
3685}
3686
3687#define PERF_PIPE_HDR_VER0	16
3688
3689static const size_t attr_pipe_abi_sizes[] = {
3690	[0] = PERF_PIPE_HDR_VER0,
3691	0,
3692};
3693
3694/*
3695 * In the legacy pipe format, there is an implicit assumption that endianness
3696 * between host recording the samples, and host parsing the samples is the
3697 * same. This is not always the case given that the pipe output may always be
3698 * redirected into a file and analyzed on a different machine with possibly a
3699 * different endianness and perf_event ABI revisions in the perf tool itself.
3700 */
3701static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3702{
3703	u64 attr_size;
3704	int i;
3705
3706	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3707		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3708			attr_size = bswap_64(hdr_sz);
3709			if (attr_size != hdr_sz)
3710				continue;
3711
3712			ph->needs_swap = true;
3713		}
3714		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3715		return 0;
3716	}
3717	return -1;
3718}
3719
3720bool is_perf_magic(u64 magic)
3721{
3722	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3723		|| magic == __perf_magic2
3724		|| magic == __perf_magic2_sw)
3725		return true;
3726
3727	return false;
3728}
3729
3730static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3731			      bool is_pipe, struct perf_header *ph)
3732{
3733	int ret;
3734
3735	/* check for legacy format */
3736	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3737	if (ret == 0) {
3738		ph->version = PERF_HEADER_VERSION_1;
3739		pr_debug("legacy perf.data format\n");
3740		if (is_pipe)
3741			return try_all_pipe_abis(hdr_sz, ph);
3742
3743		return try_all_file_abis(hdr_sz, ph);
3744	}
3745	/*
3746	 * the new magic number serves two purposes:
3747	 * - unique number to identify actual perf.data files
3748	 * - encode endianness of file
3749	 */
3750	ph->version = PERF_HEADER_VERSION_2;
3751
3752	/* check magic number with one endianness */
3753	if (magic == __perf_magic2)
3754		return 0;
3755
3756	/* check magic number with opposite endianness */
3757	if (magic != __perf_magic2_sw)
3758		return -1;
3759
3760	ph->needs_swap = true;
3761
3762	return 0;
3763}
3764
3765int perf_file_header__read(struct perf_file_header *header,
3766			   struct perf_header *ph, int fd)
3767{
3768	ssize_t ret;
3769
3770	lseek(fd, 0, SEEK_SET);
3771
3772	ret = readn(fd, header, sizeof(*header));
3773	if (ret <= 0)
3774		return -1;
3775
3776	if (check_magic_endian(header->magic,
3777			       header->attr_size, false, ph) < 0) {
3778		pr_debug("magic/endian check failed\n");
3779		return -1;
3780	}
3781
3782	if (ph->needs_swap) {
3783		mem_bswap_64(header, offsetof(struct perf_file_header,
3784			     adds_features));
3785	}
3786
3787	if (header->size != sizeof(*header)) {
3788		/* Support the previous format */
3789		if (header->size == offsetof(typeof(*header), adds_features))
3790			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3791		else
3792			return -1;
3793	} else if (ph->needs_swap) {
3794		/*
3795		 * feature bitmap is declared as an array of unsigned longs --
3796		 * not good since its size can differ between the host that
3797		 * generated the data file and the host analyzing the file.
3798		 *
3799		 * We need to handle endianness, but we don't know the size of
3800		 * the unsigned long where the file was generated. Take a best
3801		 * guess at determining it: try 64-bit swap first (ie., file
3802		 * created on a 64-bit host), and check if the hostname feature
3803		 * bit is set (this feature bit is forced on as of fbe96f2).
3804		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3805		 * swap. If the hostname bit is still not set (e.g., older data
3806		 * file), punt and fallback to the original behavior --
3807		 * clearing all feature bits and setting buildid.
3808		 */
3809		mem_bswap_64(&header->adds_features,
3810			    BITS_TO_U64(HEADER_FEAT_BITS));
3811
3812		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3813			/* unswap as u64 */
3814			mem_bswap_64(&header->adds_features,
3815				    BITS_TO_U64(HEADER_FEAT_BITS));
3816
3817			/* unswap as u32 */
3818			mem_bswap_32(&header->adds_features,
3819				    BITS_TO_U32(HEADER_FEAT_BITS));
3820		}
3821
3822		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3823			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3824			set_bit(HEADER_BUILD_ID, header->adds_features);
3825		}
3826	}
3827
3828	memcpy(&ph->adds_features, &header->adds_features,
3829	       sizeof(ph->adds_features));
3830
3831	ph->data_offset  = header->data.offset;
3832	ph->data_size	 = header->data.size;
3833	ph->feat_offset  = header->data.offset + header->data.size;
3834	return 0;
3835}
3836
3837static int perf_file_section__process(struct perf_file_section *section,
3838				      struct perf_header *ph,
3839				      int feat, int fd, void *data)
3840{
3841	struct feat_fd fdd = {
3842		.fd	= fd,
3843		.ph	= ph,
3844		.size	= section->size,
3845		.offset	= section->offset,
3846	};
3847
3848	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3849		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3850			  "%d, continuing...\n", section->offset, feat);
3851		return 0;
3852	}
3853
3854	if (feat >= HEADER_LAST_FEATURE) {
3855		pr_debug("unknown feature %d, continuing...\n", feat);
3856		return 0;
3857	}
3858
3859	if (!feat_ops[feat].process)
3860		return 0;
3861
3862	return feat_ops[feat].process(&fdd, data);
3863}
3864
3865static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3866				       struct perf_header *ph,
3867				       struct perf_data* data,
3868				       bool repipe)
3869{
3870	struct feat_fd ff = {
3871		.fd = STDOUT_FILENO,
3872		.ph = ph,
3873	};
3874	ssize_t ret;
3875
3876	ret = perf_data__read(data, header, sizeof(*header));
3877	if (ret <= 0)
3878		return -1;
3879
3880	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3881		pr_debug("endian/magic failed\n");
3882		return -1;
3883	}
3884
3885	if (ph->needs_swap)
3886		header->size = bswap_64(header->size);
3887
3888	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3889		return -1;
3890
3891	return 0;
3892}
3893
3894static int perf_header__read_pipe(struct perf_session *session)
3895{
3896	struct perf_header *header = &session->header;
3897	struct perf_pipe_file_header f_header;
3898
3899	if (perf_file_header__read_pipe(&f_header, header, session->data,
 
3900					session->repipe) < 0) {
3901		pr_debug("incompatible file format\n");
3902		return -EINVAL;
3903	}
3904
3905	return f_header.size == sizeof(f_header) ? 0 : -1;
3906}
3907
3908static int read_attr(int fd, struct perf_header *ph,
3909		     struct perf_file_attr *f_attr)
3910{
3911	struct perf_event_attr *attr = &f_attr->attr;
3912	size_t sz, left;
3913	size_t our_sz = sizeof(f_attr->attr);
3914	ssize_t ret;
3915
3916	memset(f_attr, 0, sizeof(*f_attr));
3917
3918	/* read minimal guaranteed structure */
3919	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3920	if (ret <= 0) {
3921		pr_debug("cannot read %d bytes of header attr\n",
3922			 PERF_ATTR_SIZE_VER0);
3923		return -1;
3924	}
3925
3926	/* on file perf_event_attr size */
3927	sz = attr->size;
3928
3929	if (ph->needs_swap)
3930		sz = bswap_32(sz);
3931
3932	if (sz == 0) {
3933		/* assume ABI0 */
3934		sz =  PERF_ATTR_SIZE_VER0;
3935	} else if (sz > our_sz) {
3936		pr_debug("file uses a more recent and unsupported ABI"
3937			 " (%zu bytes extra)\n", sz - our_sz);
3938		return -1;
3939	}
3940	/* what we have not yet read and that we know about */
3941	left = sz - PERF_ATTR_SIZE_VER0;
3942	if (left) {
3943		void *ptr = attr;
3944		ptr += PERF_ATTR_SIZE_VER0;
3945
3946		ret = readn(fd, ptr, left);
3947	}
3948	/* read perf_file_section, ids are read in caller */
3949	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3950
3951	return ret <= 0 ? -1 : 0;
3952}
3953
3954static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
 
3955{
3956	struct tep_event *event;
3957	char bf[128];
3958
3959	/* already prepared */
3960	if (evsel->tp_format)
3961		return 0;
3962
3963	if (pevent == NULL) {
3964		pr_debug("broken or missing trace data\n");
3965		return -1;
3966	}
3967
3968	event = tep_find_event(pevent, evsel->core.attr.config);
3969	if (event == NULL) {
3970		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3971		return -1;
3972	}
3973
3974	if (!evsel->name) {
3975		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3976		evsel->name = strdup(bf);
3977		if (evsel->name == NULL)
3978			return -1;
3979	}
3980
3981	evsel->tp_format = event;
3982	return 0;
3983}
3984
3985static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
 
3986{
3987	struct evsel *pos;
3988
3989	evlist__for_each_entry(evlist, pos) {
3990		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3991		    evsel__prepare_tracepoint_event(pos, pevent))
3992			return -1;
3993	}
3994
3995	return 0;
3996}
3997
3998int perf_session__read_header(struct perf_session *session)
3999{
4000	struct perf_data *data = session->data;
4001	struct perf_header *header = &session->header;
4002	struct perf_file_header	f_header;
4003	struct perf_file_attr	f_attr;
4004	u64			f_id;
4005	int nr_attrs, nr_ids, i, j, err;
4006	int fd = perf_data__fd(data);
4007
4008	session->evlist = evlist__new();
4009	if (session->evlist == NULL)
4010		return -ENOMEM;
4011
4012	session->evlist->env = &header->env;
4013	session->machines.host.env = &header->env;
4014
4015	/*
4016	 * We can read 'pipe' data event from regular file,
4017	 * check for the pipe header regardless of source.
4018	 */
4019	err = perf_header__read_pipe(session);
4020	if (!err || perf_data__is_pipe(data)) {
4021		data->is_pipe = true;
4022		return err;
4023	}
4024
4025	if (perf_file_header__read(&f_header, header, fd) < 0)
4026		return -EINVAL;
4027
4028	if (header->needs_swap && data->in_place_update) {
4029		pr_err("In-place update not supported when byte-swapping is required\n");
4030		return -EINVAL;
4031	}
4032
4033	/*
4034	 * Sanity check that perf.data was written cleanly; data size is
4035	 * initialized to 0 and updated only if the on_exit function is run.
4036	 * If data size is still 0 then the file contains only partial
4037	 * information.  Just warn user and process it as much as it can.
4038	 */
4039	if (f_header.data.size == 0) {
4040		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4041			   "Was the 'perf record' command properly terminated?\n",
4042			   data->file.path);
4043	}
4044
4045	if (f_header.attr_size == 0) {
4046		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4047		       "Was the 'perf record' command properly terminated?\n",
4048		       data->file.path);
4049		return -EINVAL;
4050	}
4051
4052	nr_attrs = f_header.attrs.size / f_header.attr_size;
4053	lseek(fd, f_header.attrs.offset, SEEK_SET);
4054
4055	for (i = 0; i < nr_attrs; i++) {
4056		struct evsel *evsel;
4057		off_t tmp;
4058
4059		if (read_attr(fd, header, &f_attr) < 0)
4060			goto out_errno;
4061
4062		if (header->needs_swap) {
4063			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4064			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4065			perf_event__attr_swap(&f_attr.attr);
4066		}
4067
4068		tmp = lseek(fd, 0, SEEK_CUR);
4069		evsel = evsel__new(&f_attr.attr);
4070
4071		if (evsel == NULL)
4072			goto out_delete_evlist;
4073
4074		evsel->needs_swap = header->needs_swap;
4075		/*
4076		 * Do it before so that if perf_evsel__alloc_id fails, this
4077		 * entry gets purged too at evlist__delete().
4078		 */
4079		evlist__add(session->evlist, evsel);
4080
4081		nr_ids = f_attr.ids.size / sizeof(u64);
4082		/*
4083		 * We don't have the cpu and thread maps on the header, so
4084		 * for allocating the perf_sample_id table we fake 1 cpu and
4085		 * hattr->ids threads.
4086		 */
4087		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4088			goto out_delete_evlist;
4089
4090		lseek(fd, f_attr.ids.offset, SEEK_SET);
4091
4092		for (j = 0; j < nr_ids; j++) {
4093			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4094				goto out_errno;
4095
4096			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4097		}
4098
4099		lseek(fd, tmp, SEEK_SET);
4100	}
4101
 
 
4102	perf_header__process_sections(header, fd, &session->tevent,
4103				      perf_file_section__process);
4104
4105	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
 
4106		goto out_delete_evlist;
4107
4108	return 0;
4109out_errno:
4110	return -errno;
4111
4112out_delete_evlist:
4113	evlist__delete(session->evlist);
4114	session->evlist = NULL;
4115	return -ENOMEM;
4116}
4117
4118int perf_event__process_feature(struct perf_session *session,
4119				union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4120{
4121	struct perf_tool *tool = session->tool;
4122	struct feat_fd ff = { .fd = 0 };
4123	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4124	int type = fe->header.type;
4125	u64 feat = fe->feat_id;
4126
4127	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4128		pr_warning("invalid record type %d in pipe-mode\n", type);
4129		return 0;
4130	}
4131	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4132		pr_warning("invalid record type %d in pipe-mode\n", type);
4133		return -1;
4134	}
4135
4136	if (!feat_ops[feat].process)
4137		return 0;
4138
4139	ff.buf  = (void *)fe->data;
4140	ff.size = event->header.size - sizeof(*fe);
4141	ff.ph = &session->header;
4142
4143	if (feat_ops[feat].process(&ff, NULL))
4144		return -1;
4145
4146	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4147		return 0;
4148
4149	if (!feat_ops[feat].full_only ||
4150	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4151		feat_ops[feat].print(&ff, stdout);
4152	} else {
4153		fprintf(stdout, "# %s info available, use -I to display\n",
4154			feat_ops[feat].name);
4155	}
4156
4157	return 0;
4158}
4159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4160size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4161{
4162	struct perf_record_event_update *ev = &event->event_update;
4163	struct perf_record_event_update_scale *ev_scale;
4164	struct perf_record_event_update_cpus *ev_cpus;
4165	struct perf_cpu_map *map;
4166	size_t ret;
4167
4168	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4169
4170	switch (ev->type) {
4171	case PERF_EVENT_UPDATE__SCALE:
4172		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4173		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4174		break;
4175	case PERF_EVENT_UPDATE__UNIT:
4176		ret += fprintf(fp, "... unit:  %s\n", ev->data);
4177		break;
4178	case PERF_EVENT_UPDATE__NAME:
4179		ret += fprintf(fp, "... name:  %s\n", ev->data);
4180		break;
4181	case PERF_EVENT_UPDATE__CPUS:
4182		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4183		ret += fprintf(fp, "... ");
4184
4185		map = cpu_map__new_data(&ev_cpus->cpus);
4186		if (map)
4187			ret += cpu_map__fprintf(map, fp);
4188		else
4189			ret += fprintf(fp, "failed to get cpus\n");
4190		break;
4191	default:
4192		ret += fprintf(fp, "... unknown type\n");
4193		break;
4194	}
4195
4196	return ret;
4197}
4198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4200			     union perf_event *event,
4201			     struct evlist **pevlist)
4202{
4203	u32 i, ids, n_ids;
4204	struct evsel *evsel;
4205	struct evlist *evlist = *pevlist;
4206
4207	if (evlist == NULL) {
4208		*pevlist = evlist = evlist__new();
4209		if (evlist == NULL)
4210			return -ENOMEM;
4211	}
4212
4213	evsel = evsel__new(&event->attr.attr);
4214	if (evsel == NULL)
4215		return -ENOMEM;
4216
4217	evlist__add(evlist, evsel);
4218
4219	ids = event->header.size;
4220	ids -= (void *)&event->attr.id - (void *)event;
4221	n_ids = ids / sizeof(u64);
4222	/*
4223	 * We don't have the cpu and thread maps on the header, so
4224	 * for allocating the perf_sample_id table we fake 1 cpu and
4225	 * hattr->ids threads.
4226	 */
4227	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4228		return -ENOMEM;
4229
4230	for (i = 0; i < n_ids; i++) {
4231		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4232	}
4233
 
 
4234	return 0;
4235}
4236
4237int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4238				     union perf_event *event,
4239				     struct evlist **pevlist)
4240{
4241	struct perf_record_event_update *ev = &event->event_update;
4242	struct perf_record_event_update_scale *ev_scale;
4243	struct perf_record_event_update_cpus *ev_cpus;
4244	struct evlist *evlist;
4245	struct evsel *evsel;
4246	struct perf_cpu_map *map;
4247
4248	if (!pevlist || *pevlist == NULL)
4249		return -EINVAL;
4250
4251	evlist = *pevlist;
4252
4253	evsel = evlist__id2evsel(evlist, ev->id);
4254	if (evsel == NULL)
4255		return -EINVAL;
4256
4257	switch (ev->type) {
4258	case PERF_EVENT_UPDATE__UNIT:
4259		evsel->unit = strdup(ev->data);
4260		break;
4261	case PERF_EVENT_UPDATE__NAME:
4262		evsel->name = strdup(ev->data);
4263		break;
4264	case PERF_EVENT_UPDATE__SCALE:
4265		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4266		evsel->scale = ev_scale->scale;
4267		break;
4268	case PERF_EVENT_UPDATE__CPUS:
4269		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4270
4271		map = cpu_map__new_data(&ev_cpus->cpus);
4272		if (map)
4273			evsel->core.own_cpus = map;
4274		else
4275			pr_err("failed to get event_update cpus\n");
4276	default:
4277		break;
4278	}
4279
4280	return 0;
4281}
4282
4283int perf_event__process_tracing_data(struct perf_session *session,
4284				     union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4285{
4286	ssize_t size_read, padding, size = event->tracing_data.size;
4287	int fd = perf_data__fd(session->data);
 
4288	char buf[BUFSIZ];
4289
4290	/*
4291	 * The pipe fd is already in proper place and in any case
4292	 * we can't move it, and we'd screw the case where we read
4293	 * 'pipe' data from regular file. The trace_report reads
4294	 * data from 'fd' so we need to set it directly behind the
4295	 * event, where the tracing data starts.
4296	 */
4297	if (!perf_data__is_pipe(session->data)) {
4298		off_t offset = lseek(fd, 0, SEEK_CUR);
4299
4300		/* setup for reading amidst mmap */
4301		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4302		      SEEK_SET);
4303	}
4304
4305	size_read = trace_report(fd, &session->tevent,
4306				 session->repipe);
4307	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4308
4309	if (readn(fd, buf, padding) < 0) {
4310		pr_err("%s: reading input file", __func__);
4311		return -1;
4312	}
4313	if (session->repipe) {
4314		int retw = write(STDOUT_FILENO, buf, padding);
4315		if (retw <= 0 || retw != padding) {
4316			pr_err("%s: repiping tracing data padding", __func__);
4317			return -1;
4318		}
4319	}
4320
4321	if (size_read + padding != size) {
4322		pr_err("%s: tracing data size mismatch", __func__);
4323		return -1;
4324	}
4325
4326	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
 
4327
4328	return size_read + padding;
4329}
4330
4331int perf_event__process_build_id(struct perf_session *session,
4332				 union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4333{
4334	__event_process_build_id(&event->build_id,
4335				 event->build_id.filename,
4336				 session);
4337	return 0;
4338}