Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 
 11#include "ctree.h"
 12#include "extent_io.h"
 13#include "locking.h"
 14
 15static void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16
 17/*
 18 * if we currently have a spinning reader or writer lock
 19 * (indicated by the rw flag) this will bump the count
 20 * of blocking holders and drop the spinlock.
 
 
 
 21 */
 22void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
 23{
 24	/*
 25	 * no lock is required.  The lock owner may change if
 26	 * we have a read lock, but it won't change to or away
 27	 * from us.  If we have the write lock, we are the owner
 28	 * and it'll never change.
 29	 */
 30	if (eb->lock_nested && current->pid == eb->lock_owner)
 31		return;
 32	if (rw == BTRFS_WRITE_LOCK) {
 33		if (atomic_read(&eb->blocking_writers) == 0) {
 34			WARN_ON(atomic_read(&eb->spinning_writers) != 1);
 35			atomic_dec(&eb->spinning_writers);
 36			btrfs_assert_tree_locked(eb);
 37			atomic_inc(&eb->blocking_writers);
 38			write_unlock(&eb->lock);
 39		}
 40	} else if (rw == BTRFS_READ_LOCK) {
 41		btrfs_assert_tree_read_locked(eb);
 42		atomic_inc(&eb->blocking_readers);
 43		WARN_ON(atomic_read(&eb->spinning_readers) == 0);
 44		atomic_dec(&eb->spinning_readers);
 45		read_unlock(&eb->lock);
 46	}
 47}
 48
 49/*
 50 * if we currently have a blocking lock, take the spinlock
 51 * and drop our blocking count
 
 52 */
 53void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
 54{
 55	/*
 56	 * no lock is required.  The lock owner may change if
 57	 * we have a read lock, but it won't change to or away
 58	 * from us.  If we have the write lock, we are the owner
 59	 * and it'll never change.
 60	 */
 61	if (eb->lock_nested && current->pid == eb->lock_owner)
 62		return;
 63
 64	if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
 65		BUG_ON(atomic_read(&eb->blocking_writers) != 1);
 66		write_lock(&eb->lock);
 67		WARN_ON(atomic_read(&eb->spinning_writers));
 68		atomic_inc(&eb->spinning_writers);
 69		/*
 70		 * atomic_dec_and_test implies a barrier for waitqueue_active
 71		 */
 72		if (atomic_dec_and_test(&eb->blocking_writers) &&
 73		    waitqueue_active(&eb->write_lock_wq))
 74			wake_up(&eb->write_lock_wq);
 75	} else if (rw == BTRFS_READ_LOCK_BLOCKING) {
 76		BUG_ON(atomic_read(&eb->blocking_readers) == 0);
 77		read_lock(&eb->lock);
 78		atomic_inc(&eb->spinning_readers);
 79		/*
 80		 * atomic_dec_and_test implies a barrier for waitqueue_active
 81		 */
 82		if (atomic_dec_and_test(&eb->blocking_readers) &&
 83		    waitqueue_active(&eb->read_lock_wq))
 84			wake_up(&eb->read_lock_wq);
 85	}
 
 86}
 87
 88/*
 89 * take a spinning read lock.  This will wait for any blocking
 90 * writers
 
 91 */
 92void btrfs_tree_read_lock(struct extent_buffer *eb)
 93{
 94again:
 95	BUG_ON(!atomic_read(&eb->blocking_writers) &&
 96	       current->pid == eb->lock_owner);
 97
 98	read_lock(&eb->lock);
 99	if (atomic_read(&eb->blocking_writers) &&
100	    current->pid == eb->lock_owner) {
101		/*
102		 * This extent is already write-locked by our thread. We allow
103		 * an additional read lock to be added because it's for the same
104		 * thread. btrfs_find_all_roots() depends on this as it may be
105		 * called on a partly (write-)locked tree.
106		 */
107		BUG_ON(eb->lock_nested);
108		eb->lock_nested = 1;
109		read_unlock(&eb->lock);
110		return;
111	}
112	if (atomic_read(&eb->blocking_writers)) {
113		read_unlock(&eb->lock);
114		wait_event(eb->write_lock_wq,
115			   atomic_read(&eb->blocking_writers) == 0);
116		goto again;
117	}
118	atomic_inc(&eb->read_locks);
119	atomic_inc(&eb->spinning_readers);
120}
121
122/*
123 * take a spinning read lock.
124 * returns 1 if we get the read lock and 0 if we don't
125 * this won't wait for blocking writers
126 */
127int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
128{
129	if (atomic_read(&eb->blocking_writers))
130		return 0;
131
132	read_lock(&eb->lock);
133	if (atomic_read(&eb->blocking_writers)) {
134		read_unlock(&eb->lock);
135		return 0;
136	}
137	atomic_inc(&eb->read_locks);
138	atomic_inc(&eb->spinning_readers);
139	return 1;
140}
141
142/*
143 * returns 1 if we get the read lock and 0 if we don't
144 * this won't wait for blocking writers
 
 
 
145 */
146int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 
147{
148	if (atomic_read(&eb->blocking_writers))
149		return 0;
150
151	if (!read_trylock(&eb->lock))
152		return 0;
153
154	if (atomic_read(&eb->blocking_writers)) {
155		read_unlock(&eb->lock);
156		return 0;
157	}
158	atomic_inc(&eb->read_locks);
159	atomic_inc(&eb->spinning_readers);
160	return 1;
 
161}
162
163/*
164 * returns 1 if we get the read lock and 0 if we don't
165 * this won't wait for blocking writers or readers
166 */
167int btrfs_try_tree_write_lock(struct extent_buffer *eb)
168{
169	if (atomic_read(&eb->blocking_writers) ||
170	    atomic_read(&eb->blocking_readers))
171		return 0;
172
173	write_lock(&eb->lock);
174	if (atomic_read(&eb->blocking_writers) ||
175	    atomic_read(&eb->blocking_readers)) {
176		write_unlock(&eb->lock);
177		return 0;
178	}
179	atomic_inc(&eb->write_locks);
180	atomic_inc(&eb->spinning_writers);
181	eb->lock_owner = current->pid;
182	return 1;
183}
184
185/*
186 * drop a spinning read lock
 
 
 
 
 
 
187 */
188void btrfs_tree_read_unlock(struct extent_buffer *eb)
189{
190	/*
191	 * if we're nested, we have the write lock.  No new locking
192	 * is needed as long as we are the lock owner.
193	 * The write unlock will do a barrier for us, and the lock_nested
194	 * field only matters to the lock owner.
195	 */
196	if (eb->lock_nested && current->pid == eb->lock_owner) {
197		eb->lock_nested = 0;
198		return;
 
 
 
 
 
 
 
 
199	}
200	btrfs_assert_tree_read_locked(eb);
201	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
202	atomic_dec(&eb->spinning_readers);
203	atomic_dec(&eb->read_locks);
204	read_unlock(&eb->lock);
205}
206
207/*
208 * drop a blocking read lock
 
 
 
209 */
210void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
211{
212	/*
213	 * if we're nested, we have the write lock.  No new locking
214	 * is needed as long as we are the lock owner.
215	 * The write unlock will do a barrier for us, and the lock_nested
216	 * field only matters to the lock owner.
217	 */
218	if (eb->lock_nested && current->pid == eb->lock_owner) {
219		eb->lock_nested = 0;
220		return;
221	}
222	btrfs_assert_tree_read_locked(eb);
223	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
224	/*
225	 * atomic_dec_and_test implies a barrier for waitqueue_active
226	 */
227	if (atomic_dec_and_test(&eb->blocking_readers) &&
228	    waitqueue_active(&eb->read_lock_wq))
229		wake_up(&eb->read_lock_wq);
230	atomic_dec(&eb->read_locks);
231}
232
233/*
234 * take a spinning write lock.  This will wait for both
235 * blocking readers or writers
 
 
236 */
237void btrfs_tree_lock(struct extent_buffer *eb)
238{
239	WARN_ON(eb->lock_owner == current->pid);
240again:
241	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
242	wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
243	write_lock(&eb->lock);
244	if (atomic_read(&eb->blocking_readers)) {
245		write_unlock(&eb->lock);
246		wait_event(eb->read_lock_wq,
247			   atomic_read(&eb->blocking_readers) == 0);
248		goto again;
249	}
250	if (atomic_read(&eb->blocking_writers)) {
251		write_unlock(&eb->lock);
252		wait_event(eb->write_lock_wq,
253			   atomic_read(&eb->blocking_writers) == 0);
254		goto again;
255	}
256	WARN_ON(atomic_read(&eb->spinning_writers));
257	atomic_inc(&eb->spinning_writers);
258	atomic_inc(&eb->write_locks);
259	eb->lock_owner = current->pid;
260}
261
262/*
263 * drop a spinning or a blocking write lock.
 
 
 
 
 
 
 
 
 
 
264 */
265void btrfs_tree_unlock(struct extent_buffer *eb)
 
266{
267	int blockers = atomic_read(&eb->blocking_writers);
268
269	BUG_ON(blockers > 1);
 
 
270
271	btrfs_assert_tree_locked(eb);
272	eb->lock_owner = 0;
273	atomic_dec(&eb->write_locks);
274
275	if (blockers) {
276		WARN_ON(atomic_read(&eb->spinning_writers));
277		atomic_dec(&eb->blocking_writers);
278		/*
279		 * Make sure counter is updated before we wake up waiters.
280		 */
281		smp_mb__after_atomic();
282		if (waitqueue_active(&eb->write_lock_wq))
283			wake_up(&eb->write_lock_wq);
284	} else {
285		WARN_ON(atomic_read(&eb->spinning_writers) != 1);
286		atomic_dec(&eb->spinning_writers);
287		write_unlock(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288	}
289}
290
291void btrfs_assert_tree_locked(struct extent_buffer *eb)
292{
293	BUG_ON(!atomic_read(&eb->write_locks));
 
294}
295
296static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
297{
298	BUG_ON(!atomic_read(&eb->read_locks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 15
 16/*
 17 * Extent buffer locking
 18 * =====================
 19 *
 20 * We use a rw_semaphore for tree locking, and the semantics are exactly the
 21 * same:
 22 *
 23 * - reader/writer exclusion
 24 * - writer/writer exclusion
 25 * - reader/reader sharing
 26 * - try-lock semantics for readers and writers
 27 *
 28 * The rwsem implementation does opportunistic spinning which reduces number of
 29 * times the locking task needs to sleep.
 30 */
 31
 32/*
 33 * __btrfs_tree_read_lock - lock extent buffer for read
 34 * @eb:		the eb to be locked
 35 * @nest:	the nesting level to be used for lockdep
 36 *
 37 * This takes the read lock on the extent buffer, using the specified nesting
 38 * level for lockdep purposes.
 39 */
 40void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
 41{
 42	u64 start_ns = 0;
 43
 44	if (trace_btrfs_tree_read_lock_enabled())
 45		start_ns = ktime_get_ns();
 46
 47	down_read_nested(&eb->lock, nest);
 48	eb->lock_owner = current->pid;
 49	trace_btrfs_tree_read_lock(eb, start_ns);
 50}
 51
 52void btrfs_tree_read_lock(struct extent_buffer *eb)
 53{
 54	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57/*
 58 * Try-lock for read.
 59 *
 60 * Return 1 if the rwlock has been taken, 0 otherwise
 61 */
 62int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 63{
 64	if (down_read_trylock(&eb->lock)) {
 65		eb->lock_owner = current->pid;
 66		trace_btrfs_try_tree_read_lock(eb);
 67		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	}
 69	return 0;
 70}
 71
 72/*
 73 * Try-lock for write.
 74 *
 75 * Return 1 if the rwlock has been taken, 0 otherwise
 76 */
 77int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 78{
 79	if (down_write_trylock(&eb->lock)) {
 80		eb->lock_owner = current->pid;
 81		trace_btrfs_try_tree_write_lock(eb);
 82		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83	}
 84	return 0;
 
 85}
 86
 87/*
 88 * Release read lock.
 
 
 89 */
 90void btrfs_tree_read_unlock(struct extent_buffer *eb)
 91{
 92	trace_btrfs_tree_read_unlock(eb);
 93	eb->lock_owner = 0;
 94	up_read(&eb->lock);
 
 
 
 
 
 
 
 
 95}
 96
 97/*
 98 * __btrfs_tree_lock - lock eb for write
 99 * @eb:		the eb to lock
100 * @nest:	the nesting to use for the lock
101 *
102 * Returns with the eb->lock write locked.
103 */
104void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
105	__acquires(&eb->lock)
106{
107	u64 start_ns = 0;
 
108
109	if (trace_btrfs_tree_lock_enabled())
110		start_ns = ktime_get_ns();
111
112	down_write_nested(&eb->lock, nest);
113	eb->lock_owner = current->pid;
114	trace_btrfs_tree_lock(eb, start_ns);
115}
116
117void btrfs_tree_lock(struct extent_buffer *eb)
118{
119	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
120}
121
122/*
123 * Release the write lock.
 
124 */
125void btrfs_tree_unlock(struct extent_buffer *eb)
126{
127	trace_btrfs_tree_unlock(eb);
128	eb->lock_owner = 0;
129	up_write(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
130}
131
132/*
133 * This releases any locks held in the path starting at level and going all the
134 * way up to the root.
135 *
136 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
137 * cases, such as COW of the block at slot zero in the node.  This ignores
138 * those rules, and it should only be called when there are no more updates to
139 * be done higher up in the tree.
140 */
141void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
142{
143	int i;
144
145	if (path->keep_locks)
 
 
 
 
 
146		return;
147
148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
149		if (!path->nodes[i])
150			continue;
151		if (!path->locks[i])
152			continue;
153		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
154		path->locks[i] = 0;
155	}
 
 
 
 
 
156}
157
158/*
159 * Loop around taking references on and locking the root node of the tree until
160 * we end up with a lock on the root node.
161 *
162 * Return: root extent buffer with write lock held
163 */
164struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
165{
166	struct extent_buffer *eb;
167
168	while (1) {
169		eb = btrfs_root_node(root);
170		btrfs_tree_lock(eb);
171		if (eb == root->node)
172			break;
173		btrfs_tree_unlock(eb);
174		free_extent_buffer(eb);
175	}
176	return eb;
 
 
 
 
 
 
 
 
177}
178
179/*
180 * Loop around taking references on and locking the root node of the tree until
181 * we end up with a lock on the root node.
182 *
183 * Return: root extent buffer with read lock held
184 */
185struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
186{
187	struct extent_buffer *eb;
188
189	while (1) {
190		eb = btrfs_root_node(root);
191		btrfs_tree_read_lock(eb);
192		if (eb == root->node)
193			break;
194		btrfs_tree_read_unlock(eb);
195		free_extent_buffer(eb);
 
 
 
 
 
 
 
196	}
197	return eb;
 
 
 
198}
199
200/*
201 * DREW locks
202 * ==========
203 *
204 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
205 * where you want to provide A-B exclusion but not AA or BB.
206 *
207 * Currently implementation gives more priority to reader. If a reader and a
208 * writer both race to acquire their respective sides of the lock the writer
209 * would yield its lock as soon as it detects a concurrent reader. Additionally
210 * if there are pending readers no new writers would be allowed to come in and
211 * acquire the lock.
212 */
213
214int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
215{
216	int ret;
217
218	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
219	if (ret)
220		return ret;
221
222	atomic_set(&lock->readers, 0);
223	init_waitqueue_head(&lock->pending_readers);
224	init_waitqueue_head(&lock->pending_writers);
225
226	return 0;
227}
228
229void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
230{
231	percpu_counter_destroy(&lock->writers);
232}
233
234/* Return true if acquisition is successful, false otherwise */
235bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
236{
237	if (atomic_read(&lock->readers))
238		return false;
239
240	percpu_counter_inc(&lock->writers);
241
242	/* Ensure writers count is updated before we check for pending readers */
243	smp_mb();
244	if (atomic_read(&lock->readers)) {
245		btrfs_drew_write_unlock(lock);
246		return false;
247	}
248
249	return true;
250}
251
252void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
253{
254	while (true) {
255		if (btrfs_drew_try_write_lock(lock))
256			return;
257		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
258	}
259}
260
261void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
262{
263	percpu_counter_dec(&lock->writers);
264	cond_wake_up(&lock->pending_readers);
265}
266
267void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
268{
269	atomic_inc(&lock->readers);
270
271	/*
272	 * Ensure the pending reader count is perceieved BEFORE this reader
273	 * goes to sleep in case of active writers. This guarantees new writers
274	 * won't be allowed and that the current reader will be woken up when
275	 * the last active writer finishes its jobs.
276	 */
277	smp_mb__after_atomic();
278
279	wait_event(lock->pending_readers,
280		   percpu_counter_sum(&lock->writers) == 0);
281}
282
283void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
284{
285	/*
286	 * atomic_dec_and_test implies a full barrier, so woken up writers
287	 * are guaranteed to see the decrement
288	 */
289	if (atomic_dec_and_test(&lock->readers))
290		wake_up(&lock->pending_writers);
291}