Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include "../perf.h"
  13#include "../builtin.h"
  14#include "../util/util.h"
  15#include <subcmd/parse-options.h>
  16#include "../util/cloexec.h"
  17
  18#include "bench.h"
  19
  20#include <errno.h>
  21#include <sched.h>
  22#include <stdio.h>
  23#include <assert.h>
  24#include <malloc.h>
  25#include <signal.h>
  26#include <stdlib.h>
  27#include <string.h>
  28#include <unistd.h>
  29#include <sys/mman.h>
  30#include <sys/time.h>
  31#include <sys/resource.h>
  32#include <sys/wait.h>
  33#include <sys/prctl.h>
  34#include <sys/types.h>
  35#include <linux/kernel.h>
  36#include <linux/time64.h>
 
 
  37
  38#include <numa.h>
  39#include <numaif.h>
  40
 
 
 
 
  41/*
  42 * Regular printout to the terminal, supressed if -q is specified:
  43 */
  44#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  45
  46/*
  47 * Debug printf:
  48 */
  49#undef dprintf
  50#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  51
  52struct thread_data {
  53	int			curr_cpu;
  54	cpu_set_t		bind_cpumask;
  55	int			bind_node;
  56	u8			*process_data;
  57	int			process_nr;
  58	int			thread_nr;
  59	int			task_nr;
  60	unsigned int		loops_done;
  61	u64			val;
  62	u64			runtime_ns;
  63	u64			system_time_ns;
  64	u64			user_time_ns;
  65	double			speed_gbs;
  66	pthread_mutex_t		*process_lock;
  67};
  68
  69/* Parameters set by options: */
  70
  71struct params {
  72	/* Startup synchronization: */
  73	bool			serialize_startup;
  74
  75	/* Task hierarchy: */
  76	int			nr_proc;
  77	int			nr_threads;
  78
  79	/* Working set sizes: */
  80	const char		*mb_global_str;
  81	const char		*mb_proc_str;
  82	const char		*mb_proc_locked_str;
  83	const char		*mb_thread_str;
  84
  85	double			mb_global;
  86	double			mb_proc;
  87	double			mb_proc_locked;
  88	double			mb_thread;
  89
  90	/* Access patterns to the working set: */
  91	bool			data_reads;
  92	bool			data_writes;
  93	bool			data_backwards;
  94	bool			data_zero_memset;
  95	bool			data_rand_walk;
  96	u32			nr_loops;
  97	u32			nr_secs;
  98	u32			sleep_usecs;
  99
 100	/* Working set initialization: */
 101	bool			init_zero;
 102	bool			init_random;
 103	bool			init_cpu0;
 104
 105	/* Misc options: */
 106	int			show_details;
 107	int			run_all;
 108	int			thp;
 109
 110	long			bytes_global;
 111	long			bytes_process;
 112	long			bytes_process_locked;
 113	long			bytes_thread;
 114
 115	int			nr_tasks;
 116	bool			show_quiet;
 117
 118	bool			show_convergence;
 119	bool			measure_convergence;
 120
 121	int			perturb_secs;
 122	int			nr_cpus;
 123	int			nr_nodes;
 124
 125	/* Affinity options -C and -N: */
 126	char			*cpu_list_str;
 127	char			*node_list_str;
 128};
 129
 130
 131/* Global, read-writable area, accessible to all processes and threads: */
 132
 133struct global_info {
 134	u8			*data;
 135
 136	pthread_mutex_t		startup_mutex;
 
 137	int			nr_tasks_started;
 138
 139	pthread_mutex_t		startup_done_mutex;
 140
 141	pthread_mutex_t		start_work_mutex;
 
 142	int			nr_tasks_working;
 
 143
 144	pthread_mutex_t		stop_work_mutex;
 145	u64			bytes_done;
 146
 147	struct thread_data	*threads;
 148
 149	/* Convergence latency measurement: */
 150	bool			all_converged;
 151	bool			stop_work;
 152
 153	int			print_once;
 154
 155	struct params		p;
 156};
 157
 158static struct global_info	*g = NULL;
 159
 160static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 161static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 162
 163struct params p0;
 164
 165static const struct option options[] = {
 166	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 167	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 168
 169	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 170	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 171	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 172	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 173
 174	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 175	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 176	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 177
 178	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 179	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 180	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 181	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 182	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 183
 184
 185	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 186	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 187	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 188	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 189
 190	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 191	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 192	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 193	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 194		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 195	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 196	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 197	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 198
 199	/* Special option string parsing callbacks: */
 200        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 201			"bind the first N tasks to these specific cpus (the rest is unbound)",
 202			parse_cpus_opt),
 203        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 204			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 205			parse_nodes_opt),
 206	OPT_END()
 207};
 208
 209static const char * const bench_numa_usage[] = {
 210	"perf bench numa <options>",
 211	NULL
 212};
 213
 214static const char * const numa_usage[] = {
 215	"perf bench numa mem [<options>]",
 216	NULL
 217};
 218
 219/*
 220 * To get number of numa nodes present.
 221 */
 222static int nr_numa_nodes(void)
 223{
 224	int i, nr_nodes = 0;
 225
 226	for (i = 0; i < g->p.nr_nodes; i++) {
 227		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 228			nr_nodes++;
 229	}
 230
 231	return nr_nodes;
 232}
 233
 234/*
 235 * To check if given numa node is present.
 236 */
 237static int is_node_present(int node)
 238{
 239	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 240}
 241
 242/*
 243 * To check given numa node has cpus.
 244 */
 245static bool node_has_cpus(int node)
 246{
 247	struct bitmask *cpu = numa_allocate_cpumask();
 248	unsigned int i;
 
 249
 250	if (cpu && !numa_node_to_cpus(node, cpu)) {
 251		for (i = 0; i < cpu->size; i++) {
 252			if (numa_bitmask_isbitset(cpu, i))
 253				return true;
 
 
 
 254		}
 255	}
 
 256
 257	return false; /* lets fall back to nocpus safely */
 258}
 259
 260static cpu_set_t bind_to_cpu(int target_cpu)
 261{
 262	cpu_set_t orig_mask, mask;
 263	int ret;
 264
 265	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 266	BUG_ON(ret);
 267
 268	CPU_ZERO(&mask);
 269
 270	if (target_cpu == -1) {
 271		int cpu;
 272
 273		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 274			CPU_SET(cpu, &mask);
 275	} else {
 276		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 277		CPU_SET(target_cpu, &mask);
 278	}
 279
 280	ret = sched_setaffinity(0, sizeof(mask), &mask);
 281	BUG_ON(ret);
 282
 283	return orig_mask;
 284}
 285
 286static cpu_set_t bind_to_node(int target_node)
 287{
 288	int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 289	cpu_set_t orig_mask, mask;
 290	int cpu;
 291	int ret;
 292
 293	BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 294	BUG_ON(!cpus_per_node);
 295
 296	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 297	BUG_ON(ret);
 298
 299	CPU_ZERO(&mask);
 300
 301	if (target_node == -1) {
 302		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 303			CPU_SET(cpu, &mask);
 304	} else {
 305		int cpu_start = (target_node + 0) * cpus_per_node;
 306		int cpu_stop  = (target_node + 1) * cpus_per_node;
 307
 308		BUG_ON(cpu_stop > g->p.nr_cpus);
 309
 310		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 311			CPU_SET(cpu, &mask);
 
 
 
 
 
 
 312	}
 313
 314	ret = sched_setaffinity(0, sizeof(mask), &mask);
 315	BUG_ON(ret);
 316
 317	return orig_mask;
 318}
 319
 320static void bind_to_cpumask(cpu_set_t mask)
 321{
 322	int ret;
 323
 324	ret = sched_setaffinity(0, sizeof(mask), &mask);
 325	BUG_ON(ret);
 326}
 327
 328static void mempol_restore(void)
 329{
 330	int ret;
 331
 332	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 333
 334	BUG_ON(ret);
 335}
 336
 337static void bind_to_memnode(int node)
 338{
 339	unsigned long nodemask;
 340	int ret;
 341
 342	if (node == -1)
 343		return;
 344
 345	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 346	nodemask = 1L << node;
 347
 348	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 349	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 350
 
 
 
 
 351	BUG_ON(ret);
 352}
 353
 354#define HPSIZE (2*1024*1024)
 355
 356#define set_taskname(fmt...)				\
 357do {							\
 358	char name[20];					\
 359							\
 360	snprintf(name, 20, fmt);			\
 361	prctl(PR_SET_NAME, name);			\
 362} while (0)
 363
 364static u8 *alloc_data(ssize_t bytes0, int map_flags,
 365		      int init_zero, int init_cpu0, int thp, int init_random)
 366{
 367	cpu_set_t orig_mask;
 368	ssize_t bytes;
 369	u8 *buf;
 370	int ret;
 371
 372	if (!bytes0)
 373		return NULL;
 374
 375	/* Allocate and initialize all memory on CPU#0: */
 376	if (init_cpu0) {
 377		orig_mask = bind_to_node(0);
 378		bind_to_memnode(0);
 
 
 379	}
 380
 381	bytes = bytes0 + HPSIZE;
 382
 383	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 384	BUG_ON(buf == (void *)-1);
 385
 386	if (map_flags == MAP_PRIVATE) {
 387		if (thp > 0) {
 388			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 389			if (ret && !g->print_once) {
 390				g->print_once = 1;
 391				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 392			}
 393		}
 394		if (thp < 0) {
 395			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 396			if (ret && !g->print_once) {
 397				g->print_once = 1;
 398				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 399			}
 400		}
 401	}
 402
 403	if (init_zero) {
 404		bzero(buf, bytes);
 405	} else {
 406		/* Initialize random contents, different in each word: */
 407		if (init_random) {
 408			u64 *wbuf = (void *)buf;
 409			long off = rand();
 410			long i;
 411
 412			for (i = 0; i < bytes/8; i++)
 413				wbuf[i] = i + off;
 414		}
 415	}
 416
 417	/* Align to 2MB boundary: */
 418	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 419
 420	/* Restore affinity: */
 421	if (init_cpu0) {
 422		bind_to_cpumask(orig_mask);
 423		mempol_restore();
 424	}
 425
 426	return buf;
 427}
 428
 429static void free_data(void *data, ssize_t bytes)
 430{
 431	int ret;
 432
 433	if (!data)
 434		return;
 435
 436	ret = munmap(data, bytes);
 437	BUG_ON(ret);
 438}
 439
 440/*
 441 * Create a shared memory buffer that can be shared between processes, zeroed:
 442 */
 443static void * zalloc_shared_data(ssize_t bytes)
 444{
 445	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 446}
 447
 448/*
 449 * Create a shared memory buffer that can be shared between processes:
 450 */
 451static void * setup_shared_data(ssize_t bytes)
 452{
 453	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 454}
 455
 456/*
 457 * Allocate process-local memory - this will either be shared between
 458 * threads of this process, or only be accessed by this thread:
 459 */
 460static void * setup_private_data(ssize_t bytes)
 461{
 462	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 463}
 464
 465/*
 466 * Return a process-shared (global) mutex:
 467 */
 468static void init_global_mutex(pthread_mutex_t *mutex)
 469{
 470	pthread_mutexattr_t attr;
 471
 472	pthread_mutexattr_init(&attr);
 473	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 474	pthread_mutex_init(mutex, &attr);
 475}
 476
 
 
 
 
 
 
 
 
 
 
 
 
 477static int parse_cpu_list(const char *arg)
 478{
 479	p0.cpu_list_str = strdup(arg);
 480
 481	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 482
 483	return 0;
 484}
 485
 486static int parse_setup_cpu_list(void)
 487{
 488	struct thread_data *td;
 489	char *str0, *str;
 490	int t;
 491
 492	if (!g->p.cpu_list_str)
 493		return 0;
 494
 495	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 496
 497	str0 = str = strdup(g->p.cpu_list_str);
 498	t = 0;
 499
 500	BUG_ON(!str);
 501
 502	tprintf("# binding tasks to CPUs:\n");
 503	tprintf("#  ");
 504
 505	while (true) {
 506		int bind_cpu, bind_cpu_0, bind_cpu_1;
 507		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 508		int bind_len;
 509		int step;
 510		int mul;
 511
 512		tok = strsep(&str, ",");
 513		if (!tok)
 514			break;
 515
 516		tok_end = strstr(tok, "-");
 517
 518		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 519		if (!tok_end) {
 520			/* Single CPU specified: */
 521			bind_cpu_0 = bind_cpu_1 = atol(tok);
 522		} else {
 523			/* CPU range specified (for example: "5-11"): */
 524			bind_cpu_0 = atol(tok);
 525			bind_cpu_1 = atol(tok_end + 1);
 526		}
 527
 528		step = 1;
 529		tok_step = strstr(tok, "#");
 530		if (tok_step) {
 531			step = atol(tok_step + 1);
 532			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 533		}
 534
 535		/*
 536		 * Mask length.
 537		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 538		 * where the _4 means the next 4 CPUs are allowed.
 539		 */
 540		bind_len = 1;
 541		tok_len = strstr(tok, "_");
 542		if (tok_len) {
 543			bind_len = atol(tok_len + 1);
 544			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 545		}
 546
 547		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 548		mul = 1;
 549		tok_mul = strstr(tok, "x");
 550		if (tok_mul) {
 551			mul = atol(tok_mul + 1);
 552			BUG_ON(mul <= 0);
 553		}
 554
 555		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 556
 557		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 558			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 559			return -1;
 560		}
 561
 562		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 563		BUG_ON(bind_cpu_0 > bind_cpu_1);
 564
 565		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 566			int i;
 567
 568			for (i = 0; i < mul; i++) {
 569				int cpu;
 570
 571				if (t >= g->p.nr_tasks) {
 572					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 573					goto out;
 574				}
 575				td = g->threads + t;
 576
 577				if (t)
 578					tprintf(",");
 579				if (bind_len > 1) {
 580					tprintf("%2d/%d", bind_cpu, bind_len);
 581				} else {
 582					tprintf("%2d", bind_cpu);
 583				}
 584
 585				CPU_ZERO(&td->bind_cpumask);
 586				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 587					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 588					CPU_SET(cpu, &td->bind_cpumask);
 589				}
 590				t++;
 591			}
 592		}
 593	}
 594out:
 595
 596	tprintf("\n");
 597
 598	if (t < g->p.nr_tasks)
 599		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 600
 601	free(str0);
 602	return 0;
 603}
 604
 605static int parse_cpus_opt(const struct option *opt __maybe_unused,
 606			  const char *arg, int unset __maybe_unused)
 607{
 608	if (!arg)
 609		return -1;
 610
 611	return parse_cpu_list(arg);
 612}
 613
 614static int parse_node_list(const char *arg)
 615{
 616	p0.node_list_str = strdup(arg);
 617
 618	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 619
 620	return 0;
 621}
 622
 623static int parse_setup_node_list(void)
 624{
 625	struct thread_data *td;
 626	char *str0, *str;
 627	int t;
 628
 629	if (!g->p.node_list_str)
 630		return 0;
 631
 632	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 633
 634	str0 = str = strdup(g->p.node_list_str);
 635	t = 0;
 636
 637	BUG_ON(!str);
 638
 639	tprintf("# binding tasks to NODEs:\n");
 640	tprintf("# ");
 641
 642	while (true) {
 643		int bind_node, bind_node_0, bind_node_1;
 644		char *tok, *tok_end, *tok_step, *tok_mul;
 645		int step;
 646		int mul;
 647
 648		tok = strsep(&str, ",");
 649		if (!tok)
 650			break;
 651
 652		tok_end = strstr(tok, "-");
 653
 654		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 655		if (!tok_end) {
 656			/* Single NODE specified: */
 657			bind_node_0 = bind_node_1 = atol(tok);
 658		} else {
 659			/* NODE range specified (for example: "5-11"): */
 660			bind_node_0 = atol(tok);
 661			bind_node_1 = atol(tok_end + 1);
 662		}
 663
 664		step = 1;
 665		tok_step = strstr(tok, "#");
 666		if (tok_step) {
 667			step = atol(tok_step + 1);
 668			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 669		}
 670
 671		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 672		mul = 1;
 673		tok_mul = strstr(tok, "x");
 674		if (tok_mul) {
 675			mul = atol(tok_mul + 1);
 676			BUG_ON(mul <= 0);
 677		}
 678
 679		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 680
 681		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 682			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 683			return -1;
 684		}
 685
 686		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 687		BUG_ON(bind_node_0 > bind_node_1);
 688
 689		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 690			int i;
 691
 692			for (i = 0; i < mul; i++) {
 693				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 694					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 695					goto out;
 696				}
 697				td = g->threads + t;
 698
 699				if (!t)
 700					tprintf(" %2d", bind_node);
 701				else
 702					tprintf(",%2d", bind_node);
 703
 704				td->bind_node = bind_node;
 705				t++;
 706			}
 707		}
 708	}
 709out:
 710
 711	tprintf("\n");
 712
 713	if (t < g->p.nr_tasks)
 714		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 715
 716	free(str0);
 717	return 0;
 718}
 719
 720static int parse_nodes_opt(const struct option *opt __maybe_unused,
 721			  const char *arg, int unset __maybe_unused)
 722{
 723	if (!arg)
 724		return -1;
 725
 726	return parse_node_list(arg);
 727
 728	return 0;
 729}
 730
 731#define BIT(x) (1ul << x)
 732
 733static inline uint32_t lfsr_32(uint32_t lfsr)
 734{
 735	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 736	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 737}
 738
 739/*
 740 * Make sure there's real data dependency to RAM (when read
 741 * accesses are enabled), so the compiler, the CPU and the
 742 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 743 * accesses:
 744 */
 745static inline u64 access_data(u64 *data, u64 val)
 746{
 747	if (g->p.data_reads)
 748		val += *data;
 749	if (g->p.data_writes)
 750		*data = val + 1;
 751	return val;
 752}
 753
 754/*
 755 * The worker process does two types of work, a forwards going
 756 * loop and a backwards going loop.
 757 *
 758 * We do this so that on multiprocessor systems we do not create
 759 * a 'train' of processing, with highly synchronized processes,
 760 * skewing the whole benchmark.
 761 */
 762static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 763{
 764	long words = bytes/sizeof(u64);
 765	u64 *data = (void *)__data;
 766	long chunk_0, chunk_1;
 767	u64 *d0, *d, *d1;
 768	long off;
 769	long i;
 770
 771	BUG_ON(!data && words);
 772	BUG_ON(data && !words);
 773
 774	if (!data)
 775		return val;
 776
 777	/* Very simple memset() work variant: */
 778	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 779		bzero(data, bytes);
 780		return val;
 781	}
 782
 783	/* Spread out by PID/TID nr and by loop nr: */
 784	chunk_0 = words/nr_max;
 785	chunk_1 = words/g->p.nr_loops;
 786	off = nr*chunk_0 + loop*chunk_1;
 787
 788	while (off >= words)
 789		off -= words;
 790
 791	if (g->p.data_rand_walk) {
 792		u32 lfsr = nr + loop + val;
 793		int j;
 794
 795		for (i = 0; i < words/1024; i++) {
 796			long start, end;
 797
 798			lfsr = lfsr_32(lfsr);
 799
 800			start = lfsr % words;
 801			end = min(start + 1024, words-1);
 802
 803			if (g->p.data_zero_memset) {
 804				bzero(data + start, (end-start) * sizeof(u64));
 805			} else {
 806				for (j = start; j < end; j++)
 807					val = access_data(data + j, val);
 808			}
 809		}
 810	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 
 811
 812		d0 = data + off;
 813		d  = data + off + 1;
 814		d1 = data + words;
 815
 816		/* Process data forwards: */
 817		for (;;) {
 818			if (unlikely(d >= d1))
 819				d = data;
 820			if (unlikely(d == d0))
 821				break;
 822
 823			val = access_data(d, val);
 824
 825			d++;
 826		}
 827	} else {
 828		/* Process data backwards: */
 829
 830		d0 = data + off;
 831		d  = data + off - 1;
 832		d1 = data + words;
 833
 834		/* Process data forwards: */
 835		for (;;) {
 836			if (unlikely(d < data))
 837				d = data + words-1;
 838			if (unlikely(d == d0))
 839				break;
 840
 841			val = access_data(d, val);
 842
 843			d--;
 844		}
 845	}
 846
 847	return val;
 848}
 849
 850static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 851{
 852	unsigned int cpu;
 853
 854	cpu = sched_getcpu();
 855
 856	g->threads[task_nr].curr_cpu = cpu;
 857	prctl(0, bytes_worked);
 858}
 859
 860#define MAX_NR_NODES	64
 861
 862/*
 863 * Count the number of nodes a process's threads
 864 * are spread out on.
 865 *
 866 * A count of 1 means that the process is compressed
 867 * to a single node. A count of g->p.nr_nodes means it's
 868 * spread out on the whole system.
 869 */
 870static int count_process_nodes(int process_nr)
 871{
 872	char node_present[MAX_NR_NODES] = { 0, };
 873	int nodes;
 874	int n, t;
 875
 
 
 
 
 
 876	for (t = 0; t < g->p.nr_threads; t++) {
 877		struct thread_data *td;
 878		int task_nr;
 879		int node;
 880
 881		task_nr = process_nr*g->p.nr_threads + t;
 882		td = g->threads + task_nr;
 883
 884		node = numa_node_of_cpu(td->curr_cpu);
 885		if (node < 0) /* curr_cpu was likely still -1 */
 
 886			return 0;
 
 887
 888		node_present[node] = 1;
 889	}
 890
 891	nodes = 0;
 892
 893	for (n = 0; n < MAX_NR_NODES; n++)
 894		nodes += node_present[n];
 895
 
 896	return nodes;
 897}
 898
 899/*
 900 * Count the number of distinct process-threads a node contains.
 901 *
 902 * A count of 1 means that the node contains only a single
 903 * process. If all nodes on the system contain at most one
 904 * process then we are well-converged.
 905 */
 906static int count_node_processes(int node)
 907{
 908	int processes = 0;
 909	int t, p;
 910
 911	for (p = 0; p < g->p.nr_proc; p++) {
 912		for (t = 0; t < g->p.nr_threads; t++) {
 913			struct thread_data *td;
 914			int task_nr;
 915			int n;
 916
 917			task_nr = p*g->p.nr_threads + t;
 918			td = g->threads + task_nr;
 919
 920			n = numa_node_of_cpu(td->curr_cpu);
 921			if (n == node) {
 922				processes++;
 923				break;
 924			}
 925		}
 926	}
 927
 928	return processes;
 929}
 930
 931static void calc_convergence_compression(int *strong)
 932{
 933	unsigned int nodes_min, nodes_max;
 934	int p;
 935
 936	nodes_min = -1;
 937	nodes_max =  0;
 938
 939	for (p = 0; p < g->p.nr_proc; p++) {
 940		unsigned int nodes = count_process_nodes(p);
 941
 942		if (!nodes) {
 943			*strong = 0;
 944			return;
 945		}
 946
 947		nodes_min = min(nodes, nodes_min);
 948		nodes_max = max(nodes, nodes_max);
 949	}
 950
 951	/* Strong convergence: all threads compress on a single node: */
 952	if (nodes_min == 1 && nodes_max == 1) {
 953		*strong = 1;
 954	} else {
 955		*strong = 0;
 956		tprintf(" {%d-%d}", nodes_min, nodes_max);
 957	}
 958}
 959
 960static void calc_convergence(double runtime_ns_max, double *convergence)
 961{
 962	unsigned int loops_done_min, loops_done_max;
 963	int process_groups;
 964	int nodes[MAX_NR_NODES];
 965	int distance;
 966	int nr_min;
 967	int nr_max;
 968	int strong;
 969	int sum;
 970	int nr;
 971	int node;
 972	int cpu;
 973	int t;
 974
 975	if (!g->p.show_convergence && !g->p.measure_convergence)
 976		return;
 977
 
 
 978	for (node = 0; node < g->p.nr_nodes; node++)
 979		nodes[node] = 0;
 980
 981	loops_done_min = -1;
 982	loops_done_max = 0;
 983
 984	for (t = 0; t < g->p.nr_tasks; t++) {
 985		struct thread_data *td = g->threads + t;
 986		unsigned int loops_done;
 987
 988		cpu = td->curr_cpu;
 989
 990		/* Not all threads have written it yet: */
 991		if (cpu < 0)
 992			continue;
 993
 994		node = numa_node_of_cpu(cpu);
 995
 996		nodes[node]++;
 997
 998		loops_done = td->loops_done;
 999		loops_done_min = min(loops_done, loops_done_min);
1000		loops_done_max = max(loops_done, loops_done_max);
1001	}
1002
1003	nr_max = 0;
1004	nr_min = g->p.nr_tasks;
1005	sum = 0;
1006
1007	for (node = 0; node < g->p.nr_nodes; node++) {
1008		if (!is_node_present(node))
1009			continue;
1010		nr = nodes[node];
1011		nr_min = min(nr, nr_min);
1012		nr_max = max(nr, nr_max);
1013		sum += nr;
1014	}
1015	BUG_ON(nr_min > nr_max);
1016
1017	BUG_ON(sum > g->p.nr_tasks);
1018
1019	if (0 && (sum < g->p.nr_tasks))
 
1020		return;
 
1021
1022	/*
1023	 * Count the number of distinct process groups present
1024	 * on nodes - when we are converged this will decrease
1025	 * to g->p.nr_proc:
1026	 */
1027	process_groups = 0;
1028
1029	for (node = 0; node < g->p.nr_nodes; node++) {
1030		int processes;
1031
1032		if (!is_node_present(node))
1033			continue;
1034		processes = count_node_processes(node);
1035		nr = nodes[node];
1036		tprintf(" %2d/%-2d", nr, processes);
1037
1038		process_groups += processes;
1039	}
1040
1041	distance = nr_max - nr_min;
1042
1043	tprintf(" [%2d/%-2d]", distance, process_groups);
1044
1045	tprintf(" l:%3d-%-3d (%3d)",
1046		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1047
1048	if (loops_done_min && loops_done_max) {
1049		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1050
1051		tprintf(" [%4.1f%%]", skew * 100.0);
1052	}
1053
1054	calc_convergence_compression(&strong);
1055
1056	if (strong && process_groups == g->p.nr_proc) {
1057		if (!*convergence) {
1058			*convergence = runtime_ns_max;
1059			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1060			if (g->p.measure_convergence) {
1061				g->all_converged = true;
1062				g->stop_work = true;
1063			}
1064		}
1065	} else {
1066		if (*convergence) {
1067			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1068			*convergence = 0;
1069		}
1070		tprintf("\n");
1071	}
 
 
1072}
1073
1074static void show_summary(double runtime_ns_max, int l, double *convergence)
1075{
1076	tprintf("\r #  %5.1f%%  [%.1f mins]",
1077		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1078
1079	calc_convergence(runtime_ns_max, convergence);
1080
1081	if (g->p.show_details >= 0)
1082		fflush(stdout);
1083}
1084
1085static void *worker_thread(void *__tdata)
1086{
1087	struct thread_data *td = __tdata;
1088	struct timeval start0, start, stop, diff;
1089	int process_nr = td->process_nr;
1090	int thread_nr = td->thread_nr;
1091	unsigned long last_perturbance;
1092	int task_nr = td->task_nr;
1093	int details = g->p.show_details;
1094	int first_task, last_task;
1095	double convergence = 0;
1096	u64 val = td->val;
1097	double runtime_ns_max;
1098	u8 *global_data;
1099	u8 *process_data;
1100	u8 *thread_data;
1101	u64 bytes_done;
1102	long work_done;
1103	u32 l;
1104	struct rusage rusage;
1105
1106	bind_to_cpumask(td->bind_cpumask);
1107	bind_to_memnode(td->bind_node);
1108
1109	set_taskname("thread %d/%d", process_nr, thread_nr);
1110
1111	global_data = g->data;
1112	process_data = td->process_data;
1113	thread_data = setup_private_data(g->p.bytes_thread);
1114
1115	bytes_done = 0;
1116
1117	last_task = 0;
1118	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1119		last_task = 1;
1120
1121	first_task = 0;
1122	if (process_nr == 0 && thread_nr == 0)
1123		first_task = 1;
1124
1125	if (details >= 2) {
1126		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1127			process_nr, thread_nr, global_data, process_data, thread_data);
1128	}
1129
1130	if (g->p.serialize_startup) {
1131		pthread_mutex_lock(&g->startup_mutex);
1132		g->nr_tasks_started++;
 
 
 
 
1133		pthread_mutex_unlock(&g->startup_mutex);
1134
1135		/* Here we will wait for the main process to start us all at once: */
1136		pthread_mutex_lock(&g->start_work_mutex);
 
1137		g->nr_tasks_working++;
1138
1139		/* Last one wake the main process: */
1140		if (g->nr_tasks_working == g->p.nr_tasks)
1141			pthread_mutex_unlock(&g->startup_done_mutex);
1142
1143		pthread_mutex_unlock(&g->start_work_mutex);
1144	}
1145
1146	gettimeofday(&start0, NULL);
1147
1148	start = stop = start0;
1149	last_perturbance = start.tv_sec;
1150
1151	for (l = 0; l < g->p.nr_loops; l++) {
1152		start = stop;
1153
1154		if (g->stop_work)
1155			break;
1156
1157		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1158		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1159		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1160
1161		if (g->p.sleep_usecs) {
1162			pthread_mutex_lock(td->process_lock);
1163			usleep(g->p.sleep_usecs);
1164			pthread_mutex_unlock(td->process_lock);
1165		}
1166		/*
1167		 * Amount of work to be done under a process-global lock:
1168		 */
1169		if (g->p.bytes_process_locked) {
1170			pthread_mutex_lock(td->process_lock);
1171			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1172			pthread_mutex_unlock(td->process_lock);
1173		}
1174
1175		work_done = g->p.bytes_global + g->p.bytes_process +
1176			    g->p.bytes_process_locked + g->p.bytes_thread;
1177
1178		update_curr_cpu(task_nr, work_done);
1179		bytes_done += work_done;
1180
1181		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1182			continue;
1183
1184		td->loops_done = l;
1185
1186		gettimeofday(&stop, NULL);
1187
1188		/* Check whether our max runtime timed out: */
1189		if (g->p.nr_secs) {
1190			timersub(&stop, &start0, &diff);
1191			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1192				g->stop_work = true;
1193				break;
1194			}
1195		}
1196
1197		/* Update the summary at most once per second: */
1198		if (start.tv_sec == stop.tv_sec)
1199			continue;
1200
1201		/*
1202		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1203		 * by migrating to CPU#0:
1204		 */
1205		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1206			cpu_set_t orig_mask;
1207			int target_cpu;
1208			int this_cpu;
1209
1210			last_perturbance = stop.tv_sec;
1211
1212			/*
1213			 * Depending on where we are running, move into
1214			 * the other half of the system, to create some
1215			 * real disturbance:
1216			 */
1217			this_cpu = g->threads[task_nr].curr_cpu;
1218			if (this_cpu < g->p.nr_cpus/2)
1219				target_cpu = g->p.nr_cpus-1;
1220			else
1221				target_cpu = 0;
1222
1223			orig_mask = bind_to_cpu(target_cpu);
1224
1225			/* Here we are running on the target CPU already */
1226			if (details >= 1)
1227				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1228
1229			bind_to_cpumask(orig_mask);
1230		}
1231
1232		if (details >= 3) {
1233			timersub(&stop, &start, &diff);
1234			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1235			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1236
1237			if (details >= 0) {
1238				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1239					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1240			}
1241			fflush(stdout);
1242		}
1243		if (!last_task)
1244			continue;
1245
1246		timersub(&stop, &start0, &diff);
1247		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1248		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1249
1250		show_summary(runtime_ns_max, l, &convergence);
1251	}
1252
1253	gettimeofday(&stop, NULL);
1254	timersub(&stop, &start0, &diff);
1255	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1256	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1257	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
 
1258
1259	getrusage(RUSAGE_THREAD, &rusage);
1260	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1261	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1262	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1263	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1264
1265	free_data(thread_data, g->p.bytes_thread);
1266
1267	pthread_mutex_lock(&g->stop_work_mutex);
1268	g->bytes_done += bytes_done;
1269	pthread_mutex_unlock(&g->stop_work_mutex);
1270
1271	return NULL;
1272}
1273
1274/*
1275 * A worker process starts a couple of threads:
1276 */
1277static void worker_process(int process_nr)
1278{
1279	pthread_mutex_t process_lock;
1280	struct thread_data *td;
1281	pthread_t *pthreads;
1282	u8 *process_data;
1283	int task_nr;
1284	int ret;
1285	int t;
1286
1287	pthread_mutex_init(&process_lock, NULL);
1288	set_taskname("process %d", process_nr);
1289
1290	/*
1291	 * Pick up the memory policy and the CPU binding of our first thread,
1292	 * so that we initialize memory accordingly:
1293	 */
1294	task_nr = process_nr*g->p.nr_threads;
1295	td = g->threads + task_nr;
1296
1297	bind_to_memnode(td->bind_node);
1298	bind_to_cpumask(td->bind_cpumask);
1299
1300	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1301	process_data = setup_private_data(g->p.bytes_process);
1302
1303	if (g->p.show_details >= 3) {
1304		printf(" # process %2d global mem: %p, process mem: %p\n",
1305			process_nr, g->data, process_data);
1306	}
1307
1308	for (t = 0; t < g->p.nr_threads; t++) {
1309		task_nr = process_nr*g->p.nr_threads + t;
1310		td = g->threads + task_nr;
1311
1312		td->process_data = process_data;
1313		td->process_nr   = process_nr;
1314		td->thread_nr    = t;
1315		td->task_nr	 = task_nr;
1316		td->val          = rand();
1317		td->curr_cpu	 = -1;
1318		td->process_lock = &process_lock;
1319
1320		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1321		BUG_ON(ret);
1322	}
1323
1324	for (t = 0; t < g->p.nr_threads; t++) {
1325                ret = pthread_join(pthreads[t], NULL);
1326		BUG_ON(ret);
1327	}
1328
1329	free_data(process_data, g->p.bytes_process);
1330	free(pthreads);
1331}
1332
1333static void print_summary(void)
1334{
1335	if (g->p.show_details < 0)
1336		return;
1337
1338	printf("\n ###\n");
1339	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1340		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1341	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1342			g->p.nr_loops, g->p.bytes_global/1024/1024);
1343	printf(" #      %5dx %5ldMB process shared mem operations\n",
1344			g->p.nr_loops, g->p.bytes_process/1024/1024);
1345	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1346			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1347
1348	printf(" ###\n");
1349
1350	printf("\n ###\n"); fflush(stdout);
1351}
1352
1353static void init_thread_data(void)
1354{
1355	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1356	int t;
1357
1358	g->threads = zalloc_shared_data(size);
1359
1360	for (t = 0; t < g->p.nr_tasks; t++) {
1361		struct thread_data *td = g->threads + t;
1362		int cpu;
1363
1364		/* Allow all nodes by default: */
1365		td->bind_node = -1;
1366
1367		/* Allow all CPUs by default: */
1368		CPU_ZERO(&td->bind_cpumask);
1369		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1370			CPU_SET(cpu, &td->bind_cpumask);
1371	}
1372}
1373
1374static void deinit_thread_data(void)
1375{
1376	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1377
1378	free_data(g->threads, size);
1379}
1380
1381static int init(void)
1382{
1383	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1384
1385	/* Copy over options: */
1386	g->p = p0;
1387
1388	g->p.nr_cpus = numa_num_configured_cpus();
1389
1390	g->p.nr_nodes = numa_max_node() + 1;
1391
1392	/* char array in count_process_nodes(): */
1393	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1394
1395	if (g->p.show_quiet && !g->p.show_details)
1396		g->p.show_details = -1;
1397
1398	/* Some memory should be specified: */
1399	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1400		return -1;
1401
1402	if (g->p.mb_global_str) {
1403		g->p.mb_global = atof(g->p.mb_global_str);
1404		BUG_ON(g->p.mb_global < 0);
1405	}
1406
1407	if (g->p.mb_proc_str) {
1408		g->p.mb_proc = atof(g->p.mb_proc_str);
1409		BUG_ON(g->p.mb_proc < 0);
1410	}
1411
1412	if (g->p.mb_proc_locked_str) {
1413		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1414		BUG_ON(g->p.mb_proc_locked < 0);
1415		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1416	}
1417
1418	if (g->p.mb_thread_str) {
1419		g->p.mb_thread = atof(g->p.mb_thread_str);
1420		BUG_ON(g->p.mb_thread < 0);
1421	}
1422
1423	BUG_ON(g->p.nr_threads <= 0);
1424	BUG_ON(g->p.nr_proc <= 0);
1425
1426	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1427
1428	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1429	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1430	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1431	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1432
1433	g->data = setup_shared_data(g->p.bytes_global);
1434
1435	/* Startup serialization: */
1436	init_global_mutex(&g->start_work_mutex);
 
1437	init_global_mutex(&g->startup_mutex);
1438	init_global_mutex(&g->startup_done_mutex);
1439	init_global_mutex(&g->stop_work_mutex);
1440
1441	init_thread_data();
1442
1443	tprintf("#\n");
1444	if (parse_setup_cpu_list() || parse_setup_node_list())
1445		return -1;
1446	tprintf("#\n");
1447
1448	print_summary();
1449
1450	return 0;
1451}
1452
1453static void deinit(void)
1454{
1455	free_data(g->data, g->p.bytes_global);
1456	g->data = NULL;
1457
1458	deinit_thread_data();
1459
1460	free_data(g, sizeof(*g));
1461	g = NULL;
1462}
1463
1464/*
1465 * Print a short or long result, depending on the verbosity setting:
1466 */
1467static void print_res(const char *name, double val,
1468		      const char *txt_unit, const char *txt_short, const char *txt_long)
1469{
1470	if (!name)
1471		name = "main,";
1472
1473	if (!g->p.show_quiet)
1474		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1475	else
1476		printf(" %14.3f %s\n", val, txt_long);
1477}
1478
1479static int __bench_numa(const char *name)
1480{
1481	struct timeval start, stop, diff;
1482	u64 runtime_ns_min, runtime_ns_sum;
1483	pid_t *pids, pid, wpid;
1484	double delta_runtime;
1485	double runtime_avg;
1486	double runtime_sec_max;
1487	double runtime_sec_min;
1488	int wait_stat;
1489	double bytes;
1490	int i, t, p;
1491
1492	if (init())
1493		return -1;
1494
1495	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1496	pid = -1;
1497
1498	/* All threads try to acquire it, this way we can wait for them to start up: */
1499	pthread_mutex_lock(&g->start_work_mutex);
1500
1501	if (g->p.serialize_startup) {
1502		tprintf(" #\n");
1503		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1504	}
1505
1506	gettimeofday(&start, NULL);
1507
1508	for (i = 0; i < g->p.nr_proc; i++) {
1509		pid = fork();
1510		dprintf(" # process %2d: PID %d\n", i, pid);
1511
1512		BUG_ON(pid < 0);
1513		if (!pid) {
1514			/* Child process: */
1515			worker_process(i);
1516
1517			exit(0);
1518		}
1519		pids[i] = pid;
1520
1521	}
1522	/* Wait for all the threads to start up: */
1523	while (g->nr_tasks_started != g->p.nr_tasks)
1524		usleep(USEC_PER_MSEC);
1525
1526	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1527
1528	if (g->p.serialize_startup) {
 
1529		double startup_sec;
1530
1531		pthread_mutex_lock(&g->startup_done_mutex);
 
 
 
 
 
 
1532
1533		/* This will start all threads: */
1534		pthread_mutex_unlock(&g->start_work_mutex);
1535
1536		/* This mutex is locked - the last started thread will wake us: */
1537		pthread_mutex_lock(&g->startup_done_mutex);
 
 
 
 
 
 
1538
1539		gettimeofday(&stop, NULL);
1540
1541		timersub(&stop, &start, &diff);
1542
1543		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1544		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1545		startup_sec /= NSEC_PER_SEC;
1546
1547		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1548		tprintf(" #\n");
1549
1550		start = stop;
1551		pthread_mutex_unlock(&g->startup_done_mutex);
 
 
 
 
1552	} else {
1553		gettimeofday(&start, NULL);
1554	}
1555
1556	/* Parent process: */
1557
1558
1559	for (i = 0; i < g->p.nr_proc; i++) {
1560		wpid = waitpid(pids[i], &wait_stat, 0);
1561		BUG_ON(wpid < 0);
1562		BUG_ON(!WIFEXITED(wait_stat));
1563
1564	}
1565
1566	runtime_ns_sum = 0;
1567	runtime_ns_min = -1LL;
1568
1569	for (t = 0; t < g->p.nr_tasks; t++) {
1570		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1571
1572		runtime_ns_sum += thread_runtime_ns;
1573		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1574	}
1575
1576	gettimeofday(&stop, NULL);
1577	timersub(&stop, &start, &diff);
1578
1579	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1580
1581	tprintf("\n ###\n");
1582	tprintf("\n");
1583
1584	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1585	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1586	runtime_sec_max /= NSEC_PER_SEC;
1587
1588	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1589
1590	bytes = g->bytes_done;
1591	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1592
1593	if (g->p.measure_convergence) {
1594		print_res(name, runtime_sec_max,
1595			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1596	}
1597
1598	print_res(name, runtime_sec_max,
1599		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1600
1601	print_res(name, runtime_sec_min,
1602		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1603
1604	print_res(name, runtime_avg,
1605		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1606
1607	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1608	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1609		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1610
1611	print_res(name, bytes / g->p.nr_tasks / 1e9,
1612		"GB,", "data/thread",		"GB data processed, per thread");
1613
1614	print_res(name, bytes / 1e9,
1615		"GB,", "data-total",		"GB data processed, total");
1616
1617	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1618		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1619
1620	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1621		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1622
1623	print_res(name, bytes / runtime_sec_max / 1e9,
1624		"GB/sec,", "total-speed",	"GB/sec total speed");
1625
1626	if (g->p.show_details >= 2) {
1627		char tname[14 + 2 * 10 + 1];
1628		struct thread_data *td;
1629		for (p = 0; p < g->p.nr_proc; p++) {
1630			for (t = 0; t < g->p.nr_threads; t++) {
1631				memset(tname, 0, sizeof(tname));
1632				td = g->threads + p*g->p.nr_threads + t;
1633				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1634				print_res(tname, td->speed_gbs,
1635					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1636				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1637					"secs",	"thread-system-time", "system CPU time/thread");
1638				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1639					"secs",	"thread-user-time", "user CPU time/thread");
1640			}
1641		}
1642	}
1643
1644	free(pids);
1645
1646	deinit();
1647
1648	return 0;
1649}
1650
1651#define MAX_ARGS 50
1652
1653static int command_size(const char **argv)
1654{
1655	int size = 0;
1656
1657	while (*argv) {
1658		size++;
1659		argv++;
1660	}
1661
1662	BUG_ON(size >= MAX_ARGS);
1663
1664	return size;
1665}
1666
1667static void init_params(struct params *p, const char *name, int argc, const char **argv)
1668{
1669	int i;
1670
1671	printf("\n # Running %s \"perf bench numa", name);
1672
1673	for (i = 0; i < argc; i++)
1674		printf(" %s", argv[i]);
1675
1676	printf("\"\n");
1677
1678	memset(p, 0, sizeof(*p));
1679
1680	/* Initialize nonzero defaults: */
1681
1682	p->serialize_startup		= 1;
1683	p->data_reads			= true;
1684	p->data_writes			= true;
1685	p->data_backwards		= true;
1686	p->data_rand_walk		= true;
1687	p->nr_loops			= -1;
1688	p->init_random			= true;
1689	p->mb_global_str		= "1";
1690	p->nr_proc			= 1;
1691	p->nr_threads			= 1;
1692	p->nr_secs			= 5;
1693	p->run_all			= argc == 1;
1694}
1695
1696static int run_bench_numa(const char *name, const char **argv)
1697{
1698	int argc = command_size(argv);
1699
1700	init_params(&p0, name, argc, argv);
1701	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1702	if (argc)
1703		goto err;
1704
1705	if (__bench_numa(name))
1706		goto err;
1707
1708	return 0;
1709
1710err:
1711	return -1;
1712}
1713
1714#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1715#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1716
1717#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1718#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1719
1720#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1721#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1722
1723/*
1724 * The built-in test-suite executed by "perf bench numa -a".
1725 *
1726 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1727 */
1728static const char *tests[][MAX_ARGS] = {
1729   /* Basic single-stream NUMA bandwidth measurements: */
1730   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1731			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1732   { "RAM-bw-local-NOTHP,",
1733			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1734			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1735   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1736			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1737
1738   /* 2-stream NUMA bandwidth measurements: */
1739   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1740			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1741   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1742		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1743
1744   /* Cross-stream NUMA bandwidth measurement: */
1745   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1747
1748   /* Convergence latency measurements: */
1749   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1750   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1751   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1752   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1753   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1754   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1755   { " 4x4-convergence-NOTHP,",
1756			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1757   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1758   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1759   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1760   { " 8x4-convergence-NOTHP,",
1761			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1762   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1763   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1764   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1765   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1766   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1767
1768   /* Various NUMA process/thread layout bandwidth measurements: */
1769   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1770   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1771   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1772   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1773   { " 8x1-bw-process-NOTHP,",
1774			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1775   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1776
1777   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1778   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1779   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1780   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1781
1782   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1783   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1784   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1785   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1786   { " 4x8-bw-thread-NOTHP,",
1787			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1788   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1789   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1790
1791   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1792   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1793
1794   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1795   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1796   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1797   { "numa01-bw-thread-NOTHP,",
1798			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1799};
1800
1801static int bench_all(void)
1802{
1803	int nr = ARRAY_SIZE(tests);
1804	int ret;
1805	int i;
1806
1807	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1808	BUG_ON(ret < 0);
1809
1810	for (i = 0; i < nr; i++) {
1811		run_bench_numa(tests[i][0], tests[i] + 1);
1812	}
1813
1814	printf("\n");
1815
1816	return 0;
1817}
1818
1819int bench_numa(int argc, const char **argv)
1820{
1821	init_params(&p0, "main,", argc, argv);
1822	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1823	if (argc)
1824		goto err;
1825
1826	if (p0.run_all)
1827		return bench_all();
1828
1829	if (__bench_numa(NULL))
1830		goto err;
1831
1832	return 0;
1833
1834err:
1835	usage_with_options(numa_usage, options);
1836	return -1;
1837}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
 
 
 
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, suppressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56	int			curr_cpu;
  57	cpu_set_t		bind_cpumask;
  58	int			bind_node;
  59	u8			*process_data;
  60	int			process_nr;
  61	int			thread_nr;
  62	int			task_nr;
  63	unsigned int		loops_done;
  64	u64			val;
  65	u64			runtime_ns;
  66	u64			system_time_ns;
  67	u64			user_time_ns;
  68	double			speed_gbs;
  69	pthread_mutex_t		*process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75	/* Startup synchronization: */
  76	bool			serialize_startup;
  77
  78	/* Task hierarchy: */
  79	int			nr_proc;
  80	int			nr_threads;
  81
  82	/* Working set sizes: */
  83	const char		*mb_global_str;
  84	const char		*mb_proc_str;
  85	const char		*mb_proc_locked_str;
  86	const char		*mb_thread_str;
  87
  88	double			mb_global;
  89	double			mb_proc;
  90	double			mb_proc_locked;
  91	double			mb_thread;
  92
  93	/* Access patterns to the working set: */
  94	bool			data_reads;
  95	bool			data_writes;
  96	bool			data_backwards;
  97	bool			data_zero_memset;
  98	bool			data_rand_walk;
  99	u32			nr_loops;
 100	u32			nr_secs;
 101	u32			sleep_usecs;
 102
 103	/* Working set initialization: */
 104	bool			init_zero;
 105	bool			init_random;
 106	bool			init_cpu0;
 107
 108	/* Misc options: */
 109	int			show_details;
 110	int			run_all;
 111	int			thp;
 112
 113	long			bytes_global;
 114	long			bytes_process;
 115	long			bytes_process_locked;
 116	long			bytes_thread;
 117
 118	int			nr_tasks;
 119	bool			show_quiet;
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	pthread_mutex_t		startup_mutex;
 140	pthread_cond_t		startup_cond;
 141	int			nr_tasks_started;
 142
 
 
 143	pthread_mutex_t		start_work_mutex;
 144	pthread_cond_t		start_work_cond;
 145	int			nr_tasks_working;
 146	bool			start_work;
 147
 148	pthread_mutex_t		stop_work_mutex;
 149	u64			bytes_done;
 150
 151	struct thread_data	*threads;
 152
 153	/* Convergence latency measurement: */
 154	bool			all_converged;
 155	bool			stop_work;
 156
 157	int			print_once;
 158
 159	struct params		p;
 160};
 161
 162static struct global_info	*g = NULL;
 163
 164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 166
 167struct params p0;
 168
 169static const struct option options[] = {
 170	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 171	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 172
 173	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 174	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 175	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 176	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 177
 178	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 179	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 180	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 181
 182	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 183	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 184	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 185	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 186	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 187
 188
 189	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 190	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 191	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 192	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 193
 194	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 195	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 196	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 197	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 198		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 199	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 200	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 201	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 202
 203	/* Special option string parsing callbacks: */
 204        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 205			"bind the first N tasks to these specific cpus (the rest is unbound)",
 206			parse_cpus_opt),
 207        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 208			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 209			parse_nodes_opt),
 210	OPT_END()
 211};
 212
 213static const char * const bench_numa_usage[] = {
 214	"perf bench numa <options>",
 215	NULL
 216};
 217
 218static const char * const numa_usage[] = {
 219	"perf bench numa mem [<options>]",
 220	NULL
 221};
 222
 223/*
 224 * To get number of numa nodes present.
 225 */
 226static int nr_numa_nodes(void)
 227{
 228	int i, nr_nodes = 0;
 229
 230	for (i = 0; i < g->p.nr_nodes; i++) {
 231		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 232			nr_nodes++;
 233	}
 234
 235	return nr_nodes;
 236}
 237
 238/*
 239 * To check if given numa node is present.
 240 */
 241static int is_node_present(int node)
 242{
 243	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 244}
 245
 246/*
 247 * To check given numa node has cpus.
 248 */
 249static bool node_has_cpus(int node)
 250{
 251	struct bitmask *cpumask = numa_allocate_cpumask();
 252	bool ret = false; /* fall back to nocpus */
 253	int cpu;
 254
 255	BUG_ON(!cpumask);
 256	if (!numa_node_to_cpus(node, cpumask)) {
 257		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 258			if (numa_bitmask_isbitset(cpumask, cpu)) {
 259				ret = true;
 260				break;
 261			}
 262		}
 263	}
 264	numa_free_cpumask(cpumask);
 265
 266	return ret;
 267}
 268
 269static cpu_set_t bind_to_cpu(int target_cpu)
 270{
 271	cpu_set_t orig_mask, mask;
 272	int ret;
 273
 274	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 275	BUG_ON(ret);
 276
 277	CPU_ZERO(&mask);
 278
 279	if (target_cpu == -1) {
 280		int cpu;
 281
 282		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 283			CPU_SET(cpu, &mask);
 284	} else {
 285		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 286		CPU_SET(target_cpu, &mask);
 287	}
 288
 289	ret = sched_setaffinity(0, sizeof(mask), &mask);
 290	BUG_ON(ret);
 291
 292	return orig_mask;
 293}
 294
 295static cpu_set_t bind_to_node(int target_node)
 296{
 
 297	cpu_set_t orig_mask, mask;
 298	int cpu;
 299	int ret;
 300
 
 
 
 301	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 302	BUG_ON(ret);
 303
 304	CPU_ZERO(&mask);
 305
 306	if (target_node == NUMA_NO_NODE) {
 307		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 308			CPU_SET(cpu, &mask);
 309	} else {
 310		struct bitmask *cpumask = numa_allocate_cpumask();
 
 
 
 311
 312		BUG_ON(!cpumask);
 313		if (!numa_node_to_cpus(target_node, cpumask)) {
 314			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 315				if (numa_bitmask_isbitset(cpumask, cpu))
 316					CPU_SET(cpu, &mask);
 317			}
 318		}
 319		numa_free_cpumask(cpumask);
 320	}
 321
 322	ret = sched_setaffinity(0, sizeof(mask), &mask);
 323	BUG_ON(ret);
 324
 325	return orig_mask;
 326}
 327
 328static void bind_to_cpumask(cpu_set_t mask)
 329{
 330	int ret;
 331
 332	ret = sched_setaffinity(0, sizeof(mask), &mask);
 333	BUG_ON(ret);
 334}
 335
 336static void mempol_restore(void)
 337{
 338	int ret;
 339
 340	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 341
 342	BUG_ON(ret);
 343}
 344
 345static void bind_to_memnode(int node)
 346{
 347	struct bitmask *node_mask;
 348	int ret;
 349
 350	if (node == NUMA_NO_NODE)
 351		return;
 352
 353	node_mask = numa_allocate_nodemask();
 354	BUG_ON(!node_mask);
 355
 356	numa_bitmask_clearall(node_mask);
 357	numa_bitmask_setbit(node_mask, node);
 358
 359	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
 360	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
 361
 362	numa_bitmask_free(node_mask);
 363	BUG_ON(ret);
 364}
 365
 366#define HPSIZE (2*1024*1024)
 367
 368#define set_taskname(fmt...)				\
 369do {							\
 370	char name[20];					\
 371							\
 372	snprintf(name, 20, fmt);			\
 373	prctl(PR_SET_NAME, name);			\
 374} while (0)
 375
 376static u8 *alloc_data(ssize_t bytes0, int map_flags,
 377		      int init_zero, int init_cpu0, int thp, int init_random)
 378{
 379	cpu_set_t orig_mask;
 380	ssize_t bytes;
 381	u8 *buf;
 382	int ret;
 383
 384	if (!bytes0)
 385		return NULL;
 386
 387	/* Allocate and initialize all memory on CPU#0: */
 388	if (init_cpu0) {
 389		int node = numa_node_of_cpu(0);
 390
 391		orig_mask = bind_to_node(node);
 392		bind_to_memnode(node);
 393	}
 394
 395	bytes = bytes0 + HPSIZE;
 396
 397	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 398	BUG_ON(buf == (void *)-1);
 399
 400	if (map_flags == MAP_PRIVATE) {
 401		if (thp > 0) {
 402			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 403			if (ret && !g->print_once) {
 404				g->print_once = 1;
 405				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 406			}
 407		}
 408		if (thp < 0) {
 409			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 410			if (ret && !g->print_once) {
 411				g->print_once = 1;
 412				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 413			}
 414		}
 415	}
 416
 417	if (init_zero) {
 418		bzero(buf, bytes);
 419	} else {
 420		/* Initialize random contents, different in each word: */
 421		if (init_random) {
 422			u64 *wbuf = (void *)buf;
 423			long off = rand();
 424			long i;
 425
 426			for (i = 0; i < bytes/8; i++)
 427				wbuf[i] = i + off;
 428		}
 429	}
 430
 431	/* Align to 2MB boundary: */
 432	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 433
 434	/* Restore affinity: */
 435	if (init_cpu0) {
 436		bind_to_cpumask(orig_mask);
 437		mempol_restore();
 438	}
 439
 440	return buf;
 441}
 442
 443static void free_data(void *data, ssize_t bytes)
 444{
 445	int ret;
 446
 447	if (!data)
 448		return;
 449
 450	ret = munmap(data, bytes);
 451	BUG_ON(ret);
 452}
 453
 454/*
 455 * Create a shared memory buffer that can be shared between processes, zeroed:
 456 */
 457static void * zalloc_shared_data(ssize_t bytes)
 458{
 459	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 460}
 461
 462/*
 463 * Create a shared memory buffer that can be shared between processes:
 464 */
 465static void * setup_shared_data(ssize_t bytes)
 466{
 467	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468}
 469
 470/*
 471 * Allocate process-local memory - this will either be shared between
 472 * threads of this process, or only be accessed by this thread:
 473 */
 474static void * setup_private_data(ssize_t bytes)
 475{
 476	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 477}
 478
 479/*
 480 * Return a process-shared (global) mutex:
 481 */
 482static void init_global_mutex(pthread_mutex_t *mutex)
 483{
 484	pthread_mutexattr_t attr;
 485
 486	pthread_mutexattr_init(&attr);
 487	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 488	pthread_mutex_init(mutex, &attr);
 489}
 490
 491/*
 492 * Return a process-shared (global) condition variable:
 493 */
 494static void init_global_cond(pthread_cond_t *cond)
 495{
 496	pthread_condattr_t attr;
 497
 498	pthread_condattr_init(&attr);
 499	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 500	pthread_cond_init(cond, &attr);
 501}
 502
 503static int parse_cpu_list(const char *arg)
 504{
 505	p0.cpu_list_str = strdup(arg);
 506
 507	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 508
 509	return 0;
 510}
 511
 512static int parse_setup_cpu_list(void)
 513{
 514	struct thread_data *td;
 515	char *str0, *str;
 516	int t;
 517
 518	if (!g->p.cpu_list_str)
 519		return 0;
 520
 521	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 522
 523	str0 = str = strdup(g->p.cpu_list_str);
 524	t = 0;
 525
 526	BUG_ON(!str);
 527
 528	tprintf("# binding tasks to CPUs:\n");
 529	tprintf("#  ");
 530
 531	while (true) {
 532		int bind_cpu, bind_cpu_0, bind_cpu_1;
 533		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 534		int bind_len;
 535		int step;
 536		int mul;
 537
 538		tok = strsep(&str, ",");
 539		if (!tok)
 540			break;
 541
 542		tok_end = strstr(tok, "-");
 543
 544		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 545		if (!tok_end) {
 546			/* Single CPU specified: */
 547			bind_cpu_0 = bind_cpu_1 = atol(tok);
 548		} else {
 549			/* CPU range specified (for example: "5-11"): */
 550			bind_cpu_0 = atol(tok);
 551			bind_cpu_1 = atol(tok_end + 1);
 552		}
 553
 554		step = 1;
 555		tok_step = strstr(tok, "#");
 556		if (tok_step) {
 557			step = atol(tok_step + 1);
 558			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 559		}
 560
 561		/*
 562		 * Mask length.
 563		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 564		 * where the _4 means the next 4 CPUs are allowed.
 565		 */
 566		bind_len = 1;
 567		tok_len = strstr(tok, "_");
 568		if (tok_len) {
 569			bind_len = atol(tok_len + 1);
 570			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 571		}
 572
 573		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 574		mul = 1;
 575		tok_mul = strstr(tok, "x");
 576		if (tok_mul) {
 577			mul = atol(tok_mul + 1);
 578			BUG_ON(mul <= 0);
 579		}
 580
 581		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 582
 583		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 584			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 585			return -1;
 586		}
 587
 588		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 589		BUG_ON(bind_cpu_0 > bind_cpu_1);
 590
 591		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 592			int i;
 593
 594			for (i = 0; i < mul; i++) {
 595				int cpu;
 596
 597				if (t >= g->p.nr_tasks) {
 598					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 599					goto out;
 600				}
 601				td = g->threads + t;
 602
 603				if (t)
 604					tprintf(",");
 605				if (bind_len > 1) {
 606					tprintf("%2d/%d", bind_cpu, bind_len);
 607				} else {
 608					tprintf("%2d", bind_cpu);
 609				}
 610
 611				CPU_ZERO(&td->bind_cpumask);
 612				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 613					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 614					CPU_SET(cpu, &td->bind_cpumask);
 615				}
 616				t++;
 617			}
 618		}
 619	}
 620out:
 621
 622	tprintf("\n");
 623
 624	if (t < g->p.nr_tasks)
 625		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 626
 627	free(str0);
 628	return 0;
 629}
 630
 631static int parse_cpus_opt(const struct option *opt __maybe_unused,
 632			  const char *arg, int unset __maybe_unused)
 633{
 634	if (!arg)
 635		return -1;
 636
 637	return parse_cpu_list(arg);
 638}
 639
 640static int parse_node_list(const char *arg)
 641{
 642	p0.node_list_str = strdup(arg);
 643
 644	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 645
 646	return 0;
 647}
 648
 649static int parse_setup_node_list(void)
 650{
 651	struct thread_data *td;
 652	char *str0, *str;
 653	int t;
 654
 655	if (!g->p.node_list_str)
 656		return 0;
 657
 658	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 659
 660	str0 = str = strdup(g->p.node_list_str);
 661	t = 0;
 662
 663	BUG_ON(!str);
 664
 665	tprintf("# binding tasks to NODEs:\n");
 666	tprintf("# ");
 667
 668	while (true) {
 669		int bind_node, bind_node_0, bind_node_1;
 670		char *tok, *tok_end, *tok_step, *tok_mul;
 671		int step;
 672		int mul;
 673
 674		tok = strsep(&str, ",");
 675		if (!tok)
 676			break;
 677
 678		tok_end = strstr(tok, "-");
 679
 680		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 681		if (!tok_end) {
 682			/* Single NODE specified: */
 683			bind_node_0 = bind_node_1 = atol(tok);
 684		} else {
 685			/* NODE range specified (for example: "5-11"): */
 686			bind_node_0 = atol(tok);
 687			bind_node_1 = atol(tok_end + 1);
 688		}
 689
 690		step = 1;
 691		tok_step = strstr(tok, "#");
 692		if (tok_step) {
 693			step = atol(tok_step + 1);
 694			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 695		}
 696
 697		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 698		mul = 1;
 699		tok_mul = strstr(tok, "x");
 700		if (tok_mul) {
 701			mul = atol(tok_mul + 1);
 702			BUG_ON(mul <= 0);
 703		}
 704
 705		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 706
 707		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 708			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 709			return -1;
 710		}
 711
 712		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 713		BUG_ON(bind_node_0 > bind_node_1);
 714
 715		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 716			int i;
 717
 718			for (i = 0; i < mul; i++) {
 719				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 720					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 721					goto out;
 722				}
 723				td = g->threads + t;
 724
 725				if (!t)
 726					tprintf(" %2d", bind_node);
 727				else
 728					tprintf(",%2d", bind_node);
 729
 730				td->bind_node = bind_node;
 731				t++;
 732			}
 733		}
 734	}
 735out:
 736
 737	tprintf("\n");
 738
 739	if (t < g->p.nr_tasks)
 740		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 741
 742	free(str0);
 743	return 0;
 744}
 745
 746static int parse_nodes_opt(const struct option *opt __maybe_unused,
 747			  const char *arg, int unset __maybe_unused)
 748{
 749	if (!arg)
 750		return -1;
 751
 752	return parse_node_list(arg);
 
 
 753}
 754
 755#define BIT(x) (1ul << x)
 756
 757static inline uint32_t lfsr_32(uint32_t lfsr)
 758{
 759	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 760	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 761}
 762
 763/*
 764 * Make sure there's real data dependency to RAM (when read
 765 * accesses are enabled), so the compiler, the CPU and the
 766 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 767 * accesses:
 768 */
 769static inline u64 access_data(u64 *data, u64 val)
 770{
 771	if (g->p.data_reads)
 772		val += *data;
 773	if (g->p.data_writes)
 774		*data = val + 1;
 775	return val;
 776}
 777
 778/*
 779 * The worker process does two types of work, a forwards going
 780 * loop and a backwards going loop.
 781 *
 782 * We do this so that on multiprocessor systems we do not create
 783 * a 'train' of processing, with highly synchronized processes,
 784 * skewing the whole benchmark.
 785 */
 786static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 787{
 788	long words = bytes/sizeof(u64);
 789	u64 *data = (void *)__data;
 790	long chunk_0, chunk_1;
 791	u64 *d0, *d, *d1;
 792	long off;
 793	long i;
 794
 795	BUG_ON(!data && words);
 796	BUG_ON(data && !words);
 797
 798	if (!data)
 799		return val;
 800
 801	/* Very simple memset() work variant: */
 802	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 803		bzero(data, bytes);
 804		return val;
 805	}
 806
 807	/* Spread out by PID/TID nr and by loop nr: */
 808	chunk_0 = words/nr_max;
 809	chunk_1 = words/g->p.nr_loops;
 810	off = nr*chunk_0 + loop*chunk_1;
 811
 812	while (off >= words)
 813		off -= words;
 814
 815	if (g->p.data_rand_walk) {
 816		u32 lfsr = nr + loop + val;
 817		int j;
 818
 819		for (i = 0; i < words/1024; i++) {
 820			long start, end;
 821
 822			lfsr = lfsr_32(lfsr);
 823
 824			start = lfsr % words;
 825			end = min(start + 1024, words-1);
 826
 827			if (g->p.data_zero_memset) {
 828				bzero(data + start, (end-start) * sizeof(u64));
 829			} else {
 830				for (j = start; j < end; j++)
 831					val = access_data(data + j, val);
 832			}
 833		}
 834	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 835		/* Process data forwards: */
 836
 837		d0 = data + off;
 838		d  = data + off + 1;
 839		d1 = data + words;
 840
 
 841		for (;;) {
 842			if (unlikely(d >= d1))
 843				d = data;
 844			if (unlikely(d == d0))
 845				break;
 846
 847			val = access_data(d, val);
 848
 849			d++;
 850		}
 851	} else {
 852		/* Process data backwards: */
 853
 854		d0 = data + off;
 855		d  = data + off - 1;
 856		d1 = data + words;
 857
 
 858		for (;;) {
 859			if (unlikely(d < data))
 860				d = data + words-1;
 861			if (unlikely(d == d0))
 862				break;
 863
 864			val = access_data(d, val);
 865
 866			d--;
 867		}
 868	}
 869
 870	return val;
 871}
 872
 873static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 874{
 875	unsigned int cpu;
 876
 877	cpu = sched_getcpu();
 878
 879	g->threads[task_nr].curr_cpu = cpu;
 880	prctl(0, bytes_worked);
 881}
 882
 
 
 883/*
 884 * Count the number of nodes a process's threads
 885 * are spread out on.
 886 *
 887 * A count of 1 means that the process is compressed
 888 * to a single node. A count of g->p.nr_nodes means it's
 889 * spread out on the whole system.
 890 */
 891static int count_process_nodes(int process_nr)
 892{
 893	char *node_present;
 894	int nodes;
 895	int n, t;
 896
 897	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
 898	BUG_ON(!node_present);
 899	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
 900		node_present[nodes] = 0;
 901
 902	for (t = 0; t < g->p.nr_threads; t++) {
 903		struct thread_data *td;
 904		int task_nr;
 905		int node;
 906
 907		task_nr = process_nr*g->p.nr_threads + t;
 908		td = g->threads + task_nr;
 909
 910		node = numa_node_of_cpu(td->curr_cpu);
 911		if (node < 0) /* curr_cpu was likely still -1 */ {
 912			free(node_present);
 913			return 0;
 914		}
 915
 916		node_present[node] = 1;
 917	}
 918
 919	nodes = 0;
 920
 921	for (n = 0; n < g->p.nr_nodes; n++)
 922		nodes += node_present[n];
 923
 924	free(node_present);
 925	return nodes;
 926}
 927
 928/*
 929 * Count the number of distinct process-threads a node contains.
 930 *
 931 * A count of 1 means that the node contains only a single
 932 * process. If all nodes on the system contain at most one
 933 * process then we are well-converged.
 934 */
 935static int count_node_processes(int node)
 936{
 937	int processes = 0;
 938	int t, p;
 939
 940	for (p = 0; p < g->p.nr_proc; p++) {
 941		for (t = 0; t < g->p.nr_threads; t++) {
 942			struct thread_data *td;
 943			int task_nr;
 944			int n;
 945
 946			task_nr = p*g->p.nr_threads + t;
 947			td = g->threads + task_nr;
 948
 949			n = numa_node_of_cpu(td->curr_cpu);
 950			if (n == node) {
 951				processes++;
 952				break;
 953			}
 954		}
 955	}
 956
 957	return processes;
 958}
 959
 960static void calc_convergence_compression(int *strong)
 961{
 962	unsigned int nodes_min, nodes_max;
 963	int p;
 964
 965	nodes_min = -1;
 966	nodes_max =  0;
 967
 968	for (p = 0; p < g->p.nr_proc; p++) {
 969		unsigned int nodes = count_process_nodes(p);
 970
 971		if (!nodes) {
 972			*strong = 0;
 973			return;
 974		}
 975
 976		nodes_min = min(nodes, nodes_min);
 977		nodes_max = max(nodes, nodes_max);
 978	}
 979
 980	/* Strong convergence: all threads compress on a single node: */
 981	if (nodes_min == 1 && nodes_max == 1) {
 982		*strong = 1;
 983	} else {
 984		*strong = 0;
 985		tprintf(" {%d-%d}", nodes_min, nodes_max);
 986	}
 987}
 988
 989static void calc_convergence(double runtime_ns_max, double *convergence)
 990{
 991	unsigned int loops_done_min, loops_done_max;
 992	int process_groups;
 993	int *nodes;
 994	int distance;
 995	int nr_min;
 996	int nr_max;
 997	int strong;
 998	int sum;
 999	int nr;
1000	int node;
1001	int cpu;
1002	int t;
1003
1004	if (!g->p.show_convergence && !g->p.measure_convergence)
1005		return;
1006
1007	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008	BUG_ON(!nodes);
1009	for (node = 0; node < g->p.nr_nodes; node++)
1010		nodes[node] = 0;
1011
1012	loops_done_min = -1;
1013	loops_done_max = 0;
1014
1015	for (t = 0; t < g->p.nr_tasks; t++) {
1016		struct thread_data *td = g->threads + t;
1017		unsigned int loops_done;
1018
1019		cpu = td->curr_cpu;
1020
1021		/* Not all threads have written it yet: */
1022		if (cpu < 0)
1023			continue;
1024
1025		node = numa_node_of_cpu(cpu);
1026
1027		nodes[node]++;
1028
1029		loops_done = td->loops_done;
1030		loops_done_min = min(loops_done, loops_done_min);
1031		loops_done_max = max(loops_done, loops_done_max);
1032	}
1033
1034	nr_max = 0;
1035	nr_min = g->p.nr_tasks;
1036	sum = 0;
1037
1038	for (node = 0; node < g->p.nr_nodes; node++) {
1039		if (!is_node_present(node))
1040			continue;
1041		nr = nodes[node];
1042		nr_min = min(nr, nr_min);
1043		nr_max = max(nr, nr_max);
1044		sum += nr;
1045	}
1046	BUG_ON(nr_min > nr_max);
1047
1048	BUG_ON(sum > g->p.nr_tasks);
1049
1050	if (0 && (sum < g->p.nr_tasks)) {
1051		free(nodes);
1052		return;
1053	}
1054
1055	/*
1056	 * Count the number of distinct process groups present
1057	 * on nodes - when we are converged this will decrease
1058	 * to g->p.nr_proc:
1059	 */
1060	process_groups = 0;
1061
1062	for (node = 0; node < g->p.nr_nodes; node++) {
1063		int processes;
1064
1065		if (!is_node_present(node))
1066			continue;
1067		processes = count_node_processes(node);
1068		nr = nodes[node];
1069		tprintf(" %2d/%-2d", nr, processes);
1070
1071		process_groups += processes;
1072	}
1073
1074	distance = nr_max - nr_min;
1075
1076	tprintf(" [%2d/%-2d]", distance, process_groups);
1077
1078	tprintf(" l:%3d-%-3d (%3d)",
1079		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080
1081	if (loops_done_min && loops_done_max) {
1082		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083
1084		tprintf(" [%4.1f%%]", skew * 100.0);
1085	}
1086
1087	calc_convergence_compression(&strong);
1088
1089	if (strong && process_groups == g->p.nr_proc) {
1090		if (!*convergence) {
1091			*convergence = runtime_ns_max;
1092			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093			if (g->p.measure_convergence) {
1094				g->all_converged = true;
1095				g->stop_work = true;
1096			}
1097		}
1098	} else {
1099		if (*convergence) {
1100			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101			*convergence = 0;
1102		}
1103		tprintf("\n");
1104	}
1105
1106	free(nodes);
1107}
1108
1109static void show_summary(double runtime_ns_max, int l, double *convergence)
1110{
1111	tprintf("\r #  %5.1f%%  [%.1f mins]",
1112		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113
1114	calc_convergence(runtime_ns_max, convergence);
1115
1116	if (g->p.show_details >= 0)
1117		fflush(stdout);
1118}
1119
1120static void *worker_thread(void *__tdata)
1121{
1122	struct thread_data *td = __tdata;
1123	struct timeval start0, start, stop, diff;
1124	int process_nr = td->process_nr;
1125	int thread_nr = td->thread_nr;
1126	unsigned long last_perturbance;
1127	int task_nr = td->task_nr;
1128	int details = g->p.show_details;
1129	int first_task, last_task;
1130	double convergence = 0;
1131	u64 val = td->val;
1132	double runtime_ns_max;
1133	u8 *global_data;
1134	u8 *process_data;
1135	u8 *thread_data;
1136	u64 bytes_done, secs;
1137	long work_done;
1138	u32 l;
1139	struct rusage rusage;
1140
1141	bind_to_cpumask(td->bind_cpumask);
1142	bind_to_memnode(td->bind_node);
1143
1144	set_taskname("thread %d/%d", process_nr, thread_nr);
1145
1146	global_data = g->data;
1147	process_data = td->process_data;
1148	thread_data = setup_private_data(g->p.bytes_thread);
1149
1150	bytes_done = 0;
1151
1152	last_task = 0;
1153	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154		last_task = 1;
1155
1156	first_task = 0;
1157	if (process_nr == 0 && thread_nr == 0)
1158		first_task = 1;
1159
1160	if (details >= 2) {
1161		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162			process_nr, thread_nr, global_data, process_data, thread_data);
1163	}
1164
1165	if (g->p.serialize_startup) {
1166		pthread_mutex_lock(&g->startup_mutex);
1167		g->nr_tasks_started++;
1168		/* The last thread wakes the main process. */
1169		if (g->nr_tasks_started == g->p.nr_tasks)
1170			pthread_cond_signal(&g->startup_cond);
1171
1172		pthread_mutex_unlock(&g->startup_mutex);
1173
1174		/* Here we will wait for the main process to start us all at once: */
1175		pthread_mutex_lock(&g->start_work_mutex);
1176		g->start_work = false;
1177		g->nr_tasks_working++;
1178		while (!g->start_work)
1179			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
 
 
1180
1181		pthread_mutex_unlock(&g->start_work_mutex);
1182	}
1183
1184	gettimeofday(&start0, NULL);
1185
1186	start = stop = start0;
1187	last_perturbance = start.tv_sec;
1188
1189	for (l = 0; l < g->p.nr_loops; l++) {
1190		start = stop;
1191
1192		if (g->stop_work)
1193			break;
1194
1195		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1196		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1197		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1198
1199		if (g->p.sleep_usecs) {
1200			pthread_mutex_lock(td->process_lock);
1201			usleep(g->p.sleep_usecs);
1202			pthread_mutex_unlock(td->process_lock);
1203		}
1204		/*
1205		 * Amount of work to be done under a process-global lock:
1206		 */
1207		if (g->p.bytes_process_locked) {
1208			pthread_mutex_lock(td->process_lock);
1209			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1210			pthread_mutex_unlock(td->process_lock);
1211		}
1212
1213		work_done = g->p.bytes_global + g->p.bytes_process +
1214			    g->p.bytes_process_locked + g->p.bytes_thread;
1215
1216		update_curr_cpu(task_nr, work_done);
1217		bytes_done += work_done;
1218
1219		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220			continue;
1221
1222		td->loops_done = l;
1223
1224		gettimeofday(&stop, NULL);
1225
1226		/* Check whether our max runtime timed out: */
1227		if (g->p.nr_secs) {
1228			timersub(&stop, &start0, &diff);
1229			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230				g->stop_work = true;
1231				break;
1232			}
1233		}
1234
1235		/* Update the summary at most once per second: */
1236		if (start.tv_sec == stop.tv_sec)
1237			continue;
1238
1239		/*
1240		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241		 * by migrating to CPU#0:
1242		 */
1243		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244			cpu_set_t orig_mask;
1245			int target_cpu;
1246			int this_cpu;
1247
1248			last_perturbance = stop.tv_sec;
1249
1250			/*
1251			 * Depending on where we are running, move into
1252			 * the other half of the system, to create some
1253			 * real disturbance:
1254			 */
1255			this_cpu = g->threads[task_nr].curr_cpu;
1256			if (this_cpu < g->p.nr_cpus/2)
1257				target_cpu = g->p.nr_cpus-1;
1258			else
1259				target_cpu = 0;
1260
1261			orig_mask = bind_to_cpu(target_cpu);
1262
1263			/* Here we are running on the target CPU already */
1264			if (details >= 1)
1265				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266
1267			bind_to_cpumask(orig_mask);
1268		}
1269
1270		if (details >= 3) {
1271			timersub(&stop, &start, &diff);
1272			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274
1275			if (details >= 0) {
1276				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278			}
1279			fflush(stdout);
1280		}
1281		if (!last_task)
1282			continue;
1283
1284		timersub(&stop, &start0, &diff);
1285		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287
1288		show_summary(runtime_ns_max, l, &convergence);
1289	}
1290
1291	gettimeofday(&stop, NULL);
1292	timersub(&stop, &start0, &diff);
1293	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295	secs = td->runtime_ns / NSEC_PER_SEC;
1296	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297
1298	getrusage(RUSAGE_THREAD, &rusage);
1299	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303
1304	free_data(thread_data, g->p.bytes_thread);
1305
1306	pthread_mutex_lock(&g->stop_work_mutex);
1307	g->bytes_done += bytes_done;
1308	pthread_mutex_unlock(&g->stop_work_mutex);
1309
1310	return NULL;
1311}
1312
1313/*
1314 * A worker process starts a couple of threads:
1315 */
1316static void worker_process(int process_nr)
1317{
1318	pthread_mutex_t process_lock;
1319	struct thread_data *td;
1320	pthread_t *pthreads;
1321	u8 *process_data;
1322	int task_nr;
1323	int ret;
1324	int t;
1325
1326	pthread_mutex_init(&process_lock, NULL);
1327	set_taskname("process %d", process_nr);
1328
1329	/*
1330	 * Pick up the memory policy and the CPU binding of our first thread,
1331	 * so that we initialize memory accordingly:
1332	 */
1333	task_nr = process_nr*g->p.nr_threads;
1334	td = g->threads + task_nr;
1335
1336	bind_to_memnode(td->bind_node);
1337	bind_to_cpumask(td->bind_cpumask);
1338
1339	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340	process_data = setup_private_data(g->p.bytes_process);
1341
1342	if (g->p.show_details >= 3) {
1343		printf(" # process %2d global mem: %p, process mem: %p\n",
1344			process_nr, g->data, process_data);
1345	}
1346
1347	for (t = 0; t < g->p.nr_threads; t++) {
1348		task_nr = process_nr*g->p.nr_threads + t;
1349		td = g->threads + task_nr;
1350
1351		td->process_data = process_data;
1352		td->process_nr   = process_nr;
1353		td->thread_nr    = t;
1354		td->task_nr	 = task_nr;
1355		td->val          = rand();
1356		td->curr_cpu	 = -1;
1357		td->process_lock = &process_lock;
1358
1359		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360		BUG_ON(ret);
1361	}
1362
1363	for (t = 0; t < g->p.nr_threads; t++) {
1364                ret = pthread_join(pthreads[t], NULL);
1365		BUG_ON(ret);
1366	}
1367
1368	free_data(process_data, g->p.bytes_process);
1369	free(pthreads);
1370}
1371
1372static void print_summary(void)
1373{
1374	if (g->p.show_details < 0)
1375		return;
1376
1377	printf("\n ###\n");
1378	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1381			g->p.nr_loops, g->p.bytes_global/1024/1024);
1382	printf(" #      %5dx %5ldMB process shared mem operations\n",
1383			g->p.nr_loops, g->p.bytes_process/1024/1024);
1384	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1385			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386
1387	printf(" ###\n");
1388
1389	printf("\n ###\n"); fflush(stdout);
1390}
1391
1392static void init_thread_data(void)
1393{
1394	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395	int t;
1396
1397	g->threads = zalloc_shared_data(size);
1398
1399	for (t = 0; t < g->p.nr_tasks; t++) {
1400		struct thread_data *td = g->threads + t;
1401		int cpu;
1402
1403		/* Allow all nodes by default: */
1404		td->bind_node = NUMA_NO_NODE;
1405
1406		/* Allow all CPUs by default: */
1407		CPU_ZERO(&td->bind_cpumask);
1408		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409			CPU_SET(cpu, &td->bind_cpumask);
1410	}
1411}
1412
1413static void deinit_thread_data(void)
1414{
1415	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1416
1417	free_data(g->threads, size);
1418}
1419
1420static int init(void)
1421{
1422	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423
1424	/* Copy over options: */
1425	g->p = p0;
1426
1427	g->p.nr_cpus = numa_num_configured_cpus();
1428
1429	g->p.nr_nodes = numa_max_node() + 1;
1430
1431	/* char array in count_process_nodes(): */
1432	BUG_ON(g->p.nr_nodes < 0);
1433
1434	if (g->p.show_quiet && !g->p.show_details)
1435		g->p.show_details = -1;
1436
1437	/* Some memory should be specified: */
1438	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439		return -1;
1440
1441	if (g->p.mb_global_str) {
1442		g->p.mb_global = atof(g->p.mb_global_str);
1443		BUG_ON(g->p.mb_global < 0);
1444	}
1445
1446	if (g->p.mb_proc_str) {
1447		g->p.mb_proc = atof(g->p.mb_proc_str);
1448		BUG_ON(g->p.mb_proc < 0);
1449	}
1450
1451	if (g->p.mb_proc_locked_str) {
1452		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453		BUG_ON(g->p.mb_proc_locked < 0);
1454		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455	}
1456
1457	if (g->p.mb_thread_str) {
1458		g->p.mb_thread = atof(g->p.mb_thread_str);
1459		BUG_ON(g->p.mb_thread < 0);
1460	}
1461
1462	BUG_ON(g->p.nr_threads <= 0);
1463	BUG_ON(g->p.nr_proc <= 0);
1464
1465	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466
1467	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1468	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1469	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1470	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1471
1472	g->data = setup_shared_data(g->p.bytes_global);
1473
1474	/* Startup serialization: */
1475	init_global_mutex(&g->start_work_mutex);
1476	init_global_cond(&g->start_work_cond);
1477	init_global_mutex(&g->startup_mutex);
1478	init_global_cond(&g->startup_cond);
1479	init_global_mutex(&g->stop_work_mutex);
1480
1481	init_thread_data();
1482
1483	tprintf("#\n");
1484	if (parse_setup_cpu_list() || parse_setup_node_list())
1485		return -1;
1486	tprintf("#\n");
1487
1488	print_summary();
1489
1490	return 0;
1491}
1492
1493static void deinit(void)
1494{
1495	free_data(g->data, g->p.bytes_global);
1496	g->data = NULL;
1497
1498	deinit_thread_data();
1499
1500	free_data(g, sizeof(*g));
1501	g = NULL;
1502}
1503
1504/*
1505 * Print a short or long result, depending on the verbosity setting:
1506 */
1507static void print_res(const char *name, double val,
1508		      const char *txt_unit, const char *txt_short, const char *txt_long)
1509{
1510	if (!name)
1511		name = "main,";
1512
1513	if (!g->p.show_quiet)
1514		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515	else
1516		printf(" %14.3f %s\n", val, txt_long);
1517}
1518
1519static int __bench_numa(const char *name)
1520{
1521	struct timeval start, stop, diff;
1522	u64 runtime_ns_min, runtime_ns_sum;
1523	pid_t *pids, pid, wpid;
1524	double delta_runtime;
1525	double runtime_avg;
1526	double runtime_sec_max;
1527	double runtime_sec_min;
1528	int wait_stat;
1529	double bytes;
1530	int i, t, p;
1531
1532	if (init())
1533		return -1;
1534
1535	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536	pid = -1;
1537
 
 
 
1538	if (g->p.serialize_startup) {
1539		tprintf(" #\n");
1540		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541	}
1542
1543	gettimeofday(&start, NULL);
1544
1545	for (i = 0; i < g->p.nr_proc; i++) {
1546		pid = fork();
1547		dprintf(" # process %2d: PID %d\n", i, pid);
1548
1549		BUG_ON(pid < 0);
1550		if (!pid) {
1551			/* Child process: */
1552			worker_process(i);
1553
1554			exit(0);
1555		}
1556		pids[i] = pid;
1557
1558	}
 
 
 
 
 
1559
1560	if (g->p.serialize_startup) {
1561		bool threads_ready = false;
1562		double startup_sec;
1563
1564		/*
1565		 * Wait for all the threads to start up. The last thread will
1566		 * signal this process.
1567		 */
1568		pthread_mutex_lock(&g->startup_mutex);
1569		while (g->nr_tasks_started != g->p.nr_tasks)
1570			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571
1572		pthread_mutex_unlock(&g->startup_mutex);
 
1573
1574		/* Wait for all threads to be at the start_work_cond. */
1575		while (!threads_ready) {
1576			pthread_mutex_lock(&g->start_work_mutex);
1577			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578			pthread_mutex_unlock(&g->start_work_mutex);
1579			if (!threads_ready)
1580				usleep(1);
1581		}
1582
1583		gettimeofday(&stop, NULL);
1584
1585		timersub(&stop, &start, &diff);
1586
1587		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589		startup_sec /= NSEC_PER_SEC;
1590
1591		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592		tprintf(" #\n");
1593
1594		start = stop;
1595		/* Start all threads running. */
1596		pthread_mutex_lock(&g->start_work_mutex);
1597		g->start_work = true;
1598		pthread_mutex_unlock(&g->start_work_mutex);
1599		pthread_cond_broadcast(&g->start_work_cond);
1600	} else {
1601		gettimeofday(&start, NULL);
1602	}
1603
1604	/* Parent process: */
1605
1606
1607	for (i = 0; i < g->p.nr_proc; i++) {
1608		wpid = waitpid(pids[i], &wait_stat, 0);
1609		BUG_ON(wpid < 0);
1610		BUG_ON(!WIFEXITED(wait_stat));
1611
1612	}
1613
1614	runtime_ns_sum = 0;
1615	runtime_ns_min = -1LL;
1616
1617	for (t = 0; t < g->p.nr_tasks; t++) {
1618		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619
1620		runtime_ns_sum += thread_runtime_ns;
1621		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622	}
1623
1624	gettimeofday(&stop, NULL);
1625	timersub(&stop, &start, &diff);
1626
1627	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628
1629	tprintf("\n ###\n");
1630	tprintf("\n");
1631
1632	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634	runtime_sec_max /= NSEC_PER_SEC;
1635
1636	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637
1638	bytes = g->bytes_done;
1639	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640
1641	if (g->p.measure_convergence) {
1642		print_res(name, runtime_sec_max,
1643			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644	}
1645
1646	print_res(name, runtime_sec_max,
1647		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1648
1649	print_res(name, runtime_sec_min,
1650		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1651
1652	print_res(name, runtime_avg,
1653		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1654
1655	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1658
1659	print_res(name, bytes / g->p.nr_tasks / 1e9,
1660		"GB,", "data/thread",		"GB data processed, per thread");
1661
1662	print_res(name, bytes / 1e9,
1663		"GB,", "data-total",		"GB data processed, total");
1664
1665	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667
1668	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1670
1671	print_res(name, bytes / runtime_sec_max / 1e9,
1672		"GB/sec,", "total-speed",	"GB/sec total speed");
1673
1674	if (g->p.show_details >= 2) {
1675		char tname[14 + 2 * 10 + 1];
1676		struct thread_data *td;
1677		for (p = 0; p < g->p.nr_proc; p++) {
1678			for (t = 0; t < g->p.nr_threads; t++) {
1679				memset(tname, 0, sizeof(tname));
1680				td = g->threads + p*g->p.nr_threads + t;
1681				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682				print_res(tname, td->speed_gbs,
1683					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1684				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685					"secs",	"thread-system-time", "system CPU time/thread");
1686				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687					"secs",	"thread-user-time", "user CPU time/thread");
1688			}
1689		}
1690	}
1691
1692	free(pids);
1693
1694	deinit();
1695
1696	return 0;
1697}
1698
1699#define MAX_ARGS 50
1700
1701static int command_size(const char **argv)
1702{
1703	int size = 0;
1704
1705	while (*argv) {
1706		size++;
1707		argv++;
1708	}
1709
1710	BUG_ON(size >= MAX_ARGS);
1711
1712	return size;
1713}
1714
1715static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716{
1717	int i;
1718
1719	printf("\n # Running %s \"perf bench numa", name);
1720
1721	for (i = 0; i < argc; i++)
1722		printf(" %s", argv[i]);
1723
1724	printf("\"\n");
1725
1726	memset(p, 0, sizeof(*p));
1727
1728	/* Initialize nonzero defaults: */
1729
1730	p->serialize_startup		= 1;
1731	p->data_reads			= true;
1732	p->data_writes			= true;
1733	p->data_backwards		= true;
1734	p->data_rand_walk		= true;
1735	p->nr_loops			= -1;
1736	p->init_random			= true;
1737	p->mb_global_str		= "1";
1738	p->nr_proc			= 1;
1739	p->nr_threads			= 1;
1740	p->nr_secs			= 5;
1741	p->run_all			= argc == 1;
1742}
1743
1744static int run_bench_numa(const char *name, const char **argv)
1745{
1746	int argc = command_size(argv);
1747
1748	init_params(&p0, name, argc, argv);
1749	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750	if (argc)
1751		goto err;
1752
1753	if (__bench_numa(name))
1754		goto err;
1755
1756	return 0;
1757
1758err:
1759	return -1;
1760}
1761
1762#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1763#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1764
1765#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1766#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1767
1768#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1769#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1770
1771/*
1772 * The built-in test-suite executed by "perf bench numa -a".
1773 *
1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775 */
1776static const char *tests[][MAX_ARGS] = {
1777   /* Basic single-stream NUMA bandwidth measurements: */
1778   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1779			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1780   { "RAM-bw-local-NOTHP,",
1781			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1782			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1783   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1784			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1785
1786   /* 2-stream NUMA bandwidth measurements: */
1787   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1788			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1790		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791
1792   /* Cross-stream NUMA bandwidth measurement: */
1793   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1794		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795
1796   /* Convergence latency measurements: */
1797   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1798   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1799   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1800   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1801   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1802   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1803   { " 4x4-convergence-NOTHP,",
1804			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1805   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1806   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1807   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1808   { " 8x4-convergence-NOTHP,",
1809			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1810   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1811   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1812   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1813   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1814   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1815
1816   /* Various NUMA process/thread layout bandwidth measurements: */
1817   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1818   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1819   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1820   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1821   { " 8x1-bw-process-NOTHP,",
1822			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1823   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1824
1825   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1826   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1827   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1828   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1829
1830   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1831   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1832   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1833   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1834   { " 4x8-bw-process-NOTHP,",
1835			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1836   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1837   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1838
1839   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1840   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1841
1842   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1843   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1844   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1845   { "numa01-bw-thread-NOTHP,",
1846			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1847};
1848
1849static int bench_all(void)
1850{
1851	int nr = ARRAY_SIZE(tests);
1852	int ret;
1853	int i;
1854
1855	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856	BUG_ON(ret < 0);
1857
1858	for (i = 0; i < nr; i++) {
1859		run_bench_numa(tests[i][0], tests[i] + 1);
1860	}
1861
1862	printf("\n");
1863
1864	return 0;
1865}
1866
1867int bench_numa(int argc, const char **argv)
1868{
1869	init_params(&p0, "main,", argc, argv);
1870	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871	if (argc)
1872		goto err;
1873
1874	if (p0.run_all)
1875		return bench_all();
1876
1877	if (__bench_numa(NULL))
1878		goto err;
1879
1880	return 0;
1881
1882err:
1883	usage_with_options(numa_usage, options);
1884	return -1;
1885}