Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifdef CONFIG_SCHEDSTATS
  4
  5/*
  6 * Expects runqueue lock to be held for atomicity of update
  7 */
  8static inline void
  9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 10{
 11	if (rq) {
 12		rq->rq_sched_info.run_delay += delta;
 13		rq->rq_sched_info.pcount++;
 14	}
 15}
 16
 17/*
 18 * Expects runqueue lock to be held for atomicity of update
 19 */
 20static inline void
 21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 22{
 23	if (rq)
 24		rq->rq_cpu_time += delta;
 25}
 26
 27static inline void
 28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 29{
 30	if (rq)
 31		rq->rq_sched_info.run_delay += delta;
 32}
 33#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 34#define __schedstat_inc(var)		do { var++; } while (0)
 35#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 36#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 37#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 38#define __schedstat_set(var, val)	do { var = (val); } while (0)
 39#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 40#define   schedstat_val(var)		(var)
 41#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 42
 43#else /* !CONFIG_SCHEDSTATS: */
 44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
 46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 47# define   schedstat_enabled()		0
 48# define __schedstat_inc(var)		do { } while (0)
 49# define   schedstat_inc(var)		do { } while (0)
 50# define __schedstat_add(var, amt)	do { } while (0)
 51# define   schedstat_add(var, amt)	do { } while (0)
 52# define __schedstat_set(var, val)	do { } while (0)
 53# define   schedstat_set(var, val)	do { } while (0)
 54# define   schedstat_val(var)		0
 55# define   schedstat_val_or_zero(var)	0
 56#endif /* CONFIG_SCHEDSTATS */
 57
 58#ifdef CONFIG_SCHED_INFO
 59static inline void sched_info_reset_dequeued(struct task_struct *t)
 
 
 
 
 
 
 60{
 61	t->sched_info.last_queued = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62}
 63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64/*
 65 * We are interested in knowing how long it was from the *first* time a
 66 * task was queued to the time that it finally hit a CPU, we call this routine
 67 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
 68 * delta taken on each CPU would annul the skew.
 69 */
 70static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 71{
 72	unsigned long long now = rq_clock(rq), delta = 0;
 73
 74	if (unlikely(sched_info_on()))
 75		if (t->sched_info.last_queued)
 76			delta = now - t->sched_info.last_queued;
 77	sched_info_reset_dequeued(t);
 
 78	t->sched_info.run_delay += delta;
 79
 80	rq_sched_info_dequeued(rq, delta);
 81}
 82
 83/*
 84 * Called when a task finally hits the CPU.  We can now calculate how
 85 * long it was waiting to run.  We also note when it began so that we
 86 * can keep stats on how long its timeslice is.
 87 */
 88static void sched_info_arrive(struct rq *rq, struct task_struct *t)
 89{
 90	unsigned long long now = rq_clock(rq), delta = 0;
 91
 92	if (t->sched_info.last_queued)
 93		delta = now - t->sched_info.last_queued;
 94	sched_info_reset_dequeued(t);
 
 
 
 95	t->sched_info.run_delay += delta;
 96	t->sched_info.last_arrival = now;
 97	t->sched_info.pcount++;
 98
 99	rq_sched_info_arrive(rq, delta);
100}
101
102/*
103 * This function is only called from enqueue_task(), but also only updates
104 * the timestamp if it is already not set.  It's assumed that
105 * sched_info_dequeued() will clear that stamp when appropriate.
106 */
107static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
108{
109	if (unlikely(sched_info_on())) {
110		if (!t->sched_info.last_queued)
111			t->sched_info.last_queued = rq_clock(rq);
112	}
113}
114
115/*
116 * Called when a process ceases being the active-running process involuntarily
117 * due, typically, to expiring its time slice (this may also be called when
118 * switching to the idle task).  Now we can calculate how long we ran.
119 * Also, if the process is still in the TASK_RUNNING state, call
120 * sched_info_queued() to mark that it has now again started waiting on
121 * the runqueue.
122 */
123static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
124{
125	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
126
127	rq_sched_info_depart(rq, delta);
128
129	if (t->state == TASK_RUNNING)
130		sched_info_queued(rq, t);
131}
132
133/*
134 * Called when tasks are switched involuntarily due, typically, to expiring
135 * their time slice.  (This may also be called when switching to or from
136 * the idle task.)  We are only called when prev != next.
137 */
138static inline void
139__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
140{
141	/*
142	 * prev now departs the CPU.  It's not interesting to record
143	 * stats about how efficient we were at scheduling the idle
144	 * process, however.
145	 */
146	if (prev != rq->idle)
147		sched_info_depart(rq, prev);
148
149	if (next != rq->idle)
150		sched_info_arrive(rq, next);
151}
152
153static inline void
154sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
155{
156	if (unlikely(sched_info_on()))
157		__sched_info_switch(rq, prev, next);
158}
159
160#else /* !CONFIG_SCHED_INFO: */
161# define sched_info_queued(rq, t)	do { } while (0)
162# define sched_info_reset_dequeued(t)	do { } while (0)
163# define sched_info_dequeued(rq, t)	do { } while (0)
164# define sched_info_depart(rq, t)	do { } while (0)
165# define sched_info_arrive(rq, next)	do { } while (0)
166# define sched_info_switch(rq, t, next)	do { } while (0)
167#endif /* CONFIG_SCHED_INFO */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifdef CONFIG_SCHEDSTATS
  4
  5/*
  6 * Expects runqueue lock to be held for atomicity of update
  7 */
  8static inline void
  9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 10{
 11	if (rq) {
 12		rq->rq_sched_info.run_delay += delta;
 13		rq->rq_sched_info.pcount++;
 14	}
 15}
 16
 17/*
 18 * Expects runqueue lock to be held for atomicity of update
 19 */
 20static inline void
 21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 22{
 23	if (rq)
 24		rq->rq_cpu_time += delta;
 25}
 26
 27static inline void
 28rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
 29{
 30	if (rq)
 31		rq->rq_sched_info.run_delay += delta;
 32}
 33#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 34#define __schedstat_inc(var)		do { var++; } while (0)
 35#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 36#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 37#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 38#define __schedstat_set(var, val)	do { var = (val); } while (0)
 39#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 40#define   schedstat_val(var)		(var)
 41#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 42
 43#else /* !CONFIG_SCHEDSTATS: */
 44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 45static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
 46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 47# define   schedstat_enabled()		0
 48# define __schedstat_inc(var)		do { } while (0)
 49# define   schedstat_inc(var)		do { } while (0)
 50# define __schedstat_add(var, amt)	do { } while (0)
 51# define   schedstat_add(var, amt)	do { } while (0)
 52# define __schedstat_set(var, val)	do { } while (0)
 53# define   schedstat_set(var, val)	do { } while (0)
 54# define   schedstat_val(var)		0
 55# define   schedstat_val_or_zero(var)	0
 56#endif /* CONFIG_SCHEDSTATS */
 57
 58#ifdef CONFIG_PSI
 59/*
 60 * PSI tracks state that persists across sleeps, such as iowaits and
 61 * memory stalls. As a result, it has to distinguish between sleeps,
 62 * where a task's runnable state changes, and requeues, where a task
 63 * and its state are being moved between CPUs and runqueues.
 64 */
 65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
 66{
 67	int clear = 0, set = TSK_RUNNING;
 68
 69	if (static_branch_likely(&psi_disabled))
 70		return;
 71
 72	if (!wakeup || p->sched_psi_wake_requeue) {
 73		if (p->in_memstall)
 74			set |= TSK_MEMSTALL;
 75		if (p->sched_psi_wake_requeue)
 76			p->sched_psi_wake_requeue = 0;
 77	} else {
 78		if (p->in_iowait)
 79			clear |= TSK_IOWAIT;
 80	}
 81
 82	psi_task_change(p, clear, set);
 83}
 84
 85static inline void psi_dequeue(struct task_struct *p, bool sleep)
 86{
 87	int clear = TSK_RUNNING;
 88
 89	if (static_branch_likely(&psi_disabled))
 90		return;
 91
 92	/*
 93	 * A voluntary sleep is a dequeue followed by a task switch. To
 94	 * avoid walking all ancestors twice, psi_task_switch() handles
 95	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
 96	 * Do nothing here.
 97	 */
 98	if (sleep)
 99		return;
100
101	if (p->in_memstall)
102		clear |= TSK_MEMSTALL;
103
104	psi_task_change(p, clear, 0);
105}
106
107static inline void psi_ttwu_dequeue(struct task_struct *p)
108{
109	if (static_branch_likely(&psi_disabled))
110		return;
111	/*
112	 * Is the task being migrated during a wakeup? Make sure to
113	 * deregister its sleep-persistent psi states from the old
114	 * queue, and let psi_enqueue() know it has to requeue.
115	 */
116	if (unlikely(p->in_iowait || p->in_memstall)) {
117		struct rq_flags rf;
118		struct rq *rq;
119		int clear = 0;
120
121		if (p->in_iowait)
122			clear |= TSK_IOWAIT;
123		if (p->in_memstall)
124			clear |= TSK_MEMSTALL;
125
126		rq = __task_rq_lock(p, &rf);
127		psi_task_change(p, clear, 0);
128		p->sched_psi_wake_requeue = 1;
129		__task_rq_unlock(rq, &rf);
130	}
131}
132
133static inline void psi_sched_switch(struct task_struct *prev,
134				    struct task_struct *next,
135				    bool sleep)
136{
137	if (static_branch_likely(&psi_disabled))
138		return;
139
140	psi_task_switch(prev, next, sleep);
141}
142
143#else /* CONFIG_PSI */
144static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
145static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
146static inline void psi_ttwu_dequeue(struct task_struct *p) {}
147static inline void psi_sched_switch(struct task_struct *prev,
148				    struct task_struct *next,
149				    bool sleep) {}
150#endif /* CONFIG_PSI */
151
152#ifdef CONFIG_SCHED_INFO
153/*
154 * We are interested in knowing how long it was from the *first* time a
155 * task was queued to the time that it finally hit a CPU, we call this routine
156 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
157 * delta taken on each CPU would annul the skew.
158 */
159static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
160{
161	unsigned long long delta = 0;
162
163	if (!t->sched_info.last_queued)
164		return;
165
166	delta = rq_clock(rq) - t->sched_info.last_queued;
167	t->sched_info.last_queued = 0;
168	t->sched_info.run_delay += delta;
169
170	rq_sched_info_dequeue(rq, delta);
171}
172
173/*
174 * Called when a task finally hits the CPU.  We can now calculate how
175 * long it was waiting to run.  We also note when it began so that we
176 * can keep stats on how long its timeslice is.
177 */
178static void sched_info_arrive(struct rq *rq, struct task_struct *t)
179{
180	unsigned long long now, delta = 0;
181
182	if (!t->sched_info.last_queued)
183		return;
184
185	now = rq_clock(rq);
186	delta = now - t->sched_info.last_queued;
187	t->sched_info.last_queued = 0;
188	t->sched_info.run_delay += delta;
189	t->sched_info.last_arrival = now;
190	t->sched_info.pcount++;
191
192	rq_sched_info_arrive(rq, delta);
193}
194
195/*
196 * This function is only called from enqueue_task(), but also only updates
197 * the timestamp if it is already not set.  It's assumed that
198 * sched_info_dequeue() will clear that stamp when appropriate.
199 */
200static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
201{
202	if (!t->sched_info.last_queued)
203		t->sched_info.last_queued = rq_clock(rq);
 
 
204}
205
206/*
207 * Called when a process ceases being the active-running process involuntarily
208 * due, typically, to expiring its time slice (this may also be called when
209 * switching to the idle task).  Now we can calculate how long we ran.
210 * Also, if the process is still in the TASK_RUNNING state, call
211 * sched_info_enqueue() to mark that it has now again started waiting on
212 * the runqueue.
213 */
214static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
215{
216	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
217
218	rq_sched_info_depart(rq, delta);
219
220	if (task_is_running(t))
221		sched_info_enqueue(rq, t);
222}
223
224/*
225 * Called when tasks are switched involuntarily due, typically, to expiring
226 * their time slice.  (This may also be called when switching to or from
227 * the idle task.)  We are only called when prev != next.
228 */
229static inline void
230sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
231{
232	/*
233	 * prev now departs the CPU.  It's not interesting to record
234	 * stats about how efficient we were at scheduling the idle
235	 * process, however.
236	 */
237	if (prev != rq->idle)
238		sched_info_depart(rq, prev);
239
240	if (next != rq->idle)
241		sched_info_arrive(rq, next);
242}
243
 
 
 
 
 
 
 
244#else /* !CONFIG_SCHED_INFO: */
245# define sched_info_enqueue(rq, t)	do { } while (0)
246# define sched_info_dequeue(rq, t)	do { } while (0)
 
 
 
247# define sched_info_switch(rq, t, next)	do { } while (0)
248#endif /* CONFIG_SCHED_INFO */