Loading...
1/*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_trans.h"
32#include "xfs_inode_item.h"
33#include "xfs_bmap.h"
34#include "xfs_bmap_util.h"
35#include "xfs_error.h"
36#include "xfs_dir2.h"
37#include "xfs_dir2_priv.h"
38#include "xfs_ioctl.h"
39#include "xfs_trace.h"
40#include "xfs_log.h"
41#include "xfs_icache.h"
42#include "xfs_pnfs.h"
43#include "xfs_btree.h"
44#include "xfs_refcount_btree.h"
45#include "xfs_refcount.h"
46#include "xfs_bmap_btree.h"
47#include "xfs_trans_space.h"
48#include "xfs_bit.h"
49#include "xfs_alloc.h"
50#include "xfs_quota_defs.h"
51#include "xfs_quota.h"
52#include "xfs_reflink.h"
53#include "xfs_iomap.h"
54#include "xfs_rmap_btree.h"
55#include "xfs_sb.h"
56#include "xfs_ag_resv.h"
57
58/*
59 * Copy on Write of Shared Blocks
60 *
61 * XFS must preserve "the usual" file semantics even when two files share
62 * the same physical blocks. This means that a write to one file must not
63 * alter the blocks in a different file; the way that we'll do that is
64 * through the use of a copy-on-write mechanism. At a high level, that
65 * means that when we want to write to a shared block, we allocate a new
66 * block, write the data to the new block, and if that succeeds we map the
67 * new block into the file.
68 *
69 * XFS provides a "delayed allocation" mechanism that defers the allocation
70 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
71 * possible. This reduces fragmentation by enabling the filesystem to ask
72 * for bigger chunks less often, which is exactly what we want for CoW.
73 *
74 * The delalloc mechanism begins when the kernel wants to make a block
75 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
76 * create a delalloc mapping, which is a regular in-core extent, but without
77 * a real startblock. (For delalloc mappings, the startblock encodes both
78 * a flag that this is a delalloc mapping, and a worst-case estimate of how
79 * many blocks might be required to put the mapping into the BMBT.) delalloc
80 * mappings are a reservation against the free space in the filesystem;
81 * adjacent mappings can also be combined into fewer larger mappings.
82 *
83 * As an optimization, the CoW extent size hint (cowextsz) creates
84 * outsized aligned delalloc reservations in the hope of landing out of
85 * order nearby CoW writes in a single extent on disk, thereby reducing
86 * fragmentation and improving future performance.
87 *
88 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
89 * C: ------DDDDDDD--------- (CoW fork)
90 *
91 * When dirty pages are being written out (typically in writepage), the
92 * delalloc reservations are converted into unwritten mappings by
93 * allocating blocks and replacing the delalloc mapping with real ones.
94 * A delalloc mapping can be replaced by several unwritten ones if the
95 * free space is fragmented.
96 *
97 * D: --RRRRRRSSSRRRRRRRR---
98 * C: ------UUUUUUU---------
99 *
100 * We want to adapt the delalloc mechanism for copy-on-write, since the
101 * write paths are similar. The first two steps (creating the reservation
102 * and allocating the blocks) are exactly the same as delalloc except that
103 * the mappings must be stored in a separate CoW fork because we do not want
104 * to disturb the mapping in the data fork until we're sure that the write
105 * succeeded. IO completion in this case is the process of removing the old
106 * mapping from the data fork and moving the new mapping from the CoW fork to
107 * the data fork. This will be discussed shortly.
108 *
109 * For now, unaligned directio writes will be bounced back to the page cache.
110 * Block-aligned directio writes will use the same mechanism as buffered
111 * writes.
112 *
113 * Just prior to submitting the actual disk write requests, we convert
114 * the extents representing the range of the file actually being written
115 * (as opposed to extra pieces created for the cowextsize hint) to real
116 * extents. This will become important in the next step:
117 *
118 * D: --RRRRRRSSSRRRRRRRR---
119 * C: ------UUrrUUU---------
120 *
121 * CoW remapping must be done after the data block write completes,
122 * because we don't want to destroy the old data fork map until we're sure
123 * the new block has been written. Since the new mappings are kept in a
124 * separate fork, we can simply iterate these mappings to find the ones
125 * that cover the file blocks that we just CoW'd. For each extent, simply
126 * unmap the corresponding range in the data fork, map the new range into
127 * the data fork, and remove the extent from the CoW fork. Because of
128 * the presence of the cowextsize hint, however, we must be careful
129 * only to remap the blocks that we've actually written out -- we must
130 * never remap delalloc reservations nor CoW staging blocks that have
131 * yet to be written. This corresponds exactly to the real extents in
132 * the CoW fork:
133 *
134 * D: --RRRRRRrrSRRRRRRRR---
135 * C: ------UU--UUU---------
136 *
137 * Since the remapping operation can be applied to an arbitrary file
138 * range, we record the need for the remap step as a flag in the ioend
139 * instead of declaring a new IO type. This is required for direct io
140 * because we only have ioend for the whole dio, and we have to be able to
141 * remember the presence of unwritten blocks and CoW blocks with a single
142 * ioend structure. Better yet, the more ground we can cover with one
143 * ioend, the better.
144 */
145
146/*
147 * Given an AG extent, find the lowest-numbered run of shared blocks
148 * within that range and return the range in fbno/flen. If
149 * find_end_of_shared is true, return the longest contiguous extent of
150 * shared blocks. If there are no shared extents, fbno and flen will
151 * be set to NULLAGBLOCK and 0, respectively.
152 */
153int
154xfs_reflink_find_shared(
155 struct xfs_mount *mp,
156 struct xfs_trans *tp,
157 xfs_agnumber_t agno,
158 xfs_agblock_t agbno,
159 xfs_extlen_t aglen,
160 xfs_agblock_t *fbno,
161 xfs_extlen_t *flen,
162 bool find_end_of_shared)
163{
164 struct xfs_buf *agbp;
165 struct xfs_btree_cur *cur;
166 int error;
167
168 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
169 if (error)
170 return error;
171 if (!agbp)
172 return -ENOMEM;
173
174 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno, NULL);
175
176 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
177 find_end_of_shared);
178
179 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
180
181 xfs_trans_brelse(tp, agbp);
182 return error;
183}
184
185/*
186 * Trim the mapping to the next block where there's a change in the
187 * shared/unshared status. More specifically, this means that we
188 * find the lowest-numbered extent of shared blocks that coincides with
189 * the given block mapping. If the shared extent overlaps the start of
190 * the mapping, trim the mapping to the end of the shared extent. If
191 * the shared region intersects the mapping, trim the mapping to the
192 * start of the shared extent. If there are no shared regions that
193 * overlap, just return the original extent.
194 */
195int
196xfs_reflink_trim_around_shared(
197 struct xfs_inode *ip,
198 struct xfs_bmbt_irec *irec,
199 bool *shared,
200 bool *trimmed)
201{
202 xfs_agnumber_t agno;
203 xfs_agblock_t agbno;
204 xfs_extlen_t aglen;
205 xfs_agblock_t fbno;
206 xfs_extlen_t flen;
207 int error = 0;
208
209 /* Holes, unwritten, and delalloc extents cannot be shared */
210 if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
211 *shared = false;
212 return 0;
213 }
214
215 trace_xfs_reflink_trim_around_shared(ip, irec);
216
217 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
218 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
219 aglen = irec->br_blockcount;
220
221 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
222 aglen, &fbno, &flen, true);
223 if (error)
224 return error;
225
226 *shared = *trimmed = false;
227 if (fbno == NULLAGBLOCK) {
228 /* No shared blocks at all. */
229 return 0;
230 } else if (fbno == agbno) {
231 /*
232 * The start of this extent is shared. Truncate the
233 * mapping at the end of the shared region so that a
234 * subsequent iteration starts at the start of the
235 * unshared region.
236 */
237 irec->br_blockcount = flen;
238 *shared = true;
239 if (flen != aglen)
240 *trimmed = true;
241 return 0;
242 } else {
243 /*
244 * There's a shared extent midway through this extent.
245 * Truncate the mapping at the start of the shared
246 * extent so that a subsequent iteration starts at the
247 * start of the shared region.
248 */
249 irec->br_blockcount = fbno - agbno;
250 *trimmed = true;
251 return 0;
252 }
253}
254
255/*
256 * Trim the passed in imap to the next shared/unshared extent boundary, and
257 * if imap->br_startoff points to a shared extent reserve space for it in the
258 * COW fork. In this case *shared is set to true, else to false.
259 *
260 * Note that imap will always contain the block numbers for the existing blocks
261 * in the data fork, as the upper layers need them for read-modify-write
262 * operations.
263 */
264int
265xfs_reflink_reserve_cow(
266 struct xfs_inode *ip,
267 struct xfs_bmbt_irec *imap,
268 bool *shared)
269{
270 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
271 struct xfs_bmbt_irec got;
272 int error = 0;
273 bool eof = false, trimmed;
274 struct xfs_iext_cursor icur;
275
276 /*
277 * Search the COW fork extent list first. This serves two purposes:
278 * first this implement the speculative preallocation using cowextisze,
279 * so that we also unshared block adjacent to shared blocks instead
280 * of just the shared blocks themselves. Second the lookup in the
281 * extent list is generally faster than going out to the shared extent
282 * tree.
283 */
284
285 if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
286 eof = true;
287 if (!eof && got.br_startoff <= imap->br_startoff) {
288 trace_xfs_reflink_cow_found(ip, imap);
289 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
290
291 *shared = true;
292 return 0;
293 }
294
295 /* Trim the mapping to the nearest shared extent boundary. */
296 error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
297 if (error)
298 return error;
299
300 /* Not shared? Just report the (potentially capped) extent. */
301 if (!*shared)
302 return 0;
303
304 /*
305 * Fork all the shared blocks from our write offset until the end of
306 * the extent.
307 */
308 error = xfs_qm_dqattach_locked(ip, 0);
309 if (error)
310 return error;
311
312 error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
313 imap->br_blockcount, 0, &got, &icur, eof);
314 if (error == -ENOSPC || error == -EDQUOT)
315 trace_xfs_reflink_cow_enospc(ip, imap);
316 if (error)
317 return error;
318
319 trace_xfs_reflink_cow_alloc(ip, &got);
320 return 0;
321}
322
323/* Convert part of an unwritten CoW extent to a real one. */
324STATIC int
325xfs_reflink_convert_cow_extent(
326 struct xfs_inode *ip,
327 struct xfs_bmbt_irec *imap,
328 xfs_fileoff_t offset_fsb,
329 xfs_filblks_t count_fsb,
330 struct xfs_defer_ops *dfops)
331{
332 xfs_fsblock_t first_block = NULLFSBLOCK;
333 int nimaps = 1;
334
335 if (imap->br_state == XFS_EXT_NORM)
336 return 0;
337
338 xfs_trim_extent(imap, offset_fsb, count_fsb);
339 trace_xfs_reflink_convert_cow(ip, imap);
340 if (imap->br_blockcount == 0)
341 return 0;
342 return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
343 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, &first_block,
344 0, imap, &nimaps, dfops);
345}
346
347/* Convert all of the unwritten CoW extents in a file's range to real ones. */
348int
349xfs_reflink_convert_cow(
350 struct xfs_inode *ip,
351 xfs_off_t offset,
352 xfs_off_t count)
353{
354 struct xfs_mount *mp = ip->i_mount;
355 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
356 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
357 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
358 struct xfs_bmbt_irec imap;
359 struct xfs_defer_ops dfops;
360 xfs_fsblock_t first_block = NULLFSBLOCK;
361 int nimaps = 1, error = 0;
362
363 ASSERT(count != 0);
364
365 xfs_ilock(ip, XFS_ILOCK_EXCL);
366 error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
367 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
368 XFS_BMAPI_CONVERT_ONLY, &first_block, 0, &imap, &nimaps,
369 &dfops);
370 xfs_iunlock(ip, XFS_ILOCK_EXCL);
371 return error;
372}
373
374/* Allocate all CoW reservations covering a range of blocks in a file. */
375int
376xfs_reflink_allocate_cow(
377 struct xfs_inode *ip,
378 struct xfs_bmbt_irec *imap,
379 bool *shared,
380 uint *lockmode)
381{
382 struct xfs_mount *mp = ip->i_mount;
383 xfs_fileoff_t offset_fsb = imap->br_startoff;
384 xfs_filblks_t count_fsb = imap->br_blockcount;
385 struct xfs_bmbt_irec got;
386 struct xfs_defer_ops dfops;
387 struct xfs_trans *tp = NULL;
388 xfs_fsblock_t first_block;
389 int nimaps, error = 0;
390 bool trimmed;
391 xfs_filblks_t resaligned;
392 xfs_extlen_t resblks = 0;
393 struct xfs_iext_cursor icur;
394
395retry:
396 ASSERT(xfs_is_reflink_inode(ip));
397 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
398
399 /*
400 * Even if the extent is not shared we might have a preallocation for
401 * it in the COW fork. If so use it.
402 */
403 if (xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got) &&
404 got.br_startoff <= offset_fsb) {
405 *shared = true;
406
407 /* If we have a real allocation in the COW fork we're done. */
408 if (!isnullstartblock(got.br_startblock)) {
409 xfs_trim_extent(&got, offset_fsb, count_fsb);
410 *imap = got;
411 goto convert;
412 }
413
414 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
415 } else {
416 error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
417 if (error || !*shared)
418 goto out;
419 }
420
421 if (!tp) {
422 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
423 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
424 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
425
426 xfs_iunlock(ip, *lockmode);
427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
428 *lockmode = XFS_ILOCK_EXCL;
429 xfs_ilock(ip, *lockmode);
430
431 if (error)
432 return error;
433
434 error = xfs_qm_dqattach_locked(ip, 0);
435 if (error)
436 goto out;
437 goto retry;
438 }
439
440 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
441 XFS_QMOPT_RES_REGBLKS);
442 if (error)
443 goto out;
444
445 xfs_trans_ijoin(tp, ip, 0);
446
447 xfs_defer_init(&dfops, &first_block);
448 nimaps = 1;
449
450 /* Allocate the entire reservation as unwritten blocks. */
451 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
452 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, &first_block,
453 resblks, imap, &nimaps, &dfops);
454 if (error)
455 goto out_bmap_cancel;
456
457 xfs_inode_set_cowblocks_tag(ip);
458
459 /* Finish up. */
460 error = xfs_defer_finish(&tp, &dfops);
461 if (error)
462 goto out_bmap_cancel;
463
464 error = xfs_trans_commit(tp);
465 if (error)
466 return error;
467
468 /*
469 * Allocation succeeded but the requested range was not even partially
470 * satisfied? Bail out!
471 */
472 if (nimaps == 0)
473 return -ENOSPC;
474convert:
475 return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb,
476 &dfops);
477out_bmap_cancel:
478 xfs_defer_cancel(&dfops);
479 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
480 XFS_QMOPT_RES_REGBLKS);
481out:
482 if (tp)
483 xfs_trans_cancel(tp);
484 return error;
485}
486
487/*
488 * Find the CoW reservation for a given byte offset of a file.
489 */
490bool
491xfs_reflink_find_cow_mapping(
492 struct xfs_inode *ip,
493 xfs_off_t offset,
494 struct xfs_bmbt_irec *imap)
495{
496 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
497 xfs_fileoff_t offset_fsb;
498 struct xfs_bmbt_irec got;
499 struct xfs_iext_cursor icur;
500
501 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
502
503 if (!xfs_is_reflink_inode(ip))
504 return false;
505 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
506 if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
507 return false;
508 if (got.br_startoff > offset_fsb)
509 return false;
510
511 trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
512 &got);
513 *imap = got;
514 return true;
515}
516
517/*
518 * Trim an extent to end at the next CoW reservation past offset_fsb.
519 */
520void
521xfs_reflink_trim_irec_to_next_cow(
522 struct xfs_inode *ip,
523 xfs_fileoff_t offset_fsb,
524 struct xfs_bmbt_irec *imap)
525{
526 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
527 struct xfs_bmbt_irec got;
528 struct xfs_iext_cursor icur;
529
530 if (!xfs_is_reflink_inode(ip))
531 return;
532
533 /* Find the extent in the CoW fork. */
534 if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &icur, &got))
535 return;
536
537 /* This is the extent before; try sliding up one. */
538 if (got.br_startoff < offset_fsb) {
539 if (!xfs_iext_next_extent(ifp, &icur, &got))
540 return;
541 }
542
543 if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
544 return;
545
546 imap->br_blockcount = got.br_startoff - imap->br_startoff;
547 trace_xfs_reflink_trim_irec(ip, imap);
548}
549
550/*
551 * Cancel CoW reservations for some block range of an inode.
552 *
553 * If cancel_real is true this function cancels all COW fork extents for the
554 * inode; if cancel_real is false, real extents are not cleared.
555 */
556int
557xfs_reflink_cancel_cow_blocks(
558 struct xfs_inode *ip,
559 struct xfs_trans **tpp,
560 xfs_fileoff_t offset_fsb,
561 xfs_fileoff_t end_fsb,
562 bool cancel_real)
563{
564 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
565 struct xfs_bmbt_irec got, del;
566 struct xfs_iext_cursor icur;
567 xfs_fsblock_t firstfsb;
568 struct xfs_defer_ops dfops;
569 int error = 0;
570
571 if (!xfs_is_reflink_inode(ip))
572 return 0;
573 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
574 return 0;
575
576 /* Walk backwards until we're out of the I/O range... */
577 while (got.br_startoff + got.br_blockcount > offset_fsb) {
578 del = got;
579 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
580
581 /* Extent delete may have bumped ext forward */
582 if (!del.br_blockcount) {
583 xfs_iext_prev(ifp, &icur);
584 goto next_extent;
585 }
586
587 trace_xfs_reflink_cancel_cow(ip, &del);
588
589 if (isnullstartblock(del.br_startblock)) {
590 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
591 &icur, &got, &del);
592 if (error)
593 break;
594 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
595 xfs_trans_ijoin(*tpp, ip, 0);
596 xfs_defer_init(&dfops, &firstfsb);
597
598 /* Free the CoW orphan record. */
599 error = xfs_refcount_free_cow_extent(ip->i_mount,
600 &dfops, del.br_startblock,
601 del.br_blockcount);
602 if (error)
603 break;
604
605 xfs_bmap_add_free(ip->i_mount, &dfops,
606 del.br_startblock, del.br_blockcount,
607 NULL);
608
609 /* Roll the transaction */
610 xfs_defer_ijoin(&dfops, ip);
611 error = xfs_defer_finish(tpp, &dfops);
612 if (error) {
613 xfs_defer_cancel(&dfops);
614 break;
615 }
616
617 /* Remove the mapping from the CoW fork. */
618 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
619
620 /* Remove the quota reservation */
621 error = xfs_trans_reserve_quota_nblks(NULL, ip,
622 -(long)del.br_blockcount, 0,
623 XFS_QMOPT_RES_REGBLKS);
624 if (error)
625 break;
626 } else {
627 /* Didn't do anything, push cursor back. */
628 xfs_iext_prev(ifp, &icur);
629 }
630next_extent:
631 if (!xfs_iext_get_extent(ifp, &icur, &got))
632 break;
633 }
634
635 /* clear tag if cow fork is emptied */
636 if (!ifp->if_bytes)
637 xfs_inode_clear_cowblocks_tag(ip);
638
639 return error;
640}
641
642/*
643 * Cancel CoW reservations for some byte range of an inode.
644 *
645 * If cancel_real is true this function cancels all COW fork extents for the
646 * inode; if cancel_real is false, real extents are not cleared.
647 */
648int
649xfs_reflink_cancel_cow_range(
650 struct xfs_inode *ip,
651 xfs_off_t offset,
652 xfs_off_t count,
653 bool cancel_real)
654{
655 struct xfs_trans *tp;
656 xfs_fileoff_t offset_fsb;
657 xfs_fileoff_t end_fsb;
658 int error;
659
660 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
661 ASSERT(xfs_is_reflink_inode(ip));
662
663 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
664 if (count == NULLFILEOFF)
665 end_fsb = NULLFILEOFF;
666 else
667 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
668
669 /* Start a rolling transaction to remove the mappings */
670 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
671 0, 0, XFS_TRANS_NOFS, &tp);
672 if (error)
673 goto out;
674
675 xfs_ilock(ip, XFS_ILOCK_EXCL);
676 xfs_trans_ijoin(tp, ip, 0);
677
678 /* Scrape out the old CoW reservations */
679 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
680 cancel_real);
681 if (error)
682 goto out_cancel;
683
684 error = xfs_trans_commit(tp);
685
686 xfs_iunlock(ip, XFS_ILOCK_EXCL);
687 return error;
688
689out_cancel:
690 xfs_trans_cancel(tp);
691 xfs_iunlock(ip, XFS_ILOCK_EXCL);
692out:
693 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
694 return error;
695}
696
697/*
698 * Remap parts of a file's data fork after a successful CoW.
699 */
700int
701xfs_reflink_end_cow(
702 struct xfs_inode *ip,
703 xfs_off_t offset,
704 xfs_off_t count)
705{
706 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
707 struct xfs_bmbt_irec got, del;
708 struct xfs_trans *tp;
709 xfs_fileoff_t offset_fsb;
710 xfs_fileoff_t end_fsb;
711 xfs_fsblock_t firstfsb;
712 struct xfs_defer_ops dfops;
713 int error;
714 unsigned int resblks;
715 xfs_filblks_t rlen;
716 struct xfs_iext_cursor icur;
717
718 trace_xfs_reflink_end_cow(ip, offset, count);
719
720 /* No COW extents? That's easy! */
721 if (ifp->if_bytes == 0)
722 return 0;
723
724 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
725 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
726
727 /*
728 * Start a rolling transaction to switch the mappings. We're
729 * unlikely ever to have to remap 16T worth of single-block
730 * extents, so just cap the worst case extent count to 2^32-1.
731 * Stick a warning in just in case, and avoid 64-bit division.
732 */
733 BUILD_BUG_ON(MAX_RW_COUNT > UINT_MAX);
734 if (end_fsb - offset_fsb > UINT_MAX) {
735 error = -EFSCORRUPTED;
736 xfs_force_shutdown(ip->i_mount, SHUTDOWN_CORRUPT_INCORE);
737 ASSERT(0);
738 goto out;
739 }
740 resblks = XFS_NEXTENTADD_SPACE_RES(ip->i_mount,
741 (unsigned int)(end_fsb - offset_fsb),
742 XFS_DATA_FORK);
743 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
744 resblks, 0, XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
745 if (error)
746 goto out;
747
748 xfs_ilock(ip, XFS_ILOCK_EXCL);
749 xfs_trans_ijoin(tp, ip, 0);
750
751 /*
752 * In case of racing, overlapping AIO writes no COW extents might be
753 * left by the time I/O completes for the loser of the race. In that
754 * case we are done.
755 */
756 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
757 goto out_cancel;
758
759 /* Walk backwards until we're out of the I/O range... */
760 while (got.br_startoff + got.br_blockcount > offset_fsb) {
761 del = got;
762 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
763
764 /* Extent delete may have bumped ext forward */
765 if (!del.br_blockcount)
766 goto prev_extent;
767
768 ASSERT(!isnullstartblock(got.br_startblock));
769
770 /*
771 * Don't remap unwritten extents; these are
772 * speculatively preallocated CoW extents that have been
773 * allocated but have not yet been involved in a write.
774 */
775 if (got.br_state == XFS_EXT_UNWRITTEN)
776 goto prev_extent;
777
778 /* Unmap the old blocks in the data fork. */
779 xfs_defer_init(&dfops, &firstfsb);
780 rlen = del.br_blockcount;
781 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
782 &firstfsb, &dfops);
783 if (error)
784 goto out_defer;
785
786 /* Trim the extent to whatever got unmapped. */
787 if (rlen) {
788 xfs_trim_extent(&del, del.br_startoff + rlen,
789 del.br_blockcount - rlen);
790 }
791 trace_xfs_reflink_cow_remap(ip, &del);
792
793 /* Free the CoW orphan record. */
794 error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
795 del.br_startblock, del.br_blockcount);
796 if (error)
797 goto out_defer;
798
799 /* Map the new blocks into the data fork. */
800 error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
801 if (error)
802 goto out_defer;
803
804 /* Charge this new data fork mapping to the on-disk quota. */
805 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
806 (long)del.br_blockcount);
807
808 /* Remove the mapping from the CoW fork. */
809 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
810
811 xfs_defer_ijoin(&dfops, ip);
812 error = xfs_defer_finish(&tp, &dfops);
813 if (error)
814 goto out_defer;
815 if (!xfs_iext_get_extent(ifp, &icur, &got))
816 break;
817 continue;
818prev_extent:
819 if (!xfs_iext_prev_extent(ifp, &icur, &got))
820 break;
821 }
822
823 error = xfs_trans_commit(tp);
824 xfs_iunlock(ip, XFS_ILOCK_EXCL);
825 if (error)
826 goto out;
827 return 0;
828
829out_defer:
830 xfs_defer_cancel(&dfops);
831out_cancel:
832 xfs_trans_cancel(tp);
833 xfs_iunlock(ip, XFS_ILOCK_EXCL);
834out:
835 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
836 return error;
837}
838
839/*
840 * Free leftover CoW reservations that didn't get cleaned out.
841 */
842int
843xfs_reflink_recover_cow(
844 struct xfs_mount *mp)
845{
846 xfs_agnumber_t agno;
847 int error = 0;
848
849 if (!xfs_sb_version_hasreflink(&mp->m_sb))
850 return 0;
851
852 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
853 error = xfs_refcount_recover_cow_leftovers(mp, agno);
854 if (error)
855 break;
856 }
857
858 return error;
859}
860
861/*
862 * Reflinking (Block) Ranges of Two Files Together
863 *
864 * First, ensure that the reflink flag is set on both inodes. The flag is an
865 * optimization to avoid unnecessary refcount btree lookups in the write path.
866 *
867 * Now we can iteratively remap the range of extents (and holes) in src to the
868 * corresponding ranges in dest. Let drange and srange denote the ranges of
869 * logical blocks in dest and src touched by the reflink operation.
870 *
871 * While the length of drange is greater than zero,
872 * - Read src's bmbt at the start of srange ("imap")
873 * - If imap doesn't exist, make imap appear to start at the end of srange
874 * with zero length.
875 * - If imap starts before srange, advance imap to start at srange.
876 * - If imap goes beyond srange, truncate imap to end at the end of srange.
877 * - Punch (imap start - srange start + imap len) blocks from dest at
878 * offset (drange start).
879 * - If imap points to a real range of pblks,
880 * > Increase the refcount of the imap's pblks
881 * > Map imap's pblks into dest at the offset
882 * (drange start + imap start - srange start)
883 * - Advance drange and srange by (imap start - srange start + imap len)
884 *
885 * Finally, if the reflink made dest longer, update both the in-core and
886 * on-disk file sizes.
887 *
888 * ASCII Art Demonstration:
889 *
890 * Let's say we want to reflink this source file:
891 *
892 * ----SSSSSSS-SSSSS----SSSSSS (src file)
893 * <-------------------->
894 *
895 * into this destination file:
896 *
897 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
898 * <-------------------->
899 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
900 * Observe that the range has different logical offsets in either file.
901 *
902 * Consider that the first extent in the source file doesn't line up with our
903 * reflink range. Unmapping and remapping are separate operations, so we can
904 * unmap more blocks from the destination file than we remap.
905 *
906 * ----SSSSSSS-SSSSS----SSSSSS
907 * <------->
908 * --DDDDD---------DDDDD--DDD
909 * <------->
910 *
911 * Now remap the source extent into the destination file:
912 *
913 * ----SSSSSSS-SSSSS----SSSSSS
914 * <------->
915 * --DDDDD--SSSSSSSDDDDD--DDD
916 * <------->
917 *
918 * Do likewise with the second hole and extent in our range. Holes in the
919 * unmap range don't affect our operation.
920 *
921 * ----SSSSSSS-SSSSS----SSSSSS
922 * <---->
923 * --DDDDD--SSSSSSS-SSSSS-DDD
924 * <---->
925 *
926 * Finally, unmap and remap part of the third extent. This will increase the
927 * size of the destination file.
928 *
929 * ----SSSSSSS-SSSSS----SSSSSS
930 * <----->
931 * --DDDDD--SSSSSSS-SSSSS----SSS
932 * <----->
933 *
934 * Once we update the destination file's i_size, we're done.
935 */
936
937/*
938 * Ensure the reflink bit is set in both inodes.
939 */
940STATIC int
941xfs_reflink_set_inode_flag(
942 struct xfs_inode *src,
943 struct xfs_inode *dest)
944{
945 struct xfs_mount *mp = src->i_mount;
946 int error;
947 struct xfs_trans *tp;
948
949 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
950 return 0;
951
952 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
953 if (error)
954 goto out_error;
955
956 /* Lock both files against IO */
957 if (src->i_ino == dest->i_ino)
958 xfs_ilock(src, XFS_ILOCK_EXCL);
959 else
960 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
961
962 if (!xfs_is_reflink_inode(src)) {
963 trace_xfs_reflink_set_inode_flag(src);
964 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
965 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
966 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
967 xfs_ifork_init_cow(src);
968 } else
969 xfs_iunlock(src, XFS_ILOCK_EXCL);
970
971 if (src->i_ino == dest->i_ino)
972 goto commit_flags;
973
974 if (!xfs_is_reflink_inode(dest)) {
975 trace_xfs_reflink_set_inode_flag(dest);
976 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
977 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
978 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
979 xfs_ifork_init_cow(dest);
980 } else
981 xfs_iunlock(dest, XFS_ILOCK_EXCL);
982
983commit_flags:
984 error = xfs_trans_commit(tp);
985 if (error)
986 goto out_error;
987 return error;
988
989out_error:
990 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
991 return error;
992}
993
994/*
995 * Update destination inode size & cowextsize hint, if necessary.
996 */
997STATIC int
998xfs_reflink_update_dest(
999 struct xfs_inode *dest,
1000 xfs_off_t newlen,
1001 xfs_extlen_t cowextsize,
1002 bool is_dedupe)
1003{
1004 struct xfs_mount *mp = dest->i_mount;
1005 struct xfs_trans *tp;
1006 int error;
1007
1008 if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1009 return 0;
1010
1011 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1012 if (error)
1013 goto out_error;
1014
1015 xfs_ilock(dest, XFS_ILOCK_EXCL);
1016 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1017
1018 if (newlen > i_size_read(VFS_I(dest))) {
1019 trace_xfs_reflink_update_inode_size(dest, newlen);
1020 i_size_write(VFS_I(dest), newlen);
1021 dest->i_d.di_size = newlen;
1022 }
1023
1024 if (cowextsize) {
1025 dest->i_d.di_cowextsize = cowextsize;
1026 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
1027 }
1028
1029 if (!is_dedupe) {
1030 xfs_trans_ichgtime(tp, dest,
1031 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1032 }
1033 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1034
1035 error = xfs_trans_commit(tp);
1036 if (error)
1037 goto out_error;
1038 return error;
1039
1040out_error:
1041 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1042 return error;
1043}
1044
1045/*
1046 * Do we have enough reserve in this AG to handle a reflink? The refcount
1047 * btree already reserved all the space it needs, but the rmap btree can grow
1048 * infinitely, so we won't allow more reflinks when the AG is down to the
1049 * btree reserves.
1050 */
1051static int
1052xfs_reflink_ag_has_free_space(
1053 struct xfs_mount *mp,
1054 xfs_agnumber_t agno)
1055{
1056 struct xfs_perag *pag;
1057 int error = 0;
1058
1059 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
1060 return 0;
1061
1062 pag = xfs_perag_get(mp, agno);
1063 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1064 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1065 error = -ENOSPC;
1066 xfs_perag_put(pag);
1067 return error;
1068}
1069
1070/*
1071 * Unmap a range of blocks from a file, then map other blocks into the hole.
1072 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1073 * The extent irec is mapped into dest at irec->br_startoff.
1074 */
1075STATIC int
1076xfs_reflink_remap_extent(
1077 struct xfs_inode *ip,
1078 struct xfs_bmbt_irec *irec,
1079 xfs_fileoff_t destoff,
1080 xfs_off_t new_isize)
1081{
1082 struct xfs_mount *mp = ip->i_mount;
1083 bool real_extent = xfs_bmap_is_real_extent(irec);
1084 struct xfs_trans *tp;
1085 xfs_fsblock_t firstfsb;
1086 unsigned int resblks;
1087 struct xfs_defer_ops dfops;
1088 struct xfs_bmbt_irec uirec;
1089 xfs_filblks_t rlen;
1090 xfs_filblks_t unmap_len;
1091 xfs_off_t newlen;
1092 int error;
1093
1094 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1095 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1096
1097 /* No reflinking if we're low on space */
1098 if (real_extent) {
1099 error = xfs_reflink_ag_has_free_space(mp,
1100 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1101 if (error)
1102 goto out;
1103 }
1104
1105 /* Start a rolling transaction to switch the mappings */
1106 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1107 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1108 if (error)
1109 goto out;
1110
1111 xfs_ilock(ip, XFS_ILOCK_EXCL);
1112 xfs_trans_ijoin(tp, ip, 0);
1113
1114 /* If we're not just clearing space, then do we have enough quota? */
1115 if (real_extent) {
1116 error = xfs_trans_reserve_quota_nblks(tp, ip,
1117 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1118 if (error)
1119 goto out_cancel;
1120 }
1121
1122 trace_xfs_reflink_remap(ip, irec->br_startoff,
1123 irec->br_blockcount, irec->br_startblock);
1124
1125 /* Unmap the old blocks in the data fork. */
1126 rlen = unmap_len;
1127 while (rlen) {
1128 xfs_defer_init(&dfops, &firstfsb);
1129 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
1130 &firstfsb, &dfops);
1131 if (error)
1132 goto out_defer;
1133
1134 /*
1135 * Trim the extent to whatever got unmapped.
1136 * Remember, bunmapi works backwards.
1137 */
1138 uirec.br_startblock = irec->br_startblock + rlen;
1139 uirec.br_startoff = irec->br_startoff + rlen;
1140 uirec.br_blockcount = unmap_len - rlen;
1141 unmap_len = rlen;
1142
1143 /* If this isn't a real mapping, we're done. */
1144 if (!real_extent || uirec.br_blockcount == 0)
1145 goto next_extent;
1146
1147 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1148 uirec.br_blockcount, uirec.br_startblock);
1149
1150 /* Update the refcount tree */
1151 error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
1152 if (error)
1153 goto out_defer;
1154
1155 /* Map the new blocks into the data fork. */
1156 error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
1157 if (error)
1158 goto out_defer;
1159
1160 /* Update quota accounting. */
1161 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1162 uirec.br_blockcount);
1163
1164 /* Update dest isize if needed. */
1165 newlen = XFS_FSB_TO_B(mp,
1166 uirec.br_startoff + uirec.br_blockcount);
1167 newlen = min_t(xfs_off_t, newlen, new_isize);
1168 if (newlen > i_size_read(VFS_I(ip))) {
1169 trace_xfs_reflink_update_inode_size(ip, newlen);
1170 i_size_write(VFS_I(ip), newlen);
1171 ip->i_d.di_size = newlen;
1172 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1173 }
1174
1175next_extent:
1176 /* Process all the deferred stuff. */
1177 xfs_defer_ijoin(&dfops, ip);
1178 error = xfs_defer_finish(&tp, &dfops);
1179 if (error)
1180 goto out_defer;
1181 }
1182
1183 error = xfs_trans_commit(tp);
1184 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 if (error)
1186 goto out;
1187 return 0;
1188
1189out_defer:
1190 xfs_defer_cancel(&dfops);
1191out_cancel:
1192 xfs_trans_cancel(tp);
1193 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1194out:
1195 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1196 return error;
1197}
1198
1199/*
1200 * Iteratively remap one file's extents (and holes) to another's.
1201 */
1202STATIC int
1203xfs_reflink_remap_blocks(
1204 struct xfs_inode *src,
1205 xfs_fileoff_t srcoff,
1206 struct xfs_inode *dest,
1207 xfs_fileoff_t destoff,
1208 xfs_filblks_t len,
1209 xfs_off_t new_isize)
1210{
1211 struct xfs_bmbt_irec imap;
1212 int nimaps;
1213 int error = 0;
1214 xfs_filblks_t range_len;
1215
1216 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1217 while (len) {
1218 uint lock_mode;
1219
1220 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1221 dest, destoff);
1222
1223 /* Read extent from the source file */
1224 nimaps = 1;
1225 lock_mode = xfs_ilock_data_map_shared(src);
1226 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1227 xfs_iunlock(src, lock_mode);
1228 if (error)
1229 goto err;
1230 ASSERT(nimaps == 1);
1231
1232 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1233 &imap);
1234
1235 /* Translate imap into the destination file. */
1236 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1237 imap.br_startoff += destoff - srcoff;
1238
1239 /* Clear dest from destoff to the end of imap and map it in. */
1240 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1241 new_isize);
1242 if (error)
1243 goto err;
1244
1245 if (fatal_signal_pending(current)) {
1246 error = -EINTR;
1247 goto err;
1248 }
1249
1250 /* Advance drange/srange */
1251 srcoff += range_len;
1252 destoff += range_len;
1253 len -= range_len;
1254 }
1255
1256 return 0;
1257
1258err:
1259 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1260 return error;
1261}
1262
1263/*
1264 * Grab the exclusive iolock for a data copy from src to dest, making
1265 * sure to abide vfs locking order (lowest pointer value goes first) and
1266 * breaking the pnfs layout leases on dest before proceeding. The loop
1267 * is needed because we cannot call the blocking break_layout() with the
1268 * src iolock held, and therefore have to back out both locks.
1269 */
1270static int
1271xfs_iolock_two_inodes_and_break_layout(
1272 struct inode *src,
1273 struct inode *dest)
1274{
1275 int error;
1276
1277retry:
1278 if (src < dest) {
1279 inode_lock_shared(src);
1280 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1281 } else {
1282 /* src >= dest */
1283 inode_lock(dest);
1284 }
1285
1286 error = break_layout(dest, false);
1287 if (error == -EWOULDBLOCK) {
1288 inode_unlock(dest);
1289 if (src < dest)
1290 inode_unlock_shared(src);
1291 error = break_layout(dest, true);
1292 if (error)
1293 return error;
1294 goto retry;
1295 }
1296 if (error) {
1297 inode_unlock(dest);
1298 if (src < dest)
1299 inode_unlock_shared(src);
1300 return error;
1301 }
1302 if (src > dest)
1303 inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1304 return 0;
1305}
1306
1307/*
1308 * Link a range of blocks from one file to another.
1309 */
1310int
1311xfs_reflink_remap_range(
1312 struct file *file_in,
1313 loff_t pos_in,
1314 struct file *file_out,
1315 loff_t pos_out,
1316 u64 len,
1317 bool is_dedupe)
1318{
1319 struct inode *inode_in = file_inode(file_in);
1320 struct xfs_inode *src = XFS_I(inode_in);
1321 struct inode *inode_out = file_inode(file_out);
1322 struct xfs_inode *dest = XFS_I(inode_out);
1323 struct xfs_mount *mp = src->i_mount;
1324 bool same_inode = (inode_in == inode_out);
1325 xfs_fileoff_t sfsbno, dfsbno;
1326 xfs_filblks_t fsblen;
1327 xfs_extlen_t cowextsize;
1328 ssize_t ret;
1329
1330 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1331 return -EOPNOTSUPP;
1332
1333 if (XFS_FORCED_SHUTDOWN(mp))
1334 return -EIO;
1335
1336 /* Lock both files against IO */
1337 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1338 if (ret)
1339 return ret;
1340 if (same_inode)
1341 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1342 else
1343 xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1344 XFS_MMAPLOCK_EXCL);
1345
1346 /* Check file eligibility and prepare for block sharing. */
1347 ret = -EINVAL;
1348 /* Don't reflink realtime inodes */
1349 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1350 goto out_unlock;
1351
1352 /* Don't share DAX file data for now. */
1353 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1354 goto out_unlock;
1355
1356 ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1357 &len, is_dedupe);
1358 if (ret <= 0)
1359 goto out_unlock;
1360
1361 /* Attach dquots to dest inode before changing block map */
1362 ret = xfs_qm_dqattach(dest, 0);
1363 if (ret)
1364 goto out_unlock;
1365
1366 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1367
1368 /*
1369 * Clear out post-eof preallocations because we don't have page cache
1370 * backing the delayed allocations and they'll never get freed on
1371 * their own.
1372 */
1373 if (xfs_can_free_eofblocks(dest, true)) {
1374 ret = xfs_free_eofblocks(dest);
1375 if (ret)
1376 goto out_unlock;
1377 }
1378
1379 /* Set flags and remap blocks. */
1380 ret = xfs_reflink_set_inode_flag(src, dest);
1381 if (ret)
1382 goto out_unlock;
1383
1384 dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1385 sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1386 fsblen = XFS_B_TO_FSB(mp, len);
1387 ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1388 pos_out + len);
1389 if (ret)
1390 goto out_unlock;
1391
1392 /* Zap any page cache for the destination file's range. */
1393 truncate_inode_pages_range(&inode_out->i_data, pos_out,
1394 PAGE_ALIGN(pos_out + len) - 1);
1395
1396 /*
1397 * Carry the cowextsize hint from src to dest if we're sharing the
1398 * entire source file to the entire destination file, the source file
1399 * has a cowextsize hint, and the destination file does not.
1400 */
1401 cowextsize = 0;
1402 if (pos_in == 0 && len == i_size_read(inode_in) &&
1403 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1404 pos_out == 0 && len >= i_size_read(inode_out) &&
1405 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1406 cowextsize = src->i_d.di_cowextsize;
1407
1408 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1409 is_dedupe);
1410
1411out_unlock:
1412 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1413 if (!same_inode)
1414 xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1415 inode_unlock(inode_out);
1416 if (!same_inode)
1417 inode_unlock_shared(inode_in);
1418 if (ret)
1419 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1420 return ret;
1421}
1422
1423/*
1424 * The user wants to preemptively CoW all shared blocks in this file,
1425 * which enables us to turn off the reflink flag. Iterate all
1426 * extents which are not prealloc/delalloc to see which ranges are
1427 * mentioned in the refcount tree, then read those blocks into the
1428 * pagecache, dirty them, fsync them back out, and then we can update
1429 * the inode flag. What happens if we run out of memory? :)
1430 */
1431STATIC int
1432xfs_reflink_dirty_extents(
1433 struct xfs_inode *ip,
1434 xfs_fileoff_t fbno,
1435 xfs_filblks_t end,
1436 xfs_off_t isize)
1437{
1438 struct xfs_mount *mp = ip->i_mount;
1439 xfs_agnumber_t agno;
1440 xfs_agblock_t agbno;
1441 xfs_extlen_t aglen;
1442 xfs_agblock_t rbno;
1443 xfs_extlen_t rlen;
1444 xfs_off_t fpos;
1445 xfs_off_t flen;
1446 struct xfs_bmbt_irec map[2];
1447 int nmaps;
1448 int error = 0;
1449
1450 while (end - fbno > 0) {
1451 nmaps = 1;
1452 /*
1453 * Look for extents in the file. Skip holes, delalloc, or
1454 * unwritten extents; they can't be reflinked.
1455 */
1456 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1457 if (error)
1458 goto out;
1459 if (nmaps == 0)
1460 break;
1461 if (!xfs_bmap_is_real_extent(&map[0]))
1462 goto next;
1463
1464 map[1] = map[0];
1465 while (map[1].br_blockcount) {
1466 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1467 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1468 aglen = map[1].br_blockcount;
1469
1470 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1471 aglen, &rbno, &rlen, true);
1472 if (error)
1473 goto out;
1474 if (rbno == NULLAGBLOCK)
1475 break;
1476
1477 /* Dirty the pages */
1478 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1479 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1480 (rbno - agbno));
1481 flen = XFS_FSB_TO_B(mp, rlen);
1482 if (fpos + flen > isize)
1483 flen = isize - fpos;
1484 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1485 &xfs_iomap_ops);
1486 xfs_ilock(ip, XFS_ILOCK_EXCL);
1487 if (error)
1488 goto out;
1489
1490 map[1].br_blockcount -= (rbno - agbno + rlen);
1491 map[1].br_startoff += (rbno - agbno + rlen);
1492 map[1].br_startblock += (rbno - agbno + rlen);
1493 }
1494
1495next:
1496 fbno = map[0].br_startoff + map[0].br_blockcount;
1497 }
1498out:
1499 return error;
1500}
1501
1502/* Does this inode need the reflink flag? */
1503int
1504xfs_reflink_inode_has_shared_extents(
1505 struct xfs_trans *tp,
1506 struct xfs_inode *ip,
1507 bool *has_shared)
1508{
1509 struct xfs_bmbt_irec got;
1510 struct xfs_mount *mp = ip->i_mount;
1511 struct xfs_ifork *ifp;
1512 xfs_agnumber_t agno;
1513 xfs_agblock_t agbno;
1514 xfs_extlen_t aglen;
1515 xfs_agblock_t rbno;
1516 xfs_extlen_t rlen;
1517 struct xfs_iext_cursor icur;
1518 bool found;
1519 int error;
1520
1521 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1522 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1523 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1524 if (error)
1525 return error;
1526 }
1527
1528 *has_shared = false;
1529 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1530 while (found) {
1531 if (isnullstartblock(got.br_startblock) ||
1532 got.br_state != XFS_EXT_NORM)
1533 goto next;
1534 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1535 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1536 aglen = got.br_blockcount;
1537
1538 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1539 &rbno, &rlen, false);
1540 if (error)
1541 return error;
1542 /* Is there still a shared block here? */
1543 if (rbno != NULLAGBLOCK) {
1544 *has_shared = true;
1545 return 0;
1546 }
1547next:
1548 found = xfs_iext_next_extent(ifp, &icur, &got);
1549 }
1550
1551 return 0;
1552}
1553
1554/* Clear the inode reflink flag if there are no shared extents. */
1555int
1556xfs_reflink_clear_inode_flag(
1557 struct xfs_inode *ip,
1558 struct xfs_trans **tpp)
1559{
1560 bool needs_flag;
1561 int error = 0;
1562
1563 ASSERT(xfs_is_reflink_inode(ip));
1564
1565 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1566 if (error || needs_flag)
1567 return error;
1568
1569 /*
1570 * We didn't find any shared blocks so turn off the reflink flag.
1571 * First, get rid of any leftover CoW mappings.
1572 */
1573 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1574 if (error)
1575 return error;
1576
1577 /* Clear the inode flag. */
1578 trace_xfs_reflink_unset_inode_flag(ip);
1579 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1580 xfs_inode_clear_cowblocks_tag(ip);
1581 xfs_trans_ijoin(*tpp, ip, 0);
1582 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1583
1584 return error;
1585}
1586
1587/*
1588 * Clear the inode reflink flag if there are no shared extents and the size
1589 * hasn't changed.
1590 */
1591STATIC int
1592xfs_reflink_try_clear_inode_flag(
1593 struct xfs_inode *ip)
1594{
1595 struct xfs_mount *mp = ip->i_mount;
1596 struct xfs_trans *tp;
1597 int error = 0;
1598
1599 /* Start a rolling transaction to remove the mappings */
1600 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1601 if (error)
1602 return error;
1603
1604 xfs_ilock(ip, XFS_ILOCK_EXCL);
1605 xfs_trans_ijoin(tp, ip, 0);
1606
1607 error = xfs_reflink_clear_inode_flag(ip, &tp);
1608 if (error)
1609 goto cancel;
1610
1611 error = xfs_trans_commit(tp);
1612 if (error)
1613 goto out;
1614
1615 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1616 return 0;
1617cancel:
1618 xfs_trans_cancel(tp);
1619out:
1620 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1621 return error;
1622}
1623
1624/*
1625 * Pre-COW all shared blocks within a given byte range of a file and turn off
1626 * the reflink flag if we unshare all of the file's blocks.
1627 */
1628int
1629xfs_reflink_unshare(
1630 struct xfs_inode *ip,
1631 xfs_off_t offset,
1632 xfs_off_t len)
1633{
1634 struct xfs_mount *mp = ip->i_mount;
1635 xfs_fileoff_t fbno;
1636 xfs_filblks_t end;
1637 xfs_off_t isize;
1638 int error;
1639
1640 if (!xfs_is_reflink_inode(ip))
1641 return 0;
1642
1643 trace_xfs_reflink_unshare(ip, offset, len);
1644
1645 inode_dio_wait(VFS_I(ip));
1646
1647 /* Try to CoW the selected ranges */
1648 xfs_ilock(ip, XFS_ILOCK_EXCL);
1649 fbno = XFS_B_TO_FSBT(mp, offset);
1650 isize = i_size_read(VFS_I(ip));
1651 end = XFS_B_TO_FSB(mp, offset + len);
1652 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1653 if (error)
1654 goto out_unlock;
1655 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1656
1657 /* Wait for the IO to finish */
1658 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1659 if (error)
1660 goto out;
1661
1662 /* Turn off the reflink flag if possible. */
1663 error = xfs_reflink_try_clear_inode_flag(ip);
1664 if (error)
1665 goto out;
1666
1667 return 0;
1668
1669out_unlock:
1670 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1671out:
1672 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1673 return error;
1674}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
27#include "xfs_quota.h"
28#include "xfs_reflink.h"
29#include "xfs_iomap.h"
30#include "xfs_ag.h"
31#include "xfs_ag_resv.h"
32
33/*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121/*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128int
129xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138{
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 if (error)
145 return error;
146
147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 find_end_of_shared);
151
152 xfs_btree_del_cursor(cur, error);
153
154 xfs_trans_brelse(tp, agbp);
155 return error;
156}
157
158/*
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
167 */
168int
169xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
172 bool *shared)
173{
174 xfs_agnumber_t agno;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 aglen, &fbno, &flen, true);
195 if (error)
196 return error;
197
198 *shared = false;
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
201 return 0;
202 } else if (fbno == agbno) {
203 /*
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
207 * unshared region.
208 */
209 irec->br_blockcount = flen;
210 *shared = true;
211 return 0;
212 } else {
213 /*
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
218 */
219 irec->br_blockcount = fbno - agbno;
220 return 0;
221 }
222}
223
224int
225xfs_bmap_trim_cow(
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
228 bool *shared)
229{
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
233 *shared = true;
234 return 0;
235 }
236
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
239}
240
241static int
242xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
246{
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
250 int dummy_logflags;
251 int error = 0;
252
253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 return 0;
255
256 do {
257 if (got.br_startoff >= offset_fsb + count_fsb)
258 break;
259 if (got.br_state == XFS_EXT_NORM)
260 continue;
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 return -EIO;
263
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
266 continue;
267
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
271 &dummy_logflags);
272 if (error)
273 return error;
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275
276 return error;
277}
278
279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
280int
281xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
283 xfs_off_t offset,
284 xfs_off_t count)
285{
286 struct xfs_mount *mp = ip->i_mount;
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
290 int error;
291
292 ASSERT(count != 0);
293
294 xfs_ilock(ip, XFS_ILOCK_EXCL);
295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 return error;
298}
299
300/*
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
304 */
305static int
306xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 struct xfs_bmbt_irec *cmap,
310 bool *shared,
311 bool *found)
312{
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
316
317 *found = false;
318
319 /*
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
322 */
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
326 xfs_trim_extent(imap, imap->br_startoff,
327 cmap->br_startoff - imap->br_startoff);
328 return xfs_bmap_trim_cow(ip, imap, shared);
329 }
330
331 *shared = true;
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 return 0;
335 }
336
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 *found = true;
340 return 0;
341}
342
343/* Allocate all CoW reservations covering a range of blocks in a file. */
344int
345xfs_reflink_allocate_cow(
346 struct xfs_inode *ip,
347 struct xfs_bmbt_irec *imap,
348 struct xfs_bmbt_irec *cmap,
349 bool *shared,
350 uint *lockmode,
351 bool convert_now)
352{
353 struct xfs_mount *mp = ip->i_mount;
354 xfs_fileoff_t offset_fsb = imap->br_startoff;
355 xfs_filblks_t count_fsb = imap->br_blockcount;
356 struct xfs_trans *tp;
357 int nimaps, error = 0;
358 bool found;
359 xfs_filblks_t resaligned;
360 xfs_extlen_t resblks = 0;
361
362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 if (!ip->i_cowfp) {
364 ASSERT(!xfs_is_reflink_inode(ip));
365 xfs_ifork_init_cow(ip);
366 }
367
368 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 if (error || !*shared)
370 return error;
371 if (found)
372 goto convert;
373
374 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377
378 xfs_iunlock(ip, *lockmode);
379 *lockmode = 0;
380
381 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
382 false, &tp);
383 if (error)
384 return error;
385
386 *lockmode = XFS_ILOCK_EXCL;
387
388 /*
389 * Check for an overlapping extent again now that we dropped the ilock.
390 */
391 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 if (error || !*shared)
393 goto out_trans_cancel;
394 if (found) {
395 xfs_trans_cancel(tp);
396 goto convert;
397 }
398
399 /* Allocate the entire reservation as unwritten blocks. */
400 nimaps = 1;
401 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
403 &nimaps);
404 if (error)
405 goto out_trans_cancel;
406
407 xfs_inode_set_cowblocks_tag(ip);
408 error = xfs_trans_commit(tp);
409 if (error)
410 return error;
411
412 /*
413 * Allocation succeeded but the requested range was not even partially
414 * satisfied? Bail out!
415 */
416 if (nimaps == 0)
417 return -ENOSPC;
418convert:
419 xfs_trim_extent(cmap, offset_fsb, count_fsb);
420 /*
421 * COW fork extents are supposed to remain unwritten until we're ready
422 * to initiate a disk write. For direct I/O we are going to write the
423 * data and need the conversion, but for buffered writes we're done.
424 */
425 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
426 return 0;
427 trace_xfs_reflink_convert_cow(ip, cmap);
428 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
429
430out_trans_cancel:
431 xfs_trans_cancel(tp);
432 return error;
433}
434
435/*
436 * Cancel CoW reservations for some block range of an inode.
437 *
438 * If cancel_real is true this function cancels all COW fork extents for the
439 * inode; if cancel_real is false, real extents are not cleared.
440 *
441 * Caller must have already joined the inode to the current transaction. The
442 * inode will be joined to the transaction returned to the caller.
443 */
444int
445xfs_reflink_cancel_cow_blocks(
446 struct xfs_inode *ip,
447 struct xfs_trans **tpp,
448 xfs_fileoff_t offset_fsb,
449 xfs_fileoff_t end_fsb,
450 bool cancel_real)
451{
452 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
453 struct xfs_bmbt_irec got, del;
454 struct xfs_iext_cursor icur;
455 int error = 0;
456
457 if (!xfs_inode_has_cow_data(ip))
458 return 0;
459 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
460 return 0;
461
462 /* Walk backwards until we're out of the I/O range... */
463 while (got.br_startoff + got.br_blockcount > offset_fsb) {
464 del = got;
465 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
466
467 /* Extent delete may have bumped ext forward */
468 if (!del.br_blockcount) {
469 xfs_iext_prev(ifp, &icur);
470 goto next_extent;
471 }
472
473 trace_xfs_reflink_cancel_cow(ip, &del);
474
475 if (isnullstartblock(del.br_startblock)) {
476 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
477 &icur, &got, &del);
478 if (error)
479 break;
480 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
481 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
482
483 /* Free the CoW orphan record. */
484 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
485 del.br_blockcount);
486
487 xfs_bmap_add_free(*tpp, del.br_startblock,
488 del.br_blockcount, NULL);
489
490 /* Roll the transaction */
491 error = xfs_defer_finish(tpp);
492 if (error)
493 break;
494
495 /* Remove the mapping from the CoW fork. */
496 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
497
498 /* Remove the quota reservation */
499 error = xfs_quota_unreserve_blkres(ip,
500 del.br_blockcount);
501 if (error)
502 break;
503 } else {
504 /* Didn't do anything, push cursor back. */
505 xfs_iext_prev(ifp, &icur);
506 }
507next_extent:
508 if (!xfs_iext_get_extent(ifp, &icur, &got))
509 break;
510 }
511
512 /* clear tag if cow fork is emptied */
513 if (!ifp->if_bytes)
514 xfs_inode_clear_cowblocks_tag(ip);
515 return error;
516}
517
518/*
519 * Cancel CoW reservations for some byte range of an inode.
520 *
521 * If cancel_real is true this function cancels all COW fork extents for the
522 * inode; if cancel_real is false, real extents are not cleared.
523 */
524int
525xfs_reflink_cancel_cow_range(
526 struct xfs_inode *ip,
527 xfs_off_t offset,
528 xfs_off_t count,
529 bool cancel_real)
530{
531 struct xfs_trans *tp;
532 xfs_fileoff_t offset_fsb;
533 xfs_fileoff_t end_fsb;
534 int error;
535
536 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
537 ASSERT(ip->i_cowfp);
538
539 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
540 if (count == NULLFILEOFF)
541 end_fsb = NULLFILEOFF;
542 else
543 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
544
545 /* Start a rolling transaction to remove the mappings */
546 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
547 0, 0, 0, &tp);
548 if (error)
549 goto out;
550
551 xfs_ilock(ip, XFS_ILOCK_EXCL);
552 xfs_trans_ijoin(tp, ip, 0);
553
554 /* Scrape out the old CoW reservations */
555 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
556 cancel_real);
557 if (error)
558 goto out_cancel;
559
560 error = xfs_trans_commit(tp);
561
562 xfs_iunlock(ip, XFS_ILOCK_EXCL);
563 return error;
564
565out_cancel:
566 xfs_trans_cancel(tp);
567 xfs_iunlock(ip, XFS_ILOCK_EXCL);
568out:
569 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
570 return error;
571}
572
573/*
574 * Remap part of the CoW fork into the data fork.
575 *
576 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
577 * into the data fork; this function will remap what it can (at the end of the
578 * range) and update @end_fsb appropriately. Each remap gets its own
579 * transaction because we can end up merging and splitting bmbt blocks for
580 * every remap operation and we'd like to keep the block reservation
581 * requirements as low as possible.
582 */
583STATIC int
584xfs_reflink_end_cow_extent(
585 struct xfs_inode *ip,
586 xfs_fileoff_t offset_fsb,
587 xfs_fileoff_t *end_fsb)
588{
589 struct xfs_bmbt_irec got, del;
590 struct xfs_iext_cursor icur;
591 struct xfs_mount *mp = ip->i_mount;
592 struct xfs_trans *tp;
593 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
594 xfs_filblks_t rlen;
595 unsigned int resblks;
596 int error;
597
598 /* No COW extents? That's easy! */
599 if (ifp->if_bytes == 0) {
600 *end_fsb = offset_fsb;
601 return 0;
602 }
603
604 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
605 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
606 XFS_TRANS_RESERVE, &tp);
607 if (error)
608 return error;
609
610 /*
611 * Lock the inode. We have to ijoin without automatic unlock because
612 * the lead transaction is the refcountbt record deletion; the data
613 * fork update follows as a deferred log item.
614 */
615 xfs_ilock(ip, XFS_ILOCK_EXCL);
616 xfs_trans_ijoin(tp, ip, 0);
617
618 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
619 XFS_IEXT_REFLINK_END_COW_CNT);
620 if (error)
621 goto out_cancel;
622
623 /*
624 * In case of racing, overlapping AIO writes no COW extents might be
625 * left by the time I/O completes for the loser of the race. In that
626 * case we are done.
627 */
628 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
629 got.br_startoff + got.br_blockcount <= offset_fsb) {
630 *end_fsb = offset_fsb;
631 goto out_cancel;
632 }
633
634 /*
635 * Structure copy @got into @del, then trim @del to the range that we
636 * were asked to remap. We preserve @got for the eventual CoW fork
637 * deletion; from now on @del represents the mapping that we're
638 * actually remapping.
639 */
640 del = got;
641 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
642
643 ASSERT(del.br_blockcount > 0);
644
645 /*
646 * Only remap real extents that contain data. With AIO, speculative
647 * preallocations can leak into the range we are called upon, and we
648 * need to skip them.
649 */
650 if (!xfs_bmap_is_written_extent(&got)) {
651 *end_fsb = del.br_startoff;
652 goto out_cancel;
653 }
654
655 /* Unmap the old blocks in the data fork. */
656 rlen = del.br_blockcount;
657 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
658 if (error)
659 goto out_cancel;
660
661 /* Trim the extent to whatever got unmapped. */
662 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
663 trace_xfs_reflink_cow_remap(ip, &del);
664
665 /* Free the CoW orphan record. */
666 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
667
668 /* Map the new blocks into the data fork. */
669 xfs_bmap_map_extent(tp, ip, &del);
670
671 /* Charge this new data fork mapping to the on-disk quota. */
672 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
673 (long)del.br_blockcount);
674
675 /* Remove the mapping from the CoW fork. */
676 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
677
678 error = xfs_trans_commit(tp);
679 xfs_iunlock(ip, XFS_ILOCK_EXCL);
680 if (error)
681 return error;
682
683 /* Update the caller about how much progress we made. */
684 *end_fsb = del.br_startoff;
685 return 0;
686
687out_cancel:
688 xfs_trans_cancel(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 return error;
691}
692
693/*
694 * Remap parts of a file's data fork after a successful CoW.
695 */
696int
697xfs_reflink_end_cow(
698 struct xfs_inode *ip,
699 xfs_off_t offset,
700 xfs_off_t count)
701{
702 xfs_fileoff_t offset_fsb;
703 xfs_fileoff_t end_fsb;
704 int error = 0;
705
706 trace_xfs_reflink_end_cow(ip, offset, count);
707
708 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
709 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
710
711 /*
712 * Walk backwards until we're out of the I/O range. The loop function
713 * repeatedly cycles the ILOCK to allocate one transaction per remapped
714 * extent.
715 *
716 * If we're being called by writeback then the pages will still
717 * have PageWriteback set, which prevents races with reflink remapping
718 * and truncate. Reflink remapping prevents races with writeback by
719 * taking the iolock and mmaplock before flushing the pages and
720 * remapping, which means there won't be any further writeback or page
721 * cache dirtying until the reflink completes.
722 *
723 * We should never have two threads issuing writeback for the same file
724 * region. There are also have post-eof checks in the writeback
725 * preparation code so that we don't bother writing out pages that are
726 * about to be truncated.
727 *
728 * If we're being called as part of directio write completion, the dio
729 * count is still elevated, which reflink and truncate will wait for.
730 * Reflink remapping takes the iolock and mmaplock and waits for
731 * pending dio to finish, which should prevent any directio until the
732 * remap completes. Multiple concurrent directio writes to the same
733 * region are handled by end_cow processing only occurring for the
734 * threads which succeed; the outcome of multiple overlapping direct
735 * writes is not well defined anyway.
736 *
737 * It's possible that a buffered write and a direct write could collide
738 * here (the buffered write stumbles in after the dio flushes and
739 * invalidates the page cache and immediately queues writeback), but we
740 * have never supported this 100%. If either disk write succeeds the
741 * blocks will be remapped.
742 */
743 while (end_fsb > offset_fsb && !error)
744 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
745
746 if (error)
747 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
748 return error;
749}
750
751/*
752 * Free leftover CoW reservations that didn't get cleaned out.
753 */
754int
755xfs_reflink_recover_cow(
756 struct xfs_mount *mp)
757{
758 struct xfs_perag *pag;
759 xfs_agnumber_t agno;
760 int error = 0;
761
762 if (!xfs_sb_version_hasreflink(&mp->m_sb))
763 return 0;
764
765 for_each_perag(mp, agno, pag) {
766 error = xfs_refcount_recover_cow_leftovers(mp, pag);
767 if (error) {
768 xfs_perag_put(pag);
769 break;
770 }
771 }
772
773 return error;
774}
775
776/*
777 * Reflinking (Block) Ranges of Two Files Together
778 *
779 * First, ensure that the reflink flag is set on both inodes. The flag is an
780 * optimization to avoid unnecessary refcount btree lookups in the write path.
781 *
782 * Now we can iteratively remap the range of extents (and holes) in src to the
783 * corresponding ranges in dest. Let drange and srange denote the ranges of
784 * logical blocks in dest and src touched by the reflink operation.
785 *
786 * While the length of drange is greater than zero,
787 * - Read src's bmbt at the start of srange ("imap")
788 * - If imap doesn't exist, make imap appear to start at the end of srange
789 * with zero length.
790 * - If imap starts before srange, advance imap to start at srange.
791 * - If imap goes beyond srange, truncate imap to end at the end of srange.
792 * - Punch (imap start - srange start + imap len) blocks from dest at
793 * offset (drange start).
794 * - If imap points to a real range of pblks,
795 * > Increase the refcount of the imap's pblks
796 * > Map imap's pblks into dest at the offset
797 * (drange start + imap start - srange start)
798 * - Advance drange and srange by (imap start - srange start + imap len)
799 *
800 * Finally, if the reflink made dest longer, update both the in-core and
801 * on-disk file sizes.
802 *
803 * ASCII Art Demonstration:
804 *
805 * Let's say we want to reflink this source file:
806 *
807 * ----SSSSSSS-SSSSS----SSSSSS (src file)
808 * <-------------------->
809 *
810 * into this destination file:
811 *
812 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
813 * <-------------------->
814 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
815 * Observe that the range has different logical offsets in either file.
816 *
817 * Consider that the first extent in the source file doesn't line up with our
818 * reflink range. Unmapping and remapping are separate operations, so we can
819 * unmap more blocks from the destination file than we remap.
820 *
821 * ----SSSSSSS-SSSSS----SSSSSS
822 * <------->
823 * --DDDDD---------DDDDD--DDD
824 * <------->
825 *
826 * Now remap the source extent into the destination file:
827 *
828 * ----SSSSSSS-SSSSS----SSSSSS
829 * <------->
830 * --DDDDD--SSSSSSSDDDDD--DDD
831 * <------->
832 *
833 * Do likewise with the second hole and extent in our range. Holes in the
834 * unmap range don't affect our operation.
835 *
836 * ----SSSSSSS-SSSSS----SSSSSS
837 * <---->
838 * --DDDDD--SSSSSSS-SSSSS-DDD
839 * <---->
840 *
841 * Finally, unmap and remap part of the third extent. This will increase the
842 * size of the destination file.
843 *
844 * ----SSSSSSS-SSSSS----SSSSSS
845 * <----->
846 * --DDDDD--SSSSSSS-SSSSS----SSS
847 * <----->
848 *
849 * Once we update the destination file's i_size, we're done.
850 */
851
852/*
853 * Ensure the reflink bit is set in both inodes.
854 */
855STATIC int
856xfs_reflink_set_inode_flag(
857 struct xfs_inode *src,
858 struct xfs_inode *dest)
859{
860 struct xfs_mount *mp = src->i_mount;
861 int error;
862 struct xfs_trans *tp;
863
864 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
865 return 0;
866
867 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
868 if (error)
869 goto out_error;
870
871 /* Lock both files against IO */
872 if (src->i_ino == dest->i_ino)
873 xfs_ilock(src, XFS_ILOCK_EXCL);
874 else
875 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
876
877 if (!xfs_is_reflink_inode(src)) {
878 trace_xfs_reflink_set_inode_flag(src);
879 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
880 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
881 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
882 xfs_ifork_init_cow(src);
883 } else
884 xfs_iunlock(src, XFS_ILOCK_EXCL);
885
886 if (src->i_ino == dest->i_ino)
887 goto commit_flags;
888
889 if (!xfs_is_reflink_inode(dest)) {
890 trace_xfs_reflink_set_inode_flag(dest);
891 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
892 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
893 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
894 xfs_ifork_init_cow(dest);
895 } else
896 xfs_iunlock(dest, XFS_ILOCK_EXCL);
897
898commit_flags:
899 error = xfs_trans_commit(tp);
900 if (error)
901 goto out_error;
902 return error;
903
904out_error:
905 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
906 return error;
907}
908
909/*
910 * Update destination inode size & cowextsize hint, if necessary.
911 */
912int
913xfs_reflink_update_dest(
914 struct xfs_inode *dest,
915 xfs_off_t newlen,
916 xfs_extlen_t cowextsize,
917 unsigned int remap_flags)
918{
919 struct xfs_mount *mp = dest->i_mount;
920 struct xfs_trans *tp;
921 int error;
922
923 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
924 return 0;
925
926 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
927 if (error)
928 goto out_error;
929
930 xfs_ilock(dest, XFS_ILOCK_EXCL);
931 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
932
933 if (newlen > i_size_read(VFS_I(dest))) {
934 trace_xfs_reflink_update_inode_size(dest, newlen);
935 i_size_write(VFS_I(dest), newlen);
936 dest->i_disk_size = newlen;
937 }
938
939 if (cowextsize) {
940 dest->i_cowextsize = cowextsize;
941 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
942 }
943
944 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
945
946 error = xfs_trans_commit(tp);
947 if (error)
948 goto out_error;
949 return error;
950
951out_error:
952 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
953 return error;
954}
955
956/*
957 * Do we have enough reserve in this AG to handle a reflink? The refcount
958 * btree already reserved all the space it needs, but the rmap btree can grow
959 * infinitely, so we won't allow more reflinks when the AG is down to the
960 * btree reserves.
961 */
962static int
963xfs_reflink_ag_has_free_space(
964 struct xfs_mount *mp,
965 xfs_agnumber_t agno)
966{
967 struct xfs_perag *pag;
968 int error = 0;
969
970 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
971 return 0;
972
973 pag = xfs_perag_get(mp, agno);
974 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
975 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
976 error = -ENOSPC;
977 xfs_perag_put(pag);
978 return error;
979}
980
981/*
982 * Remap the given extent into the file. The dmap blockcount will be set to
983 * the number of blocks that were actually remapped.
984 */
985STATIC int
986xfs_reflink_remap_extent(
987 struct xfs_inode *ip,
988 struct xfs_bmbt_irec *dmap,
989 xfs_off_t new_isize)
990{
991 struct xfs_bmbt_irec smap;
992 struct xfs_mount *mp = ip->i_mount;
993 struct xfs_trans *tp;
994 xfs_off_t newlen;
995 int64_t qdelta = 0;
996 unsigned int resblks;
997 bool quota_reserved = true;
998 bool smap_real;
999 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1000 int iext_delta = 0;
1001 int nimaps;
1002 int error;
1003
1004 /*
1005 * Start a rolling transaction to switch the mappings.
1006 *
1007 * Adding a written extent to the extent map can cause a bmbt split,
1008 * and removing a mapped extent from the extent can cause a bmbt split.
1009 * The two operations cannot both cause a split since they operate on
1010 * the same index in the bmap btree, so we only need a reservation for
1011 * one bmbt split if either thing is happening. However, we haven't
1012 * locked the inode yet, so we reserve assuming this is the case.
1013 *
1014 * The first allocation call tries to reserve enough space to handle
1015 * mapping dmap into a sparse part of the file plus the bmbt split. We
1016 * haven't locked the inode or read the existing mapping yet, so we do
1017 * not know for sure that we need the space. This should succeed most
1018 * of the time.
1019 *
1020 * If the first attempt fails, try again but reserving only enough
1021 * space to handle a bmbt split. This is the hard minimum requirement,
1022 * and we revisit quota reservations later when we know more about what
1023 * we're remapping.
1024 */
1025 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1026 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1027 resblks + dmap->br_blockcount, 0, false, &tp);
1028 if (error == -EDQUOT || error == -ENOSPC) {
1029 quota_reserved = false;
1030 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1031 resblks, 0, false, &tp);
1032 }
1033 if (error)
1034 goto out;
1035
1036 /*
1037 * Read what's currently mapped in the destination file into smap.
1038 * If smap isn't a hole, we will have to remove it before we can add
1039 * dmap to the destination file.
1040 */
1041 nimaps = 1;
1042 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1043 &smap, &nimaps, 0);
1044 if (error)
1045 goto out_cancel;
1046 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1047 smap_real = xfs_bmap_is_real_extent(&smap);
1048
1049 /*
1050 * We can only remap as many blocks as the smaller of the two extent
1051 * maps, because we can only remap one extent at a time.
1052 */
1053 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1054 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1055
1056 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1057
1058 /*
1059 * Two extents mapped to the same physical block must not have
1060 * different states; that's filesystem corruption. Move on to the next
1061 * extent if they're both holes or both the same physical extent.
1062 */
1063 if (dmap->br_startblock == smap.br_startblock) {
1064 if (dmap->br_state != smap.br_state)
1065 error = -EFSCORRUPTED;
1066 goto out_cancel;
1067 }
1068
1069 /* If both extents are unwritten, leave them alone. */
1070 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1071 smap.br_state == XFS_EXT_UNWRITTEN)
1072 goto out_cancel;
1073
1074 /* No reflinking if the AG of the dest mapping is low on space. */
1075 if (dmap_written) {
1076 error = xfs_reflink_ag_has_free_space(mp,
1077 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1078 if (error)
1079 goto out_cancel;
1080 }
1081
1082 /*
1083 * Increase quota reservation if we think the quota block counter for
1084 * this file could increase.
1085 *
1086 * If we are mapping a written extent into the file, we need to have
1087 * enough quota block count reservation to handle the blocks in that
1088 * extent. We log only the delta to the quota block counts, so if the
1089 * extent we're unmapping also has blocks allocated to it, we don't
1090 * need a quota reservation for the extent itself.
1091 *
1092 * Note that if we're replacing a delalloc reservation with a written
1093 * extent, we have to take the full quota reservation because removing
1094 * the delalloc reservation gives the block count back to the quota
1095 * count. This is suboptimal, but the VFS flushed the dest range
1096 * before we started. That should have removed all the delalloc
1097 * reservations, but we code defensively.
1098 *
1099 * xfs_trans_alloc_inode above already tried to grab an even larger
1100 * quota reservation, and kicked off a blockgc scan if it couldn't.
1101 * If we can't get a potentially smaller quota reservation now, we're
1102 * done.
1103 */
1104 if (!quota_reserved && !smap_real && dmap_written) {
1105 error = xfs_trans_reserve_quota_nblks(tp, ip,
1106 dmap->br_blockcount, 0, false);
1107 if (error)
1108 goto out_cancel;
1109 }
1110
1111 if (smap_real)
1112 ++iext_delta;
1113
1114 if (dmap_written)
1115 ++iext_delta;
1116
1117 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1118 if (error)
1119 goto out_cancel;
1120
1121 if (smap_real) {
1122 /*
1123 * If the extent we're unmapping is backed by storage (written
1124 * or not), unmap the extent and drop its refcount.
1125 */
1126 xfs_bmap_unmap_extent(tp, ip, &smap);
1127 xfs_refcount_decrease_extent(tp, &smap);
1128 qdelta -= smap.br_blockcount;
1129 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1130 xfs_filblks_t len = smap.br_blockcount;
1131
1132 /*
1133 * If the extent we're unmapping is a delalloc reservation,
1134 * we can use the regular bunmapi function to release the
1135 * incore state. Dropping the delalloc reservation takes care
1136 * of the quota reservation for us.
1137 */
1138 error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1139 if (error)
1140 goto out_cancel;
1141 ASSERT(len == 0);
1142 }
1143
1144 /*
1145 * If the extent we're sharing is backed by written storage, increase
1146 * its refcount and map it into the file.
1147 */
1148 if (dmap_written) {
1149 xfs_refcount_increase_extent(tp, dmap);
1150 xfs_bmap_map_extent(tp, ip, dmap);
1151 qdelta += dmap->br_blockcount;
1152 }
1153
1154 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1155
1156 /* Update dest isize if needed. */
1157 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1158 newlen = min_t(xfs_off_t, newlen, new_isize);
1159 if (newlen > i_size_read(VFS_I(ip))) {
1160 trace_xfs_reflink_update_inode_size(ip, newlen);
1161 i_size_write(VFS_I(ip), newlen);
1162 ip->i_disk_size = newlen;
1163 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1164 }
1165
1166 /* Commit everything and unlock. */
1167 error = xfs_trans_commit(tp);
1168 goto out_unlock;
1169
1170out_cancel:
1171 xfs_trans_cancel(tp);
1172out_unlock:
1173 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1174out:
1175 if (error)
1176 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1177 return error;
1178}
1179
1180/* Remap a range of one file to the other. */
1181int
1182xfs_reflink_remap_blocks(
1183 struct xfs_inode *src,
1184 loff_t pos_in,
1185 struct xfs_inode *dest,
1186 loff_t pos_out,
1187 loff_t remap_len,
1188 loff_t *remapped)
1189{
1190 struct xfs_bmbt_irec imap;
1191 struct xfs_mount *mp = src->i_mount;
1192 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1193 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1194 xfs_filblks_t len;
1195 xfs_filblks_t remapped_len = 0;
1196 xfs_off_t new_isize = pos_out + remap_len;
1197 int nimaps;
1198 int error = 0;
1199
1200 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1201 XFS_MAX_FILEOFF);
1202
1203 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1204
1205 while (len > 0) {
1206 unsigned int lock_mode;
1207
1208 /* Read extent from the source file */
1209 nimaps = 1;
1210 lock_mode = xfs_ilock_data_map_shared(src);
1211 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1212 xfs_iunlock(src, lock_mode);
1213 if (error)
1214 break;
1215 /*
1216 * The caller supposedly flushed all dirty pages in the source
1217 * file range, which means that writeback should have allocated
1218 * or deleted all delalloc reservations in that range. If we
1219 * find one, that's a good sign that something is seriously
1220 * wrong here.
1221 */
1222 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1223 if (imap.br_startblock == DELAYSTARTBLOCK) {
1224 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1225 error = -EFSCORRUPTED;
1226 break;
1227 }
1228
1229 trace_xfs_reflink_remap_extent_src(src, &imap);
1230
1231 /* Remap into the destination file at the given offset. */
1232 imap.br_startoff = destoff;
1233 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1234 if (error)
1235 break;
1236
1237 if (fatal_signal_pending(current)) {
1238 error = -EINTR;
1239 break;
1240 }
1241
1242 /* Advance drange/srange */
1243 srcoff += imap.br_blockcount;
1244 destoff += imap.br_blockcount;
1245 len -= imap.br_blockcount;
1246 remapped_len += imap.br_blockcount;
1247 }
1248
1249 if (error)
1250 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1251 *remapped = min_t(loff_t, remap_len,
1252 XFS_FSB_TO_B(src->i_mount, remapped_len));
1253 return error;
1254}
1255
1256/*
1257 * If we're reflinking to a point past the destination file's EOF, we must
1258 * zero any speculative post-EOF preallocations that sit between the old EOF
1259 * and the destination file offset.
1260 */
1261static int
1262xfs_reflink_zero_posteof(
1263 struct xfs_inode *ip,
1264 loff_t pos)
1265{
1266 loff_t isize = i_size_read(VFS_I(ip));
1267
1268 if (pos <= isize)
1269 return 0;
1270
1271 trace_xfs_zero_eof(ip, isize, pos - isize);
1272 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1273 &xfs_buffered_write_iomap_ops);
1274}
1275
1276/*
1277 * Prepare two files for range cloning. Upon a successful return both inodes
1278 * will have the iolock and mmaplock held, the page cache of the out file will
1279 * be truncated, and any leases on the out file will have been broken. This
1280 * function borrows heavily from xfs_file_aio_write_checks.
1281 *
1282 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1283 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1284 * EOF block in the source dedupe range because it's not a complete block match,
1285 * hence can introduce a corruption into the file that has it's block replaced.
1286 *
1287 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1288 * "block aligned" for the purposes of cloning entire files. However, if the
1289 * source file range includes the EOF block and it lands within the existing EOF
1290 * of the destination file, then we can expose stale data from beyond the source
1291 * file EOF in the destination file.
1292 *
1293 * XFS doesn't support partial block sharing, so in both cases we have check
1294 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1295 * down to the previous whole block and ignore the partial EOF block. While this
1296 * means we can't dedupe the last block of a file, this is an acceptible
1297 * tradeoff for simplicity on implementation.
1298 *
1299 * For cloning, we want to share the partial EOF block if it is also the new EOF
1300 * block of the destination file. If the partial EOF block lies inside the
1301 * existing destination EOF, then we have to abort the clone to avoid exposing
1302 * stale data in the destination file. Hence we reject these clone attempts with
1303 * -EINVAL in this case.
1304 */
1305int
1306xfs_reflink_remap_prep(
1307 struct file *file_in,
1308 loff_t pos_in,
1309 struct file *file_out,
1310 loff_t pos_out,
1311 loff_t *len,
1312 unsigned int remap_flags)
1313{
1314 struct inode *inode_in = file_inode(file_in);
1315 struct xfs_inode *src = XFS_I(inode_in);
1316 struct inode *inode_out = file_inode(file_out);
1317 struct xfs_inode *dest = XFS_I(inode_out);
1318 int ret;
1319
1320 /* Lock both files against IO */
1321 ret = xfs_ilock2_io_mmap(src, dest);
1322 if (ret)
1323 return ret;
1324
1325 /* Check file eligibility and prepare for block sharing. */
1326 ret = -EINVAL;
1327 /* Don't reflink realtime inodes */
1328 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1329 goto out_unlock;
1330
1331 /* Don't share DAX file data for now. */
1332 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1333 goto out_unlock;
1334
1335 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1336 len, remap_flags);
1337 if (ret || *len == 0)
1338 goto out_unlock;
1339
1340 /* Attach dquots to dest inode before changing block map */
1341 ret = xfs_qm_dqattach(dest);
1342 if (ret)
1343 goto out_unlock;
1344
1345 /*
1346 * Zero existing post-eof speculative preallocations in the destination
1347 * file.
1348 */
1349 ret = xfs_reflink_zero_posteof(dest, pos_out);
1350 if (ret)
1351 goto out_unlock;
1352
1353 /* Set flags and remap blocks. */
1354 ret = xfs_reflink_set_inode_flag(src, dest);
1355 if (ret)
1356 goto out_unlock;
1357
1358 /*
1359 * If pos_out > EOF, we may have dirtied blocks between EOF and
1360 * pos_out. In that case, we need to extend the flush and unmap to cover
1361 * from EOF to the end of the copy length.
1362 */
1363 if (pos_out > XFS_ISIZE(dest)) {
1364 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1365 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1366 } else {
1367 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1368 }
1369 if (ret)
1370 goto out_unlock;
1371
1372 return 0;
1373out_unlock:
1374 xfs_iunlock2_io_mmap(src, dest);
1375 return ret;
1376}
1377
1378/* Does this inode need the reflink flag? */
1379int
1380xfs_reflink_inode_has_shared_extents(
1381 struct xfs_trans *tp,
1382 struct xfs_inode *ip,
1383 bool *has_shared)
1384{
1385 struct xfs_bmbt_irec got;
1386 struct xfs_mount *mp = ip->i_mount;
1387 struct xfs_ifork *ifp;
1388 xfs_agnumber_t agno;
1389 xfs_agblock_t agbno;
1390 xfs_extlen_t aglen;
1391 xfs_agblock_t rbno;
1392 xfs_extlen_t rlen;
1393 struct xfs_iext_cursor icur;
1394 bool found;
1395 int error;
1396
1397 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1398 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1399 if (error)
1400 return error;
1401
1402 *has_shared = false;
1403 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1404 while (found) {
1405 if (isnullstartblock(got.br_startblock) ||
1406 got.br_state != XFS_EXT_NORM)
1407 goto next;
1408 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1409 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1410 aglen = got.br_blockcount;
1411
1412 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1413 &rbno, &rlen, false);
1414 if (error)
1415 return error;
1416 /* Is there still a shared block here? */
1417 if (rbno != NULLAGBLOCK) {
1418 *has_shared = true;
1419 return 0;
1420 }
1421next:
1422 found = xfs_iext_next_extent(ifp, &icur, &got);
1423 }
1424
1425 return 0;
1426}
1427
1428/*
1429 * Clear the inode reflink flag if there are no shared extents.
1430 *
1431 * The caller is responsible for joining the inode to the transaction passed in.
1432 * The inode will be joined to the transaction that is returned to the caller.
1433 */
1434int
1435xfs_reflink_clear_inode_flag(
1436 struct xfs_inode *ip,
1437 struct xfs_trans **tpp)
1438{
1439 bool needs_flag;
1440 int error = 0;
1441
1442 ASSERT(xfs_is_reflink_inode(ip));
1443
1444 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1445 if (error || needs_flag)
1446 return error;
1447
1448 /*
1449 * We didn't find any shared blocks so turn off the reflink flag.
1450 * First, get rid of any leftover CoW mappings.
1451 */
1452 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1453 true);
1454 if (error)
1455 return error;
1456
1457 /* Clear the inode flag. */
1458 trace_xfs_reflink_unset_inode_flag(ip);
1459 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1460 xfs_inode_clear_cowblocks_tag(ip);
1461 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1462
1463 return error;
1464}
1465
1466/*
1467 * Clear the inode reflink flag if there are no shared extents and the size
1468 * hasn't changed.
1469 */
1470STATIC int
1471xfs_reflink_try_clear_inode_flag(
1472 struct xfs_inode *ip)
1473{
1474 struct xfs_mount *mp = ip->i_mount;
1475 struct xfs_trans *tp;
1476 int error = 0;
1477
1478 /* Start a rolling transaction to remove the mappings */
1479 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1480 if (error)
1481 return error;
1482
1483 xfs_ilock(ip, XFS_ILOCK_EXCL);
1484 xfs_trans_ijoin(tp, ip, 0);
1485
1486 error = xfs_reflink_clear_inode_flag(ip, &tp);
1487 if (error)
1488 goto cancel;
1489
1490 error = xfs_trans_commit(tp);
1491 if (error)
1492 goto out;
1493
1494 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1495 return 0;
1496cancel:
1497 xfs_trans_cancel(tp);
1498out:
1499 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1500 return error;
1501}
1502
1503/*
1504 * Pre-COW all shared blocks within a given byte range of a file and turn off
1505 * the reflink flag if we unshare all of the file's blocks.
1506 */
1507int
1508xfs_reflink_unshare(
1509 struct xfs_inode *ip,
1510 xfs_off_t offset,
1511 xfs_off_t len)
1512{
1513 struct inode *inode = VFS_I(ip);
1514 int error;
1515
1516 if (!xfs_is_reflink_inode(ip))
1517 return 0;
1518
1519 trace_xfs_reflink_unshare(ip, offset, len);
1520
1521 inode_dio_wait(inode);
1522
1523 error = iomap_file_unshare(inode, offset, len,
1524 &xfs_buffered_write_iomap_ops);
1525 if (error)
1526 goto out;
1527
1528 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1529 offset + len - 1);
1530 if (error)
1531 goto out;
1532
1533 /* Turn off the reflink flag if possible. */
1534 error = xfs_reflink_try_clear_inode_flag(ip);
1535 if (error)
1536 goto out;
1537 return 0;
1538
1539out:
1540 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1541 return error;
1542}