Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_bit.h"
 13#include "xfs_mount.h"
 14#include "xfs_trans.h"
 15#include "xfs_buf_item.h"
 16#include "xfs_trans_priv.h"
 17#include "xfs_trace.h"
 18#include "xfs_log.h"
 19#include "xfs_log_priv.h"
 20#include "xfs_log_recover.h"
 21#include "xfs_error.h"
 22#include "xfs_inode.h"
 23#include "xfs_dir2.h"
 24#include "xfs_quota.h"
 25
 26/*
 27 * This structure is used during recovery to record the buf log items which
 28 * have been canceled and should not be replayed.
 29 */
 30struct xfs_buf_cancel {
 31	xfs_daddr_t		bc_blkno;
 32	uint			bc_len;
 33	int			bc_refcount;
 34	struct list_head	bc_list;
 35};
 36
 37static struct xfs_buf_cancel *
 38xlog_find_buffer_cancelled(
 39	struct xlog		*log,
 40	xfs_daddr_t		blkno,
 41	uint			len)
 42{
 43	struct list_head	*bucket;
 44	struct xfs_buf_cancel	*bcp;
 45
 46	if (!log->l_buf_cancel_table)
 47		return NULL;
 48
 49	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
 50	list_for_each_entry(bcp, bucket, bc_list) {
 51		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
 52			return bcp;
 53	}
 54
 55	return NULL;
 56}
 57
 58static bool
 59xlog_add_buffer_cancelled(
 60	struct xlog		*log,
 61	xfs_daddr_t		blkno,
 62	uint			len)
 63{
 64	struct xfs_buf_cancel	*bcp;
 65
 66	/*
 67	 * If we find an existing cancel record, this indicates that the buffer
 68	 * was cancelled multiple times.  To ensure that during pass 2 we keep
 69	 * the record in the table until we reach its last occurrence in the
 70	 * log, a reference count is kept to tell how many times we expect to
 71	 * see this record during the second pass.
 72	 */
 73	bcp = xlog_find_buffer_cancelled(log, blkno, len);
 74	if (bcp) {
 75		bcp->bc_refcount++;
 76		return false;
 77	}
 78
 79	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
 80	bcp->bc_blkno = blkno;
 81	bcp->bc_len = len;
 82	bcp->bc_refcount = 1;
 83	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
 84	return true;
 85}
 86
 87/*
 88 * Check if there is and entry for blkno, len in the buffer cancel record table.
 89 */
 90bool
 91xlog_is_buffer_cancelled(
 92	struct xlog		*log,
 93	xfs_daddr_t		blkno,
 94	uint			len)
 95{
 96	return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
 97}
 98
 99/*
100 * Check if there is and entry for blkno, len in the buffer cancel record table,
101 * and decremented the reference count on it if there is one.
102 *
103 * Remove the cancel record once the refcount hits zero, so that if the same
104 * buffer is re-used again after its last cancellation we actually replay the
105 * changes made at that point.
106 */
107static bool
108xlog_put_buffer_cancelled(
109	struct xlog		*log,
110	xfs_daddr_t		blkno,
111	uint			len)
112{
113	struct xfs_buf_cancel	*bcp;
114
115	bcp = xlog_find_buffer_cancelled(log, blkno, len);
116	if (!bcp) {
117		ASSERT(0);
118		return false;
119	}
120
121	if (--bcp->bc_refcount == 0) {
122		list_del(&bcp->bc_list);
123		kmem_free(bcp);
124	}
125	return true;
126}
127
128/* log buffer item recovery */
129
130/*
131 * Sort buffer items for log recovery.  Most buffer items should end up on the
132 * buffer list and are recovered first, with the following exceptions:
133 *
134 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
135 *    might depend on the incor ecancellation record, and replaying a cancelled
136 *    buffer item can remove the incore record.
137 *
138 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
139 *    we replay di_next_unlinked only after flushing the inode 'free' state
140 *    to the inode buffer.
141 *
142 * See xlog_recover_reorder_trans for more details.
143 */
144STATIC enum xlog_recover_reorder
145xlog_recover_buf_reorder(
146	struct xlog_recover_item	*item)
147{
148	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
149
150	if (buf_f->blf_flags & XFS_BLF_CANCEL)
151		return XLOG_REORDER_CANCEL_LIST;
152	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
153		return XLOG_REORDER_INODE_BUFFER_LIST;
154	return XLOG_REORDER_BUFFER_LIST;
155}
156
157STATIC void
158xlog_recover_buf_ra_pass2(
159	struct xlog                     *log,
160	struct xlog_recover_item        *item)
161{
162	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
163
164	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
165}
166
167/*
168 * Build up the table of buf cancel records so that we don't replay cancelled
169 * data in the second pass.
170 */
171static int
172xlog_recover_buf_commit_pass1(
173	struct xlog			*log,
174	struct xlog_recover_item	*item)
175{
176	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr;
177
178	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
179		xfs_err(log->l_mp, "bad buffer log item size (%d)",
180				item->ri_buf[0].i_len);
181		return -EFSCORRUPTED;
182	}
183
184	if (!(bf->blf_flags & XFS_BLF_CANCEL))
185		trace_xfs_log_recover_buf_not_cancel(log, bf);
186	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
187		trace_xfs_log_recover_buf_cancel_add(log, bf);
188	else
189		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
190	return 0;
191}
192
193/*
194 * Validate the recovered buffer is of the correct type and attach the
195 * appropriate buffer operations to them for writeback. Magic numbers are in a
196 * few places:
197 *	the first 16 bits of the buffer (inode buffer, dquot buffer),
198 *	the first 32 bits of the buffer (most blocks),
199 *	inside a struct xfs_da_blkinfo at the start of the buffer.
200 */
201static void
202xlog_recover_validate_buf_type(
203	struct xfs_mount		*mp,
204	struct xfs_buf			*bp,
205	struct xfs_buf_log_format	*buf_f,
206	xfs_lsn_t			current_lsn)
207{
208	struct xfs_da_blkinfo		*info = bp->b_addr;
209	uint32_t			magic32;
210	uint16_t			magic16;
211	uint16_t			magicda;
212	char				*warnmsg = NULL;
213
214	/*
215	 * We can only do post recovery validation on items on CRC enabled
216	 * fielsystems as we need to know when the buffer was written to be able
217	 * to determine if we should have replayed the item. If we replay old
218	 * metadata over a newer buffer, then it will enter a temporarily
219	 * inconsistent state resulting in verification failures. Hence for now
220	 * just avoid the verification stage for non-crc filesystems
221	 */
222	if (!xfs_sb_version_hascrc(&mp->m_sb))
223		return;
224
225	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
226	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
227	magicda = be16_to_cpu(info->magic);
228	switch (xfs_blft_from_flags(buf_f)) {
229	case XFS_BLFT_BTREE_BUF:
230		switch (magic32) {
231		case XFS_ABTB_CRC_MAGIC:
232		case XFS_ABTB_MAGIC:
233			bp->b_ops = &xfs_bnobt_buf_ops;
234			break;
235		case XFS_ABTC_CRC_MAGIC:
236		case XFS_ABTC_MAGIC:
237			bp->b_ops = &xfs_cntbt_buf_ops;
238			break;
239		case XFS_IBT_CRC_MAGIC:
240		case XFS_IBT_MAGIC:
241			bp->b_ops = &xfs_inobt_buf_ops;
242			break;
243		case XFS_FIBT_CRC_MAGIC:
244		case XFS_FIBT_MAGIC:
245			bp->b_ops = &xfs_finobt_buf_ops;
246			break;
247		case XFS_BMAP_CRC_MAGIC:
248		case XFS_BMAP_MAGIC:
249			bp->b_ops = &xfs_bmbt_buf_ops;
250			break;
251		case XFS_RMAP_CRC_MAGIC:
252			bp->b_ops = &xfs_rmapbt_buf_ops;
253			break;
254		case XFS_REFC_CRC_MAGIC:
255			bp->b_ops = &xfs_refcountbt_buf_ops;
256			break;
257		default:
258			warnmsg = "Bad btree block magic!";
259			break;
260		}
261		break;
262	case XFS_BLFT_AGF_BUF:
263		if (magic32 != XFS_AGF_MAGIC) {
264			warnmsg = "Bad AGF block magic!";
265			break;
266		}
267		bp->b_ops = &xfs_agf_buf_ops;
268		break;
269	case XFS_BLFT_AGFL_BUF:
270		if (magic32 != XFS_AGFL_MAGIC) {
271			warnmsg = "Bad AGFL block magic!";
272			break;
273		}
274		bp->b_ops = &xfs_agfl_buf_ops;
275		break;
276	case XFS_BLFT_AGI_BUF:
277		if (magic32 != XFS_AGI_MAGIC) {
278			warnmsg = "Bad AGI block magic!";
279			break;
280		}
281		bp->b_ops = &xfs_agi_buf_ops;
282		break;
283	case XFS_BLFT_UDQUOT_BUF:
284	case XFS_BLFT_PDQUOT_BUF:
285	case XFS_BLFT_GDQUOT_BUF:
286#ifdef CONFIG_XFS_QUOTA
287		if (magic16 != XFS_DQUOT_MAGIC) {
288			warnmsg = "Bad DQUOT block magic!";
289			break;
290		}
291		bp->b_ops = &xfs_dquot_buf_ops;
292#else
293		xfs_alert(mp,
294	"Trying to recover dquots without QUOTA support built in!");
295		ASSERT(0);
296#endif
297		break;
298	case XFS_BLFT_DINO_BUF:
299		if (magic16 != XFS_DINODE_MAGIC) {
300			warnmsg = "Bad INODE block magic!";
301			break;
302		}
303		bp->b_ops = &xfs_inode_buf_ops;
304		break;
305	case XFS_BLFT_SYMLINK_BUF:
306		if (magic32 != XFS_SYMLINK_MAGIC) {
307			warnmsg = "Bad symlink block magic!";
308			break;
309		}
310		bp->b_ops = &xfs_symlink_buf_ops;
311		break;
312	case XFS_BLFT_DIR_BLOCK_BUF:
313		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
314		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
315			warnmsg = "Bad dir block magic!";
316			break;
317		}
318		bp->b_ops = &xfs_dir3_block_buf_ops;
319		break;
320	case XFS_BLFT_DIR_DATA_BUF:
321		if (magic32 != XFS_DIR2_DATA_MAGIC &&
322		    magic32 != XFS_DIR3_DATA_MAGIC) {
323			warnmsg = "Bad dir data magic!";
324			break;
325		}
326		bp->b_ops = &xfs_dir3_data_buf_ops;
327		break;
328	case XFS_BLFT_DIR_FREE_BUF:
329		if (magic32 != XFS_DIR2_FREE_MAGIC &&
330		    magic32 != XFS_DIR3_FREE_MAGIC) {
331			warnmsg = "Bad dir3 free magic!";
332			break;
333		}
334		bp->b_ops = &xfs_dir3_free_buf_ops;
335		break;
336	case XFS_BLFT_DIR_LEAF1_BUF:
337		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
338		    magicda != XFS_DIR3_LEAF1_MAGIC) {
339			warnmsg = "Bad dir leaf1 magic!";
340			break;
341		}
342		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
343		break;
344	case XFS_BLFT_DIR_LEAFN_BUF:
345		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
346		    magicda != XFS_DIR3_LEAFN_MAGIC) {
347			warnmsg = "Bad dir leafn magic!";
348			break;
349		}
350		bp->b_ops = &xfs_dir3_leafn_buf_ops;
351		break;
352	case XFS_BLFT_DA_NODE_BUF:
353		if (magicda != XFS_DA_NODE_MAGIC &&
354		    magicda != XFS_DA3_NODE_MAGIC) {
355			warnmsg = "Bad da node magic!";
356			break;
357		}
358		bp->b_ops = &xfs_da3_node_buf_ops;
359		break;
360	case XFS_BLFT_ATTR_LEAF_BUF:
361		if (magicda != XFS_ATTR_LEAF_MAGIC &&
362		    magicda != XFS_ATTR3_LEAF_MAGIC) {
363			warnmsg = "Bad attr leaf magic!";
364			break;
365		}
366		bp->b_ops = &xfs_attr3_leaf_buf_ops;
367		break;
368	case XFS_BLFT_ATTR_RMT_BUF:
369		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
370			warnmsg = "Bad attr remote magic!";
371			break;
372		}
373		bp->b_ops = &xfs_attr3_rmt_buf_ops;
374		break;
375	case XFS_BLFT_SB_BUF:
376		if (magic32 != XFS_SB_MAGIC) {
377			warnmsg = "Bad SB block magic!";
378			break;
379		}
380		bp->b_ops = &xfs_sb_buf_ops;
381		break;
382#ifdef CONFIG_XFS_RT
383	case XFS_BLFT_RTBITMAP_BUF:
384	case XFS_BLFT_RTSUMMARY_BUF:
385		/* no magic numbers for verification of RT buffers */
386		bp->b_ops = &xfs_rtbuf_ops;
387		break;
388#endif /* CONFIG_XFS_RT */
389	default:
390		xfs_warn(mp, "Unknown buffer type %d!",
391			 xfs_blft_from_flags(buf_f));
392		break;
393	}
394
395	/*
396	 * Nothing else to do in the case of a NULL current LSN as this means
397	 * the buffer is more recent than the change in the log and will be
398	 * skipped.
399	 */
400	if (current_lsn == NULLCOMMITLSN)
401		return;
402
403	if (warnmsg) {
404		xfs_warn(mp, warnmsg);
405		ASSERT(0);
406	}
407
408	/*
409	 * We must update the metadata LSN of the buffer as it is written out to
410	 * ensure that older transactions never replay over this one and corrupt
411	 * the buffer. This can occur if log recovery is interrupted at some
412	 * point after the current transaction completes, at which point a
413	 * subsequent mount starts recovery from the beginning.
414	 *
415	 * Write verifiers update the metadata LSN from log items attached to
416	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
417	 * the verifier.
418	 */
419	if (bp->b_ops) {
420		struct xfs_buf_log_item	*bip;
421
422		bp->b_flags |= _XBF_LOGRECOVERY;
423		xfs_buf_item_init(bp, mp);
424		bip = bp->b_log_item;
425		bip->bli_item.li_lsn = current_lsn;
426	}
427}
428
429/*
430 * Perform a 'normal' buffer recovery.  Each logged region of the
431 * buffer should be copied over the corresponding region in the
432 * given buffer.  The bitmap in the buf log format structure indicates
433 * where to place the logged data.
434 */
435STATIC void
436xlog_recover_do_reg_buffer(
437	struct xfs_mount		*mp,
438	struct xlog_recover_item	*item,
439	struct xfs_buf			*bp,
440	struct xfs_buf_log_format	*buf_f,
441	xfs_lsn_t			current_lsn)
442{
443	int			i;
444	int			bit;
445	int			nbits;
446	xfs_failaddr_t		fa;
447	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
448
449	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
450
451	bit = 0;
452	i = 1;  /* 0 is the buf format structure */
453	while (1) {
454		bit = xfs_next_bit(buf_f->blf_data_map,
455				   buf_f->blf_map_size, bit);
456		if (bit == -1)
457			break;
458		nbits = xfs_contig_bits(buf_f->blf_data_map,
459					buf_f->blf_map_size, bit);
460		ASSERT(nbits > 0);
461		ASSERT(item->ri_buf[i].i_addr != NULL);
462		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
463		ASSERT(BBTOB(bp->b_length) >=
464		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
465
466		/*
467		 * The dirty regions logged in the buffer, even though
468		 * contiguous, may span multiple chunks. This is because the
469		 * dirty region may span a physical page boundary in a buffer
470		 * and hence be split into two separate vectors for writing into
471		 * the log. Hence we need to trim nbits back to the length of
472		 * the current region being copied out of the log.
473		 */
474		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
475			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
476
477		/*
478		 * Do a sanity check if this is a dquot buffer. Just checking
479		 * the first dquot in the buffer should do. XXXThis is
480		 * probably a good thing to do for other buf types also.
481		 */
482		fa = NULL;
483		if (buf_f->blf_flags &
484		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
485			if (item->ri_buf[i].i_addr == NULL) {
486				xfs_alert(mp,
487					"XFS: NULL dquot in %s.", __func__);
488				goto next;
489			}
490			if (item->ri_buf[i].i_len < size_disk_dquot) {
491				xfs_alert(mp,
492					"XFS: dquot too small (%d) in %s.",
493					item->ri_buf[i].i_len, __func__);
494				goto next;
495			}
496			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
497			if (fa) {
498				xfs_alert(mp,
499	"dquot corrupt at %pS trying to replay into block 0x%llx",
500					fa, bp->b_bn);
501				goto next;
502			}
503		}
504
505		memcpy(xfs_buf_offset(bp,
506			(uint)bit << XFS_BLF_SHIFT),	/* dest */
507			item->ri_buf[i].i_addr,		/* source */
508			nbits<<XFS_BLF_SHIFT);		/* length */
509 next:
510		i++;
511		bit += nbits;
512	}
513
514	/* Shouldn't be any more regions */
515	ASSERT(i == item->ri_total);
516
517	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
518}
519
520/*
521 * Perform a dquot buffer recovery.
522 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
523 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
524 * Else, treat it as a regular buffer and do recovery.
525 *
526 * Return false if the buffer was tossed and true if we recovered the buffer to
527 * indicate to the caller if the buffer needs writing.
528 */
529STATIC bool
530xlog_recover_do_dquot_buffer(
531	struct xfs_mount		*mp,
532	struct xlog			*log,
533	struct xlog_recover_item	*item,
534	struct xfs_buf			*bp,
535	struct xfs_buf_log_format	*buf_f)
536{
537	uint			type;
538
539	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
540
541	/*
542	 * Filesystems are required to send in quota flags at mount time.
543	 */
544	if (!mp->m_qflags)
545		return false;
546
547	type = 0;
548	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
549		type |= XFS_DQTYPE_USER;
550	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
551		type |= XFS_DQTYPE_PROJ;
552	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
553		type |= XFS_DQTYPE_GROUP;
554	/*
555	 * This type of quotas was turned off, so ignore this buffer
556	 */
557	if (log->l_quotaoffs_flag & type)
558		return false;
559
560	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
561	return true;
562}
563
564/*
565 * Perform recovery for a buffer full of inodes.  In these buffers, the only
566 * data which should be recovered is that which corresponds to the
567 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
568 * data for the inodes is always logged through the inodes themselves rather
569 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
570 *
571 * The only time when buffers full of inodes are fully recovered is when the
572 * buffer is full of newly allocated inodes.  In this case the buffer will
573 * not be marked as an inode buffer and so will be sent to
574 * xlog_recover_do_reg_buffer() below during recovery.
575 */
576STATIC int
577xlog_recover_do_inode_buffer(
578	struct xfs_mount		*mp,
579	struct xlog_recover_item	*item,
580	struct xfs_buf			*bp,
581	struct xfs_buf_log_format	*buf_f)
582{
583	int				i;
584	int				item_index = 0;
585	int				bit = 0;
586	int				nbits = 0;
587	int				reg_buf_offset = 0;
588	int				reg_buf_bytes = 0;
589	int				next_unlinked_offset;
590	int				inodes_per_buf;
591	xfs_agino_t			*logged_nextp;
592	xfs_agino_t			*buffer_nextp;
593
594	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
595
596	/*
597	 * Post recovery validation only works properly on CRC enabled
598	 * filesystems.
599	 */
600	if (xfs_sb_version_hascrc(&mp->m_sb))
601		bp->b_ops = &xfs_inode_buf_ops;
602
603	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
604	for (i = 0; i < inodes_per_buf; i++) {
605		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
606			offsetof(xfs_dinode_t, di_next_unlinked);
607
608		while (next_unlinked_offset >=
609		       (reg_buf_offset + reg_buf_bytes)) {
610			/*
611			 * The next di_next_unlinked field is beyond
612			 * the current logged region.  Find the next
613			 * logged region that contains or is beyond
614			 * the current di_next_unlinked field.
615			 */
616			bit += nbits;
617			bit = xfs_next_bit(buf_f->blf_data_map,
618					   buf_f->blf_map_size, bit);
619
620			/*
621			 * If there are no more logged regions in the
622			 * buffer, then we're done.
623			 */
624			if (bit == -1)
625				return 0;
626
627			nbits = xfs_contig_bits(buf_f->blf_data_map,
628						buf_f->blf_map_size, bit);
629			ASSERT(nbits > 0);
630			reg_buf_offset = bit << XFS_BLF_SHIFT;
631			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
632			item_index++;
633		}
634
635		/*
636		 * If the current logged region starts after the current
637		 * di_next_unlinked field, then move on to the next
638		 * di_next_unlinked field.
639		 */
640		if (next_unlinked_offset < reg_buf_offset)
641			continue;
642
643		ASSERT(item->ri_buf[item_index].i_addr != NULL);
644		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
645		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
646
647		/*
648		 * The current logged region contains a copy of the
649		 * current di_next_unlinked field.  Extract its value
650		 * and copy it to the buffer copy.
651		 */
652		logged_nextp = item->ri_buf[item_index].i_addr +
653				next_unlinked_offset - reg_buf_offset;
654		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
655			xfs_alert(mp,
656		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
657		"Trying to replay bad (0) inode di_next_unlinked field.",
658				item, bp);
659			return -EFSCORRUPTED;
660		}
661
662		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
663		*buffer_nextp = *logged_nextp;
664
665		/*
666		 * If necessary, recalculate the CRC in the on-disk inode. We
667		 * have to leave the inode in a consistent state for whoever
668		 * reads it next....
669		 */
670		xfs_dinode_calc_crc(mp,
671				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
672
673	}
674
675	return 0;
676}
677
678/*
679 * V5 filesystems know the age of the buffer on disk being recovered. We can
680 * have newer objects on disk than we are replaying, and so for these cases we
681 * don't want to replay the current change as that will make the buffer contents
682 * temporarily invalid on disk.
683 *
684 * The magic number might not match the buffer type we are going to recover
685 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
686 * extract the LSN of the existing object in the buffer based on it's current
687 * magic number.  If we don't recognise the magic number in the buffer, then
688 * return a LSN of -1 so that the caller knows it was an unrecognised block and
689 * so can recover the buffer.
690 *
691 * Note: we cannot rely solely on magic number matches to determine that the
692 * buffer has a valid LSN - we also need to verify that it belongs to this
693 * filesystem, so we need to extract the object's LSN and compare it to that
694 * which we read from the superblock. If the UUIDs don't match, then we've got a
695 * stale metadata block from an old filesystem instance that we need to recover
696 * over the top of.
697 */
698static xfs_lsn_t
699xlog_recover_get_buf_lsn(
700	struct xfs_mount	*mp,
701	struct xfs_buf		*bp,
702	struct xfs_buf_log_format *buf_f)
703{
704	uint32_t		magic32;
705	uint16_t		magic16;
706	uint16_t		magicda;
707	void			*blk = bp->b_addr;
708	uuid_t			*uuid;
709	xfs_lsn_t		lsn = -1;
710	uint16_t		blft;
711
712	/* v4 filesystems always recover immediately */
713	if (!xfs_sb_version_hascrc(&mp->m_sb))
714		goto recover_immediately;
715
716	/*
717	 * realtime bitmap and summary file blocks do not have magic numbers or
718	 * UUIDs, so we must recover them immediately.
719	 */
720	blft = xfs_blft_from_flags(buf_f);
721	if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
722		goto recover_immediately;
723
724	magic32 = be32_to_cpu(*(__be32 *)blk);
725	switch (magic32) {
726	case XFS_ABTB_CRC_MAGIC:
727	case XFS_ABTC_CRC_MAGIC:
728	case XFS_ABTB_MAGIC:
729	case XFS_ABTC_MAGIC:
730	case XFS_RMAP_CRC_MAGIC:
731	case XFS_REFC_CRC_MAGIC:
732	case XFS_FIBT_CRC_MAGIC:
733	case XFS_FIBT_MAGIC:
734	case XFS_IBT_CRC_MAGIC:
735	case XFS_IBT_MAGIC: {
736		struct xfs_btree_block *btb = blk;
737
738		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
739		uuid = &btb->bb_u.s.bb_uuid;
740		break;
741	}
742	case XFS_BMAP_CRC_MAGIC:
743	case XFS_BMAP_MAGIC: {
744		struct xfs_btree_block *btb = blk;
745
746		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
747		uuid = &btb->bb_u.l.bb_uuid;
748		break;
749	}
750	case XFS_AGF_MAGIC:
751		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
752		uuid = &((struct xfs_agf *)blk)->agf_uuid;
753		break;
754	case XFS_AGFL_MAGIC:
755		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
756		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
757		break;
758	case XFS_AGI_MAGIC:
759		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
760		uuid = &((struct xfs_agi *)blk)->agi_uuid;
761		break;
762	case XFS_SYMLINK_MAGIC:
763		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
764		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
765		break;
766	case XFS_DIR3_BLOCK_MAGIC:
767	case XFS_DIR3_DATA_MAGIC:
768	case XFS_DIR3_FREE_MAGIC:
769		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
770		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
771		break;
772	case XFS_ATTR3_RMT_MAGIC:
773		/*
774		 * Remote attr blocks are written synchronously, rather than
775		 * being logged. That means they do not contain a valid LSN
776		 * (i.e. transactionally ordered) in them, and hence any time we
777		 * see a buffer to replay over the top of a remote attribute
778		 * block we should simply do so.
779		 */
780		goto recover_immediately;
781	case XFS_SB_MAGIC:
782		/*
783		 * superblock uuids are magic. We may or may not have a
784		 * sb_meta_uuid on disk, but it will be set in the in-core
785		 * superblock. We set the uuid pointer for verification
786		 * according to the superblock feature mask to ensure we check
787		 * the relevant UUID in the superblock.
788		 */
789		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
790		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
791			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
792		else
793			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
794		break;
795	default:
796		break;
797	}
798
799	if (lsn != (xfs_lsn_t)-1) {
800		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
801			goto recover_immediately;
802		return lsn;
803	}
804
805	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
806	switch (magicda) {
807	case XFS_DIR3_LEAF1_MAGIC:
808	case XFS_DIR3_LEAFN_MAGIC:
809	case XFS_ATTR3_LEAF_MAGIC:
810	case XFS_DA3_NODE_MAGIC:
811		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
812		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
813		break;
814	default:
815		break;
816	}
817
818	if (lsn != (xfs_lsn_t)-1) {
819		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
820			goto recover_immediately;
821		return lsn;
822	}
823
824	/*
825	 * We do individual object checks on dquot and inode buffers as they
826	 * have their own individual LSN records. Also, we could have a stale
827	 * buffer here, so we have to at least recognise these buffer types.
828	 *
829	 * A notd complexity here is inode unlinked list processing - it logs
830	 * the inode directly in the buffer, but we don't know which inodes have
831	 * been modified, and there is no global buffer LSN. Hence we need to
832	 * recover all inode buffer types immediately. This problem will be
833	 * fixed by logical logging of the unlinked list modifications.
834	 */
835	magic16 = be16_to_cpu(*(__be16 *)blk);
836	switch (magic16) {
837	case XFS_DQUOT_MAGIC:
838	case XFS_DINODE_MAGIC:
839		goto recover_immediately;
840	default:
841		break;
842	}
843
844	/* unknown buffer contents, recover immediately */
845
846recover_immediately:
847	return (xfs_lsn_t)-1;
848
849}
850
851/*
852 * This routine replays a modification made to a buffer at runtime.
853 * There are actually two types of buffer, regular and inode, which
854 * are handled differently.  Inode buffers are handled differently
855 * in that we only recover a specific set of data from them, namely
856 * the inode di_next_unlinked fields.  This is because all other inode
857 * data is actually logged via inode records and any data we replay
858 * here which overlaps that may be stale.
859 *
860 * When meta-data buffers are freed at run time we log a buffer item
861 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
862 * of the buffer in the log should not be replayed at recovery time.
863 * This is so that if the blocks covered by the buffer are reused for
864 * file data before we crash we don't end up replaying old, freed
865 * meta-data into a user's file.
866 *
867 * To handle the cancellation of buffer log items, we make two passes
868 * over the log during recovery.  During the first we build a table of
869 * those buffers which have been cancelled, and during the second we
870 * only replay those buffers which do not have corresponding cancel
871 * records in the table.  See xlog_recover_buf_pass[1,2] above
872 * for more details on the implementation of the table of cancel records.
873 */
874STATIC int
875xlog_recover_buf_commit_pass2(
876	struct xlog			*log,
877	struct list_head		*buffer_list,
878	struct xlog_recover_item	*item,
879	xfs_lsn_t			current_lsn)
880{
881	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
882	struct xfs_mount		*mp = log->l_mp;
883	struct xfs_buf			*bp;
884	int				error;
885	uint				buf_flags;
886	xfs_lsn_t			lsn;
887
888	/*
889	 * In this pass we only want to recover all the buffers which have
890	 * not been cancelled and are not cancellation buffers themselves.
891	 */
892	if (buf_f->blf_flags & XFS_BLF_CANCEL) {
893		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
894				buf_f->blf_len))
895			goto cancelled;
896	} else {
897
898		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
899				buf_f->blf_len))
900			goto cancelled;
901	}
902
903	trace_xfs_log_recover_buf_recover(log, buf_f);
904
905	buf_flags = 0;
906	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
907		buf_flags |= XBF_UNMAPPED;
908
909	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
910			  buf_flags, &bp, NULL);
911	if (error)
912		return error;
913
914	/*
915	 * Recover the buffer only if we get an LSN from it and it's less than
916	 * the lsn of the transaction we are replaying.
917	 *
918	 * Note that we have to be extremely careful of readahead here.
919	 * Readahead does not attach verfiers to the buffers so if we don't
920	 * actually do any replay after readahead because of the LSN we found
921	 * in the buffer if more recent than that current transaction then we
922	 * need to attach the verifier directly. Failure to do so can lead to
923	 * future recovery actions (e.g. EFI and unlinked list recovery) can
924	 * operate on the buffers and they won't get the verifier attached. This
925	 * can lead to blocks on disk having the correct content but a stale
926	 * CRC.
927	 *
928	 * It is safe to assume these clean buffers are currently up to date.
929	 * If the buffer is dirtied by a later transaction being replayed, then
930	 * the verifier will be reset to match whatever recover turns that
931	 * buffer into.
932	 */
933	lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
934	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
935		trace_xfs_log_recover_buf_skip(log, buf_f);
936		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
937		goto out_release;
938	}
939
940	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
941		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
942		if (error)
943			goto out_release;
944	} else if (buf_f->blf_flags &
945		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
946		bool	dirty;
947
948		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
949		if (!dirty)
950			goto out_release;
951	} else {
952		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
953	}
954
955	/*
956	 * Perform delayed write on the buffer.  Asynchronous writes will be
957	 * slower when taking into account all the buffers to be flushed.
958	 *
959	 * Also make sure that only inode buffers with good sizes stay in
960	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
961	 * or inode_cluster_size bytes, whichever is bigger.  The inode
962	 * buffers in the log can be a different size if the log was generated
963	 * by an older kernel using unclustered inode buffers or a newer kernel
964	 * running with a different inode cluster size.  Regardless, if
965	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
966	 * for *our* value of inode_cluster_size, then we need to keep
967	 * the buffer out of the buffer cache so that the buffer won't
968	 * overlap with future reads of those inodes.
969	 */
970	if (XFS_DINODE_MAGIC ==
971	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
972	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
973		xfs_buf_stale(bp);
974		error = xfs_bwrite(bp);
975	} else {
976		ASSERT(bp->b_mount == mp);
977		bp->b_flags |= _XBF_LOGRECOVERY;
978		xfs_buf_delwri_queue(bp, buffer_list);
979	}
980
981out_release:
982	xfs_buf_relse(bp);
983	return error;
984cancelled:
985	trace_xfs_log_recover_buf_cancel(log, buf_f);
986	return 0;
987}
988
989const struct xlog_recover_item_ops xlog_buf_item_ops = {
990	.item_type		= XFS_LI_BUF,
991	.reorder		= xlog_recover_buf_reorder,
992	.ra_pass2		= xlog_recover_buf_ra_pass2,
993	.commit_pass1		= xlog_recover_buf_commit_pass1,
994	.commit_pass2		= xlog_recover_buf_commit_pass2,
995};