Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19
 20#include <linux/module.h>
 21#include <linux/i2c.h>
 22#include <linux/bcd.h>
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 25#include <linux/platform_device.h>
 26#include <linux/mfd/samsung/core.h>
 27#include <linux/mfd/samsung/irq.h>
 28#include <linux/mfd/samsung/rtc.h>
 29#include <linux/mfd/samsung/s2mps14.h>
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 41enum {
 42	RTC_SEC = 0,
 43	RTC_MIN,
 44	RTC_HOUR,
 45	RTC_WEEKDAY,
 46	RTC_DATE,
 47	RTC_MONTH,
 48	RTC_YEAR1,
 49	RTC_YEAR2,
 50	/* Make sure this is always the last enum name. */
 51	RTC_MAX_NUM_TIME_REGS
 52};
 53
 54/*
 55 * Registers used by the driver which are different between chipsets.
 56 *
 57 * Operations like read time and write alarm/time require updating
 58 * specific fields in UDR register. These fields usually are auto-cleared
 59 * (with some exceptions).
 60 *
 61 * Table of operations per device:
 62 *
 63 * Device     | Write time | Read time | Write alarm
 64 * =================================================
 65 * S5M8767    | UDR + TIME |           | UDR
 66 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 67 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 68 * S2MPS15    | WUDR       | RUDR      | AUDR
 69 */
 70struct s5m_rtc_reg_config {
 71	/* Number of registers used for setting time/alarm0/alarm1 */
 72	unsigned int regs_count;
 73	/* First register for time, seconds */
 74	unsigned int time;
 75	/* RTC control register */
 76	unsigned int ctrl;
 77	/* First register for alarm 0, seconds */
 78	unsigned int alarm0;
 79	/* First register for alarm 1, seconds */
 80	unsigned int alarm1;
 81	/*
 82	 * Register for update flag (UDR). Typically setting UDR field to 1
 83	 * will enable update of time or alarm register. Then it will be
 84	 * auto-cleared after successful update.
 85	 */
 86	unsigned int udr_update;
 87	/* Auto-cleared mask in UDR field for writing time and alarm */
 88	unsigned int autoclear_udr_mask;
 89	/*
 90	 * Masks in UDR field for time and alarm operations.
 91	 * The read time mask can be 0. Rest should not.
 92	 */
 93	unsigned int read_time_udr_mask;
 94	unsigned int write_time_udr_mask;
 95	unsigned int write_alarm_udr_mask;
 96};
 97
 98/* Register map for S5M8763 and S5M8767 */
 99static const struct s5m_rtc_reg_config s5m_rtc_regs = {
100	.regs_count		= 8,
101	.time			= S5M_RTC_SEC,
102	.ctrl			= S5M_ALARM1_CONF,
103	.alarm0			= S5M_ALARM0_SEC,
104	.alarm1			= S5M_ALARM1_SEC,
105	.udr_update		= S5M_RTC_UDR_CON,
106	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
107	.read_time_udr_mask	= 0, /* Not needed */
108	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
109	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
110};
111
112/* Register map for S2MPS13 */
113static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
114	.regs_count		= 7,
115	.time			= S2MPS_RTC_SEC,
116	.ctrl			= S2MPS_RTC_CTRL,
117	.alarm0			= S2MPS_ALARM0_SEC,
118	.alarm1			= S2MPS_ALARM1_SEC,
119	.udr_update		= S2MPS_RTC_UDR_CON,
120	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
121	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
122	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
123	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
124};
125
126/* Register map for S2MPS11/14 */
127static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
128	.regs_count		= 7,
129	.time			= S2MPS_RTC_SEC,
130	.ctrl			= S2MPS_RTC_CTRL,
131	.alarm0			= S2MPS_ALARM0_SEC,
132	.alarm1			= S2MPS_ALARM1_SEC,
133	.udr_update		= S2MPS_RTC_UDR_CON,
134	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
135	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
136	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
137	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
138};
139
140/*
141 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
142 * are swapped.
143 */
144static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
145	.regs_count		= 7,
146	.time			= S2MPS_RTC_SEC,
147	.ctrl			= S2MPS_RTC_CTRL,
148	.alarm0			= S2MPS_ALARM0_SEC,
149	.alarm1			= S2MPS_ALARM1_SEC,
150	.udr_update		= S2MPS_RTC_UDR_CON,
151	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
152	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
153	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
154	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
155};
156
157struct s5m_rtc_info {
158	struct device *dev;
159	struct i2c_client *i2c;
160	struct sec_pmic_dev *s5m87xx;
161	struct regmap *regmap;
162	struct rtc_device *rtc_dev;
163	int irq;
164	enum sec_device_type device_type;
165	int rtc_24hr_mode;
166	const struct s5m_rtc_reg_config	*regs;
167};
168
169static const struct regmap_config s5m_rtc_regmap_config = {
170	.reg_bits = 8,
171	.val_bits = 8,
172
173	.max_register = S5M_RTC_REG_MAX,
174};
175
176static const struct regmap_config s2mps14_rtc_regmap_config = {
177	.reg_bits = 8,
178	.val_bits = 8,
179
180	.max_register = S2MPS_RTC_REG_MAX,
181};
182
183static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
184			       int rtc_24hr_mode)
185{
186	tm->tm_sec = data[RTC_SEC] & 0x7f;
187	tm->tm_min = data[RTC_MIN] & 0x7f;
188	if (rtc_24hr_mode) {
189		tm->tm_hour = data[RTC_HOUR] & 0x1f;
190	} else {
191		tm->tm_hour = data[RTC_HOUR] & 0x0f;
192		if (data[RTC_HOUR] & HOUR_PM_MASK)
193			tm->tm_hour += 12;
194	}
195
196	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
197	tm->tm_mday = data[RTC_DATE] & 0x1f;
198	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
199	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
200	tm->tm_yday = 0;
201	tm->tm_isdst = 0;
202}
203
204static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
205{
206	data[RTC_SEC] = tm->tm_sec;
207	data[RTC_MIN] = tm->tm_min;
208
209	if (tm->tm_hour >= 12)
210		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
211	else
212		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
213
214	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
215	data[RTC_DATE] = tm->tm_mday;
216	data[RTC_MONTH] = tm->tm_mon + 1;
217	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
218
219	if (tm->tm_year < 100) {
220		pr_err("RTC cannot handle the year %d\n",
221		       1900 + tm->tm_year);
222		return -EINVAL;
223	} else {
224		return 0;
225	}
226}
227
228/*
229 * Read RTC_UDR_CON register and wait till UDR field is cleared.
230 * This indicates that time/alarm update ended.
231 */
232static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
233{
234	int ret, retry = UDR_READ_RETRY_CNT;
235	unsigned int data;
236
237	do {
238		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
239	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
240
241	if (!retry)
242		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
243
244	return ret;
245}
246
247static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
248		struct rtc_wkalrm *alarm)
249{
250	int ret;
251	unsigned int val;
252
253	switch (info->device_type) {
254	case S5M8767X:
255	case S5M8763X:
256		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
257		val &= S5M_ALARM0_STATUS;
258		break;
259	case S2MPS15X:
260	case S2MPS14X:
261	case S2MPS13X:
262		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
263				&val);
264		val &= S2MPS_ALARM0_STATUS;
265		break;
266	default:
267		return -EINVAL;
268	}
269	if (ret < 0)
270		return ret;
271
272	if (val)
273		alarm->pending = 1;
274	else
275		alarm->pending = 0;
276
277	return 0;
278}
279
280static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
281{
282	int ret;
283	unsigned int data;
284
285	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
286	if (ret < 0) {
287		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
288		return ret;
289	}
290
291	data |= info->regs->write_time_udr_mask;
292
293	ret = regmap_write(info->regmap, info->regs->udr_update, data);
294	if (ret < 0) {
295		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
296		return ret;
297	}
298
299	ret = s5m8767_wait_for_udr_update(info);
300
301	return ret;
302}
303
304static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
305{
306	int ret;
307	unsigned int data;
308
309	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
310	if (ret < 0) {
311		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
312			__func__, ret);
313		return ret;
314	}
315
316	data |= info->regs->write_alarm_udr_mask;
317	switch (info->device_type) {
318	case S5M8763X:
319	case S5M8767X:
320		data &= ~S5M_RTC_TIME_EN_MASK;
321		break;
322	case S2MPS15X:
323	case S2MPS14X:
324	case S2MPS13X:
325		/* No exceptions needed */
326		break;
327	default:
328		return -EINVAL;
329	}
330
331	ret = regmap_write(info->regmap, info->regs->udr_update, data);
332	if (ret < 0) {
333		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
334			__func__, ret);
335		return ret;
336	}
337
338	ret = s5m8767_wait_for_udr_update(info);
339
340	/* On S2MPS13 the AUDR is not auto-cleared */
341	if (info->device_type == S2MPS13X)
342		regmap_update_bits(info->regmap, info->regs->udr_update,
343				   S2MPS13_RTC_AUDR_MASK, 0);
344
345	return ret;
346}
347
348static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
349{
350	tm->tm_sec = bcd2bin(data[RTC_SEC]);
351	tm->tm_min = bcd2bin(data[RTC_MIN]);
352
353	if (data[RTC_HOUR] & HOUR_12) {
354		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
355		if (data[RTC_HOUR] & HOUR_PM)
356			tm->tm_hour += 12;
357	} else {
358		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
359	}
360
361	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
362	tm->tm_mday = bcd2bin(data[RTC_DATE]);
363	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
364	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
365	tm->tm_year -= 1900;
366}
367
368static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
369{
370	data[RTC_SEC] = bin2bcd(tm->tm_sec);
371	data[RTC_MIN] = bin2bcd(tm->tm_min);
372	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
373	data[RTC_WEEKDAY] = tm->tm_wday;
374	data[RTC_DATE] = bin2bcd(tm->tm_mday);
375	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
376	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
377	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
378}
379
380static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
381{
382	struct s5m_rtc_info *info = dev_get_drvdata(dev);
383	u8 data[RTC_MAX_NUM_TIME_REGS];
384	int ret;
385
386	if (info->regs->read_time_udr_mask) {
387		ret = regmap_update_bits(info->regmap,
388				info->regs->udr_update,
389				info->regs->read_time_udr_mask,
390				info->regs->read_time_udr_mask);
391		if (ret) {
392			dev_err(dev,
393				"Failed to prepare registers for time reading: %d\n",
394				ret);
395			return ret;
396		}
397	}
398	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
399			info->regs->regs_count);
400	if (ret < 0)
401		return ret;
402
403	switch (info->device_type) {
404	case S5M8763X:
405		s5m8763_data_to_tm(data, tm);
406		break;
407
408	case S5M8767X:
409	case S2MPS15X:
410	case S2MPS14X:
411	case S2MPS13X:
412		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
413		break;
414
415	default:
416		return -EINVAL;
417	}
418
419	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
420		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
421		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
422
423	return 0;
424}
425
426static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
427{
428	struct s5m_rtc_info *info = dev_get_drvdata(dev);
429	u8 data[RTC_MAX_NUM_TIME_REGS];
430	int ret = 0;
431
432	switch (info->device_type) {
433	case S5M8763X:
434		s5m8763_tm_to_data(tm, data);
435		break;
436	case S5M8767X:
437	case S2MPS15X:
438	case S2MPS14X:
439	case S2MPS13X:
440		ret = s5m8767_tm_to_data(tm, data);
441		break;
442	default:
443		return -EINVAL;
444	}
445
446	if (ret < 0)
447		return ret;
448
449	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
450		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
451		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
452
453	ret = regmap_raw_write(info->regmap, info->regs->time, data,
454			info->regs->regs_count);
455	if (ret < 0)
456		return ret;
457
458	ret = s5m8767_rtc_set_time_reg(info);
459
460	return ret;
461}
462
463static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
464{
465	struct s5m_rtc_info *info = dev_get_drvdata(dev);
466	u8 data[RTC_MAX_NUM_TIME_REGS];
467	unsigned int val;
468	int ret, i;
469
470	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
471			info->regs->regs_count);
472	if (ret < 0)
473		return ret;
474
475	switch (info->device_type) {
476	case S5M8763X:
477		s5m8763_data_to_tm(data, &alrm->time);
478		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
479		if (ret < 0)
480			return ret;
481
482		alrm->enabled = !!val;
483		break;
484
485	case S5M8767X:
486	case S2MPS15X:
487	case S2MPS14X:
488	case S2MPS13X:
489		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
490		alrm->enabled = 0;
491		for (i = 0; i < info->regs->regs_count; i++) {
492			if (data[i] & ALARM_ENABLE_MASK) {
493				alrm->enabled = 1;
494				break;
495			}
496		}
497		break;
498
499	default:
500		return -EINVAL;
501	}
502
503	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
504		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
505		alrm->time.tm_mday, alrm->time.tm_hour,
506		alrm->time.tm_min, alrm->time.tm_sec,
507		alrm->time.tm_wday);
508
509	ret = s5m_check_peding_alarm_interrupt(info, alrm);
510
511	return 0;
512}
513
514static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
515{
516	u8 data[RTC_MAX_NUM_TIME_REGS];
517	int ret, i;
518	struct rtc_time tm;
519
520	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
521			info->regs->regs_count);
522	if (ret < 0)
523		return ret;
524
525	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
526	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
527		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
528		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
529
530	switch (info->device_type) {
531	case S5M8763X:
532		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
533		break;
534
535	case S5M8767X:
536	case S2MPS15X:
537	case S2MPS14X:
538	case S2MPS13X:
539		for (i = 0; i < info->regs->regs_count; i++)
540			data[i] &= ~ALARM_ENABLE_MASK;
541
542		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
543				info->regs->regs_count);
544		if (ret < 0)
545			return ret;
546
547		ret = s5m8767_rtc_set_alarm_reg(info);
548
549		break;
550
551	default:
552		return -EINVAL;
553	}
554
555	return ret;
556}
557
558static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
559{
560	int ret;
561	u8 data[RTC_MAX_NUM_TIME_REGS];
562	u8 alarm0_conf;
563	struct rtc_time tm;
564
565	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
566			info->regs->regs_count);
567	if (ret < 0)
568		return ret;
569
570	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
571	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
572		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
573		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
574
575	switch (info->device_type) {
576	case S5M8763X:
577		alarm0_conf = 0x77;
578		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
579		break;
580
581	case S5M8767X:
582	case S2MPS15X:
583	case S2MPS14X:
584	case S2MPS13X:
585		data[RTC_SEC] |= ALARM_ENABLE_MASK;
586		data[RTC_MIN] |= ALARM_ENABLE_MASK;
587		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
588		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
589		if (data[RTC_DATE] & 0x1f)
590			data[RTC_DATE] |= ALARM_ENABLE_MASK;
591		if (data[RTC_MONTH] & 0xf)
592			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
593		if (data[RTC_YEAR1] & 0x7f)
594			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
595
596		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
597				info->regs->regs_count);
598		if (ret < 0)
599			return ret;
600		ret = s5m8767_rtc_set_alarm_reg(info);
601
602		break;
603
604	default:
605		return -EINVAL;
606	}
607
608	return ret;
609}
610
611static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
612{
613	struct s5m_rtc_info *info = dev_get_drvdata(dev);
614	u8 data[RTC_MAX_NUM_TIME_REGS];
615	int ret;
616
617	switch (info->device_type) {
618	case S5M8763X:
619		s5m8763_tm_to_data(&alrm->time, data);
620		break;
621
622	case S5M8767X:
623	case S2MPS15X:
624	case S2MPS14X:
625	case S2MPS13X:
626		s5m8767_tm_to_data(&alrm->time, data);
627		break;
628
629	default:
630		return -EINVAL;
631	}
632
633	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
634		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
635		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
636		alrm->time.tm_sec, alrm->time.tm_wday);
637
638	ret = s5m_rtc_stop_alarm(info);
639	if (ret < 0)
640		return ret;
641
642	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
643			info->regs->regs_count);
644	if (ret < 0)
645		return ret;
646
647	ret = s5m8767_rtc_set_alarm_reg(info);
648	if (ret < 0)
649		return ret;
650
651	if (alrm->enabled)
652		ret = s5m_rtc_start_alarm(info);
653
654	return ret;
655}
656
657static int s5m_rtc_alarm_irq_enable(struct device *dev,
658				    unsigned int enabled)
659{
660	struct s5m_rtc_info *info = dev_get_drvdata(dev);
661
662	if (enabled)
663		return s5m_rtc_start_alarm(info);
664	else
665		return s5m_rtc_stop_alarm(info);
666}
667
668static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
669{
670	struct s5m_rtc_info *info = data;
671
672	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
673
674	return IRQ_HANDLED;
675}
676
677static const struct rtc_class_ops s5m_rtc_ops = {
678	.read_time = s5m_rtc_read_time,
679	.set_time = s5m_rtc_set_time,
680	.read_alarm = s5m_rtc_read_alarm,
681	.set_alarm = s5m_rtc_set_alarm,
682	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
683};
684
685static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
686{
687	u8 data[2];
688	int ret;
689
690	switch (info->device_type) {
691	case S5M8763X:
692	case S5M8767X:
693		/* UDR update time. Default of 7.32 ms is too long. */
694		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
695				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
696		if (ret < 0)
697			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
698					__func__, ret);
699
700		/* Set RTC control register : Binary mode, 24hour mode */
701		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
702		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
703
704		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
705		break;
706
707	case S2MPS15X:
708	case S2MPS14X:
709	case S2MPS13X:
710		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
711		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
712		if (ret < 0)
713			break;
714
715		/*
716		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
717		 * RTC_CTRL register like writing Alarm registers. We can't find
718		 * the description from datasheet but vendor code does that
719		 * really.
720		 */
721		ret = s5m8767_rtc_set_alarm_reg(info);
722		break;
723
724	default:
725		return -EINVAL;
726	}
727
728	info->rtc_24hr_mode = 1;
729	if (ret < 0) {
730		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
731			__func__, ret);
732		return ret;
733	}
734
735	return ret;
736}
737
738static int s5m_rtc_probe(struct platform_device *pdev)
739{
740	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
741	struct sec_platform_data *pdata = s5m87xx->pdata;
742	struct s5m_rtc_info *info;
743	const struct regmap_config *regmap_cfg;
744	int ret, alarm_irq;
745
746	if (!pdata) {
747		dev_err(pdev->dev.parent, "Platform data not supplied\n");
748		return -ENODEV;
749	}
750
751	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
752	if (!info)
753		return -ENOMEM;
754
755	switch (platform_get_device_id(pdev)->driver_data) {
756	case S2MPS15X:
757		regmap_cfg = &s2mps14_rtc_regmap_config;
758		info->regs = &s2mps15_rtc_regs;
759		alarm_irq = S2MPS14_IRQ_RTCA0;
760		break;
761	case S2MPS14X:
762		regmap_cfg = &s2mps14_rtc_regmap_config;
763		info->regs = &s2mps14_rtc_regs;
764		alarm_irq = S2MPS14_IRQ_RTCA0;
765		break;
766	case S2MPS13X:
767		regmap_cfg = &s2mps14_rtc_regmap_config;
768		info->regs = &s2mps13_rtc_regs;
769		alarm_irq = S2MPS14_IRQ_RTCA0;
770		break;
771	case S5M8763X:
772		regmap_cfg = &s5m_rtc_regmap_config;
773		info->regs = &s5m_rtc_regs;
774		alarm_irq = S5M8763_IRQ_ALARM0;
775		break;
776	case S5M8767X:
777		regmap_cfg = &s5m_rtc_regmap_config;
778		info->regs = &s5m_rtc_regs;
779		alarm_irq = S5M8767_IRQ_RTCA1;
780		break;
781	default:
782		dev_err(&pdev->dev,
783				"Device type %lu is not supported by RTC driver\n",
784				platform_get_device_id(pdev)->driver_data);
785		return -ENODEV;
786	}
787
788	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
789	if (!info->i2c) {
 
790		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
791		return -ENODEV;
792	}
793
794	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
795	if (IS_ERR(info->regmap)) {
796		ret = PTR_ERR(info->regmap);
797		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
798				ret);
799		goto err;
800	}
801
802	info->dev = &pdev->dev;
803	info->s5m87xx = s5m87xx;
804	info->device_type = platform_get_device_id(pdev)->driver_data;
805
806	if (s5m87xx->irq_data) {
807		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
808		if (info->irq <= 0) {
809			ret = -EINVAL;
810			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
811				alarm_irq);
812			goto err;
813		}
814	}
815
816	platform_set_drvdata(pdev, info);
817
818	ret = s5m8767_rtc_init_reg(info);
 
 
819
820	device_init_wakeup(&pdev->dev, 1);
821
822	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
823						 &s5m_rtc_ops, THIS_MODULE);
824
825	if (IS_ERR(info->rtc_dev)) {
826		ret = PTR_ERR(info->rtc_dev);
827		goto err;
828	}
829
830	if (!info->irq) {
831		dev_info(&pdev->dev, "Alarm IRQ not available\n");
832		return 0;
833	}
834
835	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
836					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
837					info);
838	if (ret < 0) {
839		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
840			info->irq, ret);
841		goto err;
842	}
843
844	return 0;
845
846err:
847	i2c_unregister_device(info->i2c);
848
849	return ret;
850}
851
852static int s5m_rtc_remove(struct platform_device *pdev)
853{
854	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
855
856	i2c_unregister_device(info->i2c);
857
858	return 0;
859}
860
861#ifdef CONFIG_PM_SLEEP
862static int s5m_rtc_resume(struct device *dev)
863{
864	struct s5m_rtc_info *info = dev_get_drvdata(dev);
865	int ret = 0;
866
867	if (info->irq && device_may_wakeup(dev))
868		ret = disable_irq_wake(info->irq);
869
870	return ret;
871}
872
873static int s5m_rtc_suspend(struct device *dev)
874{
875	struct s5m_rtc_info *info = dev_get_drvdata(dev);
876	int ret = 0;
877
878	if (info->irq && device_may_wakeup(dev))
879		ret = enable_irq_wake(info->irq);
880
881	return ret;
882}
883#endif /* CONFIG_PM_SLEEP */
884
885static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
886
887static const struct platform_device_id s5m_rtc_id[] = {
888	{ "s5m-rtc",		S5M8767X },
889	{ "s2mps13-rtc",	S2MPS13X },
890	{ "s2mps14-rtc",	S2MPS14X },
891	{ "s2mps15-rtc",	S2MPS15X },
892	{ },
893};
894MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
895
896static struct platform_driver s5m_rtc_driver = {
897	.driver		= {
898		.name	= "s5m-rtc",
899		.pm	= &s5m_rtc_pm_ops,
900	},
901	.probe		= s5m_rtc_probe,
902	.remove		= s5m_rtc_remove,
903	.id_table	= s5m_rtc_id,
904};
905
906module_platform_driver(s5m_rtc_driver);
907
908/* Module information */
909MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
910MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
911MODULE_LICENSE("GPL");
912MODULE_ALIAS("platform:s5m-rtc");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  4//	http://www.samsung.com
  5//
  6//  Copyright (C) 2013 Google, Inc
 
 
 
 
 
 
 
 
 
 
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/i2c.h>
 12#include <linux/bcd.h>
 13#include <linux/regmap.h>
 14#include <linux/rtc.h>
 15#include <linux/platform_device.h>
 16#include <linux/mfd/samsung/core.h>
 17#include <linux/mfd/samsung/irq.h>
 18#include <linux/mfd/samsung/rtc.h>
 19#include <linux/mfd/samsung/s2mps14.h>
 20
 21/*
 22 * Maximum number of retries for checking changes in UDR field
 23 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 24 *
 25 * After writing to RTC registers (setting time or alarm) read the UDR field
 26 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 27 * been transferred.
 28 */
 29#define UDR_READ_RETRY_CNT	5
 30
 31enum {
 32	RTC_SEC = 0,
 33	RTC_MIN,
 34	RTC_HOUR,
 35	RTC_WEEKDAY,
 36	RTC_DATE,
 37	RTC_MONTH,
 38	RTC_YEAR1,
 39	RTC_YEAR2,
 40	/* Make sure this is always the last enum name. */
 41	RTC_MAX_NUM_TIME_REGS
 42};
 43
 44/*
 45 * Registers used by the driver which are different between chipsets.
 46 *
 47 * Operations like read time and write alarm/time require updating
 48 * specific fields in UDR register. These fields usually are auto-cleared
 49 * (with some exceptions).
 50 *
 51 * Table of operations per device:
 52 *
 53 * Device     | Write time | Read time | Write alarm
 54 * =================================================
 55 * S5M8767    | UDR + TIME |           | UDR
 56 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 57 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 58 * S2MPS15    | WUDR       | RUDR      | AUDR
 59 */
 60struct s5m_rtc_reg_config {
 61	/* Number of registers used for setting time/alarm0/alarm1 */
 62	unsigned int regs_count;
 63	/* First register for time, seconds */
 64	unsigned int time;
 65	/* RTC control register */
 66	unsigned int ctrl;
 67	/* First register for alarm 0, seconds */
 68	unsigned int alarm0;
 69	/* First register for alarm 1, seconds */
 70	unsigned int alarm1;
 71	/*
 72	 * Register for update flag (UDR). Typically setting UDR field to 1
 73	 * will enable update of time or alarm register. Then it will be
 74	 * auto-cleared after successful update.
 75	 */
 76	unsigned int udr_update;
 77	/* Auto-cleared mask in UDR field for writing time and alarm */
 78	unsigned int autoclear_udr_mask;
 79	/*
 80	 * Masks in UDR field for time and alarm operations.
 81	 * The read time mask can be 0. Rest should not.
 82	 */
 83	unsigned int read_time_udr_mask;
 84	unsigned int write_time_udr_mask;
 85	unsigned int write_alarm_udr_mask;
 86};
 87
 88/* Register map for S5M8763 and S5M8767 */
 89static const struct s5m_rtc_reg_config s5m_rtc_regs = {
 90	.regs_count		= 8,
 91	.time			= S5M_RTC_SEC,
 92	.ctrl			= S5M_ALARM1_CONF,
 93	.alarm0			= S5M_ALARM0_SEC,
 94	.alarm1			= S5M_ALARM1_SEC,
 95	.udr_update		= S5M_RTC_UDR_CON,
 96	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
 97	.read_time_udr_mask	= 0, /* Not needed */
 98	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
 99	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
100};
101
102/* Register map for S2MPS13 */
103static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
104	.regs_count		= 7,
105	.time			= S2MPS_RTC_SEC,
106	.ctrl			= S2MPS_RTC_CTRL,
107	.alarm0			= S2MPS_ALARM0_SEC,
108	.alarm1			= S2MPS_ALARM1_SEC,
109	.udr_update		= S2MPS_RTC_UDR_CON,
110	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
111	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
112	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
113	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
114};
115
116/* Register map for S2MPS11/14 */
117static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
118	.regs_count		= 7,
119	.time			= S2MPS_RTC_SEC,
120	.ctrl			= S2MPS_RTC_CTRL,
121	.alarm0			= S2MPS_ALARM0_SEC,
122	.alarm1			= S2MPS_ALARM1_SEC,
123	.udr_update		= S2MPS_RTC_UDR_CON,
124	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
125	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
126	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
127	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
128};
129
130/*
131 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
132 * are swapped.
133 */
134static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
135	.regs_count		= 7,
136	.time			= S2MPS_RTC_SEC,
137	.ctrl			= S2MPS_RTC_CTRL,
138	.alarm0			= S2MPS_ALARM0_SEC,
139	.alarm1			= S2MPS_ALARM1_SEC,
140	.udr_update		= S2MPS_RTC_UDR_CON,
141	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
142	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
143	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
144	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
145};
146
147struct s5m_rtc_info {
148	struct device *dev;
149	struct i2c_client *i2c;
150	struct sec_pmic_dev *s5m87xx;
151	struct regmap *regmap;
152	struct rtc_device *rtc_dev;
153	int irq;
154	enum sec_device_type device_type;
155	int rtc_24hr_mode;
156	const struct s5m_rtc_reg_config	*regs;
157};
158
159static const struct regmap_config s5m_rtc_regmap_config = {
160	.reg_bits = 8,
161	.val_bits = 8,
162
163	.max_register = S5M_RTC_REG_MAX,
164};
165
166static const struct regmap_config s2mps14_rtc_regmap_config = {
167	.reg_bits = 8,
168	.val_bits = 8,
169
170	.max_register = S2MPS_RTC_REG_MAX,
171};
172
173static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
174			       int rtc_24hr_mode)
175{
176	tm->tm_sec = data[RTC_SEC] & 0x7f;
177	tm->tm_min = data[RTC_MIN] & 0x7f;
178	if (rtc_24hr_mode) {
179		tm->tm_hour = data[RTC_HOUR] & 0x1f;
180	} else {
181		tm->tm_hour = data[RTC_HOUR] & 0x0f;
182		if (data[RTC_HOUR] & HOUR_PM_MASK)
183			tm->tm_hour += 12;
184	}
185
186	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
187	tm->tm_mday = data[RTC_DATE] & 0x1f;
188	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
189	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
190	tm->tm_yday = 0;
191	tm->tm_isdst = 0;
192}
193
194static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
195{
196	data[RTC_SEC] = tm->tm_sec;
197	data[RTC_MIN] = tm->tm_min;
198
199	if (tm->tm_hour >= 12)
200		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
201	else
202		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
203
204	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
205	data[RTC_DATE] = tm->tm_mday;
206	data[RTC_MONTH] = tm->tm_mon + 1;
207	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
208
209	if (tm->tm_year < 100) {
210		pr_err("RTC cannot handle the year %d\n",
211		       1900 + tm->tm_year);
212		return -EINVAL;
213	} else {
214		return 0;
215	}
216}
217
218/*
219 * Read RTC_UDR_CON register and wait till UDR field is cleared.
220 * This indicates that time/alarm update ended.
221 */
222static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
223{
224	int ret, retry = UDR_READ_RETRY_CNT;
225	unsigned int data;
226
227	do {
228		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
229	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
230
231	if (!retry)
232		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
233
234	return ret;
235}
236
237static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
238		struct rtc_wkalrm *alarm)
239{
240	int ret;
241	unsigned int val;
242
243	switch (info->device_type) {
244	case S5M8767X:
245	case S5M8763X:
246		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
247		val &= S5M_ALARM0_STATUS;
248		break;
249	case S2MPS15X:
250	case S2MPS14X:
251	case S2MPS13X:
252		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
253				&val);
254		val &= S2MPS_ALARM0_STATUS;
255		break;
256	default:
257		return -EINVAL;
258	}
259	if (ret < 0)
260		return ret;
261
262	if (val)
263		alarm->pending = 1;
264	else
265		alarm->pending = 0;
266
267	return 0;
268}
269
270static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
271{
272	int ret;
273	unsigned int data;
274
275	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
276	if (ret < 0) {
277		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
278		return ret;
279	}
280
281	data |= info->regs->write_time_udr_mask;
282
283	ret = regmap_write(info->regmap, info->regs->udr_update, data);
284	if (ret < 0) {
285		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
286		return ret;
287	}
288
289	ret = s5m8767_wait_for_udr_update(info);
290
291	return ret;
292}
293
294static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
295{
296	int ret;
297	unsigned int data;
298
299	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
300	if (ret < 0) {
301		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
302			__func__, ret);
303		return ret;
304	}
305
306	data |= info->regs->write_alarm_udr_mask;
307	switch (info->device_type) {
308	case S5M8763X:
309	case S5M8767X:
310		data &= ~S5M_RTC_TIME_EN_MASK;
311		break;
312	case S2MPS15X:
313	case S2MPS14X:
314	case S2MPS13X:
315		/* No exceptions needed */
316		break;
317	default:
318		return -EINVAL;
319	}
320
321	ret = regmap_write(info->regmap, info->regs->udr_update, data);
322	if (ret < 0) {
323		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
324			__func__, ret);
325		return ret;
326	}
327
328	ret = s5m8767_wait_for_udr_update(info);
329
330	/* On S2MPS13 the AUDR is not auto-cleared */
331	if (info->device_type == S2MPS13X)
332		regmap_update_bits(info->regmap, info->regs->udr_update,
333				   S2MPS13_RTC_AUDR_MASK, 0);
334
335	return ret;
336}
337
338static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
339{
340	tm->tm_sec = bcd2bin(data[RTC_SEC]);
341	tm->tm_min = bcd2bin(data[RTC_MIN]);
342
343	if (data[RTC_HOUR] & HOUR_12) {
344		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
345		if (data[RTC_HOUR] & HOUR_PM)
346			tm->tm_hour += 12;
347	} else {
348		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
349	}
350
351	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
352	tm->tm_mday = bcd2bin(data[RTC_DATE]);
353	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
354	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
355	tm->tm_year -= 1900;
356}
357
358static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
359{
360	data[RTC_SEC] = bin2bcd(tm->tm_sec);
361	data[RTC_MIN] = bin2bcd(tm->tm_min);
362	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
363	data[RTC_WEEKDAY] = tm->tm_wday;
364	data[RTC_DATE] = bin2bcd(tm->tm_mday);
365	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
366	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
367	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
368}
369
370static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
371{
372	struct s5m_rtc_info *info = dev_get_drvdata(dev);
373	u8 data[RTC_MAX_NUM_TIME_REGS];
374	int ret;
375
376	if (info->regs->read_time_udr_mask) {
377		ret = regmap_update_bits(info->regmap,
378				info->regs->udr_update,
379				info->regs->read_time_udr_mask,
380				info->regs->read_time_udr_mask);
381		if (ret) {
382			dev_err(dev,
383				"Failed to prepare registers for time reading: %d\n",
384				ret);
385			return ret;
386		}
387	}
388	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
389			info->regs->regs_count);
390	if (ret < 0)
391		return ret;
392
393	switch (info->device_type) {
394	case S5M8763X:
395		s5m8763_data_to_tm(data, tm);
396		break;
397
398	case S5M8767X:
399	case S2MPS15X:
400	case S2MPS14X:
401	case S2MPS13X:
402		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
403		break;
404
405	default:
406		return -EINVAL;
407	}
408
409	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
 
 
410
411	return 0;
412}
413
414static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
415{
416	struct s5m_rtc_info *info = dev_get_drvdata(dev);
417	u8 data[RTC_MAX_NUM_TIME_REGS];
418	int ret = 0;
419
420	switch (info->device_type) {
421	case S5M8763X:
422		s5m8763_tm_to_data(tm, data);
423		break;
424	case S5M8767X:
425	case S2MPS15X:
426	case S2MPS14X:
427	case S2MPS13X:
428		ret = s5m8767_tm_to_data(tm, data);
429		break;
430	default:
431		return -EINVAL;
432	}
433
434	if (ret < 0)
435		return ret;
436
437	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
 
 
438
439	ret = regmap_raw_write(info->regmap, info->regs->time, data,
440			info->regs->regs_count);
441	if (ret < 0)
442		return ret;
443
444	ret = s5m8767_rtc_set_time_reg(info);
445
446	return ret;
447}
448
449static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
450{
451	struct s5m_rtc_info *info = dev_get_drvdata(dev);
452	u8 data[RTC_MAX_NUM_TIME_REGS];
453	unsigned int val;
454	int ret, i;
455
456	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
457			info->regs->regs_count);
458	if (ret < 0)
459		return ret;
460
461	switch (info->device_type) {
462	case S5M8763X:
463		s5m8763_data_to_tm(data, &alrm->time);
464		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
465		if (ret < 0)
466			return ret;
467
468		alrm->enabled = !!val;
469		break;
470
471	case S5M8767X:
472	case S2MPS15X:
473	case S2MPS14X:
474	case S2MPS13X:
475		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
476		alrm->enabled = 0;
477		for (i = 0; i < info->regs->regs_count; i++) {
478			if (data[i] & ALARM_ENABLE_MASK) {
479				alrm->enabled = 1;
480				break;
481			}
482		}
483		break;
484
485	default:
486		return -EINVAL;
487	}
488
489	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
 
 
 
 
 
 
490
491	return s5m_check_peding_alarm_interrupt(info, alrm);
492}
493
494static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
495{
496	u8 data[RTC_MAX_NUM_TIME_REGS];
497	int ret, i;
498	struct rtc_time tm;
499
500	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
501			info->regs->regs_count);
502	if (ret < 0)
503		return ret;
504
505	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
506	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
 
 
507
508	switch (info->device_type) {
509	case S5M8763X:
510		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
511		break;
512
513	case S5M8767X:
514	case S2MPS15X:
515	case S2MPS14X:
516	case S2MPS13X:
517		for (i = 0; i < info->regs->regs_count; i++)
518			data[i] &= ~ALARM_ENABLE_MASK;
519
520		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
521				info->regs->regs_count);
522		if (ret < 0)
523			return ret;
524
525		ret = s5m8767_rtc_set_alarm_reg(info);
526
527		break;
528
529	default:
530		return -EINVAL;
531	}
532
533	return ret;
534}
535
536static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
537{
538	int ret;
539	u8 data[RTC_MAX_NUM_TIME_REGS];
540	u8 alarm0_conf;
541	struct rtc_time tm;
542
543	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
544			info->regs->regs_count);
545	if (ret < 0)
546		return ret;
547
548	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
549	dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
 
 
550
551	switch (info->device_type) {
552	case S5M8763X:
553		alarm0_conf = 0x77;
554		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
555		break;
556
557	case S5M8767X:
558	case S2MPS15X:
559	case S2MPS14X:
560	case S2MPS13X:
561		data[RTC_SEC] |= ALARM_ENABLE_MASK;
562		data[RTC_MIN] |= ALARM_ENABLE_MASK;
563		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
564		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
565		if (data[RTC_DATE] & 0x1f)
566			data[RTC_DATE] |= ALARM_ENABLE_MASK;
567		if (data[RTC_MONTH] & 0xf)
568			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
569		if (data[RTC_YEAR1] & 0x7f)
570			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
571
572		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
573				info->regs->regs_count);
574		if (ret < 0)
575			return ret;
576		ret = s5m8767_rtc_set_alarm_reg(info);
577
578		break;
579
580	default:
581		return -EINVAL;
582	}
583
584	return ret;
585}
586
587static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
588{
589	struct s5m_rtc_info *info = dev_get_drvdata(dev);
590	u8 data[RTC_MAX_NUM_TIME_REGS];
591	int ret;
592
593	switch (info->device_type) {
594	case S5M8763X:
595		s5m8763_tm_to_data(&alrm->time, data);
596		break;
597
598	case S5M8767X:
599	case S2MPS15X:
600	case S2MPS14X:
601	case S2MPS13X:
602		s5m8767_tm_to_data(&alrm->time, data);
603		break;
604
605	default:
606		return -EINVAL;
607	}
608
609	dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
 
 
 
610
611	ret = s5m_rtc_stop_alarm(info);
612	if (ret < 0)
613		return ret;
614
615	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
616			info->regs->regs_count);
617	if (ret < 0)
618		return ret;
619
620	ret = s5m8767_rtc_set_alarm_reg(info);
621	if (ret < 0)
622		return ret;
623
624	if (alrm->enabled)
625		ret = s5m_rtc_start_alarm(info);
626
627	return ret;
628}
629
630static int s5m_rtc_alarm_irq_enable(struct device *dev,
631				    unsigned int enabled)
632{
633	struct s5m_rtc_info *info = dev_get_drvdata(dev);
634
635	if (enabled)
636		return s5m_rtc_start_alarm(info);
637	else
638		return s5m_rtc_stop_alarm(info);
639}
640
641static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
642{
643	struct s5m_rtc_info *info = data;
644
645	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
646
647	return IRQ_HANDLED;
648}
649
650static const struct rtc_class_ops s5m_rtc_ops = {
651	.read_time = s5m_rtc_read_time,
652	.set_time = s5m_rtc_set_time,
653	.read_alarm = s5m_rtc_read_alarm,
654	.set_alarm = s5m_rtc_set_alarm,
655	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
656};
657
658static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
659{
660	u8 data[2];
661	int ret;
662
663	switch (info->device_type) {
664	case S5M8763X:
665	case S5M8767X:
666		/* UDR update time. Default of 7.32 ms is too long. */
667		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
668				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
669		if (ret < 0)
670			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
671					__func__, ret);
672
673		/* Set RTC control register : Binary mode, 24hour mode */
674		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
675		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
676
677		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
678		break;
679
680	case S2MPS15X:
681	case S2MPS14X:
682	case S2MPS13X:
683		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
684		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
685		if (ret < 0)
686			break;
687
688		/*
689		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
690		 * RTC_CTRL register like writing Alarm registers. We can't find
691		 * the description from datasheet but vendor code does that
692		 * really.
693		 */
694		ret = s5m8767_rtc_set_alarm_reg(info);
695		break;
696
697	default:
698		return -EINVAL;
699	}
700
701	info->rtc_24hr_mode = 1;
702	if (ret < 0) {
703		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
704			__func__, ret);
705		return ret;
706	}
707
708	return ret;
709}
710
711static int s5m_rtc_probe(struct platform_device *pdev)
712{
713	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
 
714	struct s5m_rtc_info *info;
715	const struct regmap_config *regmap_cfg;
716	int ret, alarm_irq;
717
 
 
 
 
 
718	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
719	if (!info)
720		return -ENOMEM;
721
722	switch (platform_get_device_id(pdev)->driver_data) {
723	case S2MPS15X:
724		regmap_cfg = &s2mps14_rtc_regmap_config;
725		info->regs = &s2mps15_rtc_regs;
726		alarm_irq = S2MPS14_IRQ_RTCA0;
727		break;
728	case S2MPS14X:
729		regmap_cfg = &s2mps14_rtc_regmap_config;
730		info->regs = &s2mps14_rtc_regs;
731		alarm_irq = S2MPS14_IRQ_RTCA0;
732		break;
733	case S2MPS13X:
734		regmap_cfg = &s2mps14_rtc_regmap_config;
735		info->regs = &s2mps13_rtc_regs;
736		alarm_irq = S2MPS14_IRQ_RTCA0;
737		break;
738	case S5M8763X:
739		regmap_cfg = &s5m_rtc_regmap_config;
740		info->regs = &s5m_rtc_regs;
741		alarm_irq = S5M8763_IRQ_ALARM0;
742		break;
743	case S5M8767X:
744		regmap_cfg = &s5m_rtc_regmap_config;
745		info->regs = &s5m_rtc_regs;
746		alarm_irq = S5M8767_IRQ_RTCA1;
747		break;
748	default:
749		dev_err(&pdev->dev,
750				"Device type %lu is not supported by RTC driver\n",
751				platform_get_device_id(pdev)->driver_data);
752		return -ENODEV;
753	}
754
755	info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
756					      RTC_I2C_ADDR);
757	if (IS_ERR(info->i2c)) {
758		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
759		return PTR_ERR(info->i2c);
760	}
761
762	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
763	if (IS_ERR(info->regmap)) {
764		ret = PTR_ERR(info->regmap);
765		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
766				ret);
767		return ret;
768	}
769
770	info->dev = &pdev->dev;
771	info->s5m87xx = s5m87xx;
772	info->device_type = platform_get_device_id(pdev)->driver_data;
773
774	if (s5m87xx->irq_data) {
775		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
776		if (info->irq <= 0) {
 
777			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
778				alarm_irq);
779			return -EINVAL;
780		}
781	}
782
783	platform_set_drvdata(pdev, info);
784
785	ret = s5m8767_rtc_init_reg(info);
786	if (ret)
787		return ret;
788
789	device_init_wakeup(&pdev->dev, 1);
790
791	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
792						 &s5m_rtc_ops, THIS_MODULE);
793
794	if (IS_ERR(info->rtc_dev))
795		return PTR_ERR(info->rtc_dev);
 
 
796
797	if (!info->irq) {
798		dev_info(&pdev->dev, "Alarm IRQ not available\n");
799		return 0;
800	}
801
802	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
803					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
804					info);
805	if (ret < 0) {
806		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
807			info->irq, ret);
808		return ret;
809	}
810
811	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
812}
813
814#ifdef CONFIG_PM_SLEEP
815static int s5m_rtc_resume(struct device *dev)
816{
817	struct s5m_rtc_info *info = dev_get_drvdata(dev);
818	int ret = 0;
819
820	if (info->irq && device_may_wakeup(dev))
821		ret = disable_irq_wake(info->irq);
822
823	return ret;
824}
825
826static int s5m_rtc_suspend(struct device *dev)
827{
828	struct s5m_rtc_info *info = dev_get_drvdata(dev);
829	int ret = 0;
830
831	if (info->irq && device_may_wakeup(dev))
832		ret = enable_irq_wake(info->irq);
833
834	return ret;
835}
836#endif /* CONFIG_PM_SLEEP */
837
838static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
839
840static const struct platform_device_id s5m_rtc_id[] = {
841	{ "s5m-rtc",		S5M8767X },
842	{ "s2mps13-rtc",	S2MPS13X },
843	{ "s2mps14-rtc",	S2MPS14X },
844	{ "s2mps15-rtc",	S2MPS15X },
845	{ },
846};
847MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
848
849static struct platform_driver s5m_rtc_driver = {
850	.driver		= {
851		.name	= "s5m-rtc",
852		.pm	= &s5m_rtc_pm_ops,
853	},
854	.probe		= s5m_rtc_probe,
 
855	.id_table	= s5m_rtc_id,
856};
857
858module_platform_driver(s5m_rtc_driver);
859
860/* Module information */
861MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
862MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
863MODULE_LICENSE("GPL");
864MODULE_ALIAS("platform:s5m-rtc");