Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23unsigned int zone_dma_bits __ro_after_init = 24;
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
 48				  u64 *phys_limit)
 49{
 50	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 51
 52	/*
 53	 * Optimistically try the zone that the physical address mask falls
 54	 * into first.  If that returns memory that isn't actually addressable
 55	 * we will fallback to the next lower zone and try again.
 56	 *
 57	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 58	 * zones.
 59	 */
 60	*phys_limit = dma_to_phys(dev, dma_limit);
 61	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 62		return GFP_DMA;
 63	if (*phys_limit <= DMA_BIT_MASK(32))
 64		return GFP_DMA32;
 65	return 0;
 66}
 67
 68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 69{
 70	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 71
 72	if (dma_addr == DMA_MAPPING_ERROR)
 73		return false;
 74	return dma_addr + size - 1 <=
 75		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 76}
 77
 78static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
 79		gfp_t gfp)
 80{
 81	int node = dev_to_node(dev);
 82	struct page *page = NULL;
 83	u64 phys_limit;
 84
 85	WARN_ON_ONCE(!PAGE_ALIGNED(size));
 86
 87	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
 88					   &phys_limit);
 89	page = dma_alloc_contiguous(dev, size, gfp);
 90	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 91		dma_free_contiguous(dev, page, size);
 92		page = NULL;
 93	}
 94again:
 95	if (!page)
 96		page = alloc_pages_node(node, gfp, get_order(size));
 97	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 98		dma_free_contiguous(dev, page, size);
 99		page = NULL;
100
101		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102		    phys_limit < DMA_BIT_MASK(64) &&
103		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
104			gfp |= GFP_DMA32;
105			goto again;
106		}
107
108		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110			goto again;
111		}
112	}
113
114	return page;
115}
116
117static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118		dma_addr_t *dma_handle, gfp_t gfp)
119{
120	struct page *page;
121	u64 phys_mask;
122	void *ret;
123
124	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125					   &phys_mask);
126	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127	if (!page)
128		return NULL;
129	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130	return ret;
131}
132
133void *dma_direct_alloc(struct device *dev, size_t size,
134		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135{
136	struct page *page;
137	void *ret;
138	int err;
139
140	size = PAGE_ALIGN(size);
141	if (attrs & DMA_ATTR_NO_WARN)
142		gfp |= __GFP_NOWARN;
143
144	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145	    !force_dma_unencrypted(dev)) {
146		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147		if (!page)
148			return NULL;
149		/* remove any dirty cache lines on the kernel alias */
150		if (!PageHighMem(page))
151			arch_dma_prep_coherent(page, size);
152		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153		/* return the page pointer as the opaque cookie */
154		return page;
155	}
156
157	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159	    !dev_is_dma_coherent(dev))
160		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161
162	/*
163	 * Remapping or decrypting memory may block. If either is required and
164	 * we can't block, allocate the memory from the atomic pools.
165	 */
166	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
167	    !gfpflags_allow_blocking(gfp) &&
168	    (force_dma_unencrypted(dev) ||
169	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
170		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
171
172	/* we always manually zero the memory once we are done */
173	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
174	if (!page)
175		return NULL;
176
177	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178	     !dev_is_dma_coherent(dev)) ||
179	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
180		/* remove any dirty cache lines on the kernel alias */
181		arch_dma_prep_coherent(page, size);
182
183		/* create a coherent mapping */
184		ret = dma_common_contiguous_remap(page, size,
185				dma_pgprot(dev, PAGE_KERNEL, attrs),
186				__builtin_return_address(0));
187		if (!ret)
188			goto out_free_pages;
189		if (force_dma_unencrypted(dev)) {
190			err = set_memory_decrypted((unsigned long)ret,
191						   1 << get_order(size));
192			if (err)
193				goto out_free_pages;
194		}
195		memset(ret, 0, size);
196		goto done;
197	}
198
199	if (PageHighMem(page)) {
200		/*
201		 * Depending on the cma= arguments and per-arch setup
202		 * dma_alloc_contiguous could return highmem pages.
203		 * Without remapping there is no way to return them here,
204		 * so log an error and fail.
205		 */
206		dev_info(dev, "Rejecting highmem page from CMA.\n");
207		goto out_free_pages;
208	}
209
210	ret = page_address(page);
211	if (force_dma_unencrypted(dev)) {
212		err = set_memory_decrypted((unsigned long)ret,
213					   1 << get_order(size));
214		if (err)
215			goto out_free_pages;
216	}
217
218	memset(ret, 0, size);
219
220	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
221	    !dev_is_dma_coherent(dev)) {
222		arch_dma_prep_coherent(page, size);
223		ret = arch_dma_set_uncached(ret, size);
224		if (IS_ERR(ret))
225			goto out_encrypt_pages;
226	}
227done:
228	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
229	return ret;
230
231out_encrypt_pages:
232	if (force_dma_unencrypted(dev)) {
233		err = set_memory_encrypted((unsigned long)page_address(page),
234					   1 << get_order(size));
235		/* If memory cannot be re-encrypted, it must be leaked */
236		if (err)
237			return NULL;
238	}
239out_free_pages:
240	dma_free_contiguous(dev, page, size);
241	return NULL;
242}
243
244void dma_direct_free(struct device *dev, size_t size,
245		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
246{
247	unsigned int page_order = get_order(size);
248
249	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
250	    !force_dma_unencrypted(dev)) {
251		/* cpu_addr is a struct page cookie, not a kernel address */
252		dma_free_contiguous(dev, cpu_addr, size);
253		return;
254	}
255
256	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
257	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
258	    !dev_is_dma_coherent(dev)) {
259		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
260		return;
261	}
262
263	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
264	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
265	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
266		return;
267
268	if (force_dma_unencrypted(dev))
269		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
270
271	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
272		vunmap(cpu_addr);
273	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
274		arch_dma_clear_uncached(cpu_addr, size);
275
276	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
277}
278
279struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
280		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
281{
282	struct page *page;
283	void *ret;
284
285	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
286	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
287		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
288
289	page = __dma_direct_alloc_pages(dev, size, gfp);
290	if (!page)
291		return NULL;
292	if (PageHighMem(page)) {
293		/*
294		 * Depending on the cma= arguments and per-arch setup
295		 * dma_alloc_contiguous could return highmem pages.
296		 * Without remapping there is no way to return them here,
297		 * so log an error and fail.
298		 */
299		dev_info(dev, "Rejecting highmem page from CMA.\n");
300		goto out_free_pages;
301	}
302
303	ret = page_address(page);
304	if (force_dma_unencrypted(dev)) {
305		if (set_memory_decrypted((unsigned long)ret,
306				1 << get_order(size)))
307			goto out_free_pages;
308	}
309	memset(ret, 0, size);
310	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
311	return page;
312out_free_pages:
313	dma_free_contiguous(dev, page, size);
314	return NULL;
315}
316
317void dma_direct_free_pages(struct device *dev, size_t size,
318		struct page *page, dma_addr_t dma_addr,
319		enum dma_data_direction dir)
320{
321	unsigned int page_order = get_order(size);
322	void *vaddr = page_address(page);
323
324	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
325	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
326	    dma_free_from_pool(dev, vaddr, size))
327		return;
328
329	if (force_dma_unencrypted(dev))
330		set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
331
332	dma_free_contiguous(dev, page, size);
333}
334
335#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
336    defined(CONFIG_SWIOTLB)
337void dma_direct_sync_sg_for_device(struct device *dev,
338		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
339{
340	struct scatterlist *sg;
341	int i;
342
343	for_each_sg(sgl, sg, nents, i) {
344		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
345
346		if (unlikely(is_swiotlb_buffer(paddr)))
347			swiotlb_sync_single_for_device(dev, paddr, sg->length,
348						       dir);
349
350		if (!dev_is_dma_coherent(dev))
351			arch_sync_dma_for_device(paddr, sg->length,
352					dir);
353	}
354}
355#endif
356
357#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
358    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
359    defined(CONFIG_SWIOTLB)
360void dma_direct_sync_sg_for_cpu(struct device *dev,
361		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
362{
363	struct scatterlist *sg;
364	int i;
365
366	for_each_sg(sgl, sg, nents, i) {
367		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
368
369		if (!dev_is_dma_coherent(dev))
370			arch_sync_dma_for_cpu(paddr, sg->length, dir);
371
372		if (unlikely(is_swiotlb_buffer(paddr)))
373			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
374						    dir);
375
376		if (dir == DMA_FROM_DEVICE)
377			arch_dma_mark_clean(paddr, sg->length);
378	}
379
380	if (!dev_is_dma_coherent(dev))
381		arch_sync_dma_for_cpu_all();
382}
383
384void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
385		int nents, enum dma_data_direction dir, unsigned long attrs)
386{
387	struct scatterlist *sg;
388	int i;
389
390	for_each_sg(sgl, sg, nents, i)
391		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
392			     attrs);
393}
394#endif
395
396int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
397		enum dma_data_direction dir, unsigned long attrs)
398{
399	int i;
400	struct scatterlist *sg;
401
402	for_each_sg(sgl, sg, nents, i) {
403		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
404				sg->offset, sg->length, dir, attrs);
405		if (sg->dma_address == DMA_MAPPING_ERROR)
406			goto out_unmap;
407		sg_dma_len(sg) = sg->length;
408	}
409
410	return nents;
411
412out_unmap:
413	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
414	return 0;
415}
416
417dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
418		size_t size, enum dma_data_direction dir, unsigned long attrs)
419{
420	dma_addr_t dma_addr = paddr;
421
422	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
423		dev_err_once(dev,
424			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
425			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
426		WARN_ON_ONCE(1);
427		return DMA_MAPPING_ERROR;
428	}
429
430	return dma_addr;
431}
432
433int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
434		void *cpu_addr, dma_addr_t dma_addr, size_t size,
435		unsigned long attrs)
436{
437	struct page *page = dma_direct_to_page(dev, dma_addr);
438	int ret;
439
440	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
441	if (!ret)
442		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
443	return ret;
444}
445
446bool dma_direct_can_mmap(struct device *dev)
447{
448	return dev_is_dma_coherent(dev) ||
449		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
450}
451
452int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
453		void *cpu_addr, dma_addr_t dma_addr, size_t size,
454		unsigned long attrs)
455{
456	unsigned long user_count = vma_pages(vma);
457	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
458	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
459	int ret = -ENXIO;
460
461	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
462
463	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
464		return ret;
465
466	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
467		return -ENXIO;
468	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
469			user_count << PAGE_SHIFT, vma->vm_page_prot);
470}
471
472int dma_direct_supported(struct device *dev, u64 mask)
473{
474	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
475
476	/*
477	 * Because 32-bit DMA masks are so common we expect every architecture
478	 * to be able to satisfy them - either by not supporting more physical
479	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
480	 * architecture needs to use an IOMMU instead of the direct mapping.
481	 */
482	if (mask >= DMA_BIT_MASK(32))
483		return 1;
484
485	/*
486	 * This check needs to be against the actual bit mask value, so use
487	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
488	 * part of the check.
489	 */
490	if (IS_ENABLED(CONFIG_ZONE_DMA))
491		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
492	return mask >= phys_to_dma_unencrypted(dev, min_mask);
493}
494
495size_t dma_direct_max_mapping_size(struct device *dev)
496{
497	/* If SWIOTLB is active, use its maximum mapping size */
498	if (is_swiotlb_active() &&
499	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
500		return swiotlb_max_mapping_size(dev);
501	return SIZE_MAX;
502}
503
504bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
505{
506	return !dev_is_dma_coherent(dev) ||
507		is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
508}
509
510/**
511 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
512 * @dev:	device pointer; needed to "own" the alloced memory.
513 * @cpu_start:  beginning of memory region covered by this offset.
514 * @dma_start:  beginning of DMA/PCI region covered by this offset.
515 * @size:	size of the region.
516 *
517 * This is for the simple case of a uniform offset which cannot
518 * be discovered by "dma-ranges".
519 *
520 * It returns -ENOMEM if out of memory, -EINVAL if a map
521 * already exists, 0 otherwise.
522 *
523 * Note: any call to this from a driver is a bug.  The mapping needs
524 * to be described by the device tree or other firmware interfaces.
525 */
526int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
527			 dma_addr_t dma_start, u64 size)
528{
529	struct bus_dma_region *map;
530	u64 offset = (u64)cpu_start - (u64)dma_start;
531
532	if (dev->dma_range_map) {
533		dev_err(dev, "attempt to add DMA range to existing map\n");
534		return -EINVAL;
535	}
536
537	if (!offset)
538		return 0;
539
540	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
541	if (!map)
542		return -ENOMEM;
543	map[0].cpu_start = cpu_start;
544	map[0].dma_start = dma_start;
545	map[0].offset = offset;
546	map[0].size = size;
547	dev->dma_range_map = map;
548	return 0;
549}